WO2014103909A1 - Pulverizer - Google Patents

Pulverizer Download PDF

Info

Publication number
WO2014103909A1
WO2014103909A1 PCT/JP2013/084198 JP2013084198W WO2014103909A1 WO 2014103909 A1 WO2014103909 A1 WO 2014103909A1 JP 2013084198 W JP2013084198 W JP 2013084198W WO 2014103909 A1 WO2014103909 A1 WO 2014103909A1
Authority
WO
WIPO (PCT)
Prior art keywords
liner
temperature
temperature adjustment
pulverizer
collision plate
Prior art date
Application number
PCT/JP2013/084198
Other languages
French (fr)
Japanese (ja)
Inventor
裕智 ▲高▼浪
徹也 児島
Original Assignee
株式会社 アーステクニカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アーステクニカ filed Critical 株式会社 アーステクニカ
Priority to AU2013367402A priority Critical patent/AU2013367402B2/en
Publication of WO2014103909A1 publication Critical patent/WO2014103909A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/14Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices
    • B02C13/18Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor
    • B02C13/1807Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor the material to be crushed being thrown against an anvil or impact plate
    • B02C13/185Construction or shape of anvil or impact plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/14Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices
    • B02C13/18Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor
    • B02C13/1807Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor the material to be crushed being thrown against an anvil or impact plate

Definitions

  • the present invention relates to a pulverizer that pulverizes an object such as coal, and more particularly, to a pulverizer that pulverizes a highly adherent object that contains a large amount of moisture such as lignite or lignite.
  • bituminous coal with a high calorific value is usually used.
  • the supply and demand for bituminous coal is tightening worldwide.
  • reserves of low-grade coal such as lignite, lignite or sub-bituminous coal are estimated to surpass reserves of high-grade coal such as bituminous coal. For this reason, research on the effective use of low-grade coal is underway.
  • a pulverizer for pulverizing coal As a pulverizer for pulverizing coal, a pulverizer for pulverizing coal using an impact force such as a Hanmark lasher is known.
  • the moisture content of low-grade coal is as high as 50 to 60%, so that the pulverized coal tends to adhere to the surface of a hammer or liner. If a large amount of coal adheres to the surface of the hammer or liner, there is a concern that the efficiency of the pulverization process may be reduced and the inside of the pulverizer may be blocked.
  • Patent Document 1 proposes a pulverizer configured to pass a cooling or heating fluid.
  • the pulverizer described in Patent Document 1 it is intended to reduce the adhesion of coal by cooling or heating the liner using a fluid.
  • Patent Document 1 the cooling or heating fluid passes through the outer surface of the collision plate.
  • heat transfer between the fluid and the liner occurs through the impingement plate.
  • Patent Document 1 proposes that a synthetic resin be interposed between the inner surface of the collision plate and the outer surface of the liner in order to eliminate such heat conduction loss.
  • the loss of heat conduction cannot be completely eliminated.
  • efficient temperature adjustment of the liner has not been realized.
  • the present invention aims to provide a pulverizer that can effectively solve such problems.
  • this invention is a grinder which grind
  • the temperature adjusting mechanism is a pulverizer configured to be able to adjust the temperature of the liner inside the inner surface of the collision plate.
  • the temperature adjustment mechanism may include a temperature adjustment medium supply unit that supplies a temperature adjustment medium to a flow path that is disposed inside the inner surface of the collision plate.
  • a flow path through which the temperature adjusting medium passes may be formed inside the liner.
  • a heat insulating member may be interposed between the flow path formed inside the liner and the inner surface of the collision plate.
  • the temperature adjustment medium supply unit may supply the flow path with the temperature adjustment medium having a temperature higher than the temperature of an object to be charged into the pulverizer.
  • the temperature adjustment medium supply unit may supply the flow path with the temperature adjustment medium having a temperature lower than the temperature of the object to be charged into the pulverizer.
  • the temperature adjusting mechanism may include an electric heater disposed inside the inner surface of the collision plate.
  • the liner may be composed of a plurality of liner members arranged along a track around which a tip of the impact member circulates.
  • the shape of each liner member is not particularly limited and can be arbitrarily set.
  • the temperature adjustment mechanism may be configured to independently adjust the temperatures of the inner surfaces of at least two liner members among the plurality of liner members.
  • the second aspect of the present invention is a pulverizer for pulverizing an object, a rotating body, an impact member attached to the rotating body and colliding with the object, a collision plate disposed around the rotating body, and A casing, a casing liner provided on the inner surface of the casing and having an inner surface on which a part of an object colliding with the impact member and the collision plate can be diffused and adhered, and the temperature of the inner surface of the casing liner is adjusted.
  • a temperature adjusting mechanism wherein the temperature adjusting mechanism is configured to adjust the temperature of the casing liner inside the inner surface of the casing.
  • the temperature adjusting mechanism is configured to be able to adjust the temperature of the liner inside the inner surface of the collision plate. For this reason, heat conduction to the liner can be realized with low loss. Thereby, the temperature of the inner surface of the liner can be adjusted efficiently.
  • the temperature adjusting mechanism is configured to adjust the temperature of the casing liner inside the inner surface of the casing. For this reason, heat conduction to the casing liner can be realized with low loss. Thereby, the temperature of the inner surface of the casing liner can be adjusted efficiently.
  • FIG. 1 is a front view showing a pulverizer according to an embodiment of the present invention.
  • FIG. 2 is an enlarged front view showing a liner of the crusher of FIG.
  • FIG. 3A is a side view showing a case where the first liner member of the liner of the crusher of FIG. 1 is viewed from the side.
  • 3B is a cross-sectional view showing the first liner member of FIG. 3A viewed from the IIIB-IIIB direction.
  • FIG. 4A is a side view showing the second or third liner member of the liner of the crusher of FIG. 1 as viewed from the side.
  • 4B is a cross-sectional view showing the second or third liner member of FIG. 4A viewed from the IVB-IVB direction.
  • FIG. 5A is a diagram showing how lignite adheres to the inner surface of the liner.
  • FIG. 5B is a diagram showing how lignite attached to the liner is heated.
  • FIG. 5C is a diagram showing a state where heated lignite is peeled off from the liner.
  • 6A is an enlarged front view showing a liner of a pulverizer according to a modification of the embodiment shown in FIG. 6B is a cross-sectional view showing the liner of FIG. 6A viewed from the VIB-VIB direction.
  • FIG. 7 is a side view showing the pulverizer, and is a view showing a modification of the embodiment shown in FIG. 1.
  • FIG. 1 is a front view showing the pulverizer 10.
  • FIG. 1 shows a cross section when the pulverizer 10 is cut along a plane orthogonal to the axial direction of the rotating body of the pulverizer 10.
  • the pulverizer 10 applies an impact to an object to be input into the pulverization space 14 inside the casing 18 from the charging port 11 formed in the casing 18, thereby pulverizing the object.
  • the crushed object is discharged from the discharge port 12.
  • the pulverizer 10 includes a rotator 15 and a plurality of impact members 16 attached to the rotator 15 in the pulverizing space 14 inside the casing 18.
  • Each impact member 16 is attached to the rotating body 15 at regular intervals along the circumferential direction of the rotating body 15.
  • a hammer is used as the impact member 16.
  • each impact member 16 may be attached to the rotating body 15 via a shaft 16 a that is hinged so that the impact member 16 can rotate therearound. As a result, each impact member 16 can swing about the shaft 16a.
  • each impact member 16 may be fixed to the rotating body 15 so that such swinging does not occur.
  • the pulverizer 10 further includes a collision plate 20 disposed around the rotating body 15 and a liner 30 provided on the inner surface 21 of the collision plate 20.
  • the inner surface 21 of the collision plate 20 is configured to have a substantially arc-shaped outline.
  • the collision plate 20 and the liner 30 are made of, for example, a steel material.
  • the collision plate 20 has a structure capable of appropriately adjusting the gap between the end portion orbit of the impact member 16 and the liner 30 according to the wear state of the liner 30 and the necessity of adjusting the product particle size. May be.
  • the liner 30 has an inner surface 31 on which an object colliding with the impact member 16 is hit. As shown in FIG. 1, the inner surface 31 of the liner 30 may have a saw-like shape. Thereby, the target object struck to the liner 30 can be effectively pulverized.
  • the liner 30 may be divided into a plurality of liner members along a circular track (tip circular track) around which the tip of the impact member 16 circulates.
  • the liner 30 includes a first liner member 30 ⁇ / b> A, a second liner member 30 ⁇ / b> B, and a third liner member 30 ⁇ / b> C that are arranged in order along the distal-end circular track from the input port 11 toward the discharge port 12.
  • At least two liner members among the plurality of liner members may have the same shape.
  • the second liner member 30B and the third liner member 30C have the same shape. That is, the liner members 30 ⁇ / b> B and 30 ⁇ / b> C both have the same length, and have a shape that is similarly curved along the distal end orbit of the impact member 16.
  • the liner members 30 ⁇ / b> B and 30 ⁇ / b> C both have the same length, and have a shape that is similarly curved along the distal end orbit of the impact member 16.
  • the first liner member 30 ⁇ / b> A disposed in the vicinity of the insertion port 11 may have a linearly extending shape.
  • the area of the insertion port 11 can be ensured widely.
  • the first liner member 30A may have a different length from the other liner members 30B and 30C.
  • the pulverizer 10 is provided with a temperature adjustment mechanism 40 that adjusts the temperature of the inner surface 31 of the liner 30.
  • a temperature adjustment mechanism 40 that adjusts the temperature of the inner surface 31 of the liner 30.
  • the moisture content in low-grade coal such as lignite is as high as 50 to 60%.
  • the low-grade coal may adhere to the impact member 16 or the inner surface 31 of the liner 30.
  • the liner 30 is normally fixed.
  • low-grade coal with a lot of moisture adhering to the inner surface 31 of the liner 30 has a strong tendency to accumulate, and cannot be expected to peel off naturally. If the low-grade coal adhering to the inner surface 31 of the liner 30 is cumulatively increased, the efficiency of pulverization when the low-grade coal is struck against the liner 30 is reduced, and the pulverization space 14 is severely blocked. It is not preferable because it can be considered. Therefore, it is desirable to remove the low-grade coal adhering to the inner surface 31 of the liner 30.
  • the adhesion of the low-grade coal to the inner surface 31 of the liner 30 is mainly caused by a large amount of moisture contained in the low-grade coal. Accordingly, it is expected that the adhesion of the low-grade coal to the inner surface 31 will be reduced if the moisture content of at least the portion in contact with the inner surface 31 of the low-grade coal adhering to the inner surface 31 of the liner 30 is reduced.
  • the temperature adjusting mechanism 40 described above is provided in consideration of such points. That is, the temperature adjustment mechanism 40 heats the low-grade coal adhering to the inner surface 31 of the liner 30 to reduce the moisture content of the low-grade coal, thereby making it easy to peel off the low-grade coal from the inner surface 31 of the liner 30. belongs to.
  • FIG. 2 is an enlarged front view showing the liner of the pulverizer of FIG.
  • FIG. 3A is a side view showing the first liner member 30A of the liner 30 of FIG. 1 as viewed along the normal direction of the outer surface of the first liner member 30A.
  • FIG. 3B is a cross-sectional view showing the first liner member 30A of FIG. 3A viewed from the IIIB-IIIB direction.
  • 4A is a side view showing a case where the second liner member 30B or the third liner member 30C of the liner 30 of FIG. 1 is viewed along the normal direction of the outer surfaces of the liner members 30B and 30C.
  • 4B is a cross-sectional view showing the second liner member 30B or the third liner member 30C of FIG. 4A as viewed from the IVB-IVB direction.
  • the temperature adjustment mechanism 40 includes a temperature adjustment medium supply unit 41 that supplies a temperature adjustment medium 42 toward the liner 30 and a supply pipe through which the temperature adjustment medium 42 supplied to the liner 30 passes. 43 and a discharge pipe 44 through which the temperature adjusting medium 42 discharged from the liner 30 passes.
  • the supply pipe 43 and the discharge pipe 44 may be metal pipes, or may be pipes having resistance and flexibility with respect to the displacement and impact of the impact plate 20 such as a flexible hose and a rubber hose. Good.
  • the temperature adjustment medium 42 is supplied to the flow path 33 disposed inside the inner surface 21 of the collision plate 20.
  • the temperature adjustment medium 42 supplied to the flow path 33 is set to a temperature higher than the temperature of the low-grade coal supplied to the pulverizer 10.
  • the temperature of the low-grade coal supplied to the pulverizer 10 is usually about atmospheric temperature, while the temperature of the temperature adjustment medium 42 is about 100 ° C.
  • the temperature adjustment medium 42 is adjusted so as not to become excessively high.
  • Such a type of the temperature adjusting medium 42 can be arbitrarily adopted. For example, low-pressure saturated steam generated by a steam boiler or the like is used.
  • the flow path 33 may be formed inside each liner member 30A, 30B, 30C of the liner 30 as shown in FIGS. 2 to 4B.
  • 3A and 4A the flow paths 33 formed in the liner members 30A, 30B, and 30C are indicated by dotted lines.
  • reference numeral 35 a represents an inlet 35 a for injecting the temperature adjustment medium 42 into the flow path 33
  • reference numeral 35 b represents a discharge for discharging the temperature adjustment medium 42 from the flow path 33.
  • the outlet 35b is shown.
  • the saturated steam exchanges heat between the liner 30 and the low-grade coal while passing through the flow path 33 in the liner 30. As a result, the saturated steam is condensed. May become water.
  • the temperature adjustment medium 42 is discharged from the discharge port 35b in a liquid state.
  • the discharge port 35b may be formed below the injection port 35a.
  • the shape and arrangement of the inlet and outlet and the connection method with the supply pipe 43 and the outlet pipe 44 can be arbitrarily adopted as design matters.
  • the method for supplying the temperature adjusting medium 42 that has passed through the supply pipe 43 to the flow path 33 of the liner 30 is not particularly limited.
  • the supply pipe 43 and the discharge pipe 44 may be connected to the inlet 35a and the outlet 35b of the liner 30, respectively.
  • a through hole or notch for passing the supply pipe 43 and the discharge pipe 44 may be formed in the collision plate 20.
  • the supply pipe 43, the discharge pipe 44, the injection port 35 a, and the discharge port 35 b may be connected via a flow path 23 formed inside the collision plate 20.
  • the temperature adjustment medium 42 is supplied to the flow path 33 arranged inside the inner surface 21 of the collision plate 20. That is, the temperature adjustment medium 42 of the temperature adjustment mechanism 40 directly contacts the liner 30 inside the inner surface of the collision plate 20. For this reason, the temperature of the liner 30 can be adjusted inside the inner surface of the collision plate 20. Therefore, the heat of the temperature adjusting medium 42 can be conducted to the liner 30 with a low loss as compared with the case where a structural member for mounting the liner is interposed between the temperature adjusting medium and the liner as in the prior art. it can. For this reason, the inner surface 31 of the liner 30 can be efficiently heated.
  • the heat of the temperature adjusting medium 42 flows between the flow path 33 formed inside the liner 30 and the inner surface 21 of the collision plate 20 toward the collision plate 20.
  • a heat insulating member 36 for preventing conduction is interposed. Thereby, the heat of the temperature adjusting medium 42 can be conducted to the liner 30 with lower loss.
  • the heat insulating member 36 for example, a heat insulating material is attached to a back plate 37 that closes the flow path 33.
  • the back plate 37 for example, an iron plate is used.
  • the back plate 37 itself for closing the flow path 33 may be made of a material having heat insulation properties.
  • the temperature adjustment mechanism 40 is provided only for the liner 30 located on the left side, but the temperature adjustment mechanism 40 may be provided similarly for the liner 30 located on the right side. .
  • a fastening hole 34 for fastening the liner 30 to the collision plate 20 is formed on the outer surface 32 of the liner members 30A, 30B, and 30C. May be.
  • an object such as lignite 13 is introduced through the inlet 11.
  • the introduced lignite 13 collides with the rotating impact member 16 and is then struck against the inner surface 31 of the liner 30.
  • FIG. 5A lignite 13 that is struck against the inner surface 31 and adhered to the inner surface 31, and lignite 13 that is scattered toward the inner surface 31 are shown.
  • the lignite 13 scatters one after another toward the inner surface 31, the lignite 13 attached to the inner surface 31 increases as shown in FIG. 5B.
  • the temperature adjustment medium 42 having a temperature higher than that of the lignite 13 flows through the flow path 33 formed inside the liner 30. Therefore, the lignite 13 is heated by the temperature adjustment medium 42. Since this heating is caused by heat conducted from the temperature adjusting medium 42 via the liner 30, the portion of the lignite 13 that is in contact with the inner surface 31 is preferentially heated. Therefore, the moisture content of the portion in contact with the inner surface 31 of the lignite 13 is lower than the moisture content of other portions of the lignite 13 due to evaporation and movement of water caused by heating. As a result, as shown in FIG. 5B, a portion of the lignite 13 that is in contact with the inner surface 31 becomes a dry portion 13a in which the moisture content is reduced.
  • the adhesiveness of the lignite 13 with respect to the inner surface 31 can be reduced by drying the part which is contacting the inner surface 31 among the lignite 13.
  • the inner surface is triggered by the force received from the swirling flow generated by the rotation of the rotating body 15 and the impact member 16 or the force received from the lignite 13 scattered toward the inner surface 31. It is expected that the lignite 13 adhering to 31 is peeled off from the inner surface 31.
  • the lignite 13 can be peeled from the inner surface 31 of the liner 30 by heating the lignite 13. Moreover, according to this Embodiment, the lignite 13 can be peeled from the inner surface 31 by drying the part mainly contacting the inner surface 31 among the lignite 13. For this reason, for example, compared with the case where the whole grinding
  • the temperature of the temperature adjustment medium 42 is adjusted to about 100 ° C.
  • the temperature of the temperature adjustment medium 42 need not be uniformly adjusted to the same temperature, and the temperature of the temperature adjustment medium 42 may be changed according to the position of the liner 30.
  • the temperature adjustment mechanism 40 is provided on the inner surface 31 of at least two liner members among the plurality of liner members 30A, 30B, and 30C. You may be comprised so that temperature can be adjusted independently. Hereinafter, the effect of this modification will be described.
  • the driving force for peeling the lignite 13 adhering to the inner surface 31 of the liner 30 from the inner surface 31 is in addition to the force received from the swirl flow generated by the collision of the pulverized processed material and the rotation of the rotating body 15 and the impact member 16.
  • the gravity which acts on the lignite 13 adhering to the inner surface 31 is considered.
  • the usefulness of gravity in peeling the lignite 13 from the inner surface 31 of the liner 30 depends on the orientation of the inner surface 31 of the liner 30. For example, in the pulverizer 10 shown in FIG.
  • the lignite 13 attached to the first liner member 30A is more easily peeled off due to the influence of gravity than the lignite 13 attached to the second liner member 30B or the third liner member 30C. It is thought that it has become.
  • the ease of peeling of the lignite 13 may differ depending on the position of the liner 30 to which the lignite 13 is attached.
  • the temperature adjustment mechanism 40 can adjust the temperature of each liner member 30A, 30B, 30C independently. For example, the control of supplying the temperature adjusting medium 42 only to the second liner member 30B and the third liner member 30C without supplying the temperature adjusting medium 42 to the first liner member 30A may be performed. it can.
  • the second liner member 30B and the third liner member 30C can be intensively heated compared to the first liner member 30A.
  • the overall thermal energy can be reduced while achieving the purpose of peeling off the lignite 13 adhering to the liner 30.
  • the adhesion amount of the brown coal 13 with respect to the liner 30 may change with places.
  • by independently adjusting the temperature of each liner member 30A, 30B, 30C it is possible to selectively heat the liner member to which lignite 13 easily adheres, The lignite 13 can be peeled off efficiently.
  • the overall thermal energy can be reduced while achieving the purpose of peeling the lignite 13 adhering to the liner 30.
  • the specific configuration of the temperature adjustment mechanism 40 for independently adjusting the temperatures of the liner members 30A, 30B, and 30C is not particularly limited, and various configurations can be employed.
  • an adjustment valve 45 for adjusting the flow rate of the temperature adjustment medium 42 is provided in each of the supply pipes 43 for supplying the temperature adjustment medium 42 to the liner members 30A, 30B, 30C. It may be.
  • the example in which the temperature adjustment mechanism 40 heats the liner 30 using the temperature adjustment medium 42 has been shown.
  • the method for heating the liner 30 is not limited to this.
  • the temperature adjustment mechanism 40 heats the liner 30 using a heater 46 that is disposed on the inner side 21 of the collision plate 20 or embedded in the liner 30.
  • the heater 46 is disposed inside the accommodation space 39 formed in the liner 30.
  • an inlet 38 for introducing the heater 46 into the accommodation space 39 may be formed in the liner 30.
  • the heat of the heater 46 can be conducted to the liner 30 with low loss compared to the case where the collision plate 20 is interposed between the heater 46 and the liner 30. For this reason, the inner surface 31 of the liner 30 can be efficiently heated.
  • the heater 46 an electrothermal heat transfer heater, a high-frequency heater, or the like can be used.
  • the temperature adjustment mechanism 40 may be configured to cool the liner 30 to a temperature lower than that of the lignite 13.
  • the temperature adjustment medium 42 supplied to the flow path 33 of the liner 30 may have a temperature lower than that of the lignite 13. In this case, the adhesion of the lignite 13 to the inner surface 31 of the liner 30 can be reduced by cooling and solidifying the water contained in the lignite 13.
  • the temperature according to the present embodiment can be used to suppress the temperature rise of the inner surface 31 of the liner 30 due to pulverization heat, thereby preventing the processing object from being softened.
  • the object to be crushed by the pulverizer 10 is not limited to the lignite 13.
  • the pulverizer 10 according to the present embodiment and each modified example efficiently pulverizes objects containing a large amount of water, such as low-grade coal including lignite or sub-bituminous coal, and biomass raw materials, in addition to lignite 13. Can do.
  • each modification may be applied to the casing liner 50 provided on the inner surface of the casing 18, as shown in FIG.
  • a part of an object such as lignite 13 colliding with the impact member 16 and the impact plate 20, particularly in a place where the peripheral speed of the impact member 16 is low, such as in the vicinity of both end portions of the rotating body 15. It can be diffused and struck to adhere. For this reason, it is effective to adjust the temperature of the casing liner 50 similarly to the liner 30 provided on the collision plate 20.
  • FIG. 7 is a side view showing the pulverizer 10.
  • FIG. 7 shows a cross section when the pulverizer 10 is cut along a vertical plane passing through the axis of the drive shaft 19 that drives the rotating body 15.
  • the temperature adjustment mechanism 40 adjusts the temperature of the inner surface of the casing liner 50 in addition to the temperature of the inner surface of the liner 30 provided on the collision plate 20 or separately from the temperature of the inner surface of the liner 30. adjust.
  • the temperature adjustment mechanism 40 is configured to adjust the temperature of the casing liner 50 on the inner side of the inner surface of the casing 18 as in the case of the present embodiment and the modifications described above. For this reason, heat conduction to the casing liner 50 can be realized with low loss.
  • the casing liner 50 may be divided into a plurality of parts, like the liner 30 provided on the collision plate 20, and the temperature of each of the divided casing liners 50 may be independently adjusted by the temperature adjustment mechanism 40. Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Crushing And Grinding (AREA)

Abstract

[Problem] To provide a pulverizer wherein the temperature of the inner surface of the liner can be efficiently adjusted. [Solution] The pulverizer (10) is provided with: a rotator (15); striking members (16) installed on the rotator (15) for colliding with brown coal (13); collision plates (20) disposed around the rotator (15); and liners (30) provided on the inner surfaces (21) of the collision plates (20) and having an inner surface (31) onto which brown coal (13) that has collided with the striking members (16) is thrown. The pulverizer (10) also is provided with a temperature adjustment mechanism (40) for adjusting the temperature of the inner surface (31) of a liner (30). The temperature adjustment mechanism (40) is configured so as to be capable of adjusting the temperature of the liner (30) further to the inside than the inner surface (21) of the collision plates (20).

Description

粉砕機Crusher
 本発明は、石炭などの対象物を粉砕する粉砕機に係り、特に、亜炭や褐炭などの水分を大量に含む高付着性対象物を粉砕する粉砕機に関する。 The present invention relates to a pulverizer that pulverizes an object such as coal, and more particularly, to a pulverizer that pulverizes a highly adherent object that contains a large amount of moisture such as lignite or lignite.
 近年、世界的にエネルギー資源の消費拡大が急速に進んでおり、主要なエネルギー源である石油、石炭又は天然ガス等の価格が上昇している。このため、これらエネルギー源をいかに有効活用するかが重要な課題となっている。 In recent years, the consumption of energy resources has been rapidly increasing worldwide, and the prices of major energy sources such as oil, coal or natural gas have been rising. For this reason, how to effectively use these energy sources is an important issue.
 燃料として利用される石炭としては、通常、発熱量の高い瀝青炭が使用される。しかし、新興国における経済成長に伴い、瀝青炭の需給が世界的に逼迫している。一方、褐炭、亜炭又は亜瀝青炭をはじめとする低品位炭の埋蔵量は、瀝青炭のような高品位炭の埋蔵量を凌ぐと推定されている。このため、低品位炭を有効利用することに関する研究が進められている。 瀝 As the coal used as fuel, bituminous coal with a high calorific value is usually used. However, with the economic growth in emerging countries, the supply and demand for bituminous coal is tightening worldwide. On the other hand, reserves of low-grade coal such as lignite, lignite or sub-bituminous coal are estimated to surpass reserves of high-grade coal such as bituminous coal. For this reason, research on the effective use of low-grade coal is underway.
 石炭を粉砕する粉砕機として、ハンマークラッシャ―など、衝撃力を利用して石炭を粉砕する粉砕機が知られている。しかしながら、低品位炭における水分含有率は50~60%と非常に高く、このため粉砕された石炭は、ハンマーやライナーの表面に付着し易い。ハンマーやライナーの表面に大量の石炭が付着すると、粉砕処理の効率が低下してしまうことや、粉砕機の内部が閉塞してしまうことが懸念される。 As a pulverizer for pulverizing coal, a pulverizer for pulverizing coal using an impact force such as a Hanmark lasher is known. However, the moisture content of low-grade coal is as high as 50 to 60%, so that the pulverized coal tends to adhere to the surface of a hammer or liner. If a large amount of coal adheres to the surface of the hammer or liner, there is a concern that the efficiency of the pulverization process may be reduced and the inside of the pulverizer may be blocked.
 このような課題を解決するため、特許文献1において、冷却用又は加熱用の流体を通すように構成された粉砕機が提案されている。特許文献1に記載の粉砕機においては、流体を利用してライナーを冷却または加熱することにより、石炭の付着性を低減することが意図されている。 In order to solve such a problem, Patent Document 1 proposes a pulverizer configured to pass a cooling or heating fluid. In the pulverizer described in Patent Document 1, it is intended to reduce the adhesion of coal by cooling or heating the liner using a fluid.
特開平11-276916号公報Japanese Patent Laid-Open No. 11-276916
 特許文献1において、冷却用又は加熱用の流体は、衝突板の外面を通っている。従って、流体とライナーとの間での熱伝導は、衝突板を介して生じる。しかしながら通常、衝突板の内面とライナーの外面とが全面にわたって完全に密着するように衝突板およびライナーを加工することは困難である。このため、衝突板とライナーとの間の界面において、熱伝導の損失がある程度生じることが考えられる。特許文献1においては、このような熱伝導の損失を解消するため、衝突板の内面とライナーの外面との間に合成樹脂を介在させることが提案されている。しかしながら、このような合成樹脂を用いたとしても、熱伝導の損失を完全に解消することはできない。このように従来の粉砕機においては、ライナーの効率的な温度調整が実現されていなかった。 In Patent Document 1, the cooling or heating fluid passes through the outer surface of the collision plate. Thus, heat transfer between the fluid and the liner occurs through the impingement plate. However, it is usually difficult to process the collision plate and the liner so that the inner surface of the collision plate and the outer surface of the liner are completely adhered to each other. For this reason, it is considered that a loss of heat conduction occurs to some extent at the interface between the collision plate and the liner. Patent Document 1 proposes that a synthetic resin be interposed between the inner surface of the collision plate and the outer surface of the liner in order to eliminate such heat conduction loss. However, even if such a synthetic resin is used, the loss of heat conduction cannot be completely eliminated. Thus, in the conventional pulverizer, efficient temperature adjustment of the liner has not been realized.
 本発明は、このような課題を効果的に解決し得る粉砕機を提供することを目的とする。 The present invention aims to provide a pulverizer that can effectively solve such problems.
 第1の本発明は、対象物を粉砕する粉砕機であって、回転体と、前記回転体に取り付けられ、対象物に衝突する衝撃部材と、前記回転体の周囲に配置された衝突板と、前記衝突板の内面に設けられ、前記衝撃部材に衝突した対象物が打ち付けられる内面を有するライナーと、前記ライナーの内面の温度を調整する温度調整機構と、をケーシングの内部の粉砕空間に備え、前記温度調整機構は、前記衝突板の内面よりも内側で前記ライナーの温度を調整できるよう構成されている、粉砕機である。 1st this invention is a grinder which grind | pulverizes a target object, Comprising: The impact member attached to the said rotary body and colliding with a target object, The collision board arrange | positioned around the said rotary body, A liner provided on an inner surface of the collision plate and having an inner surface on which an object colliding with the impact member is hit, and a temperature adjusting mechanism for adjusting the temperature of the inner surface of the liner, are provided in a crushing space inside the casing. The temperature adjusting mechanism is a pulverizer configured to be able to adjust the temperature of the liner inside the inner surface of the collision plate.
 本発明による粉砕機において、前記温度調整機構は、前記衝突板の内面よりも内側に配置された流路に温度調整媒体を供給する温度調整媒体供給部を有していてもよい。 In the pulverizer according to the present invention, the temperature adjustment mechanism may include a temperature adjustment medium supply unit that supplies a temperature adjustment medium to a flow path that is disposed inside the inner surface of the collision plate.
 本発明による粉砕機において、前記温度調整媒体が通る流路が、前記ライナーの内部に形成されていてもよい。 In the pulverizer according to the present invention, a flow path through which the temperature adjusting medium passes may be formed inside the liner.
 本発明による粉砕機において、前記ライナーの内部に形成されている前記流路と前記衝突板の内面との間に、断熱部材が介在されていてもよい。 In the pulverizer according to the present invention, a heat insulating member may be interposed between the flow path formed inside the liner and the inner surface of the collision plate.
 本発明による粉砕機において、前記温度調整媒体供給部は、前記粉砕機に投入される対象物の温度よりも高い温度を有する前記温度調整媒体を前記流路に供給してもよい。若しくは、前記温度調整媒体供給部は、前記粉砕機に投入される対象物の温度よりも低い温度を有する前記温度調整媒体を前記流路に供給してもよい。 In the pulverizer according to the present invention, the temperature adjustment medium supply unit may supply the flow path with the temperature adjustment medium having a temperature higher than the temperature of an object to be charged into the pulverizer. Alternatively, the temperature adjustment medium supply unit may supply the flow path with the temperature adjustment medium having a temperature lower than the temperature of the object to be charged into the pulverizer.
 本発明による粉砕機において、前記温度調整機構は、前記衝突板の内面よりも内側に配置された電熱式ヒーターを有していてもよい。 In the pulverizer according to the present invention, the temperature adjusting mechanism may include an electric heater disposed inside the inner surface of the collision plate.
 本発明による粉砕機において、前記ライナーは、前記衝撃部材の先端部が周回する軌道に沿って並べられた複数のライナー部材により構成されていてもよい。各ライナー部材の形状が特に限られることはなく、任意に設定され得る。 In the pulverizer according to the present invention, the liner may be composed of a plurality of liner members arranged along a track around which a tip of the impact member circulates. The shape of each liner member is not particularly limited and can be arbitrarily set.
 本発明による粉砕機において、前記温度調整機構は、複数のライナー部材のうち少なくとも2つのライナー部材の内面の温度を独立に調整することができるよう構成されていてもよい。 In the pulverizer according to the present invention, the temperature adjustment mechanism may be configured to independently adjust the temperatures of the inner surfaces of at least two liner members among the plurality of liner members.
 第2の本発明は、対象物を粉砕する粉砕機であって、回転体と、前記回転体に取り付けられ、対象物に衝突する衝撃部材と、前記回転体の周囲に配置された衝突板およびケーシングと、前記ケーシングの内面に設けられ、前記衝撃部材および前記衝突板に衝突した対象物の一部が拡散して付着し得る内面を有するケーシングライナーと、前記ケーシングライナーの内面の温度を調整する温度調整機構と、を備え、前記温度調整機構は、前記ケーシングの内面よりも内側で前記ケーシングライナーの温度を調整できるよう構成されている、粉砕機である。 The second aspect of the present invention is a pulverizer for pulverizing an object, a rotating body, an impact member attached to the rotating body and colliding with the object, a collision plate disposed around the rotating body, and A casing, a casing liner provided on the inner surface of the casing and having an inner surface on which a part of an object colliding with the impact member and the collision plate can be diffused and adhered, and the temperature of the inner surface of the casing liner is adjusted. A temperature adjusting mechanism, wherein the temperature adjusting mechanism is configured to adjust the temperature of the casing liner inside the inner surface of the casing.
 第1の本発明による粉砕機においては、温度調整機構が、衝突板の内面よりも内側でライナーの温度を調整できるよう構成されている。このため、ライナーへの熱伝導を低損失で実現することができる。これによって、ライナーの内面の温度を効率的に調整することができる。
 また第2の本発明による粉砕機においては、温度調整機構が、ケーシングの内面よりも内側でケーシングライナーの温度を調整できるよう構成されている。このため、ケーシングライナーへの熱伝導を低損失で実現することができる。これによって、ケーシングライナーの内面の温度を効率的に調整することができる。
In the pulverizer according to the first aspect of the present invention, the temperature adjusting mechanism is configured to be able to adjust the temperature of the liner inside the inner surface of the collision plate. For this reason, heat conduction to the liner can be realized with low loss. Thereby, the temperature of the inner surface of the liner can be adjusted efficiently.
In the pulverizer according to the second aspect of the present invention, the temperature adjusting mechanism is configured to adjust the temperature of the casing liner inside the inner surface of the casing. For this reason, heat conduction to the casing liner can be realized with low loss. Thereby, the temperature of the inner surface of the casing liner can be adjusted efficiently.
図1は、本発明の一実施形態による粉砕機を示す正面図。FIG. 1 is a front view showing a pulverizer according to an embodiment of the present invention. 図2は、図1の粉砕機のライナーを拡大して示す正面図。FIG. 2 is an enlarged front view showing a liner of the crusher of FIG. 図3Aは、図1の粉砕機のライナーの第1ライナー部材を側方から見た場合を示す側面図。FIG. 3A is a side view showing a case where the first liner member of the liner of the crusher of FIG. 1 is viewed from the side. 図3Bは、図3Aの第1ライナー部材をIIIB-IIIB方向から見た場合を示す断面図。3B is a cross-sectional view showing the first liner member of FIG. 3A viewed from the IIIB-IIIB direction. 図4Aは、図1の粉砕機のライナーの第2または第3ライナー部材を側方から見た場合を示す側面図。FIG. 4A is a side view showing the second or third liner member of the liner of the crusher of FIG. 1 as viewed from the side. 図4Bは、図4Aの第2または第3ライナー部材をIVB-IVB方向から見た場合を示す断面図。4B is a cross-sectional view showing the second or third liner member of FIG. 4A viewed from the IVB-IVB direction. 図5Aは、ライナーの内面に褐炭が貼り付く様子を示す図。FIG. 5A is a diagram showing how lignite adheres to the inner surface of the liner. 図5Bは、ライナーに貼り付いた褐炭が加熱される様子を示す図。FIG. 5B is a diagram showing how lignite attached to the liner is heated. 図5Cは、加熱された褐炭がライナーから剥がれ落ちる様子を示す図。FIG. 5C is a diagram showing a state where heated lignite is peeled off from the liner. 図6Aは、図1に示した実施形態の変形例による粉砕機のライナーを拡大して示す正面図。6A is an enlarged front view showing a liner of a pulverizer according to a modification of the embodiment shown in FIG. 図6Bは、図6AのライナーをVIB-VIB方向から見た場合を示す断面図。6B is a cross-sectional view showing the liner of FIG. 6A viewed from the VIB-VIB direction. 図7は、粉砕機を示す側面図であって、図1に示した実施形態の変形例を示す図。FIG. 7 is a side view showing the pulverizer, and is a view showing a modification of the embodiment shown in FIG. 1.
 以下、本発明の一実施形態による粉砕機について、図1乃至図5Cを参照して説明する。 Hereinafter, a pulverizer according to an embodiment of the present invention will be described with reference to FIGS. 1 to 5C.
 図1は、粉砕機10を示す正面図である。なお図1においては、粉砕機10の回転体の軸方向に直交する面で粉砕機10を切断した場合の断面が示されている。粉砕機10は、ケーシング18に形成された投入口11からケーシング18の内部の粉砕空間14内に投入される対象物に衝撃を加え、これによって対象物を粉砕するものである。粉砕された対象物は、排出口12から排出される。 FIG. 1 is a front view showing the pulverizer 10. FIG. 1 shows a cross section when the pulverizer 10 is cut along a plane orthogonal to the axial direction of the rotating body of the pulverizer 10. The pulverizer 10 applies an impact to an object to be input into the pulverization space 14 inside the casing 18 from the charging port 11 formed in the casing 18, thereby pulverizing the object. The crushed object is discharged from the discharge port 12.
 粉砕機10は、回転体15と、回転体15に取り付けられた複数の衝撃部材16と、をケーシング18の内部の粉砕空間14に備えている。各衝撃部材16は、回転体15の周方向に沿って一定間隔で回転体15に取り付けられている。衝撃部材16としては、例えばハンマーが用いられる。各衝撃部材16は、図1に示すように、衝撃部材16がその周りで回転可能なように蝶着された軸16aを介して回転体15に取り付けられていてもよい。これによって、各衝撃部材16が軸16aを中心として揺動できるようになる。また図示はしないが、各衝撃部材16は、そのような揺動が生じないよう、回転体15に対して固定されていてもよい。 The pulverizer 10 includes a rotator 15 and a plurality of impact members 16 attached to the rotator 15 in the pulverizing space 14 inside the casing 18. Each impact member 16 is attached to the rotating body 15 at regular intervals along the circumferential direction of the rotating body 15. For example, a hammer is used as the impact member 16. As shown in FIG. 1, each impact member 16 may be attached to the rotating body 15 via a shaft 16 a that is hinged so that the impact member 16 can rotate therearound. As a result, each impact member 16 can swing about the shaft 16a. Although not shown, each impact member 16 may be fixed to the rotating body 15 so that such swinging does not occur.
 また粉砕機10は、回転体15の周囲に配置された衝突板20と、衝突板20の内面21に設けられたライナー30と、をさらに備えている。衝突板20の内面21は、略円弧状の輪郭を有するよう構成されている。衝突板20およびライナー30は、例えば鉄鋼材料から構成されている。また衝突板20は、ライナー30の摩耗状況や製品粒度調整の必要に応じて衝撃部材16の先端部周回軌道とライナー30との間の間隙を適宜調整することができるような構造を有していてもよい。 The pulverizer 10 further includes a collision plate 20 disposed around the rotating body 15 and a liner 30 provided on the inner surface 21 of the collision plate 20. The inner surface 21 of the collision plate 20 is configured to have a substantially arc-shaped outline. The collision plate 20 and the liner 30 are made of, for example, a steel material. Further, the collision plate 20 has a structure capable of appropriately adjusting the gap between the end portion orbit of the impact member 16 and the liner 30 according to the wear state of the liner 30 and the necessity of adjusting the product particle size. May be.
 ライナー30は、衝撃部材16に衝突した対象物が打ち付けられる内面31を有するものである。図1に示すように、ライナー30の内面31は、のこぎり状の形状を有していてもよい。これによって、ライナー30に打ち付けられた対象物を効果的に粉砕することができる。 The liner 30 has an inner surface 31 on which an object colliding with the impact member 16 is hit. As shown in FIG. 1, the inner surface 31 of the liner 30 may have a saw-like shape. Thereby, the target object struck to the liner 30 can be effectively pulverized.
 図1に示すように、ライナー30は、衝撃部材16の先端部が周回する周回軌道(先端部周回軌道)に沿って複数のライナー部材に分割されていてもよい。例えばライナー30は、投入口11から排出口12に向かって先端部周回軌道に沿って順に並べられた第1ライナー部材30A,第2ライナー部材30Bおよび第3ライナー部材30Cを含んでいる。このようにライナー30を複数のライナー部材に分割することにより、粉砕機10の設置やメンテナンスを容易化することができる。 As shown in FIG. 1, the liner 30 may be divided into a plurality of liner members along a circular track (tip circular track) around which the tip of the impact member 16 circulates. For example, the liner 30 includes a first liner member 30 </ b> A, a second liner member 30 </ b> B, and a third liner member 30 </ b> C that are arranged in order along the distal-end circular track from the input port 11 toward the discharge port 12. Thus, by dividing the liner 30 into a plurality of liner members, installation and maintenance of the pulverizer 10 can be facilitated.
 また、複数のライナー部材のうち少なくとも2つのライナー部材は、同一の形状を有していてもよい。例えば図1に示す例において、第2ライナー部材30Bと第3ライナー部材30Cとは同一の形状を有している。すなわち、ライナー部材30B,30Cはいずれも、同一の長さを有し、かつ、衝撃部材16の先端部周回軌道に沿って同様に湾曲した形状を有している。このように複数のライナー部材の一部を共通化することにより、部品の調達のし易さや取り扱いのし易さを向上させることができる。 Further, at least two liner members among the plurality of liner members may have the same shape. For example, in the example shown in FIG. 1, the second liner member 30B and the third liner member 30C have the same shape. That is, the liner members 30 </ b> B and 30 </ b> C both have the same length, and have a shape that is similarly curved along the distal end orbit of the impact member 16. Thus, by sharing a part of the plurality of liner members, it is possible to improve the ease of procurement and handling of parts.
 また図1に示すように、投入口11の近傍に配置される第1ライナー部材30Aは、直線的に延びる形状を有していてもよい。これによって、第1ライナー部材30Aが衝撃部材16の回転軌道に沿って湾曲した形状を有する場合に比べて、投入口11の面積を広く確保することができる。なお第1ライナー部材30Aが直線的な形状を有する場合、第1ライナー部材30Aが、他のライナー部材30B,30Cとは異なる長さを有していてもよい。 As shown in FIG. 1, the first liner member 30 </ b> A disposed in the vicinity of the insertion port 11 may have a linearly extending shape. Thereby, compared with the case where 30 A of 1st liner members have the shape curved along the rotation track | orbit of the impact member 16, the area of the insertion port 11 can be ensured widely. When the first liner member 30A has a linear shape, the first liner member 30A may have a different length from the other liner members 30B and 30C.
 また粉砕機10には、ライナー30の内面31の温度を調整する温度調整機構40が設けられている。以下、温度調整機構40について説明する。 The pulverizer 10 is provided with a temperature adjustment mechanism 40 that adjusts the temperature of the inner surface 31 of the liner 30. Hereinafter, the temperature adjustment mechanism 40 will be described.
 はじめに、温度調整機構40を設ける背景について説明する。上述のように、褐炭などの低品位炭における水分含有率は50~60%と非常に高い。このような低品位炭が粉砕機10に投入される場合、低品位炭が衝撃部材16やライナー30の内面31に付着してしまうことがある。この場合、衝撃部材16に付着した低品位炭には、遠心力や、新たに供給された処理対象物との衝撃力が作用するので、低品位炭が衝撃部材16から剥がれることが期待される。一方、ライナー30は通常は固定されている。このため、ライナー30の内面31に付着した水分の多い低品位炭は、堆積する傾向が強く、自然に剥がれることはあまり期待できない。ライナー30の内面31に付着した低品位炭が累積的に増加していくと、低品位炭がライナー30に打ち付けられる際の粉砕の効率が低下してしまうことや、甚だしく粉砕空間14が閉塞されてしまうことなどが考えられるため、好ましくない。従って、ライナー30の内面31に付着した低品位炭を除去することが望まれる。 First, the background for providing the temperature adjustment mechanism 40 will be described. As described above, the moisture content in low-grade coal such as lignite is as high as 50 to 60%. When such low-grade coal is introduced into the pulverizer 10, the low-grade coal may adhere to the impact member 16 or the inner surface 31 of the liner 30. In this case, since the low-grade coal adhering to the impact member 16 is subjected to centrifugal force or impact force with the newly supplied processing object, the low-grade coal is expected to be peeled off from the impact member 16. . On the other hand, the liner 30 is normally fixed. For this reason, low-grade coal with a lot of moisture adhering to the inner surface 31 of the liner 30 has a strong tendency to accumulate, and cannot be expected to peel off naturally. If the low-grade coal adhering to the inner surface 31 of the liner 30 is cumulatively increased, the efficiency of pulverization when the low-grade coal is struck against the liner 30 is reduced, and the pulverization space 14 is severely blocked. It is not preferable because it can be considered. Therefore, it is desirable to remove the low-grade coal adhering to the inner surface 31 of the liner 30.
 ライナー30の内面31に対する低品位炭の付着性は、主に、低品位炭に含まれる多量の水分に起因していると考えられる。従って、ライナー30の内面31に付着している低品位炭のうち、少なくとも内面31に接している部分の水分量を低減すれば、内面31に対する低品位炭の付着性が低下することが期待される。上述の温度調整機構40は、このような点を考慮して設けられるものである。すなわち温度調整機構40は、ライナー30の内面31に付着している低品位炭を加熱して低品位炭の水分量を低減し、これによって低品位炭をライナー30の内面31から剥がれやすくするためのものである。 It is considered that the adhesion of the low-grade coal to the inner surface 31 of the liner 30 is mainly caused by a large amount of moisture contained in the low-grade coal. Accordingly, it is expected that the adhesion of the low-grade coal to the inner surface 31 will be reduced if the moisture content of at least the portion in contact with the inner surface 31 of the low-grade coal adhering to the inner surface 31 of the liner 30 is reduced. The The temperature adjusting mechanism 40 described above is provided in consideration of such points. That is, the temperature adjustment mechanism 40 heats the low-grade coal adhering to the inner surface 31 of the liner 30 to reduce the moisture content of the low-grade coal, thereby making it easy to peel off the low-grade coal from the inner surface 31 of the liner 30. belongs to.
 以下、温度調整機構40の具体的な構成について、図1乃至図4Bを参照して説明する。図2は、図1の粉砕機のライナーを拡大して示す正面図である。図3Aは、図1のライナー30の第1ライナー部材30Aを、第1ライナー部材30Aの外面の法線方向に沿って見た場合を示す側面図である。図3Bは、図3Aの第1ライナー部材30AをIIIB-IIIB方向から見た場合を示す断面図である。また図4Aは、図1のライナー30の第2ライナー部材30Bまたは第3ライナー部材30Cを、ライナー部材30B,30Cの外面の法線方向に沿って見た場合を示す側面図である。図4Bは、図4Aの第2ライナー部材30Bまたは第3ライナー部材30CをIVB-IVB方向から見た場合を示す断面図である。 Hereinafter, a specific configuration of the temperature adjustment mechanism 40 will be described with reference to FIGS. 1 to 4B. FIG. 2 is an enlarged front view showing the liner of the pulverizer of FIG. FIG. 3A is a side view showing the first liner member 30A of the liner 30 of FIG. 1 as viewed along the normal direction of the outer surface of the first liner member 30A. FIG. 3B is a cross-sectional view showing the first liner member 30A of FIG. 3A viewed from the IIIB-IIIB direction. 4A is a side view showing a case where the second liner member 30B or the third liner member 30C of the liner 30 of FIG. 1 is viewed along the normal direction of the outer surfaces of the liner members 30B and 30C. 4B is a cross-sectional view showing the second liner member 30B or the third liner member 30C of FIG. 4A as viewed from the IVB-IVB direction.
 図1および図2に示すように、温度調整機構40は、ライナー30に向けて温度調整媒体42を供給する温度調整媒体供給部41と、ライナー30に供給される温度調整媒体42が通る供給管43と、ライナー30から排出された温度調整媒体42が通る排出管44と、を有している。供給管43および排出管44は、金属管であってもよく、フレキシブルホースやゴムホースなどの、ライナー30の交換時や衝突板20の変位および衝撃に対する耐性と可撓性を有する配管であってもよい。温度調整媒体42は、衝突板20の内面21よりも内側に配置された流路33に供給される。流路33に供給される温度調整媒体42は、粉砕機10に投入される低品位炭の温度よりも高い温度としている。例えば、粉砕機10に供給される低品位炭の温度が通常は大気温度程度であるのに対し、温度調整媒体42の温度は100℃程度としている。なお、温度調整媒体42の温度が高くなりすぎると、ライナー30および低品位炭が過度に加熱され、これによって低品位炭が発火してしまうことが懸念される。従って、温度調整媒体42は、過度な高温にならないよう調整されている。このような温度調整媒体42の種類は任意に採用し得るが、例えば、蒸気ボイラなどで生成される低圧の飽和水蒸気が用いられる。 As shown in FIGS. 1 and 2, the temperature adjustment mechanism 40 includes a temperature adjustment medium supply unit 41 that supplies a temperature adjustment medium 42 toward the liner 30 and a supply pipe through which the temperature adjustment medium 42 supplied to the liner 30 passes. 43 and a discharge pipe 44 through which the temperature adjusting medium 42 discharged from the liner 30 passes. The supply pipe 43 and the discharge pipe 44 may be metal pipes, or may be pipes having resistance and flexibility with respect to the displacement and impact of the impact plate 20 such as a flexible hose and a rubber hose. Good. The temperature adjustment medium 42 is supplied to the flow path 33 disposed inside the inner surface 21 of the collision plate 20. The temperature adjustment medium 42 supplied to the flow path 33 is set to a temperature higher than the temperature of the low-grade coal supplied to the pulverizer 10. For example, the temperature of the low-grade coal supplied to the pulverizer 10 is usually about atmospheric temperature, while the temperature of the temperature adjustment medium 42 is about 100 ° C. In addition, when the temperature of the temperature control medium 42 becomes too high, there is a concern that the liner 30 and the low-grade coal are excessively heated, and thereby the low-grade coal is ignited. Therefore, the temperature adjustment medium 42 is adjusted so as not to become excessively high. Such a type of the temperature adjusting medium 42 can be arbitrarily adopted. For example, low-pressure saturated steam generated by a steam boiler or the like is used.
 流路33は、図2乃至図4Bに示すように、ライナー30の各ライナー部材30A,30B,30Cの内部に形成されていてもよい。図3Aおよび図4Aにおいて、各ライナー部材30A,30B,30Cの内部に形成された流路33がそれぞれ点線で示されている。図3Aおよび図4Aにおいて、符号35aは、流路33に温度調整媒体42を注入するための注入口35aを表しており、符号35bは、流路33から温度調整媒体42を排出するための排出口35bを表している。なお温度調整媒体42が飽和水蒸気である場合、ライナー30内の流路33を通っている間に飽和水蒸気がライナー30および低品位炭との間で熱交換し、この結果、飽和水蒸気が凝縮して水になることがある。このため、温度調整媒体42は、液体の状態で排出口35bから排出されることが考えらえる。このような点を考慮して、排出口35bが注入口35aよりも下方に形成されていてもよい。また、注入口および排出口の形状や配置、並びに、供給管43および排出管44との接続方式は設計事項として任意に採用し得る。 The flow path 33 may be formed inside each liner member 30A, 30B, 30C of the liner 30 as shown in FIGS. 2 to 4B. 3A and 4A, the flow paths 33 formed in the liner members 30A, 30B, and 30C are indicated by dotted lines. 3A and 4A, reference numeral 35 a represents an inlet 35 a for injecting the temperature adjustment medium 42 into the flow path 33, and reference numeral 35 b represents a discharge for discharging the temperature adjustment medium 42 from the flow path 33. The outlet 35b is shown. When the temperature adjustment medium 42 is saturated steam, the saturated steam exchanges heat between the liner 30 and the low-grade coal while passing through the flow path 33 in the liner 30. As a result, the saturated steam is condensed. May become water. For this reason, it is conceivable that the temperature adjustment medium 42 is discharged from the discharge port 35b in a liquid state. In consideration of such points, the discharge port 35b may be formed below the injection port 35a. Further, the shape and arrangement of the inlet and outlet and the connection method with the supply pipe 43 and the outlet pipe 44 can be arbitrarily adopted as design matters.
 供給管43を通った温度調整媒体42をライナー30の流路33に供給する方法が特に限られることはない。例えば、供給管43および排出管44がライナー30の注入口35aおよび排出口35bにそれぞれ連結されていてもよい。この場合、供給管43,排出管44を通すための貫通孔や切り欠きが衝突板20に形成されていてもよい。若しくは図2に示すように、供給管43,排出管44と注入口35a,排出口35bとが、衝突板20の内部に形成された流路23を介して接続されていてもよい。 The method for supplying the temperature adjusting medium 42 that has passed through the supply pipe 43 to the flow path 33 of the liner 30 is not particularly limited. For example, the supply pipe 43 and the discharge pipe 44 may be connected to the inlet 35a and the outlet 35b of the liner 30, respectively. In this case, a through hole or notch for passing the supply pipe 43 and the discharge pipe 44 may be formed in the collision plate 20. Alternatively, as shown in FIG. 2, the supply pipe 43, the discharge pipe 44, the injection port 35 a, and the discharge port 35 b may be connected via a flow path 23 formed inside the collision plate 20.
 本実施の形態によれば、温度調整媒体42が、衝突板20の内面21よりも内側に配置された流路33に供給される。すなわち、温度調整機構40の温度調整媒体42は、衝突板20の内面よりも内側でライナー30に直接接触する。このため、衝突板20の内面よりも内側でライナー30の温度を調整することができる。従って、従来のように温度調整媒体とライナーとの間にライナーを装着するための構造部材が介在されている場合に比べて、温度調整媒体42の熱を低損失でライナー30に伝導させることができる。このため、ライナー30の内面31を効率的に加熱することができる。 According to the present embodiment, the temperature adjustment medium 42 is supplied to the flow path 33 arranged inside the inner surface 21 of the collision plate 20. That is, the temperature adjustment medium 42 of the temperature adjustment mechanism 40 directly contacts the liner 30 inside the inner surface of the collision plate 20. For this reason, the temperature of the liner 30 can be adjusted inside the inner surface of the collision plate 20. Therefore, the heat of the temperature adjusting medium 42 can be conducted to the liner 30 with a low loss as compared with the case where a structural member for mounting the liner is interposed between the temperature adjusting medium and the liner as in the prior art. it can. For this reason, the inner surface 31 of the liner 30 can be efficiently heated.
 好ましくは、図3Bおよび図4Bに示すように、ライナー30の内部に形成されている流路33と、衝突板20の内面21との間に、温度調整媒体42の熱が衝突板20側に伝導してしまうことを防ぐための断熱部材36を介在させる。これによって、温度調整媒体42の熱をより低損失でライナー30に伝導させることができる。断熱部材36としては、例えば、流路33を閉鎖する裏板37に断熱材を貼り付ける。この場合、裏板37としては、例えば鉄板が用いられる。また、流路33を閉鎖する裏板37自体が、断熱性を有する材料から構成されていてもよい。なお図1においては、左側に位置するライナー30に対してのみ温度調整機構40が設けられているが、右側に位置するライナー30に対しても同様に温度調整機構40が設けられていてもよい。 Preferably, as shown in FIGS. 3B and 4B, the heat of the temperature adjusting medium 42 flows between the flow path 33 formed inside the liner 30 and the inner surface 21 of the collision plate 20 toward the collision plate 20. A heat insulating member 36 for preventing conduction is interposed. Thereby, the heat of the temperature adjusting medium 42 can be conducted to the liner 30 with lower loss. As the heat insulating member 36, for example, a heat insulating material is attached to a back plate 37 that closes the flow path 33. In this case, as the back plate 37, for example, an iron plate is used. Further, the back plate 37 itself for closing the flow path 33 may be made of a material having heat insulation properties. In FIG. 1, the temperature adjustment mechanism 40 is provided only for the liner 30 located on the left side, but the temperature adjustment mechanism 40 may be provided similarly for the liner 30 located on the right side. .
 また図3Aおよび図4Aにおいて符号34で表されているように、ライナー部材30A,30B,30Cの外面32には、ライナー30を衝突板20に対して締結するための締結孔34が形成されていてもよい。 3A and 4A, a fastening hole 34 for fastening the liner 30 to the collision plate 20 is formed on the outer surface 32 of the liner members 30A, 30B, and 30C. May be.
 次に、上述の粉砕機10を用いて、褐炭などの対象物を粉砕する際の作用について、図5A乃至図5Cを参照して説明する。 Next, the operation when pulverizing an object such as lignite using the above-described pulverizer 10 will be described with reference to FIGS. 5A to 5C.
 はじめに、褐炭13などの対象物を投入口11から投入する。投入された褐炭13は、回転する衝撃部材16に衝突し、その後、ライナー30の内面31に打ち付けられる。図5Aにおいては、内面31に打ち付けられて内面31に付着した褐炭13、および、内面31に向かって飛散している褐炭13が表されている。 First, an object such as lignite 13 is introduced through the inlet 11. The introduced lignite 13 collides with the rotating impact member 16 and is then struck against the inner surface 31 of the liner 30. In FIG. 5A, lignite 13 that is struck against the inner surface 31 and adhered to the inner surface 31, and lignite 13 that is scattered toward the inner surface 31 are shown.
 褐炭13が次々に内面31に向かって飛散してくるので、図5Bに示すように、内面31に付着している褐炭13が増大していく。一方、上述のように、ライナー30の内部に形成された流路33には、褐炭13よりも高い温度を有する温度調整媒体42が流されている。従って、褐炭13が温度調整媒体42によって加熱される。この加熱は、ライナー30を介して温度調整媒体42から伝導される熱によって生じるため、褐炭13のうち内面31に接している部分が優先的に加熱される。従って、褐炭13のうち内面31に接している部分の水分含有量は、加熱に起因する水の蒸発や移動のため、褐炭13のその他の部分の水分含有量よりも低くなる。この結果、図5Bに示すように、褐炭13のうち内面31に接している部分は、含有水分量が低減された乾燥部分13aになる。 Since the lignite 13 scatters one after another toward the inner surface 31, the lignite 13 attached to the inner surface 31 increases as shown in FIG. 5B. On the other hand, as described above, the temperature adjustment medium 42 having a temperature higher than that of the lignite 13 flows through the flow path 33 formed inside the liner 30. Therefore, the lignite 13 is heated by the temperature adjustment medium 42. Since this heating is caused by heat conducted from the temperature adjusting medium 42 via the liner 30, the portion of the lignite 13 that is in contact with the inner surface 31 is preferentially heated. Therefore, the moisture content of the portion in contact with the inner surface 31 of the lignite 13 is lower than the moisture content of other portions of the lignite 13 due to evaporation and movement of water caused by heating. As a result, as shown in FIG. 5B, a portion of the lignite 13 that is in contact with the inner surface 31 becomes a dry portion 13a in which the moisture content is reduced.
 上述のように、ライナー30の内面31に対する低品位炭の付着性は、主に、低品位炭に含まれる多量の水分に起因していると考えられる。ここで本実施の形態によれば、褐炭13のうち内面31に接している部分を乾燥させることで、内面31に対する褐炭13の付着性を低減することができる。この場合、図5Cに示すように、回転体15および衝撃部材16の回転によって生じている旋回流から受ける力や、内面31に向かって飛散してくる褐炭13から受ける力などを契機として、内面31に付着している褐炭13が内面31から剥がれ落ちることが期待される。 As described above, it is considered that the low-grade coal adhesion to the inner surface 31 of the liner 30 is mainly caused by a large amount of moisture contained in the low-grade coal. Here, according to this Embodiment, the adhesiveness of the lignite 13 with respect to the inner surface 31 can be reduced by drying the part which is contacting the inner surface 31 among the lignite 13. In this case, as shown in FIG. 5C, the inner surface is triggered by the force received from the swirling flow generated by the rotation of the rotating body 15 and the impact member 16 or the force received from the lignite 13 scattered toward the inner surface 31. It is expected that the lignite 13 adhering to 31 is peeled off from the inner surface 31.
 このように本実施の形態によれば、褐炭13を加熱することによって褐炭13をライナー30の内面31から剥がすことができる。また本実施の形態によれば、褐炭13のうち主に内面31に接している部分を乾燥させることで、褐炭13を内面31から剥がすことができる。このため、例えば粉砕空間14全域を加熱して褐炭13の表面全域を乾燥させる場合に比べて、褐炭13を剥がすために必要な熱エネルギーを低減することができる。また、褐炭13が発火してしまう危険性を低減することができる。また本実施の形態によれば、温度調整機構40は、衝突板20の内面21よりも内側でライナー30に接触するよう構成されている。このため、ライナー30との間での熱伝導を低損失で実現することができる。従って、ライナー30の内面31を効率的に加熱することができる。このように本実施の形態によれば、これらの特徴の相乗効果により、ライナー30の内面31に付着した褐炭13を、より少ない熱エネルギーで効率的に除去することができる。 Thus, according to the present embodiment, the lignite 13 can be peeled from the inner surface 31 of the liner 30 by heating the lignite 13. Moreover, according to this Embodiment, the lignite 13 can be peeled from the inner surface 31 by drying the part mainly contacting the inner surface 31 among the lignite 13. For this reason, for example, compared with the case where the whole grinding | pulverization space 14 is heated and the whole surface of the lignite 13 is dried, the heat energy required in order to peel the lignite 13 can be reduced. Moreover, the danger that the lignite 13 will ignite can be reduced. Further, according to the present embodiment, the temperature adjustment mechanism 40 is configured to contact the liner 30 inside the inner surface 21 of the collision plate 20. For this reason, heat conduction with the liner 30 can be realized with low loss. Therefore, the inner surface 31 of the liner 30 can be efficiently heated. Thus, according to this Embodiment, the brown coal 13 adhering to the inner surface 31 of the liner 30 can be efficiently removed with less heat energy due to the synergistic effect of these characteristics.
 なお、上述した実施の形態に対して様々な変更を加えることが可能である。以下、図面を参照しながら、変形の一例について説明する。以下の説明および以下の説明で用いる図面では、上述した実施の形態と同様に構成され得る部分について、上述の実施の形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。 Note that various modifications can be made to the above-described embodiment. Hereinafter, an example of modification will be described with reference to the drawings. In the following description and the drawings used in the following description, the same reference numerals as those used for the corresponding parts in the above embodiment are used for the parts that can be configured in the same manner as in the above embodiment. A duplicate description is omitted.
 上述した本実施の形態において、温度調整媒体42の温度が約100℃に調整される例を示した。しかしながら、温度調整媒体42の温度が一律に同一の温度に調整される必要はなく、ライナー30の位置に応じて温度調整媒体42の温度が変えられてもよい。例えば、上述のようにライナーが複数のライナー部材30A,30B,30Cに分割されている場合、温度調整機構40は、複数のライナー部材30A,30B,30Cのうち少なくとも2つのライナー部材の内面31の温度を独立に調整することができるよう、構成されていてもよい。以下、本変形例の効果について説明する。 In the above-described embodiment, an example in which the temperature of the temperature adjustment medium 42 is adjusted to about 100 ° C. has been shown. However, the temperature of the temperature adjustment medium 42 need not be uniformly adjusted to the same temperature, and the temperature of the temperature adjustment medium 42 may be changed according to the position of the liner 30. For example, when the liner is divided into the plurality of liner members 30A, 30B, and 30C as described above, the temperature adjustment mechanism 40 is provided on the inner surface 31 of at least two liner members among the plurality of liner members 30A, 30B, and 30C. You may be comprised so that temperature can be adjusted independently. Hereinafter, the effect of this modification will be described.
 ライナー30の内面31に付着した褐炭13を内面31から剥がす駆動力としては、粉砕された処理物の衝突や回転体15および衝撃部材16の回転によって生じている旋回流から受ける力などの他に、内面31に付着した褐炭13に作用する重力が考えられる。一方、褐炭13をライナー30の内面31から剥がす上での重力の有用性は、ライナー30の内面31の向きに依存している。例えば図1に示す粉砕機10において、第1ライナー部材30Aに付着した褐炭13は、第2ライナー部材30Bや第3ライナー部材30Cに付着した褐炭13に比べて、重力の影響のために剥がれ易くなっていると考えられる。このように、褐炭13の剥がれ易さは、褐炭13が付着しているライナー30の位置によって異なることがある。ここで本変形例によれば、温度調整機構40は、各ライナー部材30A,30B,30Cの温度を独立に調整することができる。例えば、第1ライナー部材30Aに対しては温度調整媒体42を供給せず、第2ライナー部材30Bおよび第3ライナー部材30Cに対してのみ温度調整媒体42を供給する、という制御を実施することができる。これによって、第1ライナー部材30Aと比較して褐炭13が剥がれにくい第2ライナー部材30Bおよび第3ライナー部材30Cを重点的に加熱することができる。このことにより、ライナー30に付着した褐炭13を剥がすという目的を達成しながら、全体的な熱エネルギーを削減することができる。
 また、ライナー30に対する褐炭13の付着量が、場所によって異なることがある。この場合も本実施の形態によれば、各ライナー部材30A,30B,30Cの温度を独立に調整することにより、褐炭13が付着しやすいライナー部材を選択的に加熱することができ、これによって、効率的に褐炭13を剥がすことができる。この場合も、ライナー30に付着した褐炭13を剥がすという目的を達成しながら、全体的な熱エネルギーを削減することができる。
The driving force for peeling the lignite 13 adhering to the inner surface 31 of the liner 30 from the inner surface 31 is in addition to the force received from the swirl flow generated by the collision of the pulverized processed material and the rotation of the rotating body 15 and the impact member 16. The gravity which acts on the lignite 13 adhering to the inner surface 31 is considered. On the other hand, the usefulness of gravity in peeling the lignite 13 from the inner surface 31 of the liner 30 depends on the orientation of the inner surface 31 of the liner 30. For example, in the pulverizer 10 shown in FIG. 1, the lignite 13 attached to the first liner member 30A is more easily peeled off due to the influence of gravity than the lignite 13 attached to the second liner member 30B or the third liner member 30C. It is thought that it has become. Thus, the ease of peeling of the lignite 13 may differ depending on the position of the liner 30 to which the lignite 13 is attached. Here, according to this modification, the temperature adjustment mechanism 40 can adjust the temperature of each liner member 30A, 30B, 30C independently. For example, the control of supplying the temperature adjusting medium 42 only to the second liner member 30B and the third liner member 30C without supplying the temperature adjusting medium 42 to the first liner member 30A may be performed. it can. Accordingly, the second liner member 30B and the third liner member 30C can be intensively heated compared to the first liner member 30A. As a result, the overall thermal energy can be reduced while achieving the purpose of peeling off the lignite 13 adhering to the liner 30.
Moreover, the adhesion amount of the brown coal 13 with respect to the liner 30 may change with places. Also in this case, according to the present embodiment, by independently adjusting the temperature of each liner member 30A, 30B, 30C, it is possible to selectively heat the liner member to which lignite 13 easily adheres, The lignite 13 can be peeled off efficiently. Also in this case, the overall thermal energy can be reduced while achieving the purpose of peeling the lignite 13 adhering to the liner 30.
 各ライナー部材30A,30B,30Cの温度を独立に調整するための温度調整機構40の具体的な構成が特に限られることはなく、様々な構成が採用され得る。例えば図1に示すように、各ライナー部材30A,30B,30Cへ温度調整媒体42を供給するための供給管43の各々に、温度調整媒体42の流量を調整するための調整弁45が設けられていてもよい。 The specific configuration of the temperature adjustment mechanism 40 for independently adjusting the temperatures of the liner members 30A, 30B, and 30C is not particularly limited, and various configurations can be employed. For example, as shown in FIG. 1, an adjustment valve 45 for adjusting the flow rate of the temperature adjustment medium 42 is provided in each of the supply pipes 43 for supplying the temperature adjustment medium 42 to the liner members 30A, 30B, 30C. It may be.
 また上述した本実施の形態および変形例において、温度調整機構40が、温度調整媒体42を用いてライナー30を加熱する例を示した。しかしながら、ライナー30を加熱するための方法がこれに限られることはない。例えば図6Aおよび図6Bに示すように、温度調整機構40は、衝突板20の内面21よりも内側に配置されたり、ライナー30に埋設されたりするヒーター46を用いて、ライナー30を加熱してもよい。例えばヒーター46は、ライナー30に形成された収容空間39の内部に配置される。この場合、図6Aに示すように、収容空間39にヒーター46を導入するための導入口38がライナー30に形成されていてもよい。本変形例においても、ヒーター46とライナー30との間に衝突板20が介在されている場合に比べて、ヒーター46の熱を低損失でライナー30に伝導させることができる。このため、ライナー30の内面31を効率的に加熱することができる。ヒーター46としては、電熱式の伝熱ヒーターや高周波加熱器などを用いることができる。 Further, in the above-described embodiment and modification examples, the example in which the temperature adjustment mechanism 40 heats the liner 30 using the temperature adjustment medium 42 has been shown. However, the method for heating the liner 30 is not limited to this. For example, as shown in FIGS. 6A and 6B, the temperature adjustment mechanism 40 heats the liner 30 using a heater 46 that is disposed on the inner side 21 of the collision plate 20 or embedded in the liner 30. Also good. For example, the heater 46 is disposed inside the accommodation space 39 formed in the liner 30. In this case, as shown in FIG. 6A, an inlet 38 for introducing the heater 46 into the accommodation space 39 may be formed in the liner 30. Also in this modification, the heat of the heater 46 can be conducted to the liner 30 with low loss compared to the case where the collision plate 20 is interposed between the heater 46 and the liner 30. For this reason, the inner surface 31 of the liner 30 can be efficiently heated. As the heater 46, an electrothermal heat transfer heater, a high-frequency heater, or the like can be used.
 また上述した本実施の形態および各変形例において、温度調整機構40が、ライナー30を加熱するよう構成されている例を示した。しかしながら、これに限られることはなく、温度調整機構40は、褐炭13よりも低い温度にライナー30を冷却するよう構成されていてもよい。例えば、ライナー30の流路33に供給される温度調整媒体42は、褐炭13よりも低い温度を有していてもよい。この場合、褐炭13に含まれる水を冷却して例えば凝固させることによって、ライナー30の内面31に対する褐炭13の付着性を低減することができる。
 また、ゴムやプラスチック等の、常温では靱性や粘弾性があり粉砕困難な処理対象物を冷凍粉砕処理する場合には、液体窒素等を温度調整媒体42として用いることにより、本実施の形態による温度調整機構40を用いてライナー30の内面31の、粉砕熱による温度上昇を抑制し、処理対象物の軟化を防止することができる。
Moreover, in this Embodiment and each modification mentioned above, the example in which the temperature adjustment mechanism 40 was comprised so that the liner 30 might be heated was shown. However, the present invention is not limited to this, and the temperature adjustment mechanism 40 may be configured to cool the liner 30 to a temperature lower than that of the lignite 13. For example, the temperature adjustment medium 42 supplied to the flow path 33 of the liner 30 may have a temperature lower than that of the lignite 13. In this case, the adhesion of the lignite 13 to the inner surface 31 of the liner 30 can be reduced by cooling and solidifying the water contained in the lignite 13.
In addition, in the case of subjecting a processing object that is tough and viscoelastic and difficult to pulverize to normal temperature, such as rubber or plastic, by using liquid nitrogen as the temperature adjusting medium 42, the temperature according to the present embodiment The adjustment mechanism 40 can be used to suppress the temperature rise of the inner surface 31 of the liner 30 due to pulverization heat, thereby preventing the processing object from being softened.
 また上述した本実施の形態および各変形例において、褐炭13が粉砕機10によって粉砕される例を示した。しかしながら、粉砕機10において粉砕される対象物が褐炭13に限られることはない。本実施の形態および各変形例による粉砕機10は、褐炭13以外にも、亜炭又は亜瀝青炭をはじめとする低品位炭や、バイオマス原料など、水分を多く含む対象物を効率的に粉砕することができる。 Further, in the above-described embodiment and each modification, an example in which the lignite 13 is pulverized by the pulverizer 10 is shown. However, the object to be crushed by the pulverizer 10 is not limited to the lignite 13. The pulverizer 10 according to the present embodiment and each modified example efficiently pulverizes objects containing a large amount of water, such as low-grade coal including lignite or sub-bituminous coal, and biomass raw materials, in addition to lignite 13. Can do.
 また上述した本実施の形態および各変形例において説明した技術的思想は、図7に示すように、ケーシング18の内面に設けられたケーシングライナー50に対して適用されてもよい。ケーシングライナー50の内面には、特に回転体15の両端部近傍などの、衝撃部材16の周速が低い場所において、衝撃部材16および衝突板20に衝突した褐炭13などの対象物の一部が拡散して打ち付けられて付着することがある。このため、衝突板20に設けられるライナー30と同様にケーシングライナー50の温度を調整することは有効である。 Further, the technical idea described in the above-described embodiment and each modification may be applied to the casing liner 50 provided on the inner surface of the casing 18, as shown in FIG. On the inner surface of the casing liner 50, a part of an object such as lignite 13 colliding with the impact member 16 and the impact plate 20, particularly in a place where the peripheral speed of the impact member 16 is low, such as in the vicinity of both end portions of the rotating body 15. It can be diffused and struck to adhere. For this reason, it is effective to adjust the temperature of the casing liner 50 similarly to the liner 30 provided on the collision plate 20.
 図7は、粉砕機10を示す側面図である。図7においては、回転体15を駆動する駆動軸19の軸線を通る鉛直平面で粉砕機10を切断した場合の断面が示されている。図7に示す変形例においては、温度調整機構40が、衝突板20に設けられるライナー30の内面の温度に加えて、若しくはライナー30の内面の温度とは別に、ケーシングライナー50の内面の温度を調整する。具体的には、上述した本実施の形態および各変形例の場合と同様に、温度調整機構40は、ケーシング18の内面よりも内側でケーシングライナー50の温度を調整するよう構成されている。このため、ケーシングライナー50への熱伝導を低損失で実現することができる。これによって、ケーシングライナー50の内面の温度を効率的に調整することができる。このことにより、ケーシングライナー50の内面に付着した褐炭13を、より少ない熱エネルギーで効率的に除去することができる。なおケーシングライナー50は、衝突板20に設けられるライナー30と同様に、複数に分割されていてもよく、また、分割されたケーシングライナー50各々の温度が温度調整機構40によって独立に調整されてもよい。 FIG. 7 is a side view showing the pulverizer 10. FIG. 7 shows a cross section when the pulverizer 10 is cut along a vertical plane passing through the axis of the drive shaft 19 that drives the rotating body 15. In the modification shown in FIG. 7, the temperature adjustment mechanism 40 adjusts the temperature of the inner surface of the casing liner 50 in addition to the temperature of the inner surface of the liner 30 provided on the collision plate 20 or separately from the temperature of the inner surface of the liner 30. adjust. Specifically, the temperature adjustment mechanism 40 is configured to adjust the temperature of the casing liner 50 on the inner side of the inner surface of the casing 18 as in the case of the present embodiment and the modifications described above. For this reason, heat conduction to the casing liner 50 can be realized with low loss. Thereby, the temperature of the inner surface of the casing liner 50 can be adjusted efficiently. Thereby, the lignite 13 adhering to the inner surface of the casing liner 50 can be efficiently removed with less heat energy. The casing liner 50 may be divided into a plurality of parts, like the liner 30 provided on the collision plate 20, and the temperature of each of the divided casing liners 50 may be independently adjusted by the temperature adjustment mechanism 40. Good.
 なお、上述した実施の形態に対するいくつかの変形例を説明してきたが、当然に、複数の変形例を適宜組み合わせて適用することも可能である。 In addition, although some modified examples with respect to the above-described embodiment have been described, naturally, a plurality of modified examples can be applied in combination as appropriate.
 10 粉砕機
 11 投入口
 12 排出口
 13 褐炭
 15 回転体
 16 衝撃部材
 18 ケーシング
 19 駆動軸
 20 衝突板
 21 衝突板の内面
 23 流路
 30 ライナー
 30A~30C 第1~第3ライナー部材
 31 ライナーの内面
 32 ライナーの外面
 33 流路
 35a 温度調整媒体の注入口
 35b 温度調整媒体の排出口
 36 断熱部材
 37 裏板
 38 ヒーター導入口
 39 収納空間
 40 温度調整機構
 41 温度調整媒体供給部
 42 温度調整媒体
 46 ヒーター
 50 ケーシングライナー
DESCRIPTION OF SYMBOLS 10 Crusher 11 Input port 12 Discharge port 13 Brown coal 15 Rotating body 16 Impact member 18 Casing 19 Drive shaft 20 Collision plate 21 Collision plate inner surface 23 Flow path 30 Liner 30A-30C First to third liner member 31 Inner surface 32 of liner Outer surface of liner 33 Flow path 35a Temperature adjustment medium inlet 35b Temperature adjustment medium outlet 36 Heat insulation member 37 Back plate 38 Heater introduction port 39 Storage space 40 Temperature adjustment mechanism 41 Temperature adjustment medium supply unit 42 Temperature adjustment medium 46 Heater 50 Casing liner

Claims (10)

  1.  対象物を粉砕する粉砕機であって、
     回転体と、
     前記回転体に取り付けられ、対象物に衝突する衝撃部材と、
     前記回転体の周囲に配置された衝突板と、
     前記衝突板の内面に設けられ、前記衝撃部材に衝突した対象物が打ち付けられる内面を有するライナーと、
     前記ライナーの内面の温度を調整する温度調整機構と、を備え、
     前記温度調整機構は、前記衝突板の内面よりも内側で前記ライナーの温度を調整できるよう構成されている、粉砕機。
    A crusher for crushing an object,
    A rotating body,
    An impact member attached to the rotating body and colliding with an object;
    A collision plate disposed around the rotating body;
    A liner provided on an inner surface of the collision plate and having an inner surface on which an object colliding with the impact member is hit;
    A temperature adjustment mechanism for adjusting the temperature of the inner surface of the liner,
    The said temperature adjustment mechanism is a grinder which is comprised so that the temperature of the said liner can be adjusted inside the inner surface of the said collision board.
  2.  前記温度調整機構は、前記衝突板の内面よりも内側に配置された流路に温度調整媒体を供給する温度調整媒体供給部を有する、請求項1に記載の粉砕機。 The pulverizer according to claim 1, wherein the temperature adjustment mechanism includes a temperature adjustment medium supply unit that supplies a temperature adjustment medium to a flow path that is disposed inside the inner surface of the collision plate.
  3.  前記温度調整媒体が通る流路が、前記ライナーの内部に形成されている、請求項2に記載の粉砕機。 The pulverizer according to claim 2, wherein a flow path through which the temperature adjusting medium passes is formed inside the liner.
  4.  前記ライナーの内部に形成されている前記流路と前記衝突板の内面との間に、断熱部材が介在されている、請求項3に記載の粉砕機。 The pulverizer according to claim 3, wherein a heat insulating member is interposed between the flow path formed inside the liner and the inner surface of the collision plate.
  5.  前記温度調整媒体供給部は、前記粉砕機に投入される対象物の温度よりも高い温度を有する前記温度調整媒体を前記流路に供給する、請求項2乃至4のいずれか一項に記載の粉砕機。 The said temperature adjustment medium supply part supplies the said temperature adjustment medium which has a temperature higher than the temperature of the target object thrown into the said grinder into the said flow path. Crusher.
  6.  前記温度調整媒体供給部は、前記粉砕機に投入される対象物の温度よりも低い温度を有する前記温度調整媒体を前記流路に供給する、請求項2乃至4のいずれか一項に記載の粉砕機。 The said temperature adjustment medium supply part supplies the said temperature adjustment medium which has a temperature lower than the temperature of the target object thrown into the said grinder into the said flow path. Crusher.
  7.  前記温度調整機構は、前記衝突板の内面よりも内側に配置された電熱式ヒーターを有する、請求項1に記載の粉砕機。 The pulverizer according to claim 1, wherein the temperature adjusting mechanism includes an electric heater disposed on an inner side than an inner surface of the collision plate.
  8.  前記ライナーは、前記衝撃部材の先端部が周回する軌道に沿って並べられた複数のライナー部材により構成されている、請求項1乃至7のいずれか一項に記載の粉砕機。 The pulverizer according to any one of claims 1 to 7, wherein the liner includes a plurality of liner members arranged along a track around which a tip of the impact member circulates.
  9.  前記温度調整機構は、複数のライナー部材のうち少なくとも2つのライナー部材の内面の温度を独立に調整することができるよう構成されている、請求項8に記載の粉砕機。 The pulverizer according to claim 8, wherein the temperature adjusting mechanism is configured to be able to independently adjust the temperatures of the inner surfaces of at least two liner members among the plurality of liner members.
  10.  対象物を粉砕する粉砕機であって、
     回転体と、
     前記回転体に取り付けられ、対象物に衝突する衝撃部材と、
     前記回転体の周囲に配置された衝突板およびケーシングと、
     前記ケーシングの内面に設けられ、前記衝撃部材および前記衝突板に衝突した対象物の一部が拡散して付着する内面を有するケーシングライナーと、
     前記ケーシングライナーの内面の温度を調整する温度調整機構と、を備え、
     前記温度調整機構は、前記ケーシングの内面よりも内側で前記ケーシングライナーの温度を調整するよう構成されている、粉砕機。
    A crusher for crushing an object,
    A rotating body,
    An impact member attached to the rotating body and colliding with an object;
    A collision plate and a casing disposed around the rotating body;
    A casing liner provided on an inner surface of the casing, and having an inner surface to which a part of an object colliding with the impact member and the collision plate diffuses and adheres;
    A temperature adjusting mechanism for adjusting the temperature of the inner surface of the casing liner,
    The pulverizer, wherein the temperature adjusting mechanism is configured to adjust the temperature of the casing liner inside the inner surface of the casing.
PCT/JP2013/084198 2012-12-27 2013-12-20 Pulverizer WO2014103909A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2013367402A AU2013367402B2 (en) 2012-12-27 2013-12-20 Pulverizer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-285296 2012-12-27
JP2012285296A JP5931714B2 (en) 2012-12-27 2012-12-27 Crusher

Publications (1)

Publication Number Publication Date
WO2014103909A1 true WO2014103909A1 (en) 2014-07-03

Family

ID=50986015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084198 WO2014103909A1 (en) 2012-12-27 2013-12-20 Pulverizer

Country Status (4)

Country Link
JP (1) JP5931714B2 (en)
CN (2) CN103894261B (en)
AU (1) AU2013367402B2 (en)
WO (1) WO2014103909A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5931714B2 (en) * 2012-12-27 2016-06-08 株式会社アーステクニカ Crusher
JP6321534B2 (en) * 2014-12-18 2018-05-09 株式会社栗本鐵工所 Hammer crusher
CN106269075A (en) * 2015-06-10 2017-01-04 上海泽玛克敏达机械设备有限公司 A kind of steam heater of disintegrating machine
CN105396651A (en) * 2015-11-13 2016-03-16 太仓圣广仁自动化设备有限公司 Heating and crushing device
CN113713911B (en) * 2021-09-08 2022-08-16 江苏金联能源科技有限公司 Shockproof crusher for constructional engineering

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471466A (en) * 1977-11-17 1979-06-08 Matsushita Electric Works Ltd Crusher
JPS6323753A (en) * 1986-05-02 1988-02-01 ドライスヴエルケ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Controller for agitation type crusher
JPH0377963A (en) * 1989-08-18 1991-04-03 Minolta Camera Co Ltd Method and device for preparing toner
JPH03123404A (en) * 1989-10-09 1991-05-27 Takahama Sanso Kk Apparatus for producing peeled seed and production of peeled seed
JPH03208848A (en) * 1990-01-09 1991-09-12 Shimizu Corp Production of hardened matter of high-strength cement
JPH04326947A (en) * 1991-04-27 1992-11-16 Satake Eng Co Ltd Apparatus for pulverizing and feeding sample
WO2011138932A1 (en) * 2010-05-06 2011-11-10 ホソカワミクロン株式会社 Grinding mill

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ237879A (en) * 1991-04-18 1994-12-22 Terrance John Coles Apparatus for grinding granular material by moving an entraining gas around the inside of a circular chamber of moulded hardened ceramic composition
JP4161281B2 (en) * 1998-03-31 2008-10-08 ターボ工業株式会社 Pulverizer
JP3740318B2 (en) * 1999-03-29 2006-02-01 京セラ株式会社 Crusher
CN201384962Y (en) * 2009-03-26 2010-01-20 湖北五瑞生物工程有限公司 High-efficiency water-cooled grinder
CN201978790U (en) * 2010-11-11 2011-09-21 唐铭 Automatic temperature-reducing crusher cover
CN202377031U (en) * 2012-01-09 2012-08-15 嘉兴市一建机械制造有限公司 Reversible impact fine crusher
JP5931714B2 (en) * 2012-12-27 2016-06-08 株式会社アーステクニカ Crusher

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471466A (en) * 1977-11-17 1979-06-08 Matsushita Electric Works Ltd Crusher
JPS6323753A (en) * 1986-05-02 1988-02-01 ドライスヴエルケ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Controller for agitation type crusher
JPH0377963A (en) * 1989-08-18 1991-04-03 Minolta Camera Co Ltd Method and device for preparing toner
JPH03123404A (en) * 1989-10-09 1991-05-27 Takahama Sanso Kk Apparatus for producing peeled seed and production of peeled seed
JPH03208848A (en) * 1990-01-09 1991-09-12 Shimizu Corp Production of hardened matter of high-strength cement
JPH04326947A (en) * 1991-04-27 1992-11-16 Satake Eng Co Ltd Apparatus for pulverizing and feeding sample
WO2011138932A1 (en) * 2010-05-06 2011-11-10 ホソカワミクロン株式会社 Grinding mill

Also Published As

Publication number Publication date
JP5931714B2 (en) 2016-06-08
JP2014124609A (en) 2014-07-07
AU2013367402A1 (en) 2015-07-16
CN103894261B (en) 2016-11-16
CN103894261A (en) 2014-07-02
CN203750599U (en) 2014-08-06
AU2013367402B2 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
WO2014103909A1 (en) Pulverizer
CN203990835U (en) Fluid bed micro jet
US7584918B1 (en) Wear plate assembly for vertical rotor of a pulverizer
NZ599662A (en) Method and device for comminuting ore with discs relatively rotated and having projections and/or recesses to provide acceleration zones
JP2007111574A (en) Crusher
KR20070006025A (en) Mill
JPH11276916A (en) Pulverizer
CN104084282A (en) Novel cooling crusher
KR20170030760A (en) Dry ice cleaning machine having plastic grinding drum
CN207696841U (en) A kind of heavy duty detergent plastic crushing reclaimer
CN1972781A (en) Impeller for feeding blasting shots into a centrifugal wheel
CN202725241U (en) Single-roll crushing machine
CN205379936U (en) High -efficient autogenous tumbling mill
CN205413179U (en) Vegetables reducing mechanism
CN200967010Y (en) Novel superfine disintegrator
KR101345157B1 (en) Apparatus of treating biomass
JP6321534B2 (en) Hammer crusher
CN202700599U (en) Vibrating type Chinese herbal medicine crusher
CN220737785U (en) Material crusher with freezing function
JP3158609U (en) Dry pulverizer equipped with super fine mist and cooling device with fine mist
WO2018008704A1 (en) Coal processing system and processing method
KR20130137444A (en) Apparatus for food waste treatment
CN106807501A (en) A kind of impeller mill
CN201543465U (en) Ultra-micro crusher hammer
CN101987312B (en) Potato grinding system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201504471

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2013367402

Country of ref document: AU

Date of ref document: 20131220

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13866861

Country of ref document: EP

Kind code of ref document: A1