WO2014104812A1 - Structure for heat-dissipating plate for ipm circuit and led light - Google Patents

Structure for heat-dissipating plate for ipm circuit and led light Download PDF

Info

Publication number
WO2014104812A1
WO2014104812A1 PCT/KR2013/012301 KR2013012301W WO2014104812A1 WO 2014104812 A1 WO2014104812 A1 WO 2014104812A1 KR 2013012301 W KR2013012301 W KR 2013012301W WO 2014104812 A1 WO2014104812 A1 WO 2014104812A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
plate
base plate
weight
heat sink
Prior art date
Application number
PCT/KR2013/012301
Other languages
French (fr)
Korean (ko)
Inventor
김경은
Original Assignee
Kim Kyung Eun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130164650A external-priority patent/KR101574505B1/en
Application filed by Kim Kyung Eun filed Critical Kim Kyung Eun
Publication of WO2014104812A1 publication Critical patent/WO2014104812A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section

Definitions

  • the present invention relates to a structure of an LED lighting heat sink for an IPM circuit used in a motor driving circuit of an air conditioner, a refrigerator, and a washing machine and a home appliance, and a base having a dovetail shape of a dovetail that forms an embossed and intaglio.
  • the heat-dissipating resin composition is applied to the entire heatsink among the plates so that the heat-dissipating resin composition is not separated from the heat-dissipating element.
  • the heat dissipation characteristics are excellent and the weight is greatly reduced.
  • LED relates to the structure of a lighting heat sink.
  • LED (Light Emitting Diode) module refers to the finished product including the LED (hereinafter referred to as "LED") light source, mainly used for 30 200W inverter motor drive, lighting, display, etc.
  • LED Light Emitting Diode
  • IPM solutions require relatively inefficient, bulky heat sinks and external heat sinks to achieve satisfactory thermal performance.
  • LED has a long life, low power consumption, and all colors can be realized compared to other light sources.However, since the heat generation amount is high, the heat dissipation plate is applied to the LED module to prevent the failure of the related parts and the decrease of life due to the heat generation. This is essentially installed.
  • the conventional heat sink used for the LED module is a heat sink (2) in which a plurality of metal plates are arranged vertically on the base plate (1) having excellent thermal conductivity as shown in FIG.
  • the heat is transferred to the heat sink 2, and the LED module is cooled by releasing heat transferred to the heat sink 2 to the surrounding air. That is, since the metal plate, which is a component of the heat sink 2, has a large contact area with the surrounding air, heat transmitted to the metal plate can be efficiently transferred to the air.
  • the conventional heat sink has a problem that the weight is heavy while the heat dissipation efficiency is low, as well as the cost of the product is high due to the increase in the material cost, thereby lowering the economic efficiency.
  • the heat dissipation module for LED lamps and the heat dissipation plate for a customized LED lamp using the same is a plurality of plates 101 are vertically arranged at regular intervals, The upper portion of the plurality of plates 101 are spaced apart from each other so that heat exchange by contact with the outside air, and the lower portion having a coupling section of the "U" shape formed integrally with each other the plurality of plates 101 Fastening formed with a heat dissipation member 100, a heat dissipation member adhesive portion 201 bonded to the lower end of the heat dissipation member 100, and a plurality of coupling holes 202 formed along the circumference of the heat dissipation member adhesive portion 201
  • Base portion 200 consisting of a portion 203 is bonded to each other to form a unit, the heat dissipation member 100 and the base unit 200 is bonded to each other is a heat dissipation module for LED made by a conductive adhesive 300 and the Using discloses a heat sink for
  • the prior art has the advantage that it can be produced as a heat sink for a custom LED lamp, but the heat transfer efficiency (heat transfer efficiency that is transferred to the heat transfer member because the heat transfer member (and the base unit using a method of bonding only using a conductive adhesive) There is a problem in that the overall cooling efficiency is lowered, the waterproof is not possible when the LED module configuration is lowered, the overall product durability is lowered.
  • the module of the heat sink is disclosed in the domestic patent No. 1060226 with respect to the heat radiation resin composition for applying a heat sink in addition to the structure to facilitate heat dissipation.
  • the heat dissipating resin composition is a high molecular organosilane compound which covers a part or all of the heat dissipating plate and has a long chain functional group, the heat dissipating resin composition has a low durability against high heat, and has a low heat dissipation effect due to the use of a binder resin as a filler. When thicker than this, there existed a problem that the coating peeling of the coating layer occurs.
  • the thermally conductive material is made of metal powder or carbon black, graphite, or the like. 1 100 parts by weight, even in all cases, the thermal conductivity does not exceed the range of 1.5, and when the filler is added, there is an advantage to promote storage safety and curing rate, but there is a disadvantage that workability is lowered, adhesion is significantly lower .
  • the present invention has been invented to solve various defects and problems caused by the heat dissipation plate for heat dissipation and LED lamps for conventional motor driving IPM semiconductor circuits in view of the above-described situation, and the object thereof is the dovetail which forms an embossed and intaglio ( A heat-dissipating resin composition is applied to the base plate between the heat sinks among the base plates, which are dovetail), to form a heat dissipation member that is not separated from the heat sink, or to form a heat sink without a heat conduction plate, thereby providing excellent heat dissipation characteristics. It is to provide a structure of IPM circuit heat dissipation and LED lighting heat sink with excellent economic efficiency by reducing the price of the product drastically.
  • Another object of the present invention is to apply a plurality of spherical ceramic balls on the surface of the plate-shaped base plate from which the plurality of heat conductive plates are removed, thereby increasing the surface area of the spherical ceramic balls and increasing the heat transfer efficiency to be transferred to the heat sink.
  • Another object of the present invention is to simplify the manufacturing process of the product can be self-waterproof when configuring the IPM module and LED module IPM heat sink and LED of a novel structure that can reduce the manufacturing process cost while improving the overall product durability (LED) is to provide the structure of the lighting heat sink.
  • the structure of the present invention IPM heat sink and LED lighting heat sink for achieving the above object is a base plate (10); A plurality of thermal conductive plates 20 formed integrally with the base plate 10 at regular intervals on the base plate 10; The base plate 10 and the heat conductive plate 20 is characterized in that composed of a heat sink 30 formed by coating with a heat-resistant resin composition of a predetermined thickness.
  • the present invention forms a heat dissipation member which is not separated from the heat dissipation member by applying a heat dissipation member to the entire heat dissipation plate of the base plate, which is a dovetail-type bottom plate which is embossed and intaglio, or forms a heat dissipation plate without a heat conductive plate. It is economical by drastically reducing the price of the product by reducing the cost, and by applying a large number of spherical ceramic balls to the surface of the flat base plate from which the plurality of heat conductive plates are removed, the weight of the spherical ceramic balls increases the surface area of the spherical ceramic balls, and the heat sink.
  • the high heat transfer efficiency ensures excellent heat dissipation efficiency, and can simplify the manufacturing process of the product, enabling self-waterproofing when constructing IPM modules and LED modules. There is.
  • FIG. 1 is a block diagram of a heat sink for the IPM and LED of the conventional embodiment
  • FIG. 2 is a block diagram of a heat sink for the IPM and LED of the prior embodiment
  • Figure 3a is a perspective view showing the configuration of a first embodiment of the present invention IP and LED lighting heat sink,
  • Figure 3b is a cross-sectional view showing the configuration of a first embodiment of the present invention IP and LED lighting heat sink;
  • Figure 4a is a perspective view showing the configuration of a second embodiment of the present invention IP and LED lighting heat sink,
  • Figure 4b is a cross-sectional view showing the configuration of a second embodiment of the present invention IP and LED lighting heat sink;
  • FIG. 5 is a view for explaining a method of measuring the heat radiation efficiency of the heat sink
  • Figure 7a is a perspective view showing the configuration of a third embodiment of the present invention IP and LED lighting heat sink,
  • Figure 7b is a cross-sectional view showing the configuration of a third embodiment of the present invention IP and LED lighting heat sink;
  • FIG. 9 is a graph comparing the heat dissipation efficiency of the third embodiment of the present invention IP and LED lighting heat sink and the heat dissipation efficiency of the conventional heat sink.
  • Figure 3a is a perspective view showing the configuration of a first embodiment of the invention IP and LED lighting heat sink
  • Figure 3b is a cross-sectional view showing the configuration of a first embodiment of the invention IP and LED lighting heat sink
  • Figure 4a and the invention IP and Figure 4b is a perspective view showing the configuration of a second embodiment of the LED lighting heat sink
  • Figure 4 is a cross-sectional view showing the configuration of a second embodiment of the present invention LED and LED lighting heat sink
  • Figure 5 is a view for explaining a method of measuring the heat radiation efficiency of the heat sink 6 is a graph showing a temperature change with respect to the time of the heat sink and the conventional heat sink of the present invention
  • Figure 7a is a perspective view showing the configuration of a third embodiment of the present invention IP and LED lighting heat sink
  • Figure 7b is 8 is a cross-sectional view showing the configuration of the third embodiment of the LED lighting heat sink
  • Figure 8 is the base plate surface of the third embodiment of the present invention LED and LED lighting heat sink Enlarge
  • 9 is
  • the base plate 10 has a groove 21 having an intaglio dovetail structure having a wide bottom and a narrow bottom at a central portion of the base plate 10 between the thermal conductive plate 20 and the thermal conductive plate 20, and the groove 21.
  • the heat dissipation plate 30 is coated with a heat dissipation resin composition of a predetermined thickness on the base plate 10 including.
  • the base plate 10 has grooves 22 and 22 'having an embossed dovetail structure having a wide bottom and a narrow bottom at both edges of the base plate 10 between the heat conductive plate 20 and the heat conductive plate 20.
  • the heat dissipation plate 30 to which the heat dissipation resin composition is applied is formed to a predetermined thickness on the base plate 10 including the grooves 22 and 22 '.
  • the heat dissipation plate 30 coated with the heat dissipation resin composition is a heat dissipation resin composition composed of 55% by weight of epoxy resin 40 and 50% by weight of spherical or acicular crystallized alumina at 1,600 1,700.
  • the average particle size distribution of is preferably 5 45.
  • the remaining heat conductive plates 20 except for the outermost heat conductive plates 20 are removed, and the outermost heat conductive plates ( The heat dissipation plate 30 to which the heat dissipation resin composition is applied is formed on the surface of the base plate 10 and the outermost heat conductive plate 20 on the plane between them.
  • the heat dissipating resin composition applied to the top surface of the base plate 10 and the surface of the outermost heat conductive plate 20 may be 15 wt% of methtrimethoxy-silane 10 and 10 wt% of silica 5.
  • Black Product carbon black
  • the weight is not only maximized and the heat dissipation effect is maximized.
  • the structure of the heat sink 30 having the embossed and engraved structure extruded to the excellent heat shrink expansion when the epoxy resin and the crystallized alumina mixture is injected there is an excellent effect that does not separate from the heat sink (heat sink).
  • FIG. 8 is a 300 magnification enlarged view of the surface of the base plate according to the third embodiment of the present invention IPM and LED lighting heat sink, the heat radiation according to the increase in the surface area of the sphere by the spherical ceramic coated on the surface of the base plate 10 with the heat sink 30
  • the increase in efficiency can reduce the material cost by 40% compared to the case where there are a plurality of thermal conductive plates 20, and can greatly reduce the cost required for manufacturing by simplifying the manufacturing process.
  • Test 1 is placed in the test enclosure (TB) the samples (IPPM and LED lighting heat sinks and conventional heat sinks of Examples 1 and 2 of the present invention) as shown in Figure 5 to the IPPM and LED lighting heat sink (P) Connect the heat source (HS), and then supply the power (W) to the heat source (HS) while measuring the temperature change of the IPM and LED lighting heat sink (P) with the thermocouple data Roger (TD), and in the same way Compared with the measured temperature change, the results are shown graphically in Table 1 and FIG. 6, respectively.
  • the test enclosure (TB) uses 500mm 500mm 620mm hermetic acrylic enclosure and supplies power (60W; 25V / 2.4A) and power (117W; 49V / 2.4A) to the power supply (PS) until temperature saturation for more than 8 hours. The temperature change was measured by supplying.
  • the vertical axis represents time Hr
  • the horizontal axis represents the temperature difference between the maximum temperature of the heat sink and the temperature in the enclosure TB, respectively. From the graph of FIG. 6, the LED lighting heat sink P of the present invention is It was confirmed that the heat dissipation efficiency is superior to the conventional heat sink.
  • Test 2 is to test the performance of the heat sink in the same manner as in Test 1 as shown in Figure 5, but the sample (Black product, Gray product, Whate product and conventional heat sink of Example 3 of the present invention) in the test enclosure (TB) Position the heat source (HS) to the IP and LED lighting heat sink (P) and supply the power (W) to the heat source (HS) while the thermocouple data Roger (TD) of the IP and LED lighting heat sink (P) The temperature change was measured and compared with the temperature change measured by the conventional heat sink in the same manner, and the results are shown in the following Table 2 and FIG. 9 graphically.
  • test enclosure uses a 300mm 300mm 300mm sealed acrylic enclosure, power (4.81W; 17.2V / 0.28A-traditional) and power (4.9W) with the power supply PS until temperature saturation for at least 20 minutes; 16.9V / 0.29A) was supplied to measure the temperature change.
  • the LED lighting heat sink (P) of the third embodiment of the present invention that is, Black, Gray, Whate product is superior in heat dissipation efficiency than the conventional heat sink.
  • the vertical axis represents time (minutes), and the horizontal axis represents temperature difference T between the maximum temperature of the heat sink and the temperature in the enclosure TB, respectively.
  • the LED illumination heat sink P of the present invention is also shown in the graph of FIG. 9. That is, it can be confirmed that Black, Gray, and Whate products have better heat dissipation efficiency than conventional heat sinks.
  • the present invention forms a heat dissipation member which is not separated from the heat dissipation member by applying a heat dissipation member to the entire heat dissipation plate of the base plate, which is a dovetail-type bottom plate which is embossed and intaglio, or forms a heat dissipation plate without a heat conductive plate. It is economical by drastically reducing the price of the product by reducing the cost, and by applying a large number of spherical ceramic balls to the surface of the flat base plate from which the plurality of heat conductive plates are removed, the weight of the spherical ceramic balls increases the surface area of the spherical ceramic balls, and the heat sink.
  • the high heat transfer efficiency ensures excellent heat dissipation efficiency, and can simplify the manufacturing process of the product, enabling self-waterproofing when constructing IPM modules and LED modules. There is.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

The present invention relates to a structure for a heat-dissipating plate for an IPM circuit and an LED light, the structure comprising: a base plate (10); a plurality of thermally-conductive plates (20) standing on the base plate (10) at a set distance from each other as a single body therewith; and a heat-dissipating plate (30) formed by coating the base plate (10) and the thermally-conductive plates (20) with a heat-dissipating resin composition to a set thickness. The present invention is a useful a invention possessing particular advantages of being superbly economical as the product price is significantly reduced due to a reduction in material costs by forming a heat-dissipating member which is not separated from a heat-dissipating body by covering the heat-dissipating plates within the base plate with the heat-dissipating member or constructing the heat-dissipating plates without the thermally-conductive plates, the base plate being the bottom plate having a dovetail shape and comprising positive and negative poles, and as the flat surface of the base plate, from which the plurality of thermally-conductive plates are removed, is coated with a plurality of ceramic balls, increasing the surface area but being light-weight, the heat-dissipation efficiency is superb as the transfer of heat to the heat-dissipating plate is highly efficient, and furthermore, when the IPM module and the LED module are constructed, as the product manufacturing process can be simplified, self-water proofing is possible, and thus the overall product durability can be enhanced as well as the product manufacturing costs lowered.

Description

아이피엠 회로용과 엘이디 조명 방열판의 구조Structure of IPPM circuit and LED lighting heat sink
본 발명은 에어컨, 냉장고, 세탁기의 모터 구동용 회로에 사용되어지는 IPM회로용과 가전기기의 엘이디(LED) 조명 방열판의 구조에 관한 것으로서, 양각과 음각을 이루는 도브테일(dovetail) 형태의 바닥판인 베이스판 중 방열판 전체에 방열 수지조성물을 도포하여 방열체와 분리되지 않도록 형성함으로써 방열특성이 탁월하면서도 무게가 대폭 가벼울 뿐만 아니라 재료비의 절감으로 제품의 가격이 획기적으로 저렴하여 경제성이 탁월한 IPM회로용 및 엘이디(LED) 조명 방열판의 구조에 관한 것이다.The present invention relates to a structure of an LED lighting heat sink for an IPM circuit used in a motor driving circuit of an air conditioner, a refrigerator, and a washing machine and a home appliance, and a base having a dovetail shape of a dovetail that forms an embossed and intaglio. The heat-dissipating resin composition is applied to the entire heatsink among the plates so that the heat-dissipating resin composition is not separated from the heat-dissipating element.The heat dissipation characteristics are excellent and the weight is greatly reduced. (LED) relates to the structure of a lighting heat sink.
엘이디(LED; Light Emitting Diode) 모듈은 엘이디(이하; "LED"라 함) 광원을 포함하는 조립 완제품을 의미하는 것으로, 주로 30 200W 인버터 모터 드라이브와 조명, 디스플레이 등의 용도로 사용된다. IPM솔루션은 비교적 비효율적이고 부피가 큰 방열판이 필요로 하며 만족할 만한 열 성능을 달성하기 위해서 외부에 방열판을 사용해야 한다. 그리고 LED는 타 광원에 비해 수명이 길고, 전력소모량이 적으며, 모든 색의 구현이 가능하다는 이점이 있으나, 발열량이 높기 때문에 발열에 의한 관련 부품의 고장 및 수명 저하를 방지하기 위해 LED 모듈에는 방열판이 필수적으로 설치된다.LED (Light Emitting Diode) module refers to the finished product including the LED (hereinafter referred to as "LED") light source, mainly used for 30 200W inverter motor drive, lighting, display, etc. IPM solutions require relatively inefficient, bulky heat sinks and external heat sinks to achieve satisfactory thermal performance. In addition, LED has a long life, low power consumption, and all colors can be realized compared to other light sources.However, since the heat generation amount is high, the heat dissipation plate is applied to the LED module to prevent the failure of the related parts and the decrease of life due to the heat generation. This is essentially installed.
LED 모듈에 사용되는 종래의 통상적인 방열판은 도 1에 도시한 바와 같이 열전도성이 우수한 베이스판(1)에 다수의 금속판을 수직으로 배열한 방열판(2)이 일체를 이루는 것으로서, LED 광원으로부터 발생되는 열을 방열판(2)으로 전달하고, 방열판(2)에 전달된 열을 주변 공기에 방출시키는 것에 의해 LED 모듈을 냉각한다. 즉, 방열판(2)의 구성 요소인 금속판은 주변 공기와 접촉 면적이 크기 때문에 금속판에 전달된 열을 공기 중으로 효율적으로 전달할 수 있다. 그러나 상기 종래의 통상적인 방열판은 무게는 무거운 반면에 방열 효율은 낮다고 하는 결점이 있을 뿐만 아니라 재료비의 증가로 제품의 가격이 고가로 되어 경제성이 저하되는 문제점이 있었다.The conventional heat sink used for the LED module is a heat sink (2) in which a plurality of metal plates are arranged vertically on the base plate (1) having excellent thermal conductivity as shown in FIG. The heat is transferred to the heat sink 2, and the LED module is cooled by releasing heat transferred to the heat sink 2 to the surrounding air. That is, since the metal plate, which is a component of the heat sink 2, has a large contact area with the surrounding air, heat transmitted to the metal plate can be efficiently transferred to the air. However, the conventional heat sink has a problem that the weight is heavy while the heat dissipation efficiency is low, as well as the cost of the product is high due to the increase in the material cost, thereby lowering the economic efficiency.
또, 최근 조명 및 디스플레이 제품에 LED를 사용하는 비율이 증가하고 있고, LED 발열로 인한 불량 및 제품 내구성 저하 등의 문제가 제품 품질 및 생산성과 관련하여 중요시됨에 따라 LED 모듈에서 발생하는 열을 효율적으로 냉각할 수 있고, 공정 비용을 절감할 수 있으며, 공정을 단순화할 수 있는 제품 및 방법 등에 대한 연구가 많이 이루어지고 있다. 이러한 연구의 일환으로, 도 2에 도시한 바와 같은 대한민국 특허등록 제1025207호 "LED 램프용 방열모듈 및 이를 이용한 맞춤식 LED 램프용 방열판"은 다수의 판(101)들이 상호 일정 간격으로 수직배열되고, 외부 공기와의 접촉에 의한 열교환이 이루어지도록 상기 다수의 판(101)들이 상호 이격되어 이루어지는 상단부와, 상기 다수의 판(101)들이 상호 일체를 이루어 "U"형상의 결합단면을 갖는 하단부로 이루어진 방열부재(100)와, 상기 방열부재(100)의 하단부와 접착되는 방열부재접착부(201)와, 상기 방열부재접착부(201)의 둘레를 따라 형성되는, 다수의 결합공(202)이 형성된 체결부(203)로 이루어진 베이스부(200)가 상호 접착되어 일체를 이루는 것으로, 상기 방열부재(100)와 베이스부(200)의 상호 접착은 전도성 접착제(300)에 의해 이루어지는 LED용 방열모듈 및 이를 이용한 맞춤식 LED 램프용 방열판을 개시하고 있다. 그러나, 상기 종래 기술은 맞춤식 LED 램프용 방열판으로 제작할 수 있다는 이점은 있으나, 방열부재(와 베이스부를 전도성 접착제만을 사용하여 접착시키는 방법을 사용하기 때문에 베이스부로 전달된 열이 방열부재로 전달되는 열전달 효율이 저하되어 전체적인 냉각 효율이 낮고, LED 모듈 구성시 자체 방수가 불가능하여 전체적인 제품 내구성이 저하된다는 문제점이 있었다.In recent years, the use of LEDs in lighting and display products is increasing, and problems such as defects caused by LED heating and deterioration of product durability are becoming more important in terms of product quality and productivity. There are many studies on products and methods that can cool, reduce process costs, and simplify processes. As part of this study, Korean Patent Registration No. 1025207 as shown in FIG. 2, "The heat dissipation module for LED lamps and the heat dissipation plate for a customized LED lamp using the same" is a plurality of plates 101 are vertically arranged at regular intervals, The upper portion of the plurality of plates 101 are spaced apart from each other so that heat exchange by contact with the outside air, and the lower portion having a coupling section of the "U" shape formed integrally with each other the plurality of plates 101 Fastening formed with a heat dissipation member 100, a heat dissipation member adhesive portion 201 bonded to the lower end of the heat dissipation member 100, and a plurality of coupling holes 202 formed along the circumference of the heat dissipation member adhesive portion 201 Base portion 200 consisting of a portion 203 is bonded to each other to form a unit, the heat dissipation member 100 and the base unit 200 is bonded to each other is a heat dissipation module for LED made by a conductive adhesive 300 and the Using discloses a heat sink for custom LED lamp. However, the prior art has the advantage that it can be produced as a heat sink for a custom LED lamp, but the heat transfer efficiency (heat transfer efficiency that is transferred to the heat transfer member because the heat transfer member (and the base unit using a method of bonding only using a conductive adhesive) There is a problem in that the overall cooling efficiency is lowered, the waterproof is not possible when the LED module configuration is lowered, the overall product durability is lowered.
한편, 방열판의 모듈은 열방출을 용이하게 하기 위한 구조외에조 방열판을 도포하는 방열 수지조성물에 관하여 국내 특허 제1060226호에 개시되어 있다. 그러나 상기 방열 수지조성물은 방열판의 일부 또는 전부를 피복하는 것으로서 긴사슬 작용기를 갖는 고분자 유기실란 화합물이기 때문에 고열에 내구성이 미약하고, 바인더 수지에 충전제까지 혼합사용함으로 인하여 방열효과가 낮을 뿐두께가 50 이상으로 두꺼울 경우 도포층의 피복물 박리가 발생한다고 하는 문제점이 있었다.On the other hand, the module of the heat sink is disclosed in the domestic patent No. 1060226 with respect to the heat radiation resin composition for applying a heat sink in addition to the structure to facilitate heat dissipation. However, since the heat dissipating resin composition is a high molecular organosilane compound which covers a part or all of the heat dissipating plate and has a long chain functional group, the heat dissipating resin composition has a low durability against high heat, and has a low heat dissipation effect due to the use of a binder resin as a filler. When thicker than this, there existed a problem that the coating peeling of the coating layer occurs.
특히 R3bSi(OR4)4-b 로 표시되는 실록산계 유기실란 화합물을 바인더 수지 총 고형물 100중량부에 대하여 0.1 10 중량부 사용하고, 열전도성 물질을 금속분말 또는 카본블랙, 그라파이프 등을 1 100 중량부 사용하는 모든 경우에도 열전도율이 1.5의 범위를 넘지 못하며, 또한 충전제를 첨가하는 경우 저장 안전성과 경화속도를 촉진시키는 장점이 있으나, 작업성이 저하되고, 부착성이 현저히 떨어지는 단점이 있다.In particular, 0.1 10 parts by weight of the siloxane-based organosilane compound represented by R 3b Si (OR 4 ) 4-b is used with respect to 100 parts by weight of the total amount of the binder resin, and the thermally conductive material is made of metal powder or carbon black, graphite, or the like. 1 100 parts by weight, even in all cases, the thermal conductivity does not exceed the range of 1.5, and when the filler is added, there is an advantage to promote storage safety and curing rate, but there is a disadvantage that workability is lowered, adhesion is significantly lower .
따라서, 본 발명은 상기한 실정을 감안하여 종래 모터구동용 IPM반도체 회로 열방출용과 LED 램프용 방열판에서 야기되는 여러 가지 결점 및 문제점 들을 해결하고자 발명한 것으로서, 그 목적은 양각과 음각을 이루는 도브테일(dovetail) 형태의 바닥판인 베이스판 중 방열판 들 사이 사이의 베이스판에 방열 수지조성물을 도포하여 방열체와 분리되지 않는 방열부재를 형성하거나 열도전판 없는 방열판을 구성함으써 방열특성이 탁월하면서도 재료비를 절감하여 제품의 가격이 획기적으로 저하시킴으로써 경제성이 탁월한 IPM회로 열방출 및 엘이디(LED) 조명 방열판의 구조를 제공함에 있다.Accordingly, the present invention has been invented to solve various defects and problems caused by the heat dissipation plate for heat dissipation and LED lamps for conventional motor driving IPM semiconductor circuits in view of the above-described situation, and the object thereof is the dovetail which forms an embossed and intaglio ( A heat-dissipating resin composition is applied to the base plate between the heat sinks among the base plates, which are dovetail), to form a heat dissipation member that is not separated from the heat sink, or to form a heat sink without a heat conduction plate, thereby providing excellent heat dissipation characteristics. It is to provide a structure of IPM circuit heat dissipation and LED lighting heat sink with excellent economic efficiency by reducing the price of the product drastically.
본 발명의 다른 목적은 다수의 열도전판을 제거한 평판상 베이스판 표면에 다수의 구상 세라믹볼을 도포함으로써 구상 세라믹볼에 의한 표면적 증가로 무게가 가벼우면서도 방열판으로 전달되는 열전달 효율이 높아 방열효율이 뛰어난 신규한 구조의 IPM회로 방열판과 엘이디(LED) 조명 방열판의 구조를 제공하는 데 있다.Another object of the present invention is to apply a plurality of spherical ceramic balls on the surface of the plate-shaped base plate from which the plurality of heat conductive plates are removed, thereby increasing the surface area of the spherical ceramic balls and increasing the heat transfer efficiency to be transferred to the heat sink. To provide a new structure of IPM circuit heat sink and LED lighting heat sink.
본 발명의 또 다른 목적은 제품의 제조 공정을 단순화할 수 있어서 IPM모듈과 LED 모듈 구성시 자체 방수가 가능하여 전체적인 제품 내구성이 향상되면서도 제조공정 비용을 절감할 수 있는 신규한 구조의 IPM 방열판과 엘이디(LED) 조명 방열판의 구조를 제공하는 데 있다.Another object of the present invention is to simplify the manufacturing process of the product can be self-waterproof when configuring the IPM module and LED module IPM heat sink and LED of a novel structure that can reduce the manufacturing process cost while improving the overall product durability (LED) is to provide the structure of the lighting heat sink.
상기한 목적을 달성하기 위한 본 발명 IPM 방열판과 엘이디 조명 방열판의 구조는 베이스판(10)과; 상기 베이스판(10) 상에 일정한 간격을 두고 베이스판(10)과 일체로 세워져 형성되는 다수의 열도전판(20) 및; 상기 베이스판(10)과 열도전판(20) 전체에 일정한 두께의 방열수지 조성물로 도포되어 형성된 방열판(30)으로 구성된 것을 특징으로 한다.The structure of the present invention IPM heat sink and LED lighting heat sink for achieving the above object is a base plate (10); A plurality of thermal conductive plates 20 formed integrally with the base plate 10 at regular intervals on the base plate 10; The base plate 10 and the heat conductive plate 20 is characterized in that composed of a heat sink 30 formed by coating with a heat-resistant resin composition of a predetermined thickness.
본 발명은 양각과 음각을 이루는 도브테일(dovetail) 형태의 바닥판인 베이스판 중 방열판 전체에 방열부재를 도포하여 방열체와 분리되지 않는 방열부재를 형성하거나 형성하거나 열도전판 없는 방열판을 구성함으써 재료비의 절감으로 제품의 가격을 획기적으로 절감하여 경제성이 탁월하고, 다수의 열도전판을 제거한 평판상 베이스판 표면에 다수의 구상 세라믹볼을 도포함으로써 구상 세라믹볼에 의한 표면적 증가로 무게가 가벼우면서도 방열판으로 전달되는 열전달 효율이 높아 방열효율이 뛰어날 뿐만 아니라, 제품의 제조 공정을 단순화할 수 있어서 IPM 모듈과 LED 모듈 구성시 자체 방수가 가능하여 전체적인 제품 내구성이 향상되면서도 제조공정 비용을 절감할 수 있는 뛰어난 효과가 있다.The present invention forms a heat dissipation member which is not separated from the heat dissipation member by applying a heat dissipation member to the entire heat dissipation plate of the base plate, which is a dovetail-type bottom plate which is embossed and intaglio, or forms a heat dissipation plate without a heat conductive plate. It is economical by drastically reducing the price of the product by reducing the cost, and by applying a large number of spherical ceramic balls to the surface of the flat base plate from which the plurality of heat conductive plates are removed, the weight of the spherical ceramic balls increases the surface area of the spherical ceramic balls, and the heat sink. The high heat transfer efficiency ensures excellent heat dissipation efficiency, and can simplify the manufacturing process of the product, enabling self-waterproofing when constructing IPM modules and LED modules. There is.
도 1은 종래 실시예의 IPM과 LED 용 방열판의 구성도,1 is a block diagram of a heat sink for the IPM and LED of the conventional embodiment,
도 2는 종래 실시예의 IPM과 LED 용 방열판의 구성도,2 is a block diagram of a heat sink for the IPM and LED of the prior embodiment,
도 3a는 본 발명 아이피엠과 엘이디 조명 방열판의 제 1실시예의 구성을 나타낸 사시도,Figure 3a is a perspective view showing the configuration of a first embodiment of the present invention IP and LED lighting heat sink,
도 3b는 본 발명 아이피엠과 엘이디 조명 방열판의 제 1실시예의 구성을 나타낸 단면도,Figure 3b is a cross-sectional view showing the configuration of a first embodiment of the present invention IP and LED lighting heat sink;
도 4a는 본 발명 아이피엠과 엘이디 조명 방열판의 제 2실시예의 구성을 나타낸 사시도,Figure 4a is a perspective view showing the configuration of a second embodiment of the present invention IP and LED lighting heat sink,
도 4b는 본 발명 아이피엠과 엘이디 조명 방열판의 제 2실시예의 구성을 나타낸 단면도,Figure 4b is a cross-sectional view showing the configuration of a second embodiment of the present invention IP and LED lighting heat sink;
도 5는 방열판의 방열효율을 측정하는 방법을 설명하기 위한 도면,5 is a view for explaining a method of measuring the heat radiation efficiency of the heat sink;
도 6은 본 발명의 방열판과 종래 방열판의 시간에 대한 온도 변화를 나타낸 그래프,6 is a graph showing the temperature change with respect to the time of the heat sink and the conventional heat sink of the present invention,
도 7a는 본 발명 아이피엠과 엘이디 조명 방열판의 제 3실시예의 구성을 나타낸 사시도,Figure 7a is a perspective view showing the configuration of a third embodiment of the present invention IP and LED lighting heat sink,
도 7b는 본 발명 아이피엠과 엘이디 조명 방열판의 제 3실시예의 구성을 나타낸 단면도,Figure 7b is a cross-sectional view showing the configuration of a third embodiment of the present invention IP and LED lighting heat sink;
도 8은 본 발명 아이피엠과 엘이디 조명 방열판의 제 3실시예의 베이스판 표면의 확대사진,8 is an enlarged photograph of the surface of the base plate of the third embodiment of the present invention IP and LED lighting heat sink;
도 9는 본 발명 아이피엠과 엘이디 조명 방열판의 제 3실시예의 방열 효율과 종래 방열판의 방열효율을 비교한 그래프이다.9 is a graph comparing the heat dissipation efficiency of the third embodiment of the present invention IP and LED lighting heat sink and the heat dissipation efficiency of the conventional heat sink.
이하, 첨부 도면을 참조하여 본 발명 아이피엠과 엘이디 조명 방열판의 구조의 바람직한 실시예를 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the structure of the present invention IP LED and LED lighting heat sink.
도 3a는 본 발명 아이피엠과 엘이디 조명 방열판의 제 1실시예의 구성을 나타낸 사시도, 도 3b는 본 발명 아이피엠과 엘이디 조명 방열판의 제 1실시예의 구성을 나타낸 단면도, 도 4a는 본 발명 아이피엠과 엘이디 조명 방열판의 제 2실시예의 구성을 나타낸 사시도, 도 4b는 본 발명 아이피엠과 엘이디 조명 방열판의 제 2실시예의 구성을 나타낸 단면도, 도 5는 방열판의 방열효율을 측정하는 방법을 설명하기 위한 도면, 도 6은 본 발명의 방열판과 종래 방열판의 시간에 대한 온도 변화를 나타낸 그래프, 도 7a는 본 발명 아이피엠과 엘이디 조명 방열판의 제 3실시예의 구성을 나타낸 사시도, 도 7b는 본 발명 아이피엠과 엘이디 조명 방열판의 제 3실시예의 구성을 나타낸 단면도, 도 8은 본 발명 아이피엠과 엘이디 조명 방열판의 제 3실시예의 베이스판 표면의 확대사진, 도 9는 본 발명 아이피엠과 엘이디 조명 방열판의 제 3실시예의 방열 효율과 종래 방열판의 방열효율을 비교한 그래프로서, 본 발명 아이피엠과 엘이디 조명 방열판은 베이스판(10)과; 상기 베이스판(10) 상에 일정한 간격을 두고 베이스판(10)과 일체로 세워져 형성되는 다수의 열도전판(20) 및; 상기 베이스판(10)과 열도전판(20) 전체에 일정한 두께의 방열수지 조성물로 도포되어 형성된 방열판(30)으로 도포되어 형성된 방열 수지조성물(30)로 구성되어 있다.Figure 3a is a perspective view showing the configuration of a first embodiment of the invention IP and LED lighting heat sink, Figure 3b is a cross-sectional view showing the configuration of a first embodiment of the invention IP and LED lighting heat sink, Figure 4a and the invention IP and Figure 4b is a perspective view showing the configuration of a second embodiment of the LED lighting heat sink, Figure 4 is a cross-sectional view showing the configuration of a second embodiment of the present invention LED and LED lighting heat sink, Figure 5 is a view for explaining a method of measuring the heat radiation efficiency of the heat sink 6 is a graph showing a temperature change with respect to the time of the heat sink and the conventional heat sink of the present invention, Figure 7a is a perspective view showing the configuration of a third embodiment of the present invention IP and LED lighting heat sink, Figure 7b is 8 is a cross-sectional view showing the configuration of the third embodiment of the LED lighting heat sink, Figure 8 is the base plate surface of the third embodiment of the present invention LED and LED lighting heat sink Enlarge, 9 is a third embodiment, heat radiation efficiency and a graph comparing the room heat efficiency of the conventional heat sink, the present invention child piem LED lighting and heat sink of the present invention and the LED lighting child piem heat sink includes a base plate 10 and; A plurality of thermal conductive plates 20 formed integrally with the base plate 10 at regular intervals on the base plate 10; The base plate 10 and the heat conductive plate 20 is composed of a heat-dissipating resin composition 30 formed by applying a heat-dissipating plate 30 formed by applying a heat-dissipating resin composition having a predetermined thickness.
상기 베이스판(10)은 열도전판(20)과 열도전판(20) 사이 베이스판(10)의 중앙부에 아래가 넓고 위가 좁은 음각 도브테일 구조의 홈(21)이 형성되고, 상기 홈(21)을 포함한 베이스판(10) 상에 일정한 두께의 방열수지 조성물이 도포된 방열판(30)이 형성되어 있다.The base plate 10 has a groove 21 having an intaglio dovetail structure having a wide bottom and a narrow bottom at a central portion of the base plate 10 between the thermal conductive plate 20 and the thermal conductive plate 20, and the groove 21. The heat dissipation plate 30 is coated with a heat dissipation resin composition of a predetermined thickness on the base plate 10 including.
상기 베이스판(10)은 열도전판(20)과 열도전판(20) 사이 베이스판(10)의 양측 가장자리에 아래가 넓고 위가 좁은 양각 도브테일 구조의 홈(22, 22')이 형성되고, 상기 홈(22, 22')을 포함한 베이스판(10) 상의 일정 두께까지 방열수지 조성물이 도포된 방열판(30)이 형성되어 있다.The base plate 10 has grooves 22 and 22 'having an embossed dovetail structure having a wide bottom and a narrow bottom at both edges of the base plate 10 between the heat conductive plate 20 and the heat conductive plate 20. The heat dissipation plate 30 to which the heat dissipation resin composition is applied is formed to a predetermined thickness on the base plate 10 including the grooves 22 and 22 '.
여기서 방열수지 조성물로 도포된 상기 방열판(30)은 에폭시수지 40 55 중량%와 1,600 1,700 에서 구상 또는 침상의 결정화 알루미나 10 50 중량% 로 이루어진 방열수지 조성물이 방열 효과에 있어서 가장 바람직하고, 상기 결정화 알루미나의 평균 입도 분포는 5 45 가 바람직하다.Herein, the heat dissipation plate 30 coated with the heat dissipation resin composition is a heat dissipation resin composition composed of 55% by weight of epoxy resin 40 and 50% by weight of spherical or acicular crystallized alumina at 1,600 1,700. The average particle size distribution of is preferably 5 45.
또한, 도 7a, 도 7b에 도시한 바와 같이 제1, 2실시예(도 3a, 도 4a)에서 최외각 열도전판(20)을 제외한 나머지 열도전판(20)을 제거하고, 최외각 열도전판(20) 사이의 평면상의 베이스판(10)과 최외각 열도전판(20) 전체의 표면에 방열수지 조성물이 도포된 방열판(30)이 형성되어 있다.In addition, as shown in FIGS. 7A and 7B, in the first and second embodiments (FIGS. 3A and 4A), the remaining heat conductive plates 20 except for the outermost heat conductive plates 20 are removed, and the outermost heat conductive plates ( The heat dissipation plate 30 to which the heat dissipation resin composition is applied is formed on the surface of the base plate 10 and the outermost heat conductive plate 20 on the plane between them.
여기서 상기 베이스판(10) 윗면과 상기 최외각 열도전판(20)의 표면에 도포되는 방열수지 조성물은 메쓰트리메톡시-실란(Methltrimethoxy-silane) 10 15 중량%, 실리카(Silica) 5 10 중량%, 폴리실록산(Polysiloxane) 5 10 중량%, 구상 세라믹 10 50 중량%, 카본블랙(Carbone black) 1 5 중량%로 이루어지는 조성물(이하; "Black 제품"이라 함), 또는 메쓰트리메톡시-실란(Methltri methoxy-silane) 10 15 중량%, 실리카(Silica) 5 10 중량%, 폴리실록산(Polysiloxane) 5 10 중량%, 구상 세라믹 10 50 중량%, 카본블랙(Carbone black) 1 5 중량%, 이산화 타이타늄(TiO2) 1 5 중량%로 이루어지는 조성물(이하; "Gray 제품"이라함), 및 메쓰트리메톡시-실란(Methlt rimethoxy-silane) 10 15 중량%, 실리카(Silica) 5 10 중량%, 폴리실록산(Polysiloxan e) 5 10 중량%, 구상 세라믹 10 50 중량%, 이산화 타이타늄(TiO2) 1 5 중량%로 이루어지는 조성물(이하; "Whate 제품"이라함) 중 어느 하나를 사용할 수 있다.Herein, the heat dissipating resin composition applied to the top surface of the base plate 10 and the surface of the outermost heat conductive plate 20 may be 15 wt% of methtrimethoxy- silane 10 and 10 wt% of silica 5. , A composition consisting of 5 to 10% by weight of polysiloxane, 10 to 50% by weight of spherical ceramic, 1 to 5% by weight of carbon black (hereinafter referred to as "Black Product"), or methtrimethoxy-silane (Methltri) 15 15% by weight of methoxy-silane, 10% by weight of silica 5, 10% by weight of polysiloxane, 10 50% by weight of spherical ceramic, 5% by weight of carbon black 1, TiO 2 1) a composition consisting of 5% by weight (hereinafter referred to as "Gray product"), and 10 15% by weight of Methlt rimethoxy-silane, 10% by weight of Silica 5, and polysiloxane (Polysiloxan e) ) 5 10 wt%, spherical ceramic 10 50 wt%, titanium dioxide (TiO 2 ) 1 5 wt% ; "Whate product" can be used.
본 발명에 따르면, 기존 알루미늄 압출인발 및 다이캐스팅 공법으로 무게를 1/2로 감소시킨 제품에 에폭시수지와 세라믹 혼합물을 방열수지 조성물로 사용함으로써 경량화되고 방열효과가 극대화할 뿐만 아니라 도브테일(Dove tail) 형상으로 압출된 양각 및 음각 구조를 가진 방열판(30)의 구조에 의해 상기 에폭시수지와 결정화 알루미나 혼합물을 주입시 장기간 열수축 팽창이 우수함으로써 히트싱크(heat sink)와 분리되지 않는 뛰어난 효과가 있다.According to the present invention, by using an epoxy resin and a ceramic mixture as a heat dissipating resin composition in a product of which the weight is reduced to 1/2 by the existing aluminum extrusion drawing and die casting methods, the weight is not only maximized and the heat dissipation effect is maximized. By the structure of the heat sink 30 having the embossed and engraved structure extruded to the excellent heat shrink expansion when the epoxy resin and the crystallized alumina mixture is injected there is an excellent effect that does not separate from the heat sink (heat sink).
도 8은 본 발명 아이피엠과 엘이디 조명 방열판의 제 3실시예의 베이스판 표면의 300 배율 확대사진으로서, 베이스판(10) 표면에 방열판(30)으로 도포된 구상 세라믹에 의해 구의 표면적 증대에 따른 방열 효율의 증대로 종래 다수의 열도전판(20)이 있는 경우에 비해 재료비를 40% 절감할 수 있고, 제조공정의 단순화로 제조에 소요되는 경비를 대폭 절감할 수 있다.8 is a 300 magnification enlarged view of the surface of the base plate according to the third embodiment of the present invention IPM and LED lighting heat sink, the heat radiation according to the increase in the surface area of the sphere by the spherical ceramic coated on the surface of the base plate 10 with the heat sink 30 The increase in efficiency can reduce the material cost by 40% compared to the case where there are a plurality of thermal conductive plates 20, and can greatly reduce the cost required for manufacturing by simplifying the manufacturing process.
다음에 상기한 바와 같이 구성된 본 발명 아이피엠과 엘이디 조명 방열판의 성능을 종래 방열판과 비교하여 시험하였다.Next, the performance of the present invention IP and LED lighting heat sink constructed as described above was tested in comparison with the conventional heat sink.
시험 1 Test 1
시험 1은 도 5에 도시한 바와 같이 시료(본 발명의 실시예 1, 2의 아이피엠과 엘이디 조명 방열판과 종래 방열판)를 테스트 함체(TB) 내에 위치시켜 아이피엠과 엘이디 조명 방열판(P)에 열원(HS)을 접속시킨 다음 열원(HS)에 전원(W)을 공급하면서 써모커플 데이터로저(TD)로 아이피엠과 엘이디 조명 방열판(P)의 온도 변화를 측정하고, 동일한 방법으로 종래 방열판에서 측정한 온도 변화와 비교하여 그 결과를 아래의 표 1과 도 6에 그래프로 각각 나타냈다. Test 1 is placed in the test enclosure (TB) the samples (IPPM and LED lighting heat sinks and conventional heat sinks of Examples 1 and 2 of the present invention) as shown in Figure 5 to the IPPM and LED lighting heat sink (P) Connect the heat source (HS), and then supply the power (W) to the heat source (HS) while measuring the temperature change of the IPM and LED lighting heat sink (P) with the thermocouple data Roger (TD), and in the same way Compared with the measured temperature change, the results are shown graphically in Table 1 and FIG. 6, respectively.
테스트 함체(TB)는 500mm 500mm 620mm 밀폐된 아크릴 함체를 사용하고, 8시간 이상 온도 포화시까지 전력공급기(PS)로 전력(60W; 25V/2.4A)과 전력(117W; 49V/2.4A)을 공급하여 온도변화를 측정하였다. The test enclosure (TB) uses 500mm 500mm 620mm hermetic acrylic enclosure and supplies power (60W; 25V / 2.4A) and power (117W; 49V / 2.4A) to the power supply (PS) until temperature saturation for more than 8 hours. The temperature change was measured by supplying.
표 1
인가전력(W) 방열판의 최대온도() 함체(TB) 내 온도() 중량(g) ( - )
종래 방열판 60 58.2 34.6 2,000 23.6
본 발명 60 56.3 35.1 851 21.2
종래 방열판 117 67.1 39.1 2,000 28
본 발명 117 65.1 28.6 851 26.5
Table 1
Power applied (W) Temperature of heat sink () Temperature in enclosure (TB) () Weight (g) (-)
Conventional heat sink 60 58.2 34.6 2,000 23.6
The present invention 60 56.3 35.1 851 21.2
Conventional heat sink 117 67.1 39.1 2,000 28
The present invention 117 65.1 28.6 851 26.5
상기한 표 1로부터 확인할 수 있는 바와 같이 본 발명의 실시예 1, 2의 엘이디 조명 방열판(P)이 종래 방열판보다 방열 효율이 우수함을 확인할 수 있었다.As can be seen from Table 1, the LED lighting heat sink (P) of Examples 1 and 2 of the present invention was confirmed that the heat dissipation efficiency is superior to the conventional heat sink.
도 6에 나타낸 그래프에서 종축은 시간(Hr)을, 횡축은 방열판의 최대온도와 함체(TB) 내 온도의 온도차()를 각각 나타내고, 도 6의 그래프로부터 본 발명의 엘이디 조명 방열판(P)이 종래 방열판보다 방열 효율이 우수함을 확인할 수 있었다.In the graph shown in FIG. 6, the vertical axis represents time Hr, and the horizontal axis represents the temperature difference between the maximum temperature of the heat sink and the temperature in the enclosure TB, respectively. From the graph of FIG. 6, the LED lighting heat sink P of the present invention is It was confirmed that the heat dissipation efficiency is superior to the conventional heat sink.
시험 2 Test 2
시험 2는 도 5에 도시한 바와 같이 시험 1과 동일한 방법으로 방열판의 성능을 시험하되 시료(본 발명의 실시예 3의 Black 제품, Gray 제품, Whate 제품과 종래 방열판)를 테스트 함체(TB) 내에 위치시켜 아이피엠과 엘이디 조명 방열판(P)에 열원(HS)을 접속시킨 다음 열원(HS)에 전원(W)을 공급하면서 써모커플 데이터로저(TD)로 아이피엠과 엘이디 조명 방열판(P)의 온도 변화를 측정하고, 동일한 방법으로 종래 방열판에서 측정한 온도 변화와 비교하여 그 결과를 아래의 표 2와 도 9에 그래프로 각각 나타냈다. Test 2 is to test the performance of the heat sink in the same manner as in Test 1 as shown in Figure 5, but the sample (Black product, Gray product, Whate product and conventional heat sink of Example 3 of the present invention) in the test enclosure (TB) Position the heat source (HS) to the IP and LED lighting heat sink (P) and supply the power (W) to the heat source (HS) while the thermocouple data Roger (TD) of the IP and LED lighting heat sink (P) The temperature change was measured and compared with the temperature change measured by the conventional heat sink in the same manner, and the results are shown in the following Table 2 and FIG. 9 graphically.
테스트 함체(TB)는 300mm 300mm 300mm 밀폐된 아크릴 함체를 사용하고, 20분 이상 온도 포화시까지 전력공급기(PS)로 전력(4.81W; 17.2V/0.28A-종래제품)과 전력(4.9W; 16.9V/0.29A)을 공급하여 온도변화를 측정하였다.The test enclosure (TB) uses a 300mm 300mm 300mm sealed acrylic enclosure, power (4.81W; 17.2V / 0.28A-traditional) and power (4.9W) with the power supply PS until temperature saturation for at least 20 minutes; 16.9V / 0.29A) was supplied to measure the temperature change.
표 2
구 분 인가전력(W) 방열판의 최대온도()b 함체(TB) 내 온도()a 중량(g) T (b - a)
종래 제품 4.81 92.3 26.6 50.2 65.7
본 발 명 Black 제품 4.9 79.3 27.4 51.6 51.9
Gray 제품 4.9 82.2 26.5 51.4 55.7
White 제품 4.9 79.1 26.3 51.7 52.8
TABLE 2
division Power applied (W) Temperature of heat sink () b Temperature in enclosure (TB) () a Weight (g) T (b-a)
Conventional products 4.81 92.3 26.6 50.2 65.7
Invention Black products 4.9 79.3 27.4 51.6 51.9
Gray products 4.9 82.2 26.5 51.4 55.7
White product 4.9 79.1 26.3 51.7 52.8
상기한 표 2로부터 확인할 수 있는 바와 같이 본 발명의 실시예 3의 엘이디 조명 방열판(P) 즉, Black 제품, Gray 제품, Whate 제품이 종래 방열판보다 방열 효율이 우수함을 확인할 수 있었다.As can be seen from Table 2, it was confirmed that the LED lighting heat sink (P) of the third embodiment of the present invention, that is, Black, Gray, Whate product is superior in heat dissipation efficiency than the conventional heat sink.
도 9에 나타낸 그래프에서 종축은 시간(분)을, 횡축은 방열판의 최대온도와 함체(TB) 내 온도의 온도차(T)를 각각 나타내고, 도 9의 그래프로부터도 본 발명의 엘이디 조명 방열판(P) 즉, Black 제품, Gray 제품, Whate 제품이 종래 방열판보다 방열 효율이 우수함을 확인할 수 있었다.In the graph shown in FIG. 9, the vertical axis represents time (minutes), and the horizontal axis represents temperature difference T between the maximum temperature of the heat sink and the temperature in the enclosure TB, respectively. The LED illumination heat sink P of the present invention is also shown in the graph of FIG. 9. That is, it can be confirmed that Black, Gray, and Whate products have better heat dissipation efficiency than conventional heat sinks.
[부호의 설명] [ Description of the Code ]
10 : 베이스판 11 : 원통홈10: base plate 11: cylindrical groove
20 : 열도전판 21 : 홈20: heat conduction plate 21: groove
22, 22' : 홈 30 : 방열판22, 22 ': groove 30: heat sink
P : 아이피엠과 엘이디 조명 방열판 TB : 테스트 함체P: IPM and LED lighting heatsink TB: Test enclosure
TD : 써모커플 데이터로저 HS : 열원TD: Thermocouple Data Rogers HS: Heat Sources
PS : 전력공급기PS: Power supply
본 발명은 양각과 음각을 이루는 도브테일(dovetail) 형태의 바닥판인 베이스판 중 방열판 전체에 방열부재를 도포하여 방열체와 분리되지 않는 방열부재를 형성하거나 형성하거나 열도전판 없는 방열판을 구성함으써 재료비의 절감으로 제품의 가격을 획기적으로 절감하여 경제성이 탁월하고, 다수의 열도전판을 제거한 평판상 베이스판 표면에 다수의 구상 세라믹볼을 도포함으로써 구상 세라믹볼에 의한 표면적 증가로 무게가 가벼우면서도 방열판으로 전달되는 열전달 효율이 높아 방열효율이 뛰어날 뿐만 아니라, 제품의 제조 공정을 단순화할 수 있어서 IPM 모듈과 LED 모듈 구성시 자체 방수가 가능하여 전체적인 제품 내구성이 향상되면서도 제조공정 비용을 절감할 수 있는 뛰어난 효과가 있다.The present invention forms a heat dissipation member which is not separated from the heat dissipation member by applying a heat dissipation member to the entire heat dissipation plate of the base plate, which is a dovetail-type bottom plate which is embossed and intaglio, or forms a heat dissipation plate without a heat conductive plate. It is economical by drastically reducing the price of the product by reducing the cost, and by applying a large number of spherical ceramic balls to the surface of the flat base plate from which the plurality of heat conductive plates are removed, the weight of the spherical ceramic balls increases the surface area of the spherical ceramic balls, and the heat sink. The high heat transfer efficiency ensures excellent heat dissipation efficiency, and can simplify the manufacturing process of the product, enabling self-waterproofing when constructing IPM modules and LED modules. There is.

Claims (8)

  1. 베이스판(10)과; 상기 베이스판(10) 상에 일정한 간격을 두고 베이스판(10)과 일체로 세워져 형성되는 다수의 열도전판(20) 및; 상기 베이스판(10)과 열도전판(20) 전체에 일정한 두께의 방열수지 조성물로 도포되어 형성된 방열판(30)으로 로 구성된 아이피엠 회로용과 엘이디 조명 방열 구조.A base plate 10; A plurality of thermal conductive plates 20 formed integrally with the base plate 10 at regular intervals on the base plate 10; LED base and heat dissipation structure for the LED circuit consisting of a heat dissipation plate 30 formed by applying the heat dissipating resin composition of a predetermined thickness on the base plate 10 and the heat conductive plate 20.
  2. 제 1항에 있어서, 상기 베이스판(10)은 열도전판(20)과 열도전판(20) 사이 베이스판(10)의 중앙부에 아래가 넓고 위가 좁은 음각 도브테일 구조의 홈(21)이 형성되고, 상기 홈(21)을 포함한 베이스판(10) 상에 일정한 두께의 방열수지 조성물이 도포된 방열판(30)이 구성되어 있는 것을 특징으로 하는 아이피엠 회로용과 엘이디 조명 방열판의 구조.According to claim 1, wherein the base plate 10 is formed in the center of the base plate 10 between the heat conducting plate 20 and the heat conducting plate 20, the groove 21 of the intaglio dovetail structure having a wide bottom and narrow The structure of the IPPM circuit and LED lighting heat sink, characterized in that the heat dissipation plate 30 is coated with a heat dissipating resin composition of a predetermined thickness on the base plate 10 including the groove 21.
  3. 제 1항에 있어서, 상기 베이스판(10)은 열도전판(20)과 열도전판(20) 사이 베이스판(10)의 양측 가장자리에 아래가 넓고 위가 좁은 양각 도브테일 구조의 홈(22, 22')이 형성되고, 상기 홈(22, 22')을 포함한 베이스판(10) 상의 일정 두께까지 방열수지 조성물이 도포된 방열판(30)이 형성되어 있는 것을 특징으로 하는 아이피엠 회로용과 엘이디 조명 방열판의 구조.According to claim 1, wherein the base plate 10 is a groove (22, 22 ') of the embossed dovetail structure having a wide bottom and narrow at both edges of the base plate 10 between the heat conductive plate 20 and the heat conductive plate 20 Is formed, and the heat dissipation plate 30 to which the heat dissipating resin composition is applied to a predetermined thickness on the base plate 10 including the grooves 22 and 22 'is formed. rescue.
  4. 제 3항에 있어서, 상기 방열판(30)은 에폭시수지 40 55 중량%와 1,600 1,700 에서 구상 또는 침상의 결정화 알루미나 10 50 중량% 의 혼합물로 도포되고, 상기 결정화 알루미나의 평균 입도 분포는 5 45 인 것을 특징으로 하는 아이피엠 회로용과 엘이디 조명 방열판의 구조.The heat dissipating plate 30 is coated with a mixture of 55 55% by weight of epoxy resin 40 and 10 50% by weight of spherical or acicular crystallized alumina at 1,600 1,700, and the average particle size distribution of the crystallized alumina is 5 45. Features of IPPM circuit and LED lighting heat sink.
  5. 제 1항에 있어서, 상기 열도전판(20) 중 최외각 열도전판(20)을 제외한 나머지 열도전판(20)을 제거하고, 상기 최외각 열도전판(20) 사이의 평면상의 베이스판(10)과 최외각 열도전판(20) 전체의 표면에 방열수지 조성물이 도포된 방열판(30)이 형성되어 있는 것을 특징으로 하는 아이피엠 회로용과 엘이디 조명 방열판의 구조.The method of claim 1, wherein the remaining heat conductive plate 20 of the heat conductive plate 20 except for the outermost heat conductive plate 20 is removed, and the planar base plate 10 between the outermost heat conductive plate 20 and The structure of the IPPM circuit and the LED illuminating heat sink, characterized in that the heat dissipation plate 30 is formed on the entire surface of the outermost heat conductive plate 20 is coated with a heat dissipating resin composition.
  6. 제 5항에 있어서, 상기 베이스판(10) 윗면과 상기 최외각 열도전판(20)의 표면에 도포되는 방열수지 조성물은 메쓰트리메톡시-실란(Methl trimethoxy-silane) 10 15 중량%, 실리카(Silica) 5 10 중량%, 폴리실록산(Polysiloxane) 5 10 중량%, 구상 세라믹 10 50 중량%, 카본블랙(Carbone black) 1 5 중량%로 이루어지는 조성물인 것을 특징으로 하는 아이피엠 회로용과 엘이디 조명 방열판의 구조.The heat dissipating resin composition applied to the top surface of the base plate 10 and the surface of the outermost heat conductive plate 20 is 15 wt% of methtrimethoxy-silane (Methl trimethoxy-silane), silica ( Silica) 5 10% by weight, polysiloxane (5) 10% by weight, spherical ceramic 10 50% by weight, carbon black (Carbone black) 1 5% by weight of the composition of the IPPM circuit and LED lighting heat sink characterized in that the composition .
  7. 제 5항에 있어서, 상기 베이스판(10) 윗면과 상기 최외각 열도전판(20)의 표면에 도포되는 방열수지 조성물은 메쓰트리메톡시-실란(Methl trimethoxy-silane) 10 15 중량%, 실리카(Silica) 5 10 중량%, 폴리실록산(Polysiloxane) 5 10 중량%, 구상 세라믹 10 50 중량%, 카본블랙(Carbone black) 1 5 중량%, 이산화 타이타늄(TiO2) 1 5 중량%로 이루어지는 조성물인 것을 특징으로 하는 아이피엠 회로용과 엘이디 조명 방열판의 구조.The heat dissipating resin composition applied to the top surface of the base plate 10 and the surface of the outermost heat conductive plate 20 is 15 wt% of methtrimethoxy-silane (Methl trimethoxy-silane), silica ( Silica) 5 10% by weight, polysiloxane 5 10% by weight, spherical ceramic 10 50% by weight, carbon black (Carbone black) 1 5% by weight, titanium dioxide (TiO 2 ) 1 5% by weight of the composition The structure of IPPM circuit and LED lighting heat sink.
  8. 제 5항에 있어서, 상기 베이스판(10) 윗면과 상기 열도전판(20)의 표면에 도포되는 방열수지 조성물은 메쓰트리메톡시-실란(Methltrimethoxy-silane) 10 15 중량%, 실리카(Silica) 5 10 중량%, 폴리실록산(Polysiloxane) 5 10 중량%, 구상 세라믹 10 50 중량%, 이산화 타이타늄(TiO2) 1 5 중량%로 이루어지는 것을 특징으로 하는 아이피엠 회로용과 엘이디 조명 방열판의 구조.The heat dissipating resin composition applied to the upper surface of the base plate 10 and the surface of the thermal conductive plate 20 is 15% by weight of Methtrimethoxy-silane 10, Silica 5 10 wt%, polysiloxane (5) 10 wt%, spherical ceramic 10 50 wt%, titanium dioxide (TiO 2 ) 1 5 wt%, characterized in that the structure of the LED circuit and LED lighting heat sink.
PCT/KR2013/012301 2012-12-28 2013-12-27 Structure for heat-dissipating plate for ipm circuit and led light WO2014104812A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0157183 2012-12-28
KR20120157183 2012-12-28
KR10-2013-0164650 2013-12-26
KR1020130164650A KR101574505B1 (en) 2012-12-28 2013-12-26 Structure of IPM circuit and LED lighting heat sink

Publications (1)

Publication Number Publication Date
WO2014104812A1 true WO2014104812A1 (en) 2014-07-03

Family

ID=51021753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012301 WO2014104812A1 (en) 2012-12-28 2013-12-27 Structure for heat-dissipating plate for ipm circuit and led light

Country Status (1)

Country Link
WO (1) WO2014104812A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104948957A (en) * 2015-06-30 2015-09-30 欧普照明股份有限公司 Light source module and LED lamp

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100012510U (en) * 2009-06-09 2010-12-17 한국에너셀 주식회사 Honeycomb structure heat sink for high power Light Emitting Diode lighting
KR101015166B1 (en) * 2010-11-26 2011-02-17 (주)비전테크 Led module structure and method of making the same for optical and thermal property
KR20120002356A (en) * 2010-06-30 2012-01-05 전주대학교 산학협력단 Synthetic resins heat sinks coated heat transfer material
KR101106614B1 (en) * 2011-08-12 2012-01-20 주식회사 영동테크 Heat sink apparatus for exothermic element and method for manufacturing thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100012510U (en) * 2009-06-09 2010-12-17 한국에너셀 주식회사 Honeycomb structure heat sink for high power Light Emitting Diode lighting
KR20120002356A (en) * 2010-06-30 2012-01-05 전주대학교 산학협력단 Synthetic resins heat sinks coated heat transfer material
KR101015166B1 (en) * 2010-11-26 2011-02-17 (주)비전테크 Led module structure and method of making the same for optical and thermal property
KR101106614B1 (en) * 2011-08-12 2012-01-20 주식회사 영동테크 Heat sink apparatus for exothermic element and method for manufacturing thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104948957A (en) * 2015-06-30 2015-09-30 欧普照明股份有限公司 Light source module and LED lamp

Similar Documents

Publication Publication Date Title
WO2013151219A1 (en) Bulb-type led lighting apparatus
WO2009113788A2 (en) Knock-down led lighting fixtures
WO2012015143A1 (en) Light emitting diode bulb using thermal conductor
WO2011040671A1 (en) Light emitting diode lighting apparatus
WO2013154216A1 (en) Led lighting module and lighting device using said module
WO2012002629A1 (en) Light-emitting diode module
WO2013027872A1 (en) Heat sink and lighting apparatus having same
WO2012169750A2 (en) Lighting apparatus for broadcasting
CN201196351Y (en) High power LED road lamp head
WO2008113837A2 (en) Heat management system for photovoltaic cell panels and led-based light sources
WO2009157703A2 (en) Led luminaire and manufacturing method for same
WO2014104812A1 (en) Structure for heat-dissipating plate for ipm circuit and led light
CN102352975A (en) Dustproof, waterproof and multipurpose LED (light emitting diode) light power source assembly
WO2015184618A1 (en) Embedded white-light led package structure based on solid state fluorescent material and manufacturing method thereof
WO2015084016A1 (en) Lamp unit, and lighting device and vehicle lamp using same
CN101382259A (en) High-efficiency heat radiation high-power LED street lamp holder
WO2012070874A2 (en) Complex heat sink for an led light, and led light comprising same
CN207514606U (en) A kind of good LED light mould of rate of heat dispation
CN201396594Y (en) LED lamp holder integrating light distribution and heat dissipation
CN201547605U (en) Ventilation type crossed external-radiating LED street lamp
CN107785473A (en) A kind of integrated LED light source package support
KR101574505B1 (en) Structure of IPM circuit and LED lighting heat sink
KR101763457B1 (en) Structure of heat sink using the spherical alumina
WO2011087243A2 (en) Led illumination apparatus and manufacturing method thereof
CN207367531U (en) A kind of LED display for realizing intelligent temperature control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/11/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13867246

Country of ref document: EP

Kind code of ref document: A1