WO2014104547A1 - Vortex-type discharge hood - Google Patents

Vortex-type discharge hood Download PDF

Info

Publication number
WO2014104547A1
WO2014104547A1 PCT/KR2013/008920 KR2013008920W WO2014104547A1 WO 2014104547 A1 WO2014104547 A1 WO 2014104547A1 KR 2013008920 W KR2013008920 W KR 2013008920W WO 2014104547 A1 WO2014104547 A1 WO 2014104547A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
air
vortex
unit
hood
Prior art date
Application number
PCT/KR2013/008920
Other languages
French (fr)
Korean (ko)
Inventor
윤승원
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120156047A external-priority patent/KR101395187B1/en
Priority claimed from KR1020130112636A external-priority patent/KR101550193B1/en
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to CN201380001514.2A priority Critical patent/CN104039468B/en
Priority to JP2014554677A priority patent/JP5753955B2/en
Publication of WO2014104547A1 publication Critical patent/WO2014104547A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B15/00Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area
    • B08B15/02Preventing escape of dirt or fumes from the area where they are produced; Collecting or removing dirt or fumes from that area using chambers or hoods covering the area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/12Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/46Air flow forming a vortex

Definitions

  • the present invention relates to a vortex type discharge hood that sucks air containing contaminants such as dust or fumes generated in a large industrial site and discharges it to the outside of the workplace. More specifically, there is no mechanical operating part. Vortex caused by the injected air is generated inside the hood, so that contaminated air in and around the hood can be sucked out with a strong suction force, and the hood is manufactured by unitizing a structure for injecting air into the hood. And a vortex discharge hood which is easy to operate.
  • the hood is installed in the area where the pollutant is generated to force the polluted air to be sucked out.
  • the contaminated air sucked into the hood is sent to the dust collector installed outside the workplace through the exhaust duct, and the dust collector filters the contaminants in the contaminated air and then discharges the filtered air to the atmosphere.
  • the conventional hood has a circular or rectangular cross-sectional shape of the air intake port, and has a shape in which the area is narrowed upward.
  • one end of the discharge duct for discharging air is connected to the upper end of the hood, and an air discharge device such as a blower is installed at the other end of the discharge duct.
  • the conventional hood is a method of inhaling and discharging contaminated air into the hood by using the suction force generated by the operation of the air discharge device, and the streamline distribution of the air flow flowing into the hood is limited to the inside and the lower space of the hood. Due to the distribution, only the air in the local area space is discharged, and the polluted air in the space around the outside of the hood is not discharged, there is a problem of low polluted air discharge efficiency.
  • Japanese Laid-Open Patent Publication No. 1989-38540 proposes to discharge air flows from four struts to generate spiral rising vortices and to generate intake in a direction orthogonal to the rising vortices at the center of the space.
  • the technique disclosed in the above patent document is a structure in which air is discharged in a tangential direction with respect to the center of the exhaust port of the exhaust hood having a circular cross-sectional shape of the inlet port continuous to the exhaust duct, and the air is ejected in the air outlet port and the bottom bottom direction. It is an invention that needs to install a plurality of blades for the air outlet or air inlet to the complicated structure, it is required to supply the power to drive the operating parts, there is a disadvantage that the noise generated by the operation of the drive power.
  • US Patent No. 6,851,421 B2 and US Patent Publication No. US 2007/0015449 A1 show that the fumes generated in the range are sucked into the hood without leaving the range due to the vortices generated by the air jet that is ejected at a low speed vertically upward from the bottom of the range.
  • Disclosed is a structure that is discharged, but there is a disadvantage that the exhaust air is limited to the space under the hood.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 1989-38540 (1989.02.08)
  • Patent Document 2 US Patent No. 6,851,421 B2 (2005.02.08)
  • Patent Document 3 US published patent US 2007/0015449 A1 (2007.01.18)
  • the present invention has been made in consideration of the above problems, and an object of the present invention is to use a vortex generated inside the hood, and a vortex discharge which can effectively inhale and discharge the contaminated air in the lower part of the hood and the space around the hood In providing a hood.
  • Another object of the present invention is to provide a vortex inside the hood by injecting air into the hood without installing a mechanical device such as a fan directly in the hood.
  • the present invention provides a vortex discharge hood that requires no maintenance work on the operation site.
  • Another object of the present invention by allowing the air injection unit unitized by the air injection unit for injecting air into the hood to be detachable to the hood case, the vortex that improves the convenience for replacement or maintenance of the air injection unit To provide a drainage hood.
  • the front / rear / left / right side and the upper surface is closed, the lower surface is made of an open structure, the upper surface of the arcuate A case formed of a structure;
  • a discharge duct installed on each of the left and right sides of the case to form a flow path through which air introduced into the case is discharged;
  • a plurality of air injection units installed at each of the rear and the upper surface of the case and injecting air in a tangential direction to the inner surface of the case to generate a vortex that rotates about a horizontal pivot axis inside the case. It provides a vortex discharge hood.
  • the air injection unit may be assembled to an installation hole formed in the case, and may be configured as an air injection unit connected to an external air supply source and injecting air supplied from the air supply source in a tangential direction to the inner surface of the case.
  • the air injection unit has a flange assembled to the case by a bolt while being in close contact with the periphery of the installation hole, and is connected to an air source to form a chamber into which the air supplied from the air source is introduced, the inside of the case
  • the dispersion plate may include a flange portion fixed to the case by bolts for assembling the flange of the unit case to the case, and an air dispersion portion extending from the flange portion into the unit case to disperse air.
  • the nozzle plate has a flange portion fixed to the case by bolts for assembling the flanges of the unit case to the upper and lower ends, respectively, and between the two flange portions, air that guides the air passing through the air dispersion unit into the nozzle structure.
  • the guide portion is formed.
  • the air dispersion portion is formed to be inclined away from the nozzle plate, the air induction portion is formed in a cross-sectional structure convexly curved in a direction away from the dispersion plate.
  • a spacer for separating the two flange portion is configured to space the flange portion of the nozzle plate from the inner surface of the case.
  • the spacer is preferably formed so as to integrally form the spacer on the nozzle plate by protruding the peripheral portion of the hole formed in the flange portion so as to penetrate in the direction of the dispersion plate.
  • the air dispersing unit has a structure extending in the longitudinal direction of the unit case facing the air flowing into the unit case, the bottom is installed spaced apart from the inner bottom surface of the unit case, the bottom is formed in the unit case The portion closest to the air inlet is closest to the inner bottom surface of the case, and is inclined away from the inner bottom surface of the unit case as it moves away from the air inlet.
  • the discharge duct the left discharge duct provided on the left side of the case; And a right discharge duct installed on the right side of the case so as to have a symmetrical structure with the left discharge duct, wherein the left discharge duct and the right discharge duct are connected to each other at the outside of the case to form one discharge duct.
  • the length of the rear of the case is formed longer than the length of the front, it is preferable that the front and rear of the case is formed in an asymmetric structure.
  • the air injected in the direction tangential to the inner surface of the case from the air injection unit flows in such a way that the air flows from the rear of the case to the upper surface and from the upper surface to the front direction from the rear surface of the vortex generated inside the case It is configured to turn in the direction leading to the front via.
  • the air injection unit installed on the rear and upper surface of the case is generated by the effect of the vortex generated by the air injected in the tangential direction to the inner surface of the case, and the air injected By the suction force by the Coanda effect, there is an effect of inhaling and discharging the contaminated air around the hood and the vertical lower portion of the hood.
  • FIG. 1 is a perspective view showing the structure of a vortex discharge hood according to a first embodiment of the present invention
  • Figure 2 is a perspective view cut perpendicularly to the longitudinal direction at any position in the longitudinal direction of the vortex discharge hood according to the first embodiment of the present invention
  • FIG. 3 is a perspective view showing a detailed structure of an air injection unit according to a first embodiment of the present invention
  • FIG. 4 is a perspective view of a vortex discharge hood according to a second embodiment of the present invention.
  • FIG. 5 is a side view of a vortex discharge hood according to a second embodiment of the present invention.
  • FIG. 6 is an exploded perspective view of a vortex discharge hood according to a second embodiment of the present invention.
  • FIG. 7 is a perspective view showing the structure of an air injection unit according to the present invention.
  • FIG. 8 is an exploded perspective view showing a structure of an air injection unit according to the present invention.
  • FIG. 9 is a side view showing the structure of an air injection unit according to the present invention.
  • FIG. 10 is a side view showing a state in which the air injection unit according to the present invention is installed in the case
  • FIG. 11 is a cross-sectional view showing a structure in which a spacer is integrally formed on a nozzle plate according to the present invention
  • FIG. 12 is an exemplary view showing the air flow during operation of the vortex discharge hood according to the second embodiment of the present invention.
  • left discharge duct 220 right discharge duct
  • unit case 311 flange
  • nozzle plate 331 flange portion
  • flange portion 333 air induction portion
  • FIG. 1 is a perspective view showing the structure of the vortex discharge hood according to the first embodiment of the present invention
  • Figure 2 is perpendicular to the longitudinal direction at any position in the longitudinal direction of the vortex discharge hood according to the first embodiment of the present invention
  • 3 is a perspective view illustrating the detailed structure of the air injection part according to the first embodiment of the present invention.
  • the vortex discharge hood according to the present invention has a Coanda effect generated by the influence of the vortex generated by the air injected in the tangential direction to the inner surface of the case and the air injected from the air injection unit installed on the rear and top of the case (Coanda It is characterized in that the suction and discharge the contaminated air in the lower part and the surroundings of the hood by the suction force by the effect, the case 100, the discharge duct 200, and the air injection unit (300 '). It consists of
  • the case 100 is a front / back / left / right side surfaces 101, 102, 103, 104 and the upper surface 105 is closed, the lower surface is an open structure, the upper surface 105 is formed in an arcuate structure.
  • the upper surface 105 of the case 100 is formed in an arcuate structure to interconnect the upper ends of the front surface 101 and the rear surface 102.
  • the upper surface 105 of the case 100 has a convexly curved structure in the upward direction, and the air injected into the case 100 may flow on the inner surface of the case 100 to generate vortices. If it is a structure, it may be formed in a variety of structures, such as round, oval or curved near.
  • the length L1 of the rear surface 102 of the case 100 is formed longer than the length L2 of the front surface 101 so as to improve the generation effect of the vortex, so that the case 100 is the front surface 101 )
  • the back surface 102 are formed in an asymmetrical structure
  • the left surface 103 and the right surface 104 is formed in a symmetrical structure.
  • discharge holes 103a and 104a through which the discharge duct 200 is connected to discharge the contaminated air are formed on the left side 103 and the right side 104 of the case 100, respectively.
  • the centers of the two outlets 103a and 104a respectively formed on the left side 103 and the right side 104 of the case 100 are formed to coincide with the pivot axis s of the vortex generated inside the case 100.
  • the centers of the two outlets 103a and 104a coincide with the swirl axis s of the vortex
  • the centers of the left discharge duct and the right discharge duct which will be described later, coincide with the swirl axis s of the vortex, It is possible to induce the emission of air more smoothly.
  • front surface 101 and the rear surface 102 of the case 100 may be formed in a structure extending in the vertical downward direction from the upper surface 105, the upper surface while maintaining a predetermined slope relative to the vertical position It may be formed in a structure extending downward from the 105.
  • the discharge duct 200 is installed to extend from the case 100 to form a flow path through which contaminated air is discharged, and includes a left discharge duct 210 and a right discharge duct 220.
  • the left discharge duct 210 is installed to be connected to an outlet 103a formed on the left side 103 of the case 100, and the right discharge duct 220 is formed on the right side 104 of the case 100.
  • the left discharge duct 210 and the right discharge duct 220 installed on the left side 103 and the right side 104 of the case 100, respectively, are installed to be connected to the 104 a. It is installed to have a mutually symmetrical structure.
  • a known air discharge device such as a blower is installed at the discharge side ends of the left discharge duct 210 and the right discharge duct 220 to induce smooth discharge of contaminated air through the discharge duct.
  • the air injection unit 300 ′ injects air in a tangential direction to the inner surface of the case 100, and has a horizontal pivot axis s inside the case by air injected from the air injection unit 300 ′.
  • the vortices are rotated about and the suction force is generated by the Coanda effect generated by the effect of the injected air.
  • One or more air spraying units 300 ⁇ are formed on the rear surface 102 and the upper surface 105, respectively, and the air injected from the air spraying unit 300 ⁇ is disposed on the rear surface 102 of the case 100 ⁇ the upper surface ( 105) to form a flow leading to the front surface 101.
  • the air spraying unit 300 ′ formed on the rear surface 102 injects air so that air flows from the rear surface 102 toward the upper surface 105, and the air spraying unit 300 ′ formed on the upper surface 105. ) Injects air so that air flows from the upper surface 105 toward the front surface 101.
  • FIG. 2 illustrates a structure in which one air injection unit 300 ′ is formed on the rear surface 102 and two air injection units 300 ′ are formed on the top surface 105.
  • each of the air injection unit 300 ⁇ is formed in a structure extending in a straight line toward the right side 104 from the left side 103 of the case 100 to inject air uniformly throughout the inner surface of the case 100 Is configured to.
  • each air injection unit 300 ⁇ is configured to form a structure of a known shrinkage diffusion nozzle.
  • each air injection unit 300 ′ has a nozzle inlet 111 formed in the case 100 and the nozzle to guide the air introduced through the nozzle inlet 111 into the case 100. It is installed to extend from the inlet 111 into the case 100, the nozzle contraction portion 1121 to induce a pressure increase of the air flowing through the nozzle inlet 111, and the end of the nozzle contraction portion 1121 It is composed of a guide member 112 to form a nozzle diffusion portion 1122 to gradually increase the cross-sectional area of the flow path from the air pressure to lower the pressure.
  • the air injection unit 300 ⁇ composed of the nozzle inlet 111 and the guide member 112 is connected to a separate air supply device, not shown, and the air introduced through the nozzle inlet 111 from the air supply device is The pressure is increased in the process of passing through the nozzle contraction portion 1121, and when passing through the nozzle diffuser 1122 through the nozzle neck 1123, which is a boundary between the nozzle contraction portion 1121 and the nozzle diffuser 1122, air is released. As the pressure is lowered, the air velocity discharged from the air injection unit 300 ⁇ is increased. Since the principle of the shrinkage diffusion nozzle is a widely known principle, more detailed description will be omitted.
  • FIG. 4 is a perspective view of a vortex discharge hood according to a second embodiment of the present invention
  • FIG. 5 is a side view of a vortex discharge hood according to a second embodiment of the present invention
  • FIG. 6 is a second embodiment of the present invention. The exploded perspective view of the vortex discharge hood according to the present invention is shown.
  • the vortex discharge hood according to the second embodiment of the present invention also has air injected in a tangential direction to the inner surface of the case from an air injection unit installed at the rear and top of the case. It is characterized in that the suction and discharge the contaminated air into the hood by using the suction force caused by the vortex generated by the air, and the Coanda effect (Coanda effect) generated by the effect of the injected air, the case 100 and , The exhaust duct 200, and the air injection unit 300 ′.
  • the case 100 has the same structure as that of the case 100 of the first embodiment, and thus the detailed description of the case 100 is omitted, and the same reference numerals are used.
  • the discharge duct 200 is discharged to the left side, which is installed to be connected to the discharge ports 103a and 104a respectively formed on the left side 103 and the right side 104 of the case 100, similarly to the discharge duct 200 of the first embodiment.
  • a duct 210 and a right discharge duct 220 Comprising a duct 210 and a right discharge duct 220, the basic structure of the left discharge duct 210 and the right discharge duct 220 and the left discharge duct 210 and the right discharge duct 220 of the first embodiment and Since it is the same, a description of the basic structure is omitted, and the same reference numerals are used.
  • the left discharge duct 210 and the right discharge duct 220 according to the second embodiment is connected to each other on the outside of the case 100 and extends to the outside while forming one discharge duct, such discharge duct 200
  • An air discharge device is installed to guide the polluted air to be smoothly discharged through the discharge duct 200.
  • the air discharge device may be composed of a known blower, and this air discharge device is already widely used, so that the illustration and detailed description of the air discharge device will be omitted.
  • the centers of the outlets 103a and 104a respectively formed on the left side 103 and the right side 104 of the case 100 to connect the left discharge duct 210 and the right discharge duct 220 are the case 100. It is formed to coincide with the pivot axis (s) of the vortex generated inside the.
  • At least one air spraying unit 300 ′ is installed at each of the rear surface 102 and the upper surface 105 of the case 100 to inject air in a tangential direction to the inner surface of the case. Master 300 'and the function is the same.
  • the air spray unit 300 ′ according to the second embodiment of the present invention is configured to assemble and mount the separately manufactured air spray unit 300 to the case 100.
  • FIG. 7 is a perspective view showing the structure of the air injection unit according to the invention
  • Figure 8 is an exploded perspective view showing the structure of the air injection unit according to the invention
  • Figure 9 is a side view showing the structure of the air injection unit according to the present invention 10 is a side view showing a state in which an air spray unit according to the present invention is installed in a case
  • FIG. 11 is a sectional view showing a structure in which a spacer is integrally formed on a nozzle plate according to the present invention.
  • the air injection unit 300 is composed of a unit case 310, a dispersion plate 320, and a nozzle plate 330.
  • the unit case 310 is assembled to the case 100 and is connected to an external air supply source to receive air provided from the air supply source and to spray the inside of the case 100.
  • the external air source may be composed of a known blower or a compressor.
  • the unit case 310 is formed of a polygonal or cylindrical enclosure that is entirely closed to form a chamber to disperse the air supplied from the air source while temporarily staying therein, the inner direction of the case 100
  • the one side 310a positioned at is formed in an open structure, and the open one side 310a is closed by the nozzle plate 330 to be described later.
  • flanges 311 and 312 for assembling with the case 100 are formed at both sides of the open side surface 310a, and the flanges 311 and 312 are held in close contact with the inner surface of the case 100 by bolts. 100).
  • the unit case 310 having such a structure is inserted into the installation holes 102a and 105a (shown in FIG. 6) formed in the rear surface 102 or the upper surface 105 of the case 100 in the inward direction of the case 100.
  • the flanges 311 and 312 are in close contact with the inner surface of the case 100 in this process, the flanges 311 and 312 of the unit case 310 are fastened to the case 100 by bolts to be assembled with the case 100. do.
  • the unit case 310 has an air inlet 313 connected to an air supply source and a hose or pipe at a predetermined position.
  • the dispersion plate 320 disperses air introduced into the unit case 310 through the air inlet 313 in the unit case 310, and the flange portion 321 and the air dispersion portion 322. It consists of.
  • the flange part 321 is a part fixed to the unit case 310, and the case 100 together with the unit case 310 by bolts for assembling the flange 311 of the unit case 310 to the case 100. Is fixed to.
  • the air dispersing portion 322 is formed to extend into the unit case 310 from the flange portion 321, and is formed to face the air flowing into the unit case 310 through the air inlet 313. .
  • the air dispersion unit 322 is formed in a structure extending in the longitudinal direction of the unit case 310 and has a function of dispersing air introduced from the air inlet 313 in the longitudinal direction of the unit case 310.
  • the bottom end 323 of the air dispersion unit 322 as described above is spaced apart from the inner bottom surface 310b of the unit case 310 and the air dispersed by the air dispersion unit 322 and the unit case 310 It is configured to form a space flowing to the nozzle structure (N) side formed between the nozzle plate 330, wherein the bottom 323 of the air dispersing portion 322 is an air inlet 313 formed in the case 100
  • the portion 323a closest to the closest to the inner bottom surface 310b of the unit case 310 is inclined away from the inner bottom surface 310b of the case 100 as it moves away from the air inlet 313. Is formed.
  • the distance between the bottom 323 of the air dispersing unit 322 and the inner bottom surface 310b of the unit case 310 is increased in proportion to the distance between the air inlet 313 and the bottom 323.
  • the flow resistance of the air decreases, so that the amount of air flowing toward the nozzle structure N through the lower portion of the air dispersing unit 322 can be maintained to be uniform throughout.
  • the nozzle plate 330 is installed to close the open side 310a of the unit case 310, and a part of the case is spaced apart from the unit case 310 to receive air introduced into the unit case 310 into the case 100. It is to form a nozzle structure (N) for spraying in the tangential direction to the inner surface of the).
  • the nozzle plate 330 is composed of a flange portion (331,332) and the air induction portion 333.
  • the flanges 331 and 332 are formed at the upper and lower ends of the nozzle plate 330, respectively, and are fixed to the case 100 by bolts for assembling the flanges 331 and 332 of the unit case 310 to the case 100.
  • the two flanges 331, 332 of the flange portion 331 located on the upper end of the nozzle plate 330 is installed to be spaced apart from the unit case 310, the air flowing into the unit case 310 is the case 100 ) Forms a nozzle structure (N) which is sprayed in a direction tangential to the inner surface.
  • a spacer is installed between the flange portion 321 and the unit case 310 so that the flange portion 331 is spaced apart from the unit case 310, and more specifically, the nozzle plate 330 and the dispersion plate ( Spacers are installed between the flange portions 321 of the 320.
  • the spacer is a fastening method so that a bolt for fastening the air injection unit 300 to the case 100 in a state in which a spacer separately prepared in a ring shape is disposed between two flange portions 331 and 321 through the spacer.
  • the spacer 334 may be integrally formed with the nozzle plate 330 by molding the peripheral portion of the hole 331a through which the bolt penetrates to protrude in the direction of the dispersion plate 320.
  • the air induction part 333 connects two flange parts 331 and 332 formed at the upper end and the lower end of the nozzle plate 330 to induce air to the nozzle structure (N) side.
  • the case 100 through the nozzle structure (N) formed by the nozzle plate 330 In order to increase the flow rate of the air injected into the inside of the air induction unit 333 and the air dispersion unit 322 is formed so that the area of the space in which air flows gradually decreases.
  • the air induction part 333 is connected to the flange portion 331 of the upper end and the flange portion 332 of the lower end, but is formed in a cross-sectional structure bent convex in the direction away from the dispersion plate 320,
  • the air dispersion unit 322 is formed to be inclined in a direction away from the nozzle plate 330.
  • the air flowing into the space between the air induction part 333 and the air dispersing part 322 is gradually narrowed by the nozzle structure (N)
  • the pressure is increased in the process flowing into the side to increase the speed of the air discharged to the nozzle structure (N).
  • Vortex type exhaust hood according to the present invention is installed in a place where the discharge of contaminated air, like a known hood, is discharged at the end of the discharge duct 200, such as a blower for inducing a smooth discharge of the contaminated air
  • the apparatus is installed, and the air injection unit 300 is connected to an air source such as a blower or a compressor provided at the site.
  • Figure 12 shows an exemplary view showing the air flow during the operation of the vortex discharge hood according to the second embodiment of the present invention.
  • the vortex type discharge hood of the present invention is formed by the negative pressure formed in the hood due to the operation of the air discharge device, the vortex generated by the air injected in the tangential direction of the inner surface of the hood from the air injector 300 ', and the jet air.
  • a strong suction force is generated around the inlet side of the hood, that is, the front space and the bottom surface of the case 100 and around the entire circumference of the case outer end.
  • this suction force not only the contaminated air in the lower part of the hood, but also the contaminated air around the hood can be smoothly sucked out and discharged.
  • the air injected from the plurality of air injection units 300 ′ formed in the case 100 is sprayed in a tangential direction to the inner surface of the case 100, and also from the rear surface 102 to the upper surface 105. Sprayed to form a flow leading to the front surface 101.
  • the vortices that rotate in the direction from the rear surface 102 to the front surface 101 through the upper surface 105 are generated inside the case 100 by the flow of air injected from the air injection unit 300 ′.
  • the air and the air inside the hood are caused by the effects of the suction force generated by the swirling, the negative pressure generated by the operation of the air discharge device, and the Coanda effect generated by the air injected from the air injection unit 300 ⁇ .
  • the air in the space outside the hood is sucked together and discharged.
  • the amount and the injection speed of the air injected through each air injection unit 300 ⁇ may vary depending on the position or number of the air injection unit 300 ⁇ installed in the case 100 so that the vortex generation is efficiently induced have.
  • the vortex discharge hood may be further installed in the lower end of the case 100, foreign matter inflow prevention grid to prevent the foreign matter larger than a limited size flow into the hood.
  • the air injection unit 300 can be easily configured by additionally installing the air injection unit 300 in the case 100, and can easily replace only the air injection unit 300. There is this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ventilation (AREA)
  • Nozzles (AREA)

Abstract

The present invention relates to a vortex-type discharge hood, and the objective thereof is to provide a vortex-type discharge hood capable of effectively suctioning and discharging polluted air in the lower portion of the hood and in the space in the vicinity of the hood by using a vortex generated in the hood. To this end, the vortex-type discharge hood according to the present invention includes: a case having closed front, back, left, and right side surfaces, a closed upper surface, and a lower surface having an open structure, wherein the upper surface is formed to have an arch-shaped structure; discharge ducts respectively disposed on the left side surface and the right side surface of the case so as to form flow paths in which the air suctioned into the case is discharged; and multiple air injection units having at least one unit disposed on each back surface and upper surface of the case and injecting air in a tangential direction with respect to the inner surface of the case so as to generate a vortex rotating about an axis of revolution which is parallel to the inner part of the case.

Description

와류식 배출 후드Vortex Discharge Hood
본 발명은 대형 산업 현장에서 발생되는 분진이나 흄 등의 오염 물질이 함유된 공기를 흡입하여 작업장 외부로 배출하는 와류식 배출 후드에 관한 것으로, 보다 상세하게는 기계적인 작동 부위가 없고, 후드 내부로 분사되는 공기에 의한 와류가 후드 내부에 발생되어 후드 내부 및 주변의 오염된 공기를 강한 흡입력으로 흡입하여 배출시킬 수 있으며, 후드 내부로 공기를 분사하기 위한 구조를 유닛화하여 후드의 제조 및 유지보수가 용이한 와류식 배출 후드에 관한 것이다.The present invention relates to a vortex type discharge hood that sucks air containing contaminants such as dust or fumes generated in a large industrial site and discharges it to the outside of the workplace. More specifically, there is no mechanical operating part. Vortex caused by the injected air is generated inside the hood, so that contaminated air in and around the hood can be sucked out with a strong suction force, and the hood is manufactured by unitizing a structure for injecting air into the hood. And a vortex discharge hood which is easy to operate.
일반적으로, 제철소, 주물공장, 석탄 화력발전소, 미곡 종합처리장, 시멘트 공장 등의 대형 산업 현장에서는 분진이나 흄 등의 물질이 함유된 오염된 공기가 대량 발생되며, 이러한 오염된 공기는 작업자의 건강에 직접적으로 영향을 미치는 것을 물론이고, 작업장 및 그 주변의 환경을 오염시키는 원인이 되고 있다.In general, large industrial sites such as steel mills, foundries, coal-fired power plants, rice flour treatment plants, and cement plants generate large amounts of polluted air containing substances such as dust and fumes. Not only directly affecting, but also causing the pollution of the workplace and the surrounding environment.
따라서, 오염물질이 발생되는 구역에 후드를 설치하여 오염된 공기를 강제로 흡입하여 배출하도록 하고 있다. 참고로 후드로 흡입되는 오염된 공기는 배출덕트를 통하여 작업장의 외부에 설치된 집진기로 보내지며, 집진기는 오염된 공기 중의 오염물질을 여과한 후, 여과된 공기를 대기로 방출하게 된다.Therefore, the hood is installed in the area where the pollutant is generated to force the polluted air to be sucked out. For reference, the contaminated air sucked into the hood is sent to the dust collector installed outside the workplace through the exhaust duct, and the dust collector filters the contaminants in the contaminated air and then discharges the filtered air to the atmosphere.
한편, 종래의 후드는 공기 흡입구의 단면 형상이 원형 또는 사각형으로 되어 있으며 위로 갈수록 면적이 좁아지는 형상으로 되어 있다. 또한 후드의 상단부에는 공기를 배출하는 배출덕트의 한 단이 연결되고, 상기 배출덕트의 다른 단에는 블로워와 같은 공기배출장치가 설치된다.On the other hand, the conventional hood has a circular or rectangular cross-sectional shape of the air intake port, and has a shape in which the area is narrowed upward. In addition, one end of the discharge duct for discharging air is connected to the upper end of the hood, and an air discharge device such as a blower is installed at the other end of the discharge duct.
이러한 종래의 후드는 공기배출장치의 가동으로 인해 발생되는 흡입력을 이용하여 오염 공기를 후드의 내부로 흡입하여 배출하는 방식으로, 후드로 유입되는 공기 흐름의 유선 분포가 후드 내부와 하방 공간에 한정되어 분포하는 관계로 국소 구역 공간의 공기만 배출되고, 후드 외부 주변의 공간에 있는 오염공기는 배출하지 못함에 따라 오염공기 배출 효율이 낮은 문제점이 있다.The conventional hood is a method of inhaling and discharging contaminated air into the hood by using the suction force generated by the operation of the air discharge device, and the streamline distribution of the air flow flowing into the hood is limited to the inside and the lower space of the hood. Due to the distribution, only the air in the local area space is discharged, and the polluted air in the space around the outside of the hood is not discharged, there is a problem of low polluted air discharge efficiency.
상기와 같은 문제점을 해결하려는 여러 방안들이 제안되고 있다.Various solutions have been proposed to solve the above problems.
일본 공개특허공보 제1989-38540호에는 4개의 지주로부터 공기류를 토출하여 나선상의 상승 와류를 발생시키며 해당 공간의 중심부에서 상승 와류에 직교하는 방향으로 흡기작용을 생성하도록 한 것이 제안된 바 있다.Japanese Laid-Open Patent Publication No. 1989-38540 proposes to discharge air flows from four struts to generate spiral rising vortices and to generate intake in a direction orthogonal to the rising vortices at the center of the space.
그러나, 상기 특허문헌에 개시된 기술은 배기 덕트에 연속하는 흡입구의 단면 형상이 원형으로 된 배기 후드의 배기구 중심에 대해 접선방향으로 공기를 토출하는 구조로, 공기분출구와 하방측 바닥 방향으로 공기를 분출하는 공기분출구 또는 공기 유입을 위한 블레이드를 다수 설치할 필요가 있는 발명으로 구조가 복잡하며, 작동하는 부품을 구동하는 동력의 공급이 요구되며, 구동 동력의 가동에 따른 소음이 발생하는 단점이 있다.However, the technique disclosed in the above patent document is a structure in which air is discharged in a tangential direction with respect to the center of the exhaust port of the exhaust hood having a circular cross-sectional shape of the inlet port continuous to the exhaust duct, and the air is ejected in the air outlet port and the bottom bottom direction. It is an invention that needs to install a plurality of blades for the air outlet or air inlet to the complicated structure, it is required to supply the power to drive the operating parts, there is a disadvantage that the noise generated by the operation of the drive power.
한편, 미국등록특허 US 6,851,421 B2와 미국특허공개 US 2007/0015449 A1에는 레인지 하부에서 수직 상방으로 저속 분출되는 에어 제트에 의하여 발생되는 와류의 영향으로 레인지에서 발생되는 흄이 레인지를 벗어나지 않고 후드로 흡입되어 배출되는 구조가 개시되어 있으나, 배출 공기가 후드 하방 공간으로 제한되는 단점이 있다.On the other hand, US Patent No. 6,851,421 B2 and US Patent Publication No. US 2007/0015449 A1 show that the fumes generated in the range are sucked into the hood without leaving the range due to the vortices generated by the air jet that is ejected at a low speed vertically upward from the bottom of the range. Disclosed is a structure that is discharged, but there is a disadvantage that the exhaust air is limited to the space under the hood.
이처럼 종래의 여러 방안들은 레인지 후드의 밑단에 원심 팬을 설치하거나, 가이드 베인을 설치하거나, 레인지 앞면에 에어 커튼 방식의 공기 흐름으로 스월링(Swirling)을 유발하거나, 원추형 후드 측면의 원형관으로 공급되는 공기에 의한 스월 발생 및 후드 상부에 설치된 하나의 관으로 공기가 배출되는 구조와 방식으로 되어 있으며, 배출되는 공기가 후드 하방의 공간으로 한정되어 후드 주위 공간의 오염 공기를 배출하지 못하는 문제점이 있다.Many conventional methods like this include installing a centrifugal fan at the bottom of the range hood, installing a guide vane, causing swirling with an air curtain type air flow at the front of the range, or supplying a circular tube on the side of the conical hood. Swirl generated by the air and the air is discharged to a single tube installed in the upper hood, and the discharged air is limited to the space below the hood there is a problem that can not discharge the polluted air in the space around the hood .
(선행기술문헌)(Prior art document)
(특허문헌1) 일본 공개특허공보 제1989-38540호 (1989.02.08)(Patent Document 1) Japanese Unexamined Patent Publication No. 1989-38540 (1989.02.08)
(특허문헌2) 미국등록특허 US 6,851,421 B2 (2005.02.08)(Patent Document 2) US Patent No. 6,851,421 B2 (2005.02.08)
(특허문헌3) 미국공개특허 US 2007/0015449 A1 (2007.01.18)(Patent Document 3) US published patent US 2007/0015449 A1 (2007.01.18)
본 발명은 상기와 같은 문제점을 고려하여 이루어진 것으로, 본 발명의 목적은 후드의 내부에 발생되는 와류를 이용하여 후드의 하부 및 후드 주변 공간의 오염된 공기를 효과적으로 흡입하여 배출할 수 있는 와류식 배출 후드를 제공함에 있다.The present invention has been made in consideration of the above problems, and an object of the present invention is to use a vortex generated inside the hood, and a vortex discharge which can effectively inhale and discharge the contaminated air in the lower part of the hood and the space around the hood In providing a hood.
본 발명의 다른 목적은, 팬(fan)과 같은 기계적 장치를 직접 후드에 설치하지 않고, 후드의 내부로 공기를 분사하여 후드 내부에 와류를 발생시키는 방식을 가짐으로써, 작동 부위가 없어 구조가 단순하고, 작동 부위에 대한 유지보수작업이 필요 없는 와류식 배출 후드를 제공함에 있다.Another object of the present invention is to provide a vortex inside the hood by injecting air into the hood without installing a mechanical device such as a fan directly in the hood. In addition, the present invention provides a vortex discharge hood that requires no maintenance work on the operation site.
본 발명의 다른 목적은, 후드의 내부로 공기를 분사하기 위한 공기분사 구성체를 유닛화한 공기분사유닛을 후드 케이스에 탈부착이 가능하게 함으로써, 공기분사유닛의 교체나 유지보수에 대한 편의성을 높인 와류식 배출 후드를 제공함에 있다. Another object of the present invention, by allowing the air injection unit unitized by the air injection unit for injecting air into the hood to be detachable to the hood case, the vortex that improves the convenience for replacement or maintenance of the air injection unit To provide a drainage hood.
상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은, 전/후/좌/우 측면 및 상면은 폐쇄되고, 하면은 개방된 구조로 이루어지되, 상면은 아치형의 구조로 형성된 케이스; 상기 케이스의 좌측면과 우측면에 각각 설치되어 케이스의 내부로 유입된 공기가 배출되는 유로를 형성하는 배출 덕트; 및 상기 케이스의 후면과 상면에 각각 한 개 이상 설치되어 케이스의 내면에 대한 접선 방향으로 공기를 분사하여 케이스의 내부에 수평한 선회축을 중심으로 회전하는 와류를 발생시키는 다수 개의 공기분사부로 구성된 것을 특징으로 하는 와류식 배출 후드를 제공한다.The present invention to achieve the object as described above and to solve the conventional drawbacks, the front / rear / left / right side and the upper surface is closed, the lower surface is made of an open structure, the upper surface of the arcuate A case formed of a structure; A discharge duct installed on each of the left and right sides of the case to form a flow path through which air introduced into the case is discharged; And a plurality of air injection units installed at each of the rear and the upper surface of the case and injecting air in a tangential direction to the inner surface of the case to generate a vortex that rotates about a horizontal pivot axis inside the case. It provides a vortex discharge hood.
이때, 상기 공기분사부는, 상기 케이스에 형성된 설치홀에 조립되며, 외부의 공기 공급원과 연결되어 공기 공급원으로부터 공급되는 공기를 케이스의 내면에 대한 접선 방향으로 분사하는 공기분사유닛으로 구성될 수 있다.In this case, the air injection unit may be assembled to an installation hole formed in the case, and may be configured as an air injection unit connected to an external air supply source and injecting air supplied from the air supply source in a tangential direction to the inner surface of the case.
이때, 상기 공기분사유닛은, 상기 설치홀의 주변에 밀착된 채로 볼트에 의하여 케이스에 조립되는 플랜지를 구비하며, 공기 공급원과 연결되어 공기 공급원으로부터 공급되는 공기가 유입되는 챔버를 형성하되, 케이스의 내측 방향에 위치한 측면이 개방된 구조로 형성된 유닛 케이스; 상기 유닛 케이스에 설치되어 유닛 케이스의 내부로 유입되는 공기를 케이스의 내부에서 분산시키는 분산플레이트; 및 상기 유닛 케이스의 개방된 측면을 폐쇄하도록 설치되되, 일부분이 유닛 케이스로부터 이격되어 유닛 케이스의 내부로 유입된 공기를 케이스의 내면에 대한 접선 방향으로 분사하는 노즐구조를 형성하는 노즐플레이트로 구성된다.At this time, the air injection unit has a flange assembled to the case by a bolt while being in close contact with the periphery of the installation hole, and is connected to an air source to form a chamber into which the air supplied from the air source is introduced, the inside of the case A unit case formed in an open side structure located in a direction; A dispersion plate installed in the unit case and dispersing air introduced into the unit case in the case; And a nozzle plate installed to close the open side of the unit case, the nozzle plate forming a nozzle structure in which a portion of the unit case is spaced apart from the unit case and injects air introduced into the unit case in a tangential direction to the inner surface of the case. .
또한, 상기 분산플레이트는, 상기 유닛 케이스의 플랜지를 케이스에 조립하는 볼트에 의하여 케이스에 고정되는 플랜지부와, 상기 플랜지부로부터 유닛 케이스의 내부로 연장되게 형성되어 공기를 분산시키는 공기분산부로 구성되고, 상기 노즐플레이트는, 상기 유닛 케이스의 플랜지를 케이스에 조립하는 볼트에 의하여 케이스에 고정되는 플랜지부가 상단부와 하단부에 각각 형성되고, 두 플랜지부 사이에는 공기분산부를 거친 공기를 노즐구조로 유도하는 공기유도부가 형성된 것으로 구성된다.The dispersion plate may include a flange portion fixed to the case by bolts for assembling the flange of the unit case to the case, and an air dispersion portion extending from the flange portion into the unit case to disperse air. The nozzle plate has a flange portion fixed to the case by bolts for assembling the flanges of the unit case to the upper and lower ends, respectively, and between the two flange portions, air that guides the air passing through the air dispersion unit into the nozzle structure. The guide portion is formed.
또한, 상기 공기분산부는 노즐플레이트로부터 멀어지는 방향으로 경사지게 형성되고, 상기 공기유도부는 분산플레이트로부터 멀어지는 방향으로 볼록하게 굽어진 단면구조로 형성된다.In addition, the air dispersion portion is formed to be inclined away from the nozzle plate, the air induction portion is formed in a cross-sectional structure convexly curved in a direction away from the dispersion plate.
한편, 상기 분산플레이트의 플랜지부와 노즐플레이트의 플랜지부 사이에는 두 플랜지부를 이격시키는 스페이서가 설치되어 노즐플레이트의 플랜지부를 케이스의 내면으로부터 이격시키도록 구성된다.On the other hand, between the flange portion of the dispersion plate and the flange portion of the nozzle plate is provided with a spacer for separating the two flange portion is configured to space the flange portion of the nozzle plate from the inner surface of the case.
이때, 상기 스페이서는 볼트가 관통하도록 플랜지부에 형성된 홀의 주변부를 분산플레이트 방향으로 돌출되게 성형하여 스페이서를 노즐플레이트에 일체형으로 형성하는 것이 바람직하다.At this time, the spacer is preferably formed so as to integrally form the spacer on the nozzle plate by protruding the peripheral portion of the hole formed in the flange portion so as to penetrate in the direction of the dispersion plate.
또한, 상기 공기분산부는 유닛 케이스의 내부로 유입되는 공기와 마주한 채로 유닛 케이스의 길이방향으로 연장된 구조를 가지며, 밑단은 유닛 케이스의 내측 바닥면으로부터 이격되게 설치되되, 상기 밑단은 유닛 케이스에 형성된 공기 유입구에 가장 근접한 부분이 케이스의 내측 바닥면에 가장 근접하고, 상기 공기 유입구로부터 멀어질수록 유닛 케이스의 내측 바닥면으로부터 멀어지도록 경사지게 형성된다.In addition, the air dispersing unit has a structure extending in the longitudinal direction of the unit case facing the air flowing into the unit case, the bottom is installed spaced apart from the inner bottom surface of the unit case, the bottom is formed in the unit case The portion closest to the air inlet is closest to the inner bottom surface of the case, and is inclined away from the inner bottom surface of the unit case as it moves away from the air inlet.
한편, 상기 배출 덕트는, 케이스의 좌측면에 설치된 좌측 배출 덕트; 및 상기 좌측 배출 덕트와 대칭구조를 갖도록 케이스의 우측면에 설치된 우측 배출 덕트로 구성되며, 상기 좌측 배출 덕트와 우측 배출 덕트는 케이스의 외측에서 서로 연결되어 하나의 배출 덕트를 형성하도록 구성된다.On the other hand, the discharge duct, the left discharge duct provided on the left side of the case; And a right discharge duct installed on the right side of the case so as to have a symmetrical structure with the left discharge duct, wherein the left discharge duct and the right discharge duct are connected to each other at the outside of the case to form one discharge duct.
이때, 상기 케이스의 좌측면과 우측면에 각각 형성되어 좌측 배출 덕트와 우측 배출 덕트와 연결되는 배출구의 중심은 케이스의 내부에서 발생되는 와류의 선회축과 일치하도록 형성되는 것이 바람직하다.At this time, it is preferable that the centers of the outlets formed on the left and right sides of the case and connected to the left discharge duct and the right discharge duct, respectively, coincide with the pivot axis of the vortex generated inside the case.
또한 본 발명은, 상기 케이스의 후면의 길이는 전면의 길이 보다 길게 형성되며, 케이스의 전면과 후면이 비대칭구조로 형성되는 것이 바람직하다.In addition, the present invention, the length of the rear of the case is formed longer than the length of the front, it is preferable that the front and rear of the case is formed in an asymmetric structure.
또한 본 발명은, 상기 공기분사부로부터 케이스의 내면에 대한 접선 방향으로 분사되는 공기가 케이스의 후면으로부터 상면 그리고 상면으로부터 전면 방향으로 유동하도록 공기를 분사하여 케이스의 내부에서 발생되는 와류가 후면에서 상면을 거쳐 전면으로 이어지는 방향으로 선회하도록 구성된다.In another aspect, the present invention, the air injected in the direction tangential to the inner surface of the case from the air injection unit flows in such a way that the air flows from the rear of the case to the upper surface and from the upper surface to the front direction from the rear surface of the vortex generated inside the case It is configured to turn in the direction leading to the front via.
상기와 같은 특징을 갖는 본 발명에 의하면, 상기 케이스의 후면과 상면에 설치된 공기분사부에서 케이스의 내면에 접선 방향으로 분사되는 공기에 의해 발생되는 와류와, 분사되는 공기의 영향으로 발생되는 코안다 효과(Coanda effect)에 의한 흡인력으로 후드의 수직 하부 및 후드 주변의 오염된 공기를 함께 흡입하여 배출할 수 있는 효과가 있다.According to the present invention having the above characteristics, in the air injection unit installed on the rear and upper surface of the case is generated by the effect of the vortex generated by the air injected in the tangential direction to the inner surface of the case, and the air injected By the suction force by the Coanda effect, there is an effect of inhaling and discharging the contaminated air around the hood and the vertical lower portion of the hood.
또한, 기계적인 작동 구조가 없으므로, 제작하여 설치한 이후에는 특별한 유지보수가 필요하지 않아 사용에 안전하며 편리한 효과가 있다.In addition, there is no mechanical operation structure, there is no need for special maintenance after manufacturing and installation, there is a safe and convenient effect to use.
또한, 제철소, 주물공장, 석탄 화력발전소, 미곡 종합처리장, 시멘트 공장 등 대형 산업 현장에서 발생되는 분진이나 흄이 함유된 오염된 공기를 보다 효과적으로 흡입하여 작업장 외부로 배출할 수 있게 되어 오염된 작업장 내의 공기 환경을 개선할 수 있는 효과가 있다.In addition, it is possible to more effectively inhale contaminated air containing dust or fumes from large industrial sites such as steel mills, foundries, coal-fired power plants, rice mills, cement plants, etc. There is an effect to improve the air environment.
또한, 후드의 내면에 대한 접선 방향으로 공기를 분사하기 위한 구조를 유닛화하고, 유닛을 후드에 조립하는 것으로 공기 분사구조를 구성할 수 있도록 하여 후드의 제조가 용이하며, 공기가 분산되는 부분에 대한 유지보수작업을 보다 용이하게 실시할 수 있는 효과가 있다.In addition, by uniting the structure for injecting air in a direction tangential to the inner surface of the hood, and by assembling the unit to the hood it is possible to configure the air injection structure is easy to manufacture the hood, to the part where air is dispersed There is an effect that can be easily performed for the maintenance work.
도 1 은 본 발명의 제1 실시예에 따른 와류식 배출 후드의 구조를 보인 사시도,1 is a perspective view showing the structure of a vortex discharge hood according to a first embodiment of the present invention;
도 2 는 본 발명의 제1 실시예에 따른 와류식 배출 후드의 길이 방향 임의 위치에서 길이 방향과 직교하게 절단한 사시도,Figure 2 is a perspective view cut perpendicularly to the longitudinal direction at any position in the longitudinal direction of the vortex discharge hood according to the first embodiment of the present invention,
도 3 은 본 발명의 제1 실시예에 따른 공기분사부의 상세 구조를 보인 사시도,3 is a perspective view showing a detailed structure of an air injection unit according to a first embodiment of the present invention;
도 4 는 본 발명의 제2 실시예에 따른 와류식 배출 후드의 사시도,4 is a perspective view of a vortex discharge hood according to a second embodiment of the present invention;
도 5 는 본 발명의 제2 실시예에 따른 와류식 배출 후드의 측면도,5 is a side view of a vortex discharge hood according to a second embodiment of the present invention;
도 6 은 본 발명의 제2 실시예에 따른 와류식 배출 후드의 분해 사시도,6 is an exploded perspective view of a vortex discharge hood according to a second embodiment of the present invention;
도 7 은 본 발명에 따른 공기분사유닛의 구조를 보인 사시도,7 is a perspective view showing the structure of an air injection unit according to the present invention;
도 8 은 본 발명에 따른 공기분사유닛의 구조를 보인 분해 사시도,8 is an exploded perspective view showing a structure of an air injection unit according to the present invention;
도 9 는 본 발명에 따른 공기분사유닛의 구조를 보인 측면도,9 is a side view showing the structure of an air injection unit according to the present invention;
도 10 은 본 발명에 따른 공기분사유닛이 케이스에 설치된 상태를 보인 측면도,10 is a side view showing a state in which the air injection unit according to the present invention is installed in the case,
도 11 은 본 발명에 따른 노즐플레이트에 스페이서가 일체형으로 형성된 구조를 보인 단면도,11 is a cross-sectional view showing a structure in which a spacer is integrally formed on a nozzle plate according to the present invention;
도 12 는 본 발명의 제2 실시예에 따른 와류식 배출 후드의 작동시 공기 흐름을 보인 예시도.12 is an exemplary view showing the air flow during operation of the vortex discharge hood according to the second embodiment of the present invention.
(부호의 설명)(Explanation of the sign)
100: 케이스 200: 배출 덕트100: case 200: exhaust duct
210: 좌측 배출 덕트 220: 우측 배출 덕트210: left discharge duct 220: right discharge duct
300`: 공기분사부 300: 공기분사유닛300`: air injection unit 300: air injection unit
310: 유닛 케이스 311: 플랜지310: unit case 311: flange
312: 플랜지 313: 공기 유입구312: flange 313: air inlet
320: 분산플레이트 321: 플랜지부320: dispersion plate 321: flange portion
322: 공기분산부 323: 밑단322: air dispersion 323: hem
330: 노즐플레이트 331: 플랜지부330: nozzle plate 331: flange portion
332: 플랜지부 333: 공기유도부332: flange portion 333: air induction portion
334: 스페이서334: spacer
이하, 본 발명의 바람직한 실시예를 첨부된 도면과 연계하여 상세히 설명하면 다음과 같다. 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In describing the present invention, if it is determined that the detailed description of the related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
도 1은 본 발명의 제1 실시예에 따른 와류식 배출 후드의 구조를 보인 사시도를, 도 2는 본 발명의 제1 실시예에 따른 와류식 배출 후드의 길이 방향 임의 위치에서 길이 방향과 직교하게 절단한 사시도를, 도 3은 본 발명의 제1 실시예에 따른 공기분사부의 상세 구조를 보인 사시도를 도시하고 있다.1 is a perspective view showing the structure of the vortex discharge hood according to the first embodiment of the present invention, Figure 2 is perpendicular to the longitudinal direction at any position in the longitudinal direction of the vortex discharge hood according to the first embodiment of the present invention 3 is a perspective view illustrating the detailed structure of the air injection part according to the first embodiment of the present invention.
본 발명에 따른 와류식 배출 후드는 케이스의 후면과 상면에 설치된 공기분사부에서 케이스의 내면에 접선 방향으로 분사되는 공기에 의해 발생되는 와류와, 분사되는 공기의 영향으로 발생되는 코안다 효과(Coanda effect)에 의한 흡입력을 이용하여 후드의 하부 및 주변의 오염공기를 후드의 내부로 흡입하여 배출하도록 한 특징을 갖는 것으로, 케이스(100)와, 배출덕트(200)와, 공기분사부(300`)로 구성된다.The vortex discharge hood according to the present invention has a Coanda effect generated by the influence of the vortex generated by the air injected in the tangential direction to the inner surface of the case and the air injected from the air injection unit installed on the rear and top of the case (Coanda It is characterized in that the suction and discharge the contaminated air in the lower part and the surroundings of the hood by the suction force by the effect, the case 100, the discharge duct 200, and the air injection unit (300 '). It consists of
상기 케이스(100)는 전/후/좌/우 측면(101,102,103,104) 및 상면(105)은 폐쇄되고, 하면은 개방된 구조로 이루어진 함체로서, 상기 상면(105)은 아치형의 구조로 형성되어 있다.The case 100 is a front / back / left / right side surfaces 101, 102, 103, 104 and the upper surface 105 is closed, the lower surface is an open structure, the upper surface 105 is formed in an arcuate structure.
보다 구체적으로, 상기 케이스(100)의 상면(105)은 전면(101)과 후면(102)의 상단부를 상호 연결하도록 아치형 구조로 형성된다.More specifically, the upper surface 105 of the case 100 is formed in an arcuate structure to interconnect the upper ends of the front surface 101 and the rear surface 102.
이러한 케이스(100)의 상면(105)은 상방향으로 볼록하게 굽어진 구조를 구비함으로써, 케이스(100)의 내부로 분사되는 공기가 케이스(100)의 내면을 타고 유동하면서 와류를 발생시킬 수 있는 구조라면, 원형이나 타원형 또는 원형에 가까운 곡면 등 다양한 구조로 형성될 수 있다.The upper surface 105 of the case 100 has a convexly curved structure in the upward direction, and the air injected into the case 100 may flow on the inner surface of the case 100 to generate vortices. If it is a structure, it may be formed in a variety of structures, such as round, oval or curved near.
한편, 와류의 발생 효과를 향상시킬 수 있도록 케이스(100)의 후면(102)의 길이(L1)는 전면(101)의 길이(L2) 보다 길게 형성되며, 이에 따라 케이스(100)는 전면(101)과 후면(102)은 비대칭구조로 형성되고, 좌측면(103)과 우측면(104)은 대칭구조로 형성된다.On the other hand, the length L1 of the rear surface 102 of the case 100 is formed longer than the length L2 of the front surface 101 so as to improve the generation effect of the vortex, so that the case 100 is the front surface 101 ) And the back surface 102 are formed in an asymmetrical structure, the left surface 103 and the right surface 104 is formed in a symmetrical structure.
또한, 상기 케이스(100)의 좌측면(103)과 우측면(104)에는 배출 덕트(200)가 연결되어 오염 공기가 배출되는 배출구(103a,104a)가 각각 형성되어 있다. 이처럼 케이스(100)의 좌측면(103)과 우측면(104)에 각각 형성되는 두 배출구(103a,104a)의 중심은 케이스(100)의 내부에서 발생되는 와류의 선회축(s)과 일치하도록 형성되며, 이처럼 두 배출구(103a,104a)의 중심을 와류의 선회축(s)에 일치시키게 되면, 후술되는 좌측 배출 덕트와 우측 배출 덕트의 중심이 와류의 선회축(s)과 일치하게 됨으로써, 오염 공기의 배출을 보다 원활하게 유도할 수 있게 된다.In addition, discharge holes 103a and 104a through which the discharge duct 200 is connected to discharge the contaminated air are formed on the left side 103 and the right side 104 of the case 100, respectively. As such, the centers of the two outlets 103a and 104a respectively formed on the left side 103 and the right side 104 of the case 100 are formed to coincide with the pivot axis s of the vortex generated inside the case 100. When the centers of the two outlets 103a and 104a coincide with the swirl axis s of the vortex, the centers of the left discharge duct and the right discharge duct, which will be described later, coincide with the swirl axis s of the vortex, It is possible to induce the emission of air more smoothly.
또한, 상기 케이스(100)의 전면(101)과 후면(102)은 상면(105)으로부터 수직 하부방향으로 연장되는 구조로 형성될 수도 있고, 수직한 위치를 기준으로 소정의 기울기를 유지한 채 상면(105)으로부터 하부방향으로 연장되는 구조로 형성될 수도 있다.In addition, the front surface 101 and the rear surface 102 of the case 100 may be formed in a structure extending in the vertical downward direction from the upper surface 105, the upper surface while maintaining a predetermined slope relative to the vertical position It may be formed in a structure extending downward from the 105.
상기 배출 덕트(200)는 케이스(100)로부터 외부로 연장되게 설치되어 오염된 공기가 배출되는 유로를 형성하는 것으로, 좌측 배출 덕트(210)와 우측 배출 덕트(220)로 구성된다.The discharge duct 200 is installed to extend from the case 100 to form a flow path through which contaminated air is discharged, and includes a left discharge duct 210 and a right discharge duct 220.
상기 좌측 배출 덕트(210)는 케이스(100)의 좌측면(103)에 형성된 배출구(103a)에 연결되게 설치되고, 상기 우측 배출 덕트(220)는 케이스(100)의 우측면(104)에 형성된 배출구(104a)에 연결되게 설치되며, 이처럼 케이스(100)의 좌측면(103)과 우측면(104)에 각각 설치되는 좌측 배출 덕트(210)와 우측 배출 덕트(220)는 케이스(100)를 중심으로 상호 대칭 구조를 갖도록 설치된다.The left discharge duct 210 is installed to be connected to an outlet 103a formed on the left side 103 of the case 100, and the right discharge duct 220 is formed on the right side 104 of the case 100. The left discharge duct 210 and the right discharge duct 220 installed on the left side 103 and the right side 104 of the case 100, respectively, are installed to be connected to the 104 a. It is installed to have a mutually symmetrical structure.
비록 도시되지 않았지만, 상기 좌측 배출 덕트(210)와 우측 배출 덕트(220)의 토출측 끝단부에는 블로워와 같은 공지의 공기배출장치가 설치되어 배출 덕트를 통한 오염공기의 원활한 배출을 유도하게 된다.Although not shown, a known air discharge device such as a blower is installed at the discharge side ends of the left discharge duct 210 and the right discharge duct 220 to induce smooth discharge of contaminated air through the discharge duct.
상기 공기분사부(300`)는 케이스(100) 내면에 대한 접선 방향으로 공기를 분사하는 것으로, 상기 공기분사부(300`)로부터 분사되는 공기에 의해 케이스의 내부에는 수평한 선회축(s)을 중심으로 회전하는 와류가 발생되며, 분사되는 공기의 영향으로 발생되는 코안다 효과(Coanda effect)에 의한 흡입력이 발생된다.The air injection unit 300 ′ injects air in a tangential direction to the inner surface of the case 100, and has a horizontal pivot axis s inside the case by air injected from the air injection unit 300 ′. The vortices are rotated about and the suction force is generated by the Coanda effect generated by the effect of the injected air.
이러한 공기분사부(300`)는 후면(102)과 상면(105)에 각각 한 개 이상 형성되며, 공기분사부(300`)로부터 분사되는 공기가 케이스(100)의 후면(102) → 상면(105) → 전면(101)으로 이어지는 흐름을 형성하도록 구성된다.One or more air spraying units 300` are formed on the rear surface 102 and the upper surface 105, respectively, and the air injected from the air spraying unit 300` is disposed on the rear surface 102 of the case 100 → the upper surface ( 105) to form a flow leading to the front surface 101.
즉, 후면(102)에 형성되는 공기분사부(300`)는 후면(102)으로부터 상면(105)을 향하여 공기가 유동하도록 공기를 분사하고, 상면(105)에 형성되는 공기분사부(300`)는 상면(105)으로부터 전면(101)을 향하여 공기가 유동하도록 공기를 분사하게 된다.That is, the air spraying unit 300 ′ formed on the rear surface 102 injects air so that air flows from the rear surface 102 toward the upper surface 105, and the air spraying unit 300 ′ formed on the upper surface 105. ) Injects air so that air flows from the upper surface 105 toward the front surface 101.
참고로, 도 2에는 후면(102)에 하나의 공기분사부(300`)가 형성되고, 상면(105)에 두 개의 공기분사부(300`)가 형성된 구조가 도시되어 있다.For reference, FIG. 2 illustrates a structure in which one air injection unit 300 ′ is formed on the rear surface 102 and two air injection units 300 ′ are formed on the top surface 105.
한편, 각각의 공기분사부(300`)는 케이스(100)의 좌측면(103)에서 우측면(104)을 향하여 직선형으로 연장되는 구조로 형성되어 케이스(100)의 내면에 전체적으로 균일하게 공기를 분사하도록 구성된다.On the other hand, each of the air injection unit 300` is formed in a structure extending in a straight line toward the right side 104 from the left side 103 of the case 100 to inject air uniformly throughout the inner surface of the case 100 Is configured to.
한편, 각각의 공기분사부(300`)는 공지의 수축확산노즐의 구조를 형성하도록 구성된다.On the other hand, each air injection unit 300` is configured to form a structure of a known shrinkage diffusion nozzle.
보다 구체적으로, 각각의 공기분사부(300`)는 케이스(100)에 형성된 노즐 입구(111)와, 상기 노즐 입구(111)를 통해 유입되는 공기를 케이스(100)의 내부로 유도하도록 상기 노즐 입구(111)로부터 케이스(100)의 내부로 연장되게 설치되되, 노즐 입구(111)를 통해 유입되는 공기의 압력 상승을 유도하는 노즐 수축부(1121)와, 상기 노즐 수축부(1121)의 말단으로부터 유로의 단면적을 점차적으로 증가시켜 공기의 압력은 낮추고 속도는 증가시키는 노즐 확산부(1122)를 형성하는 안내부재(112)로 구성된다.More specifically, each air injection unit 300 ′ has a nozzle inlet 111 formed in the case 100 and the nozzle to guide the air introduced through the nozzle inlet 111 into the case 100. It is installed to extend from the inlet 111 into the case 100, the nozzle contraction portion 1121 to induce a pressure increase of the air flowing through the nozzle inlet 111, and the end of the nozzle contraction portion 1121 It is composed of a guide member 112 to form a nozzle diffusion portion 1122 to gradually increase the cross-sectional area of the flow path from the air pressure to lower the pressure.
이러한 노즐 입구(111)와 안내부재(112)로 구성되는 공기분사부(300`)는 미도시된 별도의 공기 공급 장치와 연결되며, 공기 공급 장치로부터 노즐 입구(111)를 통해 유입되는 공기가 노즐 수축부(1121)를 통과하는 과정에서 압력이 높아지며, 노즐 수축부(1121)와 노즐 확산부(1122)의 경계부분인 노즐 목(1123)을 지나 노즐 확산부(1122)를 통과할 때에는 공기 압력이 낮아져 결국 공기분사부(300`)로부터 배출되는 공기 속도가 증가하는 특성을 갖게 된다. 이러한 수축확산노즐의 원리는 이미 널리 알려진 원리이므로, 보다 상세한 설명은 생략하도록 한다.The air injection unit 300` composed of the nozzle inlet 111 and the guide member 112 is connected to a separate air supply device, not shown, and the air introduced through the nozzle inlet 111 from the air supply device is The pressure is increased in the process of passing through the nozzle contraction portion 1121, and when passing through the nozzle diffuser 1122 through the nozzle neck 1123, which is a boundary between the nozzle contraction portion 1121 and the nozzle diffuser 1122, air is released. As the pressure is lowered, the air velocity discharged from the air injection unit 300` is increased. Since the principle of the shrinkage diffusion nozzle is a widely known principle, more detailed description will be omitted.
도 4는 본 발명의 제2 실시예에 따른 와류식 배출 후드의 사시도를, 도 5는 본 발명의 제2 실시예에 따른 와류식 배출 후드의 측면도를, 도 6은 본 발명의 제2 실시예에 따른 와류식 배출 후드의 분해 사시도를 도시하고 있다.4 is a perspective view of a vortex discharge hood according to a second embodiment of the present invention, FIG. 5 is a side view of a vortex discharge hood according to a second embodiment of the present invention, and FIG. 6 is a second embodiment of the present invention. The exploded perspective view of the vortex discharge hood according to the present invention is shown.
본 발명의 제2 실시예에 따른 와류식 배출 후드도 앞서 설명된 제1 실시예에 따른 와류식 배출 후드와 마찬가지로 케이스의 후면과 상면에 설치된 공기분사부에서 케이스의 내면에 접선 방향으로 분사되는 공기에 의해 발생되는 와류와, 분사되는 공기의 영향으로 발생되는 코안다 효과(Coanda effect)에 의한 흡입력을 이용하여 오염 공기를 후드의 내부로 흡입하여 배출하도록 한 특징을 갖는 것으로, 케이스(100)와, 배출 덕트(200)와, 공기분사부(300`)로 구성된다.Like the vortex discharge hood according to the first embodiment described above, the vortex discharge hood according to the second embodiment of the present invention also has air injected in a tangential direction to the inner surface of the case from an air injection unit installed at the rear and top of the case. It is characterized in that the suction and discharge the contaminated air into the hood by using the suction force caused by the vortex generated by the air, and the Coanda effect (Coanda effect) generated by the effect of the injected air, the case 100 and , The exhaust duct 200, and the air injection unit 300 ′.
상기 케이스(100)는 제1 실시예의 케이스(100)와 동일한 구조로 구성되는 바, 케이스(100)에 대한 상세한 설명을 생략하도록 하며, 동일한 도면 부호를 사용하도록 한다.The case 100 has the same structure as that of the case 100 of the first embodiment, and thus the detailed description of the case 100 is omitted, and the same reference numerals are used.
상기 배출 덕트(200)는 제1 실시예의 배출 덕트(200)와 마찬가지로 케이스(100)의 좌측면(103)과 우측면(104)에 각각 형성된 배출구(103a,104a)에 각각 연결되게 설치되는 좌측 배출 덕트(210)와 우측 배출 덕트(220)로 구성되며, 좌측 배출 덕트(210)와 우측 배출 덕트(220)의 기본적인 구조를 제1 실시예의 좌측 배출 덕트(210) 및 우측 배출 덕트(220)와 동일하므로, 기본적인 구조에 대한 설명은 생략하며, 동일한 도면 부호를 사용하도록 한다.The discharge duct 200 is discharged to the left side, which is installed to be connected to the discharge ports 103a and 104a respectively formed on the left side 103 and the right side 104 of the case 100, similarly to the discharge duct 200 of the first embodiment. Comprising a duct 210 and a right discharge duct 220, the basic structure of the left discharge duct 210 and the right discharge duct 220 and the left discharge duct 210 and the right discharge duct 220 of the first embodiment and Since it is the same, a description of the basic structure is omitted, and the same reference numerals are used.
다만, 제2 실시예에 따른 좌측 배출 덕트(210)와 우측 배출 덕트(220)는 케이스(100)의 외측에서 서로 연결되어 하나의 배출 덕트를 형성하면서 외부로 연장되며, 이러한 배출 덕트(200)에는 배출 덕트(200)를 통하여 오염된 공기가 원활하게 배출될 수 있도록 유도하는 공기배출장치가 설치된다. 여기서 상기 공기배출장치는 공지의 블로워로 구성될 수 있으며, 이러한 공기배출장치는 이미 널리 사용되고 있는 바, 공기배출장치에 대한 도시 및 상세한 설명은 생략하도록 한다.However, the left discharge duct 210 and the right discharge duct 220 according to the second embodiment is connected to each other on the outside of the case 100 and extends to the outside while forming one discharge duct, such discharge duct 200 An air discharge device is installed to guide the polluted air to be smoothly discharged through the discharge duct 200. Here, the air discharge device may be composed of a known blower, and this air discharge device is already widely used, so that the illustration and detailed description of the air discharge device will be omitted.
물론, 상기 좌측 배출 덕트(210)와 우측 배출 덕트(220)가 연결되도록 케이스(100)의 좌측면(103)과 우측면(104)에 각각 형성된 배출구(103a,104a)의 중심은 케이스(100)의 내부에서 발생되는 와류의 선회축(s)과 일치하도록 형성된다.Of course, the centers of the outlets 103a and 104a respectively formed on the left side 103 and the right side 104 of the case 100 to connect the left discharge duct 210 and the right discharge duct 220 are the case 100. It is formed to coincide with the pivot axis (s) of the vortex generated inside the.
상기 공기분사부(300`)는 케이스(100)의 후면(102)과 상면(105)에 각각 한 개 이상 설치되어 케이스의 내면에 대한 접선 방향으로 공기를 분사하는 것으로, 제1 실시예의 공기분사부(300`)와 그 기능이 동일하다.At least one air spraying unit 300 ′ is installed at each of the rear surface 102 and the upper surface 105 of the case 100 to inject air in a tangential direction to the inner surface of the case. Master 300 'and the function is the same.
다만, 본 발명의 제2 실시예에 따른 공기분사부(300`)는 별도 제작된 공기분사유닛(300)을 케이스(100)에 조립하여 장착하는 것으로 구성된다.However, the air spray unit 300 ′ according to the second embodiment of the present invention is configured to assemble and mount the separately manufactured air spray unit 300 to the case 100.
도 7은 본 발명에 따른 공기분사유닛의 구조를 보인 사시도를, 도 8은 본 발명에 따른 공기분사유닛의 구조를 보인 분해 사시도를, 도 9는 본 발명에 따른 공기분사유닛의 구조를 보인 측면도를, 도 10은 본 발명에 따른 공기분사유닛이 케이스에 설치된 상태를 보인 측면도를, 도 11은 본 발명에 따른 노즐플레이트에 스페이서가 일체형으로 형성된 구조를 보인 단면도를 도시하고 있다.7 is a perspective view showing the structure of the air injection unit according to the invention, Figure 8 is an exploded perspective view showing the structure of the air injection unit according to the invention, Figure 9 is a side view showing the structure of the air injection unit according to the present invention 10 is a side view showing a state in which an air spray unit according to the present invention is installed in a case, and FIG. 11 is a sectional view showing a structure in which a spacer is integrally formed on a nozzle plate according to the present invention.
상기 공기분사유닛(300)은 유닛 케이스(310)와, 분산플레이트(320)와, 노즐플레이트(330)로 구성된다.The air injection unit 300 is composed of a unit case 310, a dispersion plate 320, and a nozzle plate 330.
상기 유닛 케이스(310)는 케이스(100)에 조립되며, 외부의 공기 공급원과 연결되어 공기 공급원으로부터 제공되는 공기를 공급받아 케이스(100)의 내부로 분사할 수 있도록 하는 것이다. 참고로 상기 외부의 공기 공급원은 공지의 블로워나 컴프레서로 구성될 수 있다.The unit case 310 is assembled to the case 100 and is connected to an external air supply source to receive air provided from the air supply source and to spray the inside of the case 100. For reference, the external air source may be composed of a known blower or a compressor.
한편, 상기 유닛 케이스(310)는 공기 공급원으로부터 공급되는 공기를 내부에 일시적으로 체류시키면서 분산시킬 수 있도록 하는 챔버를 형성하도록 전체적으로 폐쇄된 다각형 또는 원통형의 함체로 형성되되, 케이스(100)의 내측 방향에 위치한 일측면(310a)이 개방된 구조로 형성되며, 상기 개방된 일측면(310a)은 후술될 노즐플레이트(330)에 의해 폐쇄된다.On the other hand, the unit case 310 is formed of a polygonal or cylindrical enclosure that is entirely closed to form a chamber to disperse the air supplied from the air source while temporarily staying therein, the inner direction of the case 100 The one side 310a positioned at is formed in an open structure, and the open one side 310a is closed by the nozzle plate 330 to be described later.
한편, 개방된 일측면(310a)의 양측에는 케이스(100)와의 조립을 위한 플랜지(311,312)가 형성되고, 이러한 플랜지(311,312)는 케이스(100)의 내면에 밀착된 채로 볼트 체결에 의하여 케이스(100)에 고정된다.Meanwhile, flanges 311 and 312 for assembling with the case 100 are formed at both sides of the open side surface 310a, and the flanges 311 and 312 are held in close contact with the inner surface of the case 100 by bolts. 100).
이와 같은 구조의 유닛 케이스(310)는 케이스(100)의 내측 방향에서 케이스(100)의 후면(102)이나 상면(105)에 형성된 설치홀(102a,105a:도 6에 도시됨)에 삽입되도록 배치되며, 이러한 과정에서 플랜지(311,312)가 케이스(100)의 내면에 밀착되면, 유닛 케이스(310)의 플랜지(311,312)를 케이스(100)에 볼트로써 체결함으로써 케이스(100)와의 조립이 이루어지게 된다.The unit case 310 having such a structure is inserted into the installation holes 102a and 105a (shown in FIG. 6) formed in the rear surface 102 or the upper surface 105 of the case 100 in the inward direction of the case 100. When the flanges 311 and 312 are in close contact with the inner surface of the case 100 in this process, the flanges 311 and 312 of the unit case 310 are fastened to the case 100 by bolts to be assembled with the case 100. do.
한편, 상기 유닛 케이스(310)에는 공기 공급원과 호스 또는 파이프를 매개로 연결되는 공기 유입구(313)가 소정 위치에 형성되어 있다.Meanwhile, the unit case 310 has an air inlet 313 connected to an air supply source and a hose or pipe at a predetermined position.
상기 분산플레이트(320)는 공기 유입구(313)를 통하여 유닛 케이스(310)의 내부로 유입되는 공기를 유닛 케이스(310)의 내부에서 분산시키는 것으로, 플랜지부(321)와 공기분산부(322)로 구성된다.The dispersion plate 320 disperses air introduced into the unit case 310 through the air inlet 313 in the unit case 310, and the flange portion 321 and the air dispersion portion 322. It consists of.
상기 플랜지부(321)는 유닛 케이스(310)에 고정되는 부분으로, 유닛 케이스(310)의 플랜지(311)를 케이스(100)에 조립하는 볼트에 의하여 유닛 케이스(310)와 함께 케이스(100)에 고정된다.The flange part 321 is a part fixed to the unit case 310, and the case 100 together with the unit case 310 by bolts for assembling the flange 311 of the unit case 310 to the case 100. Is fixed to.
상기 공기분산부(322)는 플랜지부(321)로부터 유닛 케이스(310)의 내부로 연장되게 형성되되, 공기 유입구(313)를 통하여 유닛 케이스(310)의 내부로 유입되는 공기와 마주하도록 형성된다.The air dispersing portion 322 is formed to extend into the unit case 310 from the flange portion 321, and is formed to face the air flowing into the unit case 310 through the air inlet 313. .
이러한 공기분산부(322)는 유닛 케이스(310)의 길이방향으로 연장되는 구조로 형성되어 공기 유입구(313)로부터 유입되는 공기를 유닛 케이스(310)의 길이방향으로 분산시키는 기능을 갖는다.The air dispersion unit 322 is formed in a structure extending in the longitudinal direction of the unit case 310 and has a function of dispersing air introduced from the air inlet 313 in the longitudinal direction of the unit case 310.
한편, 상기와 같은 공기분산부(322)의 밑단(323)은 유닛 케이스(310)의 내측 바닥면(310b)으로부터 이격되어 공기분산부(322)에 의하여 분산되는 공기가 유닛 케이스(310)와 노즐플레이트(330)의 사이에 형성되는 노즐구조(N)측으로 유동하는 공간을 형성하도록 구성되며, 이때 상기 공기분산부(322)의 밑단(323)은 케이스(100)에 형성된 공기 유입구(313)에 가장 근접한 부분(323a)이 유닛 케이스(310)의 내측 바닥면(310b)에 가장 근접하고, 상기 공기 유입구(313)로부터 멀어질수록 케이스(100)의 내측 바닥면(310b)으로부터 멀어지도록 경사지게 형성된다.On the other hand, the bottom end 323 of the air dispersion unit 322 as described above is spaced apart from the inner bottom surface 310b of the unit case 310 and the air dispersed by the air dispersion unit 322 and the unit case 310 It is configured to form a space flowing to the nozzle structure (N) side formed between the nozzle plate 330, wherein the bottom 323 of the air dispersing portion 322 is an air inlet 313 formed in the case 100 The portion 323a closest to the closest to the inner bottom surface 310b of the unit case 310 is inclined away from the inner bottom surface 310b of the case 100 as it moves away from the air inlet 313. Is formed.
이러한 구조에 따르면, 공기분산부(322)의 밑단(323)과 유닛 케이스(310) 내측 바닥면(310b)과의 거리는 공기 유입구(313)와 상기 밑단(323)과의 거리에 비례하여 증가하게 되므로, 결국 공기 유입구(313)로부터 멀어질수록 공기의 유동저항을 감소시켜 공기분산부(322)의 하부를 통하여 노즐구조(N)측으로 유동하는 공기량을 전체적으로 균일하게 유지할 수 있게 된다.According to this structure, the distance between the bottom 323 of the air dispersing unit 322 and the inner bottom surface 310b of the unit case 310 is increased in proportion to the distance between the air inlet 313 and the bottom 323. As a result, as the distance from the air inlet 313 increases, the flow resistance of the air decreases, so that the amount of air flowing toward the nozzle structure N through the lower portion of the air dispersing unit 322 can be maintained to be uniform throughout.
상기 노즐플레이트(330)는 유닛 케이스(310)의 개방된 측면(310a)을 폐쇄하도록 설치되되, 일부분이 유닛 케이스(310)로부터 이격되어 유닛 케이스(310)의 내부로 유입된 공기를 케이스(100)의 내면에 대한 접선방향으로 분사하는 노즐구조(N)를 형성하는 것이다.The nozzle plate 330 is installed to close the open side 310a of the unit case 310, and a part of the case is spaced apart from the unit case 310 to receive air introduced into the unit case 310 into the case 100. It is to form a nozzle structure (N) for spraying in the tangential direction to the inner surface of the).
이러한 노즐플레이트(330)는 플랜지부(331,332)와 공기유도부(333)로 구성된다.The nozzle plate 330 is composed of a flange portion (331,332) and the air induction portion 333.
상기 플랜지부(331,332)는 노즐플레이트(330)의 상단부와 하단부에 각각 형성된 부분으로, 유닛 케이스(310)의 플랜지(331,332)를 케이스(100)에 조립하는 볼트에 의하여 케이스(100)에 고정되는 구조를 갖는다.The flanges 331 and 332 are formed at the upper and lower ends of the nozzle plate 330, respectively, and are fixed to the case 100 by bolts for assembling the flanges 331 and 332 of the unit case 310 to the case 100. Has a structure.
한편, 상기 두 플랜지부(331,332) 중 노즐플레이트(330)의 상단부에 위치한 플랜지부(331)는 유닛 케이스(310)로부터 이격되게 설치되어 유닛 케이스(310)의 내부로 유입되는 공기가 케이스(100)이 내면에 대한 접선방향으로 분사되는 노즐구조(N)를 형성하게 된다.On the other hand, the two flanges 331, 332 of the flange portion 331 located on the upper end of the nozzle plate 330 is installed to be spaced apart from the unit case 310, the air flowing into the unit case 310 is the case 100 ) Forms a nozzle structure (N) which is sprayed in a direction tangential to the inner surface.
이처럼 상기 플랜지부(331)가 유닛 케이스(310)로부터 이격되도록 하기 위하여 플랜지부(321)와 유닛 케이스(310)의 사이에는 스페이서가 설치되며, 보다 구체적으로는 노즐플레이트(330)와 분산플레이트(320)의 플랜지부(321) 사이에 스페이서가 설치된다.In this way, a spacer is installed between the flange portion 321 and the unit case 310 so that the flange portion 331 is spaced apart from the unit case 310, and more specifically, the nozzle plate 330 and the dispersion plate ( Spacers are installed between the flange portions 321 of the 320.
한편, 상기 스페이서는 링형상으로 별도 제작된 스페이서를 두 플랜지부(331,321)의 사이에 배치한 상태에서 공기분사유닛(300)을 케이스(100)에 체결하기 위한 볼트가 상기 스페이서를 관통하도록 체결방식으로 구성될 수도 있으며, 상기 플랜지부(331)에 형성되어 볼트가 관통하는 홀(331a)의 주변부를 분산플레이트(320) 방향으로 돌출되게 성형하여 스페이서(334)를 노즐플레이트(330)와 일체형으로 구성하게 되면, 공기분사유닛(300)의 구조를 보다 단순화할 수 있는 이점이 있다.On the other hand, the spacer is a fastening method so that a bolt for fastening the air injection unit 300 to the case 100 in a state in which a spacer separately prepared in a ring shape is disposed between two flange portions 331 and 321 through the spacer. The spacer 334 may be integrally formed with the nozzle plate 330 by molding the peripheral portion of the hole 331a through which the bolt penetrates to protrude in the direction of the dispersion plate 320. When configured, there is an advantage that can simplify the structure of the air injection unit 300 more.
상기 공기유도부(333)는 노즐플레이트(330)의 상단부와 하단부에 형성된 두 플랜지부(331,332)를 연결하여 공기를 노즐구조(N)측으로 유도하는 것이다.The air induction part 333 connects two flange parts 331 and 332 formed at the upper end and the lower end of the nozzle plate 330 to induce air to the nozzle structure (N) side.
한편, 공기분산부(322)의 하단부를 통하여 공기분산부(322)와 노즐플레이트(330) 사이의 공간으로 유입된 후, 노즐플레이트(330)에 의해 형성된 노즐구조(N)를 통하여 케이스(100)의 내부로 분사되는 공기의 유속을 증가시키기 위하여 상기 공기유도부(333)와 공기분산부(322)는 공기가 유동하는 공간의 면적이 점차적으로 감소하도록 형성된다.On the other hand, after flowing into the space between the air dispersing portion 322 and the nozzle plate 330 through the lower end of the air dispersing portion 322, the case 100 through the nozzle structure (N) formed by the nozzle plate 330 In order to increase the flow rate of the air injected into the inside of the air induction unit 333 and the air dispersion unit 322 is formed so that the area of the space in which air flows gradually decreases.
보다 구체적으로, 상기 공기유도부(333)는 상단부의 플랜지부(331)와 하단부의 플랜지부(332)를 연결하되, 분산플레이트(320)로부터 멀어지는 방향으로 볼록하게 굽어진 단면구조로 형성되고, 상기 공기분산부(322)는 노즐플레이트(330)로부터 멀어지는 방향으로 경사지게 형성된다.More specifically, the air induction part 333 is connected to the flange portion 331 of the upper end and the flange portion 332 of the lower end, but is formed in a cross-sectional structure bent convex in the direction away from the dispersion plate 320, The air dispersion unit 322 is formed to be inclined in a direction away from the nozzle plate 330.
이러한 구조의 공기유도부(333)와 공기분산부(322)에 의하면, 공기유도부(333)와 공기분산부(322)의 사이 공간으로 유입되는 공기는 점차적으로 좁아지는 공간에 의하여 노즐구조(N)측으로 유입되는 과정에서 압력이 증가되어 노즐구조(N)로 토출되는 공기의 속도가 증가하게 된다.According to the air induction part 333 and the air dispersing part 322 of this structure, the air flowing into the space between the air induction part 333 and the air dispersing part 322 is gradually narrowed by the nozzle structure (N) The pressure is increased in the process flowing into the side to increase the speed of the air discharged to the nozzle structure (N).
상기와 같이 구성된 본 발명의 와류식 배출 후드가 갖는 작용효과에 대해 설명하도록 한다.It will be described for the effect of the vortex discharge hood of the present invention configured as described above.
본 발명에 따른 와류식 배출 후드는 공지의 후드와 마찬가지로 오염된 공기의 배출이 요구되는 장소에 설치되며, 배출 덕트(200)의 말단에는 오염된 공기의 원활한 배출을 유도하기 위한 블로워와 같은 공기배출장치가 설치되고, 공기분사유닛(300)은 현장에 구비되어 있는 블로워 또는 컴프레서와 같은 공기 공급원과 연결된다.Vortex type exhaust hood according to the present invention is installed in a place where the discharge of contaminated air, like a known hood, is discharged at the end of the discharge duct 200, such as a blower for inducing a smooth discharge of the contaminated air The apparatus is installed, and the air injection unit 300 is connected to an air source such as a blower or a compressor provided at the site.
도 12는 본 발명의 제2 실시예에 따른 와류식 배출 후드의 작동시 공기 흐름을 보인 예시도를 도시하고 있다.Figure 12 shows an exemplary view showing the air flow during the operation of the vortex discharge hood according to the second embodiment of the present invention.
본 발명의 와류식 배출 후드는 공기배출장치의 가동으로 인하여 후드 내에 형성되는 부압과, 공기분사부(300`)으로부터 후드 내면의 접선 방향으로 분사되는 공기에 의해 발생되는 와류와, 분사 공기에 의한 코안다 효과에 의하여 후드의 입구 측 즉, 케이스(100)의 전면과 하면의 개방 공간과, 케이스 외단의 전체 둘레 주변에 강한 흡입력이 발생된다. 이러한 흡입력에 의하여 후드 하부의 오염된 공기뿐만 아니라, 후드 주변의 오염된 공기도 원활하게 흡입하여 배출할 수 있게 된다.The vortex type discharge hood of the present invention is formed by the negative pressure formed in the hood due to the operation of the air discharge device, the vortex generated by the air injected in the tangential direction of the inner surface of the hood from the air injector 300 ', and the jet air. By the Coanda effect, a strong suction force is generated around the inlet side of the hood, that is, the front space and the bottom surface of the case 100 and around the entire circumference of the case outer end. By this suction force, not only the contaminated air in the lower part of the hood, but also the contaminated air around the hood can be smoothly sucked out and discharged.
보다 구체적으로, 케이스(100)에 형성된 다수개의 공기분사부(300`)에서 분사되는 공기는 케이스(100)의 내면에 대한 접선 방향으로 분사되며, 더불어 후면(102)로부터 상면(105)을 거쳐 전면(101)으로 이어지는 흐름을 형성하도록 분사된다.More specifically, the air injected from the plurality of air injection units 300 ′ formed in the case 100 is sprayed in a tangential direction to the inner surface of the case 100, and also from the rear surface 102 to the upper surface 105. Sprayed to form a flow leading to the front surface 101.
이처럼 공기분사부(300`)에서 분사되는 공기의 흐름에 의하여 케이스(100)의 내부에는 후면(102)에서 상면(105)을 거쳐 전면(101)로 이어지는 방향으로 선회하는 와류가 발생된다.As described above, the vortices that rotate in the direction from the rear surface 102 to the front surface 101 through the upper surface 105 are generated inside the case 100 by the flow of air injected from the air injection unit 300 ′.
이처럼 발생된 와류의 선회에 따른 흡입력과, 공기배출장치의 가동에 의해 발생되는 부압, 그리고 공기분사부(300`)에서 분사되는 공기의 영향으로 발생되는 코안다 효과에 의하여 후드 내부 공간의 공기와 후드 외부 공간의 공기가 함께 흡입되어 배출되는 현상이 발생하게 된다.The air and the air inside the hood are caused by the effects of the suction force generated by the swirling, the negative pressure generated by the operation of the air discharge device, and the Coanda effect generated by the air injected from the air injection unit 300`. The air in the space outside the hood is sucked together and discharged.
한편, 각각의 공기분사부(300`)을 통해 분사되는 공기의 양과 분사속도는 와류 발생이 효율적으로 유발되도록 케이스(100)에 설치되는 공기분사부(300`)의 위치나 개수에 따라 달라질 수 있다.On the other hand, the amount and the injection speed of the air injected through each air injection unit 300` may vary depending on the position or number of the air injection unit 300` installed in the case 100 so that the vortex generation is efficiently induced have.
한편, 와류식 배출 후드가 설치된 작업장의 환경에 따라 제한된 크기 이상의 큰 이물질이 후드 내부로 유입되는 것을 방지하기 위한 이물질 유입방지 격자망이 케이스(100)의 하단부에 더 설치될 수도 있다.On the other hand, according to the environment of the workplace installed with the vortex discharge hood may be further installed in the lower end of the case 100, foreign matter inflow prevention grid to prevent the foreign matter larger than a limited size flow into the hood.
한편, 본 발명의 제2 실시예에 따른 와류식 배출 후드의 경우, 케이스(100)의 내면에 대한 접선방향으로 공기를 분사하여 와류의 발생을 유도하는 공기분사부(300`)를 케이스(100)에 구성함에 있어서, 공기분사유닛(300)을 케이스(100)에 추가적으로 설치하는 방식으로 공기분사부(300`)를 손쉽게 구성할 수 있으며, 공기분사유닛(300)만을 손쉽게 교체할 수 있는 이점이 있다.On the other hand, in the case of the vortex discharge hood according to the second embodiment of the present invention, by injecting air in a tangential direction to the inner surface of the case 100 to the air injection unit 300` to induce the generation of vortex case 100 In the configuration), the air injection unit 300 can be easily configured by additionally installing the air injection unit 300 in the case 100, and can easily replace only the air injection unit 300. There is this.
본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

Claims (12)

  1. 전/후/좌/우 측면(101,102,103,104) 및 상면(105)은 폐쇄되고, 하면은 개방된 구조로 이루어지되, 상면(105)은 아치형의 구조로 형성된 케이스(100);Before / after / left / right side (101, 102, 103, 104) and the upper surface 105 is closed, the lower surface is made of an open structure, the upper surface 105 is formed of an arcuate structure (100);
    상기 케이스(100)의 좌측면(103)과 우측면(104)에 각각 설치되어 케이스(100)의 내부로 유입된 공기가 배출되는 유로를 형성하는 배출 덕트(200); 및A discharge duct 200 installed on each of the left side 103 and the right side 104 of the case 100 to form a flow path through which air introduced into the case 100 is discharged; And
    상기 케이스(100)의 후면(102)과 상면(105)에 각각 한 개 이상 설치되어 케이스(100)의 내면에 대한 접선 방향으로 공기를 분사하여 케이스(100)의 내부에 수평한 선회축을 중심으로 회전하는 와류를 발생시키는 다수 개의 공기분사부(300`)로 구성된 것을 특징으로 하는 와류식 배출 후드.At least one is installed on the rear surface 102 and the upper surface 105 of the case 100 to inject air in a tangential direction with respect to the inner surface of the case 100 to center the horizontal pivot axis inside the case 100. Vortex discharge hood, characterized in that consisting of a plurality of air injection unit 300` generating a vortex to rotate.
  2. 청구항 1에 있어서, 상기 공기분사부(300`)는,The method according to claim 1, wherein the air injection unit 300`,
    상기 케이스(100)에 형성된 설치홀(102a)에 조립되며, 외부의 공기 공급원과 연결되어 공기 공급원으로부터 공급되는 공기를 케이스(100)의 내면에 대한 접선 방향으로 분사하는 공기분사유닛(300)으로 구성된 것을 특징으로 하는 와류식 배출 후드.Assembled in the installation hole (102a) formed in the case 100, connected to the external air supply source to the air injection unit 300 for injecting air supplied from the air source in a tangential direction to the inner surface of the case 100 Vortex exhaust hood, characterized in that configured.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 공기분사유닛(300)은,The air injection unit 300,
    상기 설치홀(102a)의 주변에 밀착된 채로 볼트에 의하여 케이스(100)에 조립되는 플랜지(311,312)를 구비하며, 공기 공급원과 연결되어 공기 공급원으로부터 공급되는 공기가 유입되는 챔버를 형성하되, 케이스(100)의 내측 방향에 위치한 측면(310a)이 개방된 구조로 형성된 유닛 케이스(310);Flanges 311 and 312 assembled to the case 100 by bolts while being in close contact with the periphery of the installation hole 102a, and are connected to an air source to form a chamber into which air supplied from the air source is introduced. A unit case 310 having a side structure 310a positioned in an inner direction of the open portion 100;
    상기 유닛 케이스(310)에 설치되어 유닛 케이스(310)의 내부로 유입되는 공기를 케이스(100)의 내부에서 분산시키는 분산플레이트(320); 및A dispersion plate 320 installed in the unit case 310 to disperse air introduced into the unit case 310 in the case 100; And
    상기 유닛 케이스(310)의 개방된 측면(310a)을 폐쇄하도록 설치되되, 일부분이 유닛 케이스(310)로부터 이격되어 유닛 케이스(310)의 내부로 유입된 공기를 케이스(100)의 내면에 대한 접선 방향으로 분사하는 노즐구조(N)를 형성하는 노즐플레이트(330)로 구성된 것을 특징으로 하는 와류식 배출 후드.It is installed to close the open side 310a of the unit case 310, a portion of the air spaced apart from the unit case 310 tangential to the inner surface of the case 100, the air introduced into the unit case 310 Vortex discharge hood, characterized in that consisting of a nozzle plate 330 to form a nozzle structure (N) for spraying in the direction.
  4. 청구항 3에 있어서,The method according to claim 3,
    상기 분산플레이트(320)는, 상기 유닛 케이스(310)의 플랜지(311)를 케이스(100)에 조립하는 볼트에 의하여 케이스(100)에 고정되는 플랜지부(321)와, 상기 플랜지부(321)로부터 유닛 케이스(310)의 내부로 연장되게 형성되어 공기를 분산시키는 공기분산부(322)로 구성되고,The dispersion plate 320 includes a flange portion 321 fixed to the case 100 by bolts for assembling the flange 311 of the unit case 310 to the case 100, and the flange portion 321. Is formed to extend from the inside of the unit case 310 to the air dispersion unit 322 for dispersing air,
    상기 노즐플레이트(330)는, 상기 유닛 케이스(310)의 플랜지(311,312)를 케이스(100)에 조립하는 볼트에 의하여 케이스(100)에 고정되는 플랜지부(331,332)가 상단부와 하단부에 각각 형성되고, 두 플랜지부(331,332) 사이에는 공기분산부(322)를 거친 공기를 노즐구조(N)로 유도하는 공기유도부(333)가 형성된 것으로 구성된 것을 특징으로 하는 와류식 배출 후드.The nozzle plate 330 has flanges 331 and 332 which are fixed to the case 100 by bolts for assembling the flanges 311 and 312 of the unit case 310 to the case 100, respectively. , Vortex discharge hood, characterized in that the air induction portion 333 is formed between the two flange portions 331,332 to guide the air passing through the air dispersing portion 322 to the nozzle structure (N).
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 공기분산부(322)는 노즐플레이트(330)로부터 멀어지는 방향으로 경사지게 형성되고,The air dispersion unit 322 is formed to be inclined away from the nozzle plate 330,
    상기 공기유도부(333)는 분산플레이트(320)로부터 멀어지는 방향으로 볼록하게 굽어진 단면구조로 형성된 것을 특징으로 하는 와류식 배출 후드.The air induction part 333 is a vortex discharge hood, characterized in that formed in a cross-sectional convex curved convex direction away from the dispersion plate (320).
  6. 청구항 4에 있어서,The method according to claim 4,
    상기 분산플레이트(320)의 플랜지부(321)와 노즐플레이트(330)의 플랜지부(331) 사이에는 두 플랜지부(321,331)를 이격시키는 스페이서(334)가 설치되어 노즐플레이트(330)의 플랜지부(331)를 케이스(100)의 내면으로부터 이격시키는 것을 특징으로 하는 와류식 배출 후드.Between the flange portion 321 of the dispersion plate 320 and the flange portion 331 of the nozzle plate 330, a spacer 334 spaced apart from the two flange portions 321 and 331 is installed to the flange portion of the nozzle plate 330 Vortex discharge hood, characterized in that 331 is spaced apart from the inner surface of the case (100).
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 스페이서(334)는 볼트가 관통하도록 플랜지부(331)에 형성된 홀(331a)의 주변부를 분산플레이트(320) 방향으로 돌출되게 성형하여 스페이서(334)를 노즐플레이트(330)에 일체형으로 형성한 것을 특징으로 하는 와류식 배출 후드.The spacer 334 is formed by protruding the peripheral portion of the hole 331a formed in the flange portion 331 in the direction of the dispersion plate 320 so that the bolt penetrates, thereby forming the spacer 334 integrally with the nozzle plate 330. Vortex discharge hood, characterized in that.
  8. 청구항 4에 있어서,The method according to claim 4,
    상기 공기분산부(322)는 유닛 케이스(310)의 내부로 유입되는 공기와 마주한 채로 유닛 케이스(310)의 길이방향으로 연장된 구조를 가지며, 밑단(323)은 유닛 케이스(310)의 내측 바닥면(310b)으로부터 이격되게 설치되되, 상기 밑단(323)은 유닛 케이스(310)에 형성된 공기 유입구(313)에 가장 근접한 부분(323a)이 케이스(310)의 내측 바닥면(310b)에 가장 근접하고, 상기 공기 유입구(313)로부터 멀어질수록 유닛 케이스(310)의 내측 바닥면(310b)으로부터 멀어지도록 경사지게 형성된 것을 특징으로 하는 와류식 배출 후드.The air dispersing unit 322 has a structure extending in the longitudinal direction of the unit case 310 while facing the air flowing into the unit case 310, the bottom 323 is the inner bottom of the unit case 310 It is installed spaced apart from the surface 310b, the bottom 323 is the portion 323a closest to the air inlet 313 formed in the unit case 310 is closest to the inner bottom surface 310b of the case 310 And, away from the air inlet 313 vortex discharge hood, characterized in that formed to be inclined away from the inner bottom surface (310b) of the unit case (310).
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 배출 덕트(200)는, 케이스(100)의 좌측면(103)에 설치된 좌측 배출 덕트(210); 및The discharge duct 200, the left discharge duct 210 is installed on the left side 103 of the case 100; And
    상기 좌측 배출 덕트(210)와 대칭구조를 갖도록 케이스(100)의 우측면(104)에 설치된 우측 배출 덕트(220)로 구성되며,It consists of a right discharge duct 220 installed on the right side 104 of the case 100 to have a symmetrical structure with the left discharge duct 210,
    상기 좌측 배출 덕트(210)와 우측 배출 덕트(220)는 케이스(100)의 외측에서 서로 연결되어 하나의 배출 덕트를 형성하는 것을 특징으로 하는 와류식 배출 후드.The left discharge duct 210 and the right discharge duct 220 is connected to each other on the outside of the case 100 to form a vortex discharge hood, characterized in that to form one discharge duct.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 케이스(100)의 좌측면(103)과 우측면(104)에 각각 형성되어 좌측 배출 덕트(210)와 우측 배출 덕트(220)와 연결되는 배출구(103a,104a)의 중심은 케이스(100)의 내부에서 발생되는 와류의 선회축(S)과 일치하도록 형성된 것을 특징으로 하는 와류식 배출 후드.The centers of the outlets 103a and 104a formed on the left side 103 and the right side 104 of the case 100 and connected to the left discharge duct 210 and the right discharge duct 220, respectively, Vortex discharge hood, characterized in that formed so as to coincide with the pivot axis (S) of the vortex generated inside.
  11. 청구항 1에 있어서,The method according to claim 1,
    상기 케이스(100)의 후면(102)의 길이(L1)는 전면(101)의 길이(L2) 보다 길게 형성되며, 케이스(100)의 전면(101)과 후면(102)이 비대칭구조로 형성된 것을 특징으로 하는 와류식 배출 후드.The length L1 of the rear surface 102 of the case 100 is longer than the length L2 of the front surface 101, and the front surface 101 and the rear surface 102 of the case 100 are formed in an asymmetrical structure. Vortex exhaust hood characterized by the above-mentioned.
  12. 청구항 1에 있어서,The method according to claim 1,
    상기 공기분사부(300`)는 케이스(100)의 내면에 대한 접선 방향으로 분사되는 공기가 케이스(100)의 후면으로부터 상면 그리고 상면으로부터 전면 방향으로 유동하도록 공기를 분사하여 케이스(100)의 내부에서 발생되는 와류가 후면(102)에서 상면(105)을 거쳐 전면(101)으로 이어지는 방향으로 선회되게 한 것을 특징으로 하는 와류식 배출 후드.The air injection unit 300 ′ injects air such that air injected in a tangential direction to the inner surface of the case 100 flows from the rear surface of the case 100 to the upper surface and from the upper surface to the front direction, and thus the interior of the case 100. Vortex discharge hood, characterized in that the vortex generated from the rear surface 102 is turned in a direction leading to the front surface 101 through the top surface 105.
PCT/KR2013/008920 2012-12-28 2013-10-07 Vortex-type discharge hood WO2014104547A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380001514.2A CN104039468B (en) 2012-12-28 2013-10-07 Vortex-type discharge hood
JP2014554677A JP5753955B2 (en) 2012-12-28 2013-10-07 Eddy current exhaust hood

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0156047 2012-12-28
KR1020120156047A KR101395187B1 (en) 2012-12-28 2012-12-28 Exhaust hood enhanced by vortex
KR1020130112636A KR101550193B1 (en) 2013-09-23 2013-09-23 Exhaust Hood Enhanced by Vortex
KR10-2013-0112636 2013-09-23

Publications (1)

Publication Number Publication Date
WO2014104547A1 true WO2014104547A1 (en) 2014-07-03

Family

ID=51021561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008920 WO2014104547A1 (en) 2012-12-28 2013-10-07 Vortex-type discharge hood

Country Status (3)

Country Link
JP (1) JP5753955B2 (en)
CN (1) CN104039468B (en)
WO (1) WO2014104547A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108870484A (en) * 2017-05-09 2018-11-23 建准电机工业股份有限公司 Cooking fume remover

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034368A1 (en) * 2016-08-19 2018-02-22 (주)엔티케이코퍼레이션 Dust collecting cleaner having rotating nozzle structure
KR102469350B1 (en) * 2020-12-21 2022-11-23 주식회사 포스코 Dust collecting equipment and dust collecting method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122137A (en) * 1988-11-01 1990-05-09 Japan Air Curtain Corp Artificial whirlwind generation mechanism and application method
JPH0670512B2 (en) * 1989-04-28 1994-09-07 日本エアーカーテン株式会社 Artificial tornado type local exhaust system
JP2010065952A (en) * 2008-09-11 2010-03-25 Toshiba Corp Multidirectional suction mechanism for local exhauster
KR20100042434A (en) * 2008-10-16 2010-04-26 주식회사 청호씨에이 Suction device for vortex generating by compressed air
JP2011131132A (en) * 2009-12-22 2011-07-07 Shimizu Corp Welding fume collector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614503B2 (en) * 1988-11-29 1997-05-28 株式会社トルネックス Artificial tornado hood
JP2541896B2 (en) * 1992-11-30 1996-10-09 株式会社トルネックス Artificial tornado exhaust system
JP2000175772A (en) * 1998-12-16 2000-06-27 Tornex Inc Bench with spout type exhaust cleaning device
TWM279718U (en) * 2005-07-08 2005-11-01 Inst Of Occupational Safety & Health Council Of Labor Affairs Air-isolator fume hood

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122137A (en) * 1988-11-01 1990-05-09 Japan Air Curtain Corp Artificial whirlwind generation mechanism and application method
JPH0670512B2 (en) * 1989-04-28 1994-09-07 日本エアーカーテン株式会社 Artificial tornado type local exhaust system
JP2010065952A (en) * 2008-09-11 2010-03-25 Toshiba Corp Multidirectional suction mechanism for local exhauster
KR20100042434A (en) * 2008-10-16 2010-04-26 주식회사 청호씨에이 Suction device for vortex generating by compressed air
JP2011131132A (en) * 2009-12-22 2011-07-07 Shimizu Corp Welding fume collector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108870484A (en) * 2017-05-09 2018-11-23 建准电机工业股份有限公司 Cooking fume remover

Also Published As

Publication number Publication date
CN104039468A (en) 2014-09-10
JP5753955B2 (en) 2015-07-22
CN104039468B (en) 2015-07-01
JP2015504508A (en) 2015-02-12

Similar Documents

Publication Publication Date Title
WO2014119813A1 (en) Swirl-type fan ventilator
WO2015060509A1 (en) Vortex-type fan exhaust device for preventing rediffusion
WO2016163673A1 (en) Air purifier
WO2016117921A1 (en) Local exhaust apparatus
WO2014104547A1 (en) Vortex-type discharge hood
WO2019190167A1 (en) Wet-type dust-collecting air-purifying device having water particle collision dispersion structure
WO2017039330A1 (en) Suction unit
WO2015034274A1 (en) Local exhaust device provided with swirler and guide member
WO2019107677A1 (en) Electrostatic spraying cyclone air purifier
WO2018043793A1 (en) Intake device for local exhaust ventilation device
WO2021145528A1 (en) Air cleaner
WO2017175918A1 (en) Ultra-low emission combustor
WO2016104872A1 (en) Exhaust device for increasing exhaust amount by forming stable air movement path
WO2021085959A1 (en) Diffuser, diffuser assembly, and air conditioner having the same
WO2014069811A1 (en) Warhead-type pulse-jet dispersion device
WO2017030263A1 (en) Dust collecting device having structurally improved blow pipe
WO2018169316A1 (en) Cooling fan and seat cooling device comprising same
WO2014163239A1 (en) Long-distance blow pipe
KR101395187B1 (en) Exhaust hood enhanced by vortex
WO2017222241A1 (en) Water type air cleaner
WO2023153620A1 (en) Blower comprising cylindrical rotary propeller
WO2019245280A1 (en) Air purifier
WO2021167147A1 (en) Air purifier
WO2018004178A1 (en) Ventilator
WO2019088376A1 (en) Ramjet generator for intake/exhaust

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014554677

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867065

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867065

Country of ref document: EP

Kind code of ref document: A1