WO2014103762A1 - 振動発電装置 - Google Patents

振動発電装置 Download PDF

Info

Publication number
WO2014103762A1
WO2014103762A1 PCT/JP2013/083554 JP2013083554W WO2014103762A1 WO 2014103762 A1 WO2014103762 A1 WO 2014103762A1 JP 2013083554 W JP2013083554 W JP 2013083554W WO 2014103762 A1 WO2014103762 A1 WO 2014103762A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
movable member
substrate
vibration
electret
Prior art date
Application number
PCT/JP2013/083554
Other languages
English (en)
French (fr)
Inventor
雅代 生田
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to CN201380067973.0A priority Critical patent/CN104885353B/zh
Priority to US14/758,140 priority patent/US9748869B2/en
Priority to EP13868591.2A priority patent/EP2940854B1/en
Publication of WO2014103762A1 publication Critical patent/WO2014103762A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/10Influence generators with non-conductive charge carrier

Definitions

  • the present invention relates to a vibration power generation apparatus that generates power by external vibration.
  • a vibration power generation apparatus that generates power using this vibration energy has been developed, and electrets that can hold a charge semipermanently are widely used in the power generation apparatus.
  • it is required to maintain the gap between the electret and the electrode at a predetermined distance where the power generation efficiency is good. Therefore, as shown in Patent Document 1, in a structure in which a substrate provided with an electret and a substrate provided with an electrode are opposed to each other, between a support member that supports one substrate and a support member that supports the other substrate.
  • a technique for disposing an adjustment member for adjusting the gap is disclosed.
  • Patent Document 2 As a configuration for maintaining the gap between the electret and the electrode, as shown in Patent Document 2, a first member for attaching the fixed member to the casing of the vibration power generator that generates power by the relative movement of the movable member and the fixed member. A reference surface and a second reference surface for positioning a slidable steel ball for supporting the movable member are provided, the fixing of the fixing member via the first reference surface, and the second reference surface and the steel ball A gap forming technique that is less affected by the thickness error of the substrate constituting the movable member by disposing the movable member interposed therebetween is disclosed. Further, Patent Document 3 discloses a technique for suppressing the gap between the movable member and the fixed member from being narrowed by using repulsive force due to electric charges.
  • Patent Document 2 is provided with two reference surfaces for forming a gap in the casing of the power generation vibration element.
  • the sliding surface of the steel ball that supports the movable member that is, the second reference surface that is one of the two reference surfaces
  • a part of the housing functions as the second reference surface, and A groove part through which the steel ball slides is formed depending on the structure of the housing.
  • the distortion and dimensional accuracy of the housing are likely to affect the second reference plane, and thus it may be difficult to suitably form the gap between the electret and the electrode.
  • a resin material may be used as the casing of the vibration power generator from the viewpoint of ease of manufacture.
  • Patent Document 3 attempts to suppress the narrowing of the gap between the movable member and the fixed member by using repulsive force due to electric charge, and how to appropriately form the gap itself. It does not give useful suggestions about.
  • the present invention has been made in view of the above problems, and in a vibration power generation apparatus that generates electricity by relatively moving the electret and the electrode facing each other, a gap between the electret and the electrode is suitably formed. It aims at providing the technology to do.
  • the present invention is a vibration power generation apparatus that performs vibration power generation by causing an electret group composed of a plurality of electrets and an electrode group composed of a plurality of electrodes to be displaced in a relative movement direction by external vibration, and the electret group A housing part that houses the electrode group, and a fixing member that is fixed to a bottom surface side of the housing part, wherein one of the electret group and the electrode group is provided as a fixing member-side power generation element A movable member housed in the housing so as to be capable of relative movement by external vibration while maintaining a state facing the member and the fixed member, and the electret group and the electrode group
  • the other is arranged so that the movable member provided as the movable member side power generation element and the fixed member can slide on the fixed member side, and the fixed member side power generation element and the A plurality of members interposed directly between the fixed member and the movable member so as to define
  • a support member The fixed member is stacked on the opposite side of the power generation substrate from the power generation substrate including the fixed member-side power generation element, and the movable member in the opposing direction of the fixed member and the movable member, and the plurality of supports
  • the sliding surface on which the member slides has a sliding substrate formed on a common substrate surface.
  • the electret group and the electrode group are displaced by external vibration in the relative movement direction, and vibration power generation is performed.
  • either the electret group or the electrode group is arranged as a fixed member side power generation element on the fixed member, and the other is arranged as a movable member side power generation element on the movable member. Both these members are housed inside the housing part, but the fixed member is fixed to the housing part, while the movable member is arranged to be movable relative to the fixed member.
  • relative movement for vibration power generation between the electret group and the electrode group is realized.
  • a plurality of support members are directly interposed between the movable member and the fixed member, and the movable member is supported so as to be relatively movable.
  • the sliding surface of the support member is formed on the sliding substrate among the power generation substrate and the sliding substrate, which are two stacked substrates included in the fixing member, on the fixing member side. Further, the sliding surface on the movable member side is formed on the surface of the movable member.
  • the gap a gap between the movable member-side power generation element provided in the movable member and the fixed member-side power generation element provided in the fixed member, which has a large effect on the power generation efficiency of the vibration power generation apparatus (hereinafter referred to as “power generation gap”, the thickness direction of the power generation substrate stacked adjacent to the sliding substrate (that is, the opposing direction of the fixed member and the movable member) is practically easy to suppress variation.
  • the opposing direction in addition to the variation (hereinafter simply referred to as “opposing direction”) and the variation in the height direction of the sliding member (that is, the opposing direction).
  • the variation in the position in the height direction of the surface (sliding surface) on which the support member contacts and slides with the fixing member is reflected.
  • the reference plane is likely to vary due to the influence of distortion of the casing and dimensional accuracy.
  • the sliding surfaces of the plurality of support members are formed on the substrate surface of the common sliding substrate. This means that a reference surface for positioning the movable member with respect to the fixed member in the facing direction is shared by a plurality of support members, and thereby the reference surface position in the facing direction between the supporting members. It is possible to eliminate as much as possible the variation of the. As a result, the power generation gap can be easily adjusted, and the power generation gap can be stably maintained at a suitable size.
  • the flatness of the substrate surface of the sliding substrate is improved as much as possible, and the sliding surfaces for the plurality of support members are formed on the substrate surface. From the viewpoint of the material of the sliding substrate, it is preferable to manufacture the sliding substrate with a glass member in order to improve the flatness.
  • the materials of the power generation substrate and the sliding substrate are: It is preferable that the materials are the same, and for example, a glass material or a ceramic material can be employed.
  • the sliding surfaces of the plurality of support members are on the substrate surfaces on both sides of the sliding substrate sandwiching the power generation substrate in a direction of relative movement of the movable member with respect to the fixed member. It may be formed to extend. By configuring the sliding surface in this way, the movable member can be stably supported by the plurality of support members.
  • the fixing member is fixed in a state where it is in contact with a casing unit side contact surface provided in the casing unit, and is in contact with the casing unit side contact surface.
  • the fixed member side contact surface that is a contact surface on the side may be formed on a part of the substrate surface of the sliding substrate that does not overlap the sliding surfaces of the plurality of support members. That is, the fixing member is positioned with respect to the casing by contacting the casing-side contact surface.
  • the fixing member side power generation element is fixed when the fixing member is fixed. Therefore, it is possible to avoid applying a mischievous external force to the power generation gap, and the formation and maintenance of the power generation gap is maintained.
  • the support member may be a steel ball that supports the movable member so as to be relatively movable by rotating.
  • the frictional force generated by the support member can be reduced, and more efficiently. Can be expected.
  • it can replace with the said steel ball
  • a gap between the electret and the electrode can be suitably formed.
  • FIG. 2A It is a figure which shows schematic structure of the electret group of the vibration electric power generating apparatus which concerns on this invention, and an electrode group. It is a top view of the vibration power generator concerning the present invention. It is sectional drawing of the vibration electric power generating apparatus shown to FIG. 2A. It is a figure explaining the principle of the vibration electric power generating apparatus which concerns on this invention. In the vibration electric power generating apparatus which concerns on this invention, it is a figure which shows the correlation with the gap distance between an electret group and an electrode group, and the electric power generation amount ratio regarding vibration electric power generation.
  • FIG. 1 shows a schematic configuration of a vibration power generation apparatus 10 according to the present invention, in particular, a configuration of an electret group 1a and an electrode group 5a provided on each of a movable member 1 and a fixed member 5 that perform vibration power generation by external vibration.
  • the electret and the electrode are arranged in a direction in which the relative movement direction of the movable member 1 with respect to the fixed member 5 is the X direction, and the directions in which the movable member 1 and the fixed member are opposed are the Z direction, the X direction, and The direction orthogonal to the Z direction is defined as the Y direction.
  • FIG. 1 is a cross-sectional view of the vibration power generator 10 taken along the ZX plane.
  • the movable member 1 and the fixed member 5 are accommodated in a housing 11 shown in FIG.
  • the movable member 1 and the fixed member 5 are configured to be relatively movable while maintaining a state of facing each other, and a support structure of the movable member 1 that enables the relative movement will be described later.
  • the fixing member 5 is fixed to the housing 11, and this point will also be described later.
  • both ends of the movable member 1 are respectively connected to the housing 11 by springs 14 (see FIG. 2 and the like), the movable member 1 itself is a fixed member fixed to the casing 11 by external vibration. 5 is configured to reciprocate (vibrate) relative to the other.
  • the movable member 1 and the fixed member 5 are configured to be relatively movable while being opposed to each other and maintaining a parallel state to each other, that is, maintaining a constant interval between the opposing surfaces. ing. Thereby, it becomes possible to generate an electrical signal for the pair of electrodes 6 and 7 on the fixed member 5 side by the action of the electret 2 on the movable member 1 side. Since this electric signal generation principle is a conventional technique, a detailed description thereof is omitted in this specification. Further, a configuration for maintaining a gap between the movable member 1 and the fixed member 5 will be described later.
  • an electret group 1a is formed on an electret substrate 1b.
  • the electret group 1a includes a plurality of electrets 2 provided on the surface of the movable member 1 facing the fixed member 5 and formed on a conductor, respectively, and a plurality of guard electrodes 4 that are not grounded.
  • the electrets 2 and the guard electrodes 4 are arranged alternately along the relative movement direction (X direction) of the movable member 1 with respect to the fixed member 5.
  • the plurality of electrets 2 and the plurality of guard electrodes 4 are each formed in a comb shape, and the respective electrets 2 and the respective guard electrodes 4 are arranged in a nested manner.
  • FIG. 1 is a ZX sectional view. Therefore, the electret 2 and the guard electrode 4 are illustrated as being alternately arranged.
  • the electret 2 is configured to hold a negative charge semipermanently.
  • the guard electrode 4 although the structure which is not grounded as above-mentioned is employ
  • an electric signal corresponding to external vibration can be taken out as a stable signal centered on 0 V by a first electrode 6 and a second electrode 7 described later, so that stable external vibration can be detected. Is useful.
  • the fixing member 5 has an electrode group 5a formed on an electrode substrate 5b.
  • the electrode group 5a is provided on the surface of the fixed member 5 facing the movable member 1, and includes a plurality of small electrode groups each including a pair of electrodes (first electrode 6 and second electrode 7).
  • the vibration power generation device 10 configured as described above, the relative position variation between the electrodes 6 and 7 due to the relative position variation of the movable member 1 having the plurality of electrets 2 with respect to the fixed member 5 due to external vibration. An electromotive force corresponding to (vibration) is generated, and power generation is performed. The generated power is rectified by the rectifier 11 and becomes an output of the vibration power generation apparatus 10.
  • FIG. 2A and 2B show a schematic configuration of the vibration power generation apparatus 10 according to the present embodiment.
  • 2A is a top view (top view in the XY plane) of the vibration power generation apparatus 10
  • FIG. 2B is a cross-sectional view along AA in FIG. 2A (cross-sectional view in the ZY plane).
  • FIG. 2A shows a state in which the upper surface 11c of the housing 11 is removed and the inside is visualized from above.
  • the fixed member 5 including the electrode group 5 a and the electrode substrate 5 b and the movable member 1 including the electret group 1 a and the electret substrate 1 b are accommodated in the casing 11 of the vibration power generation apparatus 10. .
  • the housing 11 has a substantially rectangular parallelepiped shape, and includes a top surface 11, a pair of side surfaces 11 a extending in the X direction that is a relative movement direction of the movable member 1, and a side surface orthogonal to the relative movement direction. It has a set of side surfaces 11d extending in the Y direction.
  • the bottom surface of the housing 11 is configured such that one surface of the fixing member 5 (the back surface of the base 9) also serves as the bottom surface of the housing 11 when the fixing member 5 is assembled to the housing 11. Become.
  • the fixing member 5 further includes a sliding substrate 5c in addition to the electrode group 5a and the electrode substrate 5b, and these members are sequentially stacked. Further, the fixing member 5 formed by laminating the layers in this manner is attached to the bottom of the housing 11 while being attached to the base 9. Therefore, as shown in FIG. 2B, after attachment, the bottom surface of the base 9 is exposed to the outside of the housing 11, and the electrode group 5a faces upward (inside the housing 11). On the other hand, with respect to the fixed member 5 fixed to the housing 11 in this way, the movable member 1 is supported via the support steel ball 12 so as to be able to move relative to the fixed member 5.
  • the support corresponds to the support of the movable member 1 by the support member according to the present invention.
  • a plurality of supporting steel balls 12 capable of supporting the movable member 1 are provided between a portion on the electret substrate 1b that does not interfere with the electret group 1a and the sliding substrate 5c. Be placed. That is, the movable member 1 is further arranged on the plurality of supporting steel balls 12 arranged on the sliding substrate 5c.
  • the power generation gap distance between the electret group 1a on the movable member 1 side and the electrode group 5a of the fixed member 5 is suitable for vibration power generation. It is defined as a predetermined distance.
  • the arrangement of the electrodes 6 and 7 provided on the fixed member 5 side and the arrangement of the electrets 2 provided on the movable member 1 side are made as much as possible.
  • Further supporting steel balls 13 are arranged between the movable member 1 and the inner wall surface of the side surface 11a so as to coincide with each other.
  • the supporting steel ball 13 is supported by the configuration on the movable member 1 side so as not to fall downward, and the detailed configuration will be described later.
  • a weight member 1c is attached to the electret substrate 1b in a direction opposite to the electret group 1a.
  • the weight member 1c is attached to increase the inertial force of the movable member 1 and to efficiently generate power by external vibration. Therefore, the size and mass of the weight member 1c are appropriately set based on the magnitude of external vibration assumed by the vibration power generation apparatus 10.
  • the edge part side protrusion 1d is installed on the both ends of the electret board
  • a support groove 1e in which the support steel ball 13 can be disposed is formed between the end side protrusion 1d and the central protrusion 1f. Therefore, as shown in FIG. 2A, two support grooves 1e are formed on each of the left and right sides of the movable member 1, and the support steel balls 13 are arranged in each.
  • the supporting steel balls 13 between the movable member 1 and the inner wall surface of the housing 11, the movement along the relative movement direction of the movable member 1 with respect to the fixed member 5 can be smoothly performed. It is possible to make it happen.
  • a spring 14 is disposed between the movable member 1 and each of the two side surfaces 11d of the housing 11 via a connection portion 15 provided substantially at the center in the XY plane of the movable member 1.
  • the spring 14 is connected to the substantially central portion of the side surface 11d, and the elastic force of each spring 14 is arranged to act in the relative movement direction (X direction). Due to the elastic force of the spring 14, the movable member 1 that has received external vibration reciprocates within the housing 11, thereby realizing efficient vibration power generation.
  • the movable member 1 is supported by the Z-direction support steel ball 12 (hereinafter simply referred to as “support steel ball 12”) with respect to the sliding substrate 5c.
  • the support to the side surface 11a by the Y direction support steel balls 13 (hereinafter simply referred to as “support steel balls 13”) is performed independently.
  • the relative movement direction is uniquely determined by the geometric condition, and the relative movement of the movable member 1 with respect to the fixed member 5 can be performed stably.
  • FIG. 3 is an excerpt from the structure of the vibration power generator 10 shown in FIG. 2B regarding the support structure of the movable member 1 by the support steel balls 12. Therefore, in FIG. 3, only the electret substrate 1b is described for the movable member 1, and only the electrode substrate 5b and the sliding substrate 5c are described for the fixed member 5. Description of the electret group 1a, the electrode group 5a, etc. Is omitted.
  • FIG. 4 shows a correlation between the distance of the gap (power generation gap) between the electret group 1 a and the electrode group 5 a in the vibration power generation apparatus 10 and the power generation ratio in the vibration power generation apparatus 10.
  • the power generation amount ratio is a ratio related to the power generation amount when the power generation amount when the power generation gap distance is 65 ⁇ m is 1.
  • the maximum power generation output Pmax of the vibration power generation apparatus 10 can theoretically be calculated according to the following Equation 1.
  • Pmax ⁇ 2 nA ⁇ 2 ⁇ f / [( ⁇ e ⁇ 0 / d) ⁇ (( ⁇ e g / d) +1)]
  • is the surface charge density of the electret
  • n is [amplitude of the pair of substrates ⁇ pitch of the electret]
  • A is the maximum area where the electret and the electrode overlap
  • ⁇ e is the relative permittivity of the electret
  • d the thickness of the electret
  • ⁇ 0 the dielectric constant of the vacuum
  • g the power generation gap distance
  • f is the frequency of vibration input to the vibration power generation apparatus 10 from the outside.
  • the power generation gap distance is set to, for example, 70 ⁇ m at which the power generation amount ratio is the highest, the power generation gap distance is reduced due to the support structure of the vibration power generation apparatus 10. If there is a variation in the range indicated by Y in the middle, the power generation ratio varies greatly, so that the production yield of the power generation vibration element 10 is extremely reduced. On the other hand, if the variation in the power generation gap distance is within the range indicated by X in FIG. 4, the variation in the power generation ratio is small and the production yield of the power generation vibration element 10 can be maintained high.
  • the sliding substrate 5c With respect to the sliding substrate 5c, the flatness of the substrate surface on which the sliding surfaces of all the supporting steel balls 12 are formed is extremely high (that is, the variation in the flatness of the substrate surface is small).
  • the sliding substrate 5c is manufactured. Specifically, in order to increase the flatness, the sliding substrate 5c is made of a glass member. The flatness of the sliding substrate 5c is measured with respect to a reference plane defined by three of the measurement points while measuring the height of the surface of the sliding substrate 5c at a plurality of points (four or more points). These are numerical values measured as to how much the surface height of other measurement points is displaced. Similarly, the electret substrate 1b is manufactured from a glass member so that the flatness thereof is extremely high.
  • the power generation gap distance greatly affects the power generation efficiency of the vibration power generation apparatus 10 as shown in FIG. 4, but the vibration having the support structure between the movable member 1 and the fixed member 5 as shown in FIG. 3.
  • the variation in the power generation gap distance is referred to as variation in the thickness direction (Z direction) of the electrode substrate 5 b (hereinafter referred to as “first variation”) from the structural viewpoint of the vibration power generation device 10.
  • Second variation a variation in the height direction (Z direction) of the support steel ball 12
  • third variation Variations in the height direction (Z direction) of the sliding surfaces between the sliding surfaces of the steel balls 12
  • the first variation and the second variation are dimensional variations of the member itself.
  • the flatness can be increased by manufacturing the glass substrate in the same manner as the sliding substrate 5c.
  • the value of the first variation is relatively It can be made smaller.
  • the second variation related to the support steel ball 12 the value of the second variation can be made relatively small by increasing the processing accuracy of the support steel ball 12. Therefore, these variations are easy to control.
  • the sliding surfaces of all the supporting steel balls 12 used in the vibration power generation apparatus 10 are formed on the substrate surface of the common sliding substrate 5c, and The flatness of the sliding substrate 5c is formed in an extremely high state. Therefore, the third variation can also be made relatively small.
  • the housing 11 is fitted in a state where the movable member 1 and the fixed member 5 are opposed to each other with the support steel ball 12 interposed therebetween (a state shown in the upper part of FIG. 3). Then, a complete body of the vibration power generator 10 is formed (state shown in the lower part of FIG. 3). At this time, the housing 11 does not affect the power generation gap distance between the movable member 1 and the fixed member 5 at all.
  • the vibration power generator 10 has a support structure that can suppress as much as possible the possibility that the third variation fluctuates during the manufacturing process. Furthermore, the sliding substrate 5c made of a glass member has a very high resistance to continuous sliding of the supporting steel balls 12, thermal stress due to external temperature changes, and the like. Therefore, in the vibration power generator 10, the third variation is unlikely to fluctuate, and as a result, a suitable power generation efficiency can be maintained over a long period of time.
  • the vibration power generation apparatus 10 can reduce various variations that affect the power generation gap distance, which should be considered from the structural viewpoint, and as a result, the vibration power generation apparatus 10 can be easily manufactured, The yield can be improved.
  • As a factor affecting the power generation gap distance in addition to the above-described variation from the structural viewpoint, there is also a variation caused by the manufacturing method in practice. For example, when the method of fixing the electrode substrate 5b and the sliding substrate 5c with an adhesive is adopted, the variation in the height direction (Z direction) of the adhesive affects the power generation gap distance.
  • the configuration for suppressing the variation from the structural viewpoint that is, the usefulness of the support structure shown in FIG. 3 is notable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

エレクトレットと電極とを対向させた状態で相対的に移動させることで発電を行う振動発電装置において、エレクトレットと電極とのギャップを好適に形成する。外部振動によって、エレクトレット群と電極群が可動部材および固定部材に設けられ、且つ両部材が相対移動方向に変位することで振動発電を行う振動発電装置であって、エレクトレット群と電極群は筐体部に収容される。更に、固定部材上を摺動可能となるように配置され、且つ固定部材側発電要素と可動部材側発電要素との間の間隙を規定するように、固定部材と可動部材との間に直接介在し、該固定部材に対して該可動部材を相対移動可能に支持する、複数の支持部材が配置される。そして、複数の支持部材が摺動する摺動面が、固定部材が有する基板の、共通する基板表面上に形成される。

Description

振動発電装置
 本発明は、外部振動により発電を行う振動発電装置に関する。
 昨今の省エネルギーの流れから、化石燃料等に依存しない日常的に存在する環境エネルギーが注目されている。環境エネルギーとして太陽光や風力等による発電エネルギーは広く知られているが、これらに劣らないエネルギー密度を有する環境エネルギーとして、日常周囲に存在する振動エネルギーを挙げることができる。
 そして、この振動エネルギーを利用して発電を行う振動発電装置が開発されており、その発電装置には電荷を半永久的に保持できるエレクトレットが広く利用されている。このようにエレクトレットを利用して振動発電を行う場合、そのエレクトレットと電極とのギャップを、発電効率が良好となる所定距離に維持することが求められる。そこで、特許文献1に示すように、エレクトレットが設けられた基板と電極が設けられた基板を対向させる構造において、一方の基板を支持する支持部材と他方の基板を支持する支持部材との間にギャップを調整するための調整部材を配置する技術が開示されている。
 また、エレクトレットと電極とのギャップを維持する構成として、特許文献2に示すように、可動部材と固定部材の相対移動により発電を行う振動発電装置の筐体に、固定部材を装着するための第一基準面と、可動部材を支持するための摺動可能な鋼球を位置決めする第二基準面とを設け、第一基準面を介した固定部材の固定と、第二基準面および鋼球を介した可動部材の配置により、可動部材を構成する基板の厚み誤差に影響されにくいギャップ形成技術が開示されている。また、電荷による斥力を利用して、可動部材と固定部材とのギャップが狭まるのを抑制する技術が、特許文献3に開示されている。
特開2009-148124号公報 国際公開第2011/086830号パンフレット 特開2008-278607号公報
 エレクトレットを使用した振動発電装置においては、上記の通り、そのエレクトレットと電極とのギャップの大きさが、発電効率に大きく影響してくる。そのため、振動発電装置の組み立てにあたり、当該ギャップを発電効率が良好な状態となる距離に調整するとともに、その距離を維持することが重要と考えられる。ここで、上述した特許文献1に係る従来技術では、調整部材を介して調整を行う必要があるため、当該ギャップを適切な大きさに調整するのは容易ではない。
 また、上述した特許文献2に係る従来技術は、発電振動素子の筐体に、ギャップ形成のための二つの基準面を設置するものである。しかし、可動部材を支持する鋼球の摺動面、すなわち当該二つの基準面のうちの一つである第二基準面については、筐体の一部が該第二基準面として機能し、且つ筐体の構成によって鋼球が摺動する溝部が形成されている。そのため、筐体の歪みや寸法精度が、第二基準面に影響しやすく、以て、エレクトレットと電極とのギャップを好適に形成するのが難しい場合がある。一般に振動発電装置の筐体としては、製造のし易さ等の観点から樹脂材料が利用される場合がある。樹脂材料は加工や周囲温度の影響を受けて変形しやすいため、上記のような第二基準面への影響が出やすい。また、特許文献3に係る従来技術は、電荷による斥力を利用して可動部材と固定部材とのギャップが狭まるのを抑制しようとするものであって、ギャップそのものをどのように好適に形成するかについて有用な示唆を与えるものではない。
 本発明は、上記問題に鑑みてなされたものであり、エレクトレットと電極とを対向させた状態で相対的に移動させることで発電を行う振動発電装置において、エレクトレットと電極とのギャップを好適に形成する技術を提供することを目的とする。
 本発明においては、上記課題を解決するために、以下の構成を採用することとした。すなわち、本発明は、外部振動によって、複数のエレクトレットからなるエレクトレット群と複数の電極からなる電極群が、相対移動方向に変位することで振動発電を行う振動発電装置であって、前記エレクトレット群と前記電極群を収容する筐体部と、前記筐体部の底面側に固定される固定部材であって、前記エレクトレット群と前記電極群のうち一方が、固定部材側発電要素として設けられた固定部材と、前記固定部材に対して対向した状態を保ったまま、外部振動により相対移動が可能となるように前記筐体部内に収容される可動部材であって、前記エレクトレット群と前記電極群のうち他方が、可動部材側発電要素として設けられた可動部材と、前記固定部材上を摺動可能となるように配置され、且つ前記固定部材側発電要素と前記可動部材側発電要素との間の間隙を規定するように、前記固定部材と前記可動部材との間に直接介在し、該固定部材に対して該可動部材を相対移動可能に支持する、複数の支持部材と、を備える。そして、前記固定部材は、前記固定部材側発電要素を含む発電基板と、前記固定部材と前記可動部材の対向方向において前記発電基板の該可動部材とは反対側に積層され、且つ前記複数の支持部材が摺動する摺動面が、共通する基板表面上に形成される摺動基板と、を有する。
 本発明に係る振動発電装置では、エレクトレット群と電極群とが相対移動方向に外部振動によって変位することで、振動発電が行われる。ここで、エレクトレット群と電極群のうち何れかが固定部材に固定部材側発電要素として配置され、他方が可動部材に可動部材側発電要素として配置される。これらの両部材は、筐体部の内部に収容されるが、固定部材が、筐体部に対して固定される一方で、可動部材は、固定部材に対して相対移動可能となるように配置されることで、上記のエレクトレット群と電極群の振動発電のための相対移動が実現される。
 ここで、可動部材と固定部材との間に複数の支持部材が直接介在して、可動部材を相対移動可能に支持している。そして、この支持部材の摺動面は、固定部材側では、該固定部材に含まれる積層された二つの基板である発電基板と摺動基板のうち、該摺動基板上に形成される。また、可動部材側の摺動面は、該可動部材の表面上に形成されることになる。したがって、可動部材に設けられている可動部材側発電要素と固定部材に設けられている固定部材側発電要素との間のギャップであって、振動発電装置の発電効率に大きな影響を及ぼすギャップ(以下、「発電ギャップ」と称する)の精度には、実用的にはばらつきを抑制しやすい、摺動基板に隣接して積層される発電基板の厚さ方向(すなわち、固定部材と可動部材の対向方向(以下、単に「対向方向」と称する)のばらつきと、摺動部材の高さ方向(すなわち、対向方向)のばらつきに加えて、対向方向において固定部材に対する可動部材の高さを決定するための基準面であって、支持部材が固定部材に接触、摺動する面(摺動面)の高さ方向の位置のばらつきが反映されることになる。
 従来技術では、上記の通り、この摺動面が筐体の一部によって形成されていたため、筐体の歪みや寸法精度の影響を受けて、基準面がばらつきやすかった。しかし、本発明に係る振動発電装置においては、上記の通り、複数の支持部材の摺動面は、共通する摺動基板の基板表面上に形成されている。このことは、対向方向において該固定部材に対して該可動部材を位置決めするための基準面を、複数の支持部材において共通化することを意味し、これにより支持部材間の対向方向における基準面位置のばらつきを可及的に排除することが可能となる。この結果、発電ギャップの調整が容易となり、また、安定的に発電ギャップを好適な大きさに維持することが可能となる。
 なお、実用的には、上記基準面の共通化が行われても、摺動基板の基板表面自体の歪み(平たん度のばらつき)が、基準面のばらつきとして存在することになる。そこで、摺動基板の基板表面の平たん度を可及的に向上した上で、複数の支持部材のための摺動面を、当該基板表面上に形成するのが好ましい。そして、摺動基板の材料の観点に立てば、その平たん度を向上させるためにガラス部材により当該摺動基板を製造するのが好ましい。
 更に、実用的には、発電基板と摺動基板との間には、両基板を積層、固定するために接着剤等で固定される場合がある。このような場合、発電ギャップの精度には、接着剤層の厚さのばらつきも反映されることになる。そして、接着剤によって両基板が固定される場合には、発電基板と摺動基板の材料が異なると熱応力による歪みが顕著になる可能性があるため、発電基板と摺動基板の材料は、同質の材料である方が好ましく、例えば、ガラス材料やセラミック材料等が採用できる。
 ここで、上記の振動発電装置において、前記複数の支持部材の摺動面は、前記発電基板を挟んだ前記摺動基板の両側の基板表面に、前記可動部材の前記固定部材に対する相対移動方向に延在するように形成されてもよい。摺動面をこのように構成することで、複数の支持部材によって、可動部材を安定して支持することが可能となる。
 また、上述までの振動発電装置において、前記固定部材は、前記筐体部に設けられた筐体部側接触面に接触した状態で固定され、前記筐体部側接触面に接触する該固定部材側の接触面である固定部材側接触面は、前記複数の支持部材の摺動面とは重ならない前記摺動基板の基板表面の一部に形成されてもよい。すなわち、固定部材は、筐体部側接触面に接触することで、筐体に対する固定部材が位置決めされることになる。ただし、このとき筐体部は、発電基板ではなく摺動基板上の部位だって摺動面とは重ならない部位(固定部材側接触面)に接触するため、固定部材の固定時に固定部材側発電要素にいたずらな外力が掛かってしまうことを回避でき、発電ギャップの好適な形成、維持が保たれることになる。
 なお、上述までの振動発電装置において、支持部材は、回転することで可動部材を相対移動可能に支持する鋼球であってもよく、この場合、支持部材による摩擦力を軽減でき、より効率的な振動発電が期待できる。また、当該鋼球に代えて、支持部材として、摺動面上をスライドするように移動することで可動部材を相対移動可能に支持するスライド部材を採用することもできる。
 エレクトレットと電極とを対向させた状態で相対的に移動させることで発電を行う振動発電装置において、エレクトレットと電極とのギャップを好適に形成することが可能となる。
本発明に係る振動発電装置のエレクトレット群、および電極群の概略構成を示す図である。 本発明に係る振動発電装置の上面図である。 図2Aに示す振動発電装置の断面図である。 本発明に係る振動発電装置の原理を説明する図である。 本発明に係る振動発電装置において、エレクトレット群と電極群との間のギャップ距離と、振動発電に関する発電量比との相関を示す図である。
 以下に、図面を参照して、本発明の実施形態に係る振動発電装置について説明する。なお、以下の実施形態の構成は例示であり、本発明はこの実施の形態の構成に限定されるものではない。
 図1は、本発明に係る振動発電装置10の概略構成、特に、外部振動による振動発電を行う可動部材1と固定部材5のそれぞれに設けられたエレクトレット群1aおよび電極群5aの構成を示す。なお、図1においては、エレクトレットおよび電極が並べられる方向であって、固定部材5に対する可動部材1の相対移動方向をX方向、可動部材1と固定部材が対向する方向をZ方向、X方向およびZ方向に直交する方向をY方向とする。そして、図1は振動発電装置10をZX平面で切断したときの断面図である。
 振動発電装置10において、可動部材1及び固定部材5は、後述する図2A等に示す筐体11の内部に収納される。可動部材1と、固定部材5は、互いに対向した状態を保ったまま、相対的に移動可能に構成されており、当該相対移動を可能とする可動部材1の支持構造については後述する。また、固定部材5は筐体11に固定されており、この点についても後述する。これに対して、可動部材1は、その両端がそれぞれバネ14によって筺体11につながれているため(図2等を参照)、可動部材1そのものは、外部振動によって筐体11に固定された固定部材5に対して相対的に往復運動(振動)するように構成されている。
 なお、可動部材1と固定部材5は、互いに対向した状態で、かつ互いに平行な状態を保ったまま、つまり対向する面の間隔が一定の状態を保ったまま、相対的に移動可能に構成されている。これにより、可動部材1側のエレクトレット2の作用によって固定部材5側の一対の電極6、7に電気信号を生成することが可能となる。この電気信号の生成原理については従来技術であることから、本明細書ではその詳細な説明は割愛する。また、可動部材1と固定部材5との間の間隔を保持する構成についても後述する。
 ここで、可動部材1側の構造について説明する。可動部材1は、エレクトレット基板1b上に、エレクトレット群1aが形成されている。このエレクトレット群1aは、可動部材1における固定部材5との対向面側に設けられ、それぞれ導電体上に形成された複数のエレクトレット2と、いずれも接地されていない複数のガード電極4を含む。そして、固定部材5に対する可動部材1の相対移動方向(X方向)に沿って、エレクトレット2とガード電極4が交互に並ぶように配置されている。この複数のエレクトレット2と複数のガード電極4はそれぞれ櫛状に形成され、それぞれのエレクトレット2と、それぞれのガード電極4が入れ子状に配置されているが、上記のとおり、図1はZX断面図であるため、エレクトレット2とガード電極4が交互に配置されているように図示される。本実施形態においては、エレクトレット2はマイナスの電荷を半永久的に保持するように構成されている。
 なお、ガード電極4については、本実施形態では上記の通り接地させない構成を採用しているが、それに代えて接地させる構成を採用してもよい。ガード電極4を接地させることで、後述する第一電極6と第二電極7によって外部振動に応じた電気信号を0Vを中心とした安定した信号として取り出せることから、安定した外部振動の検出のためには有用である。
 次に、固定部材5側の構造について説明する。固定部材5は、電極基板5b上に、電極群5aが形成されている。この電極群5aは、固定部材5おける可動部材1との対向面側に設けられ、一対の電極(第一電極6と第二電極7)を一組とする小電極群を複数組み含む。
 このように構成される振動発電装置10では、外部振動による複数のエレクトレット2を有する可動部材1の固定部材5に対する相対的な位置変動に起因して、電極6、7間に当該相対的位置変動(振動)に応じた起電力が生じ、発電が行われる。そして、発電された電力は整流器11によって整流され、振動発電装置10の出力となる。
 図2A、図2Bに本実施例に係る振動発電装置10の概略構成を示す。図2Aは、振動発電装置10の上面図(XY平面における上面図)であり、図2Bは、図2AにおけるA-A断面図(ZY平面における断面図)である。ただし、図2Aは、筐体11の上面11cが外され、その内部が上方より可視化された状態を表している。これらの図からも分かるように、電極群5aおよび電極基板5bを含む固定部材5と、エレクトレット群1aおよびエレクトレット基板1bを含む可動部材1は、振動発電装置10の筐体11に収容されている。当該筐体11は、略直方体の形状を有し、上面11、可動部材1の相対移動方向であるX方向に延在する一組の側面11aと、当該相対移動方向に直交する側面であってY方向に延在する一組の側面11dを有する。なお、筐体11の底面は、後述するように、固定部材5が筐体11に組付けられることで、該固定部材5の一面(ベース9の背面)が筐体11の底面を兼ねることになる。
 そして、図2Bに示すように、固定部材5は、上記電極群5a、電極基板5bに加え、摺動基板5cを更に含み、これらが順に積層されて形成される。さらに、このように各層が積層されて形成される固定部材5は、ベース9に取り付けられた状態で筐体11の底部に取り付けられる。したがって、図2Bに示すように、取り付け後において、ベース9の底面が筐体11の外側に露出するとともに、電極群5aが上方(筐体11の内側)を向いた状態となる。一方で、このように筐体11に固定された固定部材5に対して、可動部材1は支持用鋼球12を介して該固定部材5に対して相対移動が可能となるように支持されており、当該支持が、本発明に係る支持部材による可動部材1の支持に相当する。具体的には、図2Bに示すように、エレクトレット群1aと干渉しないエレクトレット基板1b上の部分と、摺動基板5cとの間に、可動部材1を支持可能な複数の支持用鋼球12が配置される。すなわち、摺動基板5c上に配置された複数の支持用鋼球12の上に、更に可動部材1が配置される構成となっている。このように可動部材1が支持用鋼球12で支持された状態で、可動部材1側のエレクトレット群1aと、固定部材5の電極群5aとの間の発電ギャップ距離が、振動発電に適した所定の距離に規定される。
 また、可動部材1については、固定部材5に対する相対移動において、固定部材5側に設けられた電極6、7の並びと、可動部材1側に設けられたエレクトレット2の並びとが可及的に一致するように、可動部材1と側面11aの内壁面との間に更なる支持用鋼球13が配置されている。なお、この支持用鋼球13は、下方に落下しないように可動部材1側の構成により支持されているが、その詳細な構成については後述する。ここで、可動部材1においては、エレクトレット基板1bに対して、エレクトレット群1aとは反対方向にウェイト部材1cが取り付けられている。このウェイト部材1cは、可動部材1の慣性力を大きくし、外部振動による発電を効率的に行うために取り付けられるものである。したがって、ウェイト部材1cの大きさ、質量は、振動発電装置10が想定する外部振動の大きさ等に基づいて適宜設定される。
 そして、可動部材1においては、筐体11の側面11aの内壁面と対向する、エレクトレット基板1bの両端上に端部側突起1dと、当該エレクトレット基板1bの中央部分に中央突起1fが設置され、端部側突起1dと中央突起1fとの間に、支持用鋼球13が配置可能な支持用溝1eが形成される。したがって、図2Aに示すように、可動部材1の左右それぞれに2つずつ、支持用溝1eが形成され、それぞれに支持用鋼球13が配置される。このように可動部材1の側方において、筐体11の内壁面との間に支持用鋼球13を配置させることで、固定部材5に対する可動部材1の相対移動方向に沿った移動を円滑に行わせることが可能となる。
 更に、可動部材1のXY平面における概ね中央部分に設けられた接続部15を介して、可動部材1と筐体11の2つの側面11dのそれぞれとの間にバネ14が配置されている。図2Aに示す状態では、バネ14は側面11dの概ね中央部分に接続され、各バネ14による弾性力は、相対移動方向(X方向)に作用するように配置されている。バネ14の弾性力により、外部振動を受けた可動部材1は筐体11内で往復運動を行い、効率的な振動発電が実現される。
 このように、本実施例に係る振動発電装置10では、可動部材1については、Z方向支持用鋼球12(以下、単に「支持用鋼球12」という)による摺動基板5cに対する支持と、Y方向支持用鋼球13(以下、単に「支持用鋼球13」という)による側面11aに対する支持が独立して行われていることになる。この両支持が存在することで、幾何学的条件により相対移動方向が一義的に決定されることになり、固定部材5に対する可動部材1の相対移動を安定して行うことができる。
 ここで、本実施例に係る振動発電装置10における、支持用鋼球12による可動部材1の支持構造について、図3に基づいて詳細に説明する。図3は、図2Bで示した振動発電装置10の構造のうち、支持用鋼球12による可動部材1の支持構造に関する部分を抜粋したものである。したがって、図3においては、可動部材1についてはエレクトレット基板1bだけが記載され、固定部材5については電極基板5bおよび摺動基板5cだけが記載されており、エレクトレット群1aおよび電極群5a等の記載は省略されている。
 また、図4に振動発電装置10における、エレクトレット群1aおよび電極群5aとの間のギャップ(発電ギャップ)の距離と、振動発電装置10での発電量比との相関を示す。発電量比は、発電ギャップ距離が65μmのときの発電量を1としたときの、該発電量に関する比である。
 ここで、振動発電装置10の最大発電出力Pmaxは、理論的には以下の式1に従って算出できる。
Pmax=σ2nA・2πf/[(εeε0/d)×((εeg/d)+1)]・・・(式1)
 なお、σはエレクトレットの表面電荷密度、nは[一対の基板の振幅÷エレクトレットのピッチ]、Aはエレクトレットと電極が重なり合う最大面積、εはエレクトレットの比誘電率、dはエレクトレットの厚み、εは真空の誘電率、gは発電ギャップ距離、fは振動発電装置10に外部から入力される振動の周波数である。
 そして、図4からも理解できるように、発電ギャップ距離を、例えば、発電量比が最も高くなる70μmに設定しようとした場合、振動発電装置10の支持構造に起因して発電ギャップ距離が図4中のYで示す範囲でばらつくと、発電量比が大きくばらつくため、発電振動素子10の製造上の歩留まりが極めて低下してしまう。一方で、発電ギャップ距離のばらつきが図4中のXで示す範囲で収まれば、発電量比の変動は小さく、発電振動素子10の製造上の歩留まりを高い状態に維持することができる。
 そこで、本発明に係る振動発電装置10を見てみると、図3の上段に示すように、電極群5aが配置される電極基板5bではなく、固定部材5を構成する摺動基板5cの基板表面上に直接、支持用鋼球12が配置される。この構成については、振動発電装置10で使用される全ての支持用鋼球12(本実施例においては、4個の支持用鋼球12)に適用されている。その結果、全ての支持用鋼球12の摺動面(可動部材1が相対移動を行う際に、支持用鋼球12が転がりながら摺動する面)が、摺動基板5cの共通する基板表面上に形成されることになる。また、可動部材1に対しては、全ての支持用鋼球12はエレクトレット基板1bに接触するため、可動部材1側の摺動面は、全てエレクトレット基板1bの基板表面上に形成されることになる。
 そして、摺動基板5cについては、全ての支持用鋼球12の摺動面が形成される基板表面の平たん度が極めて高くなるように(すなわち、当該基板表面の平たん度のばらつきが小さくなるように)、摺動基板5cは製造されている。具体的には、平たん度を高めるために、摺動基板5cはガラス部材で製造されている。なお、摺動基板5cにおける平たん度は、摺動基板5cの表面の高さを複数点(4点以上)で計測するとともに、その計測点のうち3点で画定される基準面に対して、他の計測点の表面高さがどの程度変位しているかについて計測された数値である。また、エレクトレット基板1bについても、同じようにその平たん度が極めて高くなるようにガラス部材で製造されている。
 ここで、発電ギャップ距離が振動発電装置10の発電効率に大きく影響を及ぼすのは図4に示す通りだが、図3に示すような可動部材1と固定部材5との間の支持構造を有する振動発電装置10においては、発電ギャップ距離のばらつきには、振動発電装置10の構造的観点からは、電極基板5bの厚さ方向(Z方向)のばらつき(以下、「第一ばらつき」と称する)と、支持用鋼球12の高さ方向(Z方向)のばらつき(以下、「第二ばらつき」と称する)と、支持用鋼球12が摺動し接触する摺動面であって、複数の支持用鋼球12の摺動面間の、該摺動面の高さ方向(Z方向)の位置のばらつき(以下、「第三ばらつき」と称する)が反映されることになる。
 第一ばらつきと第二ばらつきは、部材そのものの寸法のばらつきである。電極基板5bに関係する第一ばらつきについては、摺動基板5cと同じようにガラス部材で製造することで、その平たん度を高めることができ、その結果、第一ばらつきの値は、比較的小さくすることが可能である。また、支持用鋼球12に関係する第二ばらつきについても、支持用鋼球12の加工精度を挙げることで、第二ばらつきの値も比較的小さくすることができる。したがって、これらのばらつきは制御がし易い。
 ここで、第三ばらつきについては、上記の通り、振動発電装置10に使用される全ての支持用鋼球12の摺動面が、共通する摺動基板5cの基板表面上に形成され、且つ当該摺動基板5cの平たん度は極めて高い状態に形成されている。したがって、第三ばらつきも比較的小さくすることができる。また、振動発電装置10の製造にあたって、支持用鋼球12を挟んで可動部材1と固定部材5とを対向させた状態(図3の上段に示す状態)に、筐体11を嵌め込むことで、振動発電装置10の完成体が形成される(図3の下段に示す状態)。このときに、筐体11は、可動部材1と固定部材5との間の発電ギャップ距離には、何ら影響を及ぼすことはない。そのため、振動発電装置10は、製造過程において第三ばらつきが変動する可能性を可及的に抑制し得る支持構造を有している。更に、ガラス部材で製造された摺動基板5cは、継続的な支持用鋼球12の摺動や、外部の温度変化による熱応力等に対して、非常に高い耐性を有している。そのため、振動発電装置10においては、第三ばらつきは変動しにくく、その結果、好適な発電効率を長期間にわたって維持することができる。
 このように振動発電装置10は、その構造的観点から考慮すべき、発電ギャップ距離に影響を及ぼす様々なばらつきを低減することができ、結果として、振動発電装置10の製造を容易にし、また、その歩留まりを向上させることができる。なお、発電ギャップ距離に影響を及ぼす要因として、上記の構造的観点によるばらつきの他に、実用的には製造工法に起因するばらつきも存在している。例えば、電極基板5bと摺動基板5cとを接着剤で固定する工法を採用している場合は、その接着剤の高さ方向(Z方向)のばらつきが、発電ギャップ距離に影響してくる。しかし、この点を考慮しても、上記構造的観点によるばらつきを抑制するための構成、すなわち図3に示す支持構造の有用性は特筆すべきものである。
 1・・・・可動部材
 1a・・・・エレクトレット群
 1b・・・・エレクトレット基板
 1c・・・・ウェイト部材
 2・・・・エレクトレット
 5・・・・固定部材
 5a・・・・電極群
 5b・・・・電極基板
 5c・・・・摺動基板
 6、7・・・・電極
 10・・・・振動発電装置
 11・・・・筐体
 11a・・・・側面
 11d・・・・側面
 12・・・・支持用鋼球(Z方向支持用鋼球)
 13・・・・支持用鋼球(Y方向支持用鋼球)
 14・・・・バネ
 15・・・・連結部

Claims (4)

  1.  外部振動によって、複数のエレクトレットからなるエレクトレット群と複数の電極からなる電極群が、相対移動方向に変位することで振動発電を行う振動発電装置であって、
     前記エレクトレット群と前記電極群を収容する筐体部と、
     前記筐体部の底面側に固定される固定部材であって、前記エレクトレット群と前記電極群のうち一方が、固定部材側発電要素として設けられた固定部材と、
     前記固定部材に対して対向した状態を保ったまま、外部振動により相対移動が可能となるように前記筐体部内に収容される可動部材であって、前記エレクトレット群と前記電極群のうち他方が、可動部材側発電要素として設けられた可動部材と、
     前記固定部材上を摺動可能となるように配置され、且つ前記固定部材側発電要素と前記可動部材側発電要素との間の間隙を規定するように、前記固定部材と前記可動部材との間に直接介在し、該固定部材に対して該可動部材を相対移動可能に支持する、複数の支持部材と、を備え、
     前記固定部材は、
     前記固定部材側発電要素を含む発電基板と、
     前記固定部材と前記可動部材の対向方向において前記発電基板の該可動部材とは反対側に積層され、且つ前記複数の支持部材が摺動する摺動面が、共通する基板表面上に形成される摺動基板と、
     を有する、振動発電装置。
  2.  前記複数の支持部材の摺動面は、前記発電基板を挟んだ前記摺動基板の両側の基板表面に、前記可動部材の前記固定部材に対する相対移動方向に延在するように形成される、
     請求項1に記載の振動発電装置。
  3.  前記固定部材は、前記筐体部に設けられた筐体部側接触面に接触した状態で固定され、
     前記筐体部側接触面に接触する該固定部材側の接触面である固定部材側接触面は、前記複数の支持部材の摺動面とは重ならない前記摺動基板の基板表面の一部に形成される、
     請求項1又は請求項2に記載の振動発電装置。
  4.  前記発電基板と、前記摺動基板は、ガラス材料からなる基板である、
     請求項1から請求項3の何れか1項に記載の振動発電装置。
PCT/JP2013/083554 2012-12-28 2013-12-16 振動発電装置 WO2014103762A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380067973.0A CN104885353B (zh) 2012-12-28 2013-12-16 振动发电装置
US14/758,140 US9748869B2 (en) 2012-12-28 2013-12-16 Vibration power generator
EP13868591.2A EP2940854B1 (en) 2012-12-28 2013-12-16 Vibration power generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012288169A JP6032006B2 (ja) 2012-12-28 2012-12-28 振動発電装置
JP2012-288169 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014103762A1 true WO2014103762A1 (ja) 2014-07-03

Family

ID=51020850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083554 WO2014103762A1 (ja) 2012-12-28 2013-12-16 振動発電装置

Country Status (6)

Country Link
US (1) US9748869B2 (ja)
EP (1) EP2940854B1 (ja)
JP (1) JP6032006B2 (ja)
CN (1) CN104885353B (ja)
TW (1) TWI505627B (ja)
WO (1) WO2014103762A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078666A (zh) * 2014-11-04 2017-08-18 三星电子株式会社 能量采集器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017037793A1 (ja) * 2015-08-28 2017-03-09 オムロン株式会社 電源装置
EP3396843A4 (en) * 2015-11-25 2019-10-09 The University of Tokyo ELECTROSTATIC INDUCTION GENERATION PRODUCTION ELEMENT
CN105656344B (zh) * 2016-03-02 2017-10-20 北京石油化工学院 一种基于介电弹性体的汽车轮胎发电装置
CN108347198B (zh) * 2017-01-25 2020-06-16 北京纳米能源与系统研究所 驻极体自发电装置及驻极体自发电智能鞋
CN106982002A (zh) * 2017-05-26 2017-07-25 成都润泰茂成科技有限公司 一种能够稳定贮藏电荷的微型振动发电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278607A (ja) 2007-04-27 2008-11-13 Sanyo Electric Co Ltd 静電変換装置およびこの静電変換装置を搭載する容量検知機器
JP2009148124A (ja) 2007-12-18 2009-07-02 Sanyo Electric Co Ltd 静電動作装置
JP2011097807A (ja) * 2009-11-02 2011-05-12 Panasonic Corp 発電装置
WO2011086830A1 (ja) 2010-01-14 2011-07-21 オムロン株式会社 静電誘導型発電装置
JP2012100404A (ja) * 2010-11-01 2012-05-24 Seiko Epson Corp 発電装置及び電子機器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5081832B2 (ja) * 2006-10-30 2012-11-28 三洋電機株式会社 静電動作装置
US8283834B2 (en) * 2007-10-25 2012-10-09 Sanyo Electric Co., Ltd. Power generating apparatus having ball bearings
JP5397687B2 (ja) * 2009-10-30 2014-01-22 アイシン・エィ・ダブリュ株式会社 ステータ
JP2011135710A (ja) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd 発電装置および発電装置の組立方法
CN102290968B (zh) * 2011-06-17 2014-02-12 北京大学 一种微发电机及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278607A (ja) 2007-04-27 2008-11-13 Sanyo Electric Co Ltd 静電変換装置およびこの静電変換装置を搭載する容量検知機器
JP2009148124A (ja) 2007-12-18 2009-07-02 Sanyo Electric Co Ltd 静電動作装置
JP2011097807A (ja) * 2009-11-02 2011-05-12 Panasonic Corp 発電装置
WO2011086830A1 (ja) 2010-01-14 2011-07-21 オムロン株式会社 静電誘導型発電装置
JP2012100404A (ja) * 2010-11-01 2012-05-24 Seiko Epson Corp 発電装置及び電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2940854A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078666A (zh) * 2014-11-04 2017-08-18 三星电子株式会社 能量采集器
CN107078666B (zh) * 2014-11-04 2020-06-23 三星电子株式会社 能量采集器
US10770637B2 (en) 2014-11-04 2020-09-08 Samsung Electronics Co., Ltd. Energy harvester

Also Published As

Publication number Publication date
JP6032006B2 (ja) 2016-11-24
TW201440410A (zh) 2014-10-16
EP2940854A1 (en) 2015-11-04
CN104885353B (zh) 2017-05-24
JP2014131418A (ja) 2014-07-10
CN104885353A (zh) 2015-09-02
EP2940854B1 (en) 2017-06-14
US9748869B2 (en) 2017-08-29
EP2940854A4 (en) 2016-01-20
US20150333661A1 (en) 2015-11-19
TWI505627B (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
JP6032006B2 (ja) 振動発電装置
JP5402395B2 (ja) 静電誘導型発電装置
KR101325296B1 (ko) 정전유도형 발전 장치
JP5703627B2 (ja) 静電誘導発電デバイス、静電誘導発電機器
KR101437246B1 (ko) 정전유도형 발전 장치
US10804818B2 (en) Triboelectric generator and network for mechanical energy harvesting
KR101585817B1 (ko) 진동 센서, 외부 환경 검출 장치
CN104203806A (zh) 用于微机电的测量变换器的膜片装置和用于制造膜片装置的方法
JP2015505663A (ja) 金属間接合部の固有電圧差を使用したエネルギー採取方法およびその装置
JP2009148124A (ja) 静電動作装置
JP5131541B2 (ja) 振動型静電発電機ユニット
JP5685890B2 (ja) 発電装置及び電子機器
JP5790584B2 (ja) 振動発電素子
JP2012191812A (ja) 発電装置、および電子機器
CZ22977U1 (cs) Struktura MEMS kondenzátoru elektrostatického generátoru
CZ2011448A3 (cs) Struktura MEMS kondenzátoru elektrostatického generátoru

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868591

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013868591

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14758140

Country of ref document: US

Ref document number: 2013868591

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE