WO2014104105A1 - 光学素子 - Google Patents

光学素子 Download PDF

Info

Publication number
WO2014104105A1
WO2014104105A1 PCT/JP2013/084692 JP2013084692W WO2014104105A1 WO 2014104105 A1 WO2014104105 A1 WO 2014104105A1 JP 2013084692 W JP2013084692 W JP 2013084692W WO 2014104105 A1 WO2014104105 A1 WO 2014104105A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
optical element
region
resin layer
refractive index
Prior art date
Application number
PCT/JP2013/084692
Other languages
English (en)
French (fr)
Inventor
聖子 加藤
昌史 井出
Original Assignee
シチズンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンホールディングス株式会社 filed Critical シチズンホールディングス株式会社
Priority to US14/655,127 priority Critical patent/US9448360B2/en
Priority to CN201380068507.4A priority patent/CN104884985B/zh
Priority to JP2014554498A priority patent/JP6312604B2/ja
Priority to EP13867698.6A priority patent/EP2940499B1/en
Publication of WO2014104105A1 publication Critical patent/WO2014104105A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1226Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12169Annealing
    • G02B2006/12171Annealing using a laser beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1326Liquid crystal optical waveguides or liquid crystal cells specially adapted for gating or modulating between optical waveguides

Definitions

  • the present invention relates to an optical element having a resin layer and an optical waveguide region formed in the resin layer.
  • Patent Document 1 discloses that an optical fiber including a liquid crystal-filled optical fiber filled with liquid crystal in a hole of a holey fiber is applied by applying a magnetic field to the filled liquid crystal to change the alignment state of the liquid crystal.
  • An optical fiber system for controlling transmission characteristics is described.
  • Non-Patent Document 1 describes a capillary optical fiber having an annular high refractive index optical core around a vent hole, a low refractive index optical cladding, and a high refractive index coating layer. Has been.
  • a conventional optical waveguide made of a resin material is isotropic or has anisotropy oriented only in one specific direction. For this reason, in such an optical waveguide, it is impossible to propagate radial polarization or azimuth polarization while maintaining the polarization direction.
  • Radial polarized light here is light in which the polarization direction is radially distributed in the radial direction in a plane perpendicular to the traveling direction.
  • azimuth polarization is light in which the polarization direction is distributed in the circumferential direction in a plane perpendicular to the traveling direction.
  • an optical waveguide having a radially oriented structure can cope with radial polarization or azimuth polarization, but it is difficult to easily produce such an optical waveguide. Accordingly, an object of the present invention is to provide an optical element having an optical waveguide region capable of propagating radial polarization or azimuth polarization while maintaining the polarization direction.
  • the optical element has a resin layer and an optical waveguide region that is formed in the resin layer and in which light is guided in the longitudinal direction of the resin layer.
  • the liquid crystal In the optical waveguide region, the liquid crystal is substantially radially in a cross section perpendicular to the longitudinal direction.
  • the molecules are oriented, and the refractive index of the optical waveguide region is larger than the refractive index of the resin layer.
  • the optical element further includes a tubular space having a substantially circular cross section formed in the resin layer, and the optical waveguide region is formed so as to be in contact with the tubular space, and the optical waveguide region has a substantially circular shape. It is preferable that the liquid crystal molecules are aligned substantially radially along the radial direction of the cross section.
  • optical element it is possible to propagate radial polarization or azimuth polarization while maintaining the polarization direction.
  • FIG. 1 is a schematic diagram of an optical element 10.
  • FIG. (A) to (C) are schematic views for explaining a method of manufacturing the optical element 10.
  • 3 is a flowchart showing a method for manufacturing the optical element 10.
  • FIG. 6 is a schematic diagram for explaining a formation position and a size of a cavity 14.
  • (A) to (D) are photographs when a surface parallel to the longitudinal direction of the optical element 10 is observed with a polarizing microscope.
  • (A) to (D) are photographs when a cross section perpendicular to the longitudinal direction of the optical element 10 is observed with a polarizing microscope.
  • (A) to (D) are photographs when a cross section perpendicular to the longitudinal direction of the optical element 10 is observed with a polarizing microscope.
  • FIG. (A) And (B) is a figure for demonstrating the conditions of the waveguide simulation of the optical element 10.
  • FIG. (A)-(D) are the figures which showed the result of the waveguide simulation in case the center area
  • (A) to (D) are diagrams showing the results of a waveguide simulation when the central region 34 is filled with water.
  • (A) And (B) is a figure for demonstrating the SPR sensor to which the optical element 10 is applied.
  • FIG. 1 is a schematic diagram of the optical element 10.
  • the optical element 10 has a resin layer 12 as a cladding portion of the optical waveguide region.
  • an acrylic resin is used as the resin layer 12.
  • a cavity 14 is formed in the resin layer 12 as a tubular space having a substantially circular cross section.
  • substantially circular refers to a shape having no sharp portion or dent, such as a rectangle, and the ratio of the difference between the maximum diameter and the minimum diameter with respect to the maximum diameter is, for example, 10% or less.
  • the optical element 10 has a liquid crystal region 15 formed in the resin layer 12 in a portion (near the boundary) in contact with the cavity 14 as a core portion of the optical waveguide region.
  • a P-type liquid crystal is used as the liquid crystal.
  • the liquid crystal molecules are aligned substantially radially along the radial direction of the cavity 14 having a substantially circular cross section.
  • the alignment of the liquid crystal molecules is represented by a large number of ellipses 15 ⁇ / b> A arranged substantially radially in the radial direction in a substantially circular cross section with the cavity 14 as the center.
  • substantially radial refers to a state in which the outer side of the resin layer 12 extends from the central cavity 14 as a whole. For this reason, the liquid crystal molecules do not necessarily have to be strictly radially aligned in the entire liquid crystal region 15.
  • the liquid crystal region 15 functions as an optical waveguide region, and light can propagate in the liquid crystal region 15. Since the liquid crystal region 15 has a larger refractive index than that of the resin layer 12, a difference in refractive index can be made between the resin layer 12 and the liquid crystal region 15. Therefore, when light enters the liquid crystal region 15, the light traveling from the liquid crystal region 15 toward the resin layer 12 outside the liquid crystal region 15 at a small incident angle is totally reflected by the boundary surface 16 between the liquid crystal region 15 and the resin layer 12.
  • the liquid crystal region 15 has a larger refractive index than the inner cavity 14, a difference in refractive index can be made between the cavity 14 and the liquid crystal region 15. Therefore, the light traveling from the liquid crystal region 15 to the inner cavity 14 at a small incident angle is also totally reflected at the boundary surface between the liquid crystal region 15 and the cavity 14. Thus, since the light propagates in the liquid crystal region 15 (see arrow A in FIG. 1), the optical element 10 can confine the light in the liquid crystal region 15.
  • the optical element 10 can be used particularly as a GI (graded-index) waveguide.
  • the boundary surface 16 between the resin layer 12 and the liquid crystal region 15 is shown for the sake of explanation, but it is considered that this boundary surface 16 is not clearly defined in practice.
  • the light propagating in the liquid crystal region 15 is reflected and propagates in the liquid crystal region 15 before reaching the region having a smaller refractive index outside the liquid crystal region 15.
  • FIGS. 2A to 2C are schematic views for explaining a method for manufacturing the optical element 10.
  • FIG. 3 is a flowchart showing a method for manufacturing the optical element 10. Each step of the manufacturing method will be described with reference to FIGS.
  • a substrate 1 is prepared, and an uncured curable resin 2 layer is formed on the substrate 1 (S1).
  • This layer corresponds to the resin layer 12 in FIG. Since the curable resin 2 has fluidity in an uncured state, a frame (not shown) surrounding the periphery is prepared, and the curable resin 2 is injected into the frame.
  • an acrylic resin that is an ultraviolet curable resin is used as the curable resin 2.
  • a thermosetting resin may be used as the curable resin 2.
  • the thickness d of the curable resin 2 may be about 1000 ⁇ m.
  • a needle 3 that can inject liquid crystal is inserted into the curable resin 2 (S2).
  • the needle 3 is hollow and has a sharp shape toward the tip like an injection needle, and has an opening (not shown) at the tip.
  • the depth at which the needle 3 is inserted is, for example, about half of the thickness d of the curable resin 2.
  • the liquid crystal 4 is injected into the curable resin 2 through the needle 3 while moving the needle 3 (S3).
  • a P-type liquid crystal is used as the liquid crystal 4.
  • the needle 3 is translated along the X direction shown in FIG.
  • the liquid crystal 4 is injected into the layer of the curable resin 2 from the opening at the tip of the needle 3 by applying pressure from above the needle 3 while moving the needle 3.
  • the liquid crystal 4 has a substantially circular cross section perpendicular to the X direction due to surface tension.
  • the needle 3 is removed from the curable resin 2 (S4).
  • the curable resin 2 is not yet cured, when the needle 3 is extracted, the hole formed in the curable resin 2 is closed by the needle 3.
  • the liquid crystal 4 is confined in the curable resin 2 and is arranged in a tubular shape.
  • the curable resin 2 is cured by ultraviolet irradiation, and the liquid crystal 4 is confined in the curable resin 2.
  • a portion where the liquid crystal 4 exists is set as a liquid crystal flow path 4A (S5).
  • the curable resin 2 is cured by heating.
  • a channel 4A having a substantially circular cross section is formed in the tubular region into which the liquid crystal 4 is injected.
  • the liquid crystal 4 may penetrate into the curable resin 2 even before the curable resin 2 is cured, the liquid crystal 4 remains in the flow path 4A immediately after the curing. Therefore, the liquid crystal 4 is left in this state for a certain period of time and the immersion of the liquid crystal 4 into the layer of the curable resin 2 is completed (S6). Over time, the liquid crystal 4 diffuses into the resin due to the concentration gradient at the interface between the liquid crystal 4 and the curable resin 2, and the liquid crystal molecules are aligned in the diffusion direction as shown in FIG. Resin chains are fixed by curing, and liquid crystal molecules enter between them, thereby obtaining a region (liquid crystal region 15 in FIG. 1) in which liquid crystal molecules are aligned substantially radially around the channel 4A. When the liquid crystal 4 disappears from the flow path 4A, the area of the flow path 4A becomes the cavity 14 of FIG.
  • the liquid crystal 4 When the liquid crystal 4 is completely confined in the curable resin 2, depending on the type of the liquid crystal 4, it takes about several days to penetrate into the resin. On the other hand, when the hole due to the needle 3 is not blocked and remains open, or when the liquid crystal 4 comes into contact with the outside air by intentionally making a hole in the layer of the curable resin 2, the liquid crystal 4 becomes faster. Soak in the resin.
  • the liquid crystal 4 remains in the flow path 4A even after a lapse of a certain time, a part of the curable resin 2 is cut out and the liquid crystal 4 confined in the curable resin 2 is extracted. Even when the flow path 4A becomes hollow, a part of the curable resin 2 is cut out to clean the inside of the flow path 4A (S7).
  • the cavity 14 and the liquid crystal region 15 of FIG. 1 are formed in the layer of the curable resin 2, and the optical element 10 of FIG. 1 is obtained.
  • the optical element 10 of FIG. 1 can be obtained when the acrylic resin is used as the curable resin 2 and the P-type liquid crystal is used as the liquid crystal 4 and each step of FIG. 3 is executed.
  • some combinations of resin and liquid crystal cannot form the substantially circular flow path 4A, or some liquid crystals do not diffuse radially in the resin.
  • the injected liquid crystal 4 may float on the surface of the resin layer depending on the viscosity of the curable resin 2 or the difference in density between the curable resin 2 and the liquid crystal 4.
  • the liquid crystal 4 is often a mixture composed of a plurality of compounds, and the diffusion coefficient varies depending on the components.
  • the curable resin 2 and the liquid crystal 4 can inject the liquid crystal 4 into the inside of the curable resin 2 in the relationship between the viscosity and the density, and the liquid crystal 4 is diffused into the curable resin 2 to be approximately It is necessary to select a combination that is oriented radially.
  • the optical element 10 can be obtained even if the liquid crystal is injected into the cavity already formed in the resin. Can be obtained. Therefore, another method for manufacturing the optical element 10 will also be described.
  • a resin layer in which a cavity having a substantially circular cross section is formed in advance is prepared. Then, a needle is inserted into the resin, liquid crystal is injected into the cavity, and the needle is removed. Thereafter, the same steps as S6 and S7 in FIG. 3 are performed. That is, the liquid crystal is immersed in the resin over a certain period of time, and then a part of the resin layer is cut off to clean the inside of the cavity into which the liquid crystal has been injected.
  • the optical element 10 is obtained also by the above process.
  • the material of the resin layer 12 of the optical element 10 may be, for example, another ultraviolet curable resin such as an epoxy resin, or a thermosetting resin such as a urea resin, a melamine resin, or a phenol resin.
  • the refractive index of the acrylic resin used in this experiment is 1.50, and the refractive index of the P-type liquid crystal MLC-7018 made by Merck is 1.55 for the extraordinary light refractive index ne and 1.47 for the ordinary light refractive index no. is there.
  • the extraordinary light refractive index ne is larger than the refractive index of the acrylic resin, radial polarized light that is polarized parallel to the ne direction of the liquid crystal molecules aligned in a substantially radial direction is propagated.
  • the extraordinary refractive index ne of the liquid crystal is 1.77 and the ordinary refractive index no is 1.54. Since these have a refractive index greater than 1.50 of the acrylic resin, both the intrinsic polarization of extraordinary rays and the intrinsic polarization of ordinary rays have a light confinement effect in accordance with the orientation of the liquid crystal, so that radial polarization or azimuth polarization can be propagated.
  • FIG. 4 is a schematic diagram for explaining the formation position and size of the cavity 14 formed in this experiment.
  • the thickness of the resin layer 12 was 1000 ⁇ m, and the needle 3 was inserted into the resin layer 12 to a depth of 500 ⁇ m. Then, while the needle 3 is moved linearly along the surface direction of the resin layer 12 at a speed of 20 mm / sec, a dispensing pressure of 10 kPa is applied so that a substantially circular cavity 14 having a diameter of 200 ⁇ m is formed.
  • Dispense type LCD Dispense type LCD.
  • the flow path was formed by hardening the resin layer 12 with ultraviolet rays. Two such resin layers 12 were prepared, one provided an opening in the formed flow path, and the other left the liquid crystal inside completely sealed. Then, the liquid crystal was immersed in the resin layer 12 for several days. In this experiment, the diameter of the flow path (cavity 14) is made larger than when used as an optical element.
  • FIGS. 5 (A) to 5 (D) are photographs when a surface parallel to the longitudinal direction of the optical element 10 manufactured as described above is observed with a polarizing microscope.
  • 5A and 5B are photographs when the angle of the optical element 10 in the longitudinal direction is 0 ° with respect to the polarizing plate angle of 45 °.
  • 5C and 5D are photographs when the angle of the optical element 10 in the longitudinal direction is 45 ° with respect to the polarizing plate angle of 45 °.
  • FIG. 5A shows a resin layer 12 in which an opening (not shown) is provided in the flow path 4A so that liquid crystal is immersed therein.
  • the liquid crystal soaks into the resin layer 12 and volatilizes, and the flow path 4A is hollowed out. It can be seen that the inside of the liquid crystal region 15 outside the channel 4A is bright and light is transmitted. It can also be seen that the liquid crystal penetrates to a depth as large as the diameter of the flow path 4 ⁇ / b> A, and there is a concentration gradient outside the liquid crystal region 15.
  • FIG. 5B shows the resin layer 12 that has been immersed while the liquid crystal 4 is completely enclosed.
  • the liquid crystal 4 penetrates into the resin layer 12 and remains in the flow path 4A. It can be seen that light is transmitted not only in the liquid crystal region 15 outside the channel 4A but also inside the channel 4A. As in FIG. 5A, it can be seen that the liquid crystal penetrates to the same depth as the diameter of the flow path 4A, and there is a concentration gradient outside the liquid crystal region 15.
  • FIG. 5C is a photograph of the resin layer 12 of FIG. 5A when the longitudinal direction of the optical element 10 is inclined at an angle of 45 °.
  • light is not transmitted through the liquid crystal region 15 through which light is transmitted when the longitudinal angle of the optical element 10 is 0 °.
  • FIG. 5D is a photograph of the resin layer 12 of FIG. 5B when the longitudinal direction of the optical element 10 is inclined at an angle of 45 °. In the portion of the flow path 4A, light is transmitted as in FIG. 5B when the longitudinal angle of the optical element 10 is 0 °, but the liquid crystal region 15 does not transmit light.
  • both the hollow channel and the channel in which the liquid crystal 4 remains are formed between the polarizing plate and the longitudinal direction of the optical element 10 in the liquid crystal region 15 near the boundary with the channel 4A.
  • Light is transmitted when the angle is 45 °, and light is not transmitted when the angle between the polarizing plate and the longitudinal direction of the optical element 10 is 0 °. From this, it can be seen that in the liquid crystal region 15, the liquid crystal molecules are immersed with high orientation.
  • FIGS. 7 (A) to 7 (D) are views when a cross section perpendicular to the longitudinal direction of the optical element 10 manufactured as described above is observed with a polarizing microscope. It is a photograph. 6 (A) to 6 (D) and FIGS. 7 (A) to 7 (D) show the optical element 10 at 0 °, 45 °, 90 °, 135 °, 180 °, 225 °, and 270 °, respectively. It is a photograph when rotated to 315 °.
  • the resin layer 12 was the same as that shown in FIG. At any rotation angle, in the liquid crystal region 15 near the boundary with the cavity 14, light is not transmitted through only 45 ° and 135 ° linear directions with respect to the horizontal line, but it is dark, but in other portions, light is not transmitted. It can be seen that it is transparent. Since the transmission pattern does not change depending on the rotation angle of the optical element 10, it is presumed that the liquid crystal molecules are aligned substantially radially in the liquid crystal region 15.
  • FIGS. 8A and 8B are diagrams for explaining the conditions of the waveguide simulation of the optical element 10.
  • the rectangular region to be subjected to the waveguiding simulation includes a central region 34, an annular region 35 surrounding the central region 34, and an outside of the annular region 35. And an outer region 32.
  • the central region 34, the annular region 35, and the outer region 32 correspond to the cavity 14, the liquid crystal region 15, and the resin layer 12 of the optical element 10, respectively.
  • the setting of the refractive index of the central region 34 and the outer region 32 is the same in FIGS. 8A and 8B.
  • TE wave single-wavelength plane wave whose polarization direction is the direction of arrow a is used in both cases of FIG. 8 (A) and FIG. 8 (B).
  • FIGS. 9A to 9D are diagrams showing the results of a waveguide simulation when the central region 34 is a cavity.
  • 9A and 9B show the results under the conditions shown in FIG. 8A
  • FIGS. 9C and 9D show the results under the conditions shown in FIG. 8B. It is a result.
  • 9A and 9C the portion corresponding to the annular region 35 is indicated by a broken line.
  • the electric field strength of the right and left portions of the annular region 35 is the highest. That is, light is confined in an annular region 35 having a high refractive index, and in particular, an annular region 35 in which the alignment direction of liquid crystal molecules is parallel to the polarization direction of incident light (the direction of arrow a in FIG. 8A). It can be seen that light is guided in the right and left portions of the.
  • FIGS. 9C and 9D when there is no orientation, the electric field strength is uniformly high in the annular region 35. That is, it can be seen that light is guided over the entire circumference of the annular region 35 having a high refractive index.
  • FIGS. 10 (A) to 10 (D) are diagrams showing the results of a waveguide simulation when the central region 34 is filled with water.
  • FIGS. 10A and 10B show the results under the conditions shown in FIG. 8A
  • FIGS. (D) shows the results under the conditions shown in FIG.
  • FIGS. 10A and 10C a portion corresponding to the annular region 35 is indicated by a broken line.
  • the optical element 10 has a structure in which liquid crystal molecules are aligned substantially radially along the radial direction of the substantially circular cross section of the cavity 14 that is a tubular space. Thereby, the optical element 10 can propagate the radially polarized light polarized along the alignment of the liquid crystal molecules while maintaining the polarization direction. Further, the optical element 10 uses a liquid crystal material in which both the extraordinary refractive index and the ordinary refractive index are larger than the refractive index of the surrounding cladding portion, so that the optical element 10 has a 90 ° angle with respect to the liquid crystal molecules aligned radially in the radial direction. Azimuth-polarized light polarized in the circumferential direction that forms an angle can also be propagated while maintaining the polarization direction.
  • optical element 10 there is a refractive index sensor (SPR sensor) using a surface plasmon resonance phenomenon.
  • SPR sensor refractive index sensor
  • Surface plasmon resonance absorbs light with a wavelength and angle corresponding to the refractive index of the medium in contact with the metal thin film when light is incident on the inner surface of the metal thin film in contact with the medium at a total reflection angle or more. It is a phenomenon.
  • FIG. 11A and FIG. 11B are diagrams for explaining an SPR sensor to which the optical element 10 is applied.
  • FIG. 11A shows an example of a conventional waveguide type SPR sensor 20.
  • the SPR sensor 20 has an optical waveguide 22 provided with a metal thin film 21 on the upper surface.
  • the sample S to be measured is placed on the metal thin film 21 and light is incident from the incident surface 23 of the optical waveguide 22.
  • Light propagates while repeating total reflection in the optical waveguide 22 and attenuates according to the refractive index of the sample S. For this reason, the refractive index change by the sample S can be measured by detecting the light emitted from the emission surface 24 and looking at the transmitted light amount or the spectral change of the emitted light with respect to the incident light.
  • FIG. 11B shows a waveguide SPR sensor to which the optical element 10 of FIG. 1 is applied.
  • the optical element 10 can be used as an SPR sensor by coating the inner wall of the cavity 14 with a metal thin film 17, allowing the sample S to flow in the cavity 14, and propagating light into the liquid crystal region 15 around the cavity. If the cavity 14 is covered with the metal thin film 17, the entire boundary surface between the cavity 14 and the liquid crystal region 15 can be used as a sensor. Therefore, the surface area of the sensor is larger than that of the SPR sensor 20. Then, the SPR sensor using the optical element 10 can measure a finer change in refractive index in proportion to the area ratio. In particular, it is possible to improve the sensitivity of the SPR sensor by controlling the polarization of the incident light to the metal thin film 17 that is the sensor portion by utilizing the orientation of the liquid crystal molecules in the liquid crystal region 15.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Liquid Crystal (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

 偏光方向を保持したままラジアル偏光またはアジマス偏光を伝搬させることができる光導波領域を有する光学素子を提供する。光学素子は、樹脂層と、樹脂層内に形成され、樹脂層の長手方向に光が導波される光導波領域とを有し、光導波領域では、長手方向に垂直な断面において略放射状に液晶分子が配向し、光導波領域の屈折率が樹脂層の屈折率より大きい。

Description

光学素子
 本発明は、樹脂層と樹脂層内に形成された光導波領域とを有する光学素子に関する。
 特許文献1には、ホーリーファイバの孔中に液晶が充填された液晶充填光ファイバを備えた光ファイバに対して、充填された液晶に磁場を印加して液晶の配向状態を変化させることにより光伝送特性を制御する光ファイバシステムが記載されている。
 非特許文献1には、通気孔の周囲にある環状で高屈折率の光学コアと、低屈折率の光学クラッドと、高屈折率の被覆層とを有するキャピラリ光ファイバ(capillary optical fiber)が記載されている。
特開2006-162678号公報
R. ROMANIUK, "Capillary optical fiber - design, fabrication, characterization and application", BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, 2008, Vol. 56, No. 2, p.87-102
 樹脂材料で作製された従来の光導波路は、等方性か、または特定の一方向のみに配向した異方性をもつ。このため、そうした光導波路では、偏光方向を保持したままラジアル偏光またはアジマス偏光を伝搬させることができない。ここでいうラジアル偏光とは、進行方向に垂直な面内で偏光方向が径方向に放射状に分布している光である。また、アジマス偏光とは、進行方向に垂直な面内で偏光方向が周方向に分布している光である。
 放射状に配向した構造をもつ光導波路であればラジアル偏光またはアジマス偏光に対応することができるが、そうした光導波路を簡単に作製することは難しい。そこで、本発明の目的は、偏光方向を保持したままラジアル偏光またはアジマス偏光を伝搬させることができる光導波領域を有する光学素子を提供することである。
 光学素子は、樹脂層と、樹脂層内に形成され樹脂層の長手方向に光が導波される光導波領域とを有し、光導波領域では、長手方向に垂直な断面において略放射状に液晶分子が配向し、光導波領域の屈折率が樹脂層の屈折率より大きいことを特徴とする。
 上記の光学素子では、樹脂層内に形成された、略円形の断面を有する管状の空間をさらに有し、光導波領域が、管状の空間と接するように形成され、光導波領域では、略円形の断面の径方向に沿って略放射状に液晶分子が配向していることが好ましい。
 上記の光学素子によれば、偏光方向を保持したままラジアル偏光またはアジマス偏光を伝搬させることができる。
光学素子10の模式図である。 (A)~(C)は、光学素子10の製造方法を説明するための模式図である。 光学素子10の製造方法を示したフローチャートである。 空洞14の形成位置および大きさを説明するための模式図である。 (A)~(D)は、光学素子10の長手方向に平行な面を偏光顕微鏡により観察したときの写真である。 (A)~(D)は、光学素子10の長手方向に垂直な断面を偏光顕微鏡により観察したときの写真である。 (A)~(D)は、光学素子10の長手方向に垂直な断面を偏光顕微鏡により観察したときの写真である。 (A)および(B)は、光学素子10の導波シミュレーションの条件を説明するための図である。 (A)~(D)は、中心領域34が空洞の場合の導波シミュレーションの結果を示した図である。 (A)~(D)は、中心領域34に水が充填されている場合の導波シミュレーションの結果を示した図である。 (A)および(B)は、光学素子10を応用したSPRセンサを説明するための図である。
 以下、添付図面を参照して、光学素子について詳細に説明する。ただし、本発明の技術的範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。
 図1は、光学素子10の模式図である。光学素子10は、光導波領域のクラッド部分として、樹脂層12を有する。光学素子10では、樹脂層12としてアクリル樹脂を用いる。樹脂層12の内部には、略円形の断面を有する管状の空間である空洞14が形成されている。「略円形」とは、矩形のように尖った部分も凹みもなく、最大径に対する最大径と最小径との差の比率が例えば10%以下である形状をいう。
 また、光学素子10は、光導波領域のコア部分として、空洞14と接する部分(境界付近)の樹脂層12内に形成された液晶領域15を有する。光学素子10では、液晶としてP型液晶を用いる。液晶領域15では、略円形の断面を有する空洞14の径方向に沿って、略放射状に液晶分子が配向している。図1では、空洞14を中心として、略円形の断面における径方向に略放射状に配置された多数の楕円15Aで、この液晶分子の配向を表している。「略放射状」とは、全体的に見て、中心の空洞14から樹脂層12の外側に広がる状態をいう。このため、必ずしも、液晶領域15の全体で液晶分子が厳密な放射状に配向していなくてもよい。
 光学素子10は、液晶領域15が光導波領域として機能し、液晶領域15内で光を伝搬させることが可能である。液晶領域15は樹脂層12よりも大きな屈折率をもつため、樹脂層12と液晶領域15の間に屈折率の差ができる。したがって、液晶領域15内に光を入射すると、小さな入射角で液晶領域15からその外側の樹脂層12に向かう光は、液晶領域15と樹脂層12の境界面16で全反射する。
 同様に、液晶領域15は、内側の空洞14よりも大きな屈折率をもつため、空洞14と液晶領域15の間に屈折率の差ができる。したがって、小さな入射角で液晶領域15からその内側の空洞14に向かう光も、液晶領域15と空洞14の境界面で全反射する。このように光が液晶領域15内を伝搬する(図1の矢印Aを参照)ので、光学素子10は、液晶領域15内に光を閉じ込めることができる。
 実際には、液晶領域15では液晶分子の濃度勾配があるため、空洞14との境界面から径方向に遠ざかるにつれて、屈折率も減少していく。この屈折率の分布があることから、光学素子10は、特にGI(graded-index)型導波路として使用可能である。
 なお、図1では説明のため樹脂層12と液晶領域15の境界面16を示しているが、この境界面16は実際にははっきり定まらないと考えられる。しかしながら、液晶領域15を伝搬する光は、液晶領域15の外側の屈折率がより小さい領域に到達するまでに反射して、液晶領域15内を伝搬していく。
 図2(A)~図2(C)は、光学素子10の製造方法を説明するための模式図である。図3は、光学素子10の製造方法を示したフローチャートである。図1~図3を用いて本製造方法の各工程を説明する。
 まず、図2(A)に示すように、基板1を用意し、基板1の上に未硬化の硬化性樹脂2の層を形成する(S1)。この層は、図1の樹脂層12に相当する。未硬化の状態では硬化性樹脂2には流動性があるため、周囲を囲う枠体(図示せず)を用意し、その内部に硬化性樹脂2を注入する。ここでは、硬化性樹脂2として、紫外線硬化樹脂であるアクリル樹脂を用いる。ただし、硬化性樹脂2として熱硬化性樹脂を用いてもよい。なお、図1の空洞14の直径を数百μm程度とする際は、硬化性樹脂2の厚さdは1000μm程度あればよい。
 続いて、液晶を注入可能なニードル(針体)3を硬化性樹脂2の中に差し込む(S2)。ニードル3は、注射針のように中空で先端に向けて尖った形状を有し、先端に開口部(図示せず)を有する。その際、ニードル3を差し込む深さは、例えば硬化性樹脂2の厚さdの半分程度とする。なお、この開口部が先端付近の側面に設けられたニードルを用いてもよい。
 次に、図2(B)に示すように、ニードル3を移動させながら、ニードル3を介して硬化性樹脂2の中に管状に液晶4を注入する(S3)。ここでは、液晶4として、P型液晶を用いる。例えば、直線状の流路を形成したい場合は、図2(B)に示すX方向に沿って、ニードル3を平行移動させる。そして、ニードル3を移動させながら、ニードル3の上部から圧力をかけることにより、ニードル3の先端の開口部から硬化性樹脂2の層内に液晶4を注入する。硬化性樹脂2の層内では、液晶4は、表面張力によりX方向に垂直な断面が略円形になる。
 液晶4を注入し終わったら、ニードル3を硬化性樹脂2内から抜き取る(S4)。このとき硬化性樹脂2はまだ硬化していないため、ニードル3を抜き取ると、ニードル3によって硬化性樹脂2にできていた穴がふさがる。これにより、硬化性樹脂2の中に液晶4が閉じ込められ、管状に配置された状態になる。
 そして、紫外線照射により硬化性樹脂2を硬化させて、硬化性樹脂2内に液晶4を閉じ込める。これにより、図2(C)に示すように、液晶4が存在する部分を液晶の流路4Aとする(S5)。硬化性樹脂2として熱硬化性樹脂を用いる場合は、加熱することにより硬化性樹脂2を硬化させる。こうして、液晶4が注入された管状の領域に、断面が略円形である流路4Aが形成される。
 硬化性樹脂2を硬化させる前でも硬化性樹脂2内への液晶4の浸み込みが起こり得るが、硬化直後は、流路4A内に液晶4が残っている。そこで、この状態で一定時間据え置き、硬化性樹脂2の層内への液晶4の浸み込みを完了させる(S6)。時間経過とともに、液晶4と硬化性樹脂2の境界面において濃度勾配により液晶4が樹脂内へと拡散し、図1に示したように、その拡散方向に液晶分子が配向する。硬化により樹脂の鎖が固定され、その間に液晶分子が入り込んでいくことにより、流路4Aの周囲で略放射状に液晶分子が配向した領域(図1の液晶領域15)が得られる。流路4Aの中から液晶4がなくなると、流路4Aの領域は、図1の空洞14になる。
 液晶4が硬化性樹脂2内に完全に閉じ込められていると、液晶4の種類によっては、樹脂内への浸み込みが起こるまでに数日程度の時間がかかる。一方、ニードル3による穴がふさがらず開いたままとなった場合か、または意図的に硬化性樹脂2の層に穴を開けて液晶4が外気に触れる状態とした場合は、液晶4がより速く樹脂内に浸み込む。
 一定時間の経過後も流路4A内に液晶4が残っている場合には、硬化性樹脂2の一部を切除して、硬化性樹脂2内に閉じ込められている液晶4を抜き取る。流路4Aが空洞となった場合でも、硬化性樹脂2の一部を切除して、流路4Aの内部を洗浄する(S7)。以上の工程により、硬化性樹脂2の層内に図1の空洞14と液晶領域15ができ、図1の光学素子10が得られる。
 上記のように、硬化性樹脂2としてアクリル樹脂を、液晶4としてP型液晶をそれぞれ使用し、図3の各工程を実行すると、図1の光学素子10が得られることがわかった。しかしながら、樹脂と液晶の組合せには、略円形の流路4Aを形成できないもの、または液晶が樹脂内に放射状に拡散しないものもあると考えられる。例えば、硬化性樹脂2の粘度、または硬化性樹脂2と液晶4の密度の差によっては、注入された液晶4が樹脂層の表面に浮き出てしまうことがある。また、液晶4は複数の化合物からなる混合物である場合も多く、成分によって拡散係数が異なる。このため、硬化性樹脂2と液晶4は、粘度と密度の関係で硬化性樹脂2の内部に液晶4を管状に注入可能であり、かつ液晶4が硬化性樹脂2の内部に拡散して略放射状に配向するような組合せを選択する必要がある。
 また、図3のS6の工程で、硬化性樹脂2を硬化させた後でも液晶4の浸み込みが起こることから、樹脂内に既に形成された空洞に液晶を注入しても、光学素子10が得られると考えられる。そこで、光学素子10の別の製造方法についても説明する。
 この方法では、まず断面が略円形の空洞が予め内部に形成された樹脂層を用意する。そして、その樹脂内にニードルを差し込んで空洞内に液晶を注入し、ニードルを抜き取る。この後は、図3のS6およびS7と同様の工程を行う。すなわち、一定時間かけて樹脂内に液晶を浸み込ませ、その後、樹脂層の一部を切除し、液晶が注入されていた空洞内部を洗浄する。以上の工程でも、光学素子10が得られる。
 なお、図3の製造方法で円形流路を形成できなくても、上記した別の製造方法で使用可能な樹脂と液晶の組合せもある。例えば、硬化性樹脂2としてエポキシ樹脂を用いると、図3の製造方法では液晶の流路を形成できないが、硬化したエポキシ樹脂内に既に形成された流路に液晶を注入すれば、液晶が樹脂内に拡散して、略放射状の配向が得られると考えられる。したがって、光学素子10の樹脂層12の材料としては、例えば、エポキシ樹脂などの他の紫外線硬化樹脂、尿素樹脂、メラミン樹脂またはフェノール樹脂などの熱硬化性樹脂でもよい。
 以下では、液晶領域15内で液晶分子が略放射状に配向していることを確かめた実験について説明する。この実験では、図2(A)~図2(C)の硬化性樹脂2としてアクリル樹脂を使用し、液晶4としてメルク製のP型液晶であるMLC-7018およびMDA-003461を使用した。そして、図3の製造方法により、アクリル樹脂層の内部に、P型液晶を直線状にディスペンスした。
 この実験で用いたアクリル樹脂の屈折率は1.50であり、メルク製のP型液晶MLC-7018の屈折率は、異常光屈折率neが1.55、常光屈折率noが1.47である。このとき、異常光屈折率neはアクリル樹脂の屈折率より大きいことから、略放射状に配向した液晶分子のne方向に平行な偏光であるラジアル偏光が伝搬される。
 同様に、メルク製のP型液晶MDA-003461を用いた場合、液晶の異常光屈折率neが1.77、常光屈折率noが1.54である。これらはアクリル樹脂の屈折率1.50より大きいため、液晶の配向に従って、異常光線の固有偏光および常光線の固有偏光とも光閉じ込め効果を持つため、ラジアル偏光またはアジマス偏光の伝搬が可能となる。
 図4は、この実験で形成された空洞14の形成位置および大きさを説明するための模式図である。実験では、樹脂層12の厚さを1000μmとし、その樹脂層12の中に、ニードル3を500μmの深さまで差し込んだ。そして、ニードル3を樹脂層12の面方向に沿って速度20mm/秒で直線状に移動させながら、10kPaのディスペンス圧を加えて、断面が直径200μmの略円形の空洞14ができるように、P型液晶をディスペンスした。
 そして、ニードル3を抜き取った後で、樹脂層12を紫外線硬化させることにより、流路を形成した。このような樹脂層12を2つ用意し、一方は形成された流路に開口部を設け、他方は内部の液晶を完全に封入したままとした。その後数日間据え置き、液晶を樹脂層12内に浸み込ませた。なお、この実験では、光学素子として使用するときより、流路(空洞14)の直径を大きくしている。
 図5(A)~図5(D)は、上記のように作製された光学素子10の長手方向に平行な面を偏光顕微鏡により観察したときの写真である。図5(A)および図5(B)は、偏光板角度45°に対し、光学素子10の長手方向の角度が0°のときの写真である。図5(C)および図5(D)は、偏光板角度45°に対し、光学素子10の長手方向の角度が45°のときの写真である。
 図5(A)は、流路4Aに開口部(図示せず)を設けて液晶を浸み込ませた樹脂層12を示す。図5(A)では、液晶が樹脂層12内に浸み込むとともに揮発し、流路4Aは空洞化している。流路4Aの外側の液晶領域15内が明るくなっており、光が透過していることがわかる。また、流路4Aの直径と同じくらいの深さまで液晶が浸み込み、液晶領域15の外側では濃度勾配があることがわかる。
 図5(B)は、液晶4を完全に封入したままで浸み込ませた樹脂層12を示す。図5(B)では、液晶4は、樹脂層12内に浸み込むとともに、流路4Aにも残っている。流路4Aの外側の液晶領域15内だけでなく、流路4A内部でも光が透過していることがわかる。図5(A)と同様に、流路4Aの直径と同じくらいの深さまで液晶が浸み込み、液晶領域15の外側では濃度勾配があることがわかる。
 図5(C)は、図5(A)の樹脂層12について、光学素子10の長手方向を角度45°に傾けたときの写真である。図5(A)で光学素子10の長手方向の角度が0°のとき光が透過していた液晶領域15では、光が透過しなくなる。
 図5(D)は、図5(B)の樹脂層12について、光学素子10の長手方向を角度45°に傾けたときの写真である。流路4Aの部分では、光学素子10の長手方向の角度が0°のときの図5(B)と同様に光が透過するが、液晶領域15では光が透過しなくなる。
 このように、空洞化した流路と内部に液晶4が残っている流路のどちらでも、流路4Aとの境界付近の液晶領域15内では、偏光板と光学素子10の長手方向とのなす角度が45°のときに光が透過し、偏光板と光学素子10の長手方向とのなす角度を0°にすると光が透過しなくなる。このことから、液晶領域15内では、液晶分子が高い配向性をもって浸み込んでいることがわかる。
 図6(A)~図6(D)および図7(A)~図7(D)は、上記のように作製された光学素子10の長手方向に垂直な断面を偏光顕微鏡により観察したときの写真である。図6(A)~図6(D)および図7(A)~図7(D)は、それぞれ光学素子10を0°、45°、90°、135°、180°、225°、270°、315°に回転させたときの写真である。
 樹脂層12は、図5(A)と同じ、流路の内部が空洞化したものを用いた。どの回転角度のときも、空洞14との境界付近の液晶領域15内では、水平線に対して45°の直線方向と135°の直線方向だけ光が透過せず暗いが、他の部分では光が透過していることがわかる。光学素子10の回転角度によって透過のパターンが変わらないことから、液晶領域15内では、液晶分子が略放射状に配向していることが推察される。
 次に、光学素子10の偏光特性を調べるための導波シミュレーションを行った結果について説明する。この導波シミュレーションでは、FDTD法(時間領域差分法)を用いて、光学素子10と同様の構成を有する図8(A)および図8(B)の矩形領域内を伝搬する光の電界強度をそれぞれ計算した。
 図8(A)および図8(B)は、光学素子10の導波シミュレーションの条件を説明するための図である。図8(A)および図8(B)にそれぞれ示すように、導波シミュレーションの対象の矩形領域は、中心領域34と、中心領域34を取り囲む円環領域35と、円環領域35の外側にある外側領域32とを有する。中心領域34、円環領域35および外側領域32は、光学素子10の空洞14、液晶領域15および樹脂層12にそれぞれ対応する。
 図8(A)の円環領域35では、光学素子10と同様に、液晶分子の長軸方向が放射状に配向しており異方性があると仮定した。図8(A)における放射状の太い矢印は、液晶分子の配向方向を表している。一方、図8(B)の円環領域35では、比較例として、液晶分子は配向しておらず等方性があると仮定した。なお、外側領域32については、図8(A)と図8(B)のどちらの場合も等方性があると仮定した。
 中心領域34の屈折率は、空洞(真空)に対応するn=1.00または水に対応するn=1.33とし、外側領域32の屈折率は、アクリル樹脂に対応するn=1.50とした。中心領域34と外側領域32の屈折率の設定は、図8(A)と図8(B)で同じとした。一方、図8(A)の円環領域35については、太い矢印方向の異常光屈折率をne=1.55とし、太い矢印方向に垂直な方向の常光屈折率をno=1.47とした。図8(B)の円環領域35の屈折率は、n=1.55とした。
 また、入射光は、図8(A)と図8(B)のどちらの場合も、偏光方向が矢印a方向である単波長の平面波(TE波)を用いた。
 図9(A)~図9(D)は、中心領域34が空洞の場合の導波シミュレーションの結果を示した図である。図9(A)および図9(B)は図8(A)に示した条件での結果であり、図9(C)および図9(D)は図8(B)に示した条件での結果である。それぞれの図は、電界強度が高い点ほど濃い色で、電界強度が低い点ほど薄い色で示している。また、図9(A)と図9(C)では、円環領域35に対応する部分を破線で示している。
 図9(A)および図9(B)に示すように、配向性がある場合には、円環領域35の右側部分と左側部分の電界強度が最も高くなっている。すなわち、屈折率が高い円環領域35の中に光が閉じ込められており、特に液晶分子の配向方向が入射光の偏光方向(図8(A)の矢印a方向)に平行な円環領域35の右側部分と左側部分で、光が導波することがわかる。一方、図9(C)および図9(D)に示すように、配向性がない場合には、円環領域35で均一に電界強度が高くなっている。すなわち、屈折率が高い円環領域35の全周にわたって光が導波することがわかる。
 したがって、液晶分子に配向性があると本実施例の液晶材料ではその配向方向に平行な方向の偏光のみが光閉じ込め効果を持ち導波されるので、液晶分子が略放射状に配向した液晶領域15を有する光学素子10では、ラジアル偏光の偏光特性を保ったまま光を導波させることが可能であると言える。つまり、液晶の異常光屈折率neが1.55、常光屈折率noが1.47であり、図8(A)の外側領域32の屈折率はn=1.50なので、液晶の異常光屈折率neだけが樹脂の屈折率より大きい。よって、異常光線の固有偏光のみが光閉じ込め効果を持つため、この場合はラジアル偏光のみが光閉じ込め効果を受けることになる。
 図10(A)~図10(D)は、中心領域34に水が充填されている場合の導波シミュレーションの結果を示した図である。図9(A)~図9(D)と同様に、図10(A)および図10(B)は図8(A)に示した条件での結果であり、図10(C)および図10(D)は図8(B)に示した条件での結果である。それぞれの図は、電界強度が高い点ほど濃い色で、電界強度が低い点ほど薄い色で示している。また、図10(A)と図10(C)では、円環領域35に対応する部分を破線で示している。
 図10(A)~図10(D)では、全体的な濃淡差は図9(A)~図9(D)よりも少なくなっており、円環領域35の光導波領域としての機能は中心領域34が空洞の場合の方がよいと言える。しかしながら、中心領域34が水(n=1.33)の場合も、各領域の屈折率の大小関係は中心領域34が空洞(n=1.00)の場合と変わらないため、屈折率が高い円環領域35の中に光が閉じ込められており、図9(A)~図9(D)と同様の傾向が見られる。すなわち、配向性がある場合の図10(A)および図10(B)では、円環領域35の右側部分と左側部分で光が導波しており、配向性がない場合の図10(C)および図10(D)では、円環領域35の全周にわたって光が導波している。したがって、光学素子10の空洞14の内部に水を流した場合も、空洞14の内部が真空である場合と同様の偏光導波の効果が得られる。
 以上説明した通り、光学素子10では、管状の空間である空洞14の略円形の断面の径方向に沿って略放射状に液晶分子が配向した構造を有する。これにより、光学素子10は、液晶分子の配向に沿って偏光したラジアル偏光を、その偏光方向を保持したまま伝搬させることができる。また、光学素子10は、異常光屈折率および常光屈折率の両方が周囲のクラッド部分の屈折率より大きい液晶材料を用いることで、径方向に略放射状に配向した液晶分子に対して90°の角度をなす周方向に偏光したアジマス偏光も、偏光方向を保持したまま伝搬させることができる。
 最後に、光学素子10の応用例について、説明する。光学素子10の応用例には、例えば、表面プラズモン共鳴(Surface Plasmon Resonance)現象を利用した屈折率センサ(SPRセンサ)がある。表面プラズモン共鳴は、媒体に接触している金属薄膜の内表面に全反射角度以上で光が入射したときに、金属薄膜と接触している媒体の屈折率に応じた波長および角度の光が吸収される現象である。
 図11(A)および図11(B)は、光学素子10を応用したSPRセンサを説明するための図である。図11(A)は、従来の導波路型SPRセンサ20の例を示す。SPRセンサ20は、上面に金属薄膜21が設けられた光導波路22を有する。測定時には、金属薄膜21の上に測定対象の試料Sを置き、光導波路22の入射面23から光を入射する。光は光導波路22内で全反射を繰り返しながら伝搬し、試料Sの屈折率に応じて減衰する。このため、出射面24から出射される光を検出し、透過光量または入射光に対する出射光のスペクトル変化を見ることにより、試料Sによる屈折率変化を測定することができる。
 図11(B)は、図1の光学素子10を応用した導波路型SPRセンサを示す。光学素子10は、空洞14の内壁を金属薄膜17で被覆し、空洞14内に試料Sを流し、その周辺の液晶領域15内に光を伝搬させることによって、SPRセンサとして利用できる。空洞14を金属薄膜17で被覆すれば、空洞14と液晶領域15の境界面全体をセンサとして使用できるので、上記のSPRセンサ20より、センサの表面積が大きくなる。すると、光学素子10を用いたSPRセンサでは、その面積比に比例して、より微細な屈折率の変化を測定できるようになる。特に、液晶領域15における液晶分子の配向性を利用して、センサ部分である金属薄膜17への入射光の偏光を制御することにより、SPRセンサの感度を向上させることが可能になる。
 10  光学素子
 12  樹脂層
 14  空洞
 15  液晶領域
 16  境界面

Claims (3)

  1.  樹脂層と、
     前記樹脂層内に形成され前記樹脂層の長手方向に光が導波される光導波領域と、を有し、
     前記光導波領域では、前記長手方向に垂直な断面において略放射状に液晶分子が配向し、
     前記光導波領域の屈折率が前記樹脂層の屈折率より大きい、
     ことを特徴とする光学素子。
  2.  前記樹脂層内に形成された、略円形の断面を有する管状の空間をさらに有し、
     前記光導波領域が、前記管状の空間と接するように形成され、
     前記光導波領域では、前記略円形の断面の径方向に沿って略放射状に液晶分子が配向している、請求項1に記載の光学素子。
  3.  前記樹脂層がアクリル樹脂層であり、前記液晶がP型液晶である、請求項1または2に記載の光学素子。
PCT/JP2013/084692 2012-12-28 2013-12-25 光学素子 WO2014104105A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/655,127 US9448360B2 (en) 2012-12-28 2013-12-25 Optical element
CN201380068507.4A CN104884985B (zh) 2012-12-28 2013-12-25 光学元件
JP2014554498A JP6312604B2 (ja) 2012-12-28 2013-12-25 光学素子および導波路型sprセンサ
EP13867698.6A EP2940499B1 (en) 2012-12-28 2013-12-25 Optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-288590 2012-12-28
JP2012288590 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014104105A1 true WO2014104105A1 (ja) 2014-07-03

Family

ID=51021183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084692 WO2014104105A1 (ja) 2012-12-28 2013-12-25 光学素子

Country Status (5)

Country Link
US (1) US9448360B2 (ja)
EP (1) EP2940499B1 (ja)
JP (1) JP6312604B2 (ja)
CN (1) CN104884985B (ja)
WO (1) WO2014104105A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108020960B (zh) * 2016-10-28 2020-07-07 黄素真 制造液晶电光组件的方法
US11009662B2 (en) * 2017-09-05 2021-05-18 Facebook Technologies, Llc Manufacturing a graded index profile for waveguide display applications
CN108761631B (zh) * 2018-05-03 2020-06-23 烽火通信科技股份有限公司 一种掺镱光纤及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586205A (en) * 1995-04-10 1996-12-17 National Science Council Apparatus for selecting waveguide modes in optical fiber and the method of manufacturing the same
US20030103708A1 (en) * 2001-11-30 2003-06-05 Photintech Inc. In-guide control of optical propagation
US20050169590A1 (en) * 2003-12-31 2005-08-04 Crystal Fibre A/S Liquid crystal infiltrated optical fibre, method of its production, and use thereof
JP2006162678A (ja) 2004-12-02 2006-06-22 Asahi Glass Co Ltd 光ファイバの光伝送特性の制御方法および光ファイバシステム
JP2008530766A (ja) * 2005-02-16 2008-08-07 シュティヒティン・ボール・デ・テヒニシェ・ベテンシャッペン 発光体およびその利用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114164A1 (en) * 2011-02-25 2012-08-30 Ecole Polytechnique Federale De Lausanne (Epfl) Light filter and method for using such filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5586205A (en) * 1995-04-10 1996-12-17 National Science Council Apparatus for selecting waveguide modes in optical fiber and the method of manufacturing the same
US20030103708A1 (en) * 2001-11-30 2003-06-05 Photintech Inc. In-guide control of optical propagation
US20050169590A1 (en) * 2003-12-31 2005-08-04 Crystal Fibre A/S Liquid crystal infiltrated optical fibre, method of its production, and use thereof
JP2006162678A (ja) 2004-12-02 2006-06-22 Asahi Glass Co Ltd 光ファイバの光伝送特性の制御方法および光ファイバシステム
JP2008530766A (ja) * 2005-02-16 2008-08-07 シュティヒティン・ボール・デ・テヒニシェ・ベテンシャッペン 発光体およびその利用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. ROMANIUK: "Capillary optical fiber- design, fabrication, characterization and application", BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, vol. 56, no. 2, 2008, pages 87 - 102
STUMP, A. ET AL.: "Optical waveguides structured with photoaligning polymers", OPTICS LETTERS, vol. 30, no. 11, pages 1333 - 1335, XP055259655 *

Also Published As

Publication number Publication date
US20150323734A1 (en) 2015-11-12
JP6312604B2 (ja) 2018-04-18
EP2940499A1 (en) 2015-11-04
EP2940499A4 (en) 2016-08-24
CN104884985A (zh) 2015-09-02
JPWO2014104105A1 (ja) 2017-01-12
EP2940499B1 (en) 2019-02-06
US9448360B2 (en) 2016-09-20
CN104884985B (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
Cai et al. A new fabrication method for all-PDMS waveguides
Soma et al. Fabrication of a graded-index circular-core polymer parallel optical waveguide using a microdispenser for a high-density optical printed circuit board
AU2002350398B9 (en) Hermetically sealed optical fibre with voids or holes, method of its production, and its use
US8731343B2 (en) Optical printed circuit board, a method of making an optical printed circuit board and an optical waveguide
JP6312604B2 (ja) 光学素子および導波路型sprセンサ
Miao et al. Ferrofluid-infiltrated microstructured optical fiber long-period grating
Konstantaki et al. Relief Bragg reflectors inscribed on the capillary walls of solid‐core photonic crystal fibers
US20160252673A1 (en) Polarization Maintaining Single-Mode Low-Loss Hollow-Core Fiber
Hoi et al. A microfluidic chip with integrated colloidal crystal for online optical analysis
Bichler et al. Functional flexible organic–inorganic hybrid polymer for two photon patterning of optical waveguides
Yang et al. Optical fiber delivered ultrafast plasmonic optical switch
JP2011145520A (ja) 光ファイバ
JP6521875B2 (ja) 屈折率整合された格子刻印
Sun et al. Surface mode enhanced by avoided crossing in microstructure fibers for improved SERS sensing
US9632027B2 (en) Surface plasmon resonance sensor cell and surface plasmon resonance sensor
Obata et al. Embedding Optical Microcavities in Nanoporous SiO2 Film via Infill Inkjet Printing
Liu et al. Refractive index SPR sensor with high sensitivity and wide detection range using tapered silica fiber and photopolymer coating
US20080268234A1 (en) Backlight module, diffusion plate and method of manufacturing the same
JP2006030357A (ja) 光導波路の製造方法および光導波路
Morimoto et al. Low-loss Single-mode Polymer Optical Waveguides: comparison between direct-curing and the Mosquito methods
Hong et al. Analysis on transition between index-and bandgap-guided modes in photonic crystal fiber
DE102009005162A1 (de) Faseroptischer Sensor und Verfahren zur Herstellung
JP2006227203A (ja) 棒状画像伝送用光学繊維束
Rahubadde et al. Side-channel PCF for Surface-enhanced Raman spectroscopy
Li et al. Performance-enhanced fiber optic humidity sensors based on SiO 2/porous PMMA coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554498

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013867698

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14655127

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE