WO2014103926A1 - Poly(vinyl benzyl) ether compound, method for producing same, curable composition containing same, and cured article - Google Patents

Poly(vinyl benzyl) ether compound, method for producing same, curable composition containing same, and cured article Download PDF

Info

Publication number
WO2014103926A1
WO2014103926A1 PCT/JP2013/084237 JP2013084237W WO2014103926A1 WO 2014103926 A1 WO2014103926 A1 WO 2014103926A1 JP 2013084237 W JP2013084237 W JP 2013084237W WO 2014103926 A1 WO2014103926 A1 WO 2014103926A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
poly
vinylbenzyl
ether compound
naphthol aralkyl
Prior art date
Application number
PCT/JP2013/084237
Other languages
French (fr)
Japanese (ja)
Inventor
川辺 正直
スレスタ・ニランジャン・クマール
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to JP2014554409A priority Critical patent/JP6277134B2/en
Publication of WO2014103926A1 publication Critical patent/WO2014103926A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3424Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms non-conjugated, e.g. paracyclophanes or xylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a poly (vinylbenzyl) ether compound, a production method thereof, a hard curable composition containing the compound, a cured product, a composite material, a cured product thereof, a laminate comprising the cured product and a metal foil, and a resin. It relates to metal foil.
  • a cured resin for example, a cured resin such as divinylbenzyl ether of bisphenol or a poly (vinylbenzyl) ether compound of phenol novolac type has been proposed (Patent Document 1, Patent Document 2).
  • Patent Document 1 a cured resin such as divinylbenzyl ether of bisphenol or a poly (vinylbenzyl) ether compound of phenol novolac type has been proposed (Patent Document 1, Patent Document 2).
  • these poly (vinyl benzyl) ether compounds have not been able to provide sufficient properties in the initial dielectric properties, but also cannot provide a cured resin with a small change in dielectric properties due to severe thermal history, The heat resistance was not high enough.
  • a curable resin containing at least one hydroxyl group selected from the group consisting of a phenol aralkyl resin, a naphthol aralkyl resin, a biphenyl type phenol novolak resin, and a biphenyl type naphthol novolak resin.
  • a curable resin composition (Patent Document 6) is disclosed.
  • the vinyl benzyl etherified curable resin synthesized in accordance with the production method disclosed in the document has a large total halogen content and a large amount of residual vinyl aromatic halomethyl compound, and therefore has a severe heat history.
  • the dielectric loss tangent and the heat resistance are not satisfactory as an insulating material corresponding to a high frequency, and the moldability is not desirable because it tends to cause molding defects.
  • the naphthol aralkyl resins are exemplified as specific examples, since it is one which does not contain an alkyl group of 1 to 12 carbon atoms as R 2 of formula (1), the alkyl-modified of R 2 Effect About was not clear.
  • conventional poly (vinyl benzyl) ether compounds satisfy the low dielectric loss tangent after severe thermal history that can withstand lead-free soldering, which is necessary for electrical insulation materials, especially for high frequency electrical insulation materials. It does not give a cured product having heat resistance, and is insufficient in terms of reliability and workability.
  • the present invention relates to a poly (vinylbenzyl) ether compound that has a high dielectric property (low dielectric constant and low dielectric loss tangent) even after severe thermal history, and gives a cured product having a high glass transition temperature and flame retardancy, and Providing a curable composition, and providing a resin composition, a cured product, or a material containing the same that can be used as a dielectric material, an insulating material, and a heat-resistant material in fields such as the electric / electronic industry, space / aircraft industry, etc. The purpose is to do.
  • the present inventors have found that a poly (vinylbenzyl) ether compound represented by the following formula (1) is effective for solving the above problems, and completed the present invention.
  • the present invention is a poly (vinylbenzyl) ether compound represented by the following formula (1) obtained by reacting a naphthol aralkyl resin with a vinyl aromatic halomethyl compound, and has a total halogen content of 600 ppm (wt).
  • a poly (vinylbenzyl) ether compound represented by the following formula (1) obtained by reacting a naphthol aralkyl resin with a vinyl aromatic halomethyl compound, and has a total halogen content of 600 ppm (wt).
  • GPC gel permeation chromatography
  • the peak area derived from the vinyl aromatic halomethyl compound is 1.0% or less with respect to the total peak area totaled with the peak area of the poly (vinylbenzyl) ether compound. It is related with the poly (vinyl benzyl) ether compound characterized by the above-mentioned.
  • each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or an aryl group having 6 to 10 carbon atoms
  • Ar 1 represents an aryl group having 6 to 50 carbon atoms
  • R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a vinylbenzyl group
  • the ratio of the vinylbenzyl group in R 2 is 60 to 100 mol%.
  • n is an average value ranging from 1 to 20
  • m is a number from 1 to 6
  • r is a number from 1 to 3.
  • m + r does not exceed 8.
  • the ratio of the alkyl group in R 2 is preferably 0.1 to 50 mol%, and more preferably 1 to 30 mol%.
  • the present invention also relates to a curable composition characterized by containing the above poly (vinylbenzyl) ether compound and a radical polymerization initiator, and a cured product obtained by curing the curable composition.
  • the present invention also relates to a curable composite material comprising the above curable composition and a substrate, a composite material cured product obtained by curing the curable composite material, and a layer and a metal foil of the composite material cured product. It is related with the laminated body which has a layer. Moreover, this invention relates to the metal foil with resin which has the film
  • the present invention provides a naphthol aralkyl resin obtained by condensing a hydroxynaphthalene represented by the following formula (2) and an aromatic compound represented by the following formula (3). Reacting with a group halomethyl compound in the presence of an alkali metal hydroxide to obtain a reaction product containing a poly (vinylbenzyl) ether compound, and purifying it with a mixed solvent comprising water and alcohols.
  • the present invention relates to a method for producing the above-mentioned poly (vinylbenzyl) ether compound.
  • each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or an aryl group, m is a number from 1 to 6, and r is a number from 1 to 3. . However, m + r does not exceed 8.
  • Ar 1 represents an aryl group having 6 to 50 carbon atoms, and X represents a fluorine atom, a chlorine atom, a bromine atom, a methoxy group, an ethoxy group, or a hydroxyl group.
  • part of the OH group is an alkoxy group (OR group; R is an alkyl group having 1 to 12 carbon atoms), or part or all of the OH group is A mixture of an alkoxy group and a non-alkoxy group is also preferable.
  • Some preferred embodiments of such a production method are as follows.
  • the above poly (vinylbenzyl) ether compound obtained by obtaining a naphthol aralkyl resin, then alkoxylating a part of the OH group of the naphthol aralkyl resin, and then reacting the partially modified naphthol aralkyl resin with a vinyl aromatic halomethyl compound Manufacturing method.
  • Partially modified naphthol aralkyl resin synthesizes naphthol aralkyl resin by condensing hydroxy naphthalene represented by formula (2) and aromatic compound represented by formula (3) wherein X is methoxy group or ethoxy group
  • methanol or ethanol by-produced by the reaction is refluxed into the reaction system, whereby a part of the OH group of the naphthol aralkyl resin is alkoxylated to obtain an OR group.
  • a method for producing a (vinylbenzyl) ether compound is produced.
  • the hydroxy naphthalenes represented by the formula (2) and a part or all of the OH groups of the formula (2) are OR groups (R is an alkyl group having 1 to 12 carbon atoms).
  • R is an alkyl group having 1 to 12 carbon atoms.
  • a mixture of hydroxynaphthalenes including alkoxynaphthalene or a hydroxynaphthalene in which a part of the OH group of formula (2) is an OR group (R is an alkyl group having 1 to 12 carbon atoms) is represented by the formula (3
  • the curable composition containing this compound has a low dielectric loss tangent.
  • a material having high flame retardancy and low dielectric loss tangent and excellent heat reliability can be realized.
  • the poly (vinylbenzyl) ether compound of the present invention is obtained by reacting a naphthol aralkyl resin with a vinyl aromatic halomethyl compound, and is represented by the formula (1).
  • a typical compound of the poly (vinyl benzyl) ether compound is poly (vinyl benzyl) ether.
  • each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or an aryl group. These groups may further have a substituent, for example, an alkyl group having 1 to 6 carbon atoms.
  • R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 10 carbon atoms, preferably 6 in view of the balance between solubility and dielectric properties and curability and flame retardancy. And particularly preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • M represents a number from 1 to 6.
  • m is a number from 0 to 2 when R 1 is a functional group excluding hydrogen.
  • R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a vinylbenzyl group.
  • the proportion (mol%) of the vinylbenzyl group in R 2 is 60 to 100%, preferably 90 to 100%. 0 to 40%, preferably 0 to 10% is a hydrogen atom, an alkyl group or both.
  • R represents a number of 1 to 3, preferably 1 or 2 from the viewpoint of solubility and toughness.
  • m + r is 8 or less, preferably 1 to 4.
  • Ar 1 represents an aryl group having 6 to 50 carbon atoms.
  • Ph represents a phenylene group (—C 6 H 4 —)
  • Np represents a naphthylene group (—C 10 H 6 —)
  • Flu represents a fluorenyl group (—C 13 H 8 —).
  • Ph, Np and Flu may have a substituent, for example, an alkyl group, an alkoxy group, or a phenyl group.
  • An alkyl group having 1 to 6 carbon atoms is preferable.
  • Ar 1 is more preferably unsubstituted, alkyl group substituted, alkoxy group substituted or phenyl group substituted -Ph-, -Ph-Ph- or -Np- from the viewpoint of solubility and flame retardancy. . More preferred is unsubstituted or alkyl group-substituted -Ph-.
  • n is an average value and represents a number from 1 to 20, preferably 1 to 10. When n exceeds 20, the viscosity is increased, which is not preferable in that the filling property to the fine pattern is lowered. In addition, when it has molecular weight distribution, it is an average value (number average).
  • the poly (vinylbenzyl) ether compound represented by the formula (1) of the present invention has a peak area derived from a vinyl aromatic halomethyl compound in gel permeation chromatography (GPC) measurement, which is a poly (vinylbenzyl) ether compound. It is 1.0% or less with respect to the total peak area totaled with the peak area. Preferably, it is 0.5% or less, more preferably 0.2% or less. If the peak area exceeds 1.0%, it is not preferable because the deterioration of the dielectric characteristics after receiving a thermal history of 250 ° C. or higher for a long time becomes large.
  • GPC gel permeation chromatography
  • the peak area of the poly (vinylbenzyl) ether compound means a peak area based on a pure poly (vinylbenzyl) ether compound.
  • the poly (vinylbenzyl) ether compound of the present invention is a reaction product or a purified product thereof, and contains a small amount of other components in addition to the pure poly (vinylbenzyl) ether compound.
  • the poly (vinylbenzyl) ether compound represented by the formula (1) of the present invention has a total halogen content of 600 ppm or less. Preferably, it is 450 ppm or less, More preferably, it is 200 ppm or less. If the total halogen content exceeds 600 ppm, it is not preferable because the deterioration of dielectric properties after receiving a heat history of 250 ° C. or higher for a long time becomes large. Since this halogen is mainly derived from the aromatic halomethyl compound as a raw material, it is related to the peak area of the poly (vinylbenzyl) ether compound.
  • the poly (vinylbenzyl) ether compound represented by the formula (1) of the present invention is obtained by reacting a naphthol aralkyl resin with a vinyl aromatic halomethyl compound.
  • Naphthol aralkyl resin is represented by the following formula (4).
  • the production method of the naphthol aralkyl resin is not particularly limited, but is preferably obtained by subjecting the hydroxynaphthalene represented by the above formula (2) and the aromatic compound represented by the above formula (3) to a condensation reaction. It is done.
  • common symbols have the same meanings unless otherwise specified.
  • the reaction of the naphthol aralkyl resin and the vinyl aromatic halomethyl compound is carried out by reacting in the liquid phase in the presence of an alkali metal hydroxide.
  • the OH group of the naphthol aralkyl resin and the CH2X group of the vinyl aromatic halomethyl compound undergo a condensation reaction to generate deHCl and an O—CH2 bond, thereby producing a poly (vinylbenzyl) ether compound.
  • a part of the phenolic hydroxyl group of the naphthol aralkyl resin represented by the above formula (4) is, for example, in the presence of an acidic catalyst according to the method described in Japanese Patent No. 4465257.
  • an alkyl group having 1 to 12 carbon atoms in R 2 of the formula (1) can also be introduced.
  • the ratio of the alkyl group in R 2 of the formula (1) is preferably 0.1 to 50 mol%. More preferably, it is 1 to 30 mol%.
  • the reaction for introducing the alkyl group may be before or after the reaction with the vinyl aromatic halomethyl compound, but the front is preferable in order to avoid polymerization of the vinyl group.
  • a partially alkylated naphthol aralkyl resin (partially modified naphthol aralkyl resin) in which a part of the hydrogen atom of the hydroxyl group is substituted with an alkyl group is synthesized first, and then reacted with a vinyl aromatic halomethyl compound. This is a method for obtaining a partially alkylated poly (vinylbenzyl) ether compound.
  • a naphthol aralkyl resin and a vinyl aromatic halomethyl compound were reacted to obtain a poly (vinylbenzyl) ether compound, and then a part of the remaining hydroxy group was alkylated to be partially alkoxylated.
  • This is a method for obtaining a poly (vinylbenzyl) ether compound.
  • the partially alkylated poly (vinylbenzyl) ether compound is also included in the poly (vinylbenzyl) ether compound of the present invention.
  • the partially alkylated naphthol aralkyl resin is also referred to as a partially modified naphthol aralkyl resin, which is included in the naphthol aralkyl resin used in the present invention.
  • a hydroxynaphthalene having a part or all of the OH group as an alkoxy group can also be used. It can also be used in combination. When using an OH group having a part of an alkoxy group, it is not necessary to use a hydroxynaphthalene in which the OH group is not modified.
  • the naphthol aralkyl resin may be a mixture of an OH group in which all of the OH groups are alkoxylated and a resin in which all of the OH groups remain, and this is also partially included in the modified naphthol aralkyl resin.
  • R 1 , R 2 , Ar 1 , n, m and r in formulas (2) to (4) are the same as those in formula (1).
  • X in Formula (3) represents a fluorine atom, a chlorine atom, a bromine atom, a methoxy group, an ethoxy group, or a hydroxyl group.
  • a naphthol aralkyl resin and a vinyl aromatic halomethyl compound are reacted in the presence of an alkali metal hydroxide to obtain a reaction product containing a poly (vinylbenzyl) ether compound, which is obtained from water and alcohols.
  • a reaction product containing a poly (vinylbenzyl) ether compound which is obtained from water and alcohols.
  • To be purified with a mixed solvent To be purified with a mixed solvent.
  • hydroxy naphthalenes represented by the above formula (2) are preferably ⁇ -naphthol, ⁇ -naphthol, naphthalene diol, 2-methyl-1-naphthol, 3-methyl-2-naphthol, trihydroxynaphthalene, etc. Hydroxynaphthalene is mentioned, These can be used 1 type or 2 or more types. From the viewpoints of solubility, flame retardancy, and availability of raw materials, ⁇ -naphthol, ⁇ -naphthol, or naphthalenediol is more preferable.
  • X is a condensation active group and represents a fluorine atom, a chlorine atom, a bromine atom, a methoxy group, an ethoxy group, or a hydroxyl group, but preferably in the ease of condensation and in industrial practice. From the viewpoint of availability of raw materials, it is a chlorine atom or a hydroxyl group.
  • Examples of the aromatic compound represented by the formula (3) include 4,4′-bis (fluoromethyl) -1,1′-biphenyl, 4,4′-bis (chloromethyl) -1,1′- Biphenyl, 4,4′-bis (bromomethyl) -1,1′-biphenyl, 4,4′-bis (hydroxymethyl) -1,1′-biphenyl, 4,4′-bis (hydroxyethyl) -1, 1'-biphenyl, di (chloromethyl) benzene, di (bromomethyl) benzene, di (chloromethyl) naphthalene, di (chloromethyl) biphenyl ether, xylylene glycol, xylylene glycol dimethyl ether, xylylene glycol diethyl ether, xylylene Glycol dipropyl ether, xylylene glycol dibutyl ether, xylylene glycol monomethyl ether
  • xylylene glycol More preferred is xylylene glycol, xylylene glycol dimethyl ether, dichloromethylbenzene, or 4,4'-bis (chloromethyl) -1,1'-biphenyl. Particularly preferred is xylylene glycol dimethyl ether.
  • the naphthol aralkyl resin represented by the above formula (4) in addition to the naphthol aralkyl resin obtained by the above reaction, a commercially available one can also be used.
  • SN170, SN180, SN190, SN475, SN485 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. , SN495 and the like can be preferably used. More preferable are SN475, SN485, SN495, SN485V, and SN495V in terms of solubility, toughness, and flame retardancy. From the viewpoints of dielectric properties, toughness and formability, SN485V and SN495V are particularly preferable.
  • the naphthol aralkyl resin represented by the above formula (4) can also be produced by a known method.
  • the naphthol aralkyl resin represented by the above formula (4) may be used alone or in combination of two or more.
  • a naphthol aralkyl resin represented by the above formula (4) (including the above partially modified naphthol aralkyl resin; the same shall apply hereinafter) and a vinyl aromatic halomethyl compound giving a vinyl benzyl group moiety;
  • a poly (vinylbenzyl) ether compound represented by the above formula (4) (including the above partially modified naphthol aralkyl resin; the same shall apply hereinafter) and a vinyl aromatic halomethyl compound giving a vinyl benzyl group moiety;
  • the vinyl aromatic halomethyl compound is represented by CH 2 ⁇ CH—Ar 2 —CH 2 X.
  • Ar 2 is a phenylene group or a substituted phenylene group.
  • substituent in the case of a substituted phenylene group include an alkyl group, an alkoxy group, and a phenyl group.
  • An alkyl group having 1 to 6 carbon atoms is preferable.
  • Ar 2 is more preferably an unsubstituted, alkyl group-substituted, alkoxy group-substituted or phenyl group-substituted phenylene group from the viewpoints of solubility and flame retardancy. More preferred are unsubstituted and alkyl group-substituted phenylene groups, which are industrially easy to produce.
  • Preferred vinyl aromatic halomethyl compounds include p-vinyl benzyl chloride, m-vinyl benzyl chloride, a mixture of p-vinyl benzyl chloride and m-vinyl benzyl chloride, p-vinyl benzyl bromide, m-vinyl benzyl bromide, p Mention may be made of mixtures of -vinylbenzyl bromide and m-vinylbenzyl bromide.
  • the reaction between the naphthol aralkyl resin represented by the above formula (4) and the vinyl aromatic halomethyl compound is not particularly limited.
  • the naphthol aralkyl resin and the vinyl aromatic halomethyl compound are treated with an alkali metal water in a polar solvent.
  • the method of making it react using an oxide as a dehydrohalogenating agent is mentioned.
  • the blending ratio of the naphthol aralkyl resin and the vinyl aromatic halomethyl compound is preferably 100: 95 to 100: 120 in terms of an equivalent ratio (OH: halomethyl molar ratio).
  • an equivalent ratio is within this range, an amount close to the total amount of the naphthol aralkyl resin charged reacts with the vinyl aromatic halomethyl compound, and the hydroxyl group in the naphthol aralkyl resin is vinylbenzyl etherified, and almost remains in the reaction product. By eliminating, the curing reaction to be performed later proceeds sufficiently, and good dielectric properties are exhibited, which is preferable.
  • the production method in the case of introducing an alkyl group having 1 to 12 carbon atoms into R 2 of the formula (1) is not particularly limited, but preferably a mixture of naphthols and alkoxynaphthalene is represented by the above formula (3). It can be produced by reacting an aromatic compound with an acidic catalyst.
  • the ratio of the hydrogen atom (H) occupying the structural unit represented by R 2 present as an average in the resin and the alkyl group (R) having 1 to 12 carbon atoms is not limited, but dielectric properties, moldability
  • the R / H (molar ratio) is preferably 0.0025 or more. More preferably, it is the range of 0.1 or more.
  • alkyl group having 1 to 12 carbon atoms in R 2 a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an allyl group, a propargyl group, a butyl group, an n-amyl group, a sec-amyl group, Examples thereof include a tert-amyl group, a cyclohexyl group, a phenyl group, and a benzyl group, preferably a methyl group, an ethyl group, and an n-propyl group, and more preferably a methyl group.
  • a polar solvent is preferably used.
  • Preferred polar solvents include alcohols such as methanol, ethanol, propanol and butanol, dimethylformamide, dimethylacetamide, N- Amide solvents such as methyl pyrrolidone, ether solvents such as dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, 1,3-dimethoxypropane, 1,2-dimethoxyethane, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone , Dimethyl sulfoxide, acetonitrile, or a mixed solvent thereof.
  • an alkali metal hydroxide is preferably used for promoting the reaction, and preferred alkali metal hydroxides include sodium hydroxide, potassium hydroxide, or a mixture thereof.
  • the blending ratio of the alkali metal hydroxide is preferably in the range of 1.1 to 2.0 times in terms of an equivalent ratio with respect to the hydroxy group of the aromatic hydroxy compound.
  • reaction temperature and reaction time of the above reaction may be appropriately selected depending on the reaction, but the reaction proceeds sufficiently if they are in the range of 30 to 100 ° C. and 0.5 to 20 hours, respectively.
  • a naphthol aralkyl resin and a vinyl aromatic halomethyl compound are dehydrogenated in a mixture of water and an organic solvent in the presence of a phase transfer catalyst such as a quaternary ammonium salt.
  • a poly (vinyl benzyl) ether compound is produced by reacting with a halogenated halide.
  • the reaction product is a crude poly (vinylbenzyl) ether compound containing the poly (vinylbenzyl) ether compound of the formula (1), it is purified to obtain the poly (vinylbenzyl) ether compound of the present invention.
  • the purification method It is preferable to refine
  • the poor solvent those having low solubility of the poly (vinylbenzyl) ether compound and high solubility of the halogen compounds are suitable.
  • Specific examples of such a poor solvent include methanol, ethanol, isopropanol, ethylene glycol, water, or a mixed solvent thereof, preferably a mixed solvent of water and alcohols.
  • Suitable as such a poor solvent is a polar solvent having a solubility parameter of 10 or more, more preferably a polar solvent having a solubility parameter of 11 or more.
  • the solubility parameter is most preferably in the range of 15-20.
  • the total halogen content in the poly (vinylbenzyl) ether compound of the present invention is 600 ppm or less, and the peak area derived from the vinyl aromatic halomethyl compound in GPC measurement is poly (vinylbenzyl) of formula (1).
  • the total peak area combined with the peak area of the ether compound is reduced to 1.0% or less, but this can be achieved by adjusting the recrystallization conditions and the number of times.
  • the total halogen content exceeds 600 ppm, it is not preferable because the deterioration of dielectric properties after a long thermal history of 250 ° C. or more is increased. More preferably, the total halogen content is 450 ppm or less. Most preferably, the total halogen content is 200 ppm or less. When the halogen content is 600 ppm or less, it is preferable because an undesirable effect of avoiding molding defects such as warpage and transfer defects can be obtained. On the other hand, if the peak area derived from the vinyl aromatic halomethyl compound exceeds 1.0%, it is not preferable because the deterioration of dielectric properties after a long heat history of 250 ° C. or more is increased. More preferably, it is 0.5% or less.
  • the curable composition of the present invention contains the poly (vinylbenzyl) ether compound of the present invention and a radical polymerization initiator (also referred to as a radical polymerization catalyst).
  • a radical polymerization initiator for example, as described later, the resin composition of the present invention is cured by causing a crosslinking reaction by means of heating or the like, but the reaction temperature at that time is lowered or the crosslinking reaction of unsaturated groups is performed.
  • a radical polymerization initiator may be contained and used.
  • the amount of the radical polymerization initiator used for this purpose is 0.1 to 10% by weight, preferably 0.1 to 8% by weight, based on the sum of the components (A) and (B). Since the radical polymerization initiator is a radical polymerization catalyst, it is represented below by a radical polymerization initiator.
  • radical polymerization initiators include benzoyl peroxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-di ( t-butylperoxy) hexyne-3, di-t-butyl peroxide, t-butylcumyl peroxide, ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene, 2,5-dimethyl- 2,5-di (t-butylperoxy) hexane, dicumyl peroxide, di-t-butylperoxyisophthalate, t-butylperoxybenzoate, 2,2-bis (t-butylperoxy) butane, 2,2-bis (t-butylperoxy) octane, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, di
  • 2,3-dimethyl-2,3-diphenylbutane can also be used as a radical polymerization initiator (or polymerization catalyst).
  • the catalyst and radical polymerization initiator used for curing the resin composition are not limited to these examples.
  • the reaction proceeds well without inhibiting the curing reaction.
  • the poly (vinylbenzyl) ether compound-containing curable composition may be blended with another polymerizable monomer copolymerizable with the poly (vinylbenzyl) ether compound of the present invention and cured. .
  • copolymerizable monomers examples include styrene, styrene dimer, alphamethylstyrene, alphamethylstyrene dimer, divinylbenzene, vinyltoluene, t-butylstyrene, chlorostyrene, dibromostyrene, vinylnaphthalene, vinylbiphenyl, acenaphthylene, divinyl. Examples thereof include benzyl ether and allyl phenyl ether.
  • the curable resin composition containing the poly (vinyl benzyl) ether compound of the present invention includes known thermosetting resins such as vinyl ester resins, polyvinyl benzyl resins, unsaturated polyester resins, maleimide resins, epoxy resins, Polycyanate resins, phenol resins, etc., known thermoplastic resins such as polystyrene, polyphenylene ether, polyether imide, polyether sulfone, PPS resin, polycyclopentadiene resin, polycycloolefin resin, etc., or known heat Plastic elastomers such as styrene-ethylene-propylene copolymer, styrene-ethylene-butylene copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, hydrogenated styrene-butadiene copolymer, hydrogenated styrene Isoprene Polymer etc.
  • an inorganic filler such as fused silica, crystalline silica, alumina, silicon nitride, aluminum nitride, a flame retardant imparting agent such as decabromodiphenylethane, brominated polystyrene, It can be used particularly effectively as an electrical or electronic component material that requires dielectric properties, flame retardancy, or heat resistance, especially as a semiconductor sealing material or circuit board varnish.
  • the varnish for circuit board material can be produced by dissolving the curable composition of the present invention in a solvent such as toluene, xylene, tetrahydrofuran, dioxolane and the like.
  • a solvent such as toluene, xylene, tetrahydrofuran, dioxolane and the like.
  • Specific examples of the circuit board material include a printed wiring board, a printed circuit board, a flexible printed wiring board, and a build-up wiring board.
  • the cured product obtained by curing the curable composition of the present invention can be used as a molded product, a laminate, a cast product, an adhesive, a coating film, or a film.
  • a cured product of a semiconductor sealing material is a cast or molded product.
  • the compound is cast or molded using a transfer molding machine, an injection molding machine, or the like.
  • a cured product can be obtained by heating at 80 to 230 ° C. for 0.5 to 10 hours.
  • cured material of the varnish for circuit boards is a laminated body, and as a method of obtaining this hardened
  • an inorganic high dielectric powder such as barium titanate or an inorganic magnetic substance such as ferrite.
  • the curable composition of the present invention can be used by being bonded to a metal foil (meaning including a metal plate, hereinafter the same), as with the cured composite material described later.
  • a substrate is added to the curable composite material of the curable composition of the present invention in order to increase mechanical strength and increase dimensional stability.
  • Such base materials include various glass cloths such as roving cloth, cloth, chopped mat, and surfacing mat, asbestos cloth, metal fiber cloth and other synthetic or natural inorganic fiber cloth, wholly aromatic polyamide fiber, wholly aromatic Woven or non-woven fabrics obtained from liquid crystal fibers such as polyester fibers and polybenzoxal fibers, woven or non-woven fabrics obtained from synthetic fibers such as polyvinyl alcohol fibers, polyester fibers, and acrylic fibers, and natural fiber fabrics such as cotton cloth, linen, and felt. , Carbon fiber cloth, kraft paper, cotton paper, natural cellulosic cloth such as paper-glass mixed paper, paper and the like are used alone or in combination of two or more.
  • the proportion of the substrate is 5 to 90 wt%, preferably 10 to 80 wt%, more preferably 20 to 70 wt% in the curable composite material.
  • the base material is less than 5 wt%, the dimensional stability and strength after curing of the composite material tend to decrease. Further, when the substrate content exceeds 90 wt%, the dielectric properties of the composite material tend to be lowered.
  • a coupling agent can be used for the purpose of improving the adhesiveness at the interface between the resin and the substrate, if necessary.
  • the coupling agent general ones such as a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a zircoaluminate coupling agent can be used.
  • the curable composite material of the present invention for example, the curable resin composition of the present invention and, if necessary, other components in the above-mentioned aromatic or ketone solvent or a mixed solvent thereof.
  • a method of uniformly dissolving or dispersing, impregnating the base material, and then drying is exemplified. Impregnation is performed by dipping or coating. The impregnation can be repeated multiple times as necessary, and at this time, the impregnation can be repeated using a plurality of solutions having different compositions and concentrations, and finally adjusted to a desired resin composition and resin amount. Is possible.
  • a cured composite material can be obtained by curing the curable composite material of the present invention by a method such as heating.
  • the production method is not particularly limited.
  • a plurality of curable composite materials are stacked, and each layer is bonded under heat and pressure, and at the same time, thermosetting is performed to obtain a cured composite material having a desired thickness. Can do.
  • Lamination molding and curing are usually performed simultaneously using a hot press or the like, but both may be performed independently. That is, the uncured or semi-cured composite material obtained by lamination molding in advance can be cured by heat treatment or another method.
  • Molding and curing are performed at a temperature of 80 to 300 ° C., a pressure of 0.1 to 1000 kg / cm 2 , a time of 1 minute to 10 hours, and more preferably a temperature of 150 to 250 ° C. and a pressure of 1 to 500 kg / cm. 2. Time: 1 minute to 5 hours.
  • the laminate of the present invention is composed of a layer of the cured composite material of the present invention and a metal foil layer.
  • the metal foil used here include a copper foil and an aluminum foil.
  • the thickness is not particularly limited, but is in the range of 3 to 200 ⁇ m, more preferably 3 to 105 ⁇ m.
  • the above-described curable composition of the present invention and a curable composite material obtained from a substrate and a metal foil are laminated in a layer configuration according to the purpose, and heated.
  • An example is a method in which the respective layers are bonded together under pressure and thermally cured.
  • the composite material cured product and the metal foil are laminated in an arbitrary layer configuration.
  • the metal foil can be used as a surface layer or an intermediate layer. In addition to the above, it is possible to make a multilayer by repeating lamination and curing a plurality of times.
  • An adhesive can also be used for bonding to the metal foil.
  • the adhesive include, but are not limited to, epoxy, acrylic, phenol, and cyanoacrylate.
  • the curable composition of this invention can also be shape
  • the thickness is not particularly limited, but is in the range of 3 to 200 ⁇ m, more preferably 5 to 105 ⁇ m.
  • the method for producing the film of the present invention is not particularly limited.
  • the curable composition and other components as required are uniformly dissolved in an aromatic solvent, a ketone solvent, or a mixed solvent thereof.
  • a method of dispersing, applying to a resin film such as a PET film, and drying may be used.
  • the application can be repeated multiple times as necessary. In this case, the application can be repeated using a plurality of solutions having different compositions and concentrations, and finally the desired resin composition and resin amount can be adjusted. It is.
  • the metal foil with resin of the present invention is composed of the curable composition of the present invention and the metal foil.
  • the metal foil used here include a copper foil and an aluminum foil.
  • the thickness is not particularly limited, but is in the range of 3 to 200 ⁇ m, more preferably 5 to 105 ⁇ m.
  • the method for producing the resin-coated metal foil of the present invention is not particularly limited.
  • the curable composition and other components as necessary in an aromatic solvent, a ketone solvent or a mixed solvent thereof.
  • a method of uniformly dissolving or dispersing, applying to a metal foil and then drying is exemplified.
  • the application can be repeated a plurality of times as necessary. At this time, the application can be repeated using a plurality of solutions having different compositions and concentrations, and finally adjusted to a desired resin composition and resin amount. Is possible.
  • the softening temperature was determined by the tangential method. Further, Tg was determined from the inflection point at which the linear expansion coefficient changes. Furthermore, the average linear expansion coefficient (CTE) was calculated from the dimensional change of the test piece at 0 to 40 ° C. The Tg of the cured film obtained by hot press molding was measured using a dynamic viscoelasticity measuring device at a temperature rising rate of 2 ° C./min, and determined from the peak of the loss elastic modulus.
  • Releasability Width 3.0mm, Length: 20mm, Depth: 0.2mm Indentation of a flat plate using a mold containing 5 engravings at intervals of 3.0mm
  • a 2.0 mm flat plate was cured and molded, and the shape of five rectangular portions on the cured flat plate was observed to evaluate the releasability.
  • C where the molding failure was observed
  • D where the corner shape of the rectangular part was rounded, and the molding of the rectangular part was observed as cracking, chipping, or shrinkage. Went.
  • Dielectric constant and dielectric loss tangent In accordance with JIS C2565 standard, cured after storing in a room with 23 ° C and 50% humidity for 24 hours after drying completely using a cavity resonator method dielectric constant measuring device manufactured by ATE Co., Ltd. The dielectric constant and dielectric loss tangent at 2 GHz of the product film and the cured film after standing for 2 weeks at 85 ° C. and 85% relative humidity were measured.
  • SN-485 1-naphthol aralkyl resin (hydroxyl equivalent 214, softening point 88 ° C., melt viscosity 1.9 Pa ⁇ s (150 ° C.), manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
  • SN495V naphthol aralkyl resin (OH equivalent of phenolic hydroxyl group: 232 g / eq., Alkoxy modification rate of phenolic hydroxyl group: 2.7%, alkoxy group content derived from p-xylylene glycol dimethyl ether: ND Nippon Steel & Sumikin Chemical (Made by Co., Ltd.)
  • SN475N naphthol aralkyl resin (OH equivalent of phenolic hydroxyl group 218 g / eq., Alkoxy modification amount of phenolic hydroxyl group: ND, alkoxy group content derived from p
  • Synthesis example 1 Into a 1 L, 3-neck separable flask equipped with a stirrer, cooling tube, and nitrogen introducing tube, 500 g of SN-485, 50 g of methanol, and 5 g of p-toluenesulfonic acid were charged, heated while introducing nitrogen, and stirred while stirring. The temperature was raised at 0 ° C. and reacted for 5 hours. Thereafter, p-toluenesulfonic acid was removed by washing with water, and the temperature was raised to 200 ° C. under reduced pressure to remove unreacted methanol to obtain 507 g of naphthol aralkyl resin (naphthol aralkyl resin A).
  • the obtained naphthol aralkyl resin A had a softening point of 82 ° C., a melt viscosity at 150 ° C. of 0.10 Pa ⁇ s, and a hydroxyl group equivalent of 335.
  • the ratio of methoxy groups (methoxy modification ratio) to the total amount of hydroxyl groups and methoxy groups of the naphthalene ring determined from 1 H-NMR spectrum was 28%.
  • Synthesis example 2 In a 2 L, 3-neck separable flask equipped with a stirrer, a condenser tube, and a nitrogen inlet tube, 600 g of 1-naphthol, 262 g of 1-methoxynaphthalene, 290 g of p-xylylene glycol dimethyl ether, and 5.8 g of p-toluenesulfonic acid were added. The mixture was heated and dissolved at 90 ° C. while introducing nitrogen. Then, it heated up at 150 degreeC, stirring, and was made to react for 5 hours. During this time, methanol produced by the reaction was removed out of the system.
  • naphthol aralkyl resin (naphthol aralkyl resin).
  • the obtained naphthol aralkyl resin B had a softening point of 84 ° C., a melt viscosity of 0.12 Pa ⁇ s, a hydroxyl group equivalent of 275, and a methoxy group modification rate of 15%.
  • Example 1 In a four-necked flask equipped with a temperature controller, a stirrer, a cooling condenser, and a dropping funnel, 195 parts of SN495V (1.0 equivalent), 160.1 parts of CMS-AM (1.05 equivalents), tetra-n-butylammonium 9.6 parts of bromide, 0.152 parts of 2,4-dinitrophenol and 255 parts of methyl ethyl ketone were added and dissolved by stirring. The temperature of the liquid was adjusted to 75 ° C., and 160 parts (2.0 equivalents) of 50% aqueous sodium hydroxide solution was added for 20 minutes. Then, the mixture was further stirred at 75 ° C. for 4 hours. Next, after neutralizing the inside of the flask with a 10% hydrochloric acid aqueous solution, 400 parts of toluene was added, and the organic layer was washed with 1500 parts of water three times.
  • the obtained resin precipitate was filtered and dried to obtain 246.7 parts of vinylbenzylated naphthol aralkyl resin (VBESN 495V) as a poly (vinylbenzyl) ether compound which is a reaction product of SN495V and vinylbenzyl chloride.
  • the total chlorine content measured by elemental analysis was 167 ppm.
  • GPC GPC measurement was performed, no peak derived from chloromethylstyrene was observed.
  • DSC differential scanning calorimeter
  • TGA thermobalance
  • Example 2 In a four-necked flask equipped with a temperature controller, a stirrer, a cooling condenser and a dropping funnel, 195 parts of SN475N (1.0 equivalent), 160.1 parts of CMS-AM (1.05 equivalents), tetra-n-butylammonium 9.6 parts of bromide, 0.152 parts of 2,4-dinitrophenol and 255 parts of methyl ethyl ketone were added and dissolved by stirring. The temperature of the liquid was adjusted to 75 ° C., and 160 parts (2.0 equivalents) of 50% aqueous sodium hydroxide solution was added for 20 minutes. Then, the mixture was further stirred at 75 ° C. for 4 hours. Next, after neutralizing the inside of the flask with a 10% hydrochloric acid aqueous solution, 400 parts of toluene was added, and the organic layer was washed with 1500 parts of water three times.
  • the resulting resin precipitate was filtered and dried to obtain 223.5 parts of vinylbenzylated naphthol aralkyl resin (VBESN475N) which is a reaction product of SN475N and vinylbenzyl chloride.
  • the product was confirmed in the same manner as in Example 1, and it was confirmed that VBESN475N was obtained.
  • the vinylbenzyl ether group content was 99.5% or more.
  • alkoxy groups and phenolic hydroxyl groups in which the phenolic OH group of 1-naphthol was modified could not be detected.
  • the total chlorine content is 178 ppm, and the peak area derived from chloromethylstyrene (chloromethylstyrene peak area ratio) is 0.05% of the total peak area totaled with the peak areas of VBESN475N and chloromethylstyrene.
  • Met the melting peak derived from a crystal
  • Examples 3-5 Vinylbenzylation was carried out by the same production method as in Example 1 except that SN-485, naphthol aralkyl resin A obtained in Synthesis Example 1 or naphthol aralkyl resin B obtained in Synthesis Example 2 was used as the naphthol aralkyl resin.
  • Naphthol aralkyl resins (VBE-A to VBE-C) were synthesized. The evaluation results of the obtained vinylbenzylated naphthol aralkyl resin are shown in Table 1. ND means not detected.
  • the vinyl benzyl ether group (%), the phenolic OH group (%) and the alkoxy group (%) are the ratio in R 2 of the formula (1).
  • Chloromethylstyrene (%) is the chloromethylstyrene peak area ratio.
  • VBE-D vinylbenzylated naphthol aralkyl resin
  • VBE-E vinylbenzylated naphthol aralkyl resin
  • Comparative Example 1 The organic phase obtained by reacting, neutralizing and washing under the same conditions as in Example 2 was distilled and concentrated until distillation of the solvent was completed. Reprecipitation was not performed. 326.8 parts of vinylbenzylated naphthol aralkyl resin (VBE-F) which is a reaction product of SN475N and vinylbenzyl chloride was obtained.
  • VBE-F vinylbenzylated naphthol aralkyl resin
  • Example 8 The organic phase obtained by reacting, neutralizing and washing under the same conditions as in Example 2 was concentrated by distillation until the organic phase was 500 parts, and 1,000 parts of methanol (100%) was added. The product was reprecipitated and reprecipitation under the same conditions was repeated two more times. The resulting resin precipitate was filtered and dried to obtain 89.3 parts of a vinylbenzylated naphthol aralkyl resin (VBE-G) which is a reaction product of SN475N and vinylbenzyl chloride.
  • VBE-G vinylbenzylated naphthol aralkyl resin
  • the product was confirmed in the same manner as in Example 1, and it was confirmed that VBE-G was obtained.
  • the vinylbenzyl ether group content was 99.5% or more, and the alkoxy group and phenolic hydroxyl group in which the phenolic OH group of 1-naphthol was modified were not detected.
  • the total chlorine content was 18.0 ppm, and no peak derived from chloromethylstyrene was detected.
  • crystallization was not observed, but thermal decomposition start temperature: 389.7 degreeC, and the carbide
  • Example 6 to 8 and Comparative Example 1 The products obtained in Examples 6 to 8 and Comparative Example 1 were confirmed in the same manner as in Example 1, and it was confirmed that VBE-D, VBE-E, VBE-F and VBE-G were obtained. did.
  • the vinyl benzyl ether group content was 99.5% or more for all of VBE-D, VBE-E, VBE-F and VBE-G. None of VBE-D, VBE-E, VBE-F and VBE-G were detected for the alkoxy group and the phenolic hydroxyl group in which the phenolic OH group of 1-naphthol was modified. None of VBE-D, VBE-E, VBE-F and VBE-G were observed as melting peaks derived from crystals.
  • Synthesis example 3 While purging a flask equipped with a thermometer, condenser, and stirrer with nitrogen gas purge, 414 parts of phenol, 251 parts of 4,4′-bis (chloromethyl) -1,1′-biphenyl, p-toluenesulfonic acid 13 The portion was charged and heated up to 80 ° C. with stirring to be dissolved. After stirring for 4 hours, 700 parts of methyl isobutyl ketone was added and then washed three times with 300 parts of water until the washing water became neutral. Then, unreacted phenol and methyl isobutyl ketone were removed from the oil layer under a pressure of 1.3 kPa.
  • the naphthalene ring of the formula (4) was a benzene ring, and 310 parts of a phenol aralkyl resin (P) in which R 1 was a hydrogen atom and n was 1.5 was obtained.
  • the obtained phenol aralkyl resin had a softening point of 65 ° C. and a hydroxyl group equivalent of 202 g / eq.
  • the softening point of the obtained poly (vinylbenzyl) ether compound was 54 ° C., and the absorption due to the phenolic hydroxyl group of the raw material disappeared.
  • the total chlorine content was 980 ppm, and the chloromethylstyrene peak area ratio was 1.8%.
  • crystallization was not observed, the thermal decomposition start temperature was 376 degreeC, and the carbide
  • Example 9 70 g of VBESN 495V obtained in Example 1 and 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane (trade name: Perhexa 25B, manufactured by NOF Corporation) as a polymerization initiator 7 g was dissolved in 30 g of toluene to obtain a curable composition (varnish A).
  • the prepared varnish A is dropped on a mold, the solvent is removed by devolatilization at 80 ° C. under reduced pressure, and after drying, the mold is assembled, and then subjected to a vacuum press for 1 hour at 180 ° C. and 3 MPa.
  • the cured sheet having a thickness of 0.2 mm obtained by thermosetting was measured for various properties including a dielectric constant of 2.0 GHz and a dielectric loss tangent. Further, the dielectric constant and dielectric loss tangent after being left in an oven at 250 ° C. for 1 hour were measured, and the change rate of the dielectric constant and dielectric loss tangent before and after being left was measured. The results obtained by these measurements are shown in Table 2.
  • Comparative Example 2 70 g of VB1 obtained in Synthesis Example 3 and 0.7 g of perhexa 25B as a polymerization initiator were dissolved in 30 g of toluene to obtain a curable composition (varnish B).
  • the prepared varnish B was dropped onto the mold, the solvent was removed by devolatilization at 80 ° C. under reduced pressure, and after drying, the mold was assembled and then subjected to a vacuum pressure press at 180 ° C. and 3 MPa for 1 hour.
  • the cured sheet having a thickness of 0.2 mm obtained by thermosetting was measured for various properties including a dielectric constant of 2.0 GHz and a dielectric loss tangent. Further, the dielectric constant and dielectric loss tangent after being left in an oven at 250 ° C. for 1 hour were measured, and the change rate of the dielectric constant and dielectric loss tangent before and after being left was measured. The results obtained by these measurements are shown in Table 2.
  • VBESN 495V obtained in Example 1 VBESN 475N obtained in Example 2
  • VBE-A to VBE-C obtained in Examples 3 to 5
  • VBE-E obtained in Example 7, VBE-E obtained in Example 8 G A curable composition was obtained in the same manner as described above for VBE-F obtained in Comparative Example 1, and a 2.0 mm-thick plate cured product was prepared therefrom to evaluate the bending toughness.
  • the mold release property was evaluated using this curable composition (without solvent).
  • the evaluation results are as follows. Figures in parentheses are bending toughness and releasability.
  • VBESN 495V (bending toughness A, releasability A), VBESN 475N (B, B), VBE-A (B, B), VBE-B (A, A), VBE-C (A, A), VBE-E (B, B), VBE-G (B, B), VBE-F (C, C).
  • Example 10 30 g of VBESN 495V obtained in Example 1, 20 g of a hydrogenated styrene butadiene block copolymer (manufactured by Kraton Polymer Japan Co., Ltd., trade name: KRATON A1535) as a thermoplastic elastomer, and 0.25 g of Perhexa 25B as a polymerization initiator in toluene It melt
  • a hydrogenated styrene butadiene block copolymer manufactured by Kraton Polymer Japan Co., Ltd., trade name: KRATON A1545
  • Perhexa 25B as a polymerization initiator in toluene It melt
  • the prepared varnish C was applied onto a PET film, the solvent was removed at 80 ° C., the coating film was peeled off from the PET film after drying, and the isolated cast film was vacuum-pressed for 1 hour under the conditions of 180 ° C. and 3 MPa. And thermosetting, and various properties of the obtained cured film were measured. Further, a 0.2 mm thick film press cured product was cut into 0.3 cm ⁇ 10 cm to prepare a test piece, and a dielectric constant and dielectric loss tangent of 2.0 GHz were measured. Further, the dielectric constant and dielectric loss tangent after being left in an oven at 250 ° C. for 1 hour were measured, and the change rate of the dielectric constant and dielectric loss tangent before and after being left was measured. The solution viscosity was measured at 25 ° C. using an E-type viscometer. The results obtained by these measurements are shown in Table 3.
  • Example 11 Glass cloth (E glass, weight per unit area: 71 g / m 2 ) was immersed in the varnish C obtained in Example 10 for impregnation, and dried in an air oven at 50 ° C. for 30 minutes.
  • the resin content (RC) of the obtained prepreg was 55%.
  • the number of through holes not filled with resin was 0 out of 4500 holes. .
  • a plurality of the above curable composite materials are stacked as necessary so that the thickness after molding becomes approximately 0.6 mm to 1.0 mm, and a copper foil having a thickness of 18 ⁇ m is placed on both sides thereof by a press molding machine. Molded and cured to obtain a laminate.
  • the curing condition of each example was to raise the temperature at 3 ° C./min and hold at 180 ° C. for 60 minutes. The pressure was 30 kg / cm 2 in all cases.
  • Trichlorethylene resistance The laminate from which the copper foil had been removed was cut into 25 mm squares, boiled in trichlorethylene for 5 minutes, and the change in appearance was visually observed (based on JIS C6481).
  • Solder heat resistance The laminate from which the copper foil had been removed was cut into 25 mm squares, floated in a 260 ° C. solder bath for 120 seconds, and the change in appearance was visually observed (conforms to JIS C6481).
  • Example 12 Varnish C obtained in Example 10 was applied onto an 18 ⁇ m electrolytic copper foil, air-dried for 10 minutes, and then dried in an air oven at 80 ° C. for 10 minutes.
  • the resin thickness on the copper foil was 50 ⁇ m.
  • the copper foil with resin and the laminate of Example 5 were stacked and cured by heating and pressing at 180 ° C. for 90 minutes at a pressure of 30 kg / cm 2 . When through holes were observed, no through holes that were not filled with resin were confirmed.
  • Example 13 Comparative Example 4
  • the test was performed under the same conditions as in Example 9, except that VBE-D obtained in Example 6 and VBE-F obtained in Comparative Example 1 were used. The results obtained from the tests are shown in Table 4.
  • the curable composition of the present invention exhibits excellent chemical resistance, dielectric properties, low water absorption, heat resistance, flame retardancy, mechanical properties after curing, and is a dielectric material in the fields of electrical industry, space / aircraft industry, etc. It can be used for insulating materials, heat-resistant materials, structural materials, and the like. In particular, it can be used as a single-sided, double-sided, multilayer printed board, flexible printed board, build-up board or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

Provided are: a poly(vinyl benzyl) ether compound which can have high dielectric properties (a low dielectric constant, a low dielectric tangent) even after undergoing a thermal history at a high temperature and enables the production of a cured article having a high glass transition temperature and high flame retardancy; and a curable composition. A poly(vinyl benzyl) ether compound produced by reacting a naphthol aralkyl resin with a vinyl aromatic halomethyl compound, said poly(vinyl benzyl) ether compound being characterized by having a total halogen content of 600 ppm or less, and also having a ratio of a peak area derived from the vinyl aromatic halomethyl compound to the total peak area, which is the sum total of the peak area derived from the vinyl aromatic halomethyl compound and a peak area derived from the poly(vinyl benzyl) ether compound, is 1.0% or less as measured by gel permeation chromatography.

Description

ポリ(ビニルベンジル)エーテル化合物、その製造方法、これを含有する硬化性組成物及び硬化物Poly (vinylbenzyl) ether compound, process for producing the same, curable composition containing the same, and cured product
 本発明はポリ(ビニルベンジル)エーテル化合物、その製造方法、該化合物を含有する硬硬化性組成物、硬化物、複合材料、その硬化体、その硬化体と金属箔からなる積層体、および樹脂付き金属箔に関する。 The present invention relates to a poly (vinylbenzyl) ether compound, a production method thereof, a hard curable composition containing the compound, a cured product, a composite material, a cured product thereof, a laminate comprising the cured product and a metal foil, and a resin. It relates to metal foil.
 近年の情報通信量の増加にともない高周波数帯域での情報通信が盛んに行われるようになり、より優れた電気特性、なかでも高周波数帯域での伝送損失を低減させるため、低誘電率と低誘電正接を有し、特に厳しい熱履歴を受けた後の誘電特性変化の小さい電気絶縁材料が求められている。さらにそれら電気絶縁材料が使われているプリント基板あるいは電子部品は実装時に高温のハンダリフローに曝されるために耐熱性の高い、すなわち高いガラス転移温度を示す材料が望まれている。特に最近は、環境問題から融点の高い鉛フリーのハンダが使われるために、より耐熱性の高い電気絶縁材料の要求が高まってきている。これらの要求に対し、従来、種々の化学構造を持つビニルベンジルエーテル化合物を使用した硬化樹脂が提案されている。 With the increase in information traffic in recent years, information communication in the high frequency band has been actively performed, and in order to reduce the transmission loss in the higher frequency band, more excellent electrical characteristics, in particular, low dielectric constant and low There is a need for an electrically insulating material having a dielectric loss tangent and a small change in dielectric properties after being subjected to a particularly severe thermal history. Furthermore, since printed circuit boards or electronic components using these electrical insulating materials are exposed to high-temperature solder reflow during mounting, a material having high heat resistance, that is, a high glass transition temperature is desired. In particular, recently, due to the use of lead-free solder having a high melting point due to environmental problems, there is an increasing demand for an electrically insulating material with higher heat resistance. In response to these requirements, conventionally, cured resins using vinyl benzyl ether compounds having various chemical structures have been proposed.
 このような硬化樹脂としては、例えば、ビスフェノールのジビニルベンジルエーテル、あるいはフェノールノボラックタイプのポリ(ビニルベンジル)エーテル化合物などの硬化樹脂が提案されている(特許文献1、特許文献2)。しかし、これらのポリ(ビニルベンジル)エーテル化合物は、初期の誘電特性おいて、十分な特性が得られなかったばかりか、厳しい熱履歴に対する誘電特性の変化が必ずしも小さい硬化樹脂を与えることができず、耐熱性において、十分に高いとはいえないものであった。 As such a cured resin, for example, a cured resin such as divinylbenzyl ether of bisphenol or a poly (vinylbenzyl) ether compound of phenol novolac type has been proposed (Patent Document 1, Patent Document 2). However, these poly (vinyl benzyl) ether compounds have not been able to provide sufficient properties in the initial dielectric properties, but also cannot provide a cured resin with a small change in dielectric properties due to severe thermal history, The heat resistance was not high enough.
 これら特性を向上させたポリ(ビニルベンジル)エーテル化合物として、特定構造のポリ(ビニルベンジル)エーテル化合物が幾つか提案され、厳しい熱履歴を受けた時の誘電正接の変化を抑える試みや、耐熱性を向上させる試みがなされているが、特性の向上は未だ十分とは言えず、さらなる特性改善が望まれていた。このため、実装材料としては信頼性及び加工性において、十分なものではなかった(特許文献3、特許文献4、特許文献5)。
 また、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル型フェノールノボラック樹脂およびビフェニル型ナフトールノボラック樹脂からなる群から選択された少なくとも1種の水酸基をビニルベンジルエーテル化した硬化性樹脂を含有することを特徴とする硬化性樹脂組成物(特許文献6)が開示されている。しかし、当該文献に開示されている製法に従って合成されたビニルベンジルエーテル化した硬化性樹脂は、全ハロゲン含有量と、残存ビニル芳香族ハロメチル化合物量が大きいために、厳しい熱履歴を受けた後の、誘電正接と耐熱性が高周波数に対応した絶縁材料としては満足するものではなく、成形性においても、成形不良を生じやすく、望ましいものではなかった。また、当該文献において、具体例として例示されているナフトールアラルキル樹脂は、式(1)のRとして炭素数1~12のアルキル基は含まないものであることから、Rのアルキル変性の効果については、明らかではなかった。
Several poly (vinyl benzyl) ether compounds with specific structures have been proposed as poly (vinyl benzyl) ether compounds with improved properties. Attempts to suppress changes in dielectric loss tangent when subjected to severe thermal history, and heat resistance Attempts have been made to improve the characteristics, but the improvement in characteristics has not been sufficient yet, and further improvement in characteristics has been desired. For this reason, the mounting material is not sufficient in reliability and workability (Patent Document 3, Patent Document 4, and Patent Document 5).
And a curable resin containing at least one hydroxyl group selected from the group consisting of a phenol aralkyl resin, a naphthol aralkyl resin, a biphenyl type phenol novolak resin, and a biphenyl type naphthol novolak resin. A curable resin composition (Patent Document 6) is disclosed. However, the vinyl benzyl etherified curable resin synthesized in accordance with the production method disclosed in the document has a large total halogen content and a large amount of residual vinyl aromatic halomethyl compound, and therefore has a severe heat history. The dielectric loss tangent and the heat resistance are not satisfactory as an insulating material corresponding to a high frequency, and the moldability is not desirable because it tends to cause molding defects. Further, in the literature, the naphthol aralkyl resins are exemplified as specific examples, since it is one which does not contain an alkyl group of 1 to 12 carbon atoms as R 2 of formula (1), the alkyl-modified of R 2 Effect About was not clear.
 このように、従来のポリ(ビニルベンジル)エーテル化合物は電気絶縁材料用途、特に高周波数対応の電気絶縁材料用途として必要な、鉛フリーのハンダ加工に耐えうる厳しい熱履歴後の低い誘電正接を満足する耐熱性を持つ硬化物を与えるものではなく、また、信頼性と加工性の点でも不十分なものであった。 Thus, conventional poly (vinyl benzyl) ether compounds satisfy the low dielectric loss tangent after severe thermal history that can withstand lead-free soldering, which is necessary for electrical insulation materials, especially for high frequency electrical insulation materials. It does not give a cured product having heat resistance, and is insufficient in terms of reliability and workability.
特開昭63-68537号公報JP 63-68537 A 特開昭64-65110号公報JP-A 64-65110 特表平1-503238号公報JP-T-1-503238 特開平9-31006号公報JP-A-9-31006 特開2004-323730号公報JP 2004-323730 A 特開2003-306591号公報JP 2003-306591 A
 本発明は、厳しい熱履歴後も高度の誘電特性(低誘電率・低誘電正接)を有し、かつ高いガラス転移温度と難燃性を有する硬化物を与えるポリ(ビニルベンジル)エーテル化合物、及び硬化性組成物を提供することにあり、電気・電子産業、宇宙・航空機産業等の分野において誘電材料、絶縁材料、耐熱材料として用いることができる樹脂組成物、硬化物又はこれを含む材料を提供することを目的とする。 The present invention relates to a poly (vinylbenzyl) ether compound that has a high dielectric property (low dielectric constant and low dielectric loss tangent) even after severe thermal history, and gives a cured product having a high glass transition temperature and flame retardancy, and Providing a curable composition, and providing a resin composition, a cured product, or a material containing the same that can be used as a dielectric material, an insulating material, and a heat-resistant material in fields such as the electric / electronic industry, space / aircraft industry, etc. The purpose is to do.
 本発明者らは、下記式(1)で表わされるポリ(ビニルベンジル)エーテル化合物が上記課題を解決するために有効であることを見出し、本発明を完成した。 The present inventors have found that a poly (vinylbenzyl) ether compound represented by the following formula (1) is effective for solving the above problems, and completed the present invention.
 すなわち本発明は、ナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物とを反応させて得られる下記式(1)で表されるポリ(ビニルベンジル)エーテル化合物であって、全ハロゲン含有量が600ppm(wt)以下で、ゲル浸透クロマトグラフィー(GPC)測定においてビニル芳香族ハロメチル化合物に由来するピーク面積がポリ(ビニルベンジル)エーテル化合物のピーク面積と合計した総ピーク面積に対して、1.0%以下であることを特徴とするポリ(ビニルベンジル)エーテル化合物に関する。 That is, the present invention is a poly (vinylbenzyl) ether compound represented by the following formula (1) obtained by reacting a naphthol aralkyl resin with a vinyl aromatic halomethyl compound, and has a total halogen content of 600 ppm (wt). Below, in gel permeation chromatography (GPC) measurement, the peak area derived from the vinyl aromatic halomethyl compound is 1.0% or less with respect to the total peak area totaled with the peak area of the poly (vinylbenzyl) ether compound. It is related with the poly (vinyl benzyl) ether compound characterized by the above-mentioned.
Figure JPOXMLDOC01-appb-I000004
 ここで、Rはそれぞれ独立して水素原子、炭素数1~6のアルキル基、アリル基、または炭素数6~10のアリール基を表し、Arは炭素数6~50のアリール基を表し、Rはそれぞれ独立して水素原子、炭素数1~12のアルキル基、またはビニルベンジル基を表すが、Rにおけるビニルベンジル基の割合は60~100モル%である。nは平均値で1~20の範囲であり、mは1~6の数であり、rは1~3の数である。但し、m+rは8を超えない。
Figure JPOXMLDOC01-appb-I000004
Here, each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or an aryl group having 6 to 10 carbon atoms, and Ar 1 represents an aryl group having 6 to 50 carbon atoms. , R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a vinylbenzyl group, and the ratio of the vinylbenzyl group in R 2 is 60 to 100 mol%. n is an average value ranging from 1 to 20, m is a number from 1 to 6, and r is a number from 1 to 3. However, m + r does not exceed 8.
 式(1)において、Rにおけるアルキル基の割合が0.1~50モル%であることがよく、1~30モル%であることがより望ましい。 In the formula (1), the ratio of the alkyl group in R 2 is preferably 0.1 to 50 mol%, and more preferably 1 to 30 mol%.
 また、本発明は、上記のポリ(ビニルベンジル)エーテル化合物と、ラジカル重合開始剤とを含有することを特徴とする硬化性組成物、及びこの硬化性組成物を硬化してなる硬化物に関する。 The present invention also relates to a curable composition characterized by containing the above poly (vinylbenzyl) ether compound and a radical polymerization initiator, and a cured product obtained by curing the curable composition.
 また、本発明は、上記の硬化性組成物と基材からなる硬化性複合材料、この硬化性複合材料を硬化して得られた複合材料硬化物、及びこの複合材料硬化物の層と金属箔層とを有する積層体に関する。また、本発明は、上記の硬化性組成物から形成された膜を金属箔の片面に有する樹脂付き金属箔に関する。 The present invention also relates to a curable composite material comprising the above curable composition and a substrate, a composite material cured product obtained by curing the curable composite material, and a layer and a metal foil of the composite material cured product. It is related with the laminated body which has a layer. Moreover, this invention relates to the metal foil with resin which has the film | membrane formed from said curable composition on the single side | surface of metal foil.
 さらに、本発明は、下記式(2)で表されるヒドロキシナフタレン類と下記式(3)で表される芳香族化合物とを縮合してナフトールアラルキル樹脂を得て、このナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物とを、アルカリ金属水酸化物の存在下で反応させ、ポリ(ビニルベンジル)エーテル化合物を含む反応生成物を得て、これを水及びアルコール類からなる混合溶媒にて精製することを特徴とする上記のポリ(ビニルベンジル)エーテル化合物の製造方法に関する。 Furthermore, the present invention provides a naphthol aralkyl resin obtained by condensing a hydroxynaphthalene represented by the following formula (2) and an aromatic compound represented by the following formula (3). Reacting with a group halomethyl compound in the presence of an alkali metal hydroxide to obtain a reaction product containing a poly (vinylbenzyl) ether compound, and purifying it with a mixed solvent comprising water and alcohols. The present invention relates to a method for producing the above-mentioned poly (vinylbenzyl) ether compound.
Figure JPOXMLDOC01-appb-I000005
 ここで、Rはそれぞれ独立して水素原子、炭素数1~6のアルキル基、アリル基、またはアリール基を表し、mは1~6の数であり、rは1~3の数である。但し、m+rは8を超えない。
Figure JPOXMLDOC01-appb-I000006
 ここで、Arは炭素数6~50のアリール基を表し、Xはフッ素原子、塩素原子、臭素原子、メトキシ基、エトキシ基または水酸基を表す。
Figure JPOXMLDOC01-appb-I000005
Here, each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or an aryl group, m is a number from 1 to 6, and r is a number from 1 to 3. . However, m + r does not exceed 8.
Figure JPOXMLDOC01-appb-I000006
Here, Ar 1 represents an aryl group having 6 to 50 carbon atoms, and X represents a fluorine atom, a chlorine atom, a bromine atom, a methoxy group, an ethoxy group, or a hydroxyl group.
 上記ヒドロキシナフタレン類又はナフトールアラルキル樹脂は、OH基の一部がアルコキシ基(OR基;Rは炭素数1~12のアルキル基)となったものであること、あるいはOH基の一部又は全部がアルコキシ基となったものと、アルコキシ化されていないものとの混合物であることも好ましい。 In the above hydroxynaphthalene or naphthol aralkyl resin, part of the OH group is an alkoxy group (OR group; R is an alkyl group having 1 to 12 carbon atoms), or part or all of the OH group is A mixture of an alkoxy group and a non-alkoxy group is also preferable.
 かかる製造方法の好ましい態様のいくつかを次に示す。
 ナフトールアラルキル樹脂を得て、次にナフトールアラルキル樹脂のOH基の一部をアルコキシ化し、次いで、この一部変性ナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物とを反応させる上記のポリ(ビニルベンジル)エーテル化合物の製造方法。
Some preferred embodiments of such a production method are as follows.
The above poly (vinylbenzyl) ether compound obtained by obtaining a naphthol aralkyl resin, then alkoxylating a part of the OH group of the naphthol aralkyl resin, and then reacting the partially modified naphthol aralkyl resin with a vinyl aromatic halomethyl compound Manufacturing method.
 一部変性ナフトールアラルキル樹脂が、式(2)で表されるヒドロキシナフタレン類とXがメトキシ基もしくはエトキシ基である式(3)で表される芳香族化合物とを縮合してナフトールアラルキル樹脂を合成する際に、反応によって副生するメタノール又はエタノールを反応系中に還流させることによって、ナフトールアラルキル樹脂のOH基の一部をアルコキシ化してOR基とすることにより得られたものである上記のポリ(ビニルベンジル)エーテル化合物の製造方法。 Partially modified naphthol aralkyl resin synthesizes naphthol aralkyl resin by condensing hydroxy naphthalene represented by formula (2) and aromatic compound represented by formula (3) wherein X is methoxy group or ethoxy group In this case, methanol or ethanol by-produced by the reaction is refluxed into the reaction system, whereby a part of the OH group of the naphthol aralkyl resin is alkoxylated to obtain an OR group. A method for producing a (vinylbenzyl) ether compound.
 一部変性ナフトールアラルキル樹脂が、式(2)で表されるヒドロキシナフタレン類と式(2)のOH基の一部又は全部がOR基(Rは炭素数1~12のアルキル基)となったアルコキシナフタレン類を含むヒドロキシナフタレン類の混合物と、又は式(2)のOH基の一部がOR基(Rは炭素数1~12のアルキル基)となったヒドロキシナフタレン類とを、式(3)で表される芳香族化合物とを縮合することにより得られたものである上記のポリ(ビニルベンジル)エーテル化合物の製造方法。 In the partially modified naphthol aralkyl resin, the hydroxy naphthalenes represented by the formula (2) and a part or all of the OH groups of the formula (2) are OR groups (R is an alkyl group having 1 to 12 carbon atoms). A mixture of hydroxynaphthalenes including alkoxynaphthalene or a hydroxynaphthalene in which a part of the OH group of formula (2) is an OR group (R is an alkyl group having 1 to 12 carbon atoms) is represented by the formula (3 The method for producing a poly (vinylbenzyl) ether compound as described above, which is obtained by condensing with an aromatic compound represented by
 本発明のポリ(ビニルベンジル)エーテル化合物は、全ハロゲン含有量及びビニル芳香族ハロメチル化合物の含有量が一定以下に制御されているため、これを配合した硬化性組成物からは、低誘電正接性の硬化物が得られ、高度の難燃性を有し、低誘電正接の耐熱信頼性の優れた材料を実現できる。 In the poly (vinylbenzyl) ether compound of the present invention, since the total halogen content and the content of the vinyl aromatic halomethyl compound are controlled to be below a certain level, the curable composition containing this compound has a low dielectric loss tangent. Thus, a material having high flame retardancy and low dielectric loss tangent and excellent heat reliability can be realized.
 以下、本発明を更に説明する。
 本発明のポリ(ビニルベンジル)エーテル化合物は、ナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物とを反応させて得られ、式(1)で表される。ポリ(ビニルベンジル)エーテル化合物の典型的な化合物として、ポリ(ビニルベンジル)エーテルがある。
The present invention will be further described below.
The poly (vinylbenzyl) ether compound of the present invention is obtained by reacting a naphthol aralkyl resin with a vinyl aromatic halomethyl compound, and is represented by the formula (1). A typical compound of the poly (vinyl benzyl) ether compound is poly (vinyl benzyl) ether.
 式(1)において、Rはそれぞれ独立して水素原子、炭素数1~6のアルキル基、アリル基、またはアリール基を表す。これらの基は、さらに置換基を有しても良く、例えば、炭素数1~6のアルキル基である。好ましくは溶解性及び誘電特性と硬化性及び難燃性とのバランスの点から、Rは水素原子、炭素数1~6のアルキル基、または炭素数6~10、好ましくは6のアリール基であり、特に好ましくは水素原子または炭素数1~3のアルキル基である。
 また、mは1~6の数を表すが、好ましくは溶解性と難燃性のバランスの点から、Rが水素を除く官能基である場合、mは0~2の数である。
In formula (1), each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or an aryl group. These groups may further have a substituent, for example, an alkyl group having 1 to 6 carbon atoms. Preferably, R 1 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 10 carbon atoms, preferably 6 in view of the balance between solubility and dielectric properties and curability and flame retardancy. And particularly preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
M represents a number from 1 to 6. Preferably, from the viewpoint of the balance between solubility and flame retardancy, m is a number from 0 to 2 when R 1 is a functional group excluding hydrogen.
 また、Rは、それぞれ独立して水素原子、炭素数1~12のアルキル基、またはビニルベンジル基を表す。そして、R中に占めるビニルベンジル基の割合(モル%)は、60~100%であるが、好ましくは90~100%である。0~40%、好ましくは0~10%が水素原子、アルキル基または両者である。ビニルベンジル基の割合が60%未満の場合は、重合活性点が少ないことと、フェノール性水酸基が多いため、硬化不足や誘電特性の悪化という問題が起こり好ましくない。
 また、rは1~3の数を表すが、好ましくは溶解性と靱性の点から、1~2の数である。m+rは8以下であるが、好ましくは1~4である。
R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a vinylbenzyl group. The proportion (mol%) of the vinylbenzyl group in R 2 is 60 to 100%, preferably 90 to 100%. 0 to 40%, preferably 0 to 10% is a hydrogen atom, an alkyl group or both. When the proportion of the vinylbenzyl group is less than 60%, the polymerization active point is small and the phenolic hydroxyl group is large, which causes problems such as insufficient curing and deterioration of dielectric properties, which is not preferable.
R represents a number of 1 to 3, preferably 1 or 2 from the viewpoint of solubility and toughness. m + r is 8 or less, preferably 1 to 4.
 また、Arは炭素数6~50のアリール基を表す。例えば、-Ph-、-Ph-Ph-、-Np-、-Np-CH-Np-、-Ph-CH-Ph-、-Ph-C(CH-Ph-、-Ph-CH(CH)-Ph-、-Ph-CH(C)-Ph-、-Ph-Flu-Ph-、及び-Flu(CH-からなる群れから選ばれる炭素数6~50のアリール基等が挙げられる。より好ましくは、炭素数が6~20であるアリール基である。ここで、Phはフェニレン基(-C-)を表し、Npはナフチレン基(-C10-)を表し、Fluはフルオレニル基(-C13-)を表す。ここで、Ph、NpおよびFluは、置換基を有しても良く、例えば、アルキル基、アルコキシ基、フェニル基である。好ましくは炭素数が1~6のアルキル基が挙げられる。また、Arとして、溶解性及び難燃性の観点から、より好ましくは、無置換、アルキル基置換、アルコキシ基置換もしくはフェニル基置換の-Ph-、-Ph-Ph-または-Np-である。さらに好ましくは、無置換またはアルキル基置換の-Ph-である。 Ar 1 represents an aryl group having 6 to 50 carbon atoms. For example, -Ph-, -Ph-Ph-, -Np-, -Np-CH 2 -Np-, -Ph-CH 2 -Ph-, -Ph-C (CH 3 ) 2 -Ph-, -Ph- 6 to 6 carbon atoms selected from the group consisting of CH (CH 3 ) -Ph-, -Ph-CH (C 6 H 5 ) -Ph-, -Ph-Flu-Ph-, and -Flu (CH 3 ) 2- 50 aryl groups and the like. More preferred is an aryl group having 6 to 20 carbon atoms. Here, Ph represents a phenylene group (—C 6 H 4 —), Np represents a naphthylene group (—C 10 H 6 —), and Flu represents a fluorenyl group (—C 13 H 8 —). Here, Ph, Np and Flu may have a substituent, for example, an alkyl group, an alkoxy group, or a phenyl group. An alkyl group having 1 to 6 carbon atoms is preferable. Ar 1 is more preferably unsubstituted, alkyl group substituted, alkoxy group substituted or phenyl group substituted -Ph-, -Ph-Ph- or -Np- from the viewpoint of solubility and flame retardancy. . More preferred is unsubstituted or alkyl group-substituted -Ph-.
 また、nは平均値で1~20の数を表すが、好ましくは1~10である。nが20を超えると粘度が上昇し、微細パターンへの充填性が低下するという点で好ましくない。なお、分子量分布を有するときは、平均値(数平均)である。 In addition, n is an average value and represents a number from 1 to 20, preferably 1 to 10. When n exceeds 20, the viscosity is increased, which is not preferable in that the filling property to the fine pattern is lowered. In addition, when it has molecular weight distribution, it is an average value (number average).
 さらに、本発明の式(1)で表されるポリ(ビニルベンジル)エーテル化合物は、ゲル浸透クロマトグラフィー(GPC)測定においてビニル芳香族ハロメチル化合物に由来するピーク面積がポリ(ビニルベンジル)エーテル化合物のピーク面積と合計した総ピーク面積に対して、1.0%以下である。好ましくは、0.5%以下であり、より好ましくは0.2%以下である。ピーク面積が1.0%を越えると、250℃以上の熱履歴を長時間受けた後での誘電特性の低下が大きくなるので好ましくない。ここで、ポリ(ビニルベンジル)エーテル化合物のピーク面積とは、純粋なポリ(ビニルベンジル)エーテル化合物に基くピーク面積を意味する。本発明のポリ(ビニルベンジル)エーテル化合物は反応生成物又はこれを精製したものであり、純粋なポリ(ビニルベンジル)エーテル化合物の他に他の成分を少量含む。 Furthermore, the poly (vinylbenzyl) ether compound represented by the formula (1) of the present invention has a peak area derived from a vinyl aromatic halomethyl compound in gel permeation chromatography (GPC) measurement, which is a poly (vinylbenzyl) ether compound. It is 1.0% or less with respect to the total peak area totaled with the peak area. Preferably, it is 0.5% or less, more preferably 0.2% or less. If the peak area exceeds 1.0%, it is not preferable because the deterioration of the dielectric characteristics after receiving a thermal history of 250 ° C. or higher for a long time becomes large. Here, the peak area of the poly (vinylbenzyl) ether compound means a peak area based on a pure poly (vinylbenzyl) ether compound. The poly (vinylbenzyl) ether compound of the present invention is a reaction product or a purified product thereof, and contains a small amount of other components in addition to the pure poly (vinylbenzyl) ether compound.
 本発明の式(1)で表されるポリ(ビニルベンジル)エーテル化合物は、全ハロゲン含有量が600ppm以下である。好ましくは、450ppm以下であり、更に好ましくは200ppm以下である。全ハロゲン含有量が600ppmを超えると、250℃以上の熱履歴を長時間受けた後での誘電特性の低下が大きくなるので好ましくない。このハロゲンは、主に原料である芳香族ハロメチル化合物に由来するので、上記ポリ(ビニルベンジル)エーテル化合物のピーク面積と関連する。 The poly (vinylbenzyl) ether compound represented by the formula (1) of the present invention has a total halogen content of 600 ppm or less. Preferably, it is 450 ppm or less, More preferably, it is 200 ppm or less. If the total halogen content exceeds 600 ppm, it is not preferable because the deterioration of dielectric properties after receiving a heat history of 250 ° C. or higher for a long time becomes large. Since this halogen is mainly derived from the aromatic halomethyl compound as a raw material, it is related to the peak area of the poly (vinylbenzyl) ether compound.
 次に、本発明の式(1)で表されるポリ(ビニルベンジル)エーテル化合物の製造方法について、以下に説明する。 Next, a method for producing the poly (vinylbenzyl) ether compound represented by the formula (1) of the present invention will be described below.
 本発明の式(1)で表されるポリ(ビニルベンジル)エーテル化合物は、ナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物とを反応させて得られる。ナフトールアラルキル樹脂は下記式(4)で表される。ナフトールアラルキル樹脂の製法は特に限定されるものではないが、好ましくは、上記式(2)で表されるヒドロキシナフタレン類と上記式(3)で表される芳香族化合物とを縮合反応させて得られる。
Figure JPOXMLDOC01-appb-I000007
 式(1)~式(4)において、共通の記号は、別段の記載がない限り、同じ意味を有する。
The poly (vinylbenzyl) ether compound represented by the formula (1) of the present invention is obtained by reacting a naphthol aralkyl resin with a vinyl aromatic halomethyl compound. Naphthol aralkyl resin is represented by the following formula (4). The production method of the naphthol aralkyl resin is not particularly limited, but is preferably obtained by subjecting the hydroxynaphthalene represented by the above formula (2) and the aromatic compound represented by the above formula (3) to a condensation reaction. It is done.
Figure JPOXMLDOC01-appb-I000007
In the formulas (1) to (4), common symbols have the same meanings unless otherwise specified.
 ナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物との反応は、液相でアルカリ金属水酸化物の存在下で反応させることにより行われる。この反応ではナフトールアラルキル樹脂のOH基と、ビニル芳香族ハロメチル化合物のCH2X基が縮合反応して、脱HClとO-CH2結合の生成が起こり、ポリ(ビニルベンジル)エーテル化合物が生成する。 The reaction of the naphthol aralkyl resin and the vinyl aromatic halomethyl compound is carried out by reacting in the liquid phase in the presence of an alkali metal hydroxide. In this reaction, the OH group of the naphthol aralkyl resin and the CH2X group of the vinyl aromatic halomethyl compound undergo a condensation reaction to generate deHCl and an O—CH2 bond, thereby producing a poly (vinylbenzyl) ether compound.
 また、靱性や成形性を向上させる目的で、上記式(4)で表されるナフトールアラルキル樹脂のフェノール性水酸基の一部を、例えば、特許4465257公報に記載の方法に従って、酸性触媒の存在下に炭素数1~12のアルコール類と反応させることにより、前記式(1)のRにおける炭素数1~12のアルキル基を導入することもできる。アルキル基を導入する場合、前記式(1)のRにおけるアルキル基の割合が0.1~50モル%であるようにすることがよい。より好ましくは、1~30モル%である。 Further, for the purpose of improving toughness and moldability, a part of the phenolic hydroxyl group of the naphthol aralkyl resin represented by the above formula (4) is, for example, in the presence of an acidic catalyst according to the method described in Japanese Patent No. 4465257. By reacting with an alcohol having 1 to 12 carbon atoms, an alkyl group having 1 to 12 carbon atoms in R 2 of the formula (1) can also be introduced. When an alkyl group is introduced, the ratio of the alkyl group in R 2 of the formula (1) is preferably 0.1 to 50 mol%. More preferably, it is 1 to 30 mol%.
 アルキル基を導入する反応は、ビニル芳香族ハロメチル化合物との反応の前でもあっても、後であってもよいが、ビニル基の重合を回避するためには、前が好ましい。前の場合は、ヒドロキシル基の水素原子の一部がアルキル基に置換された部分アルキル化ナフトールアラルキル樹脂(一部変性ナフトールアラルキル樹脂)を先に合成し、その後ビニル芳香族ハロメチル化合物と反応させて、部分アルキル化されたポリ(ビニルベンジル)エーテル化合物を得る方法である。後の場合は、ナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物とを反応させて、ポリ(ビニルベンジル)エーテル化合物を得て、その後、残存するヒドロキシ基の一部をアルキル化して、部分アルコキシ化されたポリ(ビニルベンジル)エーテル化合物を得る方法である。ここで、部分アルキル化されたポリ(ビニルベンジル)エーテル化合物も、本発明のポリ(ビニルベンジル)エーテル化合物に包含される。また、部分アルキル化ナフトールアラルキル樹脂を、一部変性ナフトールアラルキル樹脂ともいい、これは本発明で使用するナフトールアラルキル樹脂に包含される。 The reaction for introducing the alkyl group may be before or after the reaction with the vinyl aromatic halomethyl compound, but the front is preferable in order to avoid polymerization of the vinyl group. In the previous case, a partially alkylated naphthol aralkyl resin (partially modified naphthol aralkyl resin) in which a part of the hydrogen atom of the hydroxyl group is substituted with an alkyl group is synthesized first, and then reacted with a vinyl aromatic halomethyl compound. This is a method for obtaining a partially alkylated poly (vinylbenzyl) ether compound. In the latter case, a naphthol aralkyl resin and a vinyl aromatic halomethyl compound were reacted to obtain a poly (vinylbenzyl) ether compound, and then a part of the remaining hydroxy group was alkylated to be partially alkoxylated. This is a method for obtaining a poly (vinylbenzyl) ether compound. Here, the partially alkylated poly (vinylbenzyl) ether compound is also included in the poly (vinylbenzyl) ether compound of the present invention. The partially alkylated naphthol aralkyl resin is also referred to as a partially modified naphthol aralkyl resin, which is included in the naphthol aralkyl resin used in the present invention.
 また、ナフトールアラルキル樹脂の原料の一部又は全部として、ヒドロキシナフタレン類として、OH基の一部又は全部をアルコキシ基としたものを使用することもでき、これらとOH基が変性されていないヒドロキシナフタレン類と併用することもできる。OH基の一部をアルコキシ基としたものを使用する場合は、OH基が変性されていないヒドロキシナフタレン類の使用はしなくともよい。 In addition, as a part or all of the raw material of the naphthol aralkyl resin, a hydroxynaphthalene having a part or all of the OH group as an alkoxy group can also be used. It can also be used in combination. When using an OH group having a part of an alkoxy group, it is not necessary to use a hydroxynaphthalene in which the OH group is not modified.
 また、ナフトールアラルキル樹脂は、OH基の全部がアルコキシ化されたものと、OH基の全部が残っているものとの混合物であってもよく、これも一部変性ナフトールアラルキル樹脂に包含される。 Further, the naphthol aralkyl resin may be a mixture of an OH group in which all of the OH groups are alkoxylated and a resin in which all of the OH groups remain, and this is also partially included in the modified naphthol aralkyl resin.
 式(1)~(4)において、同一の記号は同じ意味を有する。したがって、式(2)~(4)中のR、R、Ar1、n、m及びrは、式(1)のそれらと同意である。式(3)中のXはフッ素原子、塩素原子、臭素原子、メトキシ基、エトキシ基または水酸基を表す。 In the formulas (1) to (4), the same symbols have the same meaning. Therefore, R 1 , R 2 , Ar 1 , n, m and r in formulas (2) to (4) are the same as those in formula (1). X in Formula (3) represents a fluorine atom, a chlorine atom, a bromine atom, a methoxy group, an ethoxy group, or a hydroxyl group.
 次に、ナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物とをアルカリ金属水酸化物の存在下で反応させて、ポリ(ビニルベンジル)エーテル化合物を含む反応生成物を得て、これを水及びアルコール類からなる混合溶媒にて精製する。 Next, a naphthol aralkyl resin and a vinyl aromatic halomethyl compound are reacted in the presence of an alkali metal hydroxide to obtain a reaction product containing a poly (vinylbenzyl) ether compound, which is obtained from water and alcohols. To be purified with a mixed solvent.
 上記式(2)で表されるヒドロキシナフタレン類としては、好ましくは、α-ナフトールやβ-ナフトール、ナフタレンジオール、2-メチル-1-ナフトール、3‐メチル‐2‐ナフトール、トリヒドロキシナフタレンなどのヒドロキシナフタレン類が挙げられ、これらを1種もしくは2種以上使用することができる。溶解性、難燃性並びに原料入手の容易さの観点から、より好ましくはα-ナフトール、β-ナフトール、またはナフタレンジオールである。 The hydroxy naphthalenes represented by the above formula (2) are preferably α-naphthol, β-naphthol, naphthalene diol, 2-methyl-1-naphthol, 3-methyl-2-naphthol, trihydroxynaphthalene, etc. Hydroxynaphthalene is mentioned, These can be used 1 type or 2 or more types. From the viewpoints of solubility, flame retardancy, and availability of raw materials, α-naphthol, β-naphthol, or naphthalenediol is more preferable.
 また、上記式(3)において、Xは縮合活性基であり、フッ素原子、塩素原子、臭素原子、メトキシ基、エトキシ基、水酸基を表すが、好ましくは、縮合のしやすさ及び工業的実施における原料の入手性の観点で、塩素原子又は水酸基である。式(3)で表される芳香族化合物としては、例えば、4,4’-ビス(フルオロメチル)-1,1’-ビフェニル、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(ブロモメチル)-1,1’-ビフェニル、4,4’-ビス(ヒドロキシメチル)-1,1’-ビフェニル、4,4’-ビス(ヒドロキシエチル)-1,1’-ビフェニル、ジ(クロロメチル)ベンゼン、ジ(ブロモメチル)ベンゼン、ジ(クロロメチル)ナフタリン、ジ(クロロメチル)ビフェニルエーテル、キシリレングリコール、キシリレングリコールジメチルエーテル、キシリレングリコールジエチルエーテル、キシリレングリコールジプロピルエーテル、キシリレングリコールジブチルエーテル、キシリレングリコールモノメチルエーテル、キシリレングリコールモノエチルエーテルなどのキシリレングリコールモノまたはジ低級アルコールエーテルなどが挙げられる。より好ましくは、キシリレングリコール、キシリレングリコールジメチルエーテル、ジクロロメチルベンゼン、または4,4’-ビス(クロロメチル)-1,1’-ビフェニルである。特に好ましいのは、キシリレングリコールジメチルエーテルである。 In the above formula (3), X is a condensation active group and represents a fluorine atom, a chlorine atom, a bromine atom, a methoxy group, an ethoxy group, or a hydroxyl group, but preferably in the ease of condensation and in industrial practice. From the viewpoint of availability of raw materials, it is a chlorine atom or a hydroxyl group. Examples of the aromatic compound represented by the formula (3) include 4,4′-bis (fluoromethyl) -1,1′-biphenyl, 4,4′-bis (chloromethyl) -1,1′- Biphenyl, 4,4′-bis (bromomethyl) -1,1′-biphenyl, 4,4′-bis (hydroxymethyl) -1,1′-biphenyl, 4,4′-bis (hydroxyethyl) -1, 1'-biphenyl, di (chloromethyl) benzene, di (bromomethyl) benzene, di (chloromethyl) naphthalene, di (chloromethyl) biphenyl ether, xylylene glycol, xylylene glycol dimethyl ether, xylylene glycol diethyl ether, xylylene Glycol dipropyl ether, xylylene glycol dibutyl ether, xylylene glycol monomethyl ether Such as xylylene glycol mono- or di-lower alcohol ethers, such as xylylene glycol monoethyl ether. More preferred is xylylene glycol, xylylene glycol dimethyl ether, dichloromethylbenzene, or 4,4'-bis (chloromethyl) -1,1'-biphenyl. Particularly preferred is xylylene glycol dimethyl ether.
 上記式(4)で表されるナフトールアラルキル樹脂としては、上記の反応で得られる他、市販のものを利用することもでき、例えば、新日鉄住金化学株式会社製SN170、SN180、SN190、SN475、SN485、SN495等が好適に使用できる。より好ましくは、溶解性、靱性及び難燃性という点で、SN475、SN485、SN495、SN485V、SN495Vである。誘電特性、靱性と成形性の観点から、特に好ましいのは、SN485V、SN495Vである。
 また、上記式(4)で表されるナフトールアラルキル樹脂は、公知の方法によって製造することも可能である。該方法は、例えば特開2001-213946号公報、特開平11-255868号公報、特開平11-228673号公報、特開平08―073570号公報、特開平08-048755号公報、特開平10-310634や特開平11-116647号公報等に記載されている。上記式(4)で表されるナフトールアラルキル樹脂は、単独で使用してもよいし二種類以上を併用してもよい。
As the naphthol aralkyl resin represented by the above formula (4), in addition to the naphthol aralkyl resin obtained by the above reaction, a commercially available one can also be used. For example, SN170, SN180, SN190, SN475, SN485 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. , SN495 and the like can be preferably used. More preferable are SN475, SN485, SN495, SN485V, and SN495V in terms of solubility, toughness, and flame retardancy. From the viewpoints of dielectric properties, toughness and formability, SN485V and SN495V are particularly preferable.
The naphthol aralkyl resin represented by the above formula (4) can also be produced by a known method. For example, JP-A No. 2001-213946, JP-A No. 11-255868, JP-A No. 11-228673, JP-A No. 08-073570, JP-A No. 08-048755, and JP-A No. 10-310634. And JP-A-11-116647. The naphthol aralkyl resin represented by the above formula (4) may be used alone or in combination of two or more.
 特に限定されるものではないが、上記式(4)で表されるナフトールアラルキル樹脂(上記一部変性ナフトールアラルキル樹脂を含む。以下、同じ。)とビニルベンジル基部分を与えるビニル芳香族ハロメチル化合物とを反応させて、ポリ(ビニルベンジル)エーテル化合物を合成する。 Although not particularly limited, a naphthol aralkyl resin represented by the above formula (4) (including the above partially modified naphthol aralkyl resin; the same shall apply hereinafter) and a vinyl aromatic halomethyl compound giving a vinyl benzyl group moiety; To synthesize a poly (vinylbenzyl) ether compound.
 上記ビニル芳香族ハロメチル化合物は、CH=CH―Ar-CHXで表わされる。ここで、Arはフェニレン基又は置換フェニレン基である。置換フェニレン基の場合の置換基としては、例えば、アルキル基、アルコキシ基、フェニル基が挙げられる。好ましくは炭素数が1~6のアルキル基が挙げられる。また、Arとして、溶解性及び難燃性の観点から、より好ましくは、無置換、アルキル基置換、アルコキシ基置換もしくはフェニル基置換のフェニレン基である。更に好ましくは、工業的に製造が容易である、無置換及びアルキル基置換のフェニレン基である。 The vinyl aromatic halomethyl compound is represented by CH 2 ═CH—Ar 2 —CH 2 X. Here, Ar 2 is a phenylene group or a substituted phenylene group. Examples of the substituent in the case of a substituted phenylene group include an alkyl group, an alkoxy group, and a phenyl group. An alkyl group having 1 to 6 carbon atoms is preferable. Ar 2 is more preferably an unsubstituted, alkyl group-substituted, alkoxy group-substituted or phenyl group-substituted phenylene group from the viewpoints of solubility and flame retardancy. More preferred are unsubstituted and alkyl group-substituted phenylene groups, which are industrially easy to produce.
 好ましいビニル芳香族ハロメチル化合物としては、p-ビニルベンジルクロライド、m-ビニルベンジルクロライド、p-ビニルベンジルクロライドとm-ビニルベンジルクロライドとの混合体、p-ビニルベンジルブロマイド、m-ビニルベンジルブロマイド、p-ビニルベンジルブロマイドとm-ビニルベンジルブロマイドとの混合体を挙げることができる。中でも、p-ビニルベンジルクロライドとm-ビニルベンジルクロライドとの混合体を使用すると、溶解性に優れたポリ(ビニルベンジル)エーテル化合物が得られ、他の材料との相溶性及び作業性が良好となるため好ましい。p-ビニルベンジルハライドとm-ビニルベンジルハライドの組成比に特に制限はないが、p-体/m-体=90/10~10/90(モル/モル)であることが好ましく、70/30~30/70(モル/モル)であることがより好ましく、60/40~40/60(モル/モル)であることが更に好ましい。 Preferred vinyl aromatic halomethyl compounds include p-vinyl benzyl chloride, m-vinyl benzyl chloride, a mixture of p-vinyl benzyl chloride and m-vinyl benzyl chloride, p-vinyl benzyl bromide, m-vinyl benzyl bromide, p Mention may be made of mixtures of -vinylbenzyl bromide and m-vinylbenzyl bromide. In particular, when a mixture of p-vinylbenzyl chloride and m-vinylbenzyl chloride is used, a poly (vinylbenzyl) ether compound having excellent solubility is obtained, and compatibility with other materials and workability are good. Therefore, it is preferable. The composition ratio of p-vinylbenzyl halide and m-vinylbenzyl halide is not particularly limited, but is preferably p-form / m-form = 90/10 to 10/90 (mol / mol), 70/30 More preferably, it is ˜30 / 70 (mol / mol), more preferably 60/40 to 40/60 (mol / mol).
 上記式(4)で表されるナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物との反応は、特に制限されるものではないが、例えばナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物を極性溶剤中でアルカリ金属水酸化物を脱ハロゲン化水素剤として用い反応させる方法が挙げられる。 The reaction between the naphthol aralkyl resin represented by the above formula (4) and the vinyl aromatic halomethyl compound is not particularly limited. For example, the naphthol aralkyl resin and the vinyl aromatic halomethyl compound are treated with an alkali metal water in a polar solvent. The method of making it react using an oxide as a dehydrohalogenating agent is mentioned.
 ナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物との配合割合は、当量比(OH:ハロメチルのモル比)で100:95~100:120であることが好ましい。当量比が該範囲内であると、仕込んだナフトールアラルキル樹脂の全量に近い量がビニル芳香族ハロメチル化合物と反応し、ナフトールアラルキル樹脂中の水酸基がビニルベンジルエーテル化され、反応物中にほとんど残存しなくなることにより、後で行う硬化反応が十分に進行し、また、良好な誘電特性を示すこととなるので好ましい。 The blending ratio of the naphthol aralkyl resin and the vinyl aromatic halomethyl compound is preferably 100: 95 to 100: 120 in terms of an equivalent ratio (OH: halomethyl molar ratio). When the equivalent ratio is within this range, an amount close to the total amount of the naphthol aralkyl resin charged reacts with the vinyl aromatic halomethyl compound, and the hydroxyl group in the naphthol aralkyl resin is vinylbenzyl etherified, and almost remains in the reaction product. By eliminating, the curing reaction to be performed later proceeds sufficiently, and good dielectric properties are exhibited, which is preferable.
 なお、前記式(1)のRに炭素数1~12のアルキル基を導入する場合の製造方法に特に制約はないが、好ましくはナフトール類とアルコキシナフタレンの混合物を上記一般式(3)の芳香族化合物とを酸性触媒の存在下に反応させることにより製造することができる。その場合、樹脂中に平均として存在するRで表される構造単位を占める水素原子(H)と炭素数1~12のアルキル基(R)の比率に制限はないが、誘電特性、成形性、離型性の観点から、R/H(モル比率)は0.0025以上であることが好ましい。より好ましくは0.1以上の範囲である。
 ここで、Rにおける炭素数1~12のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、アリル基、プロパルギル基、ブチル基、n-アミル基、sec-アミル基、tert-アミル基、シクロヘキシル基、フェニル基、ベンジル基等が挙げられるが、好ましくはメチル基、エチル基、n-プロピル基であり、さらに好ましくはメチル基である。
The production method in the case of introducing an alkyl group having 1 to 12 carbon atoms into R 2 of the formula (1) is not particularly limited, but preferably a mixture of naphthols and alkoxynaphthalene is represented by the above formula (3). It can be produced by reacting an aromatic compound with an acidic catalyst. In that case, the ratio of the hydrogen atom (H) occupying the structural unit represented by R 2 present as an average in the resin and the alkyl group (R) having 1 to 12 carbon atoms is not limited, but dielectric properties, moldability From the viewpoint of releasability, the R / H (molar ratio) is preferably 0.0025 or more. More preferably, it is the range of 0.1 or more.
Here, as the alkyl group having 1 to 12 carbon atoms in R 2 , a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an allyl group, a propargyl group, a butyl group, an n-amyl group, a sec-amyl group, Examples thereof include a tert-amyl group, a cyclohexyl group, a phenyl group, and a benzyl group, preferably a methyl group, an ethyl group, and an n-propyl group, and more preferably a methyl group.
 上記ビニル芳香族ハロメチル化合物との反応を行う際には、極性溶剤を使用することがよく、好ましい極性溶剤としては、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド系溶剤、ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテル、1,3-ジメトキシプロパン、1,2-ジメトキシエタン等のエーテル系溶剤類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤、ジメチルスルホキシド、アセトニトリルあるいはその混合溶剤が挙げられる。 In carrying out the reaction with the vinyl aromatic halomethyl compound, a polar solvent is preferably used. Preferred polar solvents include alcohols such as methanol, ethanol, propanol and butanol, dimethylformamide, dimethylacetamide, N- Amide solvents such as methyl pyrrolidone, ether solvents such as dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, 1,3-dimethoxypropane, 1,2-dimethoxyethane, ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone , Dimethyl sulfoxide, acetonitrile, or a mixed solvent thereof.
 上記の反応を行う際には、アルカリ金属水酸化物を反応促進のために使用することがよく、好ましいアルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム、またはこれらの混合物が挙げられる。アルカリ金属水酸化物の配合割合は、芳香族ヒドロキシ化合物のヒドロキシ基に対して当量比で1.1~2.0倍の範囲であることが好ましい。 In carrying out the above reaction, an alkali metal hydroxide is preferably used for promoting the reaction, and preferred alkali metal hydroxides include sodium hydroxide, potassium hydroxide, or a mixture thereof. . The blending ratio of the alkali metal hydroxide is preferably in the range of 1.1 to 2.0 times in terms of an equivalent ratio with respect to the hydroxy group of the aromatic hydroxy compound.
 上記の反応の反応温度および反応時間は、反応に応じ適宜選択すればよいが、それぞれ30~100℃、0.5~20時間の範囲であれば十分に反応が進行する。 The reaction temperature and reaction time of the above reaction may be appropriately selected depending on the reaction, but the reaction proceeds sufficiently if they are in the range of 30 to 100 ° C. and 0.5 to 20 hours, respectively.
 別の反応方法としては、相間移動触媒、例えば第4級アンモニウム塩の存在下、ナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物とを、水と有機溶剤の混合液中でアルカリ金属水酸化物を脱水素化ハライド剤として用いて反応させることにより、ポリ(ビニルベンジル)エーテル化合物が生成する。 As another reaction method, a naphthol aralkyl resin and a vinyl aromatic halomethyl compound are dehydrogenated in a mixture of water and an organic solvent in the presence of a phase transfer catalyst such as a quaternary ammonium salt. A poly (vinyl benzyl) ether compound is produced by reacting with a halogenated halide.
 上記反応生成物は、式(1)のポリ(ビニルベンジル)エーテル化合物を含む粗ポリ(ビニルベンジル)エーテル化合物であるので、これを精製して本発明のポリ(ビニルベンジル)エーテル化合物とする。精製方法には制限はないが、貧溶媒を使用して、再沈精製あるいは再結晶により、精製することが好ましい。 Since the reaction product is a crude poly (vinylbenzyl) ether compound containing the poly (vinylbenzyl) ether compound of the formula (1), it is purified to obtain the poly (vinylbenzyl) ether compound of the present invention. Although there is no restriction | limiting in the purification method, It is preferable to refine | purify by reprecipitation refinement | purification or recrystallization using a poor solvent.
 貧溶媒としては、ポリ(ビニルベンジル)エーテル化合物の溶解性が低く、ハロゲン化合物類の溶解性が高いものが適する。かかる貧溶媒を具体的に例示すると、メタノール、エタノール、イソプロパノール、エチレングリコール、水、あるいはその混合溶媒が挙げられるが、好ましくは水とアルコール類の混合溶媒である。このような貧溶媒として好適なものは、溶解度パラメーターとして、10以上の極性溶媒であり、より好ましくは溶解度パラメーターが11以上の極性溶媒である。特に、ポリ(ビニルベンジル)エーテル化合物の回収歩留りと全ハロゲン含有量を600ppm以下、並びに、ビニル芳香族ハロメチル化合物に由来するピーク面積を1.0%以下に低減する精製効率の観点から、溶解度パラメーターの値として、15~20の範囲が最も好ましい。 As the poor solvent, those having low solubility of the poly (vinylbenzyl) ether compound and high solubility of the halogen compounds are suitable. Specific examples of such a poor solvent include methanol, ethanol, isopropanol, ethylene glycol, water, or a mixed solvent thereof, preferably a mixed solvent of water and alcohols. Suitable as such a poor solvent is a polar solvent having a solubility parameter of 10 or more, more preferably a polar solvent having a solubility parameter of 11 or more. In particular, from the viewpoint of the purification efficiency for reducing the recovery yield of poly (vinylbenzyl) ether compound and the total halogen content to 600 ppm or less, and the peak area derived from vinyl aromatic halomethyl compounds to 1.0% or less, the solubility parameter The value of is most preferably in the range of 15-20.
 上記精製は、本発明のポリ(ビニルベンジル)エーテル化合物中の全ハロゲン含有量を600ppm以下で、且つGPC測定において、ビニル芳香族ハロメチル化合物に由来するピーク面積が式(1)のポリ(ビニルベンジル)エーテル化合物のピーク面積と合計した総ピーク面積に対して、1.0%以下に低減するように行うが、これは再結晶の条件、回数等を調整することにより可能である。 In the purification, the total halogen content in the poly (vinylbenzyl) ether compound of the present invention is 600 ppm or less, and the peak area derived from the vinyl aromatic halomethyl compound in GPC measurement is poly (vinylbenzyl) of formula (1). ) The total peak area combined with the peak area of the ether compound is reduced to 1.0% or less, but this can be achieved by adjusting the recrystallization conditions and the number of times.
 全ハロゲン含有量が600ppmを超えた値であると、250℃以上の熱履歴を長時間受けた後での誘電特性の低下が大きくなるので好ましくない。より好ましくは、全ハロゲン含有量は450ppm以下である。最も好ましくは、全ハロゲン含有量は200ppm以下である。ハロゲン含有量が600ppm以下になると、反りや転写不良といった、成形不良現象を回避できるという望外の効果も得られることから好ましい。また、ビニル芳香族ハロメチル化合物に由来するピーク面積が1.0%を越えると、250℃以上の熱履歴を長時間受けた後での誘電特性の低下が大きくなるので好ましくない。より好ましくは、0.5%以下である。さらに好ましくは0.2%以下である。しかしながら、必要以上に全ハロゲン含有量やビニル芳香族ハロメチル化合物の含有量を低下させることは、精製歩留まりを大幅に低下させることになる。実験によれば、全ハロゲン含有量は2ppm以上であれば、上記のような工業的な実施に関わる問題が生じないことが判明したので、それを超える精製は精製歩留まりの面からは有利とは言えない。 If the total halogen content exceeds 600 ppm, it is not preferable because the deterioration of dielectric properties after a long thermal history of 250 ° C. or more is increased. More preferably, the total halogen content is 450 ppm or less. Most preferably, the total halogen content is 200 ppm or less. When the halogen content is 600 ppm or less, it is preferable because an undesirable effect of avoiding molding defects such as warpage and transfer defects can be obtained. On the other hand, if the peak area derived from the vinyl aromatic halomethyl compound exceeds 1.0%, it is not preferable because the deterioration of dielectric properties after a long heat history of 250 ° C. or more is increased. More preferably, it is 0.5% or less. More preferably, it is 0.2% or less. However, reducing the total halogen content and the vinyl aromatic halomethyl compound content more than necessary significantly reduces the purification yield. According to experiments, it has been found that if the total halogen content is 2 ppm or more, the above-mentioned problems relating to industrial implementation do not occur, so that purification beyond this is advantageous from the viewpoint of purification yield. I can not say.
 次に、本発明の硬化性組成物について説明する。
 本発明の硬化性組成物は、本発明のポリ(ビニルベンジル)エーテル化合物とラジカル重合開始剤(ラジカル重合触媒ともいう。)とを含有する。ラジカル重合開始剤としては、例えば、本発明の樹脂組成物は後述するように加熱等の手段により架橋反応を起こして硬化するが、その際の反応温度を低くしたり、不飽和基の架橋反応を促進する目的でラジカル重合開始剤を含有させて使用してもよい。この目的で用いられるラジカル重合開始剤の量は(A)成分と(B)成分の和を基準として0.1~10重量%、好ましくは0.1~8重量%である。ラジカル重合開始剤はラジカル重合触媒であるので、以下ラジカル重合開始剤で代表する。
Next, the curable composition of this invention is demonstrated.
The curable composition of the present invention contains the poly (vinylbenzyl) ether compound of the present invention and a radical polymerization initiator (also referred to as a radical polymerization catalyst). As the radical polymerization initiator, for example, as described later, the resin composition of the present invention is cured by causing a crosslinking reaction by means of heating or the like, but the reaction temperature at that time is lowered or the crosslinking reaction of unsaturated groups is performed. For the purpose of promoting the above, a radical polymerization initiator may be contained and used. The amount of the radical polymerization initiator used for this purpose is 0.1 to 10% by weight, preferably 0.1 to 8% by weight, based on the sum of the components (A) and (B). Since the radical polymerization initiator is a radical polymerization catalyst, it is represented below by a radical polymerization initiator.
 ラジカル重合開始剤の代表的な例を挙げると、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジクミルパーオキサイド、ジ-t-ブチルパーオキシイソフタレート、t-ブチルパーオキシベンゾエート、2,2-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(t-ブチルパーオキシ)オクタン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、ジ(トリメチルシリル)パーオキサイド、トリメチルシリルトリフェニルシリルパーオキサイド等の過酸化物があるがこれらに限定されない。また過酸化物ではないが、2,3-ジメチル-2,3-ジフェニルブタンもラジカル重合開始剤(又は重合触媒)として使用できる。しかし、本樹脂組成物の硬化に用いられる触媒、ラジカル重合開始剤はこれらの例に限定されない。 Representative examples of radical polymerization initiators include benzoyl peroxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-di ( t-butylperoxy) hexyne-3, di-t-butyl peroxide, t-butylcumyl peroxide, α, α'-bis (t-butylperoxy-m-isopropyl) benzene, 2,5-dimethyl- 2,5-di (t-butylperoxy) hexane, dicumyl peroxide, di-t-butylperoxyisophthalate, t-butylperoxybenzoate, 2,2-bis (t-butylperoxy) butane, 2,2-bis (t-butylperoxy) octane, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, di Although there are peroxides such as (trimethylsilyl) peroxide and trimethylsilyltriphenylsilyl peroxide, they are not limited thereto. Although not a peroxide, 2,3-dimethyl-2,3-diphenylbutane can also be used as a radical polymerization initiator (or polymerization catalyst). However, the catalyst and radical polymerization initiator used for curing the resin composition are not limited to these examples.
 ラジカル重合開始剤の配合量は、ポリ(ビニルベンジル)エーテル化合物に対し、0.01~10重量部の範囲であれば、硬化反応を阻害することなく良好に反応が進行する。 If the blending amount of the radical polymerization initiator is in the range of 0.01 to 10 parts by weight with respect to the poly (vinylbenzyl) ether compound, the reaction proceeds well without inhibiting the curing reaction.
 また、ポリ(ビニルベンジル)エーテル化合物含有硬化性組成物に、必要に応じて、本発明のポリ(ビニルベンジル)エーテル化合物と共重合可能な他の重合性モノマーを配合して硬化させてもよい。 Further, if necessary, the poly (vinylbenzyl) ether compound-containing curable composition may be blended with another polymerizable monomer copolymerizable with the poly (vinylbenzyl) ether compound of the present invention and cured. .
 共重合可能な重合性モノマーとしては、スチレン、スチレンダイマー、アルファメチルスチレン、アルファメチルスチレンダイマー、ジビニルベンゼン、ビニルトルエン、t-ブチルスチレン、クロロスチレン、ジブロモスチレン、ビニルナフタレン、ビニルビフェニル、アセナフチレン、ジビニルベンジルエーテル、アリルフェニルエーテル等を挙げることができる。 Examples of copolymerizable monomers include styrene, styrene dimer, alphamethylstyrene, alphamethylstyrene dimer, divinylbenzene, vinyltoluene, t-butylstyrene, chlorostyrene, dibromostyrene, vinylnaphthalene, vinylbiphenyl, acenaphthylene, divinyl. Examples thereof include benzyl ether and allyl phenyl ether.
 また、本発明のポリ(ビニルベンジル)エーテル化合物を含む硬化性樹脂組成物には、既知の熱硬化性樹脂、例えば、ビニルエステル樹脂、ポリビニルベンジル樹脂、不飽和ポリエステル樹脂、マレイミド樹脂、エポキシ樹脂、ポリシアナート樹脂、フェノール樹脂等や、既知の熱可塑性樹脂、例えば、ポリスチレン、ポリフェニレンエーテル、ポリエーテルイミド、ポリエーテルサルホン、PPS樹脂、ポリシクロペンタジエン樹脂、ポリシクロオレフィン樹脂等や、あるいは、既知の熱可塑性エラストマー、例えば、スチレン-エチレン-プロピレン共重合体、スチレン-エチレン-ブチレン共重合体、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、水添スチレン-ブタジエン共重合体、水添スチレン-イソプレン共重合体等やあるいはゴム類、例えばポリブタジェン、ポリイソプレンと配合することも可能である。 The curable resin composition containing the poly (vinyl benzyl) ether compound of the present invention includes known thermosetting resins such as vinyl ester resins, polyvinyl benzyl resins, unsaturated polyester resins, maleimide resins, epoxy resins, Polycyanate resins, phenol resins, etc., known thermoplastic resins such as polystyrene, polyphenylene ether, polyether imide, polyether sulfone, PPS resin, polycyclopentadiene resin, polycycloolefin resin, etc., or known heat Plastic elastomers such as styrene-ethylene-propylene copolymer, styrene-ethylene-butylene copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, hydrogenated styrene-butadiene copolymer, hydrogenated styrene Isoprene Polymer etc. and or gums such as polybutadiene, may be blended with polyisoprene.
 本発明の硬化性組成物には、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、窒化アルミ等の無機質充填材、デカブロモジフェニルエタン、臭素化ポリスチレン等の難燃性付与剤を併用することにより、誘電特性や難燃性あるいは耐熱性が要求される電気又は電子部品材料、とりわけ半導体封止材料や回路基板用ワニスとして特に有用に使用できる。 In the curable composition of the present invention, by using together an inorganic filler such as fused silica, crystalline silica, alumina, silicon nitride, aluminum nitride, a flame retardant imparting agent such as decabromodiphenylethane, brominated polystyrene, It can be used particularly effectively as an electrical or electronic component material that requires dielectric properties, flame retardancy, or heat resistance, especially as a semiconductor sealing material or circuit board varnish.
 前記回路基板材料用ワニスは、本発明の硬化性組成物をトルエン、キシレン、テトラヒドロフラン、ジオキソラン等の溶剤に溶解させることにより製造することができる。なお、前記回路基板材料は、具体的には、プリント配線基板、プリント回路板、フレキシブルプリント配線板、ビルドアップ配線板等が挙げられる。 The varnish for circuit board material can be produced by dissolving the curable composition of the present invention in a solvent such as toluene, xylene, tetrahydrofuran, dioxolane and the like. Specific examples of the circuit board material include a printed wiring board, a printed circuit board, a flexible printed wiring board, and a build-up wiring board.
 本発明の硬化性組成物を硬化させて得られる硬化物は成型物、積層物、注型物、接着剤、塗膜、フィルムとして使用できる。例えば、半導体封止材料の硬化物は注型物又は成型物であり、かかる用途の硬化物を得る方法としては、該化合物を注型、或いはトランスファ-成形機、射出成形機などを用いて成形し、さらに80~230℃で0.5~10時間に加熱することにより硬化物を得ることができる。また、回路基板用ワニスの硬化物は積層物であり、この硬化物を得る方法としては、回路基板用ワニスをガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥してプリプレグを得て、それを単独同士で、あるいは銅箔等の金属箔と積層し熱プレス成形して得ることができる。 The cured product obtained by curing the curable composition of the present invention can be used as a molded product, a laminate, a cast product, an adhesive, a coating film, or a film. For example, a cured product of a semiconductor sealing material is a cast or molded product. As a method for obtaining a cured product for such use, the compound is cast or molded using a transfer molding machine, an injection molding machine, or the like. Further, a cured product can be obtained by heating at 80 to 230 ° C. for 0.5 to 10 hours. Moreover, the hardened | cured material of the varnish for circuit boards is a laminated body, and as a method of obtaining this hardened | cured material, the varnish for circuit boards is used for base materials, such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, and paper. It is impregnated and dried by heating to obtain a prepreg, which can be obtained alone or laminated with a metal foil such as a copper foil and subjected to hot press molding.
 また、チタン酸バリウム等の無機の高誘電体粉末、あるいはフェライト等の無機磁性体を配合することにより電子部品用材料、特に高周波電子部品材料として有用である。 Also, it is useful as a material for electronic parts, particularly a high-frequency electronic part material, by blending an inorganic high dielectric powder such as barium titanate or an inorganic magnetic substance such as ferrite.
 また、本発明の硬化性組成物は、後述する硬化複合材料と同様、金属箔(金属板を含む意味である。以下、同じ。)と張り合わせて用いることができる。 Further, the curable composition of the present invention can be used by being bonded to a metal foil (meaning including a metal plate, hereinafter the same), as with the cured composite material described later.
 次に、本発明の硬化性組成物の硬化性複合材料とその硬化体について説明する。本発明の硬化性組成物による硬化性複合材料には、機械的強度を高め、寸法安定性を増大させるために基材を加える。 Next, the curable composite material of the curable composition of the present invention and the cured product thereof will be described. A substrate is added to the curable composite material of the curable composition of the present invention in order to increase mechanical strength and increase dimensional stability.
 このような基材としては、ロービングクロス、クロス、チョップドマット、サーフェシングマットなどの各種ガラス布、アスベスト布、金属繊維布及びその他合成若しくは天然の無機繊維布、全芳香族ポリアミド繊維、全芳香族ポリエステル繊維、ポリベンゾザール繊維等の液晶繊維から得られる織布又は不織布、ポリビニルアルコール繊維、ポリエステル繊維、アクリル繊維などの合成繊維から得られる織布又は不織布、綿布、麻布、フェルトなどの天然繊維布、カーボン繊維布、クラフト紙、コットン紙、紙-ガラス混繊紙などの天然セルロース系布などの布類、紙類等がそれぞれ単独で、あるいは2種以上併せて用いられる。 Such base materials include various glass cloths such as roving cloth, cloth, chopped mat, and surfacing mat, asbestos cloth, metal fiber cloth and other synthetic or natural inorganic fiber cloth, wholly aromatic polyamide fiber, wholly aromatic Woven or non-woven fabrics obtained from liquid crystal fibers such as polyester fibers and polybenzoxal fibers, woven or non-woven fabrics obtained from synthetic fibers such as polyvinyl alcohol fibers, polyester fibers, and acrylic fibers, and natural fiber fabrics such as cotton cloth, linen, and felt. , Carbon fiber cloth, kraft paper, cotton paper, natural cellulosic cloth such as paper-glass mixed paper, paper and the like are used alone or in combination of two or more.
 基材の占める割合は、硬化性複合材料中に5~90wt%、好ましくは10~80wt%、更に好ましくは20~70wt%であることがよい。基材が5wt%より少なくなると複合材料の硬化後の寸法安定性や強度が低下する傾向にある。また基材が90wt%より多くなると複合材料の誘電特性が低下する傾向にある。
 本発明の硬化性複合材料には、必要に応じて樹脂と基材の界面における接着性を改善する目的でカップリング剤を用いることができる。カップリング剤としては、シランカップリング剤、チタネートカップリング剤、アルミニウム系カップリング剤、ジルコアルミネートカップリング剤等一般のものが使用できる。
The proportion of the substrate is 5 to 90 wt%, preferably 10 to 80 wt%, more preferably 20 to 70 wt% in the curable composite material. When the base material is less than 5 wt%, the dimensional stability and strength after curing of the composite material tend to decrease. Further, when the substrate content exceeds 90 wt%, the dielectric properties of the composite material tend to be lowered.
In the curable composite material of the present invention, a coupling agent can be used for the purpose of improving the adhesiveness at the interface between the resin and the substrate, if necessary. As the coupling agent, general ones such as a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a zircoaluminate coupling agent can be used.
 本発明の硬化性複合材料を製造する方法としては、例えば、本発明の硬化性樹脂組成物と必要に応じて他の成分を前述の芳香族系、ケトン系等の溶媒若しくはその混合溶媒中に均一に溶解又は分散させ、基材に含浸させた後、乾燥する方法が挙げられる。含浸は浸漬(ディッピング)、塗布等によって行われる。含浸は必要に応じて複数回繰り返すことも可能であり、またこの際、組成や濃度の異なる複数の溶液を用いて含浸を繰り返し、最終的に希望とする樹脂組成及び樹脂量に調整することも可能である。 As a method for producing the curable composite material of the present invention, for example, the curable resin composition of the present invention and, if necessary, other components in the above-mentioned aromatic or ketone solvent or a mixed solvent thereof. A method of uniformly dissolving or dispersing, impregnating the base material, and then drying is exemplified. Impregnation is performed by dipping or coating. The impregnation can be repeated multiple times as necessary, and at this time, the impregnation can be repeated using a plurality of solutions having different compositions and concentrations, and finally adjusted to a desired resin composition and resin amount. Is possible.
 本発明の硬化性複合材料を、加熱等の方法により硬化することによって複合材料硬化物が得られる。その製造方法は特に限定されるものではなく、例えば硬化性複合材料を複数枚重ね合わせ、加熱加圧下に各層間を接着せしめると同時に熱硬化を行い、所望の厚みの複合材料硬化物を得ることができる。また、一度接着硬化させた硬化複合材料と硬化性複合材料を組み合わせて新たな層構成の複合材料硬化物を得ることも可能である。積層成形と硬化は、通常熱プレス等を用い同時に行われるが、両者をそれぞれ単独で行ってもよい。すなわち、あらかじめ積層成形して得た未硬化あるいは半硬化の複合材料を、熱処理又は別の方法で処理することによって硬化させることができる。 A cured composite material can be obtained by curing the curable composite material of the present invention by a method such as heating. The production method is not particularly limited. For example, a plurality of curable composite materials are stacked, and each layer is bonded under heat and pressure, and at the same time, thermosetting is performed to obtain a cured composite material having a desired thickness. Can do. It is also possible to obtain a composite material cured product having a new layer structure by combining the cured composite material once bonded and cured and the curable composite material. Lamination molding and curing are usually performed simultaneously using a hot press or the like, but both may be performed independently. That is, the uncured or semi-cured composite material obtained by lamination molding in advance can be cured by heat treatment or another method.
 成形及び硬化は、温度:80~300℃、圧力:0.1~1000kg/cm、時間:1分~10時間の範囲、より好ましくは、温度:150~250℃、圧力1~500kg/cm、時間:1分~5時間の範囲で行うことができる。 Molding and curing are performed at a temperature of 80 to 300 ° C., a pressure of 0.1 to 1000 kg / cm 2 , a time of 1 minute to 10 hours, and more preferably a temperature of 150 to 250 ° C. and a pressure of 1 to 500 kg / cm. 2. Time: 1 minute to 5 hours.
 本発明の積層体とは、本発明の複合材料硬化物の層と金属箔の層より構成されるものである。ここで用いられる金属箔としては、例えば銅箔、アルミニウム箔等が挙げられる。その厚みは特に限定されないが、3~200μm、より好ましくは3~105μmの範囲である。 The laminate of the present invention is composed of a layer of the cured composite material of the present invention and a metal foil layer. Examples of the metal foil used here include a copper foil and an aluminum foil. The thickness is not particularly limited, but is in the range of 3 to 200 μm, more preferably 3 to 105 μm.
 本発明の積層体を製造する方法としては、例えば上で説明した本発明の硬化性組成物と基材から得た硬化性複合材料と、金属箔を目的に応じた層構成で積層し、加熱加圧下に各層間を接着せしめると同時に熱硬化させる方法を挙げることができる。本発明の硬化性組成物の積層体においては、複合材料硬化物と金属箔が任意の層構成で積層される。金属箔は表層としても中間層としても用いることができる。上記の他、積層と硬化を複数回繰り返して多層化することも可能である。 As a method for producing the laminate of the present invention, for example, the above-described curable composition of the present invention and a curable composite material obtained from a substrate and a metal foil are laminated in a layer configuration according to the purpose, and heated. An example is a method in which the respective layers are bonded together under pressure and thermally cured. In the laminate of the curable composition of the present invention, the composite material cured product and the metal foil are laminated in an arbitrary layer configuration. The metal foil can be used as a surface layer or an intermediate layer. In addition to the above, it is possible to make a multilayer by repeating lamination and curing a plurality of times.
 金属箔との接着には接着剤を用いることもできる。接着剤としては、エポキシ系、アクリル系、フェノール系、シアノアクリレート系等が挙げられるが、特にこれらに限定されない。上記の積層成形と硬化は、本発明の複合材料硬化物の製造と同様の条件で行うことができる。 An adhesive can also be used for bonding to the metal foil. Examples of the adhesive include, but are not limited to, epoxy, acrylic, phenol, and cyanoacrylate. The above lamination molding and curing can be performed under the same conditions as in the production of the cured composite material of the present invention.
 また、本発明の硬化性組成物をフィルム状に成形することもできる。その厚みは特に限定されないが、3~200μm、より好ましくは5~105μmの範囲である。
 本発明のフィルムを製造する方法としては特に限定されることはなく、例えば硬化性組成物と必要に応じて他の成分を芳香族系、ケトン系等の溶媒若しくはその混合溶媒中に均一に溶解又は分散させ、PETフィルムなどの樹脂フィルムに塗布した後乾燥する方法などが挙げられる。塗布は必要に応じて複数回繰り返すことも可能であり、またこの際組成や濃度の異なる複数の溶液を用いて塗布を繰り返し、最終的に希望とする樹脂組成及び樹脂量に調整することも可能である。
Moreover, the curable composition of this invention can also be shape | molded in a film form. The thickness is not particularly limited, but is in the range of 3 to 200 μm, more preferably 5 to 105 μm.
The method for producing the film of the present invention is not particularly limited. For example, the curable composition and other components as required are uniformly dissolved in an aromatic solvent, a ketone solvent, or a mixed solvent thereof. Alternatively, a method of dispersing, applying to a resin film such as a PET film, and drying may be used. The application can be repeated multiple times as necessary. In this case, the application can be repeated using a plurality of solutions having different compositions and concentrations, and finally the desired resin composition and resin amount can be adjusted. It is.
 本発明の樹脂付き金属箔とは本発明の硬化性組成物と金属箔より構成されるものである。ここで用いられる金属箔としては、例えば銅箔、アルミニウム箔等が挙げられる。その厚みは特に限定されないが、3~200μm、より好ましくは5~105μmの範囲である。 The metal foil with resin of the present invention is composed of the curable composition of the present invention and the metal foil. Examples of the metal foil used here include a copper foil and an aluminum foil. The thickness is not particularly limited, but is in the range of 3 to 200 μm, more preferably 5 to 105 μm.
 本発明の樹脂付き金属箔を製造する方法としては特に限定されることはなく、例えば硬化性組成物と必要に応じて他の成分を芳香族系、ケトン系等の溶媒若しくはその混合溶媒中に均一に溶解又は分散させ、金属箔に塗布した後乾燥する方法が挙げられる。塗布は必要に応じて複数回繰り返すことも可能であり、またこの際、組成や濃度の異なる複数の溶液を用いて塗布を繰り返し、最終的に希望とする樹脂組成及び樹脂量に調整することも可能である。 The method for producing the resin-coated metal foil of the present invention is not particularly limited. For example, the curable composition and other components as necessary in an aromatic solvent, a ketone solvent or a mixed solvent thereof. A method of uniformly dissolving or dispersing, applying to a metal foil and then drying is exemplified. The application can be repeated a plurality of times as necessary. At this time, the application can be repeated using a plurality of solutions having different compositions and concentrations, and finally adjusted to a desired resin composition and resin amount. Is possible.
 以下、実施例により本発明を説明するが、本発明はこれらにより制限されるものではない。なお、各例中の部はいずれも重量部である。また、実施例中の測定結果は以下に示す方法により試料調製及び測定を行ったものである。 Hereinafter, the present invention will be described by way of examples, but the present invention is not limited thereto. In addition, all the parts in each example are parts by weight. In addition, the measurement results in the examples are those obtained by sample preparation and measurement by the following methods.
1)ポリ(ビニルベンジル)エーテル化合物の分子量及び分子量分布
 分子量及び分子量分布測定はGPC(東ソー製、HLC-8120GPC)を使用し、溶媒:テトラヒドロフラン(THF)、流量:1.0ml/min、カラム温度:40℃で行った。分子量は単分散ポリスチレンによる検量線を用い、ポリスチレン換算分子量として測定を行った。
1) Molecular weight and molecular weight distribution of poly (vinylbenzyl) ether compound GPC (manufactured by Tosoh, HLC-8120GPC) was used for molecular weight and molecular weight distribution measurement, solvent: tetrahydrofuran (THF), flow rate: 1.0 ml / min, column temperature. : Performed at 40 ° C. The molecular weight was measured as a polystyrene-converted molecular weight using a calibration curve of monodisperse polystyrene.
2)ポリ(ビニルベンジル)エーテル化合物の構造
 日本電子製JNM-LA600型核磁気共鳴分光装置を用い、13C-NMR及びH-NMR分析により決定した。溶媒としてクロロホルム-dを使用した。NMR測定溶媒であるテトラクロロエタン-dの共鳴線を内部標準として使用した。
2) Structure of poly (vinylbenzyl) ether compound The structure was determined by 13 C-NMR and 1 H-NMR analysis using a JNM-LA600 type nuclear magnetic resonance spectrometer manufactured by JEOL. Chloroform-d 1 was used as a solvent. The resonance line of tetrachloroethane -d 2 is an NMR measurement solvent was used as an internal standard.
3)ガラス転移温度(Tg)及び軟化温度測定の試料調製及び測定
 硬化性組成物溶液をガラス基板に乾燥後の厚さが、20μmになるように均一に塗布した後、ホットプレートを用いて、90℃で30分間加熱し、乾燥させた。得られたガラス基板上の樹脂膜はガラス基板と共に、TMA(熱機械分析装置)測定装置にセットし、窒素気流下、昇温速度10℃/分で220℃まで昇温し、更に、220℃で20分間加熱処理することにより、残存する溶媒を除去した。ガラス基板を室温まで放冷した後、TMA測定装置中の試料に分析用プローブを接触させ、窒素気流下、昇温速度10℃/分で30℃から360℃までスキャンさせることにより測定を行い、接線法により軟化温度を求めた。また、線膨張係数の変化する変曲点よりTgを求めた。さらに、平均線膨張係数(CTE)は、0~40℃における試験片の寸法変化より算出した。
 加熱プレス成形により得られた硬化物フィルムのTgの測定は動的粘弾性測定装置を使用し、昇温速度2℃/minで測定を行い、損失弾性率のピークより決定した。
3) Sample preparation and measurement of glass transition temperature (Tg) and softening temperature measurement After the curable composition solution was uniformly applied to a glass substrate so that the thickness after drying was 20 μm, using a hot plate, Heated at 90 ° C. for 30 minutes and dried. The obtained resin film on the glass substrate is set in a TMA (thermomechanical analyzer) measuring device together with the glass substrate, heated to 220 ° C. at a temperature rising rate of 10 ° C./min under a nitrogen stream, and further 220 ° C. The remaining solvent was removed by heat treatment for 20 minutes. After allowing the glass substrate to cool to room temperature, the measurement probe is brought into contact with the sample in the TMA measuring apparatus, and measurement is performed by scanning from 30 ° C. to 360 ° C. at a temperature rising rate of 10 ° C./min under a nitrogen stream The softening temperature was determined by the tangential method. Further, Tg was determined from the inflection point at which the linear expansion coefficient changes. Furthermore, the average linear expansion coefficient (CTE) was calculated from the dimensional change of the test piece at 0 to 40 ° C.
The Tg of the cured film obtained by hot press molding was measured using a dynamic viscoelasticity measuring device at a temperature rising rate of 2 ° C./min, and determined from the peak of the loss elastic modulus.
4)曲げ靱性
 硬化性組成物から得られた厚さ2.0mmの平板硬化物より、幅5.0mm、長さ40mmの試験片を作成し、曲げ試験装置を使用して、曲げ試験を行った。このとき、下記式で計算される曲げ靱性値(FD)を使用して、材料の曲げ靱性を評価した。
  FD=曲げ強度(MPa)/曲げ破断歪(%)
 FDが50以上をD、50未満、40以上をC、40未満、30以上をB、30未満をAとして評価した。
4) Bending toughness A test piece having a width of 5.0 mm and a length of 40 mm was prepared from a 2.0 mm thick flat plate obtained from the curable composition, and a bending test was performed using a bending test apparatus. It was. At this time, the bending toughness value (FD) calculated by the following formula was used to evaluate the bending toughness of the material.
FD = bending strength (MPa) / bending fracture strain (%)
FD was evaluated as 50 or more as D, less than 50, 40 or more as C, less than 40, 30 or more as B, and less than 30 as A.
5)離型性
 幅:3.0mm、長さ:20mm、深さ:0.2mmの矩形の彫り込みが、3.0mmの間隔で、5本入っている金型を使用して、平板部厚み2.0mmの平板を硬化成形し、平板硬化物上の5本の矩形部の形状を観察することにより、離型性の評価を行った。矩形部の形状に、割れ、欠け、引けなどの成形不良がなく、かつ、矩形部の形状の再現性が良好であったものをA、矩形部の形状に、割れ、欠け、引けなどの成形不良がなかったが、矩形部のコーナー部の形状が丸みを帯びていたものをB、矩形部の形状の再現性は良好であったが、矩形部の形状に、割れ、欠け、引けなどの成形不良が観察されたものをC、矩形部のコーナー部の形状が丸みを帯びており、かつ、矩形部の形状に、割れ、欠け、引けなどの成形不良が観察されたものをDとして評価を行った。
5) Releasability Width: 3.0mm, Length: 20mm, Depth: 0.2mm Indentation of a flat plate using a mold containing 5 engravings at intervals of 3.0mm A 2.0 mm flat plate was cured and molded, and the shape of five rectangular portions on the cured flat plate was observed to evaluate the releasability. A rectangular shape with no defects such as cracks, chips, or shrinkage, and a rectangular shape with good reproducibility. A, rectangular shapes with cracks, chips, or shrinkage. There was no defect, but the corner part of the rectangular part was rounded B, the reproducibility of the rectangular part shape was good, but the rectangular part shape was cracked, chipped, closed, etc. Evaluated as C, where the molding failure was observed, and D, where the corner shape of the rectangular part was rounded, and the molding of the rectangular part was observed as cracking, chipping, or shrinkage. Went.
6)引張り強度及び伸び率
 硬化物フィルムの引張り強度及び伸び率は引張り試験装置を用いて測定を行った。伸び率は引張り試験のチャートから測定した。
6) Tensile strength and elongation rate The tensile strength and elongation rate of the cured film were measured using a tensile test apparatus. The elongation was measured from a tensile test chart.
7)誘電率及び誘電正接
 JIS C2565規格に準拠し、株式会社エーイーティー製、空洞共振器法誘電率測定装置により、絶乾後23℃、湿度50%の室内に24時間保管した後の硬化物フィルム、および85℃、相対湿度85%で2週間放置後の硬化物フィルムの2GHzでの誘電率および誘電正接を測定した。
7) Dielectric constant and dielectric loss tangent In accordance with JIS C2565 standard, cured after storing in a room with 23 ° C and 50% humidity for 24 hours after drying completely using a cavity resonator method dielectric constant measuring device manufactured by ATE Co., Ltd. The dielectric constant and dielectric loss tangent at 2 GHz of the product film and the cured film after standing for 2 weeks at 85 ° C. and 85% relative humidity were measured.
6)成形性
 黒化処理を行った銅張り積層板の上に、硬化性組成物の未硬化フィルムを積層し、真空ラミネーターを用いて、温度:110℃、プレス圧:0.1MPaで真空ラミネートを行い、黒化処理銅箔とフィルムの接着状態により評価を行った。評価は黒化処理銅箔とフィルムの接着状態が良好で、成形品のソリが1.0mm未満、及び、面積にして、フクレが1.0%未満のものあったものをA、黒化処理銅箔とフィルムの接着状態が良好であるが、成形品に1.0mm以上、2.0mm未満のソリ、あるいは、面積にして、1.0%以上、5.0%未満の部分的なフクレを生じたものをB、黒化処理銅箔とフィルムとが容易に剥離することができる接着状態のもの、あるいは成形品に2.0mm以上のソリ、あるいは、面積にして、5.0%以上の部分的なフクレを生じたものをCとして評価した。
6) Formability An uncured film of a curable composition is laminated on a blackened copper-clad laminate, and vacuum laminated at a temperature of 110 ° C. and a press pressure of 0.1 MPa using a vacuum laminator. And evaluated by the adhesion state of the blackened copper foil and the film. The evaluation is that the adhesion between the blackened copper foil and the film is good, the warp of the molded product is less than 1.0 mm, and the area is less than 1.0% in swelling, A, blackened The adhesion between the copper foil and the film is good, but the molded product has a warp of 1.0 mm or more and less than 2.0 mm, or a partial swelling of 1.0% or more and less than 5.0% in terms of area. B, a blackened copper foil and a film in an adhesive state where the film and the film can be easily peeled, or a molded product with a warp of 2.0 mm or more, or an area of 5.0% or more Those that produced a partial bulge were evaluated as C.
 実施例、合成例で使用する略号の説明。
SN-485:1-ナフトールアラルキル樹脂(水酸基当量214、軟化点88℃、溶融粘度1.9Pa・s(150℃)、新日鉄住金化学株式会社製)
SN495V:ナフトールアラルキル樹脂(フェノール性水酸基のOH当量232g/eq.、フェノール性水酸基のアルコキシ変性率:2.7%、p-キシリレングリコールジメチルエーテル由来のアルコキシ基含有量:N.D.新日鉄住金化学株式会社製)
SN475N:ナフトールアラルキル樹脂(フェノール性水酸基のOH当量218g/eq.、フェノール性水酸基のアルコキシ変性量:N.D.、p-キシリレングリコールジメチルエーテル由来のアルコキシ基含有量:N.D.新日鉄住金化学株式会社製)
CMS-AM:クロロメチルスチレン(セイミケミカル社製)
Explanation of abbreviations used in Examples and Synthesis Examples.
SN-485: 1-naphthol aralkyl resin (hydroxyl equivalent 214, softening point 88 ° C., melt viscosity 1.9 Pa · s (150 ° C.), manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
SN495V: naphthol aralkyl resin (OH equivalent of phenolic hydroxyl group: 232 g / eq., Alkoxy modification rate of phenolic hydroxyl group: 2.7%, alkoxy group content derived from p-xylylene glycol dimethyl ether: ND Nippon Steel & Sumikin Chemical (Made by Co., Ltd.)
SN475N: naphthol aralkyl resin (OH equivalent of phenolic hydroxyl group 218 g / eq., Alkoxy modification amount of phenolic hydroxyl group: ND, alkoxy group content derived from p-xylylene glycol dimethyl ether: ND Nippon Steel & Sumikin Chemical (Made by Co., Ltd.)
CMS-AM: Chloromethylstyrene (manufactured by Seimi Chemical)
合成例1
 撹拌機、冷却管、窒素導入管のついた1L、3口セパラブルフラスコに、SN-485 500g、メタノール50g、p-トルエンスルホン酸5gを仕込み、窒素を導入しながら加熱し、撹拌しながら100℃で昇温し5時間反応させた。その後、水洗によりp-トルエンスルホン酸を除去した後、減圧下、200℃に昇温し、未反応のメタノールを除去し、ナフトールアラルキル樹脂507gを得た(ナフトールアラルキル樹脂A)。得られたナフトールアラルキル樹脂Aの軟化点は82℃、150℃における溶融粘度は0.10Pa・s、水酸基当量は335であった。また、1H-NMRスペクトルより求めたナフタレン環の水酸基とメトキシ基の合計量に対するメトキシ基の割合(メトキシ変性率)は28%であった。
Synthesis example 1
Into a 1 L, 3-neck separable flask equipped with a stirrer, cooling tube, and nitrogen introducing tube, 500 g of SN-485, 50 g of methanol, and 5 g of p-toluenesulfonic acid were charged, heated while introducing nitrogen, and stirred while stirring. The temperature was raised at 0 ° C. and reacted for 5 hours. Thereafter, p-toluenesulfonic acid was removed by washing with water, and the temperature was raised to 200 ° C. under reduced pressure to remove unreacted methanol to obtain 507 g of naphthol aralkyl resin (naphthol aralkyl resin A). The obtained naphthol aralkyl resin A had a softening point of 82 ° C., a melt viscosity at 150 ° C. of 0.10 Pa · s, and a hydroxyl group equivalent of 335. The ratio of methoxy groups (methoxy modification ratio) to the total amount of hydroxyl groups and methoxy groups of the naphthalene ring determined from 1 H-NMR spectrum was 28%.
合成例2
 撹拌機、冷却管、窒素導入管のついた2L、3口セパラブルフラスコに、1-ナフトール600g、1-メトキシナフタレン262g、p-キシリレングリコールジメチルエーテル290g、及びp-トルエンスルホン酸5.8gを仕込み、窒素を導入しながら90℃に加熱し溶解させた。その後、撹拌しながら150℃に昇温し5時間反応させた。この間、反応により生成するメタノールは系外に除いた。その後、水洗によりp-トルエンスルホン酸を除去した後、減圧下、200℃に昇温し、未反応の1-ナフトール及び1-メトキシナフタレンを除去し、ナフトールアラルキル樹脂603gを得た(ナフトールアラルキル樹脂B)。得られたナフトールアラルキル樹脂Bの軟化点は84℃、溶融粘度は0.12Pa・s、水酸基当量は275、メトキシ基変性率は15%であった。
Synthesis example 2
In a 2 L, 3-neck separable flask equipped with a stirrer, a condenser tube, and a nitrogen inlet tube, 600 g of 1-naphthol, 262 g of 1-methoxynaphthalene, 290 g of p-xylylene glycol dimethyl ether, and 5.8 g of p-toluenesulfonic acid were added. The mixture was heated and dissolved at 90 ° C. while introducing nitrogen. Then, it heated up at 150 degreeC, stirring, and was made to react for 5 hours. During this time, methanol produced by the reaction was removed out of the system. Thereafter, p-toluenesulfonic acid was removed by washing with water, and the temperature was raised to 200 ° C. under reduced pressure to remove unreacted 1-naphthol and 1-methoxynaphthalene to obtain 603 g of naphthol aralkyl resin (naphthol aralkyl resin). B). The obtained naphthol aralkyl resin B had a softening point of 84 ° C., a melt viscosity of 0.12 Pa · s, a hydroxyl group equivalent of 275, and a methoxy group modification rate of 15%.
実施例1
 温度調節器、攪拌装置、冷却コンデンサーおよび滴下ロートを備えた4つ口フラスコにSN495V 195部(1.0当量)、CMS-AM 160.1部(1.05当量)、テトラ-n-ブチルアンモニウムブロマイド9.6部、2,4-ジニトロフェノール0.152部、メチルエチルケトン255部を仕込み攪拌溶解し、液温を75℃にし、50%水酸化ナトリウム水溶液160部(2.0当量)を20分間で滴下し、更に75℃で4時間攪拌を続けた。次に10%塩酸水溶液でフラスコ内を中和した後、トルエン400部を追加し、有機層を1500部の水で3回洗浄した。
Example 1
In a four-necked flask equipped with a temperature controller, a stirrer, a cooling condenser, and a dropping funnel, 195 parts of SN495V (1.0 equivalent), 160.1 parts of CMS-AM (1.05 equivalents), tetra-n-butylammonium 9.6 parts of bromide, 0.152 parts of 2,4-dinitrophenol and 255 parts of methyl ethyl ketone were added and dissolved by stirring. The temperature of the liquid was adjusted to 75 ° C., and 160 parts (2.0 equivalents) of 50% aqueous sodium hydroxide solution was added for 20 minutes. Then, the mixture was further stirred at 75 ° C. for 4 hours. Next, after neutralizing the inside of the flask with a 10% hydrochloric acid aqueous solution, 400 parts of toluene was added, and the organic layer was washed with 1500 parts of water three times.
 得られた有機相を蒸留することにより、有機相が500部になるまで濃縮し、メタノール/水=75/25(v/v)1,000部を加えて生成物を再沈殿した。同じ条件の再沈殿をさらに2回繰り返した。得られた樹脂の沈殿を濾過・乾燥し、SN495Vとビニルベンジルクロライドとの反応生成物であるポリ(ビニルベンジル)エーテル化合物としてのビニルベンジル化ナフトールアラルキル樹脂(VBESN495V)を246.7部得た。 The obtained organic phase was distilled to concentrate until the organic phase became 500 parts, and 1,000 parts of methanol / water = 75/25 (v / v) was added to reprecipitate the product. Reprecipitation under the same conditions was repeated twice more. The obtained resin precipitate was filtered and dried to obtain 246.7 parts of vinylbenzylated naphthol aralkyl resin (VBESN 495V) as a poly (vinylbenzyl) ether compound which is a reaction product of SN495V and vinylbenzyl chloride.
 生成物の確認をGPC、IRH-NMRで行ったところ、原料に由来するピークが消失し、高分子量側に新しいピークが生成していること、フェノール性水酸基が消失していること、クロロメチルスチレンに由来するプロトンの共鳴線が消失し、代わりに、5.02ppm付近にベンジルエーテル基に由来するプロトンの共鳴線、5.25ppm、5.77ppm及び6.73ppm付近にビニル基に由来するプロトンの共鳴線を有することが確認され、VBESN495Vが得られていることを確認した。そして、アルコキシ基含有量は2.6%、ビニルベンジルエーテル基含有量は97.4%、フェノール性水酸基は検出することはできなかった。また、元素分析により総塩素含有量を測定したところ167ppmであった。GPC測定を行ったところ、クロロメチルスチレンに由来するピークは、観察されなかった。また、示差走査熱量計(DSC)により、窒素気流下、昇温速度:10℃/分で熱相転移挙動を測定したところ、結晶に由来する融解ピークは観察されなかった。また、熱天秤(TGA)を使用し、窒素気流下、昇温速度:10℃/分で、熱分解挙動を測定したところ、接線法による熱分解開始温度:405.7℃であり、600℃における炭化物生成量は、37.8wt%であった。 When the product was confirmed by GPC and IR 1 H-NMR, the peak derived from the raw material disappeared, a new peak was formed on the high molecular weight side, the phenolic hydroxyl group disappeared, The proton resonance lines derived from methylstyrene disappear, and instead, the proton resonance lines derived from the benzyl ether group around 5.02 ppm are derived from vinyl groups around 5.25 ppm, 5.77 ppm and 6.73 ppm. It was confirmed to have a proton resonance line, and it was confirmed that VBESN 495V was obtained. The alkoxy group content was 2.6%, the vinylbenzyl ether group content was 97.4%, and no phenolic hydroxyl group could be detected. The total chlorine content measured by elemental analysis was 167 ppm. When GPC measurement was performed, no peak derived from chloromethylstyrene was observed. Further, when the thermal phase transition behavior was measured with a differential scanning calorimeter (DSC) under a nitrogen stream at a rate of temperature increase of 10 ° C./min, no melting peak derived from the crystals was observed. Further, when a thermal decomposition behavior was measured using a thermobalance (TGA) under a nitrogen stream at a heating rate of 10 ° C./min, the thermal decomposition starting temperature by the tangential method was 405.7 ° C. and 600 ° C. The amount of carbide produced in was 37.8 wt%.
実施例2
 温度調節器、攪拌装置、冷却コンデンサーおよび滴下ロートを備えた4つ口フラスコにSN475N 195部(1.0当量)、CMS-AM 160.1部(1.05当量)、テトラ-n-ブチルアンモニウムブロマイド9.6部、2,4-ジニトロフェノール0.152部、メチルエチルケトン255部を仕込み攪拌溶解し、液温を75℃にし、50%水酸化ナトリウム水溶液160部(2.0当量)を20分間で滴下し、更に75℃で4時間攪拌を続けた。次に10%塩酸水溶液でフラスコ内を中和した後、トルエン400部を追加し、有機層を1500部の水で3回洗浄した。
Example 2
In a four-necked flask equipped with a temperature controller, a stirrer, a cooling condenser and a dropping funnel, 195 parts of SN475N (1.0 equivalent), 160.1 parts of CMS-AM (1.05 equivalents), tetra-n-butylammonium 9.6 parts of bromide, 0.152 parts of 2,4-dinitrophenol and 255 parts of methyl ethyl ketone were added and dissolved by stirring. The temperature of the liquid was adjusted to 75 ° C., and 160 parts (2.0 equivalents) of 50% aqueous sodium hydroxide solution was added for 20 minutes. Then, the mixture was further stirred at 75 ° C. for 4 hours. Next, after neutralizing the inside of the flask with a 10% hydrochloric acid aqueous solution, 400 parts of toluene was added, and the organic layer was washed with 1500 parts of water three times.
 得られた有機相を蒸留して有機相が500部になるまで濃縮し、メタノール/水=75/25(v/v)1,000部を加えて生成物を再沈殿した。同じ条件の再沈殿をさらに2回繰り返した。得られた樹脂の沈殿を濾過・乾燥し、SN475Nとビニルベンジルクロライドとの反応生成物であるビニルベンジル化ナフトールアラルキル樹脂(VBESN475N)223.5部を得た。 The obtained organic phase was distilled and concentrated until the organic phase became 500 parts, and 1,000 parts of methanol / water = 75/25 (v / v) was added to reprecipitate the product. Reprecipitation under the same conditions was repeated twice more. The resulting resin precipitate was filtered and dried to obtain 223.5 parts of vinylbenzylated naphthol aralkyl resin (VBESN475N) which is a reaction product of SN475N and vinylbenzyl chloride.
 実施例1と同様にして生成物の確認を行い、VBESN475Nが得られていることを確認した。そして、ビニルベンジルエーテル基含有量は99.5%以上、一方、1-ナフトールのフェノール性OH基が変性されたアルコキシ基とフェノール性水酸基は検出することはできなかった。また、総塩素含有量は178ppmで、クロロメチルスチレンに由来するピーク面積(クロロメチルスチレンピーク面積比)は、VBESN475Nとクロロメチルスチレンのピーク面積と合計した総ピーク面積に対して、0.05%であった。また、結晶に由来する融解ピークは観察されず、熱分解開始温度は412.0℃であり、600℃における炭化物生成量は、40.1wt%であった。   The product was confirmed in the same manner as in Example 1, and it was confirmed that VBESN475N was obtained. The vinylbenzyl ether group content was 99.5% or more. On the other hand, alkoxy groups and phenolic hydroxyl groups in which the phenolic OH group of 1-naphthol was modified could not be detected. The total chlorine content is 178 ppm, and the peak area derived from chloromethylstyrene (chloromethylstyrene peak area ratio) is 0.05% of the total peak area totaled with the peak areas of VBESN475N and chloromethylstyrene. Met. Moreover, the melting peak derived from a crystal | crystallization was not observed, the thermal decomposition start temperature was 412.0 degreeC, and the carbide | carbonized_material production amount in 600 degreeC was 40.1 wt%. *
実施例3~5
 ナフトールアラルキル樹脂として、SN-485、合成例1で得たナフトールアラルキル樹脂A、又は合成例2で得たナフトールアラルキル樹脂Bを使用したこと以外は、実施例1と同様の製造方法によってビニルベンジル化ナフトールアラルキル樹脂(VBE-A~VBE-C)を合成した。得られたビニルベンジル化ナフトールアラルキル樹脂の評価結果を表1に示す。N.D.は、検出されずを意味する。ビニルベンジルエーテル基(%)、フェノール性OH基(%)とアルコキシ基(%)は、式(1)のR2における割合である。クロロメチルスチレン(%)は、クロロメチルスチレンピーク面積比である。
Examples 3-5
Vinylbenzylation was carried out by the same production method as in Example 1 except that SN-485, naphthol aralkyl resin A obtained in Synthesis Example 1 or naphthol aralkyl resin B obtained in Synthesis Example 2 was used as the naphthol aralkyl resin. Naphthol aralkyl resins (VBE-A to VBE-C) were synthesized. The evaluation results of the obtained vinylbenzylated naphthol aralkyl resin are shown in Table 1. ND means not detected. The vinyl benzyl ether group (%), the phenolic OH group (%) and the alkoxy group (%) are the ratio in R 2 of the formula (1). Chloromethylstyrene (%) is the chloromethylstyrene peak area ratio.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
実施例6
 実施例2と同じ条件で、反応させ、中和及び洗浄して得られた有機相を、蒸留して有機相が500部になるまで濃縮し、メタノール/水=75/25(v/v)1,000部を加えて生成物を再沈殿し、得られた樹脂の沈殿を濾過・乾燥し、SN475Nとビニルベンジルクロライドとの反応生成物であるビニルベンジル化ナフトールアラルキル樹脂(VBE-D)275.3部を得た。
Example 6
The organic phase obtained by reacting, neutralizing and washing under the same conditions as in Example 2 was concentrated by distillation until the organic phase was 500 parts, and methanol / water = 75/25 (v / v). 1,000 parts are added to reprecipitate the product, and the resulting resin precipitate is filtered and dried, and a vinylbenzylated naphthol aralkyl resin (VBE-D) 275, which is a reaction product of SN475N and vinylbenzyl chloride. .3 parts were obtained.
実施例7
 実施例2と同じ条件で、反応させ、中和及び洗浄して得られた有機相を、蒸留して、有機相が500部になるまで濃縮し、メタノール/水=75/25(v/v)1,000部を加えて生成物を再沈殿し、同じ条件の再沈殿をさらに1回繰り返した。得られた樹脂の沈殿を濾過・乾燥し、SN475Nとビニルベンジルクロライドとの反応生成物であるビニルベンジル化ナフトールアラルキル樹脂(VBE-E)252.8部を得た。
Example 7
The organic phase obtained by reacting, neutralizing and washing under the same conditions as in Example 2 was distilled and concentrated until the organic phase was 500 parts, methanol / water = 75/25 (v / v ) 1,000 parts were added to reprecipitate the product, and reprecipitation under the same conditions was repeated once more. The resulting resin precipitate was filtered and dried to obtain 252.8 parts of vinylbenzylated naphthol aralkyl resin (VBE-E) which is a reaction product of SN475N and vinylbenzyl chloride.
比較例1
 実施例2と同じ条件で、反応させ、中和及び洗浄して得られた有機相を、蒸留して、溶剤の留去が終了するまで濃縮した。再沈殿は行わなかった。SN475Nとビニルベンジルクロライドとの反応生成物であるビニルベンジル化ナフトールアラルキル樹脂(VBE-F)326.8部を得た。
Comparative Example 1
The organic phase obtained by reacting, neutralizing and washing under the same conditions as in Example 2 was distilled and concentrated until distillation of the solvent was completed. Reprecipitation was not performed. 326.8 parts of vinylbenzylated naphthol aralkyl resin (VBE-F) which is a reaction product of SN475N and vinylbenzyl chloride was obtained.
実施例8
 実施例2と同じ条件で、反応させ、中和及び洗浄して得られた有機相を、蒸留して有機相が500部になるまで濃縮し、メタノール(100%)1,000部を加えて生成物を再沈殿し、同じ条件の再沈殿をさらに2回繰り返した。得られた樹脂の沈殿を濾過・乾燥し、SN475Nとビニルベンジルクロライドとの反応生成物であるビニルベンジル化ナフトールアラルキル樹脂(VBE-G)89.3部を得た。
Example 8
The organic phase obtained by reacting, neutralizing and washing under the same conditions as in Example 2 was concentrated by distillation until the organic phase was 500 parts, and 1,000 parts of methanol (100%) was added. The product was reprecipitated and reprecipitation under the same conditions was repeated two more times. The resulting resin precipitate was filtered and dried to obtain 89.3 parts of a vinylbenzylated naphthol aralkyl resin (VBE-G) which is a reaction product of SN475N and vinylbenzyl chloride.
 実施例1と同様にして生成物の確認をして、VBE-Gが得られていることを確認した。そして、ビニルベンジルエーテル基含有量は99.5%以上、1-ナフトールのフェノール性OH基が変性されたアルコキシ基とフェノール性水酸基は不検出だった。また、総塩素含有量は18.0ppmで、クロロメチルスチレンに由来するピークは、検出されなかった。また、結晶に由来する融解ピークは観察されず、熱分解開始温度:389.7℃であり、600℃における炭化物生成量は、であった。 The product was confirmed in the same manner as in Example 1, and it was confirmed that VBE-G was obtained. The vinylbenzyl ether group content was 99.5% or more, and the alkoxy group and phenolic hydroxyl group in which the phenolic OH group of 1-naphthol was modified were not detected. The total chlorine content was 18.0 ppm, and no peak derived from chloromethylstyrene was detected. Moreover, the melting peak derived from a crystal | crystallization was not observed, but thermal decomposition start temperature: 389.7 degreeC, and the carbide | carbonized_material production amount in 600 degreeC was.
 実施例6~8及び比較例1で得られた生成物の確認を実施例1と同様にして行い、VBE-D、VBE-E、VBE-F及びVBE-Gが得られていることを確認した。
 ビニルベンジルエーテル基含有量は、VBE-D、VBE-E、VBE-F及びVBE-Gのいずれも99.5%以上であった。
 1-ナフトールのフェノール性OH基が変性されたアルコキシ基とフェノール性水酸基は、VBE-D、VBE-E、VBE-F及びVBE-Gのいずれも不検出だった。
 結晶に由来する融解ピークは、VBE-D、VBE-E、VBE-F及びVBE-Gのいずれも観察されなかった。
The products obtained in Examples 6 to 8 and Comparative Example 1 were confirmed in the same manner as in Example 1, and it was confirmed that VBE-D, VBE-E, VBE-F and VBE-G were obtained. did.
The vinyl benzyl ether group content was 99.5% or more for all of VBE-D, VBE-E, VBE-F and VBE-G.
None of VBE-D, VBE-E, VBE-F and VBE-G were detected for the alkoxy group and the phenolic hydroxyl group in which the phenolic OH group of 1-naphthol was modified.
None of VBE-D, VBE-E, VBE-F and VBE-G were observed as melting peaks derived from crystals.
・総塩素含有量は次のとおりであった。
 VBE-D:578ppm
 VBE-E:382ppm
 VBE-F:1,680ppm
 VBE-G:18.0ppm
・クロロメチルスチレンピーク面積比は次のとおりであった。
 VBE-D:0.96%
 VBE-E:0.52%
 VBE-F:2.7%
 VBE-G:ピーク不検出
・熱分解開始温度は次のとおりであった。
 VBE-D:378.3℃
 VBE-E:392.4℃
 VBE-F:317.6℃
 VBE-G:389.7℃
・600℃における炭化物生成量は次のとおりであった。
 VBE-D:37.5wt%
 VBE-E:39.1wt%
 VBE-F:28.5wt%
 VBE-G:37.3wt%
・ The total chlorine content was as follows.
VBE-D: 578ppm
VBE-E: 382ppm
VBE-F: 1,680 ppm
VBE-G: 18.0ppm
-The chloromethylstyrene peak area ratio was as follows.
VBE-D: 0.96%
VBE-E: 0.52%
VBE-F: 2.7%
VBE-G: Peak nondetection / thermal decomposition start temperature was as follows.
VBE-D: 378.3 ° C
VBE-E: 392.4 ° C
VBE-F: 317.6 ° C
VBE-G: 389.7 ° C
-The amount of carbide generation at 600 ° C was as follows.
VBE-D: 37.5wt%
VBE-E: 39.1wt%
VBE-F: 28.5wt%
VBE-G: 37.3wt%
合成例3
 温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら、フェノール414部、及び4,4’-ビス(クロロメチル)-1,1’-ビフェニル251部、p-トルエンスルホン酸13部を仕込み、撹拌下で80℃まで昇温、溶解させた。4時間攪拌後、メチルイソブチルケトン700部を加えた後洗浄水が中性になるまで、300部の水で3回水洗し、次いで油層から未反応フェノール、メチルイソブチルケトンを1.3kPaの圧力下において減圧留去し、式(4)のナフタレン環がベンゼン環であり、Rが水素原子、nが1.5であるフェノールアラルキル樹脂(P)310部を得た。得られたフェノールアラルキル樹脂の軟化点は65℃、水酸基当量は202g/eqであった。
Synthesis example 3
While purging a flask equipped with a thermometer, condenser, and stirrer with nitrogen gas purge, 414 parts of phenol, 251 parts of 4,4′-bis (chloromethyl) -1,1′-biphenyl, p-toluenesulfonic acid 13 The portion was charged and heated up to 80 ° C. with stirring to be dissolved. After stirring for 4 hours, 700 parts of methyl isobutyl ketone was added and then washed three times with 300 parts of water until the washing water became neutral. Then, unreacted phenol and methyl isobutyl ketone were removed from the oil layer under a pressure of 1.3 kPa. Then, the naphthalene ring of the formula (4) was a benzene ring, and 310 parts of a phenol aralkyl resin (P) in which R 1 was a hydrogen atom and n was 1.5 was obtained. The obtained phenol aralkyl resin had a softening point of 65 ° C. and a hydroxyl group equivalent of 202 g / eq.
 温度計、冷却管、撹拌器を取り付けたフラスコに窒素ガスパージを施しながら、得られたフェノールアラルキル樹脂(P)を404部、メチルエチルケトンを848部、4-ビニルベンジルクロライドを320部、テトラn-ブチルアンモニウムブロマイド12部を仕込み、攪拌して溶解せしめ、液温を70℃にした。そこに30%水酸化ナトリウム水溶液320部を30分間かけて滴下し、さらに70℃で6時間攪拌をつづけた。次に35%塩酸でフラスコ内容物を中和した後、分液し、有機層を400部の水で3回洗浄し、未反応原料やメチルエチルケトンなどを減圧留去し、ビフェニル構造を含有するフェノールアラルキル樹脂がビニルベンジルエーテル化された、nが1.5であるポリ(ビニルベンジル)エーテル化合物(VB1)512部を得た。 While purging a flask equipped with a thermometer, condenser, and stirrer with nitrogen gas purge, 404 parts of the obtained phenol aralkyl resin (P), 848 parts of methyl ethyl ketone, 320 parts of 4-vinylbenzyl chloride, tetra n-butyl 12 parts of ammonium bromide was added and dissolved by stirring to bring the liquid temperature to 70 ° C. Thereto, 320 parts of a 30% aqueous sodium hydroxide solution was added dropwise over 30 minutes, and stirring was further continued at 70 ° C. for 6 hours. Next, after neutralizing the flask contents with 35% hydrochloric acid, liquid separation was performed, and the organic layer was washed three times with 400 parts of water, and unreacted raw materials and methyl ethyl ketone were distilled off under reduced pressure to give phenol containing a biphenyl structure. 512 parts of poly (vinylbenzyl) ether compound (VB1) having an n of 1.5, in which the aralkyl resin was converted to vinylbenzyl ether were obtained.
 得られたポリ(ビニルベンジル)エーテル化合物の軟化点は54℃であり、原料のフェノール性水酸基起因の吸収は消失していた。また、総塩素含有量は980ppmで、クロロメチルスチレンピーク面積比は、1.8%であった。また、結晶に由来する融解ピークは観察されず、熱分解開始温度は376℃で、600℃における炭化物生成量は、31.8wt%であった。 The softening point of the obtained poly (vinylbenzyl) ether compound was 54 ° C., and the absorption due to the phenolic hydroxyl group of the raw material disappeared. The total chlorine content was 980 ppm, and the chloromethylstyrene peak area ratio was 1.8%. Moreover, the melting peak derived from a crystal | crystallization was not observed, the thermal decomposition start temperature was 376 degreeC, and the carbide | carbonized_material production amount in 600 degreeC was 31.8 wt%.
実施例9
 実施例1で得られたVBESN495V 70gと、重合開始剤として2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン(日本油脂(株)製、商品名:パーヘキサ25B)0.7gをトルエン30gに溶解し硬化性組成物(ワニスA)を得た。
Example 9
70 g of VBESN 495V obtained in Example 1 and 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane (trade name: Perhexa 25B, manufactured by NOF Corporation) as a polymerization initiator 7 g was dissolved in 30 g of toluene to obtain a curable composition (varnish A).
 調製したワニスAを金型上に滴下し、80℃で溶媒を減圧下、脱揮除去し、乾燥後、金型を組上げた後、180℃、3MPaの条件で1時間真空加圧プレスを行い、熱硬化させ、得られた厚さ:0.2mmの硬化物シートについて、2.0GHzの誘電率と誘電正接を始めとする諸特性を測定した。また、250℃の空気雰囲気下のオーブン中に1hr放置した後の誘電率と誘電正接を測定し放置前後の誘電率及び誘電正接の変化率を測定した。これら測定により得られた結果を表2に示した。 The prepared varnish A is dropped on a mold, the solvent is removed by devolatilization at 80 ° C. under reduced pressure, and after drying, the mold is assembled, and then subjected to a vacuum press for 1 hour at 180 ° C. and 3 MPa. The cured sheet having a thickness of 0.2 mm obtained by thermosetting was measured for various properties including a dielectric constant of 2.0 GHz and a dielectric loss tangent. Further, the dielectric constant and dielectric loss tangent after being left in an oven at 250 ° C. for 1 hour were measured, and the change rate of the dielectric constant and dielectric loss tangent before and after being left was measured. The results obtained by these measurements are shown in Table 2.
比較例2
 合成例3で得られたVB1 70gと、重合開始剤としてパーヘキサ25B 0.7gをトルエン30gに溶解し硬化性組成物(ワニスB)を得た。
Comparative Example 2
70 g of VB1 obtained in Synthesis Example 3 and 0.7 g of perhexa 25B as a polymerization initiator were dissolved in 30 g of toluene to obtain a curable composition (varnish B).
 調製したワニスBを金型上に滴下し、80℃で溶媒を減圧下、脱揮除去し、乾燥後、金型を組上げた後、180℃、3MPaの条件で1時間真空加圧プレスを行い、熱硬化させ、得られた厚さ:0.2mmの硬化物シートについて、2.0GHzの誘電率と誘電正接を始めとする諸特性を測定した。また、250℃の空気雰囲気下のオーブン中に1hr放置した後の誘電率と誘電正接を測定し放置前後の誘電率及び誘電正接の変化率を測定した。これら測定により得られた結果を表2に示した。 The prepared varnish B was dropped onto the mold, the solvent was removed by devolatilization at 80 ° C. under reduced pressure, and after drying, the mold was assembled and then subjected to a vacuum pressure press at 180 ° C. and 3 MPa for 1 hour. The cured sheet having a thickness of 0.2 mm obtained by thermosetting was measured for various properties including a dielectric constant of 2.0 GHz and a dielectric loss tangent. Further, the dielectric constant and dielectric loss tangent after being left in an oven at 250 ° C. for 1 hour were measured, and the change rate of the dielectric constant and dielectric loss tangent before and after being left was measured. The results obtained by these measurements are shown in Table 2.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例1で得たVBESN495V、実施例2で得たVBESN475N、実施例3~5で得たVBE‐A~VBE‐C、実施例7で得たVBE-E、実施例8で得たVBE-G、比較例1で得たVBE-Fについて、上記と同様にして硬化性組成物を得て、これから厚さ2.0mmの平板硬化物を作成して曲げ靱性を評価した。また、この硬化性組成物(溶媒なし)を使用して離型性を評価した。評価結果は、次のとおりである。括弧内は曲げ靱性、離型性の順である。
 VBESN495V:(曲げ靱性 A、 離型性 A)、VBESN475N(B、B)、VBE‐A(B、B)、VBE‐B(A、A)、VBE‐C(A、A)、VBE-E(B、B)、VBE-G(B、B)、VBE-F(C、C)。
VBESN 495V obtained in Example 1, VBESN 475N obtained in Example 2, VBE-A to VBE-C obtained in Examples 3 to 5, VBE-E obtained in Example 7, VBE-E obtained in Example 8 G, A curable composition was obtained in the same manner as described above for VBE-F obtained in Comparative Example 1, and a 2.0 mm-thick plate cured product was prepared therefrom to evaluate the bending toughness. Moreover, the mold release property was evaluated using this curable composition (without solvent). The evaluation results are as follows. Figures in parentheses are bending toughness and releasability.
VBESN 495V: (bending toughness A, releasability A), VBESN 475N (B, B), VBE-A (B, B), VBE-B (A, A), VBE-C (A, A), VBE-E (B, B), VBE-G (B, B), VBE-F (C, C).
実施例10
 実施例1で得られたVBESN495V 30gと熱可塑性エラストマーとして水添スチレンブタジエンブロック共重合体(クレイトンポリマージャパン(株)製、商品名:KRATON A1535)20gおよび重合開始剤としてパーヘキサ25B 0.25gをトルエン150gに溶解し硬化性組成物(ワニスC)を得た。
Example 10
30 g of VBESN 495V obtained in Example 1, 20 g of a hydrogenated styrene butadiene block copolymer (manufactured by Kraton Polymer Japan Co., Ltd., trade name: KRATON A1535) as a thermoplastic elastomer, and 0.25 g of Perhexa 25B as a polymerization initiator in toluene It melt | dissolved in 150 g and obtained the curable composition (varnish C).
 調製したワニスCをPETフィルム上に塗布し80℃で溶媒除去し、乾燥後PETフィルム上から塗膜を剥がし取り、単離したキャストフィルムを、180℃、3MPaの条件で1時間真空加圧プレスを行い、熱硬化させ、得られた硬化物フィルムについて諸特性を測定した。また、厚み0.2mmのフィルムプレス硬化物を0.3cm×10cmに切り出して試験片を作成し、2.0GHzの誘電率と誘電正接を測定した。また、250℃の空気雰囲気下のオーブン中に1hr放置した後の誘電率と誘電正接を測定し放置前後の誘電率及び誘電正接の変化率を測定した。溶液粘度は、E型粘度計を使用し、25℃で測定した。これら測定により得られた結果を表3に示した。 The prepared varnish C was applied onto a PET film, the solvent was removed at 80 ° C., the coating film was peeled off from the PET film after drying, and the isolated cast film was vacuum-pressed for 1 hour under the conditions of 180 ° C. and 3 MPa. And thermosetting, and various properties of the obtained cured film were measured. Further, a 0.2 mm thick film press cured product was cut into 0.3 cm × 10 cm to prepare a test piece, and a dielectric constant and dielectric loss tangent of 2.0 GHz were measured. Further, the dielectric constant and dielectric loss tangent after being left in an oven at 250 ° C. for 1 hour were measured, and the change rate of the dielectric constant and dielectric loss tangent before and after being left was measured. The solution viscosity was measured at 25 ° C. using an E-type viscometer. The results obtained by these measurements are shown in Table 3.
比較例3
 合成例3で得られたVB1 30gと熱可塑性エラストマーとしてKRATON A1535 20gおよび重合開始剤としてパーヘキサ25B 0.25gをトルエン150gに溶解し硬化性組成物(ワニスD)を得た。
Comparative Example 3
30 g of VB1 obtained in Synthesis Example 3, 20 g of KRATON A1535 as a thermoplastic elastomer and 0.25 g of perhexa 25B as a polymerization initiator were dissolved in 150 g of toluene to obtain a curable composition (varnish D).
 調製したワニスDを使用して、実施例10と同様にしてフィルムを得て、同様にして評価した。結果を表3に示した。 Using the prepared varnish D, a film was obtained in the same manner as in Example 10, and evaluated in the same manner. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
実施例11
 実施例10で得られたワニスCにガラスクロス(Eガラス、目付71g/m)を浸漬して含浸を行い、50℃のエアーオーブン中で30分間乾燥させた。得られたプリプレグのレジンコンテンツ(R.C)は55%であった。
 このプリプレグを使用して、直径0.35mmのスルーホールが5mmピッチで配置されている厚み0.8mmのコア材を張り合わせたところ、樹脂が充填されていないスルーホールは4500穴中0であった。
Example 11
Glass cloth (E glass, weight per unit area: 71 g / m 2 ) was immersed in the varnish C obtained in Example 10 for impregnation, and dried in an air oven at 50 ° C. for 30 minutes. The resin content (RC) of the obtained prepreg was 55%.
Using this prepreg, when a core material having a thickness of 0.8 mm in which through holes having a diameter of 0.35 mm were arranged at a pitch of 5 mm was bonded, the number of through holes not filled with resin was 0 out of 4500 holes. .
 成形後の厚みが約0.6mm~1.0mmになるように、上記の硬化性複合材料を必要に応じて複数枚重ね合わせ、その両面に厚さ18μmの銅箔を置いてプレス成形機により成形硬化させて積層体を得た。各実施例の硬化条件は、3℃/分で昇温し、180℃で60分間保持することにとした。また、圧力はいずれも30kg/cmとした。 A plurality of the above curable composite materials are stacked as necessary so that the thickness after molding becomes approximately 0.6 mm to 1.0 mm, and a copper foil having a thickness of 18 μm is placed on both sides thereof by a press molding machine. Molded and cured to obtain a laminate. The curing condition of each example was to raise the temperature at 3 ° C./min and hold at 180 ° C. for 60 minutes. The pressure was 30 kg / cm 2 in all cases.
 このようにして得られた積層体の諸物性を以下の方法で測定した。
1)耐トリクロロエチレン性:銅箔を除去した積層体を25mm角に切り出し、トリクロロエチレン中で5分間煮沸し、外観の変化を目視により観察した(JIS C6481に準拠)。
2)ハンダ耐熱性:銅箔を除去した積層体を25mm角に切り出し、260℃のハンダ浴中に120秒間浮かべ、外観の変化を目視により観察した(JIS C6481に準拠)。
Various physical properties of the laminate thus obtained were measured by the following methods.
1) Trichlorethylene resistance: The laminate from which the copper foil had been removed was cut into 25 mm squares, boiled in trichlorethylene for 5 minutes, and the change in appearance was visually observed (based on JIS C6481).
2) Solder heat resistance: The laminate from which the copper foil had been removed was cut into 25 mm squares, floated in a 260 ° C. solder bath for 120 seconds, and the change in appearance was visually observed (conforms to JIS C6481).
 耐トリクロロエチレン性試験では積層体の外観に変化は観察されなかった。ハンダ耐熱性試験では積層体の外観に変化は観察されなかった。 In the trichlorethylene resistance test, no change was observed in the appearance of the laminate. In the solder heat resistance test, no change was observed in the appearance of the laminate.
実施例12
 実施例10で得られたワニスCを18μmの電解銅箔上に塗布し、10分間風乾した後、80℃のエアーオーブン中で10分間乾燥させた。銅箔上の樹脂厚みは50μmであった。本樹脂付き銅箔と実施例5の積層体を重ね180℃で90分間、30kg/cmの圧力で加熱加圧硬化した。スルーホールを観察したところ、樹脂が充填されていないスルーホールは確認されなかった。
Example 12
Varnish C obtained in Example 10 was applied onto an 18 μm electrolytic copper foil, air-dried for 10 minutes, and then dried in an air oven at 80 ° C. for 10 minutes. The resin thickness on the copper foil was 50 μm. The copper foil with resin and the laminate of Example 5 were stacked and cured by heating and pressing at 180 ° C. for 90 minutes at a pressure of 30 kg / cm 2 . When through holes were observed, no through holes that were not filled with resin were confirmed.
実施例13、比較例4
 実施例6で得られたVBE-Dと、比較例1で得られたVBE-Fを使用したこと以外は、実施例9と同一の条件で試験を行った。試験により得られた結果を表4に示した。
Example 13, Comparative Example 4
The test was performed under the same conditions as in Example 9, except that VBE-D obtained in Example 6 and VBE-F obtained in Comparative Example 1 were used. The results obtained from the tests are shown in Table 4.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
産業上の利用の可能性Industrial applicability
 本発明の硬化性組成物は、硬化後において優れた耐薬品性、誘電特性、低吸水性、耐熱性、難燃性、機械特性を示し、電気産業、宇宙・航空機産業等の分野において誘電材料、絶縁材料、耐熱材料、構造材料等に用いることができる。特に片面、両面、多層プリント基板、フレキシブルプリント基板、ビルドアップ基板等として用いることができる。 The curable composition of the present invention exhibits excellent chemical resistance, dielectric properties, low water absorption, heat resistance, flame retardancy, mechanical properties after curing, and is a dielectric material in the fields of electrical industry, space / aircraft industry, etc. It can be used for insulating materials, heat-resistant materials, structural materials, and the like. In particular, it can be used as a single-sided, double-sided, multilayer printed board, flexible printed board, build-up board or the like.

Claims (13)

  1.  ナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物とを反応させて得られる下記式(1)で表されるポリ(ビニルベンジル)エーテル化合物であって、全ハロゲン含有量が600ppm(wt)以下で、ゲル浸透クロマトグラフィー測定においてビニル芳香族ハロメチル化合物に由来するピーク面積がポリ(ビニルベンジル)エーテル化合物のピーク面積と合計した総ピーク面積に対して、1.0%以下であることを特徴とするポリ(ビニルベンジル)エーテル化合物。
    Figure JPOXMLDOC01-appb-I000001
     ここで、Rはそれぞれ独立して水素原子、炭素数1~6のアルキル基、アリル基、または炭素数6~10のアリール基を表し、Arは炭素数6~50のアリール基を表し、Rはそれぞれ独立して水素原子、炭素数1~12のアルキル基、またはビニルベンジル基を表すが、Rにおけるビニルベンジル基の割合は60~100モル%である。nは平均値で1~20の範囲であり、mは1~6の数であり、rは1~3の数である。但し、m+rは8を超えない。
    A poly (vinylbenzyl) ether compound represented by the following formula (1) obtained by reacting a naphthol aralkyl resin with a vinyl aromatic halomethyl compound, having a total halogen content of 600 ppm (wt) or less and gel permeation Poly (vinyl) characterized in that the peak area derived from the vinyl aromatic halomethyl compound in chromatographic measurement is 1.0% or less with respect to the total peak area totaled with the peak area of the poly (vinylbenzyl) ether compound. (Benzyl) ether compound.
    Figure JPOXMLDOC01-appb-I000001
    Here, each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or an aryl group having 6 to 10 carbon atoms, and Ar 1 represents an aryl group having 6 to 50 carbon atoms. , R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a vinylbenzyl group, and the ratio of the vinylbenzyl group in R 2 is 60 to 100 mol%. n is an average value ranging from 1 to 20, m is a number from 1 to 6, and r is a number from 1 to 3. However, m + r does not exceed 8.
  2.  式(1)のRにおけるアルキル基の割合が0.1~40モル%である請求項1に記載のポリ(ビニルベンジル)エーテル化合物。 The poly (vinylbenzyl) ether compound according to claim 1, wherein the proportion of the alkyl group in R 2 of the formula (1) is 0.1 to 40 mol%.
  3.  請求項1に記載のポリ(ビニルベンジル)エーテル化合物と、ラジカル重合開始剤とを含有することを特徴とする硬化性組成物。 A curable composition comprising the poly (vinylbenzyl) ether compound according to claim 1 and a radical polymerization initiator.
  4.  請求項3に記載の硬化性組成物を硬化してなる硬化物。 Hardened | cured material formed by hardening | curing the curable composition of Claim 3.
  5.  請求項3に記載の硬化性組成物と基材からなる硬化性複合材料。 A curable composite material comprising the curable composition according to claim 3 and a substrate.
  6.  請求項5に記載の硬化性複合材料を硬化して得られたことを特徴とする複合材料硬化物。 A cured composite material obtained by curing the curable composite material according to claim 5.
  7.  請求項6に記載の複合材料硬化物の層と金属箔層とを有することを特徴とする積層体。 A laminate comprising the layer of cured composite material according to claim 6 and a metal foil layer.
  8.  請求項3に記載の硬化性組成物から形成された膜を金属箔の片面に有することを特徴とする樹脂付き金属箔。 A metal foil with a resin, comprising a film formed from the curable composition according to claim 3 on one side of the metal foil.
  9.  下記式(2)で表されるヒドロキシナフタレン類と下記式(3)で表される芳香族化合物とを縮合してナフトールアラルキル樹脂を得て、このナフトールアラルキル樹脂とビニル芳香族ハロメチル化合物とを、アルカリ金属水酸化物の存在下で反応させ、ポリ(ビニルベンジル)エーテル化合物を含む反応生成物を得て、これを水及びアルコール類からなる混合溶媒にて精製することを特徴とする請求項1に記載のポリ(ビニルベンジル)エーテル化合物の製造方法。
    Figure JPOXMLDOC01-appb-I000002
     ここで、Rはそれぞれ独立して水素原子、炭素数1~6のアルキル基、アリル基、またはアリール基を表し、mは1~6の数であり、rは1~3の数である。但し、m+rは8を超えない。
    Figure JPOXMLDOC01-appb-I000003
     ここで、Arは炭素数6~50のアリール基を表し、Xはフッ素原子、塩素原子、臭素原子、メトキシ基、エトキシ基または水酸基を表す。
    A hydroxynaphthalene represented by the following formula (2) and an aromatic compound represented by the following formula (3) are condensed to obtain a naphthol aralkyl resin, and the naphthol aralkyl resin and the vinyl aromatic halomethyl compound are 2. A reaction product containing a poly (vinylbenzyl) ether compound is obtained by reacting in the presence of an alkali metal hydroxide, which is purified with a mixed solvent comprising water and alcohols. The manufacturing method of the poly (vinyl benzyl) ether compound as described in 1 above.
    Figure JPOXMLDOC01-appb-I000002
    Here, each R 1 independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an allyl group, or an aryl group, m is a number from 1 to 6, and r is a number from 1 to 3. . However, m + r does not exceed 8.
    Figure JPOXMLDOC01-appb-I000003
    Here, Ar 1 represents an aryl group having 6 to 50 carbon atoms, and X represents a fluorine atom, a chlorine atom, a bromine atom, a methoxy group, an ethoxy group, or a hydroxyl group.
  10.  ビニル芳香族ハロメチル化合物と反応させるナフトールアラルキル樹脂が、ナフトールアラルキル樹脂のOH基の一部がOR基(Rは炭素数1~12のアルキル基)とされた一部変性ナフトールアラルキル樹脂である請求項9に記載のポリ(ビニルベンジル)エーテル化合物の製造方法。 The naphthol aralkyl resin to be reacted with a vinyl aromatic halomethyl compound is a partially modified naphthol aralkyl resin in which a part of the OH group of the naphthol aralkyl resin is an OR group (R is an alkyl group having 1 to 12 carbon atoms). 9. A process for producing a poly (vinylbenzyl) ether compound according to 9.
  11.  一部変性ナフトールアラルキル樹脂が、ナフトールアラルキル樹脂のOH基の一部をアルコキシ化して得られた一部変性されたナフトールアラルキル樹脂である請求項10に記載のポリ(ビニルベンジル)エーテル化合物の製造方法。 The method for producing a poly (vinylbenzyl) ether compound according to claim 10, wherein the partially modified naphthol aralkyl resin is a partially modified naphthol aralkyl resin obtained by alkoxylating a part of the OH group of the naphthol aralkyl resin. .
  12.  一部変性ナフトールアラルキル樹脂が、式(2)で表されるヒドロキシナフタレン類とXがメトキシ基もしくはエトキシ基である式(3)で表される芳香族化合物とを縮合してナフトールアラルキル樹脂を合成する際に、反応によって副生するメタノール又はエタノールを反応系中に還流させることによって、ナフトールアラルキル樹脂のOH基の一部をアルコキシ化してOR基とすることにより得られたものである請求項10に記載のポリ(ビニルベンジル)エーテル化合物の製造方法。 Partially modified naphthol aralkyl resin synthesizes naphthol aralkyl resin by condensing hydroxy naphthalene represented by formula (2) and aromatic compound represented by formula (3) wherein X is methoxy group or ethoxy group In this process, methanol or ethanol by-produced by the reaction is refluxed in the reaction system, whereby a part of the OH group of the naphthol aralkyl resin is alkoxylated to obtain an OR group. The manufacturing method of the poly (vinyl benzyl) ether compound as described in 1 above.
  13.  一部変性ナフトールアラルキル樹脂が、式(2)で表されるヒドロキシナフタレン類と式(2)のOH基の一部又は全部がOR基(Rは炭素数1~12のアルキル基)となったアルコキシナフタレン類を含むヒドロキシナフタレン類の混合物と、又は式(2)のOH基の一部がOR基(Rは炭素数1~12のアルキル基)となったヒドロキシナフタレン類とを、式(3)で表される芳香族化合物とを縮合することにより得られたものである請求項10に記載のポリ(ビニルベンジル)エーテル化合物の製造方法。 In the partially modified naphthol aralkyl resin, the hydroxy naphthalenes represented by the formula (2) and a part or all of the OH groups of the formula (2) are OR groups (R is an alkyl group having 1 to 12 carbon atoms). A mixture of hydroxynaphthalenes including alkoxynaphthalene or a hydroxynaphthalene in which a part of the OH group of formula (2) is an OR group (R is an alkyl group having 1 to 12 carbon atoms) is represented by the formula (3 The method for producing a poly (vinylbenzyl) ether compound according to claim 10, which is obtained by condensing the aromatic compound represented by
PCT/JP2013/084237 2012-12-27 2013-12-20 Poly(vinyl benzyl) ether compound, method for producing same, curable composition containing same, and cured article WO2014103926A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014554409A JP6277134B2 (en) 2012-12-27 2013-12-20 Poly (vinylbenzyl) ether compound, process for producing the same, curable composition containing the same, and cured product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012284743 2012-12-27
JP2012-284743 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014103926A1 true WO2014103926A1 (en) 2014-07-03

Family

ID=51021010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084237 WO2014103926A1 (en) 2012-12-27 2013-12-20 Poly(vinyl benzyl) ether compound, method for producing same, curable composition containing same, and cured article

Country Status (3)

Country Link
JP (1) JP6277134B2 (en)
TW (1) TWI620786B (en)
WO (1) WO2014103926A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067759A (en) * 2013-09-30 2015-04-13 新日鉄住金化学株式会社 Curable resin composition, hardened product, electrical and electronic parts and circuit board material
JP2017155230A (en) * 2016-03-01 2017-09-07 新日鉄住金化学株式会社 Poly(vinylbenzyl)ether compound, curable resin composition containing this and cured article
WO2017170703A1 (en) * 2016-03-30 2017-10-05 新日鉄住金化学株式会社 Polyhydroxy resin, method for producing same, epoxy resin, epoxy resin composition and cured product of epoxy resin composition
CN110815980A (en) * 2018-08-10 2020-02-21 台燿科技股份有限公司 Dielectric composite and its application
WO2021200414A1 (en) * 2020-03-30 2021-10-07 日鉄ケミカル&マテリアル株式会社 Polyfunctional vinyl resin and production method therefor
WO2022034752A1 (en) * 2020-08-12 2022-02-17 三菱瓦斯化学株式会社 Resin, method for producing resin, curable resin composition, and cured object
WO2022107624A1 (en) * 2020-11-20 2022-05-27 日鉄ケミカル&マテリアル株式会社 Poly(vinylbenzyl)ether compound, curable resin composition, cured product, curable composite material, composite material cured product, laminate, resin-equipped metal foil, and method for producing poly(vinylbenzyl)ether compound
WO2023026923A1 (en) * 2021-08-26 2023-03-02 日鉄ケミカル&マテリアル株式会社 Curable resin composition, cured product, curable composite material, cured composite material, varnish for circuit board materials, multilayer body, metal foil with resin, electric/electronic component, and circuit board material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7042691B2 (en) * 2018-05-29 2022-03-28 エア・ウォーター株式会社 Vinyl benzyl ether resin, method for producing the vinyl benzyl ether resin, curable resin composition, cured product of the curable resin composition, and shield member.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001253991A (en) * 2000-03-13 2001-09-18 Tdk Corp Curable and flame-retarded polyvinyl benzyl ether resin composition
JP2003306591A (en) * 2002-02-13 2003-10-31 Showa Highpolymer Co Ltd Curable resin composition and interlayer insulation material using the same
JP2005350523A (en) * 2004-06-08 2005-12-22 Nippon Kayaku Co Ltd Naphthol resin, method for producing the same, epoxy resin, epoxy resin composition, and cured product of the same
JP2007002187A (en) * 2005-06-27 2007-01-11 Tdk Corp Thermosetting resin composition, and prepreg, substrate and conductive foil-clad substrate, using the same
JP2007015945A (en) * 2005-07-05 2007-01-25 Toto Kasei Co Ltd Vinylbenzyl ether compound and resin composition containing the compound as essential component
WO2011093474A1 (en) * 2010-01-29 2011-08-04 日本化薬株式会社 Phenolic compound, epoxy resin, epoxy resin composition, prepreg, and cured product thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591946B2 (en) * 2004-04-28 2010-12-01 日本化薬株式会社 Poly (vinylbenzyl) ether compound and process for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001253991A (en) * 2000-03-13 2001-09-18 Tdk Corp Curable and flame-retarded polyvinyl benzyl ether resin composition
JP2003306591A (en) * 2002-02-13 2003-10-31 Showa Highpolymer Co Ltd Curable resin composition and interlayer insulation material using the same
JP2005350523A (en) * 2004-06-08 2005-12-22 Nippon Kayaku Co Ltd Naphthol resin, method for producing the same, epoxy resin, epoxy resin composition, and cured product of the same
JP2007002187A (en) * 2005-06-27 2007-01-11 Tdk Corp Thermosetting resin composition, and prepreg, substrate and conductive foil-clad substrate, using the same
JP2007015945A (en) * 2005-07-05 2007-01-25 Toto Kasei Co Ltd Vinylbenzyl ether compound and resin composition containing the compound as essential component
WO2011093474A1 (en) * 2010-01-29 2011-08-04 日本化薬株式会社 Phenolic compound, epoxy resin, epoxy resin composition, prepreg, and cured product thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067759A (en) * 2013-09-30 2015-04-13 新日鉄住金化学株式会社 Curable resin composition, hardened product, electrical and electronic parts and circuit board material
JP2017155230A (en) * 2016-03-01 2017-09-07 新日鉄住金化学株式会社 Poly(vinylbenzyl)ether compound, curable resin composition containing this and cured article
CN107141447A (en) * 2016-03-01 2017-09-08 新日铁住金化学株式会社 Poly- (vinyl benzyl) ether compound and its purposes
JP7108379B2 (en) 2016-03-01 2022-07-28 日鉄ケミカル&マテリアル株式会社 Poly(vinylbenzyl) ether compound, curable resin composition and cured product containing the same
WO2017170703A1 (en) * 2016-03-30 2017-10-05 新日鉄住金化学株式会社 Polyhydroxy resin, method for producing same, epoxy resin, epoxy resin composition and cured product of epoxy resin composition
JPWO2017170703A1 (en) * 2016-03-30 2019-02-21 日鉄ケミカル&マテリアル株式会社 Polyvalent hydroxy resin, production method thereof, epoxy resin, epoxy resin composition and cured product thereof
CN110815980A (en) * 2018-08-10 2020-02-21 台燿科技股份有限公司 Dielectric composite and its application
CN110815980B (en) * 2018-08-10 2022-02-08 台燿科技股份有限公司 Dielectric composite and its application
WO2021200414A1 (en) * 2020-03-30 2021-10-07 日鉄ケミカル&マテリアル株式会社 Polyfunctional vinyl resin and production method therefor
WO2022034752A1 (en) * 2020-08-12 2022-02-17 三菱瓦斯化学株式会社 Resin, method for producing resin, curable resin composition, and cured object
WO2022107624A1 (en) * 2020-11-20 2022-05-27 日鉄ケミカル&マテリアル株式会社 Poly(vinylbenzyl)ether compound, curable resin composition, cured product, curable composite material, composite material cured product, laminate, resin-equipped metal foil, and method for producing poly(vinylbenzyl)ether compound
WO2023026923A1 (en) * 2021-08-26 2023-03-02 日鉄ケミカル&マテリアル株式会社 Curable resin composition, cured product, curable composite material, cured composite material, varnish for circuit board materials, multilayer body, metal foil with resin, electric/electronic component, and circuit board material

Also Published As

Publication number Publication date
JPWO2014103926A1 (en) 2017-01-12
JP6277134B2 (en) 2018-02-07
TW201434953A (en) 2014-09-16
TWI620786B (en) 2018-04-11

Similar Documents

Publication Publication Date Title
JP6277134B2 (en) Poly (vinylbenzyl) ether compound, process for producing the same, curable composition containing the same, and cured product
JP7126493B2 (en) Soluble polyfunctional vinyl aromatic copolymer, production method thereof, curable resin composition and cured product thereof
JP7051333B2 (en) Curable resin composition, its cured product, curable composite material, metal leaf with resin, and varnish for circuit board material
JP6457187B2 (en) Vinyl benzyl ether resin, production method thereof, curable resin composition containing the same, and cured product
CN112313265B (en) Resin composition and use thereof
EP2133384B1 (en) Bismaleamic acid, bismaleimide and cured product thereof
JP6216179B2 (en) Curable resin composition and cured product
KR101268484B1 (en) Polyfunctional phenylene ether oligomer, derivative thereof, resin composition containing the same, and use thereof
WO2016009611A1 (en) Metal-clad laminate, method for producing same, metal foil with resin, and printed wiring board
JP6307236B2 (en) Curable resin composition, cured product, electrical / electronic component and circuit board material
CN108884302B (en) Thermosetting resin composition, prepreg, and cured product thereof
JP2020105352A (en) Curable resin composition, prepreg, metal-clad laminate, printed wiring board
WO2023171553A1 (en) Resin composition, cured product, prepreg, metal-foil-clad laminate, resin composite sheet, printed circuit board, and semiconductor device
JP2014062243A (en) Aromatic vinyl benzyl ether compound, and curable composition containing the same
JP2017155230A (en) Poly(vinylbenzyl)ether compound, curable resin composition containing this and cured article
TW201910410A (en) Thermosetting resin composition and prepreg and metal foil-covered laminate made using same
WO2023032534A1 (en) Allyl ether compound, resin composition, and cured product thereof
WO2002083610A1 (en) Curable polyvinylbenzyl compound and process for producing the same
JP5797147B2 (en) Aromatic dihydroxy compound, vinyl benzyl ether compound, and curable composition containing the same
JP3681170B2 (en) High frequency substrate
JP2003277440A (en) Curable vinylbenzyl compound and method for producing the same
WO2024004618A1 (en) Polyfunctional vinyl resin and method for producing same
WO2023276760A1 (en) Allyl ether compound, resin composition thereof, cured product thereof, and method for producing allyl ether compound
JP4585505B2 (en) Curable polyvinylbenzyl compound and method for producing the same
JP2024085115A (en) Polyfunctional vinyl resin, its manufacturing method, polyfunctional vinyl resin composition and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554409

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868028

Country of ref document: EP

Kind code of ref document: A1