WO2014105067A1 - Modificateur du flux d'échappement, intersection de conduits l'incorporant et procédés correspondants - Google Patents

Modificateur du flux d'échappement, intersection de conduits l'incorporant et procédés correspondants Download PDF

Info

Publication number
WO2014105067A1
WO2014105067A1 PCT/US2012/072181 US2012072181W WO2014105067A1 WO 2014105067 A1 WO2014105067 A1 WO 2014105067A1 US 2012072181 W US2012072181 W US 2012072181W WO 2014105067 A1 WO2014105067 A1 WO 2014105067A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
intersection
contoured
flow
liner
Prior art date
Application number
PCT/US2012/072181
Other languages
English (en)
Inventor
John Francis QUANCI
Rajat Kapoor
Chun Wai CHOI
Ung-kyung CHUN
Original Assignee
Suncoke Technology And Development Llc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suncoke Technology And Development Llc. filed Critical Suncoke Technology And Development Llc.
Priority to CA2892292A priority Critical patent/CA2892292C/fr
Priority to CN201280078042.6A priority patent/CN104884577B/zh
Priority to PCT/US2012/072181 priority patent/WO2014105067A1/fr
Priority to EP12890654.2A priority patent/EP2938700B1/fr
Publication of WO2014105067A1 publication Critical patent/WO2014105067A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B15/00Other coke ovens
    • C10B15/02Other coke ovens with floor heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • F15D1/04Arrangements of guide vanes in pipe elbows or duct bends; Construction of pipe conduit elements or elbows with respect to flow, specially for reducing losses in flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J11/00Devices for conducting smoke or fumes, e.g. flues 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/14Diverting flow into alternative channels

Definitions

  • the present technology is generally directed to devices and methods for modifying fluid flow within a duct. More specifically, some embodiments are directed to flow modifiers and transition portions for improving the exhaust flow from a coke oven through a duct intersection.
  • Coke is a solid carbonaceous fuel that is derived from coal. Because of its relatively few impurities, coke is a favored energy source in a variety of useful applications. For example, coke is often used to smelt iron ores during the steelmaking process. As a further example, coke may also be used to heat commercial buildings or power industrial boilers.
  • an amount of coal is baked in a coke oven at temperatures that typically exceed 2000 degrees Fahrenheit.
  • the baking process transforms the relatively impure coal into coke, which contains relatively few impurities.
  • the coke typically emerges from the coke oven as a substantially intact piece.
  • the coke typically is removed from the coke oven, loaded into one or more train cars (e.g., a hot car, a quench car, or a combined hot car/quench car), and transported to a quench tower in order to cool or "quench" the coke before it is made available for distribution for use as a fuel source.
  • train cars e.g., a hot car, a quench car, or a combined hot car/quench car
  • the hot exhaust i.e. flue gas
  • the intersections in the flue gas flow path of a coke plant can lead to significant pressure drop losses, poor flow zones (e.g. dead, stagnant, recirculation, separation, etc.), and poor mixing of air and volatile matter.
  • the high pressure drop losses lead to higher required draft which can lead to leaks and a more difficult to control system.
  • poor mixing and resulting localized hot spots can lead to earlier structural degradation due to accelerated localized erosion and thermal wear. Erosion includes deterioration due to high velocity flow eating away at material. Hot spots can lead to thermal degradation of material, which can eventually cause thermal/structural failure.
  • This localized erosion and/or hot spots can, in turn, lead to failures at duct intersections.
  • the intersection of a coke plant's vent stack and crossover duct is susceptible to poor mixing/flow distribution that can lead to hot spots resulting in tunnel failures.
  • a duct intersection comprises a first duct portion and a second duct portion extending laterally from a side of the first duct portion.
  • the second duct portion may tee into the first duct portion.
  • the second duct portion may extend laterally from the side of the first duct portion at an angle of less than 90 degrees.
  • At least one flow modifier is mounted inside one of the first and second duct portions.
  • the flow modifier is a contoured duct liner.
  • the flow modifier includes at least one turning vane.
  • the contoured duct liner comprises a first contoured wall mated to an inside surface of the duct and a second contoured wall mated to the first contoured wall.
  • the contoured duct liner may be mounted inside the first duct portion.
  • the contoured duct liner is mounted inside the second duct portion.
  • the second contoured wall may comprise a refractory material.
  • the contoured duct liner comprises a first wall contoured to mate with an inside surface of a duct intersection and a second wall attached to the first wall.
  • the second wall is contoured to modify the direction of gas flow within the duct intersection.
  • the second wall includes at least one convex surface.
  • the duct intersection comprises a first duct portion and a second duct portion extending laterally from a side of the first duct portion.
  • a transition portion extends between the first and second duct portions, wherein the transition portion has a length extending along a side of the first duct portion and a depth extending away from the side of the first duct portion.
  • the length is a function of the diameter of the second duct portion.
  • the length is greater than a diameter of the second duct portion.
  • the length is twice the depth.
  • the exhaust system comprises an emergency stack and a crossover duct extending laterally from a side of the emergency stack.
  • the system also includes a contoured duct liner including a first wall mated to an inside surface of the emergency stack and a second wall attached to the first wall.
  • the second wall is contoured to modify the direction of gas flow proximate an intersection of the emergency stack and crossover duct.
  • the exhaust system may further comprise a second contoured duct liner mated to an inside surface of the crossover duct.
  • the method may include determining a location of a poor flow zone (e.g. dead, stagnant, recirculation, separation, etc.) within the duct intersection and mounting a flow modifier in the duct intersection at the determined location.
  • a poor flow zone e.g. dead, stagnant, recirculation, separation, etc.
  • the location is determined with a computer aided design system, such as a computational fluid dynamics (CFD) system.
  • CFD computational fluid dynamics
  • the location is determined by measuring conditions at the duct intersection, such as temperature, pressure, and/or velocity.
  • a method of improving gas flow in an exhaust system including at least one duct intersection comprises determining a location of a poor flow zone within the duct intersection and injecting a fluid into the duct intersection at the determined location.
  • FIG. 1 is a schematic representation of a coke plant
  • FIG. 2 is a schematic representation of a representative coke oven and associated exhaust system
  • FIG. 3 is a side view in cross-section of an emergency stack and crossover duct intersection indicating various flow anomalies near the intersection;
  • FIG. 4 is a side view in cross-section of a duct intersection according to an exemplary embodiment
  • FIG. 5 is a perspective view of a fan manifold that extends between the duct fan and main stack of a coke plant;
  • FIG. 6 is a side view in cross-section of a traditional fan manifold indicating the velocity of gases traveling through the manifold and main stack;
  • FIG. 7 is a side view in cross-section of a modified fan manifold indicating the velocity of gases traveling through the manifold and main stack;
  • FIG. 8 is a side view in cross-section of a turning vane assembly according to an exemplary embodiment
  • FIG. 9 is a perspective view of the turning vane assembly shown in FIG. 8;
  • FIG. 10 is a side view in cross-section of a fan manifold according to an exemplary embodiment indicating the velocity of gases traveling through the manifold and main stack;
  • FIG. 11A is a front view schematic representation of a duct intersection according to an exemplary embodiment
  • FIG. 11 B is a side view schematic representation of the duct intersection shown in FIG. 11 A;
  • FIG. 12A is a front view schematic representation of a duct intersection according to an exemplary embodiment
  • FIG. 12B is a side view schematic representation of the duct intersection shown in FIG. 12A;
  • FIG. 13 is a side view of a duct intersection according to another exemplary embodiment
  • FIG. 14 is a schematic representation of a fluid injection system for use at a duct intersection
  • FIG. 15A is a perspective view of an intermediate HRSG tie in with transition pieces at the tie-in joints
  • FIG. 15B is a side view of an intermediate HRSG tie in with transition pieces at the tie-in joints;
  • FIG. 15C is a perspective view of an intermediate HRSG tie in with transition pieces at the tie-in joints; and [0036] FIG. 15D is a top view of an intermediate HRSG tie in with transition pieces at the tie-in joints.
  • a contoured duct liner, a duct intersection, and methods of improving gas flow in an exhaust system may be implemented as original designs or as retrofits to existing facilities.
  • the disclosed designs have been found to improve flow, thermal conditions, and structural integrity at intersections or tie-ins in a coke oven or similar system.
  • By optimizing the external and/or internal shape of intersections the mixing can be improved, areas of relatively undesirable conditions can be minimized, and pressure drop losses at the intersection can be minimized. Reducing pressure losses at the intersections can help lower draft set point(s), which can lead to improved operation as well as potentially lower cost designs and maintenance.
  • it can be advantageous to minimize the draft set point of the overall system to minimize infiltration of any unwanted outside air into the system.
  • FIG. 1 illustrates a representative coke plant 5 where coal 1 is fed into a battery of coke ovens 10 where the coal is heated to form coke.
  • Exhaust gases i.e. flue gases
  • Cross-over duct 16 is also connected to common tunnel 12 via the emergency stack 14.
  • Hot flue gases flow through the cross-over duct 16 into a co-generation plant 18 which includes a heat recovery steam generator (HRSG) 20 which in turn feeds steam turbine 22.
  • HRSG heat recovery steam generator
  • the flue gases continue on to a sulfur treatment facility 24 and finally the treated exhaust gases are expelled through main stack 28 via duct fans 26, which provide negative pressure on the entire system in addition to the draft created by gases rising through the main stack 28.
  • coke ovens 10 are connected to the common tunnel 12 via uptakes 15.
  • Common tunnel 12 extends horizontally along the top of the coke ovens 10.
  • An emergency stack 14 extends vertically from common tunnel 12 as shown.
  • Cross-over duct 16 intersects emergency stack 14 at a duct intersection 30.
  • the emergency stack 14 is closed whereby exhaust gases travel through the cross-over duct 16 to the co-generation plant 18 (see FIG. 1).
  • the emergency stack 14 may be opened to allow exhaust gases to exit the system directly.
  • the common tunnel 12 and cross-over duct 16 may intersect the emergency stack 14 at the same elevation.
  • the technology disclosed herein may be applied to the intersections whether they are at the same elevation or different elevations.
  • FIG. 3 illustrates various flow anomalies present in traditional duct intersections, such as duct intersection 30.
  • Flow anomaly 32 is a point of localized combustion that is due to poor flow/distribution.
  • An additional area of poor flow/mixing distribution 36 is located in the emergency stack 14 across from the cross-over duct 16.
  • a poor flow zone 34 e.g. dead, stagnant, recirculation, separation, etc.
  • These poor flow zone areas contain separated flows which can dissipate useful flow energy.
  • These potential poor flow spaces can also contain unwanted, unsteady vortical flow, sometimes enhanced by buoyancy or chemical reactions, which can contribute to unwanted, poor acoustics, forced harmonics, potential flow instabilities, and incorrect instrument readings. Incorrect instrument readings may occur if measurements are made in a poor flow zone that has conditions not representative of flow in the duct. Because of the nature of the poor flow zones, these areas can also cause particle drop out and promote particle accumulation.
  • FIG. 4 illustrates an improved duct intersection 130 according to an exemplary embodiment.
  • Duct intersection 130 includes a first duct portion in the form of emergency stack 114 and a second duct portion in the form of cross-over duct 116 that extends laterally from a side of the emergency stack 114.
  • duct intersection 130 includes a plurality of flow modifiers (40, 42, 44) to improve exhaust flow.
  • flow modifier 40 is in the form of a contoured duct liner that is positioned at the intersection 130 of emergency stack 114 and cross-over duct 116.
  • Flow modifier 40 occupies the area where traditional designs have poor flow and mixing such as flow anomaly 32 in FIG. 3.
  • Flow modifier 42 is disposed in cross-over duct 116 to occupy the poor flow zone 34 shown in FIG. 3.
  • Flow modifier 44 is disposed in the emergency stack 114 opposite the cross-over duct 116 and, in this case, occupies the poor mixing distribution region 36 shown in FIG. 3. With the addition of flow modifiers 40, 42, and 44 the flow F within intersection 130 is improved (see FIG. 4).
  • the duct liners reshape the internal contours of the duct, inherently changing the nature and direction of the flow path among other effects.
  • the duct liners can be used to smooth or improve flow entrance or provide better transition from one path to another especially when there are limitations to do so with the duct shape.
  • the contoured duct liners can be used to alleviate wall shear stress/erosion stemming from high velocities and particle accumulation from settling and/or particle impaction, which could result in slow or poor flow zones.
  • the contoured duct liners also provide better duct transitions, or paths, for better flow transition and movement, mitigation of stress and thermal concentrations, and mitigation of flow separation, etc.
  • the contoured duct liners 40, 42, and 44 are each comprised of a first contoured wall mated to an inside surface of the duct intersection and a second contoured wall mated to the first contoured wall.
  • contoured duct liner 40 includes a first contoured wall 50 which is mated to the inside surface 17 of emergency stack 114 and inside surface 19 of cross-over duct 116.
  • Duct liner 40 also includes a second contoured wall 52 that is mated to the first contoured wall 50.
  • the second contoured wall 52 is convex and extends into the flow F of the flue gases traveling through the duct intersection 130.
  • Contoured duct liner 42 includes a first contoured wall 54 which is mated to an inside surface 19 of the cross-over duct 116.
  • a second contoured wall 56 is mated to the first contoured wall 54 and is also convex.
  • contoured duct liner 44 includes a first contoured wall 58 mated to inside surface 17 of the emergency stack 114 and includes a second contoured wall 60 mated to the first contoured wall 58.
  • first contoured walls of the contoured duct liners may be attached to the inside surfaces 17 and 19 by welding, fasteners, or the like.
  • the second contoured walls may be attached to their respective first contoured walls by appropriate fasteners or by welding.
  • the contoured duct liners may be comprised of various materials which are suitable for corrosive, high heat applications.
  • first contoured walls 50, 54, and 58 may be comprised of steel or other suitable material.
  • the second contoured walls 52, 56, and 60 may comprise a refractory material such as ceramic that is capable of resisting the heat associated with the flue gases and local combustion.
  • the selection of materials can be dependent on the thermal, flow, and chemical properties of the flue gases. Because the flue gases can be of varied temperatures, velocities, chemical composition, in which all can depend on many factors such as the time in the coking cycle, flow control settings, ambient conditions, at the locations in the coking oven system, etc., the material selection can vary as well.
  • the internal lining layers for the hot duct tie-ins could have more significant refractory layers than for cold ducts. Selection of appropriate materials may take into account min/max temperatures, thermal cycling, chemical reactions, flow erosion, acoustics, harmonics, resonance, condensation of corrosive chemicals, and accumulation of particles, for example.
  • the flow modifiers may comprise a multilayer lining that is built up with a relatively inexpensive material and covered with a skin.
  • refractory or similar material can be shaped via gunning (i.e. spraying). Better control of shaping via gunning may be accomplished by gunning in small increments or layers.
  • a template or mold may be used to aid the shaping via gunning.
  • a template, mold, or advanced cutting techniques may be used to shape the refractory (e.g. even in the absence of gunning for the main shape of an internal insert) for insertion into the duct and then attached via gunning to the inner lining of the duct.
  • the flow modifier may be integrally formed along the duct.
  • the duct wall may be formed or "dented" to provide a convex surface along the interior surface of the duct.
  • convex does not require a continuous smooth surface, although a smooth surface may be desirable.
  • the flow modifiers may be in the form of a multi-faceted protrusion extending into the flow path. Such a protrusion may be comprised of multiple discontinuous panels and/or surfaces.
  • the flow modifiers are not limited to convex surfaces.
  • the contours of the flow modifiers may have other complex surfaces that may be determined by CFD analysis and testing, and can be determined by design considerations such as cost, space, operating conditions, etc.
  • FIG. 5 illustrates a traditional fan manifold 70 that extends between the duct fans 26 and main stack 28 (see FIG. 1).
  • Fan manifold 70 comprises a plurality of branches 72, 74, and 76 which all intersect into plenum 80. As shown in the figure, branches 74 and 76 include flow diverters 78 while plenum 80 includes flow straightener 79.
  • FIG. 6 which indicates velocity magnitude in the fan manifold 70
  • traditional fan manifold designs result in a high velocity flow 82 which can damage the duct as a result of high shear stress.
  • FIG. 7 illustrates a fan plenum 180 intersection which includes a turning vane assembly 90.
  • the magnitude of the velocity flowing next to the surface of main stack 128 is much lower than in the conventional duct configuration shown in FIG. 6.
  • the higher flow velocity 184 is displaced inward away from the inside wall of the main stack 128, thereby reducing shear stress on the wall and helping to prevent erosion and corrosion of the stack.
  • Turning vanes inside the duct help direct the flow path for a more efficient process. Turning vanes can be used to better mix flow, better directing of flow, and mitigation of total pressure losses, for example.
  • the turning vane assembly 90 includes an inner vane 92 and an outer vane 94. In this embodiment, both the inner and outer vanes are disposed in the main stack 128.
  • FIG. 8 provides exemplary dimensions by which a turning vane assembly could be constructed. However, these dimensions are exemplary and other dimensions and angles may be used.
  • the inner vane 92 includes a leading portion 902 that connects to an angled portion 904, which, in turn, connects to trailing portion 906.
  • the angled portion 904 tapers from a 100 inch width to an 80 inch width.
  • the trailing portion 906 tapers from an 80 inch width to a 50 inch width.
  • Outer vane 94 includes a leading portion 908 connected to an angled portion 910 which in turn is connected to a trailing portion 912.
  • Outer turning vane 94 also includes side walls 914 and 916 as shown. Side walls 914 and 916 are canted inward towards the angled and trailing portions 910 and 912 at an angle A. In this embodiment angle A is approximately 10 degrees.
  • Turning vane assembly 90 may be mounted or assembled into the main stack 128 with suitable fasteners or may be welded in place, for example.
  • a fan manifold plenum 280 intersects main stack 228 with a ramped transition.
  • the fan manifold plenum 280 has an upper wall 281 which transitions into the main stack 228 at an angle. As shown by the velocity magnitude 282, this results in a lower flow velocity magnitude than with traditional fan manifold designs shown in FIGS. 5 and 6. It has been found that improving the intersection/transition from the duct fan to the main stack can reduce wear and erosion as well as ash buildup in the main stack.
  • contoured duct liners and/or turning vanes may be used together in combination. For example, contoured duct liners may be located in the slower velocity regions 202, 204, and 206 as shown in FIG. 10.
  • FIGS. 11A and 11 B illustrate a duct intersection 230 according to another exemplary embodiment.
  • the duct intersection 230 includes an emergency stack 214 and a cross-over duct 216 with a transition portion 240 extending therebetween.
  • Changing the size of the duct cross sectional areas near or at intersections can help improve flow performance.
  • increasing the size of the flow cross sectional area as in transition portion 240 can help reduce flow losses.
  • the transition portion can help better transition flow from a duct to a joining duct at tie-ins or intersections.
  • the transitions can be flared, swaged, swept, or the like to provide the desired flow behavior at the intersections.
  • the transitions may converge or diverge with respect to the direction of flow.
  • Converging and diverging portions may be used in combination, e.g. the duct may first converge and then diverge or vice versa.
  • the embodiments may be implemented in various combinations.
  • a turning vane assembly such as described above with respect to FIGS. 7-9, may be used in conjunction with the duct liners, whether fabricated or gunned in place, as well as transition portions.
  • the transition portion 240 has a length L extending along a side of the exhaust duct and a depth D extending away from the side of the exhaust duct. In this embodiment, the length is greater than a diameter d of the cross-over duct 216.
  • the length L may be a function of the duct diameter d or the depth D.
  • the length L may be twice the depth D.
  • FIG. 12A and 12B illustrate a duct intersection 330 including a transition portion 340 that is similar to that shown in FIGS. 11A and 11 B, except in this case the exhaust stack 314 includes an enlarged annular region 315 that is adjacent to the intersection 330.
  • FIG. 13 illustrates yet another embodiment of a duct intersection 430 with an asymmetric transition portion 440.
  • external fins could be added to help enhance heat transfer with the surrounding ambient air.
  • external fins from the surfaces could be used to help cool localized hot spots.
  • Duct intersections can be designed, retrofitted, or modified to introduce fluids such as oxidizers (for better combustion or to remove PIC's, products of incomplete combustion), liquids such as water, fuels, inert gases, etc. to help better distribute combustion and mitigate hot spots or allow cooling of the hot stream.
  • fluid could be introduced to provide a boundary layer of cold inert fluid to mitigate hot spots at affected wall surfaces.
  • the fluids which could include liquids such as water, inert or other gases, could be used for cooling or mitigating certain chemical reactions.
  • the ducts can be modified to accommodate ports or additional pathways for introducing fluids. Fluid introduction, if introduced from a pressurized source, could also create entrainment, thereby improving mixing or flow energy.
  • FIG. 14 illustrates a duct intersection 530 including a fluid injection system 540.
  • Fluid injection system 540 is operative to inject fluid at particular regions in the intersection 530 to energize or direct flow, as well as insulate the surface of the ducts from exhaust gases.
  • Fluid injection system 540 includes a controller 542 which is connected to a plurality of valves, or fluid injectors 544, via wiring 548. Each injector 544 is connected by tubing 546 to a fluid reservoir 550.
  • the term fluid encompasses liquids as well as gases.
  • the injection system 540 may inject liquids or gases into the exhaust flow.
  • the injectors may be spaced optimally depending on design conditions.
  • the injectors can inject fluid transversely into the duct, as shown in FIG. 14.
  • the injectors could inject external fluid axially or along the exhaust flow direction at various locations.
  • the injectors could also inject fluid at different injection angles. The direction and method of injection depends on the conditions that exist at the tie- ins and intersections.
  • the injected fluid may come from an external pressurized source.
  • the fluid may be entrained through a port or valve by the draft of the exhaust flow.
  • the fluid injection system 540 may also include various sensors, such as temperature sensor 552 connected to controller 542 via cable 554. Various sensors, such as sensor 552, may provide feedback to controller 542 such that fluid may be injected at appropriate times. While the embodiment is illustrated as having a single temperature sensor, other additional sensors of different types of sensors may be employed in providing control feedback to controller 542. For example, other sensor may include pressure, velocity, and emissions sensors, such as an oxygen sensor.
  • the fluid injection system 540 may be used in conjunction with the contoured duct liners, turning vanes, and transition portions disclosed above.
  • the contoured duct liners in conjunction with the fluid injection system may extend the use of the duct intersection as a true mixing zone and potentially a combustion chamber. Air and other additives (e.g. oxygen) may be injected into the intersection to allow better combustion and use of the tunnels as extended combustion zones.
  • Air and other additives e.g. oxygen
  • a well-mixed duct intersection may be configured to act as a second combustion chamber. The addition of extra air into the duct intersection mixing zone can burn any excess flue gas and even cool off the intersection with excess air or other gases, such as nitrogen.
  • an intermediate HRSG tie in may include transition pieces (632, 634, 652) at the tie-in joints. Transitions 632 and 634 connect duct 622 to duct 630. Duct 630 connects to a rectangular tube 650 via transition piece 652.
  • the methods may include any procedural step inherent in the structures described herein.
  • the method comprises determining a location of a low or poor flow zone, an area of poor combustion, or an area of poor mixing (i.e. areas of relatively undesirable conditions) within the duct intersection and providing a flow modifier at the determined location.
  • Providing a flow modifier may include, for example and without limitation, mounting a duct liner within the duct, gunning a refractory material to the inside of the duct, mounting turning vanes within the duct, forming a convex surface along the duct, and combinations of the above.
  • the location may be determined with a computer aided design system, such as a CFD system.
  • the location may also be determined by measuring conditions at the duct intersection, such as temperature, pressure, and velocity.
  • the method comprises determining a location of a poor flow zone within the duct intersection and injecting a fluid into the duct intersection at the determined location.
  • a duct intersection comprising:
  • At least one flow modifier disposed inside one of the first and second duct portions.
  • contoured duct liner comprises a first contoured wall mated to an inside surface of the duct and a second contoured wall mated to the first contoured wall.
  • a contoured duct liner for use in a duct intersection comprising:
  • first wall contoured to mate with an inside surface of a duct intersection; and a second wall attached to the first wall, wherein the second wall is contoured to modify the direction of gas flow within the duct intersection.
  • contoured duct liner according to claim 11 , wherein the second wall includes at least one convex surface.
  • contoured duct liner according to claim 11 , wherein the second wall comprises a refractory material.
  • a coking facility exhaust system comprising:
  • a crossover duct extending laterally from a side of the emergency stack; and a contoured duct liner, including a convex surface operative to modify the direction of gas flow proximate an intersection of the emergency stack and crossover duct.
  • An improved coking facility exhaust system including an emergency stack and a crossover duct extending laterally from a side of the emergency stack, the improvement comprising:
  • a contoured duct liner including a convex surface operative to modify the direction of gas flow proximate an intersection of the emergency stack and crossover duct.
  • a method of improving gas flow in an exhaust system including at least one duct intersection comprising:
  • a duct intersection comprising:
  • transition portion extending between the first and second duct portions, wherein the transition portion has a length extending along a side of the first duct portion and a depth extending away from the side of the first duct portion, wherein the length is greater than a diameter of the second duct portion.
  • a method of improving gas flow in an exhaust system including at least one duct intersection comprising:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Pipe Accessories (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

L'invention concerne une intersection de conduits comprenant une première partie de conduit et une deuxième partie de conduit s'étendant latéralement à partir d'un côté de la première partie de conduit. Au moins un modificateur de flux est monté à l'intérieur d'une partie de conduit parmi la première et la deuxième partie de conduit. Le modificateur de flux est un revêtement intérieur de conduit façonné et/ou le modificateur de flux comprend au moins un déflecteur. L'intersection de conduits peut également comprendre une partie de transition s'étendant entre la première et la deuxième partie de conduit, la partie de transition présentant une longueur s'étendant le long d'un côté de la première partie de conduit et une profondeur partant du côté de la première partie de conduit, la longueur étant supérieure au diamètre de la deuxième partie de conduit.
PCT/US2012/072181 2012-12-28 2012-12-28 Modificateur du flux d'échappement, intersection de conduits l'incorporant et procédés correspondants WO2014105067A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2892292A CA2892292C (fr) 2012-12-28 2012-12-28 Modificateur du flux d'echappement, intersection de conduits l'incorporant et procedes correspondants
CN201280078042.6A CN104884577B (zh) 2012-12-28 2012-12-28 排气流动调节器和具有该调节器的管道交叉装置及相关方法
PCT/US2012/072181 WO2014105067A1 (fr) 2012-12-28 2012-12-28 Modificateur du flux d'échappement, intersection de conduits l'incorporant et procédés correspondants
EP12890654.2A EP2938700B1 (fr) 2012-12-28 2012-12-28 Intersection de conduits avec une modificateur du flux d'échappement et procédé pour améliorer l'écoulement de gaz

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2012/072181 WO2014105067A1 (fr) 2012-12-28 2012-12-28 Modificateur du flux d'échappement, intersection de conduits l'incorporant et procédés correspondants

Publications (1)

Publication Number Publication Date
WO2014105067A1 true WO2014105067A1 (fr) 2014-07-03

Family

ID=51021878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/072181 WO2014105067A1 (fr) 2012-12-28 2012-12-28 Modificateur du flux d'échappement, intersection de conduits l'incorporant et procédés correspondants

Country Status (4)

Country Link
EP (1) EP2938700B1 (fr)
CN (1) CN104884577B (fr)
CA (1) CA2892292C (fr)
WO (1) WO2014105067A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018116738A1 (de) * 2018-07-11 2020-01-16 Z & J Technologies Gmbh Befüllvorrichtung, Verkokungstrommel, System zur Rohölverarbeitung, Verfahren zum Herstellen von Petroleumkoks
US10731680B2 (en) 2016-03-24 2020-08-04 Air Bp Limited Flow distributer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105135397B (zh) * 2015-08-27 2017-08-29 宜兴市海纳环境工程有限公司 一种废烟气热回收系统及其应用方法
US11592041B2 (en) * 2020-10-28 2023-02-28 Artisan Industries, Inc. Device for increasing flow capacity of a fluid channel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998097A (en) * 1975-03-17 1976-12-21 Mitsubishi Jukogyo Kabushiki Kaisha Flow-measuring device
US4342195A (en) 1980-08-15 1982-08-03 Lo Ching P Motorcycle exhaust system
EP0126399A1 (fr) 1983-05-13 1984-11-28 Robertson GAL Gesellschaft für angewandte Lufttechnik mbH Conduit de fluide présentant une construction réduite
US4720262A (en) 1984-10-05 1988-01-19 Krupp Polysius Ag Apparatus for the heat treatment of fine material
US5213138A (en) 1992-03-09 1993-05-25 United Technologies Corporation Mechanism to reduce turning losses in conduits
CN2521473Y (zh) 2001-12-27 2002-11-20 杨正德 导流三通
DE102009003461A1 (de) 2008-02-11 2009-08-13 General Electric Co. Abgaskamine und Energieerzeugungssysteme zur Steigerung der Energieabgabe von Gasturbinen
US20110168482A1 (en) 2010-01-08 2011-07-14 Laxmikant Merchant Vane type silencers in elbow for gas turbine
US20120217319A1 (en) * 2010-11-20 2012-08-30 Vladimir Vladimirovich Fisenko Heat-generating jet injection

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302935A (en) * 1980-01-31 1981-12-01 Cousimano Robert D Adjustable (D)-port insert header for internal combustion engines
CN201437533U (zh) * 2009-07-14 2010-04-14 武汉钢铁(集团)公司 焦炉炭化室气压调节装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998097A (en) * 1975-03-17 1976-12-21 Mitsubishi Jukogyo Kabushiki Kaisha Flow-measuring device
US4342195A (en) 1980-08-15 1982-08-03 Lo Ching P Motorcycle exhaust system
EP0126399A1 (fr) 1983-05-13 1984-11-28 Robertson GAL Gesellschaft für angewandte Lufttechnik mbH Conduit de fluide présentant une construction réduite
US4720262A (en) 1984-10-05 1988-01-19 Krupp Polysius Ag Apparatus for the heat treatment of fine material
US5213138A (en) 1992-03-09 1993-05-25 United Technologies Corporation Mechanism to reduce turning losses in conduits
CN2521473Y (zh) 2001-12-27 2002-11-20 杨正德 导流三通
DE102009003461A1 (de) 2008-02-11 2009-08-13 General Electric Co. Abgaskamine und Energieerzeugungssysteme zur Steigerung der Energieabgabe von Gasturbinen
US20110168482A1 (en) 2010-01-08 2011-07-14 Laxmikant Merchant Vane type silencers in elbow for gas turbine
US20120217319A1 (en) * 2010-11-20 2012-08-30 Vladimir Vladimirovich Fisenko Heat-generating jet injection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2938700A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10731680B2 (en) 2016-03-24 2020-08-04 Air Bp Limited Flow distributer
DE102018116738A1 (de) * 2018-07-11 2020-01-16 Z & J Technologies Gmbh Befüllvorrichtung, Verkokungstrommel, System zur Rohölverarbeitung, Verfahren zum Herstellen von Petroleumkoks

Also Published As

Publication number Publication date
CA2892292A1 (fr) 2014-07-03
CN104884577B (zh) 2019-03-05
CN104884577A (zh) 2015-09-02
EP2938700B1 (fr) 2020-09-02
CA2892292C (fr) 2018-02-27
EP2938700A1 (fr) 2015-11-04
EP2938700A4 (fr) 2016-07-13

Similar Documents

Publication Publication Date Title
US20210363427A1 (en) Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US11008517B2 (en) Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
CA2892292C (fr) Modificateur du flux d'echappement, intersection de conduits l'incorporant et procedes correspondants
US8511258B2 (en) Coal boiler and coal boiler combustion method
WO2014041919A1 (fr) Équipement pour extinction du coke à sec
CN103047654B (zh) 空气煤气双蓄热燃烧装置
CN101311624B (zh) 用于蒸汽发生器的节能装置
JPH0313482B2 (fr)
CN206944137U (zh) 基于脱硝超低排放技术的循环流化床锅炉
CN202558879U (zh) 一种电炉烟气余热回收装置
MX2007012423A (es) Sistema de aire secundario reforzado hibrido y metodos para la reduccion de nox en gases de combustion.
CN103438438A (zh) 膜式水冷壁锅炉防高温腐蚀结焦方法及其装置
JP2012132603A (ja) 石炭及び石油コークスを用いた燃焼方法及び装置
CN101613606B (zh) 一种石油液化气烘炉、开工方法
CN212869746U (zh) 一种防止燃煤锅炉冷灰斗水冷壁腐蚀的贴壁风系统
CN203549797U (zh) 膜式水冷壁锅炉防高温腐蚀结焦装置
CN106705032A (zh) 基于脱硝超低排放技术的循环流化床锅炉
JP5320926B2 (ja) 加熱炉用バーナの蓄熱式バーナ化方法
CN201215314Y (zh) 外置式蓄热烧嘴
CN107723405A (zh) 一种熔分炉的炉底冷却装置及冷却方法
CA2906066C (fr) Raccords non perpendiculaires entre des montees de gaz de four a coke et un tunnel chaud commun, et systemes et procedes associes
CN205501133U (zh) 光管式水冷壁石灰窑窑墙结构
CN205782964U (zh) 一种废物焚烧系统
EP3597996A1 (fr) Chaudière à lit fluidisé à circulation de type chute de sable fluide avec une pluralité de colonnes montantes et son procédé de fonctionnement
CN201598256U (zh) 一种石油液化气烘炉管道

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890654

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012890654

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2892292

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE