WO2014102902A1 - Plate camber detection device, descaling control device, and pass schedule calculation device - Google Patents

Plate camber detection device, descaling control device, and pass schedule calculation device Download PDF

Info

Publication number
WO2014102902A1
WO2014102902A1 PCT/JP2012/083485 JP2012083485W WO2014102902A1 WO 2014102902 A1 WO2014102902 A1 WO 2014102902A1 JP 2012083485 W JP2012083485 W JP 2012083485W WO 2014102902 A1 WO2014102902 A1 WO 2014102902A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolled
thickness
warp
rolling
plate thickness
Prior art date
Application number
PCT/JP2012/083485
Other languages
French (fr)
Japanese (ja)
Inventor
上野 聡
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to CN201280077967.9A priority Critical patent/CN104903017B/en
Priority to PCT/JP2012/083485 priority patent/WO2014102902A1/en
Priority to KR1020157014962A priority patent/KR101701656B1/en
Priority to JP2014553912A priority patent/JP5983771B2/en
Publication of WO2014102902A1 publication Critical patent/WO2014102902A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/08Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing hydraulically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness

Definitions

  • the present invention relates to a plate warpage detection device, a descaling control device, and a path schedule calculation device.
  • a plate warp detection device that detects warpage of a material to be rolled based on an image captured by a CCD camera has been proposed. According to the plate warpage detection device, it is possible to detect the warpage of the material to be rolled (see, for example, Patent Documents 1 and 2).
  • a plate warp detection device that estimates the difference in elongation between the upper and lower surfaces of the material to be rolled from the rotation speed of the upper and lower work rolls of the rolling mill and detects the warpage of the material to be rolled based on the difference in elongation has been proposed. Yes.
  • the plate warpage detection device it is possible to detect the warpage of the material to be rolled without using a device dedicated to plate warpage (see, for example, Patent Document 3).
  • This invention was made in order to solve the above-mentioned subject, and the object is to provide a board warp detection device etc. which can detect warpage of a material to be rolled, without using a dedicated device. is there.
  • the sheet warpage detection device is based on a rolling load actual value and a roll gap actual value during rolling in a rolling mill, and calculates a gauge meter plate thickness of the material to be rolled.
  • a thickness calculated by the thickness meter detected by the thickness meter disposed downstream of the rolling mill with respect to the rolling direction of the rolled material by the rolling mill and calculated by the gauge meter thickness calculation unit Based on the same point sampling data of the same thickness data editing unit edited by the same point data editing means and the gauge meter plate thickness, editing the meter plate thickness to the same point sampling data of a fixed length pitch, And a detector for detecting a warp on the front side of the material to be rolled.
  • the descaling control device in the next pass, when the sheet warpage detection device detects the warp on the front side of the material to be rolled in the halfway rolling pass when the rolling mill reciprocally rolls the material to be rolled. And a descaling control unit for stopping water injection at the warp generation unit.
  • a warp correction path adding unit for adding a light pressure-reducing path to the pass schedule.
  • FIG. 1 It is a block diagram of the board curvature detection apparatus in Embodiment 1 of this invention. It is an example of the time chart of the gauge meter plate
  • FIG. 1 is a block diagram of a plate warpage detection apparatus according to Embodiment 1 of the present invention.
  • a descaling device header 2 is provided on one side of the reversible rolling mill 1.
  • a thickness gauge 3 is provided on one side of the header 2.
  • the rolling mill 1 reciprocally rolls a material to be rolled 4 such as a thick steel plate. At this time, the rolling load actual value P and the roll gap actual value S of the rolling mill 1 are sampled at regular intervals.
  • the descaling device header 2 appropriately sprays water onto the material 4 to be rolled.
  • the thickness gauge 3 samples the thickness gauge detected thickness at a constant cycle.
  • a plate warpage detection device 5 is connected to the rolling mill 1 and the thickness gauge 3.
  • the plate warpage detection device 5 includes a gauge meter thickness calculation unit 5a, an identical point data editing unit 5b, and a warp curvature calculation unit 5c.
  • the mill elongation amount S m is calculated by the following equation (1).
  • W is the width of the material to be rolled 4.
  • D R is the roll diameter.
  • f m () is a functional expression for calculating the mill elongation amount S m .
  • the gauge meter plate thickness calculator 5a calculates the gauge meter plate thickness h GM based on the actual roll gap value S, the mill elongation Sm, and the like. Specifically, the gauge meter plate thickness h GM is calculated using the following equation (2).
  • R THML is the roll thermal expansion amount.
  • R WEAR is the amount of roll wear.
  • the same point data editing unit 5b samples the thickness gauge detected thickness every 20 msec.
  • the periodic sampling of the thickness detected by the thickness gauge is performed when the material to be rolled 4 is conveyed forwardly from the rolling mill 1 in the direction of the thickness gauge 3, and the tip of the material to be rolled 4 is directly below the thickness gauge 3. It is performed until it stops after reaching.
  • the position of the material to be rolled 4 immediately below the plate thickness meter 3 is the plate thickness sampling end position. That is, during the reverse conveyance from the thickness gauge 3 to the rolling mill 1 while the conveyance of the material to be rolled 4 is stopped, the periodic thickness sampling of the thickness gauge detected thickness is not performed.
  • the same point data editing unit 5b edits the periodic sampling data of the thickness meter detected thickness into sampling data every 50 mm from the tip of the plate based on the actual table speed value immediately below the thickness meter 3.
  • the same point data editing unit 5b edits the gauge meter plate thickness calculated by the gauge meter plate thickness calculating unit 5a into sampling data having the same constant length pitch as the plate thickness gauge detected thickness. .
  • the warp curvature calculation unit 5c detects a warp as a detection unit based on the same point sampling data of the thickness meter detected thickness and the gauge meter plate thickness edited by the same point data editing unit 5b. Specifically, the curvature radius, the warp height, and the warp length for each same point are calculated.
  • FIGS. 2 and 3 are time chart examples of gauge meter plate thickness and plate thickness gauge detection thickness used in the plate warpage detection apparatus according to Embodiment 1 of the present invention.
  • the horizontal axis in FIG. 2 and FIG. 3 represents time.
  • the vertical axis at the top of FIGS. 2 and 3 represents the rolling load.
  • the vertical axis in the second row from the top in FIGS. 2 and 3 represents the gauge meter plate thickness.
  • the vertical axis in the third row from the top in FIGS. 2 and 3 represents the plate thickness gauge detection thickness.
  • the vertical axis at the bottom of FIGS. 2 and 3 represents the speed of the rolling mill 1.
  • FIG. 2 shows an example when the material to be rolled 4 is not warped. As shown in FIG. 2, the gauge meter plate thickness is first sampled. Thereafter, the thickness gauge detected thickness is sampled. There is no sudden fluctuation in either sampling result.
  • FIG. 3 shows an example when the material to be rolled 4 is warped.
  • the portion corresponding to the front side of the material 4 to be rolled is surrounded by a round wavy line in the gauge meter plate thickness and the plate thickness gauge detected thickness.
  • the variation of the gauge meter plate thickness is equivalent to the case where no warpage of the material to be rolled 4 occurs.
  • the thickness gauge detected thickness fluctuates more than when the material to be rolled 4 is not warped. That is, the warp of the material to be rolled 4 appears in the variation of the thickness gauge detected thickness.
  • FIG. 4 is a side view of a material to be rolled that has been rolled into a rolling mill using the sheet warpage detection device according to Embodiment 1 of the present invention.
  • FIG. 5 is an enlarged view of a main part of FIG.
  • the detection direction of the thickness gauge detection thickness is perpendicular to the conveyance direction of the material 4 to be rolled. For this reason, in the curvature part of the to-be-rolled material 4, the value of thickness gauge detection thickness differs from the value of gauge meter plate thickness.
  • the warp curvature calculation unit 5c is based on the plate thickness detection thickness, the gauge meter plate thickness, etc. at the adjacent sampling positions, and the warp curvature radius, the warp height, and the warp length at each sampling position. Calculate In FIG. 5, reference numerals are given to two sampling positions for the sake of simplicity.
  • X 1 (mm) is a certain sampling position.
  • X 2 (mm) is a sampling position next to the sampling position X 1 .
  • ⁇ X 12 is a length between the sampling position X 1 and the sampling position X 2 .
  • H gm, 1 (mm) is a gauge meter thickness at the sampling positions X 1.
  • H gm, 2 (mm) is a gauge meter thickness in the sampling position X 2.
  • H scn, 1 (mm) is a thickness gauge detecting the thickness at the sampling positions X 1.
  • H scn, 2 (mm) is a thickness gauge detecting the thickness at the sampling position X 2.
  • warp curvature computing unit 5c the warp angle theta 1 at the sampling positions X 1 is calculated using the following equation (3).
  • the warp curvature computing unit 5c, the warp angle theta 2 in the sampling position X 2 is calculated using the following equation (4).
  • the warp curvature computing unit 5c the difference [Delta] [theta] 12 of the warp angle between the sampling positions X 1 and the sampling positions X 2 is calculated using the following equation (5).
  • the warp curvature calculating unit 5c calculates the true length [Delta] S 12 of the rolled material 4 moving between the sampling positions X 1 and the sampling positions X 2 using the following equation (6).
  • the warp curvature computing unit 5c, the radius of curvature R 1 at the sampling positions X 1 is calculated using the following equation (7).
  • the warp curvature computing unit 5c, a warp height H wrap, 1 at the sampling positions X 1 is calculated using the following equation (8).
  • the warp curvature calculation unit 5c recognizes a sampling position where the warp height of the material to be rolled 4 is equal to or less than the minimum warp recognition height.
  • the minimum recognition height is designated in advance as 20 mm.
  • the warp curvature calculation unit 5c sets the length from the tip of the material to be rolled 4 to the sampling position as the warp length.
  • FIG. 6 is a diagram for explaining the result of calculation of the warp height by the plate warp detection device according to the first embodiment of the present invention.
  • FIG. 6 represents the distance from the tip of the material 4 to be rolled.
  • the vertical axis on the left side of FIG. 6 represents the gauge meter plate thickness and the plate thickness gauge detected thickness.
  • the vertical axis on the right side of FIG. 6 represents the warp height.
  • the gauge meter plate thickness is a substantially constant value regardless of the distance from the tip of the material 4 to be rolled.
  • the thickness gauge detected thickness becomes a larger value.
  • the thickness gauge detected thickness is substantially the same value as the gauge meter thickness.
  • the warp height of the material to be rolled 4 becomes larger as the distance from the tip of the material to be rolled 4 is shorter.
  • the warp height of the material to be rolled 4 is almost zero. That is, it can be seen that the material to be rolled 4 is not warped at a position where the distance from the tip of the material to be rolled 4 is longer than about 700 mm.
  • the curvature of the to-be-rolled material 4 is detected using the thickness meter 3 generally provided. For this reason, the curvature of the material 4 to be rolled can be detected without using a dedicated device.
  • warpage curvature of the material to be rolled 4 may be calculated for each sampling position (i) by using the data of the previous sampling position (i-1) and the next sampling position (i + 1).
  • FIG. FIG. 7 is a block diagram of a plate warpage detection apparatus according to Embodiment 2 of the present invention.
  • symbol is attached
  • An error may occur between the gauge meter plate thickness and the true plate thickness of the material 4 to be rolled. This error is called a gauge meter error.
  • a gauge meter error When there is a gauge meter error, a deviation occurs between the gauge meter plate thickness and the plate thickness meter detected thickness even in the vicinity of the steady portion of the material 4 to be rolled. Due to the deviation, the calculation accuracy of the warp curvature and the warp height of the material to be rolled 4 is lowered.
  • the gauge warpage detection device 5 of the second embodiment is provided with a gauge meter deviation correction unit 5d.
  • the gauge meter deviation correction unit 5d uses the following equation (9) to calculate the gauge meter deviation correction amount ⁇ h gm comp based on the gauge meter plate thickness and the plate thickness meter detected thickness edited by the same point data editing unit 5b. calculate.
  • h scn body (mm) is the average value of the thickness gauge detection thickness in the stationary part of the material 4 to be rolled.
  • h gm body (mm) is an average value of the gauge meter plate thickness in the steady portion of the material 4 to be rolled.
  • the steady portion of the material to be rolled 4 is defined as a range of 30% of the length of the material to be rolled 4 on the exit side of each pass at the center in the rolling direction of the material to be rolled 4.
  • the warp curvature calculator 5c of this embodiment calculates the gauge meter deviation correction amount to all the same point sampling data of the gauge meter plate thickness when calculating the warp curvature radius, warp height, and warp length of the material 4 to be rolled. Add ⁇ h gm comp .
  • the warp of the material to be rolled 4 can be detected correctly. .
  • FIG. FIG. 8 is a block diagram of a descaling control device using a plate warpage detection device according to Embodiment 3 of the present invention.
  • symbol is attached
  • the descaling control device 6 includes a control unit 6a.
  • the control unit 6a has a function of controlling water jetting of the descaling device based on the warp length of the material to be rolled 4 detected by the plate warp detection device 5.
  • FIG. 9 is a diagram for explaining a control method of the descaling apparatus by the descaling control apparatus using the plate warpage detection apparatus in the third embodiment of the present invention.
  • the plate warpage detection device 5 displays information on the warp length of the material to be rolled 4 on the descaling control device 6. Output to. In the next i + 1 pass, the warp start position is in front of the tail end of the material to be rolled 4 by the warp length.
  • the descaling control device 6 tracks the tail end of the material 4 to be rolled during the i + 1 pass rolling. In the steady part of the material 4 to be rolled, the descaling control device 6 causes the descaling device to perform descaling. With this implementation, the header 2 sprays water onto the spray contact point of the material 4 to be rolled. Thereafter, when the warpage start position of the material to be rolled 4 reaches the spray contact point, the descaling control device 6 causes the descaling device to stop water injection.
  • water is not injected onto the warped portion of the material 4 to be rolled. For this reason, it is possible to prevent local overcooling of the warped portion of the material 4 to be rolled. As a result, the temperature control of the material to be rolled 4 can be stabilized. Due to the stability, sufficient mechanical properties can be obtained in the final product.
  • the descaling stop position is determined based on the warp length of the material 4 to be rolled. For this reason, homogenization of the material to be rolled 4 can be expected rather than the operator's visual treatment.
  • FIG. 10 is a block diagram of a path schedule calculation apparatus using a plate warpage detection apparatus according to Embodiment 4 of the present invention.
  • symbol is attached
  • the path schedule calculation device 7 includes a warp correction path addition unit 7a.
  • the warp correction path adding unit 7 a has a function of adding a warp correction path to the path schedule determined by the path schedule calculation device 7 based on the warp height of the material to be rolled 4 calculated by the plate warpage detection device 5.
  • the warp correction pass is set to a pass in which the amount of reduction is sufficiently smaller than the normal reduction.
  • the warp correction pass is set to have the same roll gap as the previous actual pass.
  • the number of correction passes and each pass correction reduction amount are set according to the warp height of the material 4 to be rolled.
  • the number N of correction passes is calculated by the following equation (10).
  • each pass correction reduction amount ⁇ h is calculated by the following equation (11).
  • H wrap max (mm) is the maximum value of the warp height of the material 4 to be rolled.
  • f pss () is a function for determining the number N of correction passes based on the warp height of the material 4 to be rolled.
  • f red () is a function for determining each pass correction reduction amount ⁇ h based on the warp height of the material 4 to be rolled.
  • the fourth embodiment described above when the material to be rolled 4 is warped, a warp correction pass is added to the pass schedule after the next pass. For this reason, the curvature of the to-be-rolled material 4 can be reduced. As a result, unstable conveyance of the material 4 to be rolled can be avoided. Moreover, the collision of the to-be-rolled material 4 with peripheral facilities, such as a downstream leveler and a cooling device, can be avoided. This avoidance improves the production efficiency. At this time, the number of correction passes, each pass correction reduction amount, and the like are determined according to the height of warpage of the material to be rolled 4. As a result, the burden on the operator can be greatly reduced.
  • the warp correction pass may be set using a stratification table in which the maximum value of the warp height of the material to be rolled 4 is set as a stratification condition and the number of correction passes and each pass correction reduction amount are indexed.
  • the plate warpage detection device can be used for a rolling system that detects the warpage of a material to be rolled without using a dedicated device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Abstract

Provided is a plate camber detection device (5), etc. capable of detecting the camber of a rolled material (4) without the use of a dedicated device. The plate camber detection device (5) is provided with: a gauge meter plate thickness-computing unit (5a) for calculating the gauge meter plate thickness of the rolled material (4) on the basis of the actual rolling load and the actual roll gap during rolling in the rolling mill (1); a same point data-compiling unit (5b) for compiling the detected thickness of the rolled material (4) detected by a plate thickness meter (3) disposed on the downstream side of the rolling mill (1) in the rolling direction and the gauge meter plate thickness in sampling data for the same point at a pitch of a set length; and a detection unit for detecting the camber of the leading end of the rolled material (4) on the basis of the same point sampling data.

Description

板反り検出装置、デスケーリング制御装置、パススケジュール計算装置Plate warpage detection device, descaling control device, path schedule calculation device
 この発明は、板反り検出装置、デスケーリング制御装置、パススケジュール計算装置に関するものである。 The present invention relates to a plate warpage detection device, a descaling control device, and a path schedule calculation device.
 CCDカメラの撮像画像に基づいて被圧延材の反りを検出する板反り検出装置が提案されている。当該板反り検出装置によれば、被圧延材の反りを検出することができる(例えば、特許文献1及び2参照)。 A plate warp detection device that detects warpage of a material to be rolled based on an image captured by a CCD camera has been proposed. According to the plate warpage detection device, it is possible to detect the warpage of the material to be rolled (see, for example, Patent Documents 1 and 2).
 しかしながら、当該板反り検出装置においては、板反り専用のCCDカメラを圧延機の直近に設ける必要がある。 However, in the plate warpage detection device, it is necessary to provide a CCD camera dedicated to plate warpage in the immediate vicinity of the rolling mill.
 これに対し、圧延機の上下作業ロールの回転速度から被圧延材の上下面の伸び差を推定し、当該伸び差に基づいて、被圧延材の反りを検出する板反り検出装置が提案されている。当該板反り検出装置によれば、板反り専用の装置を用いることなく、被圧延材の反りを検出し得る(例えば、特許文献3参照)。 On the other hand, a plate warp detection device that estimates the difference in elongation between the upper and lower surfaces of the material to be rolled from the rotation speed of the upper and lower work rolls of the rolling mill and detects the warpage of the material to be rolled based on the difference in elongation has been proposed. Yes. According to the plate warpage detection device, it is possible to detect the warpage of the material to be rolled without using a device dedicated to plate warpage (see, for example, Patent Document 3).
日本特許第3724720号公報Japanese Patent No. 3724720 日本特開2006-7235号公報Japanese Unexamined Patent Publication No. 2006-7235 日本特開2002-96103号公報Japanese Unexamined Patent Publication No. 2002-96103
 しかしながら、被圧延材の上面と下面との変形抵抗の差等も、被圧延材の反りの原因となる。このため、上下作業ロールの回転速度の差のみでは、被圧延材の反りを検出することは困難である。 However, a difference in deformation resistance between the upper surface and the lower surface of the material to be rolled also causes warpage of the material to be rolled. For this reason, it is difficult to detect the warp of the material to be rolled only by the difference in rotational speed between the upper and lower work rolls.
 この発明は、上述の課題を解決するためになされたもので、その目的は、専用の装置を用いることなく、被圧延材の反りを検出することができる板反り検出装置等を提供することである。 This invention was made in order to solve the above-mentioned subject, and the object is to provide a board warp detection device etc. which can detect warpage of a material to be rolled, without using a dedicated device. is there.
 この発明に係る板反り検出装置は、圧延機における圧延中の圧延荷重実績値とロールギャップ実績値とに基づいて、前記被圧延材のゲージメータ板厚を計算するゲージメータ板厚演算部と、前記圧延機による前記被圧延材の圧延方向に対して前記圧延機よりも下流側に配置された板厚計が検出した前記被圧延材の検出厚と前記ゲージメータ板厚演算部が計算したゲージメータ板厚とを、定長ピッチの同一点サンプリングデータに編集する同一点データ編集部と、前記同一点データ編集手段が編集した検出厚とゲージメータ板厚との同一点サンプリングデータに基づいて、前記被圧延材の先側の反りを検出する検出部と、を備えたものである。 The sheet warpage detection device according to the present invention is based on a rolling load actual value and a roll gap actual value during rolling in a rolling mill, and calculates a gauge meter plate thickness of the material to be rolled. A thickness calculated by the thickness meter detected by the thickness meter disposed downstream of the rolling mill with respect to the rolling direction of the rolled material by the rolling mill and calculated by the gauge meter thickness calculation unit Based on the same point sampling data of the same thickness data editing unit edited by the same point data editing means and the gauge meter plate thickness, editing the meter plate thickness to the same point sampling data of a fixed length pitch, And a detector for detecting a warp on the front side of the material to be rolled.
 この発明に係るデスケーリング制御装置は、圧延機が被圧延材を往復圧延する際の途中圧延パスにおいて板反り検出装置が前記被圧延材の先側の反りを検出した場合に、次のパスにおいて、前記反りの発生部での水噴射を停止させるデスケーリング制御部、を備えたものである。 The descaling control device according to the present invention, in the next pass, when the sheet warpage detection device detects the warp on the front side of the material to be rolled in the halfway rolling pass when the rolling mill reciprocally rolls the material to be rolled. And a descaling control unit for stopping water injection at the warp generation unit.
 この発明に係るパススケジュール計算装置は、圧延機が被圧延材を往復圧延する際の途中圧延パスにおいて板反り検出装置が前記被圧延材の先側の反りを検出した場合に、次のパス以降のパススケジュールに軽圧下パスを追加する反り矯正パス追加部、を備えたものである。 In the pass schedule calculation device according to the present invention, when the sheet warpage detection device detects the warp on the front side of the material to be rolled in the intermediate rolling pass when the rolling mill reciprocates the material to be rolled, A warp correction path adding unit for adding a light pressure-reducing path to the pass schedule.
 この発明によれば、専用の装置を用いることなく、被圧延材の反りを検出することができる。 According to this invention, it is possible to detect the warpage of the material to be rolled without using a dedicated device.
この発明の実施の形態1における板反り検出装置のブロック図である。It is a block diagram of the board curvature detection apparatus in Embodiment 1 of this invention. この発明の実施の形態1における板反り検出装置で利用するゲージメータ板厚と板厚計検出厚のタイムチャートの例である。It is an example of the time chart of the gauge meter plate | board thickness and plate | board thickness meter detection thickness which are utilized with the plate curvature detection apparatus in Embodiment 1 of this invention. この発明の実施の形態1における板反り検出装置で利用するゲージメータ板厚と板厚計検出厚のタイムチャートの例である。It is an example of the time chart of the gauge meter plate | board thickness and plate | board thickness meter detection thickness which are utilized with the plate curvature detection apparatus in Embodiment 1 of this invention. この発明の実施の形態1における板反り検出装置を利用した圧延機に圧延された被圧延材の側面図である。It is a side view of the to-be-rolled material rolled by the rolling mill using the board curvature detection apparatus in Embodiment 1 of this invention. 図4の要部拡大図である。It is a principal part enlarged view of FIG. この発明の実施の形態1における板反り検出装置による反り高さの計算結果を説明するための図である。It is a figure for demonstrating the calculation result of the curvature height by the board curvature detection apparatus in Embodiment 1 of this invention. この発明の実施の形態2における板反り検出装置のブロック図である。It is a block diagram of the board curvature detection apparatus in Embodiment 2 of this invention. この発明の実施の形態3における板反り検出装置を利用したデスケーリング制御装置のブロック図である。It is a block diagram of the descaling control apparatus using the board curvature detection apparatus in Embodiment 3 of this invention. この発明の実施の形態3における板反り検出装置を利用したデスケーリング制御装置によるデスケーリング装置の制御方法を説明するための図である。It is a figure for demonstrating the control method of the descaling apparatus by the descaling control apparatus using the board curvature detection apparatus in Embodiment 3 of this invention. この発明の実施の形態4における板反り検出装置を利用したパススケジュール計算装置のブロック図である。It is a block diagram of the path schedule calculation apparatus using the board curvature detection apparatus in Embodiment 4 of this invention.
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。 DETAILED DESCRIPTION Embodiments for carrying out the invention will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the part which is the same or it corresponds, The duplication description is simplified or abbreviate | omitted suitably.
実施の形態1.
 図1はこの発明の実施の形態1における板反り検出装置のブロック図である。
Embodiment 1 FIG.
FIG. 1 is a block diagram of a plate warpage detection apparatus according to Embodiment 1 of the present invention.
 図1において、可逆式の圧延機1の一側には、デスケーリング装置のヘッダ2が設けられる。ヘッダ2の一側には、板厚計3が設けられる。 1, a descaling device header 2 is provided on one side of the reversible rolling mill 1. A thickness gauge 3 is provided on one side of the header 2.
 圧延機1は、厚鋼板等の被圧延材4を往復圧延する。この際、圧延機1の圧延荷重実績値Pとロールギャップ実績値Sとが定周期でサンプリングされる。デスケーリング装置のヘッダ2は、適宜、被圧延材4に対して水を噴射する。板厚計3は、板厚計検出厚を定周期でサンプリングする。 The rolling mill 1 reciprocally rolls a material to be rolled 4 such as a thick steel plate. At this time, the rolling load actual value P and the roll gap actual value S of the rolling mill 1 are sampled at regular intervals. The descaling device header 2 appropriately sprays water onto the material 4 to be rolled. The thickness gauge 3 samples the thickness gauge detected thickness at a constant cycle.
 圧延機1と板厚計3とには、板反り検出装置5が接続される。板反り検出装置5は、ゲージメータ板厚演算部5a、同一点データ編集部5b、反り曲率演算部5cを備える。 A plate warpage detection device 5 is connected to the rolling mill 1 and the thickness gauge 3. The plate warpage detection device 5 includes a gauge meter thickness calculation unit 5a, an identical point data editing unit 5b, and a warp curvature calculation unit 5c.
 ゲージメータ板厚演算部5aは、圧延荷重実績値P等に基づいて、ミル伸び量Sを計算する。具体的には、ミル伸び量Sは、次の(1)式で計算される。 Gauge meter thickness computing unit 5a, based on the rolling load actual value P or the like, to calculate the mill elongation amount S m. Specifically, the mill elongation amount Sm is calculated by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ただし、Wは、被圧延材4の幅である。Dは、ロール径である。f()は、ミル伸び量Sを計算する関数式である。 However, W is the width of the material to be rolled 4. D R is the roll diameter. f m () is a functional expression for calculating the mill elongation amount S m .
 次に、ゲージメータ板厚演算部5aは、ロールギャップ実績値S、ミル伸び量S等に基づいて、ゲージメータ板厚hGMを計算する。具体的には、ゲージメータ板厚hGMは、次の(2)式を用いて計算される。 Next, the gauge meter plate thickness calculator 5a calculates the gauge meter plate thickness h GM based on the actual roll gap value S, the mill elongation Sm, and the like. Specifically, the gauge meter plate thickness h GM is calculated using the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ただし、RTHMLは、ロール熱膨張量である。RWEARは、ロール摩耗量である。 However, R THML is the roll thermal expansion amount. R WEAR is the amount of roll wear.
 例えば、同一点データ編集部5bは、20msec毎に板厚計検出厚をサンプリングする。板厚計検出厚の定周期サンプリングは、被圧延材4が圧延機1から板厚計3の方向へ正転搬送されている際に、被圧延材4の先端が板厚計3の直下に到達してから停止するまで行われる。被圧延材4の正転搬送が停止した際、板厚計3の直下において、被圧延材4の位置は、板厚サンプリング終了位置となる。つまり、被圧延材4の搬送の停止中、板厚計3から圧延機1方向への逆転搬送中、板厚計検出厚の定周期サンプリングは行われない。 For example, the same point data editing unit 5b samples the thickness gauge detected thickness every 20 msec. The periodic sampling of the thickness detected by the thickness gauge is performed when the material to be rolled 4 is conveyed forwardly from the rolling mill 1 in the direction of the thickness gauge 3, and the tip of the material to be rolled 4 is directly below the thickness gauge 3. It is performed until it stops after reaching. When the forward conveyance of the material to be rolled 4 is stopped, the position of the material to be rolled 4 immediately below the plate thickness meter 3 is the plate thickness sampling end position. That is, during the reverse conveyance from the thickness gauge 3 to the rolling mill 1 while the conveyance of the material to be rolled 4 is stopped, the periodic thickness sampling of the thickness gauge detected thickness is not performed.
 例えば、同一点データ編集部5bは、板厚計3の直下のテーブル速度実績値に基づいて、板厚計検出厚の定周期サンプリングデータを板先端から50mm毎のサンプリングデータに編集する。 For example, the same point data editing unit 5b edits the periodic sampling data of the thickness meter detected thickness into sampling data every 50 mm from the tip of the plate based on the actual table speed value immediately below the thickness meter 3.
 同一点データ編集部5bは、圧延機1の速度実績値に基づいて、ゲージメータ板厚演算部5aが計算したゲージメータ板厚を板厚計検出厚と同一定長ピッチのサンプリングデータに編集する。 Based on the actual speed value of the rolling mill 1, the same point data editing unit 5b edits the gauge meter plate thickness calculated by the gauge meter plate thickness calculating unit 5a into sampling data having the same constant length pitch as the plate thickness gauge detected thickness. .
 反り曲率演算部5cは、検出部として、同一点データ編集部5bが編集した板厚計検出厚とゲージメータ板厚との同一点サンプリングデータに基づいて、反りを検出する。具体的には、同一点毎の反り曲率半径、反り高さ、反り長さが計算される。 The warp curvature calculation unit 5c detects a warp as a detection unit based on the same point sampling data of the thickness meter detected thickness and the gauge meter plate thickness edited by the same point data editing unit 5b. Specifically, the curvature radius, the warp height, and the warp length for each same point are calculated.
 次に、図2と図3とを用いて、ゲージメータ板厚と板厚計検出厚とのサンプリング結果を説明する。
 図2と図3はこの発明の実施の形態1における板反り検出装置で利用するゲージメータ板厚と板厚計検出厚のタイムチャートの例である。
Next, the sampling results of the gauge meter plate thickness and the plate thickness meter detected thickness will be described with reference to FIGS. 2 and 3.
2 and 3 are time chart examples of gauge meter plate thickness and plate thickness gauge detection thickness used in the plate warpage detection apparatus according to Embodiment 1 of the present invention.
 図2と図3との横軸は、時間を表す。図2と図3との最上段の縦軸は、圧延荷重を表す。図2と図3との上から2段目の縦軸は、ゲージメータ板厚を表す。図2と図3との上から3段目の縦軸は、板圧計検出厚を表す。図2と図3との最下段の縦軸は、圧延機1の速度を表す。 2 The horizontal axis in FIG. 2 and FIG. 3 represents time. The vertical axis at the top of FIGS. 2 and 3 represents the rolling load. The vertical axis in the second row from the top in FIGS. 2 and 3 represents the gauge meter plate thickness. The vertical axis in the third row from the top in FIGS. 2 and 3 represents the plate thickness gauge detection thickness. The vertical axis at the bottom of FIGS. 2 and 3 represents the speed of the rolling mill 1.
 図2は被圧延材4の反りが発生しないときの例である。図2に示すように、まず、ゲージメータ板厚がサンプリングされる。その後、板厚計検出厚がサンプリングされる。どちらのサンプリング結果にも、急激な変動はない。 FIG. 2 shows an example when the material to be rolled 4 is not warped. As shown in FIG. 2, the gauge meter plate thickness is first sampled. Thereafter, the thickness gauge detected thickness is sampled. There is no sudden fluctuation in either sampling result.
 図3は被圧延材4の反りが発生したときの例である。図3において、ゲージメータ板厚と板厚計検出厚の図中において、被圧延材4の先側に対応した箇所は、丸波線で囲まれる。図3に示すように、ゲージメータ板厚の変動は、被圧延材4の反りが発生していない場合と同等である。これに対し、板厚計検出厚は、被圧延材4の反りが発生していない場合よりも大きく変動する。すなわち、被圧延材4の反りは、板厚計検出厚の変動に表れる。 FIG. 3 shows an example when the material to be rolled 4 is warped. In FIG. 3, the portion corresponding to the front side of the material 4 to be rolled is surrounded by a round wavy line in the gauge meter plate thickness and the plate thickness gauge detected thickness. As shown in FIG. 3, the variation of the gauge meter plate thickness is equivalent to the case where no warpage of the material to be rolled 4 occurs. On the other hand, the thickness gauge detected thickness fluctuates more than when the material to be rolled 4 is not warped. That is, the warp of the material to be rolled 4 appears in the variation of the thickness gauge detected thickness.
 次に、図4と図5を用いて、被圧延材4の反り曲率半径、反り高さ、反り長さの計算手順を説明する。
 図4はこの発明の実施の形態1における板反り検出装置を利用した圧延機に圧延された被圧延材の側面図である。図5は図4の要部拡大図である。
Next, the calculation procedure of the curvature curvature radius, the curvature height, and the curvature length of the material 4 to be rolled will be described with reference to FIGS. 4 and 5.
FIG. 4 is a side view of a material to be rolled that has been rolled into a rolling mill using the sheet warpage detection device according to Embodiment 1 of the present invention. FIG. 5 is an enlarged view of a main part of FIG.
 図4に示すように、板厚計検出厚の検出方向は、被圧延材4の搬送方向に対して垂直である。このため、被圧延材4の反り部においては、板厚計検出厚の値は、ゲージメータ板厚の値と異なる。 As shown in FIG. 4, the detection direction of the thickness gauge detection thickness is perpendicular to the conveyance direction of the material 4 to be rolled. For this reason, in the curvature part of the to-be-rolled material 4, the value of thickness gauge detection thickness differs from the value of gauge meter plate thickness.
 そこで、図5に示すように、反り曲率演算部5cは、隣接したサンプリング位置の板厚検出厚、ゲージメータ板厚等に基づいて、各サンプリング位置の反り曲率半径、反り高さ、反り長さを計算する。なお、図5においては、説明を簡単にするため、2点のサンプリング位置に対して符号を付す。 Therefore, as shown in FIG. 5, the warp curvature calculation unit 5c is based on the plate thickness detection thickness, the gauge meter plate thickness, etc. at the adjacent sampling positions, and the warp curvature radius, the warp height, and the warp length at each sampling position. Calculate In FIG. 5, reference numerals are given to two sampling positions for the sake of simplicity.
 X(mm)は、あるサンプリング位置である。X(mm)は、サンプリング位置Xの次のサンプリング位置である。ΔX12は、サンプリング位置Xとサンプリング位置Xとの間の長さである。 X 1 (mm) is a certain sampling position. X 2 (mm) is a sampling position next to the sampling position X 1 . ΔX 12 is a length between the sampling position X 1 and the sampling position X 2 .
 Hgm,1(mm)は、サンプリング位置Xにおけるゲージメータ板厚である。Hgm,2(mm)はサンプリング位置Xにおけるゲージメータ板厚である。Hscn,1(mm)はサンプリング位置Xにおける板厚計検出厚である。Hscn,2(mm)は、サンプリング位置Xにおける板厚計検出厚である。 H gm, 1 (mm) is a gauge meter thickness at the sampling positions X 1. H gm, 2 (mm) is a gauge meter thickness in the sampling position X 2. H scn, 1 (mm) is a thickness gauge detecting the thickness at the sampling positions X 1. H scn, 2 (mm) is a thickness gauge detecting the thickness at the sampling position X 2.
 まず、反り曲率演算部5cは、サンプリング位置Xにおける反り角度θを次の(3)式を用いて計算する。 First, warp curvature computing unit 5c, the warp angle theta 1 at the sampling positions X 1 is calculated using the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 次に、反り曲率演算部5cは、サンプリング位置Xにおける反り角度θを次の(4)式を用いて計算する。 Next, the warp curvature computing unit 5c, the warp angle theta 2 in the sampling position X 2 is calculated using the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 次に、反り曲率演算部5cは、サンプリング位置Xとサンプリング位置Xとの反り角度の差Δθ12を次の(5)式を用いて計算する。 Next, the warp curvature computing unit 5c, the difference [Delta] [theta] 12 of the warp angle between the sampling positions X 1 and the sampling positions X 2 is calculated using the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 次に、反り曲率演算部5cは、サンプリング位置Xとサンプリング位置Xの間に移動する被圧延材4の真の長さΔS12を次の(6)式を用いて計算する。 Next, the warp curvature calculating unit 5c calculates the true length [Delta] S 12 of the rolled material 4 moving between the sampling positions X 1 and the sampling positions X 2 using the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 次に、反り曲率演算部5cは、サンプリング位置Xにおける曲率半径Rを次の(7)式を用いて計算する。 Next, the warp curvature computing unit 5c, the radius of curvature R 1 at the sampling positions X 1 is calculated using the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 次に、反り曲率演算部5cは、サンプリング位置Xにおける反り高さHwrap,1を次の(8)式を用いて計算する。 Next, the warp curvature computing unit 5c, a warp height H wrap, 1 at the sampling positions X 1 is calculated using the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 次に、反り曲率演算部5cは、被圧延材4の反り高さが最少反り認識高さ以下となるサンプリング位置を認識する。例えば、最少認識高さは、20mmに予め指定される。その後、反り曲率演算部5cは、被圧延材4の先端から当該サンプリング位置までの長さを反り長さとする。 Next, the warp curvature calculation unit 5c recognizes a sampling position where the warp height of the material to be rolled 4 is equal to or less than the minimum warp recognition height. For example, the minimum recognition height is designated in advance as 20 mm. Thereafter, the warp curvature calculation unit 5c sets the length from the tip of the material to be rolled 4 to the sampling position as the warp length.
 次に、図6を用いて、被圧延材4の反り高さの計算結果を説明する。
図6はこの発明の実施の形態1における板反り検出装置による反り高さの計算結果を説明するための図である。
Next, the calculation result of the warp height of the material to be rolled 4 will be described with reference to FIG.
FIG. 6 is a diagram for explaining the result of calculation of the warp height by the plate warp detection device according to the first embodiment of the present invention.
 図6の横軸は、被圧延材4先端からの距離を表す。図6の左側の縦軸は、ゲージメータ板厚、板厚計検出厚を表す。図6の右側の縦軸は、反り高さを表す。 6 represents the distance from the tip of the material 4 to be rolled. The vertical axis on the left side of FIG. 6 represents the gauge meter plate thickness and the plate thickness gauge detected thickness. The vertical axis on the right side of FIG. 6 represents the warp height.
 図6に示すように、ゲージメータ板厚は、被圧延材4先端からの距離にかかわらず、略一定の値である。これに対し、被圧延材4先端からの距離が短い位置ほど、板厚計検出厚は大きい値となる。被圧延材4先端からの距離が700mm程度よりも長い位置においては、板厚計検出厚は、ゲージメータ板厚とほぼ同じ値となる。 As shown in FIG. 6, the gauge meter plate thickness is a substantially constant value regardless of the distance from the tip of the material 4 to be rolled. On the other hand, as the distance from the tip of the material to be rolled 4 is shorter, the thickness gauge detected thickness becomes a larger value. At a position where the distance from the tip of the material to be rolled 4 is longer than about 700 mm, the thickness gauge detected thickness is substantially the same value as the gauge meter thickness.
 この場合、被圧延材4先端からの距離が短い位置ほど、被圧延材4の反り高さは、大きな値となる。被圧延材4先端からの距離が700mm程度よりも長い位置においては、被圧延材4の反り高さは、ほぼ0となる。すなわち、被圧延材4先端からの距離が700mm程度よりも長い位置においては、被圧延材4の反りが発生していないことが分かる。 In this case, the warp height of the material to be rolled 4 becomes larger as the distance from the tip of the material to be rolled 4 is shorter. At a position where the distance from the tip of the material to be rolled 4 is longer than about 700 mm, the warp height of the material to be rolled 4 is almost zero. That is, it can be seen that the material to be rolled 4 is not warped at a position where the distance from the tip of the material to be rolled 4 is longer than about 700 mm.
 以上で説明した実施の形態1によれば、一般的に設けられている板厚計3を利用して、被圧延材4の反りが検出される。このため、専用の装置を用いることなく、被圧延材4の反りを検出することができる。 According to Embodiment 1 demonstrated above, the curvature of the to-be-rolled material 4 is detected using the thickness meter 3 generally provided. For this reason, the curvature of the material 4 to be rolled can be detected without using a dedicated device.
 なお、各サンプリング位置(i)に対し、前回サンプリング位置(i-1)と次回サンプリング位置(i+1)のデータを使って、被圧延材4の反り曲率を計算してもよい。 Note that the warpage curvature of the material to be rolled 4 may be calculated for each sampling position (i) by using the data of the previous sampling position (i-1) and the next sampling position (i + 1).
実施の形態2.
 図7はこの発明の実施の形態2における板反り検出装置のブロック図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
Embodiment 2. FIG.
FIG. 7 is a block diagram of a plate warpage detection apparatus according to Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected to Embodiment 1 and an equivalent part, and description is abbreviate | omitted.
 ゲージメータ板厚と被圧延材4の真の板厚との間には、誤差が生じ得る。当該誤差は、ゲージメータ誤差と呼ばれる。ゲージメータ誤差がある場合、被圧延材4の定常部付近においても、ゲージメータ板厚と板厚計検出厚との間には、偏差が生じる。当該偏差により、被圧延材4の反り曲率と反り高さの計算精度が低下する。 An error may occur between the gauge meter plate thickness and the true plate thickness of the material 4 to be rolled. This error is called a gauge meter error. When there is a gauge meter error, a deviation occurs between the gauge meter plate thickness and the plate thickness meter detected thickness even in the vicinity of the steady portion of the material 4 to be rolled. Due to the deviation, the calculation accuracy of the warp curvature and the warp height of the material to be rolled 4 is lowered.
 そこで、実施の形態2の板反り検出装置5には、ゲージメータ偏差補正部5dが設けられる。ゲージメータ偏差補正部5dは、同一点データ編集部5bが編集したゲージメータ板厚と板厚計検出厚とに基づいて、ゲージメータ偏差補正量Δhgm compを次の(9)式を用いて計算する。 Therefore, the gauge warpage detection device 5 of the second embodiment is provided with a gauge meter deviation correction unit 5d. The gauge meter deviation correction unit 5d uses the following equation (9) to calculate the gauge meter deviation correction amount Δh gm comp based on the gauge meter plate thickness and the plate thickness meter detected thickness edited by the same point data editing unit 5b. calculate.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ただし、hscn body(mm)は、被圧延材4の定常部における板厚計検出厚の平均値である。hgm body(mm)は、被圧延材4の定常部におけるゲージメータ板厚の平均値である。例えば、被圧延材4の定常部は、被圧延材4の圧延方向中央部における、各パス出側の被圧延材4の長さに対する30%の長さの範囲と定義される。 However, h scn body (mm) is the average value of the thickness gauge detection thickness in the stationary part of the material 4 to be rolled. h gm body (mm) is an average value of the gauge meter plate thickness in the steady portion of the material 4 to be rolled. For example, the steady portion of the material to be rolled 4 is defined as a range of 30% of the length of the material to be rolled 4 on the exit side of each pass at the center in the rolling direction of the material to be rolled 4.
 本実施の形態の反り曲率演算部5cは、被圧延材4の反り曲率半径、反り高さ、反り長さを計算する際にゲージメータ板厚の全ての同一点サンプリングデータにゲージメータ偏差補正量Δhgm compを加算する。 The warp curvature calculator 5c of this embodiment calculates the gauge meter deviation correction amount to all the same point sampling data of the gauge meter plate thickness when calculating the warp curvature radius, warp height, and warp length of the material 4 to be rolled. Add Δh gm comp .
 以上で説明した実施の形態2によれば、ゲージメータ板厚と被圧延材4の真の板厚との間に誤差が生じた場合でも、被圧延材4の反りを正しく検出することができる。 According to the second embodiment described above, even when an error occurs between the gauge meter plate thickness and the true plate thickness of the material to be rolled 4, the warp of the material to be rolled 4 can be detected correctly. .
実施の形態3.
 図8はこの発明の実施の形態3における板反り検出装置を利用したデスケーリング制御装置のブロック図である。なお、実施の形態2と同一又は相当部分には同一符号を付して説明を省略する。
Embodiment 3 FIG.
FIG. 8 is a block diagram of a descaling control device using a plate warpage detection device according to Embodiment 3 of the present invention. In addition, the same code | symbol is attached | subjected to the part which is the same as that of Embodiment 2, or an equivalent, and description is abbreviate | omitted.
 図8において、デスケーリング制御装置6は、制御部6aを備える。制御部6aは、板反り検出装置5が検出した被圧延材4の反り長さに基づいて、デスケーリング装置の水噴射を制御する機能を備える。 Referring to FIG. 8, the descaling control device 6 includes a control unit 6a. The control unit 6a has a function of controlling water jetting of the descaling device based on the warp length of the material to be rolled 4 detected by the plate warp detection device 5.
 次に、図9を用いて、デスケーリング装置の制御方法を説明する。
 図9はこの発明の実施の形態3における板反り検出装置を利用したデスケーリング制御装置によるデスケーリング装置の制御方法を説明するための図である。
Next, a control method of the descaling apparatus will be described with reference to FIG.
FIG. 9 is a diagram for explaining a control method of the descaling apparatus by the descaling control apparatus using the plate warpage detection apparatus in the third embodiment of the present invention.
 図9に示すように、あるパス(iパス)で、被圧延材4の反りが検出されると、板反り検出装置5は、被圧延材4の反り長さに関する情報をデスケーリング制御装置6に出力する。次のi+1パスにおいて、反り開始位置は、被圧延材4の尾端よりも反り長さの分だけ手前となる。 As shown in FIG. 9, when warpage of the material to be rolled 4 is detected in a certain path (i-pass), the plate warpage detection device 5 displays information on the warp length of the material to be rolled 4 on the descaling control device 6. Output to. In the next i + 1 pass, the warp start position is in front of the tail end of the material to be rolled 4 by the warp length.
 そこで、デスケーリング制御装置6は、i+1パスの圧延中において、被圧延材4の尾端をトラッキングする。被圧延材4の定常部においては、デスケーリング制御装置6は、デスケーリング装置にデスケーリングを実施させる。当該実施により、ヘッダ2は、被圧延材4のスプレー接触点に対して水を噴射する。その後、被圧延材4の反り開始位置がスプレー接触点に到達すると、デスケーリング制御装置6は、デスケーリング装置に水噴射を停止させる。 Therefore, the descaling control device 6 tracks the tail end of the material 4 to be rolled during the i + 1 pass rolling. In the steady part of the material 4 to be rolled, the descaling control device 6 causes the descaling device to perform descaling. With this implementation, the header 2 sprays water onto the spray contact point of the material 4 to be rolled. Thereafter, when the warpage start position of the material to be rolled 4 reaches the spray contact point, the descaling control device 6 causes the descaling device to stop water injection.
 以上で説明した実施の形態3によれば、被圧延材4の反りの発生部に対しては、水が噴射されない。このため、被圧延材4の反りの発生部に対し、局所的な過冷却を防止することができる。その結果、被圧延材4の温度制御を安定させることができる。当該安定により、最終製品で十分な機械特性を得ることができる。 According to the third embodiment described above, water is not injected onto the warped portion of the material 4 to be rolled. For this reason, it is possible to prevent local overcooling of the warped portion of the material 4 to be rolled. As a result, the temperature control of the material to be rolled 4 can be stabilized. Due to the stability, sufficient mechanical properties can be obtained in the final product.
 また、デスケーリングの停止位置は、被圧延材4の反り長さに基づいて決まる。このため、オペレータの目視による処置よりも被圧延材4の均質化を期待することができる。 Further, the descaling stop position is determined based on the warp length of the material 4 to be rolled. For this reason, homogenization of the material to be rolled 4 can be expected rather than the operator's visual treatment.
実施の形態4.
 図10はこの発明の実施の形態4における板反り検出装置を利用したパススケジュール計算装置のブロック図である。なお、実施の形態2と同一又は相当部分には同一符号を付して説明を省略する。
Embodiment 4 FIG.
FIG. 10 is a block diagram of a path schedule calculation apparatus using a plate warpage detection apparatus according to Embodiment 4 of the present invention. In addition, the same code | symbol is attached | subjected to the part which is the same as that of Embodiment 2, or an equivalent, and description is abbreviate | omitted.
 図10において、パススケジュール計算装置7は、反り矯正パス追加部7aを備える。反り矯正パス追加部7aは、板反り検出装置5が計算した被圧延材4の反り高さに基づいて、パススケジュール計算装置7が決定するパススケジュールに反り矯正パスを追加する機能を備える。 10, the path schedule calculation device 7 includes a warp correction path addition unit 7a. The warp correction path adding unit 7 a has a function of adding a warp correction path to the path schedule determined by the path schedule calculation device 7 based on the warp height of the material to be rolled 4 calculated by the plate warpage detection device 5.
 例えば、反り矯正パスは、通常の圧下よりも十分に圧下量を小さくしたパスに設定される。例えば、反り矯正パスは、一つ前の実パスと同じロールギャップとなるように設定される。例えば、反り矯正パスにおいては、被圧延材4の反り高さに応じて、矯正パス数と各パス矯正圧下量とが設定される。 For example, the warp correction pass is set to a pass in which the amount of reduction is sufficiently smaller than the normal reduction. For example, the warp correction pass is set to have the same roll gap as the previous actual pass. For example, in the warp correction pass, the number of correction passes and each pass correction reduction amount are set according to the warp height of the material 4 to be rolled.
 例えば、矯正パス数Nは、次の(10)式で計算される。 For example, the number N of correction passes is calculated by the following equation (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 例えば、各パス矯正圧下量Δhは、次の(11)式で計算される。 For example, each pass correction reduction amount Δh is calculated by the following equation (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ただし、Hwrap max(mm)は、被圧延材4の反り高さの最大値である。fpss()は、被圧延材4の反り高さに基づいて矯正パス数Nを決定する関数である。fred()は、被圧延材4の反り高さに基づいて各パス矯正圧下量Δhを決定する関数である。 However, H wrap max (mm) is the maximum value of the warp height of the material 4 to be rolled. f pss () is a function for determining the number N of correction passes based on the warp height of the material 4 to be rolled. f red () is a function for determining each pass correction reduction amount Δh based on the warp height of the material 4 to be rolled.
 以上で説明した実施の形態4によれば、被圧延材4の反りが発生した場合、次パス以降のパススケジュールに反り矯正パスが追加される。このため、被圧延材4の反りを低減することができる。その結果、不安定な被圧延材4の搬送を回避することができる。また、下流側のレベラー、冷却装置等の周辺設備への被圧延材4の衝突を回避することができる。当該回避により、生産能率が向上する。この際、矯正パス数、各パス矯正圧下量等は、被圧延材4の反りの高さに応じて決まる。その結果、オペレータの負担も大幅に低減することができる。 According to the fourth embodiment described above, when the material to be rolled 4 is warped, a warp correction pass is added to the pass schedule after the next pass. For this reason, the curvature of the to-be-rolled material 4 can be reduced. As a result, unstable conveyance of the material 4 to be rolled can be avoided. Moreover, the collision of the to-be-rolled material 4 with peripheral facilities, such as a downstream leveler and a cooling device, can be avoided. This avoidance improves the production efficiency. At this time, the number of correction passes, each pass correction reduction amount, and the like are determined according to the height of warpage of the material to be rolled 4. As a result, the burden on the operator can be greatly reduced.
 なお、被圧延材4の反り高さの最大値を層別条件とし、矯正パス数と各パス矯正圧下量を索引する層別テーブルを用いて、反り矯正パスを設定してもよい。 It should be noted that the warp correction pass may be set using a stratification table in which the maximum value of the warp height of the material to be rolled 4 is set as a stratification condition and the number of correction passes and each pass correction reduction amount are indexed.
 以上のように、この発明に係る板反り検出装置は、専用の装置を用いることなく、被圧延材の反りを検出する圧延システムに利用できる。 As described above, the plate warpage detection device according to the present invention can be used for a rolling system that detects the warpage of a material to be rolled without using a dedicated device.
 1 圧延機、 2 ヘッダ、 3 板厚計、 4 被圧延材、 5 板反り検出装置、 5a ゲージメータ板厚演算部、 5b 同一点データ編集部、 5c 反り曲率演算部、 5d ゲージメータ偏差補正部、 6 デスケーリング制御装置、 6a 制御部、 7 パススケジュール計算装置、 7a 反り矯正パス追加部 DESCRIPTION OF SYMBOLS 1 Rolling machine, 2 Header, 3 Thickness gauge, 4 Rolled material, 5 Sheet warpage detection apparatus, 5a Gauge meter thickness calculation part, 5b Same point data edit part, 5c Warp curvature calculation part, 5d Gauge meter deviation correction part , 6 Descaling control device, 6a control unit, 7 pass schedule calculation device, 7a Warp correction path addition unit

Claims (4)

  1.  圧延機における圧延中の圧延荷重実績値とロールギャップ実績値とに基づいて、前記被圧延材のゲージメータ板厚を計算するゲージメータ板厚演算部と、
     前記圧延機による前記被圧延材の圧延方向に対して前記圧延機よりも下流側に配置された板厚計が検出した前記被圧延材の検出厚と前記ゲージメータ板厚演算部が計算したゲージメータ板厚とを、定長ピッチの同一点サンプリングデータに編集する同一点データ編集部と、
     前記同一点データ編集手段が編集した検出厚とゲージメータ板厚との同一点サンプリングデータに基づいて、前記被圧延材の先側の反りを検出する検出部と、
    を備えたことを特徴とする板反り検出装置。
    Based on the rolling load actual value and the roll gap actual value during rolling in the rolling mill, a gauge meter plate thickness calculation unit that calculates the gauge meter plate thickness of the material to be rolled,
    A thickness calculated by the thickness meter detected by the thickness meter disposed downstream of the rolling mill with respect to the rolling direction of the rolled material by the rolling mill and calculated by the gauge meter thickness calculation unit The same point data editing unit for editing the meter plate thickness into the same point sampling data of a fixed length pitch,
    Based on the same point sampling data of the detected thickness and gauge meter plate thickness edited by the same point data editing means, a detection unit for detecting the warp on the front side of the material to be rolled,
    A board warpage detection device comprising:
  2.  前記同一点データ編集手段が編集した検出厚とゲージメータ板厚との同一点サンプリングデータに基づいて、前記被圧延材の定常部の検出厚とゲージメータ板厚との平均偏差を計算する偏差補正部、
    を備え、
     前記検出部は、前記平均偏差を用いてゲージメータ板厚を補正することを特徴とする請求項1に記載の板反り検出装置。
    Deviation correction for calculating an average deviation between the detected thickness of the steady portion of the material to be rolled and the gauge meter plate thickness based on the same point sampling data of the detected thickness and the gauge meter plate thickness edited by the same point data editing means Part,
    With
    The plate warpage detection device according to claim 1, wherein the detection unit corrects a gauge meter plate thickness using the average deviation.
  3.  前記圧延機が前記被圧延材を往復圧延する際の途中圧延パスにおいて請求項1又は請求項2に記載の板反り検出装置が前記被圧延材の先側の反りを検出した場合に、次のパスにおいて、前記反りの発生部での水噴射を停止させるデスケーリング制御部、
    を備えたことを特徴とするデスケーリング制御装置。
    When the sheet warpage detection device according to claim 1 or 2 detects a warp on the front side of the material to be rolled in a halfway rolling pass when the rolling machine reciprocally rolls the material to be rolled, In a pass, a descaling control unit that stops water injection at the warp generation unit,
    A descaling control device comprising:
  4.  前記圧延機が前記被圧延材を往復圧延する際の途中圧延パスにおいて請求項1又は請求項2に記載の板反り検出装置が前記被圧延材の先側の反りを検出した場合に、次のパス以降のパススケジュールに軽圧下パスを追加する反り矯正パス追加部、
    を備えたことを特徴とするパススケジュール計算装置。
    When the sheet warpage detection device according to claim 1 or 2 detects a warp on the front side of the material to be rolled in a halfway rolling pass when the rolling machine reciprocally rolls the material to be rolled, Warp correction pass addition part that adds a light pressure pass to the pass schedule after the pass,
    A path schedule calculation device comprising:
PCT/JP2012/083485 2012-12-25 2012-12-25 Plate camber detection device, descaling control device, and pass schedule calculation device WO2014102902A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280077967.9A CN104903017B (en) 2012-12-25 2012-12-25 Slab warping detection device, de-scaling control device, path scheduling calculates device
PCT/JP2012/083485 WO2014102902A1 (en) 2012-12-25 2012-12-25 Plate camber detection device, descaling control device, and pass schedule calculation device
KR1020157014962A KR101701656B1 (en) 2012-12-25 2012-12-25 Plate camber detection device, descaling control device, and pass schedule calculation device
JP2014553912A JP5983771B2 (en) 2012-12-25 2012-12-25 Plate warpage detection device, descaling control device, path schedule calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/083485 WO2014102902A1 (en) 2012-12-25 2012-12-25 Plate camber detection device, descaling control device, and pass schedule calculation device

Publications (1)

Publication Number Publication Date
WO2014102902A1 true WO2014102902A1 (en) 2014-07-03

Family

ID=51020062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083485 WO2014102902A1 (en) 2012-12-25 2012-12-25 Plate camber detection device, descaling control device, and pass schedule calculation device

Country Status (4)

Country Link
JP (1) JP5983771B2 (en)
KR (1) KR101701656B1 (en)
CN (1) CN104903017B (en)
WO (1) WO2014102902A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113465476A (en) * 2021-06-15 2021-10-01 太原理工大学 Method for evaluating deformation coordination of multilayer metal rolled composite plate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6784253B2 (en) * 2017-11-22 2020-11-11 東芝三菱電機産業システム株式会社 Shape control device for cluster rolling mill
CN108160717B (en) * 2017-12-20 2019-07-12 中冶京诚工程技术有限公司 The measurement method and measuring device of Head ski -up degree when steel plate rolling
WO2019224906A1 (en) * 2018-05-22 2019-11-28 東芝三菱電機産業システム株式会社 Industrial plant image analysis device and industrial plant monitoring control system
CN114279386B (en) * 2021-12-22 2024-02-23 惠州锂威新能源科技有限公司 Method for detecting roller abrasion

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788909A (en) * 1980-11-20 1982-06-03 Toshiba Corp Device for controlling rolling
JPH08267113A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp Method for controlling plate camber in plate rolling

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107206A (en) * 1981-12-21 1983-06-25 Sumitomo Metal Ind Ltd Camber correcting method for rolled material
JP2597720B2 (en) * 1989-07-31 1997-04-09 株式会社東芝 Rolled material meandering control device
JP2825428B2 (en) * 1993-12-06 1998-11-18 新日本製鐵株式会社 Strip crown control method in rolling mill
CN1082853C (en) * 1994-03-11 2002-04-17 川崎制铁株式会社 Method and apparatus for controlling rolling
JP3690971B2 (en) * 2000-08-07 2005-08-31 株式会社日立製作所 Rolling equipment with shape detection device
JP2002096103A (en) 2000-09-20 2002-04-02 Kawasaki Steel Corp Method of detection of plate deflection on plate rolling and method of preventing plate deflection on plate rolling
JP3724720B2 (en) 2001-12-20 2005-12-07 住友金属工業株式会社 Warpage shape measuring method and apparatus
JP2006007235A (en) 2004-06-23 2006-01-12 Toshiba Corp System for controlling sheet camber and device for detecting sheet camber
CN102744265B (en) * 2011-04-22 2014-10-01 宝山钢铁股份有限公司 Strip steel C warping control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5788909A (en) * 1980-11-20 1982-06-03 Toshiba Corp Device for controlling rolling
JPH08267113A (en) * 1995-03-31 1996-10-15 Kawasaki Steel Corp Method for controlling plate camber in plate rolling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113465476A (en) * 2021-06-15 2021-10-01 太原理工大学 Method for evaluating deformation coordination of multilayer metal rolled composite plate
CN113465476B (en) * 2021-06-15 2022-09-06 太原理工大学 Method for evaluating deformation coordination of multilayer metal rolling composite plate

Also Published As

Publication number Publication date
KR20150082529A (en) 2015-07-15
JPWO2014102902A1 (en) 2017-01-12
KR101701656B1 (en) 2017-02-01
CN104903017A (en) 2015-09-09
CN104903017B (en) 2016-11-16
JP5983771B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5983771B2 (en) Plate warpage detection device, descaling control device, path schedule calculation device
KR101345056B1 (en) Hot rolling equipment and hot rolling method
CN101614529A (en) A kind of method of on-line continuous monitoring appearance of continuous casting sheet billet
EP3412378A1 (en) Slab warping detection device and slab warping detection method
JP4878485B2 (en) Cold continuous rolling equipment
JP5598583B2 (en) Automatic straightening control device for differential steel plate
JP2012170997A (en) Method of controlling drive of crop shear
JP6493315B2 (en) Reduction leveling control device and reduction leveling control method
JP5949691B2 (en) Plate width control method and plate width control device
JP5332577B2 (en) Steel strip continuous processing equipment and continuous processing method
JP2007185703A (en) Method of rolling control and hot finishing mill
JP6460060B2 (en) Steel rolling device, steel material manufacturing device, steel material rolling method, and steel material manufacturing method
JP6597669B2 (en) Straightening method and apparatus for tapered steel plate
JP6566012B2 (en) Straightening method for tapered steel sheet
JP2001340945A (en) Marking device for round billet and method for stop position control of round billet
JP2006110588A (en) Method for controlling thickness and shape
JP4564438B2 (en) Steel sheet elongation measuring apparatus and elongation measuring method
JP5380879B2 (en) Automatic correction control method for differential thickness steel sheet and manufacturing method for differential thickness steel sheet
JP7347688B2 (en) Meandering control device for continuous rolling mill
JP4871250B2 (en) Strip rolling method
TWI837144B (en) Method and device for determining the lateral belt profile or belt edge position of a running metal belt
JP2018001225A (en) Method for rolling shaped steel and rolling machine
JP4085541B2 (en) Sheet warpage control method in hot rolling.
JP6733612B2 (en) Rolling line control device
JP4019035B2 (en) Thick plate rolling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891326

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553912

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157014962

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12891326

Country of ref document: EP

Kind code of ref document: A1