WO2014104608A1 - 유압회전식 타격장치의 충격완충장치 - Google Patents

유압회전식 타격장치의 충격완충장치 Download PDF

Info

Publication number
WO2014104608A1
WO2014104608A1 PCT/KR2013/011251 KR2013011251W WO2014104608A1 WO 2014104608 A1 WO2014104608 A1 WO 2014104608A1 KR 2013011251 W KR2013011251 W KR 2013011251W WO 2014104608 A1 WO2014104608 A1 WO 2014104608A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
flow path
hydraulic motor
high pressure
piston
Prior art date
Application number
PCT/KR2013/011251
Other languages
English (en)
French (fr)
Inventor
김진국
임종혁
Original Assignee
주식회사 에버다임
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에버다임 filed Critical 주식회사 에버다임
Publication of WO2014104608A1 publication Critical patent/WO2014104608A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B6/00Drives for drilling with combined rotary and percussive action
    • E21B6/02Drives for drilling with combined rotary and percussive action the rotation being continuous
    • E21B6/04Separate drives for percussion and rotation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B4/00Drives for drilling, used in the borehole
    • E21B4/02Fluid rotary type drives
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • E21B44/02Automatic control of the tool feed

Definitions

  • the present invention relates to a hydraulic rotary striking device, and more particularly to a hydraulic rotary striking device having an impact buffer device for improving the drilling performance and increase the durability of the striking device.
  • a rock-drilling machine When blasting is required for aggregate collection, rock removal, etc. at various quarry, tunnel construction, and ground preparation construction sites, a rock-drilling machine is used to drill holes in the crushed material for the purpose of charging explosives.
  • a hydraulic rotary striking device (drift, which breaks the crushed object by sequentially transmitting the impact force generated by colliding the striking piston to the shank connected to the rod and the driving force generated by driving the hydraulic motor) Drifter, hereinafter referred to as striking device) is mounted.
  • FIG. 1 is a view schematically showing the structure of a conventional hydraulic rotary impact device, a schematic configuration diagram during a normal drilling operation in which the strike of the striking piston 32 and the rotation of the hydraulic motor 22 is performed.
  • the upper surface of the collar portion 38 of the shock absorber 36 through the high pressure hydraulic fluid discharged from the first hydraulic pump 10 through the second high pressure passage 19 as well as the first high pressure passage 50.
  • FIG. 2 is a view showing in detail the structure of the shock absorber of the conventional hydraulic rotary impact device, as shown in the drawing, the normal operation that the impact of the striking piston 32 and the rotation of the hydraulic motor 22 is sequentially performed Since the high pressure is formed in the high pressure chamber 54 for applying pressure to the upper surface 40 of the collar portion 38 of the shock absorber 36 during the drilling operation, due to the operating oil transferred through the second high pressure flow passage 52, As the shock absorber 36 moves in the punching direction during the drilling operation, the upper surface 40 of the collar portion 38 of the shock absorber 36 and the body 44 of the striking device 30 do not contact each other.
  • the shock-absorbing device and the impact device body part are in contact with each other. Damage may occur.
  • an object of the present invention is to provide a shock absorber that prevents the shock absorber from contacting the body part of the striking device.
  • An impact buffer device for solving the above problems of the hydraulic rotary striking device includes a blow piston upward flow path for supplying a high pressure hydraulic fluid for reciprocating movement of the blow piston, and separates the hydraulic pressure from the blow piston upward flow path.
  • a hydraulic motor driving flow path is provided for rotational driving of the motor, and comprises a valve means for selectively connecting any of the flow paths of the striking piston upward flow path and the hydraulic motor driving flow path to the high pressure chamber of the shock absorber.
  • valve means is connected to the hydraulic motor drive flow passage on one side, the striking piston upward flow passage is connected to the other side, the hydraulic piston driving flow path or the hydraulic motor driving flow passage of the hydraulic oil having a relatively high operating pressure of the passing side.
  • a fourth control valve connecting the flow path to the high pressure chamber of the shock absorber.
  • valve means is connected to the inlet side flow path of the hydraulic motor drive flow passage on one side, the outlet side flow path of the hydraulic motor drive flow passage is connected to the other side, the hydraulic oil having a relatively high operating pressure of the hydraulic motor drive flow passage passes.
  • a fourth control valve connecting the side flow path to the fifth control valve; One side is connected to the hydraulic motor drive flow path supplied through the fourth control valve, the other side is connected to the blow piston up flow path, the operating oil having a relatively high operating pressure of the blow piston up flow path or the hydraulic motor drive flow path is extended.
  • a fifth control valve configured to be connected to the pressure chamber of the shock absorber.
  • the fourth control valve is characterized in that the inlet and outlet side flow paths of the hydraulic motor drive flow passage connected to one side and the other side is changed according to the rotational direction of the hydraulic motor.
  • the shock absorbing device is not only a normal drilling operation situation in which the lifting operation of the striking piston and the rotation of the hydraulic motor is performed, but also the raising operation of the striking piston is made. Improving durability of the shock absorber, the striking device, and the internal parts of the striking device by preventing mechanical contact between the shock absorber and the internal parts of the striking device even when only the forward rotation or the reverse rotation of the hydraulic motor is performed. Maintenance costs can be reduced.
  • FIG. 1 is a view schematically showing the structure of a conventional hydraulic rotary blow device
  • Figure 2 is a view showing in detail the shock absorber structure of a conventional hydraulic rotary blow device.
  • Figure 3 shows a schematic hydraulic circuit for the shock absorber of the hydraulic rotary striking device according to an embodiment of the present invention.
  • Figure 4 is a view showing a schematic hydraulic circuit when the hydraulic motor forward rotation drive for the shock absorber valve means according to another embodiment of the present invention.
  • FIG. 5 is a view showing a schematic hydraulic circuit in the reverse rotational operation of the hydraulic motor with respect to the valve means of the shock absorber shown in FIG.
  • valve means for driving the shock absorber of the hydraulic rotary striking device in detail as follows.
  • FIG. 3 is a view showing a schematic hydraulic circuit for the shock absorber of the hydraulic rotary striking device according to an embodiment of the present invention, as shown in the figure, the hydraulic rotary type provided with the shock absorber 400
  • a fourth control valve 500 is provided in the hydraulic circuit of the striking device 300.
  • One side of the fourth control valve 500 is connected to a hydraulic motor driving circuit for supplying hydraulic oil to drive the hydraulic motor 220, the other side operating oil to raise the blow piston 310 of the striking device 300 The blow piston upward flow path to supply the is connected.
  • the first high-pressure flow path 510 through which the hydraulic oil having a pressure equivalent to that of the hydraulic oil flowing into the inlet side of the hydraulic motor 220 passes through the fourth control valve 500 to drive the rotation of the hydraulic motor 220. Is connected to one side of the second control valve 500, and the other high pressure flow path (2) through which hydraulic oil having a pressure equivalent to the hydraulic oil flowing into the inlet side of the striking device 300 to raise the striking piston 310 is passed ( 520 is connected.
  • the hydraulic oil supplied to the fourth control valve 500 through the first and second high pressure passages 510 and 520 forms a pilot pressure for controlling the spool operation of the fourth control valve 500.
  • a passage through which hydraulic fluid having a relatively higher pressure passes among the first and second high pressure passages 510 and 520 connected to the valve 500 is selectively formed to be connected to the fifth high pressure passage 550.
  • the working oil introduced into the fourth control valve 500 through the third high pressure passage 530 connected to the first high pressure passage 510 or the fourth high pressure passage 540 connected to the second high pressure passage 520 is relatively By operating the hydraulic oil of the side having a higher pressure to the fifth high-pressure flow path 550, the upper portion 412 of the collar portion 410 of the shock absorber 400 and the body 320 of the striking device 300 It is supplied to the high pressure chamber 322 formed by the side to form a pressing force for moving the shock absorber 400 in the drilling direction.
  • the high pressure passage on the side through which the hydraulic oil having a relatively higher pressure passes among the hydraulic oil passing through the third high pressure passage 530 and the fourth high pressure passage 540 is the pressure chamber 322 through the fifth high pressure passage 550. ).
  • the hydraulic oil passes, and the second high pressure oil passage 520 and the fourth high pressure oil passage 540 are connected to the inlet side of the striking piston 310, and the hydraulic oil having a pressure equivalent to the pressure of the hydraulic oil which lifts the striking piston 310. Passed by.
  • the pressure of the hydraulic oil passing through the second high pressure passage 520 is zero. Since the operating pressure supplied through the fourth high pressure passage 540 is higher than the pressure passing through the first high pressure passage 510, the impact buffer device 400 is provided through the fifth high pressure passage 550 via the fourth control valve 500. The high pressure chamber 322 is supplied.
  • the pressure of the hydraulic oil passing through the first high pressure passage 510 is zero. 2 Since the pressure oil is higher than the pressure of the hydraulic oil passing through the high pressure passage 38, the hydraulic oil supplied through the third high pressure passage 530 passes through the fourth control valve 500 and the shock absorber 400 through the fifth high pressure passage 39. Is supplied to the high pressure chamber (322).
  • the pressure of the hydraulic oil supplied to the striking device 300 to raise the striking piston 310 of the hydraulic oil supplied to the hydraulic motor 220 is supplied for the rotational driving of the hydraulic motor 220. Since it is larger than the pressure, the hydraulic oil supplied through the fourth high pressure passage 540 is connected to the fifth high pressure passage 550 through the fourth control valve 500 to the high pressure chamber 322 of the shock absorber 400. By being supplied, a pressing force for moving the shock absorber 400 in the drilling direction is generated.
  • the second high pressure passage 520 and the fourth high pressure passage Since the working oil does not pass through the 540, no pressure is formed, and the pressure of the working oil supplied through the first high pressure passage 510 becomes a pilot pressure for operating the spool of the fourth control valve 500.
  • the working oil supplied through the third high pressure passage 530 is connected to the fifth high pressure passage 550 via the second control valve 500 to the high pressure chamber 322 of the shock absorber 400.
  • the pressing force is generated by the pressure of the hydraulic oil supplied to the high pressure chamber 322 to move the shock absorber 400 in the drilling direction.
  • the striking piston 310 Shock shock buffer during normal drilling work in which both the stroke and rotation of the hydraulic motor 220 are normally performed, as well as the upward stroke of the blow piston 310 is not performed, and only the rotational drive of the hydraulic motor 220 is performed.
  • the hydraulic fluid is supplied to the high pressure chamber 322 of the apparatus 400 so that the shock absorber 400 moves in the drilling direction, so that the upper surface 412 of the collar portion 410 and the striking device 300 of the shock absorber 400 are moved. Mechanical collision of the inner surface of the body 320 is not generated.
  • Figure 4 is a view showing a schematic hydraulic circuit when the hydraulic motor forward rotation drive for the shock absorber valve means according to another embodiment of the present invention, the blow piston 310 and the hydraulic motor 220 are all normally operated
  • the fourth control valve 500 for supplying hydraulic oil to operate the shock absorber 400 in the drilling direction in an abnormal working environment in which only one of the striking piston 310 and the hydraulic motor 220 is operated.
  • the fifth control valve 600 for supplying hydraulic oil is further provided to operate the shock absorber 400 in the drilling direction.
  • One side of the fourth control valve 500 is connected to the outlet side driving circuit of the hydraulic motor driving circuit for supplying the hydraulic oil to drive the hydraulic motor 220, the other side is connected to the inlet side driving circuit of the hydraulic motor driving circuit It is.
  • one side of the fifth control valve 600 is connected to supply the hydraulic fluid selectively connected through the fourth control valve 500, the other side to raise the striking piston 310 of the striking device 300 A striking piston upward flow path for supplying hydraulic oil is connected.
  • one side of the fourth control valve 500 has a hydraulic oil having the same pressure as the pressure of the hydraulic oil discharged to the outlet side of the hydraulic motor 220 after driving the hydraulic motor 220 during the normal drilling operation
  • the sixth high pressure passage 560 to be supplied is connected, and the first high pressure passage 36 through which hydraulic oil having the same pressure as that of the hydraulic oil supplied to the inlet side for driving of the hydraulic motor 220 passes on the opposite side.
  • the hydraulic oil supplied to the fourth control valve 500 through the sixth high-pressure passage 560 or the first high-pressure passage 510 is a pilot pressure for controlling the spool operation of the fourth control valve 500 Form.
  • a high pressure pressure is formed in the working oil passing through the first high pressure passage 36 connected to the inlet side of the hydraulic motor 200, and the sixth high pressure passage 560 connected to the outlet side of the hydraulic motor 220. Since the working oil passing through the gas has a relatively low pressure, the third high pressure flow passage 35 branching from the first high pressure flow passage 510 passes through the fourth control valve 500 during the normal drilling operation. It is connected to the flow path 550.
  • the eighth high-pressure passage 580 connected to the fifth high-pressure passage 550 is connected to one side of the fifth control valve 600, the opposite side of the fifth control valve 600 of the striking piston 310
  • the hydraulic oil supplied through the eighth high pressure passage 580 and the second high pressure passage 38 respectively connected to one side and the opposite side of the fifth control valve 600 controls the operation of the spool of the fifth control valve 600. To form a pilot pressure.
  • the pressure of the hydraulic oil for the reciprocating motion of the striking piston 310 is greater than the pressure of the hydraulic oil for the rotational driving of the hydraulic motor 200, so that the high-pressure hydraulic oil supplied through the fourth high pressure passage 540 is provided.
  • the hydraulic oil having a pressure equal to the hydraulic oil supplied for the lifting and lowering of the striking piston 310 is transferred to the high pressure chamber 322 of the shock absorber 400 through the fourth high pressure passage 540.
  • the shock absorbing device 400 is moved in the drilling direction by being supplied to form a pressing force.
  • the striking of the striking piston 330 is not performed, and only the forward rotation driving of the hydraulic motor 220 is performed.
  • the operating oil supplied through 530 is connected to the fifth high pressure flow path 550 via the fourth control valve 500.
  • the operating oil is not supplied to the fourth high pressure passage 540 and the second high pressure passage 520, so that the spool of the fifth control valve 600 is the fifth high pressure.
  • the pressure of the hydraulic oil supplied by the eighth high-pressure passage 580 branched from the passage 550 is operated at a pilot pressure so that the fifth high-pressure passage 550 is connected to the ninth high-pressure passage 590 so that the hydraulic oil is shock absorber.
  • the third control valve 210 which is the hydraulic oil discharged from the second hydraulic pump 200 is a rotation control valve. Is supplied to the inlet side of the hydraulic motor 220, in which case, the operating oil supplied to the inlet side of the hydraulic motor 220 passes, and at the same time from the tenth high pressure passage 230 The operating oil passing through the branched third high pressure flow passage 530 is supplied to the high pressure chamber 322 formed in the shock absorber 400 to move the shock absorber 400 in the drilling direction.
  • FIG. 5 is a view showing a schematic hydraulic circuit during the reverse rotational operation of the hydraulic motor with respect to the valve means of the shock absorber shown in FIG. 4, in which the upstroke of the striking piston 310 is rarely performed during drilling.
  • the hydraulic motor 220 needs to be rotated in the reverse direction.
  • the high pressure hydraulic fluid discharged from the second hydraulic pump 200 is opposite to that of the forward rotation of the hydraulic motor 220.
  • the hydraulic motor 220 is supplied to the hydraulic motor 220 through the eleventh high pressure flow path 240 by the reverse driving operation of the 210.
  • the hydraulic motor 220 is connected to the seventh high pressure flow path 570 connected to the eleventh high pressure flow path 240.
  • the hydraulic fluid having a pressure equal to the hydraulic oil supplied to the N) passes, and at this time, the low-pressure hydraulic oil passes through the tenth high pressure oil passage 230 connected to the outlet side of the hydraulic motor 220.
  • the low pressure hydraulic oil also passes through the first high pressure passage 510 and the third high pressure passage 36 connected to the tenth high pressure passage 230.
  • the hydraulic pressure is not supplied to the second high pressure flow passage 38 and the fourth high pressure flow passage 37 for supplying the hydraulic oil to the inlet side of the blow piston 310 because the rising of the striking piston 310 is not performed, pressure is formed.
  • the pilot pressure of the fourth control valve 500 forms a seventh pressure.
  • the high pressure oil passage 570 and the fifth high pressure oil passage 550 are connected, and the high pressure hydraulic oil passing through the fifth high pressure oil passage 550 is impacted through the ninth high pressure oil passage 40 via the fifth control valve 600.
  • the high pressure chamber 322 of the shock absorber 400 is supplied to form a pressing force for moving the shock absorber 400 in the drilling direction.
  • the seventh high pressure passage 570 communicates with the high pressure chamber 322 of the shock absorber 400.
  • the shock absorber 400 may be moved in the drilling direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

본 발명은 천공 작업시 유압적인 작용에 의하여 드릴비트와 피파쇄물의 접촉을 견고하게 유지시킬 수 있도록 하는 충격완충장치를 구비한 유압회전식 타격장치에 관한 것으로, 타격 피스톤의 왕복운동을 위한 고압의 작동유를 공급하기 위한 타격 피스톤 상승유로를 구비하고, 상기 타격 피스톤 상승유로와 별도로 유압모터의 회전 구동을 위한 유압모터 구동유로가 마련되며, 상기 타격 피스톤 상승유로 또는 유압모터 구동유로 중 어느 하나의 유로를 선택적으로 충격완충장치의 고압챔버에 연결시키는 밸브수단을 포함하는 구성으로 이루어져 타격 피스톤의 상승과 유압모터의 회전이 모두 수행되는 정상적인 천공작업 상황 뿐만 아니라 유압모터의 정방향 또는 역방향 회전만 수행되는 비정상적인 상황에서도 충격완충장치와 타격장치 내부 부품간의 접촉이 발생하지 않도록 함으로써 타격장치 내부 부품의 내구성을 향상시킬 수 있도록 하는 것을 그 특징으로 한다.

Description

유압회전식 타격장치의 충격완충장치
본 발명은 유압회전식 타격장치에 관한 것으로, 더욱 상세하게는 천공성능 향상 및 타격장치의 내구성을 증대시키기 위한 충격완충장치를 구비한 유압 회전 타격장치에 관한 것이다.
각종 채석장, 터널 공사 및 지반 마련 공사 현장에서 골재 채취, 암석 제거 등을 위하여 발파가 필요한 경우 발파용 화약 장입을 목적으로 피파쇄물에 구멍을 천공하기 위하여 유압 천공기(Rock-Drilling Machine)가 사용된다.
일반적으로, 유압 천공기의 마스트 상에는 가이드를 통해 장착되어 왕복 이송되면서, 천공 작업시 실린더 또는 유압피드모터 등의 이송수단을 이용 로드(rod) 끝단부에 조립된 드릴비트와 피파쇄물을 견고하게 접촉시킴으로써 접촉지지력을 형성시킨 후에, 로드와 연결된 생크에 타격 피스톤를 충돌시켜 발생시킨 충격력과 유압모터(motor)를 구동시켜 발생된 회전 구동력을 순차적으로 전달하여 피파쇄물을 파쇄하는 유압회전식 타격장치(드리프터, Drifter, 이하, 타격장치라 칭함.)가 장착된다.
도 1은 기존 유압회전식 타격장치의 구조를 개략적으로 도시하는 도면으로서, 타격 피스톤(32)의 타격과 유압모터(22)의 회전이 수행되는 정상적인 천공 작업시의 개략적인 구성도이다.
상기 도면에 도시한 바와 같이, 제 1 유압펌프(10)에서 고압의 작동유가 토출되어 피스톤 상승을 위한 제 1 고압유로(50)를 통해 타격장치(30)에 공급되면 타격 피스톤(32)은 타격을 위한 상승행정이 개시되어 상방향으로 이동된다.
동시에, 상기 제 1 유압펌프(10)에서 토출된 고압의 작동유를 상기 제 1 고압유로(50)뿐만 아니라 제 2 고압유로(19)를 통해 충격완충장치(36)의 카라부(38) 상면(42)에 고압을 작용시키는 고압챔버(54)로 공급시킴으로써, 천공 작업시 피파쇄물(90)에 대해서 드릴비트(80)와 피파쇄물(90)의 접촉이 유지될 수 있도록 생크(34)와 로드(70) 및 드릴비트(80)에 천공방향으로의 접촉지지력을 형성시키고, 천공작업시 타격 피스톤(32)의 타격후 피파쇄물(90)로부터 타격장치(30)로 전달되는 타격반력를 유압적으로 완충시킴으로써 타격장치(30) 본체에는 기계적인 충격이 전달되는 것을 방지할 수 있도록 하는 충격완충장치(36)가 제공된다.
도 2는 기존 유압회전식 타격장치의 충격완충장치 구조를 상세하게 도시하는 도면으로서, 상기 도면에 도시한 바와 같이, 타격 피스톤(32)의 타격과 유압모터(22)의 회전이 순차적으로 수행되는 정상적인 천공 작업시 충격완충장치(36)의 카라부(38) 상면(40)에 압력을 작용시키는 고압챔버(54)에는 제 2 고압유로(52)를 통해 전달된 작동유로 인해 고압이 형성되기 때문에, 천공 작업시 충격완충장치(36)가 천공방향으로 이동됨에 따라 충격완충장치(36)의 카라부(38) 상면(40)과 타격장치(30)의 바디부(44)가 접촉되지 않는다.
그러나, 천공 작업시 타격 피스톤(32)의 타격이 수행되지 않은 상태에서 유압모터(22)의 회전 구동력만 전달되어 생크(34)의 회전 구동만 행해지는 상황이 간헐적으로 발생된다.
이러한 경우, 제 2 고압유로(19)에는 고압의 작동유가 공급되지 않는 상태이기 때문에 충격완충장치(36)의 카라부(38) 상면(42)에 압력을 작용시키는 고압챔버(54)에는 고압이 형성되지 못한다.
이때, 천공기의 마스트 상에 설치된 실린더 또는 유압피드모터 등의 이송수단에 의해 드릴비트(80)와 피파쇄물(90)을 접촉시키기 위한 접촉 지지력이 형성된다면, 상기 충격완충장치(36)의 카라부(38) 상면(42)과 타격장치(30)의 바디부(44) 내측부가 접촉하게 된다.
이러한 상태에서 유압모터(22)의 회전이 행해진다면 충격완충장치(36)의 카라부(38) 상면(42)과 타격장치(30) 바디부(44)의 접촉면에서는 기계적 접촉에 의한 손상이 발생될 수 있다.
상기와 같은 구성으로 이루어지는 종래의 유압회전식 타격장치의 충격완충장치에서는 타격 피스톤의 타격이 수행되지 않은 상항에서 유압모터의 회전 구동력에 의한 회동만 이루어지는 경우 충격완충장치와 타격장치 바디부의 기계적인 접촉에 의한 손상이 발생될 수 있다.
상술한 바와 같은 문제점을 해결하기 위하여, 본 발명에서는 타격 피스톤의 상승과 유압모터의 회전이 모두 수행되는 정상적인 천공작업시 뿐만 아니라, 타격 피스톤의 상승은 이루어지지 않고 유압모터의 정방형 또는 역방향 회전만 행해지는 경우에서도 충격완충장치와 타격장치의 바디부가 접촉되지 않도록 하는 충격완충장치를 제공하는 것을 목적으로 한다.
본 발명에 따른 유압 회전 타격장치의 상기 문제점을 해결하기 위한 충격완충장치는, 타격 피스톤의 왕복운동을 위한 고압의 작동유를 공급하기 위한 타격 피스톤 상승유로를 구비하고, 상기 타격 피스톤 상승유로와 별도로 유압모터의 회전 구동을 위한 유압모터 구동유로가 마련되며, 상기 타격 피스톤 상승유로 또는 유압모터 구동유로 중 어느 하나의 유로를 선택적으로 충격완충장치의 고압챔버에 연결시키는 밸브수단을 포함하는 구성으로 이루어지는 것을 특징으로 한다.
또한, 상기 밸브수단은 일측에는 유압모터 구동유로가 연결되고, 타측에는 타격 피스톤 상승유로가 연결되며, 상기 타격 피스톤 상승유로 또는 유압모터 구동유로 가운데 상대적으로 고압의 작동 압력을 가지는 작동유가 지나가는 측의 유로를 충격완충장치의 고압챔버에 연결시키는 제 4 제어밸브인 것을 특징으로 한다.
그리고, 상기 밸브수단은 일측에는 유압모터 구동유로 중 입구측 유로가 연결되고, 타측에는 유압모터 구동유로 중 출구측 유로가 연결되어, 유압모터 구동유로 가운데 상대적으로 고압의 작동 압력을 가지는 작동유가 지나가는 측의 유로를 제 5 제어밸브에 연결시키는 제 4 제어밸브와; 일측에는 제 4 제어밸브를 통해 공급되는 유압모터 구동유로가 연결되고, 타측에는 타격 피스톤 상승유로가 연결되어, 타격 피스톤 상승유로 또는 유압모터 구동유로 가운데 상대적으로 고압의 작동 압력을 가지는 작동유가 자나가는 측의 유로가 충격완충장치의 압력챔버에 연결되도록 하는 제 5 제어밸브;로 이루어져 있다.
그리고, 상기 제 4 제어밸브는 유압모터의 회전 방향에 따라 일측과 타측에 연결되는 유압모터 구동유로의 입구측 유로와 출구측 유로가 변경되는 것을 특징으로 한다.
상술한 바와 같은 문제점을 해결하기 위해 안출된 본 발명의 일실시예에 의한 충격완충장치는 타격 피스톤의 상승동작과 유압모터의 회전이 수행되는 정상적인 천공작업 상황뿐만 아니라, 타격 피스톤의 상승동작이 이루어지지 않고 유압모터의 정방향의 회전 또는 역방향 회전만 수행되는 상황에서도 충격완충장치와 타격장치 내부 부품간의 기계적인 접촉이 발생하지 않도록 함으로써 충격완충장치와 타격장치, 그리고, 타격장치 내부 부품의 내구성을 향상시킴으로 인해 유지보수 비용을 절감시킬 수 있다.
도 1은 기존 유압회전식 타격장치의 구조를 개략적으로 도시하는 도면
도 2는 기존 유압회전식 타격장치의 충격완충장치 구조를 상세하게 도시하는 도면.
도 3은 본 발명의 일실시예에 의한 유압회전식 타격장치의 충격완충장치에 대한 개략적인 유압회로를 도시하는 도면.
도 4는 본 발명의 다른 실시예에 의한 충격완충장치 밸브수단에 대해 유압모터 정방향 회전 구동시 개략적인 유압회로를 도시하는 도면.
도 5는 도 4에 도시되어 있는 충격완충장치의 밸브수단에 대해 유압모터 역방향 회전 구동시 개략적인 유압회로를 도시하는 도면.
이하, 도시된 도면에 따라 본 발명의 일실시예 의한 유압회전식 타격장치의 충격완충장치를 구동시키는 밸브수단의 기술적 유압회로 구성을 상세히 설명하면 다음과 같다.
도 3은 본 발명의 일실시예에 의한 유압회전식 타격장치의 충격완충장치에 대한 개략적인 유압회로를 도시하는 도면으로서, 상기 도면에 도시한 바와 같이, 충격완충장치(400)가 구비된 유압회전식 타격장치(300)의 유압회로에는 제 4 제어밸브(500)가 구비되어 있다.
상기 제 4 제어밸브(500)의 일측에는 유압모터(220)를 구동시키기 위해 작동유를 공급하는 유압모터 구동회로가 연결되고, 타측에는 타격장치(300)의 타격 피스톤(310)을 상승시키기 위해 작동유를 공급하는 타격 피스톤 상승 유로가 연결되어 있다.
보다 상세하게 설명하면, 상기 유압모터(220)의 회전 구동을 위해 유압모터(220)의 입구측으로 유입되는 작동유와 동등한 압력을 가지는 작동유가 지나가는 제 1 고압유로(510)가 제 4 제어밸브(500)의 일측에 연결되고, 제 4 제어밸브(500)의 타측에는 타격 피스톤(310)을 상승시키기 위해 타격장치(300)의 입구측으로 유입되는 작동유와 동등한 압력을 가지는 작동유가 지나가는 제 2 고압유로(520)가 연결되어 있다.
상기 제 1, 2 고압유로(510)(520)를 통해 제 4 제어밸브(500)로 공급되는 작동유는 제 4 제어밸브(500)의 스풀 동작을 제어하는 파일럿 압력을 형성하는데, 상기 제 4 제어밸브(500)에 연결되는 제 1, 2 고압유로(510)(520) 중 상대적으로 더 높은 압력을 가지는 작동유가 지나가는 유로가 선택적으로 제 5 고압유로(550)에 연결되도록 형성되어 있다.
상기 제 1 고압유로(510)와 연결된 제 3 고압유로(530) 또는 상기 제 2 고압유로(520)와 연결된 제 4 고압유로(540)를 통해 제 4 제어밸브(500)로 유입된 작동유는 상대적으로 더 높은 압력을 가지는 측의 작동유가 제 5 고압유로(550)에 연결되므로써, 충격완충장치(400)의 카라부(410) 상면(412)과 타격장치(300)의 바디부(320) 내측면에 의해 형성되는 고압챔버(322)에 공급되어 충격완충장치(400)를 천공방향으로 이동시키는 가압력을 형성시키게 된다.
이때, 상기 제 3 고압유로(530)와 제 4 고압유로(540)를 지나가는 작동유 가운데 상대적으로 더 높은 압력을 가지는 작동유가 지나가는 측의 고압유로가 제 5 고압유로(550)를 통해 압력챔버(322)에 연결되는 것이다.
즉, 정상적인 천공작업시에는 제 1 고압유로(510)와 제 3 고압유로(530)에 유압모터(220)를 구동시키기 위해 유압모터(220)의 입구측으로 공급되는 작동유와 동등한 크기의 압력을 가지는 작동유가 지나가게 되고, 제 2 고압유로(520)와 제 4 고압유로(540)에는 타격 피스톤(310)의 입구측에 연결되어 타격 피스톤(310)을 승강시키는 작동유의 압력과 동등한 압력의 작동유가 지나가게 된다.
상기 타격 피스톤(310)의 왕복운동을 위해 공급되는 작동유의 압력이 유압모터(220)의 회전 구동을 위해 공급되는 작동유의 압력보다 높을 경우에는 제 2 고압유로(520)를 지나가는 작동유의 압력이 제 1 고압유로(510)를 지나가는 압력보다 높기 때문에 제 4 고압유로(540)를 통해 공급되는 작동유가 제 4 제어밸브(500)를 거쳐 제 5 고압유로(550)를 통해 충격완충장치(400)의 고압챔버(322)에 공급된다.
반대로, 상기 유압모터(220)를 회전 구동시키기 위한 작동유의 압력이 타격 피스톤(310)의 왕복운동을 위해 공급되는 작동유의 압력보다 높은 경우에는 제 1 고압유로(510)를 지나가는 작동유의 압력이 제 2 고압유로(38)를 지나가는 작동유의 압력보다 높기 때문에 제 3 고압유로(530)를 통해 공급되는 작동유가 제 4 제어밸브(500)를 거쳐 제 5 고압유로(39)를 통해 충격완충장치(400)의 고압챔버(322)에 공급된다.
통상적으로, 정상적인 천공 작업에서는 타격 피스톤(310)의 상승을 위해 타격장치(300)에 공급되는 작동유의 압력이 유압모터(220)의 회전 구동을 위해 공급되는 유압모터(220)로 공급되는 작동유의 압력보다 더 크기 때문에 제 4 고압유로(540)를 통해 공급되는 작동유가 제 4 제어밸브(500)를 지나 제 5 고압유로(550)에 연결되어 충격완충장치(400)의 고압챔버(322)에 공급되므로써, 충격완충장치(400)를 천공방향으로 이동시키기 위한 가압력을 발생시키게 된다.
그러나, 천공 작업시 간헐적으로 타격 피스톤(310)의 타격이 이루어지지 않고, 유압모터(220)의 회전구동만 이루어지는 경우가 발생되는데, 이 경우에는 제 2 고압유로(520)와 제 4 고압유로(540)에는 작동유가 지나지 않게 되므로 압력이 형성되지 않아, 제 1 고압유로(510)를 통해 공급되는 작동유의 압력이 제 4 제어밸브(500)의 스풀을 작동시키는 파일럿 압력이 된다.
따라서, 이러한 경우에는 제 3 고압유로(530)를 통해 공급되는 작동유가 제 2 제어밸브(500)를 거쳐 제 5 고압유로(550)에 연결되어 충격완충장치(400)의 고압챔버(322)에 공급되며, 상기 고압챔버(322)에 공급된 작동유의 압력에 의해 가압력이 발생되어 충격완충장치(400)를 천공방향으로 이동시키게 된다.
실린더 또는 유압피드모터 등과 같은 이송수단에 의해 천공 방향으로 이송된 드릴비트(800)와 피파쇄물(900)의 접촉시 발생되는 접촉반력이 타격장치(300)로 전달될 때, 타격 피스톤(310)의 타격과 유압모터(220)의 회전이 모두 정상적으로 이루어지는 정상적인 천공작업 뿐만 아니라, 타격 피스톤(310)의 상승 행정이 이루어지지 않고 유압모터(220)의 회전 구동만 이루어지는 비 정상적인 천공 작업시에도 충격완충장치(400)의 고압챔버(322)에는 작동유가 공급되어 충격완충장치(400)가 천공방향으로 이동하게 되므로 충격완충장치(400)의 카라부(410) 상면(412)과 타격장치(300) 바디부(320) 내측면의 기계적인 충돌은 발생되지 않게 된다.
도 4는 본 발명의 다른 실시예에 의한 충격완충장치 밸브수단에 대해 유압모터 정방향 회전 구동시 개략적인 유압회로를 도시하는 도면으로서, 타격 피스톤(310)과 유압모터(220)가 모두 정상적으로 작동되는 정상적인 천공작업 뿐만 아니라 타격 피스톤(310)과 유압모터(220)중 하나만 작동되는 비정상적인 작업 환경에서도 충격완충장치(400)를 천공방향으로 작동시키기 위해 작동유를 공급하는 제 4 제어밸브(500) 이외에 추가로 유압모터(220)가 역방향으로 구동되는 경우에도 충격완충장치(400)를 천공 방향으로 작동시키기 위해 작동유를 공급하는 제 5 제어밸브(600)가 더 구비되는 것을 특징으로 한다.
상기 제 4 제어밸브(500)의 일측에는 유압모터(220)를 구동시키기 위해 작동유를 공급하는 유압모터 구동회로 중 출구측 구동회로가 연결되고, 타측에는 유압모터 구동회로 중 입구측 구동회로가 연결되어 있다.
그리고, 제 5 제어밸브(600)의 일측에는 상기 제 4 제어밸브(500)를 통해 선택적으로 연결되는 작동유가 공급되도록 연결되고, 타측에는 타격장치(300)의 타격 피스톤(310)을 상승시키기 위해 작동유를 공급하는 타격 피스톤 상승 유로가 연결되어 있다.
보다 상세하게 설명하면, 상기 제 4 제어밸브(500)의 일측에는 정상적인 천공작업시 유압모터(220)를 구동시킨후 유압모터(220)의 출구측으로 배출되는 작동유의 압력과 동일한 압력을 가지는 작동유가 공급되는 제 6 고압유로(560)가 연결되고, 반대측에는 정상적인 천공작업시 유압모터(220)의 구동을 위해 입구측으로 공급되는 작동유의 압력과 동일한 압력을 가지는 작동유가 지나가는 제 1 고압유로(36)가 연결되는데, 상기 제 6 고압유로(560) 또는 제 1 고압유로(510)를 통해 제 4 제어밸브(500)로 공급되는 작동유는 제 4 제어밸브(500)의 스풀 동작을 제어하는 파일럿 압력을 형성한다.
정상적인 천공작업 시에는 유압모터(200)의 입구측과 연결된 제 1 고압유로(36)를 지나가는 작동유에 고압의 압력이 형성되고, 유압모터(220)의 출구측과 연결된 제 6 고압유로(560)를 지나가는 작동유는 상대적으로 작은 저압의 압력을 가지므로, 정상적인 천공작업시에는 상기 제 1 고압유로(510)로부터 분기되는 제 3 고압유로(35)가 제 4 제어밸브(500)를 거쳐 제 5 고압유로(550)에 연결된다.
이때, 상기 제 5 고압유로(550)와 연결되는 제 8 고압유로(580)는 제 5 제어밸브(600)의 일측에 연결되며, 제 5 제어밸브(600)의 반대측에는 타격 피스톤(310)의 입구측으로 공급되는 작동유와 동일한 압력을 가지는 작동유가 지나가는 제 2 고압유로(38)가 연결된다.
상기 제 5 제어밸브(600)의 일측과 반대측에 각각 연결되는 제 8 고압유로(580)와 제 2 고압유로(38)를 통해 공급되는 작동유는 제 5 제어밸브(600)의 스풀의 동작을 제어하는 파일럿 압력을 형성한다.
정상적인 천공작업 환경에서는 타격 피스톤(310)의 왕복운동을 위한 작동유의 압력이 유압모터(200)의 회전 구동을 위한 작동유의 압력보다 더 크기 때문에 제 4 고압유로(540)를 통해 공급되는 고압의 작동유가 제 5 제어밸브(600)를 거쳐 제 9 고압유로(590)를 통해 충격완충장치(400)의 고압챔버(322)에 공급되므로 충격완충장치(400)를 천공방향으로 이동시키기 위한 가압력이 형성된다.
즉, 정상적인 천공작업시에는 타격 피스톤(310)의 승강을 위해 공급되는 작동유와 동등한 크기의 압력을 갖는 작동유가 제 4 고압유로(540)를 통해 충격완충장치(400)의 고압챔버(322)로 공급되어 가압력을 형성시킴으로써 충격완충장치(400)를 천공방향으로 이동시킨다.
하지만, 천공 작업시 간헐적으로 타격 피스톤(310)의 상승행정이 이루어지지 않아 생크(330)와의 타격이 이루어지지 않고, 유압모터(220)의 정방향 회전 구동만 이루어지지는 경우에는, 제 3 고압유로(530)를 통해 공급되는 작동유가 제 4 제어밸브(500)를 거쳐 제 5 고압유로(550)에 연결된다.
이때, 타격 피스톤(310)의 왕복운동은 이루어지지 않기 때문에 제 4 고압유로(540)와 제 2 고압유로(520)에는 작동유가 공급되지 않으므로, 제 5 제어밸브(600)의 스풀은 제 5 고압유로(550)에서 분기된 제 8 고압유로(580)에 의해 공급되는 작동유의 압력이 파일럿 압력으로 작동되어 제 5 고압유로(550)는 제 9 고압유로(590)와 연결되어 작동유가 충격완충장치(400)의 고압챔버(322)에 공급되므로써 충격완충장치(400)를 천공방향으로 이동시키기 위한 가압력을 형성시키게 된다.
즉, 타격 피스톤(310)의 상승행정이 이루어지지 않고 유압모터(220)의 정방향 회전 구동만 이루어지는 경우에는, 제 2 유압펌프(200)로부터 토출된 작동유가 회전제어밸브인 제 3 제어밸브(210)를 통해 유압모터(220)의 입구측으로 공급되는데, 이때, 제 10 고압유로(230)에는 유압모터(220)의 입구측으로 공급되는 작동유가 지나가게 되고, 동시에 상기 제 10 고압유로(230)로부터 분기된 제 3 고압유로(530)를 지나가는 작동유가 충격완충장치(400)에 형성된 고압챔버(322)에 공급되어 충격완충장치(400)를 천공방향으로 이동시킨다.
도 5는 도 4에 도시되어 있는 충격완충장치의 밸브수단에 대해 유압모터 역방향 회전 구동시 개략적인 유압회로를 도시하는 도면으로서, 천공 작업중 매우 드물게 타격 피스톤(310)의 상승 행정이 이루어지지 않는 상태에서 유압모터(220)를 역방향으로 회전시켜야 하는 경우가 발생되는데, 이러한 경우 유압모터(220)의 정방향 회전시와는 반대로 제 2 유압펌프(200)로부터 토출된 고압의 작동유는 제 3 제어밸브(210)의 역방향 구동 동작에 의해 제 11 고압유로(240)를 통해 유압모터(220)로 공급되는데, 이때, 상기 제 11 고압유로(240)와 연결된 제 7 고압유로(570)에는 유압모터(220)로 공급되는 작동유와 동등한 크기의 압력을 가지는 작동유가 지나가게 되고, 이때, 유압모터(220)의 출구측에 연결되는 제 10 고압유로(230)로는 저압의 작동유가 지나가게 된다.
따라서, 상기 제 10 고압유로(230)와 연결되는 제 1 고압유로(510)와 제 3 고압유로(36)에도 저압의 작동유가 지나가게 된다.
그리고, 타격 피스톤(310)의 상승이 이루어지지 않기 때문에 타격 피스톤(310)의 입구측으로 작동유를 공급하는 제 2 고압유로(38)와 제 4 고압유로(37)에는 작동유가 공급되지 않으므로 압력이 형성되지 않게되고, 상기 제 7 고압유로(570)와 연결되어 고압의 작동유가 지나가는 제 6 고압유로(560)를 통해 공급되는 고압의 작동유는 제 4 제어밸브(500)의 파일럿 압력을 형성하여 제 7 고압유로(570)와 제 5 고압유로(550)를 연결시키고, 상기 제 5 고압유로(550)를 지나가는 고압의 작동유는 제 5 제어밸브(600)를 거쳐 제 9 고압유로(40)를 통해 충격완충장치(400)의 고압챔버(322)에 공급되어 충격완충장치(400)를 천공방향으로 이동시키기 위한 가압력을 형성시킨다.
즉, 타격 피스톤(310)의 상승 행정이 이루어지지 않고, 유압모터(220)가 역방향으로 회전하는 경우에도 제 7 고압유로(570)가 충격완충장치(400)의 고압챔버(322)에 연통되므로 충격완충장치(400)를 천공방향으로 이동시킬 수 있다.
지금까지 유압회전식 타격장치의 충격완충장치에 대한 유압회로는 도면에 도시된 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 충격완충장치에 대한 유압회로의 논리적 구성이 동일하다면 이것은 본 발명과 동일한 것으로 간주되며, 또한 당업자라면 누구든지 본 발명으로부터 변형 및 균등한 다른 실시 예가 가능하다는 점을 이해할 것이다.
따라서, 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (6)

  1. 천공 작업시 유압적인 작용에 의하여 드릴비트와 피파쇄물의 접촉을 견고하게 유지시킬 수 있도록 하는 충격완충장치를 구비한 유압회전식 타격장치에 있어서,
    타격 피스톤의 왕복운동을 위한 고압의 작동유를 공급하기 위한 타격 피스톤 상승유로를 구비하고,
    상기 타격 피스톤 상승유로와 별도로 유압모터의 회전 구동을 위한 유압모터 구동유로가 마련되며,
    상기 타격 피스톤 상승유로 또는 유압모터 구동유로 중 어느 하나의 유로를 선택적으로 충격완충장치의 고압챔버에 연결시키는 밸브수단을 포함하는 구성으로 이루어지는 것을 특징으로 하는 유압회전식 타격장치의 충격완충장치.
  2. 청구항 제 1 항에 있어서, 상기 밸브수단은,
    일측에는 유압모터 구동유로가 연결되고, 타측에는 타격 피스톤 상승유로가 연결되며,
    상기 타격 피스톤 상승유로 또는 유압모터 구동유로 가운데 상대적으로 고압의 작동 압력을 가지는 작동유가 지나가는 측의 유로를 충격완충장치의 고압챔버에 연결시키는 제 4 제어밸브인 것을 특징으로 하는 유압회전식 타격장치의 충격완충장치.
  3. 청구항 제 1 항에 있어서, 상기 밸브수단은,
    일측에는 유압모터 구동유로 중 입구측 유로가 연결되고, 타측에는 유압모터 구동유로 중 출구측 유로가 연결되어, 유압모터 구동유로 가운데 상대적으로 고압의 작동 압력을 가지는 작동유가 지나가는 측의 유로를 제 5 제어밸브에 연결시키는 제 4 제어밸브와;
    일측에는 제 4 제어밸브를 통해 공급되는 유압모터 구동유로가 연결되고, 타측에는 타격 피스톤 상승유로가 연결되어, 타격 피스톤 상승유로 또는 유압모터 구동유로 가운데 상대적으로 고압의 작동 압력을 가지는 작동유가 자나가는 측의 유로가 충격완충장치의 압력챔버에 연결되도록 하는 제 5 제어밸브;로 이루어지는 것을 특징으로 하는 유압회전식 타격장치의 충격완충장치.
  4. 청구항 제 3 항에 있어서, 상기 제 4 제어밸브는,
    유압모터의 회전 방향에 따라 일측과 타측에 연결되는 유압모터 구동유로의 입구측 유로와 출구측 유로가 변경되는 것을 특징으로 하는 유압회전식 타격장치의 충격완충장치.
  5. 청구항 제 1 항 내지 청구항 제 3 항중 어느 한 항에 있어서, 상기 밸브수단은,
    천공 작업시 타격 피스톤의 타격과 유압모터의 회전이 동시에 수행되는 경우,
    유압모터 구동유로와, 타격 피스톤 상승유로중에서,
    상대적으로 작동 압력이 높은 작동유가 공급되는 유로가 충격완충장치의 고압챔버에 연결되는 것을 특징으로 하는 유압 회전식 타격장치.
  6. 청구항 제 1 항 내지 청구항 제 3 항중 어느 한 항에 있어서, 상기 밸브수단은,
    천공 작업시 타격 피스톤의 상승행정이 이루어지지 않고,
    유압모터의 정방향 또는 역방향 회전구동만 이루어지는 경우,
    유압모터 구동유로와, 타격 피스톤 상승유로중에서,
    유압모터 구동유로가 충격완충장치의 고압챔버에 연결되도록 형성되는 것을 특징으로 하는 유압 회전식 타격장치.
PCT/KR2013/011251 2012-12-26 2013-12-06 유압회전식 타격장치의 충격완충장치 WO2014104608A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120152685A KR101410134B1 (ko) 2012-12-26 2012-12-26 유압회전식 타격장치의 충격완충장치
KR10-2012-0152685 2012-12-26

Publications (1)

Publication Number Publication Date
WO2014104608A1 true WO2014104608A1 (ko) 2014-07-03

Family

ID=51021603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011251 WO2014104608A1 (ko) 2012-12-26 2013-12-06 유압회전식 타격장치의 충격완충장치

Country Status (2)

Country Link
KR (1) KR101410134B1 (ko)
WO (1) WO2014104608A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105464588A (zh) * 2016-01-15 2016-04-06 吉林大学 一种超声波振动碎岩实验装置及实验方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160128208A (ko) 2015-04-27 2016-11-07 순천향대학교 산학협력단 당구큐 팁에서의 타격충격성능 측정 장치 및 측정 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0112810A2 (en) * 1982-12-27 1984-07-04 Atlas Copco Aktiebolag A rock drilling apparatus and a method of optimizing percussion rock drilling
US20040112649A1 (en) * 2001-06-12 2004-06-17 Sandvik Tamrock Oy Rock drill
KR20040095120A (ko) * 2003-05-06 2004-11-12 이일재 유압타격장치
US20050016774A1 (en) * 2002-03-19 2005-01-27 Jean-Sylvain Comarmond Hydraulic rotary-percussive hammer drill
KR20100039036A (ko) * 2008-10-07 2010-04-15 주식회사 에버다임 유압브레이커

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0112810A2 (en) * 1982-12-27 1984-07-04 Atlas Copco Aktiebolag A rock drilling apparatus and a method of optimizing percussion rock drilling
US20040112649A1 (en) * 2001-06-12 2004-06-17 Sandvik Tamrock Oy Rock drill
US20050016774A1 (en) * 2002-03-19 2005-01-27 Jean-Sylvain Comarmond Hydraulic rotary-percussive hammer drill
KR20040095120A (ko) * 2003-05-06 2004-11-12 이일재 유압타격장치
KR20100039036A (ko) * 2008-10-07 2010-04-15 주식회사 에버다임 유압브레이커

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105464588A (zh) * 2016-01-15 2016-04-06 吉林大学 一种超声波振动碎岩实验装置及实验方法

Also Published As

Publication number Publication date
KR101410134B1 (ko) 2014-06-25

Similar Documents

Publication Publication Date Title
EP2646199A1 (en) Sleeve/liner assembly and hydraulic hammer using same
US8011455B2 (en) Down hole hammer having elevated exhaust
JP3904612B2 (ja) さく岩機の構造とさく岩作業の制御方法
WO2011078421A1 (ko) 천공장치용 에어햄머
CN107529581B (zh) 减振抗磨减阻钻头
WO2016099162A1 (ko) 유압타격장치용 타격몸체
EP2611579B1 (en) Hydraulic impact mechanism for use in equipment for treating rock and concrete
CN105401878B (zh) 一种大直径潜孔锤钻机
CN105735983B (zh) 锯片式切缝装置和顶板围岩切缝方法
WO2010137798A2 (en) Method and apparatus for drilling large-diameter hole in ground
WO2014104608A1 (ko) 유압회전식 타격장치의 충격완충장치
CN103842606B (zh) 气动潜孔钻机
EP2552651A1 (en) Hydraulic percussive arrangement, piston guide and drilling rig
CN102996139A (zh) 钻装机液压控制系统
CN105156024A (zh) 一种快冲耐磨损高寿命潜孔冲击钻具
CA2894293C (en) Breaking device
EP2718064B1 (en) Percussion device of rock breaking device and method for controlling percussion device
WO2014092387A1 (ko) 유압식 회전 타격장치
CN205314916U (zh) 一种大直径潜孔锤钻机
CN115628006A (zh) 一种不旋转潜孔锤钻机及其使用方法
CN110945206B (zh) 用于液压冲击装置的阀引导结构
WO2014208922A1 (ko) 유압식 회전 타격장치
CN113982473A (zh) 一种直线摆动式潜孔锤钻机及其使用方法
KR102072601B1 (ko) 4단 가변 지능형 유압브레이커 장치
AU2012240637A1 (en) Device for rock- and concrete machining

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869354

Country of ref document: EP

Kind code of ref document: A1