WO2014104035A1 - Reflective substrate - Google Patents

Reflective substrate Download PDF

Info

Publication number
WO2014104035A1
WO2014104035A1 PCT/JP2013/084533 JP2013084533W WO2014104035A1 WO 2014104035 A1 WO2014104035 A1 WO 2014104035A1 JP 2013084533 W JP2013084533 W JP 2013084533W WO 2014104035 A1 WO2014104035 A1 WO 2014104035A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
inorganic
reflective
substrate
phosphate
Prior art date
Application number
PCT/JP2013/084533
Other languages
French (fr)
Japanese (ja)
Inventor
優介 畠中
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014104035A1 publication Critical patent/WO2014104035A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/017Glass ceramic coating, e.g. formed on inorganic substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/20Details of printed circuits not provided for in H05K2201/01 - H05K2201/10
    • H05K2201/2054Light-reflecting surface, e.g. conductors, substrates, coatings, dielectrics

Definitions

  • the present invention relates to a reflective substrate, and more specifically to a reflective substrate used for mounting a light emitting element such as a light emitting diode (hereinafter referred to as “LED”).
  • a light emitting element such as a light emitting diode (hereinafter referred to as “LED”).
  • LEDs are said to have a power consumption of 1/100 and a lifespan of 40 times (40000 hours) compared to fluorescent lamps.
  • Such a feature of power saving and long life is an important factor in adopting LEDs in an environment-oriented flow.
  • white LEDs are excellent in color rendering properties and have a merit that a power supply circuit is simpler than fluorescent lamps, and therefore, expectations for light sources for illumination are increasing.
  • white LEDs (30 to 150 Lm / W) with high luminous efficiency, which are required as illumination light sources, have appeared one after another, and in terms of light use efficiency in practical use, the fluorescent lamps (20 to 110 Lm / W) have been reversed. is doing.
  • the flow of practical use of white LEDs instead of fluorescent lamps has increased rapidly, and the number of cases in which white LEDs are employed as backlights or illumination light sources for liquid crystal display devices is increasing.
  • Patent Document 1 discloses that “an inorganic reflective layer is provided on at least a part of a valve metal substrate, and the inorganic reflective layer is made of aluminum phosphate, aluminum chloride, and sodium silicate.
  • the inorganic reflective layer is made of aluminum phosphate, aluminum chloride, and sodium silicate.
  • For light-emitting elements comprising at least one inorganic binder selected from the group consisting of and inorganic particles having a refractive index of 1.5 to 1.8 and an average particle size of 0.1 to 5 ⁇ m Reflective substrate "is described.
  • an object of the present invention is to provide a reflective substrate that is excellent in heat dissipation and adhesiveness with an inorganic reflective layer.
  • the inventor of the present invention provides a metal having high thermal conductivity by providing an inorganic reflective layer containing a specific inorganic binder containing a metal phosphate or the like together with inorganic particles.
  • the inventors have found that the adhesiveness is excellent also with respect to the substrate, and completed the present invention. That is, the present invention provides a reflective substrate having the following configuration.
  • the metal substrate is composed of at least one metal selected from the group consisting of gold, silver and copper;
  • the metal phosphate is at least one selected from the group consisting of gold phosphate, silver phosphate, and copper phosphate.
  • the present invention it is possible to provide a reflective substrate that is excellent in heat dissipation and adhesiveness with an inorganic reflective layer.
  • the reflective substrate of the present invention has a metal base material and an inorganic reflective layer provided on at least a part of the surface of the metal base material, and the metal base material is selected from the group consisting of gold, silver and copper.
  • FIG. 1 is a schematic cross-sectional view showing an example of a preferred embodiment of the reflective substrate of the present invention.
  • the reflective substrate 1 of the present invention has a metal base 2 and an inorganic reflective layer 3 provided on at least a part of the surface of the metal base 2, and the inorganic reflective layer 3 is inorganic.
  • the metal substrate used for the reflective substrate of the present invention is not particularly limited as long as it is composed of at least one metal selected from the group consisting of gold, silver, and copper.
  • “consisting of metal” means not only a metal substrate composed of only the above metal but also a metal substrate composed of an alloy of these metals (for example, an alloy of copper and silver). Is included.
  • a metal substrate composed of such a metal the heat dissipation of the reflective substrate of the present invention is improved.
  • copper is preferable from the viewpoints of easy workability and high weather resistance.
  • the thickness of the metal substrate is preferably 0.1 to 3 mm, more preferably 0.15 to 1.5 mm, for the reason that heat dissipation is better. More preferably, it is 1.0 mm. This thickness can be appropriately changed according to the user's wishes or the like.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the inorganic reflective layer included in the reflective substrate of the present invention is a reflective layer containing an inorganic binder containing phosphoric acid and / or a metal phosphate and inorganic particles.
  • an inorganic binder containing phosphoric acid and / or a metal phosphate and inorganic particles containing phosphoric acid and / or a metal phosphate and inorganic particles.
  • the inorganic binder contained in the inorganic reflective layer is not particularly limited as long as it contains at least phosphoric acid and / or a metal phosphate.
  • the adhesiveness between the inorganic reflective layer and the metal substrate is improved. This is because the inorganic binder binds inorganic particles to be described later, and also enters the gap between the metal substrate and the inorganic particles, and reacts with the metal substrate when forming the inorganic reflective layer. It is thought that a network of phosphate bonds is formed also at the interface, and a stronger bond is expressed.
  • the inorganic binder preferably contains 50% by mass or more of phosphoric acid and / or metal phosphate, more preferably 80% by mass or more, and 100% by mass, that is, the inorganic binder. It is more preferable to use only phosphoric acid and / or metal phosphate.
  • the phosphoric acid metal salt is not particularly limited, and examples of the phosphoric acid in the phosphoric acid metal salt include phosphoric acid, metaphosphoric acid, orthophosphoric acid, polyphosphoric acid, sesquiphosphoric acid, and the like.
  • the metal in the phosphoric acid metal salt For example, gold, silver, copper, aluminum, zirconium, titanium, zinc, cerium, and the like can be given.
  • the metal phosphate a combination of these can be used as appropriate.
  • the phosphoric acid metal salt is the above-described phosphoric acid and an oxide or hydroxide containing the above-described metal (for example, gold hydroxide, silver oxide, copper hydroxide, aluminum hydroxide) in the presence of water. It can be obtained by reaction.
  • the metal phosphate is preferably gold phosphate, silver phosphate, copper phosphate, or aluminum phosphate.
  • gold phosphate and silver phosphate are preferable because the adhesion between the inorganic reflective layer and the metal substrate is better, and the adhesion to the metal wiring layer (wiring adhesion) is unexpectedly better. More preferably, it is copper phosphate.
  • the metal constituting the metal substrate and the metal constituting the metal phosphate are the same type of metal because the adhesion between the inorganic reflective layer and the metal substrate is better. Is preferred. Among these, for reasons such as easy workability and high weather resistance, a mode in which a copper base is used as the metal base and copper phosphate is used as the inorganic binder (phosphate metal salt) is more preferable.
  • sodium silicate as an inorganic binder, sodium silicate as an optional component may be used in combination with the above-described phosphoric acid and / or metal phosphate.
  • the above-mentioned sodium silicate is also called sodium silicate or water glass, and Na 2 SiO 3, which is a sodium salt of metasilicate, is commonly used.
  • Na 4 SiO 4 , Na 2 Si 2 O 5 , Na 2 Si 4 O 9 or the like can also be used.
  • the sodium salt of metasilicic acid can be obtained by melting silicon dioxide with sodium carbonate or sodium hydroxide.
  • content in the case of using sodium silicate together is less than 50 mass% with respect to the total mass of an inorganic binder.
  • aluminum chloride in the present invention, as the inorganic binder, aluminum chloride may be used in combination with the above-described phosphoric acid and / or metal phosphate as an optional component.
  • the aluminum chloride may be any of anhydrous aluminum chloride, aluminum chloride hexahydrate, and polyaluminum chloride (a polymer of basic aluminum chloride formed by dissolving aluminum hydroxide in hydrochloric acid).
  • content in the case of using aluminum chloride together is less than 50 mass% with respect to the total mass of an inorganic binder.
  • the inorganic particles contained in the inorganic reflective layer are not particularly limited, but are preferably inorganic particles having a refractive index of 1.5 to 1.8 and an average particle diameter of 0.1 ⁇ m to 5 ⁇ m.
  • the refractive index means a value measured at 25 ° C. according to “5. Measuring method of solid sample” of JIS K 0062: 1992.
  • the average particle diameter refers to the average value of the particle diameters of the inorganic particles. In the present invention, the average particle diameter refers to a 50% volume cumulative diameter (D50) measured using a laser diffraction particle size distribution analyzer.
  • the reflectance of the reflective substrate of the present invention is increased, and the inorganic binder described above is a gap between inorganic particles or an inorganic particle and a metal group. Since it can enter into the gap with the material, the strength of the inorganic reflective layer is improved, and the adhesion between the inorganic reflective layer and the metal substrate is improved.
  • the refractive index of the inorganic particles is preferably 1.55 or more and 1.75 or less, and the strength of the inorganic reflection layer and the adhesion between the inorganic reflection layer and the metal substrate.
  • the average particle diameter of the inorganic particles is preferably 0.5 to 2 ⁇ m.
  • the kind of the inorganic particles is not particularly limited, and conventionally known oxides (for example, metal oxides), hydroxides (for example, metal hydroxides), inorganic salts (for example, carbonates, sulfates, etc.) , Fluoride (eg, lanthanum fluoride), silicon dioxide (silica), and the like can be used.
  • oxides, hydroxides, and inorganic salts are preferred because the reflectance of the reflective substrate of the present invention is high.
  • two or more kinds of particles or two or more kinds of particles having an average particle diameter may be used in combination as the inorganic particles.
  • particles having different types and average particle diameters in combination it is possible to improve the strength of the inorganic reflective layer and further improve the adhesion between the inorganic reflective layer and the metal substrate.
  • the shape of the inorganic particles is not particularly limited.
  • the shape is spherical, polyhedral (for example, icosahedron, dodecahedron, etc.), cubic, tetrahedral, or uneven on the surface of the sphere.
  • a shape having a plurality of convex protrusions hereinafter also referred to as “compete shape”
  • a plate shape, a needle shape, or the like may be used.
  • spherical, polyhedral, cubic, tetrahedral, and complex shapes are preferred for the reason of excellent heat insulation, and spherical is more preferred for reasons of easy availability and excellent heat insulation.
  • the inorganic reflective layer containing the inorganic binder and inorganic particles described above is preferably provided on the surface of the metal substrate in an amount such that the mass after heat drying is 20 g / m 2 to 500 g / m 2 .
  • the content of the inorganic binder and the inorganic particles in the inorganic reflective layer is preferably 5 to 100 parts by mass of the inorganic binder with respect to 100 parts by mass of the inorganic particles. Is more preferable.
  • the inorganic reflective layer may contain other compounds in addition to the inorganic binder and the inorganic particles. Examples of other compounds include a dispersant and a reaction accelerator.
  • the method for forming the inorganic reflective layer is not particularly limited.
  • a coating liquid (composition) containing the inorganic particles and the inorganic binder is screened on the surface of the metal substrate. It can be formed by a method such as applying and drying by printing or the like, and specifically, a method described in [0021] to [0023] of Patent Document 1.
  • the reflective substrate of the present invention has an arithmetic average roughness Ra (hereinafter referred to as the surface of the inorganic reflective layer), that is, the surface (excluding the surface of the portion where the light emitting element is mounted when the light emitting element is mounted).
  • Ra arithmetic average roughness
  • Psm the average interval
  • Ra and Psm refer to surface property parameters described in JIS B0601: 2001, and in the present invention, both are stylus type surface roughness meters (for example, SURFCOM 480A, (Manufactured by Tokyo Seimitsu Co., Ltd.).
  • Ra of the surface of the reflective substrate is in the above range, the regular reflectance and the diffuse reflectance are good, and a reflective substrate for a light emitting device that can achieve high light emission efficiency can be obtained.
  • Psm on the surface of the reflective substrate is in the above range, the diffuse reflectance is improved, and the ratio of diffuse reflectance to regular reflectance (diffuse reflectance / regular reflectance) is to be greater than 95%. Can do.
  • Ra on the surface of the reflective substrate is preferably 0.65 to 0.90 ⁇ m, and Psm on the surface of the reflective substrate is preferably 10 to 15 ⁇ m.
  • the reflective substrate of the present invention may have a wiring layer (metal wiring layer) when mounting the light emitting element.
  • the wiring layer may be provided on a part of the surface on which the light emitting element is mounted, or the surface on which the light emitting element is mounted (hereinafter referred to as “mounting surface” in this paragraph). .) May be provided on a part of the front surface (back surface) opposite to that and electrically connected to the mounting surface of the LED light emitting element via a through hole.
  • the material of the wiring layer is not particularly limited as long as it is a material that conducts electricity. Specific examples thereof include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), Nickel (Ni) etc. are mentioned, These may be used individually by 1 type and may use 2 or more types together. Of these, Cu is preferably used because of its low electrical resistance. Note that an Au layer or a Ni / Au layer may be provided on the surface layer of the wiring layer made of Cu from the viewpoint of improving the ease of wire bonding.
  • the thickness of the wiring layer is preferably 0.5 to 1000 ⁇ m, more preferably 1 to 500 ⁇ m, and particularly preferably 5 to 250 ⁇ m from the viewpoint of conduction reliability and package compactness.
  • the wiring layer in addition to various plating processes such as an electrolytic plating process, an electroless plating process, and a displacement plating process, a sputtering process, a vapor deposition process, a vacuum bonding process for metal foil, and an adhesion process with an adhesive layer provided. Etc.
  • various plating processes such as an electrolytic plating process, an electroless plating process, and a displacement plating process, a sputtering process, a vapor deposition process, a vacuum bonding process for metal foil, and an adhesion process with an adhesive layer provided.
  • Etc Among these, from the viewpoint of high heat resistance, the metal-only layer formation is preferable, and from the viewpoint of thick film / uniform formation and high adhesion, layer formation by plating is particularly preferable.
  • the plating process is a plating process for an inorganic material, it is preferable to use a technique in which a reduced metal layer called a seed layer is provided and then a thick metal layer is formed using the metal layer.
  • electroless plating for the formation of the seed layer.
  • the plating solution includes a main component (for example, a metal salt and a reducing agent) and an auxiliary component (for example, a pH adjusting agent, a buffering agent, a complex). It is preferable to use a solution composed of an agent, accelerator, stabilizer, improver, etc.
  • SE-650, 666, 680, SEK-670, 797, SFK-63 (all manufactured by Nihon Kanisen Co., Ltd.), Melplate NI-4128, Enplate NI-433, Enplate NI- Commercially available products such as 411 (all manufactured by Meltex Co., Ltd.) can be used as appropriate.
  • various electrolytic solutions containing sulfuric acid, copper sulfate, hydrochloric acid, polyethylene glycol and a surfactant as main components and other various additives can be used.
  • the wiring layer thus formed is patterned by a known method according to the mounting design of the light emitting element. Further, a metal layer (including solder) is again provided at a place where the light emitting element is actually mounted, and can be appropriately processed so as to be easily connected by thermocompression bonding, flip chip, wire bonding, or the like.
  • a metal layer a metal material such as solder or gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni) is preferable. From the viewpoint of mounting reliability, a method of providing Au or Ag via solder or Ni is preferable from the viewpoint of connection reliability.
  • a wiring layer having a pattern can be easily formed without requiring many steps on an uneven surface. Can be formed.
  • a wiring layer can be formed on a desired portion of the surface of the reflective substrate by ink jet printing using a metal ink containing a conductive metal. Specifically, a wiring pattern is formed with metal ink, and then fired to form a wiring.
  • the metal ink include those obtained by uniformly dispersing fine particles of a conductive metal in a solvent containing a binder, a surfactant, and the like. In this case, the solvent needs to have both affinity for the conductive metal and volatility.
  • Conductive metals contained in the metal ink include fine particles of metals such as silver, copper, gold, platinum, nickel, aluminum, iron, palladium, chromium, molybdenum, tungsten; silver oxide, cobalt oxide, iron oxide, ruthenium oxide, etc.
  • metal fine particles are preferable, silver, copper, and gold are more preferable, oxidation resistance is excellent, it is difficult to form a high-insulation oxide, and the cost is low, and the conductivity after firing the wiring pattern is improved. For this reason, silver is particularly preferable.
  • the shape of the conductive metal that is a fine particle is not particularly limited, and examples thereof include a spherical shape, a granular shape, and a scaly shape. From the viewpoint of increasing the contact area between the fine particles and improving the conductivity, the scaly shape is preferable. preferable.
  • the average size of the conductive metal contained in the metal ink is preferably 1 to 20 nm, and more preferably 5 to 10 nm from the viewpoint of improving the conductivity by increasing the filling rate in the wiring pattern formed with the metal ink.
  • a wiring pattern is formed on a desired portion of the surface of the reflective substrate by screen printing using a metal ink containing a conductive metal, and then fired to form a wiring.
  • the supply of the metallic ink by the screen printing method can be performed by providing a transmissive portion according to the wiring pattern on the screen and squeezing the metallic ink from the transmissive portion.
  • a metal ink containing a conductor metal what was used by the inkjet printing method mentioned above can be used.
  • the LED package of the present invention is an LED package having the above-described reflective substrate of the present invention and an LED light emitting element mounted on the surface thereof. Next, the configuration of the LED package of the present invention will be described with reference to FIG.
  • FIG. 2 is a schematic cross-sectional view showing an example of a preferred embodiment of the LED package of the present invention.
  • the LED package 20 has an LED light emitting element 12 mounted on the surface (inorganic reflective layer 3) of the reflective substrate 1 with an adhesive 11.
  • the LED light emitting element 12 is molded with a transparent resin 14 mixed with fluorescent particles 13 and wire-bonded to the reflective substrate 1 of the present invention having the metal wiring layer 10 also serving as an electrode for external connection.
  • the LED light emitting element is a substrate in which a semiconductor such as GaAlN, ZnS, ZnSe, SiC, GaP, GaAlAs, AlN, InN, AlInGaP, InGaN, GaN, and AlInGaN is formed as a light emitting layer on a substrate.
  • a semiconductor such as GaAlN, ZnS, ZnSe, SiC, GaP, GaAlAs, AlN, InN, AlInGaP, InGaN, GaN, and AlInGaN is formed as a light emitting layer on a substrate.
  • the semiconductor structure include a homostructure, a heterostructure, or a double heterostructure having a MIS junction, a PIN junction, or a PN junction.
  • Various emission wavelengths can be selected from ultraviolet light to infrared light depending on the material of the semiconductor layer and the degree of mixed crystal.
  • the material of the transparent resin is preferably a thermosetting resin.
  • the thermosetting resin is preferably formed of at least one selected from the group consisting of epoxy resins, modified epoxy resins, silicone resins, modified silicone resins, acrylate resins, urethane resins, and polyimide resins. , Modified epoxy resin, silicone resin, and modified silicone resin are preferable.
  • the transparent resin is preferably hard to protect the blue LED. Moreover, it is preferable to use resin excellent in heat resistance, a weather resistance, and light resistance for transparent resin.
  • the transparent resin may be mixed with at least one selected from the group consisting of a filler, a diffusing agent, a pigment, a fluorescent material, a reflective material, an ultraviolet absorber, and an antioxidant so as to have a predetermined function. it can.
  • the said fluorescent particle should just absorb the light from blue LED and wavelength-convert it into the light of a different wavelength.
  • Specific examples of the fluorescent particles include nitride-based phosphors, oxynitride-based phosphors, sialon-based phosphors, and ⁇ -sialon-based phosphors that are mainly activated by lanthanoid elements such as Eu and Ce.
  • the LED package of the present invention can also be used as a phosphor-mixed white LED package using an ultraviolet to blue LED and a fluorescent light emitter that absorbs the LED and emits fluorescence in the visible light region.
  • These fluorescent light emitters absorb blue light from the blue LED to generate fluorescence (yellowish fluorescent light), and white light is emitted from the light emitting element by the fluorescent light and the afterglow of the blue LED.
  • the above-described method is a so-called “pseudo white light emission type” in which a blue LED light source chip and one kind of yellow phosphor are combined.
  • an ultraviolet to near ultraviolet LED light source chip and a red / green / blue fluorescence for example, an ultraviolet to near ultraviolet LED light source chip and a red / green / blue fluorescence.
  • the LED of the present invention as a light-emitting unit using a known light-emitting method such as “ultraviolet to near-ultraviolet light source type” in which several kinds of bodies are combined and “RGB light source type” that emits white light with three red / green / blue light sources Package can be used.
  • a known light-emitting method such as “ultraviolet to near-ultraviolet light source type” in which several kinds of bodies are combined and “RGB light source type” that emits white light with three red / green / blue light sources Package can be used.
  • the method of mounting the LED light emitting element on the reflective substrate of the present invention involves mounting by heating, but the thermocompression bonding including solder reflow and the mounting method by flip chip provide uniform and reliable mounting.
  • the maximum reached temperature is preferably 220 to 350 ° C, more preferably 240 to 320 ° C, and particularly preferably 260 to 300 ° C.
  • the time for maintaining these maximum temperatures is preferably 2 seconds to 10 minutes, more preferably 5 seconds to 5 minutes, and particularly preferably 10 seconds to 3 minutes.
  • the temperature at the time of mounting by wire bonding is preferably 80 to 300 ° C., more preferably 90 to 250 ° C., and particularly preferably 100 to 200 ° C. from the viewpoint of reliable mounting.
  • the heating time is preferably 2 seconds to 10 minutes, more preferably 5 seconds to 5 minutes, and particularly preferably 10 seconds to 3 minutes.
  • Binder liquids A to D used for the inorganic reflection layer forming solution were prepared.
  • Examples 1 to 19 and Comparative Examples 1 to 5 An inorganic reflective layer forming solution was prepared by adding 100 g of inorganic particles shown in Table 1 below to 100 g of binder liquid having the composition shown in Table 1 below and stirring. After the prepared inorganic reflective layer forming solution is applied on the metal substrate shown in Table 1 below to form a coating film, the inorganic reflective layer is formed on the metal substrate by drying at 200 ° C. for 5 minutes. A reflective substrate was prepared. The presence of the metal phosphate (inorganic binder) in the inorganic reflective layer was confirmed by infrared spectroscopy (IR).
  • IR infrared spectroscopy
  • Thermal conductivity ⁇ ⁇ ⁇ Cp ⁇ ⁇ (In the formula, ⁇ represents thermal diffusivity, Cp represents specific heat, and ⁇ represents density.)
  • Ag wiring (wiring width: 100 ⁇ m) was formed by droplet ejection with 10 patterns. Thereafter, the entire reflective substrate was pressed with a roller to flatten the surface of the Ag wiring, and a nickel layer was formed on the Ag wiring.
  • an electroless nickel plating solution ICP-Nicolon GM (NP) manufactured by Okuno Pharmaceutical Co., Ltd.
  • Aluminum oxide (refractive index: 1.65, average particle size: 4.70 ⁇ m): A42-2 (manufactured by Showa Denko KK) Calcium hydroxide (refractive index: 1.57, average particle size: 1.00 ⁇ m): CSH (manufactured by Ube Materials Corporation) Barium sulfate (refractive index: 1.64, average particle size: 0.30 ⁇ m): B-30 (manufactured by Toshin Kasei Co., Ltd.) Lanthanum fluoride (refractive index: 1.59, average particle size: 0.90 ⁇ m): # 124-03532 (manufactured by Wako Pure Chemical Industries, Ltd.) Barium carbonate (refractive index: 1.60, average particle size: 0.85 ⁇ m): # 022-111792 (manufactured by Wako Pure Chemical Industries, Ltd.) Silicon dioxide (refractive index: 1.45, average particle size: 0.80 ⁇ m): # 199-00625 (manufactured
  • Example 1 and Example 16 it was found that the heat dissipation was further improved when the thickness of the metal substrate was 0.10 to 3 mm. Further, in comparison with Example 1 and Example 17, when the arithmetic average roughness Ra of the surface is 0.50 to 1.00 ⁇ m and the average interval Psm of the unevenness is 10 to 20 ⁇ m, the metal wiring layer It was found that the adhesiveness (wiring adhesiveness) was improved. Further, from the comparison between Example 1 and Examples 18 and 19, when the refractive index of the inorganic particles is 1.5 or more and 1.8 or less and the average particle diameter is 0.1 ⁇ m or more and 5 ⁇ m or less, reflection It was found that the rate was improved.

Abstract

The purpose of the present invention is to provide a reflective substrate which has excellent heat dissipation properties, while exhibiting excellent adhesion to an inorganic reflective layer. A reflective substrate of the present invention comprises a metal base and an inorganic reflective layer that is provided on at least a part of the surface of the metal base. The metal base contains at least one metal that is selected from the group consisting of gold, silver and copper. The inorganic reflective layer contains inorganic particles and an inorganic binder that contains phosphoric acid and/or a metal phosphate.

Description

反射基板Reflective substrate
 本発明は、反射基板に関し、より具体的には、発光ダイオード(以下、「LED」という。)等の発光素子の実装に用いられる反射基板に関する。 The present invention relates to a reflective substrate, and more specifically to a reflective substrate used for mounting a light emitting element such as a light emitting diode (hereinafter referred to as “LED”).
 一般的に、LEDは、蛍光灯と比較して、電力使用量が1/100、寿命が40倍(40000時間)と言われている。このような省電力かつ長寿命という特徴が、環境重視の流れの中でLEDが採用される重要な要素となっている。
 特に白色LEDは、演色性に優れ、蛍光灯に比べて電源回路が簡便であるというメリットもあることから、照明用光源としての期待が高まっている。
 近年、照明用光源として要求される発光効率の高い白色LED(30~150Lm/W)も続々と登場し、実用時における光の利用効率の点では、蛍光灯(20~110Lm/W)を逆転している。
 これにより、蛍光灯に代わり白色LEDの実用化の流れが一気に高まり、液晶表示装置のバックライトや照明用光源として白色LEDが採用されるケースも増えつつある。
In general, LEDs are said to have a power consumption of 1/100 and a lifespan of 40 times (40000 hours) compared to fluorescent lamps. Such a feature of power saving and long life is an important factor in adopting LEDs in an environment-oriented flow.
In particular, white LEDs are excellent in color rendering properties and have a merit that a power supply circuit is simpler than fluorescent lamps, and therefore, expectations for light sources for illumination are increasing.
In recent years, white LEDs (30 to 150 Lm / W) with high luminous efficiency, which are required as illumination light sources, have appeared one after another, and in terms of light use efficiency in practical use, the fluorescent lamps (20 to 110 Lm / W) have been reversed. is doing.
As a result, the flow of practical use of white LEDs instead of fluorescent lamps has increased rapidly, and the number of cases in which white LEDs are employed as backlights or illumination light sources for liquid crystal display devices is increasing.
 このような白色LEDに使用できる基板として、特許文献1には、「バルブ金属基板上の少なくとも一部に無機反射層を備え、前記無機反射層が、リン酸アルミニウム、塩化アルミニウムおよびケイ酸ナトリウムからなる群から選択される少なくとも一つの無機結着剤と、屈折率1.5以上1.8以下、平均粒径0.1μm以上5μm以下の無機粒子とを含有することを特徴とする発光素子用反射基板。」が記載されている。 As a substrate that can be used for such a white LED, Patent Document 1 discloses that “an inorganic reflective layer is provided on at least a part of a valve metal substrate, and the inorganic reflective layer is made of aluminum phosphate, aluminum chloride, and sodium silicate. For light-emitting elements, comprising at least one inorganic binder selected from the group consisting of and inorganic particles having a refractive index of 1.5 to 1.8 and an average particle size of 0.1 to 5 μm Reflective substrate "is described.
国際公開第2012/133173号International Publication No. 2012/133173
 本発明者は、特許文献1に記載の発光素子用反射基板について検討を行った結果、バルブ金属基板と無機反射層との接着(密着)は十分に担保されていたが、使用環境によっては放熱性(熱伝導性)に改善の余地があることを明らかとした。
 そして、本発明者は、金属基材として熱伝導性の高い金属(金、銀または銅)を採用したところ、放熱性は良好となったが、使用する無機結着剤によっては無機反射層と金属基材との接着性が劣る場合があることを明らかとした。
As a result of studying the reflective substrate for a light emitting element described in Patent Document 1, the present inventor has sufficiently secured the adhesion (adhesion) between the valve metal substrate and the inorganic reflective layer. It has been clarified that there is room for improvement in the property (thermal conductivity).
And when this inventor employ | adopted the metal (gold, silver, or copper) with high heat conductivity as a metal base material, although heat dissipation became favorable, depending on the inorganic binder to be used, an inorganic reflective layer and It has been clarified that the adhesion to the metal substrate may be inferior.
 そこで、本発明は、放熱性に優れ、かつ、無機反射層との接着性に優れる反射基板を提供することを目的とする。 Therefore, an object of the present invention is to provide a reflective substrate that is excellent in heat dissipation and adhesiveness with an inorganic reflective layer.
 本発明者は、上記目的を達成すべく鋭意研究した結果、無機粒子とともに、リン酸金属塩等を含む特定の無機結着剤を含有する無機反射層を設けることにより、熱伝導性の高い金属基材に対しても接着性に優れること見出し、本発明を完成させた。
 すなわち、本発明は、以下の構成の反射基板を提供する。
As a result of earnest research to achieve the above object, the inventor of the present invention provides a metal having high thermal conductivity by providing an inorganic reflective layer containing a specific inorganic binder containing a metal phosphate or the like together with inorganic particles. The inventors have found that the adhesiveness is excellent also with respect to the substrate, and completed the present invention.
That is, the present invention provides a reflective substrate having the following configuration.
 (1) 金属基材と、金属基材の表面の少なくとも一部に設けられた無機反射層とを有し、
 金属基材が、金、銀および銅からなる群から選択される少なくとも1種の金属で構成されており、
 無機反射層が、リン酸および/またはリン酸金属塩を含む無機結着剤と、無機粒子とを含有する、反射基板。
 (2) リン酸金属塩が、リン酸金、リン酸銀およびリン酸銅からなる群から選択される少なくとも1種である(1)に記載の反射基板。
 (3) 金属基材を構成する金属と、リン酸金属塩を構成する金属とが、同種の金属である(1)または(2)に記載の反射基板。
 (4) 無機粒子の屈折率が1.5以上1.8以下であり、かつ、平均粒子径が0.1μm以上5μm以下である(1)~(3)のいずれかに記載の反射基板。
 (5) 無機粒子が、酸化物、水酸化物および無機塩からなる群から選択される少なくとも1種である(1)~(4)のいずれかに記載の反射基板。
 (6) 無機粒子が、酸化アルミニウム、水酸化カルシウムおよび硫酸バリウムからなる群から選択される少なくとも1種である(1)~(5)のいずれかに記載の反射基板。
 (7) 金属基材の厚さが、0.1~3mmである(1)~(6)のいずれかに記載の反射基板。
 (8) 表面の算術平均粗さRaが0.50~1.00μmであり、かつ、凹凸の平均間隔Psmが10~20μmである(1)~(7)のいずれかに記載の反射基板。
 (9) (1)~(8)のいずれかに記載の反射基板と、表面に実装されたLED発光素子とを有するLEDパッケージ。
(1) having a metal substrate and an inorganic reflective layer provided on at least a part of the surface of the metal substrate;
The metal substrate is composed of at least one metal selected from the group consisting of gold, silver and copper;
A reflective substrate, wherein the inorganic reflective layer contains an inorganic binder containing phosphoric acid and / or a metal phosphate and inorganic particles.
(2) The reflective substrate according to (1), wherein the metal phosphate is at least one selected from the group consisting of gold phosphate, silver phosphate, and copper phosphate.
(3) The reflective substrate according to (1) or (2), wherein the metal constituting the metal substrate and the metal constituting the metal phosphate are the same type of metal.
(4) The reflective substrate according to any one of (1) to (3), wherein the refractive index of the inorganic particles is from 1.5 to 1.8, and the average particle diameter is from 0.1 μm to 5 μm.
(5) The reflective substrate according to any one of (1) to (4), wherein the inorganic particles are at least one selected from the group consisting of oxides, hydroxides, and inorganic salts.
(6) The reflective substrate according to any one of (1) to (5), wherein the inorganic particles are at least one selected from the group consisting of aluminum oxide, calcium hydroxide, and barium sulfate.
(7) The reflective substrate according to any one of (1) to (6), wherein the metal substrate has a thickness of 0.1 to 3 mm.
(8) The reflective substrate according to any one of (1) to (7), wherein the arithmetic average roughness Ra of the surface is 0.50 to 1.00 μm and the average interval Psm of the unevenness is 10 to 20 μm.
(9) An LED package comprising the reflective substrate according to any one of (1) to (8) and an LED light emitting element mounted on the surface.
 本発明によれば、放熱性に優れ、かつ、無機反射層との接着性に優れる反射基板を提供することができる。 According to the present invention, it is possible to provide a reflective substrate that is excellent in heat dissipation and adhesiveness with an inorganic reflective layer.
本発明の反射基板の好適な実施形態の一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of suitable embodiment of the reflective substrate of this invention. 本発明のLEDパッケージの好適な実施態様の一例を示す模式的な断面図である。It is typical sectional drawing which shows an example of the suitable embodiment of the LED package of this invention. 評価に用いた配線パターンを説明する概略図である。It is the schematic explaining the wiring pattern used for evaluation.
[反射基板]
 以下に、本発明の反射基板について詳細に説明する。
 本発明の反射基板は、金属基材と、金属基材の表面の少なくとも一部に設けられた無機反射層とを有し、金属基材が、金、銀および銅からなる群から選択される少なくとも1種の金属を含み、無機反射層が、リン酸および/またはリン酸金属塩を含む無機結着剤と、無機粒子とを含有する、発光素子の実装に好適に用いられる反射基板である。
 次に、本発明の反射基板の構成について、図1を用いて説明する。
[Reflective substrate]
Hereinafter, the reflective substrate of the present invention will be described in detail.
The reflective substrate of the present invention has a metal base material and an inorganic reflective layer provided on at least a part of the surface of the metal base material, and the metal base material is selected from the group consisting of gold, silver and copper. A reflective substrate suitably used for mounting a light emitting device, comprising at least one metal, and wherein the inorganic reflective layer contains an inorganic binder containing phosphoric acid and / or a metal phosphate and inorganic particles. .
Next, the configuration of the reflective substrate of the present invention will be described with reference to FIG.
 図1は、本発明の反射基板の好適な実施形態の一例を示す断面模式図である。
 図1に示すように、本発明の反射基板1は、金属基材2と、金属基材2の表面の少なくとも一部に設けられた無機反射層3とを有し、無機反射層3が無機粒子4および無機結着剤5を含有する反射基板である。
FIG. 1 is a schematic cross-sectional view showing an example of a preferred embodiment of the reflective substrate of the present invention.
As shown in FIG. 1, the reflective substrate 1 of the present invention has a metal base 2 and an inorganic reflective layer 3 provided on at least a part of the surface of the metal base 2, and the inorganic reflective layer 3 is inorganic. A reflective substrate containing particles 4 and an inorganic binder 5.
 〔金属基材〕
 本発明の反射基板に用いられる金属基材は、金、銀および銅からなる群から選択される少なくとも1種の金属で構成されていれば特に限定されない。
 ここで、「金属で構成されている」とは、上記金属のみで構成される金属基材だけでなく、これらの金属の合金(例えば、銅と銀の合金)から構成される金属基材も含むものである。
 このような金属で構成される金属基材を用いることにより、本発明の反射基板の放熱性が良好となる。
 これらのうち、加工性が容易であり、耐候性が高い等の観点から、銅であるのが好ましい。
[Metal base material]
The metal substrate used for the reflective substrate of the present invention is not particularly limited as long as it is composed of at least one metal selected from the group consisting of gold, silver, and copper.
Here, “consisting of metal” means not only a metal substrate composed of only the above metal but also a metal substrate composed of an alloy of these metals (for example, an alloy of copper and silver). Is included.
By using a metal substrate composed of such a metal, the heat dissipation of the reflective substrate of the present invention is improved.
Of these, copper is preferable from the viewpoints of easy workability and high weather resistance.
 本発明においては、金属基材の厚みは、放熱性がより良好となる理由から、0.1~3mmであるのが好ましく、0.15~1.5mmであるのが好ましく、0.2~1.0mmであるのがより好ましい。この厚さは、ユーザーの希望等により適宜変更することができる。
 なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
In the present invention, the thickness of the metal substrate is preferably 0.1 to 3 mm, more preferably 0.15 to 1.5 mm, for the reason that heat dissipation is better. More preferably, it is 1.0 mm. This thickness can be appropriately changed according to the user's wishes or the like.
In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
 〔無機反射層〕
 本発明の反射基板が有する無機反射層は、リン酸および/またはリン酸金属塩を含む無機結着剤と、無機粒子とを含有する反射層である。
 以下に、無機反射層に含まれる無機結着剤および無機粒子について詳述する。
[Inorganic reflective layer]
The inorganic reflective layer included in the reflective substrate of the present invention is a reflective layer containing an inorganic binder containing phosphoric acid and / or a metal phosphate and inorganic particles.
Hereinafter, the inorganic binder and the inorganic particles contained in the inorganic reflective layer will be described in detail.
 <無機結着剤>
 無機反射層が含有する無機結着剤は、少なくともリン酸および/またはリン酸金属塩を含むものであれば特に限定されない。
 このような無機結着剤を用いることにより、無機反射層と金属基材との接着性が良好となる。
 これは、無機結着剤が、後述する無機粒子同士を結合させるとともに、金属基材と無機粒子との隙間にも入り込み、無機反射層の形成時に金属基材とも反応し、金属基材との界面においてもリン酸結合のネットワークが形成され、より強固な結合を発現するためと考えられる。
<Inorganic binder>
The inorganic binder contained in the inorganic reflective layer is not particularly limited as long as it contains at least phosphoric acid and / or a metal phosphate.
By using such an inorganic binder, the adhesiveness between the inorganic reflective layer and the metal substrate is improved.
This is because the inorganic binder binds inorganic particles to be described later, and also enters the gap between the metal substrate and the inorganic particles, and reacts with the metal substrate when forming the inorganic reflective layer. It is thought that a network of phosphate bonds is formed also at the interface, and a stronger bond is expressed.
 本発明においては、無機結着剤として、リン酸および/またはリン酸金属塩を50質量%以上含むのが好ましく、80質量%以上含むのがより好ましく、100質量%、すなわち、無機結着剤としてリン酸および/またはリン酸金属塩のみを用いるのが更に好ましい。 In the present invention, the inorganic binder preferably contains 50% by mass or more of phosphoric acid and / or metal phosphate, more preferably 80% by mass or more, and 100% by mass, that is, the inorganic binder. It is more preferable to use only phosphoric acid and / or metal phosphate.
 (リン酸金属塩)
 リン酸金属塩は特に限定されず、リン酸金属塩におけるリン酸としては、例えば、リン酸、メタリン酸、オルトリン酸、ポリリン酸、セスキリン酸等が挙げられ、リン酸金属塩における金属としては、例えば、金、銀、銅、アルミニウム、ジルコニウム、チタン、亜鉛、セリウム等が挙げられ、リン酸金属塩としては、これらを組み合わせたものを適宜用いることができる。
 ここで、リン酸金属塩は、上述したリン酸と上述した金属を含む酸化物や水酸化物(例えば、水酸化金、酸化銀、水酸化銅、水酸化アルミニウム)とを水の存在下で反応させて得ることができる。
(Metal phosphate)
The phosphoric acid metal salt is not particularly limited, and examples of the phosphoric acid in the phosphoric acid metal salt include phosphoric acid, metaphosphoric acid, orthophosphoric acid, polyphosphoric acid, sesquiphosphoric acid, and the like. As the metal in the phosphoric acid metal salt, For example, gold, silver, copper, aluminum, zirconium, titanium, zinc, cerium, and the like can be given. As the metal phosphate, a combination of these can be used as appropriate.
Here, the phosphoric acid metal salt is the above-described phosphoric acid and an oxide or hydroxide containing the above-described metal (for example, gold hydroxide, silver oxide, copper hydroxide, aluminum hydroxide) in the presence of water. It can be obtained by reaction.
 これらのうち、リン酸金属塩としては、リン酸金、リン酸銀、リン酸銅、リン酸アルミニウムであるのが好ましい。なかでも、無機反射層と金属基材との接着性がより良好となり、また、意外にも金属配線層との密着性(配線密着性)が良好となる理由から、リン酸金、リン酸銀、リン酸銅であるのがより好ましい。 Of these, the metal phosphate is preferably gold phosphate, silver phosphate, copper phosphate, or aluminum phosphate. Among them, gold phosphate and silver phosphate are preferable because the adhesion between the inorganic reflective layer and the metal substrate is better, and the adhesion to the metal wiring layer (wiring adhesion) is unexpectedly better. More preferably, it is copper phosphate.
 本発明においては、無機反射層と金属基材との接着性がより良好となる理由から、上述した金属基材を構成する金属と、リン酸金属塩を構成する金属とが同種の金属であるのが好ましい。なかでも、加工性が容易であり、耐候性が高い等の理由から、金属基材として銅基材を用い、無機結着剤(リン酸金属塩)としてリン酸銅を用いる態様がより好ましい。 In the present invention, the metal constituting the metal substrate and the metal constituting the metal phosphate are the same type of metal because the adhesion between the inorganic reflective layer and the metal substrate is better. Is preferred. Among these, for reasons such as easy workability and high weather resistance, a mode in which a copper base is used as the metal base and copper phosphate is used as the inorganic binder (phosphate metal salt) is more preferable.
 (ケイ酸ナトリウム)
 本発明においては、無機結着剤として、上述したリン酸および/またはリン酸金属塩とともに、任意成分としてケイ酸ナトリウムを併用してもよい。
 上記ケイ酸ナトリウムは、ケイ酸ソーダまたは水ガラスとも呼ばれるものであり、メタケイ酸のナトリウム塩であるNa2SiO3が一般的だが、その他に、Na4SiO4、Na2Si25、Na2Si49なども用いることができる。
 メタケイ酸のナトリウム塩は、二酸化ケイ素を炭酸ナトリウムまたは水酸化ナトリウムと融解して得ることができる。
 なお、ケイ酸ナトリウムを併用する場合の含有量は、無機結着剤の全質量に対して50質量%未満である。
(Sodium silicate)
In the present invention, as an inorganic binder, sodium silicate as an optional component may be used in combination with the above-described phosphoric acid and / or metal phosphate.
The above-mentioned sodium silicate is also called sodium silicate or water glass, and Na 2 SiO 3, which is a sodium salt of metasilicate, is commonly used. In addition, Na 4 SiO 4 , Na 2 Si 2 O 5 , Na 2 Si 4 O 9 or the like can also be used.
The sodium salt of metasilicic acid can be obtained by melting silicon dioxide with sodium carbonate or sodium hydroxide.
In addition, content in the case of using sodium silicate together is less than 50 mass% with respect to the total mass of an inorganic binder.
 (塩化アルミニウム)
 本発明においては、無機結着剤として、上述したリン酸および/またはリン酸金属塩とともに、任意成分として塩化アルミニウムを併用してもよい。
 上記塩化アルミニウムは、無水塩化アルミニウム、塩化アルミニウム6水和物、ポリ塩化アルミニウム(水酸化アルミニウムを塩酸に溶解させて生成する塩基性塩化アルミニウムの重合体)のいずれであってもよい。
 なお、塩化アルミニウムを併用する場合の含有量は、無機結着剤の全質量に対して50質量%未満である。
(Aluminum chloride)
In the present invention, as the inorganic binder, aluminum chloride may be used in combination with the above-described phosphoric acid and / or metal phosphate as an optional component.
The aluminum chloride may be any of anhydrous aluminum chloride, aluminum chloride hexahydrate, and polyaluminum chloride (a polymer of basic aluminum chloride formed by dissolving aluminum hydroxide in hydrochloric acid).
In addition, content in the case of using aluminum chloride together is less than 50 mass% with respect to the total mass of an inorganic binder.
 <無機粒子>
 無機反射層が含有する無機粒子は特に限定されないが、屈折率が1.5以上1.8以下であり、かつ、平均粒子径が0.1μm以上5μm以下である無機粒子であるのが好ましい。
 ここで、屈折率とは、JIS K 0062:1992の「5.固体試料の測定方法」に従って、25℃において測定した値をいう。
 また、平均粒子径とは、上記無機粒子の粒子径の平均値をいい、本発明においては、レーザー回折式粒度分布測定装置を用いて測定された50%体積累積径(D50)をいう。
<Inorganic particles>
The inorganic particles contained in the inorganic reflective layer are not particularly limited, but are preferably inorganic particles having a refractive index of 1.5 to 1.8 and an average particle diameter of 0.1 μm to 5 μm.
Here, the refractive index means a value measured at 25 ° C. according to “5. Measuring method of solid sample” of JIS K 0062: 1992.
The average particle diameter refers to the average value of the particle diameters of the inorganic particles. In the present invention, the average particle diameter refers to a 50% volume cumulative diameter (D50) measured using a laser diffraction particle size distribution analyzer.
 このような屈折率および平均粒子径を満たす無機粒子を用いることにより、本発明の反射基板の反射率が高くなり、かつ、上述した無機結着剤が無機粒子同士の隙間や無機粒子と金属基材との隙間に入り込むことができるため、無機反射層の強度が良好となり、無機反射層と金属基材との接着性がより良好となる。
 本発明においては、反射率の観点から、無機粒子の屈折率は1.55以上1.75以下であるのが好ましく、また、無機反射層の強度および無機反射層と金属基材との接着性の観点から、無機粒子の平均粒子径は0.5~2μmであるのが好ましい。
By using inorganic particles satisfying such a refractive index and an average particle diameter, the reflectance of the reflective substrate of the present invention is increased, and the inorganic binder described above is a gap between inorganic particles or an inorganic particle and a metal group. Since it can enter into the gap with the material, the strength of the inorganic reflective layer is improved, and the adhesion between the inorganic reflective layer and the metal substrate is improved.
In the present invention, from the viewpoint of reflectance, the refractive index of the inorganic particles is preferably 1.55 or more and 1.75 or less, and the strength of the inorganic reflection layer and the adhesion between the inorganic reflection layer and the metal substrate. From this viewpoint, the average particle diameter of the inorganic particles is preferably 0.5 to 2 μm.
 上記無機粒子の種類は特に限定されず、従来公知の酸化物(例えば、金属酸化物など)、水酸化物(例えば、金属水酸化物など)、無機塩(例えば、炭酸塩、硫酸化物など)、フッ化物(例えば、フッ化ランタンなど)、二酸化ケイ素(シリカ)などを用いることができる。
 これらのうち、本発明の反射基板の反射率が高くなる理由から、酸化物、水酸化物、無機塩であるのが好ましい。
The kind of the inorganic particles is not particularly limited, and conventionally known oxides (for example, metal oxides), hydroxides (for example, metal hydroxides), inorganic salts (for example, carbonates, sulfates, etc.) , Fluoride (eg, lanthanum fluoride), silicon dioxide (silica), and the like can be used.
Of these, oxides, hydroxides, and inorganic salts are preferred because the reflectance of the reflective substrate of the present invention is high.
 上記無機粒子としては、具体的には、例えば、酸化アルミニウム(アルミナ)(屈折率n=1.65~1.76、以下、本段落における括弧内の数字は屈折率を示す。)、水酸化アルミニウム(1.58~1.65~1.76)、水酸化カルシウム(1.57~1.6)、炭酸カルシウム(1.58)、方解石(1.61)、カルシウムカーボネート(1.61)、軽質炭酸カルシウム(1.59)、重質炭酸カルシウム(1.56)、極微細炭酸カルシウム(1.57)、石膏(1.55)、硫酸カルシウム(1.59)、大理石(1.57)、硫酸バリウム(1.64)、炭酸バリウム(1.6)、酸化マグネシウム(1.72)、炭酸マグネシウム(1.52)、水酸化マグネシウム(1.58)、炭酸ストロンチウム(1.52)、カオリンクレー(1.56)、焼成クレー(1.62)、タルク(1.57)、セリサイト(1.57)、光学ガラス(1.51~1.64)、ガラスビーズ(1.51)等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
 これらのうち、無機粒子自体の白色性が高く、反射特性に有利となる理由から、酸化アルミニウム、水酸化カルシウム、硫酸バリウムであるのが好ましい。
Specific examples of the inorganic particles include aluminum oxide (alumina) (refractive index n = 1.65 to 1.76, the numbers in parentheses in this paragraph indicate the refractive index), hydroxide Aluminum (1.58 to 1.65 to 1.76), calcium hydroxide (1.57 to 1.6), calcium carbonate (1.58), calcite (1.61), calcium carbonate (1.61) , Light calcium carbonate (1.59), heavy calcium carbonate (1.56), ultrafine calcium carbonate (1.57), gypsum (1.55), calcium sulfate (1.59), marble (1.57 ), Barium sulfate (1.64), barium carbonate (1.6), magnesium oxide (1.72), magnesium carbonate (1.52), magnesium hydroxide (1.58), strontium carbonate (1.52) , Orinkley (1.56), calcined clay (1.62), talc (1.57), sericite (1.57), optical glass (1.51-1.64), glass beads (1.51), etc. These may be used alone or in combination of two or more.
Among these, aluminum oxide, calcium hydroxide, and barium sulfate are preferable because the inorganic particles themselves have high whiteness and are advantageous in reflection characteristics.
 本発明においては、上記無機粒子として、2種類以上の粒子や、2種類以上の平均粒子径を有する粒子を併用してもよい。
 種類や平均粒子径の異なる粒子を併用することにより、無機反射層の強度の向上や、上記無機反射層と上記金属基材との接着性の更なる向上を図ることができる。
In the present invention, two or more kinds of particles or two or more kinds of particles having an average particle diameter may be used in combination as the inorganic particles.
By using particles having different types and average particle diameters in combination, it is possible to improve the strength of the inorganic reflective layer and further improve the adhesion between the inorganic reflective layer and the metal substrate.
 また、本発明においては、上記無機粒子の形状は特に限定はされず、例えば、球状、多面体状(例えば、20面体状、12面体状等)、立方体状、4面体状、球体表面に凹凸状ないし凸状の突起を複数有する形状(以下、「コンペイトウ形状」ともいう。)、板状、針状等いずれであってもよい。
 これらのうち、断熱性に優れる理由から、球状、多面体状、立方体状、4面体状、コンペイトウ形状が好ましく、入手が容易で断熱性により優れる理由から、球状であるのがより好ましい。
In the present invention, the shape of the inorganic particles is not particularly limited. For example, the shape is spherical, polyhedral (for example, icosahedron, dodecahedron, etc.), cubic, tetrahedral, or uneven on the surface of the sphere. Or a shape having a plurality of convex protrusions (hereinafter also referred to as “compete shape”), a plate shape, a needle shape, or the like may be used.
Among these, spherical, polyhedral, cubic, tetrahedral, and complex shapes are preferred for the reason of excellent heat insulation, and spherical is more preferred for reasons of easy availability and excellent heat insulation.
 上述した無機結着剤および無機粒子を含有する無機反射層は、上記金属基材の表面に、加熱乾燥後の質量が20g/m2~500g/m2となる量で設けられるのが好ましい。
 また、無機反射層における無機結着剤および無機粒子の含有割合に関して、無機粒子100質量部に対して、無機結着剤を5~100質量部含有しているのが好ましく、10~50質量部がより好ましい。
 更に、無機反射層には、無機結着剤および無機粒子以外に、他の化合物を含有してもよい。他の化合物としては、例えば、分散剤、反応促進剤等が挙げられる。
The inorganic reflective layer containing the inorganic binder and inorganic particles described above is preferably provided on the surface of the metal substrate in an amount such that the mass after heat drying is 20 g / m 2 to 500 g / m 2 .
The content of the inorganic binder and the inorganic particles in the inorganic reflective layer is preferably 5 to 100 parts by mass of the inorganic binder with respect to 100 parts by mass of the inorganic particles. Is more preferable.
Further, the inorganic reflective layer may contain other compounds in addition to the inorganic binder and the inorganic particles. Examples of other compounds include a dispersant and a reaction accelerator.
 <無機反射層の形成方法>
 本発明においては、無機反射層の形成方法は特に限定されず、例えば、上記金属基材の表面上に、上記無機粒子と上記無機系結着剤とを含有する塗布液(組成物)をスクリーン印刷等により塗布し、乾燥させる方法等により形成することができ、具体的には、特許文献1の[0021]~[0023]に記載された方法等が挙げられる。
<Method for forming inorganic reflection layer>
In the present invention, the method for forming the inorganic reflective layer is not particularly limited. For example, a coating liquid (composition) containing the inorganic particles and the inorganic binder is screened on the surface of the metal substrate. It can be formed by a method such as applying and drying by printing or the like, and specifically, a method described in [0021] to [0023] of Patent Document 1.
 〔表面形状〕
 本発明の反射基板は、その表面(発光素子を実装する場合は発光素子が実装される部分の表面を除く。以下、同様。)、すなわち、無機反射層の表面の算術平均粗さRa(以下、単に「Ra」ともいう。)が0.50~1.00μmであり、かつ、凹凸の平均間隔Psm(以下、単に「Psm」ともいう。)が10~20μmであるのが好ましい。
 ここで、「Ra」および「Psm」は、それぞれ、JIS B0601:2001に記載された表面性状パラメータのことをいい、本発明においては、いずれも触針式の表面粗さ計(例えば、SURFCOM480A、株式会社東京精密製)を用いて測定することができる。
[Surface shape]
The reflective substrate of the present invention has an arithmetic average roughness Ra (hereinafter referred to as the surface of the inorganic reflective layer), that is, the surface (excluding the surface of the portion where the light emitting element is mounted when the light emitting element is mounted). In addition, it is preferable that the average interval Psm (hereinafter also simply referred to as “Psm”) is 10 to 20 μm.
Here, “Ra” and “Psm” refer to surface property parameters described in JIS B0601: 2001, and in the present invention, both are stylus type surface roughness meters (for example, SURFCOM 480A, (Manufactured by Tokyo Seimitsu Co., Ltd.).
 反射基板の表面のRaが上記範囲であると、正反射率および拡散反射率が良好となり、高い発光効率を達成することができる発光素子用の反射基板とすることができる。
 同様に、反射基板の表面のPsmが上記範囲であると、拡散反射率がより良好となり、拡散反射率と正反射率との比率(拡散反射率/正反射率)を95%より大きくすることができる。
 これらの観点から、本発明においては、反射基板の表面のRaが0.65~0.90μmであるのが好ましく、反射基板の表面のPsmが10~15μmであるのが好ましい。
When the Ra of the surface of the reflective substrate is in the above range, the regular reflectance and the diffuse reflectance are good, and a reflective substrate for a light emitting device that can achieve high light emission efficiency can be obtained.
Similarly, when Psm on the surface of the reflective substrate is in the above range, the diffuse reflectance is improved, and the ratio of diffuse reflectance to regular reflectance (diffuse reflectance / regular reflectance) is to be greater than 95%. Can do.
From these viewpoints, in the present invention, Ra on the surface of the reflective substrate is preferably 0.65 to 0.90 μm, and Psm on the surface of the reflective substrate is preferably 10 to 15 μm.
 〔配線層〕
 本発明の反射基板は、発光素子を実装するに当たり、配線層(金属配線層)を有していてもよい。
 本発明においては、上記配線層は、発光素子が実装される側の表面の一部に設けられてもよいし、発光素子が実装される側の表面(以下、本段落において「実装面」という。)とは反対側の表面(裏面)の一部に設けられてLED発光素子の実装面とスルーホールを介して電気的に接続されてもよい。
(Wiring layer)
The reflective substrate of the present invention may have a wiring layer (metal wiring layer) when mounting the light emitting element.
In the present invention, the wiring layer may be provided on a part of the surface on which the light emitting element is mounted, or the surface on which the light emitting element is mounted (hereinafter referred to as “mounting surface” in this paragraph). .) May be provided on a part of the front surface (back surface) opposite to that and electrically connected to the mounting surface of the LED light emitting element via a through hole.
 上記配線層の材料は、電気を通す素材であれば特に限定されず、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)等が挙げられ、これらを1種単独で使用してもよく2種以上を併用してもよい。
 これらのうち、電気抵抗が低い理由からCuを用いるのが好ましい。なお、Cuによる配線層の表層には、ワイヤボンディングの容易性を高める観点から、Au層やNi/Au層を設けていてもよい。
The material of the wiring layer is not particularly limited as long as it is a material that conducts electricity. Specific examples thereof include gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), Nickel (Ni) etc. are mentioned, These may be used individually by 1 type and may use 2 or more types together.
Of these, Cu is preferably used because of its low electrical resistance. Note that an Au layer or a Ni / Au layer may be provided on the surface layer of the wiring layer made of Cu from the viewpoint of improving the ease of wire bonding.
 また、上記配線層の厚さは、導通信頼性およびパッケージのコンパクト性の観点から、0.5~1000μmが好ましく、1~500μmがより好ましく、5~250μmが特に好ましい。 The thickness of the wiring layer is preferably 0.5 to 1000 μm, more preferably 1 to 500 μm, and particularly preferably 5 to 250 μm from the viewpoint of conduction reliability and package compactness.
 上記配線層の形成方法としては、電解めっき処理、無電解めっき処理、置換めっき処理などの種々めっき処理の他、スパッタリング処理、蒸着処理、金属箔の真空貼付処理、接着層を設けての接着処理等が挙げられる。
 これらのうち、耐熱性が高い観点から、金属のみの層形成であることが好ましく、厚膜/均一形成化および高密着性の観点から、めっき処理による層形成が特に好ましい。
As a method of forming the wiring layer, in addition to various plating processes such as an electrolytic plating process, an electroless plating process, and a displacement plating process, a sputtering process, a vapor deposition process, a vacuum bonding process for metal foil, and an adhesion process with an adhesive layer provided. Etc.
Among these, from the viewpoint of high heat resistance, the metal-only layer formation is preferable, and from the viewpoint of thick film / uniform formation and high adhesion, layer formation by plating is particularly preferable.
 上記めっき処理は、無機材料に対するめっき処理になるため、シード層と呼ばれる還元金属層を設けた後、その金属層を利用して厚い金属層を形成する手法を用いるのが好ましい。
 また、上記シード層の形成には、無電解めっきを用いるのが好ましく、めっき液としては、主成分(例えば、金属塩、還元剤等)と補助成分(例えば、pH調整剤、緩衝剤、錯化剤、促進剤、安定剤、改良剤等)から構成される溶液を用いるのが好ましい。なお、めっき液としては、SE-650・666・680、SEK-670・797、SFK-63(いずれも日本カニゼン株式会社製)、メルプレートNI-4128、エンプレートNI-433、エンプレートNI-411(いずれもメルテックス株式会社製)等の市販品を適宜用いることができる。
 また、上記配線層の材料として銅を用いた場合、硫酸、硫酸銅、塩酸、ポリエチレングリコールおよび界面活性剤を主成分とし、その他各種添加剤を加えた種々の電解液を用いることができる。
Since the plating process is a plating process for an inorganic material, it is preferable to use a technique in which a reduced metal layer called a seed layer is provided and then a thick metal layer is formed using the metal layer.
In addition, it is preferable to use electroless plating for the formation of the seed layer. The plating solution includes a main component (for example, a metal salt and a reducing agent) and an auxiliary component (for example, a pH adjusting agent, a buffering agent, a complex). It is preferable to use a solution composed of an agent, accelerator, stabilizer, improver, etc. As plating solutions, SE-650, 666, 680, SEK-670, 797, SFK-63 (all manufactured by Nihon Kanisen Co., Ltd.), Melplate NI-4128, Enplate NI-433, Enplate NI- Commercially available products such as 411 (all manufactured by Meltex Co., Ltd.) can be used as appropriate.
Further, when copper is used as the material for the wiring layer, various electrolytic solutions containing sulfuric acid, copper sulfate, hydrochloric acid, polyethylene glycol and a surfactant as main components and other various additives can be used.
 このようにして形成される配線層は、発光素子の実装の設計に応じ、公知の方法でパターン形成される。また、実際に発光素子が実装される箇所には、再度金属層(半田も含む)を設け、熱圧着や、フリップチップ、ワイヤボンディング等で、接続しやすいように適宜加工することができる。
 好適な金属層としては、半田、または、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)等の金属素材が好ましく、加熱によるLEDの実装の観点では、半田、または、Niを介してのAu、Agを設ける方法が接続信頼性の観点から好ましい。
The wiring layer thus formed is patterned by a known method according to the mounting design of the light emitting element. Further, a metal layer (including solder) is again provided at a place where the light emitting element is actually mounted, and can be appropriately processed so as to be easily connected by thermocompression bonding, flip chip, wire bonding, or the like.
As a suitable metal layer, a metal material such as solder or gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni) is preferable. From the viewpoint of mounting reliability, a method of providing Au or Ag via solder or Ni is preferable from the viewpoint of connection reliability.
 配線層の形成方法として以下で説明する金属インクを用いてインクジェット印刷法またはスクリーン印刷法によりパターンを形成すれば、凹凸のある表面に多くの工程を必要とせずに簡易にパターンを有する配線層を形成することができる。 If a pattern is formed by an inkjet printing method or a screen printing method using a metal ink described below as a method for forming a wiring layer, a wiring layer having a pattern can be easily formed without requiring many steps on an uneven surface. Can be formed.
 <インクジェット印刷法>
 導体金属を含む金属インクを用いてインクジェット印刷法により、反射基板の表面の所望の部位に配線層を形成することができる。具体的には、金属インクで配線パターンを形成し、その後焼成して配線とする。
 金属インクとしては、例えば、バインダー、界面活性剤などを含む溶媒に導体金属の微粒子を均一分散させたもの等が挙げられる。この場合、溶媒は、導体金属に対する親和性と揮発性とを兼ね備えたものであることが必要である。
<Inkjet printing method>
A wiring layer can be formed on a desired portion of the surface of the reflective substrate by ink jet printing using a metal ink containing a conductive metal. Specifically, a wiring pattern is formed with metal ink, and then fired to form a wiring.
Examples of the metal ink include those obtained by uniformly dispersing fine particles of a conductive metal in a solvent containing a binder, a surfactant, and the like. In this case, the solvent needs to have both affinity for the conductive metal and volatility.
 金属インクに含まれる導体金属としては、銀、銅、金、白金、ニッケル、アルミニウム、鉄、パラジウム、クロム、モリブデン、タングステンなどの金属の微粒子;酸化銀、酸化コバルト、酸化鉄、酸化ルテニウムなどの金属酸化物の微粒子;Cr-Co-Mn-Fe、Cr-Cu、Cr-Cu-Mn、Mn-Fe-Cu、Cr-Co-Fe、Co-Mn-Fe、Co-Ni-Cr-Feなどの複合合金の微粒子;銀めっき、銅などのめっき複合体の微粒子;等が挙げられ、これらを1種単独で用いても2種以上を併用してもよい。
 これらのうち、金属の微粒子が好ましく、銀、銅、金がより好ましく、耐酸化性に優れて高絶縁性酸化物を生成しにくく、低コストであり、配線パターンの焼成後における導電性が向上するという理由から、特に銀が好ましい。
Conductive metals contained in the metal ink include fine particles of metals such as silver, copper, gold, platinum, nickel, aluminum, iron, palladium, chromium, molybdenum, tungsten; silver oxide, cobalt oxide, iron oxide, ruthenium oxide, etc. Metal oxide fine particles; Cr—Co—Mn—Fe, Cr—Cu, Cr—Cu—Mn, Mn—Fe—Cu, Cr—Co—Fe, Co—Mn—Fe, Co—Ni—Cr—Fe, etc. Fine particles of a composite alloy of the above; fine particles of a plating composite such as silver plating and copper; and the like. These may be used alone or in combination of two or more.
Among these, metal fine particles are preferable, silver, copper, and gold are more preferable, oxidation resistance is excellent, it is difficult to form a high-insulation oxide, and the cost is low, and the conductivity after firing the wiring pattern is improved. For this reason, silver is particularly preferable.
 微粒子である導体金属の形状としては、特に限定されず、例えば、球状、粒状、鱗片状等が挙げられるが、微粒子同士の接触面積を大きくして導電性を向上させるという観点から、鱗片状が好ましい。
 金属インクに含まれる導体金属の平均サイズは、金属インクにより形成される配線パターン中の充填率を高めて導電性を向上させるという観点から、1~20nmが好ましく、5~10nmがより好ましい。
The shape of the conductive metal that is a fine particle is not particularly limited, and examples thereof include a spherical shape, a granular shape, and a scaly shape. From the viewpoint of increasing the contact area between the fine particles and improving the conductivity, the scaly shape is preferable. preferable.
The average size of the conductive metal contained in the metal ink is preferably 1 to 20 nm, and more preferably 5 to 10 nm from the viewpoint of improving the conductivity by increasing the filling rate in the wiring pattern formed with the metal ink.
 <スクリーン印刷法>
 導体金属を含む金属インクを用いてスクリーン印刷法により、反射基板の表面の所望の部位に配線パターンを形成し、その後焼成して配線とする。
 スクリーン印刷法による金属インクの供給は、配線パターンに従った透過部分をスクリーンに設け、金属インクをこの透過部分からスキージングすることにより行うことができる。
 導体金属を含む金属インクとしては、上述したインクジェット印刷法で用いたものを用いることができる。
<Screen printing method>
A wiring pattern is formed on a desired portion of the surface of the reflective substrate by screen printing using a metal ink containing a conductive metal, and then fired to form a wiring.
The supply of the metallic ink by the screen printing method can be performed by providing a transmissive portion according to the wiring pattern on the screen and squeezing the metallic ink from the transmissive portion.
As a metal ink containing a conductor metal, what was used by the inkjet printing method mentioned above can be used.
[LEDパッケージ]
 以下に、本発明のLEDパッケージを詳細に説明する。
 本発明のLEDパッケージは、上述した本発明の反射基板と、その表面に実装されたLED発光素子とを有するLEDパッケージである。
 次に、本発明のLEDパッケージの構成について、図2を用いて説明する。
[LED package]
Hereinafter, the LED package of the present invention will be described in detail.
The LED package of the present invention is an LED package having the above-described reflective substrate of the present invention and an LED light emitting element mounted on the surface thereof.
Next, the configuration of the LED package of the present invention will be described with reference to FIG.
 図2は、本発明のLEDパッケージの好適な実施態様の一例を示す模式的な断面図である。
 図2に示すように、LEDパッケージ20は、接着剤11により反射基板1の表面(無機反射層3)上に実装されたLED発光素子12を有する。また、LED発光素子12は、蛍光粒子13を混入した透明樹脂14でモールドされており、外部接続用の電極を兼ねた金属配線層10を有する本発明の反射基板1にワイヤボンディングされている。
FIG. 2 is a schematic cross-sectional view showing an example of a preferred embodiment of the LED package of the present invention.
As shown in FIG. 2, the LED package 20 has an LED light emitting element 12 mounted on the surface (inorganic reflective layer 3) of the reflective substrate 1 with an adhesive 11. The LED light emitting element 12 is molded with a transparent resin 14 mixed with fluorescent particles 13 and wire-bonded to the reflective substrate 1 of the present invention having the metal wiring layer 10 also serving as an electrode for external connection.
 本発明においては、上記LED発光素子は、基板上にGaAlN、ZnS、ZnSe、SiC、GaP、GaAlAs、AlN、InN、AlInGaP、InGaN、GaN、AlInGaN等の半導体を発光層として形成させたものを用いることができる。
 半導体の構造としては、MIS接合、PIN接合やPN接合を有したホモ構造、ヘテロ構造あるいはダブルへテロ構造のものが挙げられる。半導体層の材料やその混晶度によって発光波長を紫外光から赤外光まで種々選択することができる。
In the present invention, the LED light emitting element is a substrate in which a semiconductor such as GaAlN, ZnS, ZnSe, SiC, GaP, GaAlAs, AlN, InN, AlInGaP, InGaN, GaN, and AlInGaN is formed as a light emitting layer on a substrate. be able to.
Examples of the semiconductor structure include a homostructure, a heterostructure, or a double heterostructure having a MIS junction, a PIN junction, or a PN junction. Various emission wavelengths can be selected from ultraviolet light to infrared light depending on the material of the semiconductor layer and the degree of mixed crystal.
 また、上記透明樹脂の材質は、熱硬化性樹脂が好ましい。
 上記熱硬化性樹脂としては、エポキシ樹脂、変性エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂、アクリレート樹脂、ウレタン樹脂、ポリイミド樹脂からなる群から選択される少なくとも1種により形成することが好ましく、特にエポキシ樹脂、変性エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂が好ましい。
 また、透明樹脂は、青色LEDを保護するため硬質のものが好ましい。
 また、透明樹脂は、耐熱性、耐候性、耐光性に優れた樹脂を用いることが好ましい。
 また、透明樹脂は、所定の機能を持たせるため、フィラー、拡散剤、顔料、蛍光物質、反射性物質、紫外線吸収剤、酸化防止剤からなる群から選択される少なくとも1種を混合することもできる。
The material of the transparent resin is preferably a thermosetting resin.
The thermosetting resin is preferably formed of at least one selected from the group consisting of epoxy resins, modified epoxy resins, silicone resins, modified silicone resins, acrylate resins, urethane resins, and polyimide resins. , Modified epoxy resin, silicone resin, and modified silicone resin are preferable.
Further, the transparent resin is preferably hard to protect the blue LED.
Moreover, it is preferable to use resin excellent in heat resistance, a weather resistance, and light resistance for transparent resin.
The transparent resin may be mixed with at least one selected from the group consisting of a filler, a diffusing agent, a pigment, a fluorescent material, a reflective material, an ultraviolet absorber, and an antioxidant so as to have a predetermined function. it can.
 更に、上記蛍光粒子は、青色LEDからの光を吸収し異なる波長の光に波長変換するものであればよい。
 蛍光粒子としては、具体的には、例えば、Eu、Ce等のランタノイド系元素で主に付活される窒化物系蛍光体、酸窒化物系蛍光体、サイアロン系蛍光体、βサイアロン系蛍光体;Eu等のランタノイド系、Mn等の遷移金属系の元素により主に付活されるアルカリ土類ハロゲンアパタイト蛍光体、アルカリ土類金属ホウ酸ハロゲン蛍光体、アルカリ土類金属アルミン酸塩蛍光体、アルカリ土類ケイ酸塩蛍光体、アルカリ土類硫化物蛍光体、アルカリ土類チオガレート蛍光体、アルカリ土類窒化ケイ素蛍光体、ゲルマン酸塩蛍光体;Ce等のランタノイド系元素で主に付活される希土類アルミン酸塩蛍光体、希土類ケイ酸塩蛍光体;Eu等のランタノイド系元素で主に付活される有機錯体;等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
Furthermore, the said fluorescent particle should just absorb the light from blue LED and wavelength-convert it into the light of a different wavelength.
Specific examples of the fluorescent particles include nitride-based phosphors, oxynitride-based phosphors, sialon-based phosphors, and β-sialon-based phosphors that are mainly activated by lanthanoid elements such as Eu and Ce. An alkaline earth halogen apatite phosphor, an alkaline earth metal borate phosphor, an alkaline earth metal aluminate phosphor mainly activated by a lanthanoid group such as Eu, or a transition metal group element such as Mn; Alkaline earth silicate phosphor, alkaline earth sulfide phosphor, alkaline earth thiogallate phosphor, alkaline earth silicon nitride phosphor, germanate phosphor; mainly activated by lanthanoid elements such as Ce Rare earth aluminate phosphors, rare earth silicate phosphors, organic complexes mainly activated by lanthanoid elements such as Eu, etc., and these may be used alone, It may be used in combination with more species.
 一方、本発明のLEDパッケージは、紫外~青色LEDとそれを吸収し可視光領域で蛍光を発する蛍光発光体とを用いた蛍光体混色型白色系LEDパッケージとしても使用することができる。
 これらの蛍光発光体が青色LEDからの青色光を吸収して蛍光(黄色系蛍光)を生じ、この蛍光と青色LEDの残光とにより、発光素子から白色系光が発光される。
 上述した方式は、青色LED光源チップと黄色蛍光体1種とを組み合わせたいわゆる「擬似白色発光型」であるが、このほかにも、例えば紫外~近紫外LED光源チップと赤色/緑色/青色蛍光体等を数種組み合わせた「紫外~近紫外光源型」、及び、赤色/緑色/青色3光源で白色発光させる「RGB光源型」、等の公知の発光方法を用いる発光ユニットとして本発明のLEDパッケージを使用することができる。
On the other hand, the LED package of the present invention can also be used as a phosphor-mixed white LED package using an ultraviolet to blue LED and a fluorescent light emitter that absorbs the LED and emits fluorescence in the visible light region.
These fluorescent light emitters absorb blue light from the blue LED to generate fluorescence (yellowish fluorescent light), and white light is emitted from the light emitting element by the fluorescent light and the afterglow of the blue LED.
The above-described method is a so-called “pseudo white light emission type” in which a blue LED light source chip and one kind of yellow phosphor are combined. In addition, for example, an ultraviolet to near ultraviolet LED light source chip and a red / green / blue fluorescence. The LED of the present invention as a light-emitting unit using a known light-emitting method such as “ultraviolet to near-ultraviolet light source type” in which several kinds of bodies are combined and “RGB light source type” that emits white light with three red / green / blue light sources Package can be used.
 本発明のLEDパッケージにおいて、本発明の反射基板にLED発光素子を実装する方法は加熱による実装を伴うが、半田リフローを含めての熱圧着、およびフリップチップによる実装方法では、均一かつ確実な実装を施す観点から、最高到達温度は220~350℃が好ましく、240~320℃がより好ましく、260~300℃が特に好ましい。
 これらの最高到達温度を維持する時間としては、同観点から2秒~10分が好ましく、5秒~5分がより好ましく、10秒~3分が特に好ましい。
In the LED package of the present invention, the method of mounting the LED light emitting element on the reflective substrate of the present invention involves mounting by heating, but the thermocompression bonding including solder reflow and the mounting method by flip chip provide uniform and reliable mounting. In view of the above, the maximum reached temperature is preferably 220 to 350 ° C, more preferably 240 to 320 ° C, and particularly preferably 260 to 300 ° C.
The time for maintaining these maximum temperatures is preferably 2 seconds to 10 minutes, more preferably 5 seconds to 5 minutes, and particularly preferably 10 seconds to 3 minutes.
 また、ワイヤボンディングでの実装時の温度としては、確実な実装を施す観点から、80~300℃が好ましく、90~250℃がより好ましく、100~200℃が特に好ましい。加熱時間としては、2秒~10分が好ましく、5秒~5分がより好ましく、10秒~3分が特に好ましい。 Also, the temperature at the time of mounting by wire bonding is preferably 80 to 300 ° C., more preferably 90 to 250 ° C., and particularly preferably 100 to 200 ° C. from the viewpoint of reliable mounting. The heating time is preferably 2 seconds to 10 minutes, more preferably 5 seconds to 5 minutes, and particularly preferably 10 seconds to 3 minutes.
 以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.
 〔バインダー液の調製〕
 無機反射層形成溶液に用いるバインダー液A~Dを調製した。
(Preparation of binder liquid)
Binder liquids A to D used for the inorganic reflection layer forming solution were prepared.
 <バインダー液A(無機結着剤:リン酸銅)>
  リン酸85%(和光純薬)   48g
  水酸化銅(II)(和光純薬)  9g
  水              41g
<Binder liquid A (inorganic binder: copper phosphate)>
Phosphoric acid 85% (Wako Pure Chemical) 48g
Copper hydroxide (II) (Wako Pure Chemical Industries) 9g
Water 41g
 <バインダー液B(無機結着剤:リン酸銀)>
  リン酸85%(和光純薬)  48g
  酸化銀(和光純薬)     16g
  水             41g
<Binder liquid B (inorganic binder: silver phosphate)>
Phosphoric acid 85% (Wako Pure Chemical) 48g
Silver oxide (Wako Pure Chemical) 16g
Water 41g
 <バインダー液C(無機結着剤:リン酸金)>
  リン酸85%(和光純薬)     48g
  水酸化金(III)(和光純薬)  35g
  水                41g
<Binder liquid C (inorganic binder: gold phosphate)>
Phosphoric acid 85% (Wako Pure Chemical) 48g
Gold hydroxide (III) (Wako Pure Chemical) 35g
Water 41g
 <バインダー液D(無機結着剤:リン酸アルミニウム)>
  リン酸85% (和光純薬)    48g
  水酸化アルミニウム(和光純薬)  11g
  水                41g
<Binder liquid D (inorganic binder: aluminum phosphate)>
Phosphoric acid 85% (Wako Pure Chemical) 48g
Aluminum hydroxide (Wako Pure Chemicals) 11g
Water 41g
 〔反射基板の作製〕
 <実施例1~19および比較例1~5>
 下記第1表以下に示す組成のバインダー液100gに、下記第1表に示す無機粒子を100g添加し、撹拌することにより、無機反射層形成溶液を調製した。
 調製した無機反射層形成溶液を下記第1表に示す金属基材上に塗布して塗膜を形成した後に、200℃で5分間乾燥させることにより、金属基材上に無機反射層が形成された反射基板を作製した。
 なお、無機反射層におけるリン酸金属塩(無機結着剤)の存在は、赤外分光法(IR)により確認した。
[Production of reflective substrate]
<Examples 1 to 19 and Comparative Examples 1 to 5>
An inorganic reflective layer forming solution was prepared by adding 100 g of inorganic particles shown in Table 1 below to 100 g of binder liquid having the composition shown in Table 1 below and stirring.
After the prepared inorganic reflective layer forming solution is applied on the metal substrate shown in Table 1 below to form a coating film, the inorganic reflective layer is formed on the metal substrate by drying at 200 ° C. for 5 minutes. A reflective substrate was prepared.
The presence of the metal phosphate (inorganic binder) in the inorganic reflective layer was confirmed by infrared spectroscopy (IR).
 <表面形状の測定>
 作製した反射基板の表面形状について、触針式の表面粗さ計(SURFCOM480A、株式会社東京精密製)を用いて、RaおよびPsmを測定した。これらの結果を下記第1表に示す。
<Measurement of surface shape>
About the surface shape of the produced reflective board | substrate, Ra and Psm were measured using the stylus type surface roughness meter (SURFCOM480A, Tokyo Seimitsu Co., Ltd. make). These results are shown in Table 1 below.
 <放熱性(熱伝導性)>
 作製した反射基板について、アルバック理工株式会社製TC-9000/レーザーフラッシュ型熱拡散率測定装置を用い、t1/2法に従い熱拡散率を計算し、熱伝導率を下記式から算出した。結果を下記第1表に示す。
 熱伝導率λ=α×Cp×ρ
(式中、αは熱拡散率、Cpは比熱、ρは密度、をそれぞれ表す。)
<Heat dissipation (thermal conductivity)>
About the produced reflective board | substrate, the thermal diffusivity was computed according to the t1 / 2 method using TC-9000 / laser flash type thermal diffusivity measuring apparatus by ULVAC-RIKO Inc., and the thermal conductivity was computed from the following formula. The results are shown in Table 1 below.
Thermal conductivity λ = α × Cp × ρ
(In the formula, α represents thermal diffusivity, Cp represents specific heat, and ρ represents density.)
 <接着性>
 作製した反射基板の無機反射層と金属基材との接着性(密着性)は、押し切りカッターで30mm×30mm(平面四角形状)に切断し、剥れなかった基板については高さ3mからコンクリートの地面に落下させ、以下の基準で評価とした。
 また、-50℃~400℃の間の昇温および降温を1サイクル(4時間/サイクル)とし、100サイクル経過後(ヒートサイクル後)の反射基板に対して、同様の試験を行った。
 これらの結果を下記第1表に示す。
 A:剥離しない
 B:一部剥離したが実用上問題のないもの
 C:剥離した
 D:押し切りカッターで切断した際に剥れてしまったもの
<Adhesiveness>
The adhesiveness (adhesion) between the inorganic reflective layer and the metal substrate of the produced reflective substrate was cut into 30 mm × 30 mm (planar square shape) with a push cutter, and the substrate that did not peel off was 3 m in height from the concrete. It was dropped on the ground and evaluated according to the following criteria.
Further, the temperature rise and fall between −50 ° C. and 400 ° C. was set to one cycle (4 hours / cycle), and the same test was performed on the reflective substrate after 100 cycles (after the heat cycle).
These results are shown in Table 1 below.
A: not peeled B: partially peeled but no problem in practical use C: peeled D: peeled off when cut with a push cutter
 <反射率>
 作製した反射基板について、反射濃度計(CM2600D、コニカミノルタ株式会社製)を用いて、400~700nmの全反射率(SPINモードの全平均)を測定した。結果を下記第1表に示す。
<Reflectance>
With respect to the produced reflective substrate, the total reflectance (total average in the SPIN mode) of 400 to 700 nm was measured using a reflection densitometer (CM2600D, manufactured by Konica Minolta, Inc.). The results are shown in Table 1 below.
 <配線密着性>
 作製した反射基板の表面に、インクジェット装置(DMP-2831、富士フイルム株式会社製)を用いて銀ナノ粒子インク(XA-436、藤倉化成株式会社製)の希釈液を図3に示す金属配線層10のパターンで打滴することでAg配線(配線幅:100μm)を形成させた。
 その後、反射基板全体をローラーで加圧してAg配線の表面を平坦化させ、Ag配線上にニッケル層を形成した。具体的には、奥野製薬工業株式会社製の無電解ニッケルメッキ液(ICP-ニコロンGM(NP))を用い、温度75℃、pH7.5の条件で25分浸漬処理することにより、平坦化したAg配線上にニッケル層を形成させた。なお、処理後の基板は純水を用いて丁寧に洗浄した。
 次いで、奥野製薬工業株式会社製の置換型無電解金メッキ液(無電ノーブルAU)を用い、ニッケル層上にAu層を形成させた後、奥野製薬工業株式会社製の還元型無電解金メッキ液(セルフゴールドOKT-IT)を用いてAu層の厚みを増やす処理を行なった。なお、いずれの処理後も基板は純水を用いて丁寧に洗浄した。
 形成した金属配線層を以下の基準で評価した。結果を下記第1表に示す。
 A:光学顕微鏡で観察し、配線がほぼまっすぐであり、テープを貼り付けて剥がしたときに配線層が剥れないもの
 B:テープを貼り付けて剥がしたときに配線形状が乱れるもの
 C:テープを貼り付けて剥がしたときに配線が剥れるもの
 D:配線が連続せず、抜けが生じているもの
<Wiring adhesion>
A diluted metal nanoparticle ink (XA-436, manufactured by Fujikura Kasei Co., Ltd.) using an ink jet apparatus (DMP-2831, manufactured by Fuji Film Co., Ltd.) is applied to the surface of the prepared reflective substrate. Ag wiring (wiring width: 100 μm) was formed by droplet ejection with 10 patterns.
Thereafter, the entire reflective substrate was pressed with a roller to flatten the surface of the Ag wiring, and a nickel layer was formed on the Ag wiring. Specifically, using an electroless nickel plating solution (ICP-Nicolon GM (NP)) manufactured by Okuno Pharmaceutical Co., Ltd., the surface was flattened by immersion treatment at a temperature of 75 ° C. and a pH of 7.5 for 25 minutes. A nickel layer was formed on the Ag wiring. The treated substrate was carefully washed with pure water.
Next, a substitution type electroless gold plating solution (non-electric noble AU) manufactured by Okuno Pharmaceutical Industry Co., Ltd. was used to form an Au layer on the nickel layer, and then a reduced electroless gold plating solution manufactured by Okuno Pharmaceutical Industry Co., Ltd. (self Gold OKT-IT) was used to increase the thickness of the Au layer. Note that the substrate was carefully washed with pure water after each treatment.
The formed metal wiring layer was evaluated according to the following criteria. The results are shown in Table 1 below.
A: When observed with an optical microscope, the wiring is almost straight, and the wiring layer cannot be peeled off when the tape is applied and peeled B: The wiring shape is disturbed when the tape is attached and peeled off C: Tape Wiring peels off when affixed and peeled off D: Wiring is not continuous and missing
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記第1表中、無機粒子としては、以下のものを用いた。
 ・酸化アルミニウム(屈折率:1.65、平均粒子径:0.52μm):AL-160SG-3(昭和電工株式会社製)
 ・酸化アルミニウム(屈折率:1.65、平均粒子径:0.10μm):AL-160SG-3(平均粒子径:0.52μm、昭和電工株式会社製)について、ボールミルを用いて、ジルコニアビーズとともに粉砕し、粒径測定装置を用いて平均粒子径が0.10μmとなったもの。
 ・酸化アルミニウム(屈折率:1.65、平均粒子径:4.70μm):A42-2(昭和電工株式会社製)
 ・水酸化カルシウム(屈折率:1.57、平均粒子径:1.00μm):CSH(宇部マテリアルズ株式会社製)
 ・硫酸バリウム(屈折率:1.64、平均粒子径:0.30μm):B-30(東新化成株式会社製)
 ・フッ化ランタン(屈折率:1.59、平均粒子径:0.90μm):#124-03532(和光純薬工業株式会社製)
 ・炭酸バリウム(屈折率:1.60、平均粒子径:0.85μm):#022-11792(和光純薬工業株式会社製)
 ・二酸化ケイ素(屈折率:1.45、平均粒子径:0.80μm):#199-00625(和光純薬工業株式会社製)
In Table 1, the following were used as inorganic particles.
Aluminum oxide (refractive index: 1.65, average particle size: 0.52 μm): AL-160SG-3 (manufactured by Showa Denko KK)
Aluminum oxide (refractive index: 1.65, average particle size: 0.10 μm): AL-160SG-3 (average particle size: 0.52 μm, manufactured by Showa Denko KK) with a zirconia bead using a ball mill After pulverizing and using a particle size measuring device, the average particle size becomes 0.10 μm.
Aluminum oxide (refractive index: 1.65, average particle size: 4.70 μm): A42-2 (manufactured by Showa Denko KK)
Calcium hydroxide (refractive index: 1.57, average particle size: 1.00 μm): CSH (manufactured by Ube Materials Corporation)
Barium sulfate (refractive index: 1.64, average particle size: 0.30 μm): B-30 (manufactured by Toshin Kasei Co., Ltd.)
Lanthanum fluoride (refractive index: 1.59, average particle size: 0.90 μm): # 124-03532 (manufactured by Wako Pure Chemical Industries, Ltd.)
Barium carbonate (refractive index: 1.60, average particle size: 0.85 μm): # 022-111792 (manufactured by Wako Pure Chemical Industries, Ltd.)
Silicon dioxide (refractive index: 1.45, average particle size: 0.80 μm): # 199-00625 (manufactured by Wako Pure Chemical Industries, Ltd.)
 第1表に示す結果から、アルミニウム基材を用いた場合は、無機反射層との接着性は良好であったが、放熱性が劣ることが分かった(比較例1~5)。
 これに対し、金、銀または銅を基材として用い、無機結着剤としてリン酸金属塩を用いて無機反射層を形成すると、放熱性に優れ、かつ、無機反射層と基材との接着性に優れることが分かった(実施例1~19)。
 特に、実施例1~10と実施例11~13との対比から、無機結着剤としてリン酸銅、リン酸銀またはリン酸金を用いることにより、無機反射層と金属基材との接着性(特に、ヒートサイクル前)が良好となり、また、金属配線層との密着性(配線密着性)が良好となることが分かった。
 また、実施例1~9と実施例10~13(特に実施例10)との対比から、金属基材を構成する金属とリン酸金属塩を構成する金属とが同種の金属であると、無機反射層と金属基材との接着性(特に、ヒートサイクル後)が良好となることが分かった。
 更に、実施例1~5と実施例14および実施例15との対比から、無機粒子が、酸化物、水酸化物または無機塩、特に、酸化アルミニウム、水酸化カルシウムまたは硫酸バリウムであると、反射率が向上することが分かった。
 更に、実施例1と実施例16との対比から、金属基材の厚さが0.10~3mmであると、放熱性がより向上することが分かった。
 更に、実施例1と実施例17との対比から、表面の算術平均粗さRaが0.50~1.00μmであり、かつ、凹凸の平均間隔Psmが10~20μmであると、金属配線層との密着性(配線密着性)が良好となることが分かった。
 更に、実施例1と実施例18および19との対比から、無機粒子の屈折率が1.5以上1.8以下であり、かつ、平均粒子径が0.1μm以上5μm以下であると、反射率が向上することが分かった。
From the results shown in Table 1, it was found that when an aluminum substrate was used, the adhesion to the inorganic reflective layer was good, but the heat dissipation was poor (Comparative Examples 1 to 5).
On the other hand, when an inorganic reflective layer is formed using gold, silver or copper as a base material and a metal phosphate as an inorganic binder, the heat dissipation is excellent, and the adhesive between the inorganic reflective layer and the base material is excellent. (Examples 1 to 19).
In particular, from the comparison between Examples 1 to 10 and Examples 11 to 13, by using copper phosphate, silver phosphate or gold phosphate as the inorganic binder, the adhesion between the inorganic reflective layer and the metal substrate is improved. It was found that (especially before the heat cycle) was good, and adhesion (wiring adhesion) with the metal wiring layer was good.
Further, from the comparison between Examples 1 to 9 and Examples 10 to 13 (particularly Example 10), it is found that the metal constituting the metal substrate and the metal constituting the metal phosphate are the same type of metal It was found that the adhesion between the reflective layer and the metal substrate (particularly after heat cycle) was good.
Further, from the comparison between Examples 1 to 5 and Examples 14 and 15, when the inorganic particles are oxides, hydroxides or inorganic salts, particularly aluminum oxide, calcium hydroxide or barium sulfate, reflection It was found that the rate was improved.
Further, from the comparison between Example 1 and Example 16, it was found that the heat dissipation was further improved when the thickness of the metal substrate was 0.10 to 3 mm.
Further, in comparison with Example 1 and Example 17, when the arithmetic average roughness Ra of the surface is 0.50 to 1.00 μm and the average interval Psm of the unevenness is 10 to 20 μm, the metal wiring layer It was found that the adhesiveness (wiring adhesiveness) was improved.
Further, from the comparison between Example 1 and Examples 18 and 19, when the refractive index of the inorganic particles is 1.5 or more and 1.8 or less and the average particle diameter is 0.1 μm or more and 5 μm or less, reflection It was found that the rate was improved.
 1 反射基板
 2 金属基材
 3 無機反射層
 4 無機粒子
 5 無機結着剤
 6 熱硬化性樹脂
 10 金属配線層
 11 接着剤
 12 LED発光素子
 13 蛍光粒子
 14 透明樹脂
 20 LEDパッケージ
DESCRIPTION OF SYMBOLS 1 Reflective substrate 2 Metal base material 3 Inorganic reflective layer 4 Inorganic particle 5 Inorganic binder 6 Thermosetting resin 10 Metal wiring layer 11 Adhesive 12 LED light emitting element 13 Fluorescent particle 14 Transparent resin 20 LED package

Claims (9)

  1.  金属基材と、前記金属基材の表面の少なくとも一部に設けられた無機反射層とを有し、
     前記金属基材が、金、銀および銅からなる群から選択される少なくとも1種の金属で構成されており、
     前記無機反射層が、リン酸および/またはリン酸金属塩を含む無機結着剤と、無機粒子とを含有する、反射基板。
    A metal substrate and an inorganic reflective layer provided on at least a part of the surface of the metal substrate;
    The metal substrate is composed of at least one metal selected from the group consisting of gold, silver and copper;
    A reflective substrate, wherein the inorganic reflective layer contains an inorganic binder containing phosphoric acid and / or a metal phosphate and inorganic particles.
  2.  前記リン酸金属塩が、リン酸金、リン酸銀およびリン酸銅からなる群から選択される少なくとも1種である請求項1に記載の反射基板。 The reflective substrate according to claim 1, wherein the metal phosphate is at least one selected from the group consisting of gold phosphate, silver phosphate and copper phosphate.
  3.  前記金属基材を構成する前記金属と、前記リン酸金属塩を構成する金属とが、同種の金属である請求項1または2に記載の反射基板。 The reflective substrate according to claim 1 or 2, wherein the metal constituting the metal substrate and the metal constituting the metal phosphate are the same kind of metal.
  4.  前記無機粒子の屈折率が1.5以上1.8以下であり、かつ、平均粒子径が0.1μm以上5μm以下である請求項1~3のいずれか1項に記載の反射基板。 The reflective substrate according to any one of claims 1 to 3, wherein the inorganic particles have a refractive index of 1.5 or more and 1.8 or less and an average particle diameter of 0.1 µm or more and 5 µm or less.
  5.  前記無機粒子が、酸化物、水酸化物および無機塩からなる群から選択される少なくとも1種である請求項1~4のいずれか1項に記載の反射基板。 The reflective substrate according to any one of claims 1 to 4, wherein the inorganic particles are at least one selected from the group consisting of oxides, hydroxides, and inorganic salts.
  6.  前記無機粒子が、酸化アルミニウム、水酸化カルシウムおよび硫酸バリウムからなる群から選択される少なくとも1種である請求項1~5のいずれか1項に記載の反射基板。 6. The reflective substrate according to claim 1, wherein the inorganic particles are at least one selected from the group consisting of aluminum oxide, calcium hydroxide, and barium sulfate.
  7.  前記金属基材の厚さが、0.1~3mmである請求項1~6のいずれか1項に記載の反射基板。 The reflective substrate according to any one of claims 1 to 6, wherein the metal substrate has a thickness of 0.1 to 3 mm.
  8.  表面の算術平均粗さRaが0.50~1.00μmであり、かつ、凹凸の平均間隔Psmが10~20μmである請求項1~7のいずれか1項に記載の反射基板。 The reflective substrate according to any one of claims 1 to 7, wherein the arithmetic average roughness Ra of the surface is 0.50 to 1.00 µm, and the average interval Psm of the unevenness is 10 to 20 µm.
  9.  請求項1~8のいずれか1項に記載の反射基板と、表面に実装されたLED発光素子とを有するLEDパッケージ。 9. An LED package comprising the reflective substrate according to any one of claims 1 to 8 and an LED light emitting element mounted on a surface thereof.
PCT/JP2013/084533 2012-12-27 2013-12-24 Reflective substrate WO2014104035A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012285016 2012-12-27
JP2012-285016 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014104035A1 true WO2014104035A1 (en) 2014-07-03

Family

ID=51021116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084533 WO2014104035A1 (en) 2012-12-27 2013-12-24 Reflective substrate

Country Status (1)

Country Link
WO (1) WO2014104035A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089894A (en) * 2003-09-16 2005-04-07 Kawashima Textile Manuf Ltd Deodorant fabric under weak ultraviolet light
WO2007032167A1 (en) * 2005-09-16 2007-03-22 Murata Manufacturing Co., Ltd. Ceramic multilayer substrate and process for producing the same
WO2010021089A1 (en) * 2008-08-21 2010-02-25 パナソニック株式会社 Light source for lighting
WO2011138169A1 (en) * 2010-05-07 2011-11-10 Osram Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor part containing alkali-free and halogen-free metal phosphate
WO2012133173A1 (en) * 2011-03-28 2012-10-04 富士フイルム株式会社 Reflective substrate for light-emitting element and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089894A (en) * 2003-09-16 2005-04-07 Kawashima Textile Manuf Ltd Deodorant fabric under weak ultraviolet light
WO2007032167A1 (en) * 2005-09-16 2007-03-22 Murata Manufacturing Co., Ltd. Ceramic multilayer substrate and process for producing the same
WO2010021089A1 (en) * 2008-08-21 2010-02-25 パナソニック株式会社 Light source for lighting
WO2011138169A1 (en) * 2010-05-07 2011-11-10 Osram Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor part containing alkali-free and halogen-free metal phosphate
WO2012133173A1 (en) * 2011-03-28 2012-10-04 富士フイルム株式会社 Reflective substrate for light-emitting element and method for producing same

Similar Documents

Publication Publication Date Title
JP5083503B2 (en) Light emitting device and lighting device
WO2009128468A9 (en) White light-emitting device, backlight, liquid crystal display device and illuminating device
JP2007273562A (en) Semiconductor light-emitting device
JP2007165811A (en) Light emitting device
WO2013027847A1 (en) Reflective substrate for led light emitting elements, and led package
JP2007266579A (en) Light emitting device
JP5561330B2 (en) Light emitting device
JP2008270781A (en) Light-emitting device
JP5082427B2 (en) Light emitting device
JP5194675B2 (en) Light emitting device
JP2007116117A (en) Light emitting device
WO2013108547A1 (en) Reflecting substrate for led light-emitting element and led package
JP2018107418A (en) Light-emitting device
JP2007288138A (en) Light emitting device
JP2008140934A (en) Light emitting diode device and lighting device
JP2015023244A (en) Reflection substrate for led light-emitting element, wiring board for led light-emitting element, led package, and method of manufacturing reflection substrate for led light-emitting element
JP2009010308A (en) Light emitting device
JP2008244468A (en) Light-emitting device
JP2009071090A (en) Light-emitting device
JP2007116116A (en) Light emitting device
JP2008244469A (en) Light-emitting device
WO2013031987A1 (en) Insulating reflective substrate and led package
JP2011249856A (en) Semiconductor light-emitting device
WO2014104035A1 (en) Reflective substrate
JP7144693B2 (en) light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP