WO2014101762A1 - 一种应用于太阳能热利用系统的双传热结构 - Google Patents

一种应用于太阳能热利用系统的双传热结构 Download PDF

Info

Publication number
WO2014101762A1
WO2014101762A1 PCT/CN2013/090401 CN2013090401W WO2014101762A1 WO 2014101762 A1 WO2014101762 A1 WO 2014101762A1 CN 2013090401 W CN2013090401 W CN 2013090401W WO 2014101762 A1 WO2014101762 A1 WO 2014101762A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
heat
transfer medium
main
solar thermal
Prior art date
Application number
PCT/CN2013/090401
Other languages
English (en)
French (fr)
Inventor
刘阳
Original Assignee
北京兆阳光热技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京兆阳光热技术有限公司 filed Critical 北京兆阳光热技术有限公司
Publication of WO2014101762A1 publication Critical patent/WO2014101762A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • Double heat transfer structure applied to solar heat utilization system Double heat transfer structure applied to solar heat utilization system
  • the present invention relates to a dual heat transfer structure for a solar thermal utilization system applied to the field of solar energy. Background technique
  • the existing solar energy is an ideal non-fossil energy source, non-polluting, clean energy with harmonious ecological environment, and it is inexhaustible.
  • solar thermal utilization technology especially solar thermal power generation technology, is receiving more and more attention from everyone. Become an important means of solving future energy problems.
  • heat transfer oil as heat transfer medium for solar power plants Industrialization for many years, but limited by the material stability of the heat transfer oil itself, can only work at 400 ° C temperature, so can not get the turbine inlet temperature parameters of more than 400 ° C; the current nitrate heat transfer medium system can be very good
  • the nitrate heat transfer medium can work at 550 ° C, and does not decompose at 600 ° C; this can well solve the problem of turbine inlet temperature and pressure parameters, improve the power generation efficiency of the turbine, and be more efficient.
  • the melting point of the general molten salt is higher, the heat loss caused by the heat preservation cycle ⁇ Large; or add auxiliary electric heating system outside the collector or transmission pipeline, and direct electric heating is easy to cause over-temperature, which is unknown to the safety of the system, and the additional power consumption of the power plant, maintenance of the power plant Undoubtedly also a huge cost.
  • the heat storage tank is out of operation, such as continuous rainy weather or scheduled maintenance of the power station, the cold storage tank or the hot tank or the connected pipeline of the heat storage system may also freeze; once the heat storage tank is frozen, the power generation system is completely at In the meantime, the system will suffer huge losses.
  • the existing heat tracing devices of the collector or the heat storage tank are mostly heated by the power source.
  • the overheating decomposition will occur, resulting in a change in the performance of the heat transfer medium.
  • the CSP Concentrating Solar Power
  • the CSP Concentrating Solar Power
  • the CSP Concentrating Solar Power
  • auxiliary boiler in power station can also produce saturated steam or superheated steam under specific pressure, and the saturation temperature point (phase change temperature) can be easily controlled, economical and no risk of over-temperature decomposition, avoiding Performance changes and safety hazards caused by over-temperature melting of condensed salts.
  • An object of the present invention is to provide a dual heat transfer structure applied to a solar heat utilization system, which can simply and effectively solve the problem of low temperature solidification blockage of a heat transfer medium during solar heat utilization, and maximize the use of solar heat. Avoid the safety hazards of the external heating operation mode, reduce the power consumption of the plant and reduce the operation and maintenance costs.
  • the invention provides a double heat transfer structure applied to a solar heat utilization system, the double heat transfer structure comprising a main pipe, a main heat transfer medium, an auxiliary pipe and a secondary heat transfer medium; the auxiliary pipe is arranged inside the main pipe, The secondary heat transfer medium flows inside the auxiliary pipe, and the main heat transfer medium flows in a space formed by the outer wall of the auxiliary pipe and the inner wall of the main pipe.
  • the auxiliary pipe is arranged in a heat collecting system and a transportation pipe system of the solar heat utilization system;
  • the heat collecting system mainly comprises an absorption pipe, which can be equivalently understood as a main pipe in the double heat transfer structure;
  • the pipe system mainly includes a main pipe, which can be equivalently understood as a main pipe in a double heat transfer structure; or it is understood that the heat collecting system and the transportation pipe system are different embodiments of the double heat transfer structure (the following full text may be Similar understanding).
  • auxiliary pipe is disposed inside all of the heat transfer pipes of the normal endothermic heat transfer cycle in the solar heat utilization system, and all of the heat transfer pipes include all the flow pipes of the main heat transfer medium and the inside of all the flow pipes of the heat storage medium.
  • the auxiliary pipe is disposed in a heat storage system or a heat exchange device or an expansion expansion joint or a low pressure heater or a deaerator of the solar heat utilization system; when the main heat transfer medium is solidified, under continuous normal operation of the system, a secondary heat transfer medium, such as water, flowing through the auxiliary pipe, using heat in the heat storage system or the heat exchange device, to become saturated steam or superheated steam, and then radiating heat to the main heat transfer medium through the auxiliary pipe to melt the heat collecting system or The main heat transfer medium of the solidified state of the transport pipeline; under abnormal operating conditions, For example, after the system is in the rest period, after the main heat transfer medium or the heat storage medium in the heat storage system or the heat exchange device is solidified, the saturated heat or the superheated steam can be generated by absorbing the heat of the external heat source, and the heat is transferred to the heat storage through the auxiliary pipe.
  • the system or the heat exchange device and the heat collecting system or the transport pipe are used to melt the solidified heat storage medium or the main heat transfer
  • auxiliary pipe is disposed at a position close to the pump body or the valve body; or is connected to the pump body or the valve body heating device; for controlling the temperature of all the pump bodies or valves in the heat utilization system, so that the valve or the pump interior
  • the primary heat transfer medium is in a molten state when needed or solidifies and cools when needed to release heat.
  • the main heat transfer medium in the double heat transfer structure is an elemental salt or a mixed salt or a heat transfer oil or a low melting point metal such as a nitrate, a mixed nitrate, a heat transfer oil, a low melting point metal or the like.
  • the main heat transfer medium is the same substance as the heat storage medium disposed inside the heat storage system, and the main heat transfer medium directly absorbs heat and then enters the heat storage system to store heat.
  • the heat transfer system flows into the auxiliary pipe at a high temperature state to release heat to the main heat transfer medium; the main heat transfer medium absorbs heat and melts, and becomes fluidizable and starts to flow.
  • the circulating flow is implemented to melt and start, and the solar island system can start ray tracing to take heat.
  • the secondary heat transfer medium flows into the auxiliary pipe at a low temperature state, and the heat in the main heat transfer medium is taken away to the heat storage system or directly utilized, and the temperature of the main heat transfer medium is actively taken. Decrease and solidify, effectively use the heat retention in the heat collection system to reduce the heat loss from passive natural heat dissipation at night.
  • the secondary heat transfer medium in the auxiliary pipe is water, steam, gas, etc.; the gas may be air, carbon dioxide, nitrogen or an inert gas or the like.
  • the plurality of parallel auxiliary pipes are arranged in the main pipe in the same transportation pipe system; that is, the main pipe (the main pipe of the equivalent double heat transfer structure) in the transportation pipe system has a main heat transfer medium inside , a plurality of auxiliary tubes arranged side by side, and a secondary heat transfer medium in the auxiliary tubes.
  • the at least one auxiliary pipe is respectively disposed inside a plurality of main pipes in the transportation pipe system; that is, the transportation pipe system includes a plurality of side-by-side main pipes, and the single main pipe has a main heat transfer medium inside, one or A plurality of auxiliary heat pipes arranged in parallel and auxiliary heat transfer medium in the auxiliary pipe.
  • the double heat transfer structure applied to the solar thermal utilization system of the present invention has the following advantages: 1.
  • the present invention draws a special double pass.
  • the thermal structure can use the heat from the secondary heat transfer medium flowing in the auxiliary pipe to heat the solidified main heat transfer medium when the main heat transfer medium solidifies, so that the main heat transfer medium can melt the flow to ensure the normal operation of the system, It basically solves the problem of freezing blockage of the traditional heat transfer system; 2.
  • the traditional device for electrically heating the heat transfer medium makes the device of the whole system relatively simple, and saves the cost of the device and the electric energy, improves the safety performance of the system, and reduces the cost of the overall operation.
  • FIG. 1 is a schematic view showing the overall layout of an embodiment of a dual heat transfer structure applied to a solar thermal utilization system of the present invention
  • 2-1 is a schematic structural view of an arrangement of a double heat transfer structure applied to a solar thermal utilization system of the present invention
  • FIG. 2-2 is a schematic view showing the structure of a second arrangement of a double heat transfer structure applied to a solar thermal utilization system according to the present invention
  • 2-3 is a schematic structural view of a third arrangement of a double heat transfer structure applied to a solar thermal utilization system of the present invention
  • FIG. 3 is a schematic diagram of a secondary heat transfer medium circulation route in a preheating state before normal operation in the morning of the dual heat transfer structure embodiment applied to the solar thermal utilization system of the present invention
  • FIG. 4 is a schematic diagram of a secondary heat transfer medium circulation route when the solar heat tracking system is applied to the solar heat utilization system in the evening;
  • FIG. 5 is a schematic view showing the connection structure of a double heat transfer structure and a circulation pump applied to a solar heat utilization system according to the present invention.
  • 1 is a schematic view showing the overall layout of an embodiment of a dual heat transfer structure applied to a solar thermal utilization system of the present invention.
  • the dual heat transfer structure is disposed in a solar thermal utilization system including a concentrating system 101, a dual heat transfer structure 102, a heat storage system, and a heat utilization system.
  • the concentrating system 101 is a trough or Fresnel concentrating system or a tower concentrating system or a butterfly concentrating system.
  • the dual heat transfer structure 102 includes a main pipe, a main heat transfer medium, an auxiliary pipe, and a secondary heat transfer medium.
  • the auxiliary pipe is disposed inside the main pipe, and the secondary heat transfer medium flows inside the auxiliary pipe, and the main heat transfer medium flows in a space formed by the outer wall of the auxiliary pipe and the inner wall of the main pipe.
  • the solid line in the double heat transfer structure represents the circulation loop of the main heat transfer medium, and the broken line represents the circulation loop of the secondary heat transfer medium;
  • the auxiliary tube is arranged in the heat collecting system and the transportation pipeline system of the solar heat utilization system;
  • the heat collecting system is disposed at a focus position of the concentrating system 101;
  • the transportation pipeline system is connected to a heat collecting system, and the two are internally connected, and the main heat transfer medium flowing through the two transfers the solar heat to the heat storage system or the heat utilization
  • the heat utilization system is, for example, a power generation system, and the solar heat utilization system generates heat by using the heat energy converted by sunlight, and drives the steam turbine 106 to generate electricity.
  • the excess heat collected by the solar island system is stored through the heat storage system in the sunlight. Insufficient or nighttime double heat transfer structure to remove heat from the heat storage system to ensure the normal operation of the power generation system.
  • the heat storage system includes a heat storage heat tank 103 and a heat storage cold tank 105. A high temperature heat storage medium is arranged in the heat storage heat tank 103, and a low temperature heat storage medium is arranged in the heat storage cold tank 105.
  • the high temperature heat storage medium and low temperature The heat storage medium is, for example, a mixed salt of sodium nitrate wt 60% + potassium nitrate wt 40%; the auxiliary pipe is disposed inside all heat transfer pipes of the endothermic heat transfer cycle in the solar heat utilization system, and all the heat transfer pipes include the main pass Heat medium All flow pipes and heat storage media inside all flow pipes. Further, the auxiliary pipe is simultaneously disposed in the heat storage heat tank 103 of the heat storage system and the heat storage cold tank 105 or the heat exchange device 104 in the heat utilization system or the expansion expansion joint or the low pressure heater or the deaerator Inside.
  • the secondary heat transfer medium flowing through the auxiliary pipe utilizes heat in the heat storage system or the heat exchange device to obtain saturated steam or superheated steam to melt the heat storage medium or main heat transfer medium in other positions. Prevent the main heat transfer medium or heat storage medium from clogging inside the pipe or in the pump body or valve body; Under abnormal operating conditions, for example, after the system is in a long-term stop period, the main heat transfer system or the heat transfer device After the heat medium or the heat storage medium solidifies, the saturated heat or superheated steam generated by an external heat source such as a gas boiler can flow through the heat storage system or the heat exchange device and other positions in the auxiliary pipe to melt the solidified heat storage medium or main heat transfer. Media, bringing the system back to normal operation.
  • an external heat source such as a gas boiler
  • the dual heat transfer structure includes a main conduit 210, a primary heat transfer medium 209, an auxiliary tube 211, and a secondary heat transfer medium 208.
  • the auxiliary pipe 211 is disposed in a heat collecting system and a transportation pipe system of the solar heat utilization system;
  • the heat collecting system mainly includes an absorption pipe, which can be equivalently understood as a main pipe 210 in the double heat transfer structure;
  • the system mainly includes a main pipe, which can be equivalently understood as a main pipe 210 in a double heat transfer structure; or as a heat collecting system and a transportation pipe
  • the track system is a different implementation of the dual heat transfer structure (the same can be done in the full text below).
  • the primary heat transfer medium 209 is an elemental salt or a mixed salt or a heat transfer oil or a low melting point metal;
  • the secondary heat exchange medium 208 is water, steam or gas, and the gas may be air, carbon dioxide, nitrogen or an inert gas;
  • the auxiliary pipe 211 is disposed inside the main pipe 210, and the secondary heat transfer medium can flow inside the auxiliary pipe 211, and the main heat transfer medium 209 such as mixed salt is disposed in a space formed by the outer wall of the auxiliary pipe 211 and the inner wall of the main pipe 210.
  • the main duct 210 may be disposed at a light converging position to convert sunlight concentrated to a surface thereof into heat energy, and the main heat transfer medium 209 carries heat away when flowing through the main duct 210; the main heat transfer medium 209 can absorb times The heat of the heat transfer medium 208 is melted by the self-melting medium; or the main heat transfer medium 209 releases heat to the secondary heat transfer medium to solidify and lower the temperature, reduce the waste caused by the release of heat to the outside, and improve the solar heat utilization efficiency.
  • Fig. 2-2 is a schematic view showing the structure of a second arrangement of a double heat transfer structure applied to a solar heat utilization system of the present invention.
  • the main pipe in the transportation pipe system of the solar heat utilization system is generally large in size; the auxiliary pipes of the plurality of arrays are arranged in the main pipe in the same transportation pipe system, that is, the main pipe in the transportation pipe system (The main pipe 210 of the equivalent double heat transfer structure) has a main heat transfer medium 209, a plurality of auxiliary pipes 211 to 213 arranged in parallel, and a secondary heat transfer medium 208 in the auxiliary pipe.
  • the plurality of auxiliary pipes 211 to 213 are dispersedly disposed inside the main pipe 210 to exchange heat with the main heat transfer medium 209 disposed inside the main pipe 210; the secondary heat transfer medium 208 is disposed on the auxiliary pipe 211 to the auxiliary pipe Inside 213, the heat released by the primary heat transfer medium 209 is absorbed or released to the primary heat transfer medium 209.
  • Figure 2-3 is a schematic view showing the structure of a third arrangement of a double heat transfer structure applied to a solar thermal utilization system of the present invention.
  • at least one auxiliary pipe is respectively disposed inside the plurality of main pipes in the transportation pipe system; that is, the transportation pipe system includes a plurality of parallel double heat transfer structures 214 to double heat transfer structure units 216;
  • the double heat transfer structure 214 includes a main pipe (ie, a main pipe) having a main heat transfer medium inside, one or more auxiliary pipes arranged side by side, and a secondary heat transfer medium in the auxiliary pipe.
  • a single auxiliary pipe is arranged in a single main pipe as shown in the figure); heat absorption or release is completed according to the double heat transfer structure requirement of the solar heat utilization system; a plurality of double heat transfer structures are arranged inside the support pipe 230 to implement uniform heat preservation.
  • FIG. 3 is a schematic diagram of a secondary heat transfer medium circulation route in a preheating state before normal operation in the morning of the dual heat transfer structure embodiment applied to the solar thermal utilization system of the present invention.
  • the main heat transfer medium When the temperature is low at night, the main heat transfer medium is in a solidified state, so that the heat collecting system 302 will not operate normally the next morning.
  • Solar thermal utilization The dual heat transfer structure of the system relies on the heat provided by the heat storage system to heat the main heat transfer medium. As shown in Fig.
  • the pressure in the control auxiliary pipe is 4MPA, (the saturated steam temperature is 250 ° C, which exceeds the melting temperature of the main heat transfer medium by 30 ° C);
  • the control input temperature is 500 ° C ⁇ 550 ° C, which exceeds the melting temperature of the main heat transfer medium and is lower than its decomposition temperature.
  • the auxiliary pipe is heated, and the auxiliary pipe is used to transfer heat to the solidified main heat transfer medium.
  • the solidified main heat transfer medium absorbs heat, the temperature rises and then gradually melts, and the temperature of the secondary heat transfer medium flowing out of the auxiliary pipe is higher than 230 ° C (the main heat transfer medium is a common nitric acid mixed salt, melting point of about 220 ° C) and the duration of more than 30 min, it can be judged that the main heat transfer medium in the main pipeline has melted and can flow normally, end the heating process, preheating state At the end, the system enters the normal running state during the day, and the main heat transfer medium begins normal circulation.
  • FIG. 4 is a schematic diagram of a secondary heat transfer medium circulation route when the solar heat tracking system of the present invention is applied to the solar heat utilization system in the evening to stop the sunlight tracking.
  • the dual heat transfer structure of the solar thermal utilization system stops tracking sunlight or sunlight is unavailable in the evening
  • the low temperature secondary heat transfer medium absorbs the heat released by the main heat transfer medium, reducing the main heat transfer medium due to the low ambient temperature at night. The resulting heat loss, the effective use or storage of system memory retention.
  • the secondary heat transfer medium is selected to be water
  • the input pressure is, for example, 2 MPA
  • the temperature is, for example, 35 ° C.
  • the secondary heat transfer medium is selected to be air or nitrogen
  • the input temperature is, for example, 10 ° C. As shown in FIG.
  • the shutoff valve a and the shutoff valve c are closed, and the obtained water medium is prevented from flowing into the heat storage hot tank 403 in this operation mode, and the heat inside the hot storage heat tank 403 is taken away, and the storage is lowered.
  • the temperature of the heat storage medium inside the hot pot 403; the low temperature secondary heat transfer medium is pumped to the heat collecting system and the pipeline transportation system, wherein the liquid main heat transfer medium releases heat to the secondary heat transfer medium, and the main heat transfer medium passes through
  • the liquid temperature is lowered, the solidification, and the solid temperature are lowered in three stages. After the secondary heat transfer medium absorbs heat, the temperature rises.
  • the secondary heat transfer medium is water, it becomes water vapor after heating, and the secondary heat transfer medium flows out from the heat collecting system 402. After the heat transfer medium whose heat is absorbed, the outlet temperature of the secondary heat transfer medium is higher than 290 ° C, and enters the heat storage cold tank 405 through the shutoff valve b to store the heat, so that the temperature of the low temperature heat storage medium rises; it can be understood that the main heat transfer medium has been Solidification and lowering to a lower temperature, the heat extraction process can be ended.
  • the auxiliary pipe When the temperature is lower than 290 °C, enter the front stage system of the heat storage system for low temperature storage or utilization; when the secondary heat transfer medium is a gaseous substance, such as nitrogen, the auxiliary pipe is heated by a low pressure heater or a high pressure heater to heat the feed water. Specifically, the secondary heat transfer medium enters the low pressure heater or the high pressure heater, and the steam After the solidification of the turbine, the heat transfer of the medium, the secondary heat transfer medium releases heat, and the heated water passes through the heat exchange device or the boiler for further heat exchange and evaporation, and after the temperature rises, it enters the steam turbine to generate electricity.
  • the temperature of the liquid output from the secondary heat transfer medium is lower than 100 ° C (mixed salt is the main heat transfer medium) and the duration exceeds 30 min, the heat extraction ends.
  • the circulation pump includes a motor 532 and a pump head 531; both ends of the pump head 531 are connected to the main pipe 510. Because the pump head 531 cannot penetrate through the auxiliary pipe, as shown in the figure, when the pump head passes, the auxiliary pipe 511 is wound close to the circulating pump body; the heat of the secondary heat transfer medium is used to heat the pump head through the main heat transfer medium. Position, prevent the main heat transfer medium from clogging and clogging the pump head after the circulation pump stops for a long time.
  • the secondary heat transfer medium flows through a confined space (pump body or valve body jacket, also called pump body or valve body heater) containing a specific part of the pump body or a specific part of the valve.
  • the heat of the heat transfer medium places all of the pump bodies or valves in the entire heat utilization system at normal operating temperatures.
  • the collector opening is calculated by 6m, the total length of the collector is about 20,000m, and the size of the vacuum heat-absorbing tube is 70mm*2.5mm;
  • the internal auxiliary pipe size is 25mm*2;
  • the main heat transfer medium is 60wt% sodium nitrate + 40%wt potassium nitrate, the total length of single row is 200m, the total number of rows is 100;
  • the total length of the main pipe is 750m, the internal auxiliary pipe is 100 columns, a total of 2 columns
  • the total volume of the main heat transfer medium in the heat collecting pipe is 56.5m 3 , the total mass is 108T; the total main heat transfer medium 725T in the main pipe; the design can take out the heat inside the system in a short time, avoiding the heat Loss, for example, the temperature of the wall of the heat collecting tube is kept at 300 °C at night, according to a foreign-produced vacuum heat pipe test data, the heat loss is 100 W/

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种用于太阳能热利用系统的双传热结构(102,214,216),包括主管道(210)、主传热介质(209)、辅助管(211,213)及次传热介质(208)。辅助管(211,213)布置于主管道(210)内部,次传热介质(208)在辅助管(211,213)内部流动。主传热介质(209)在辅助管(211,213)外壁与主管道(210)内壁形成的空间内流动。该双传热结构(102,214,216)利用该系统储存的热量使主传热介质(209)升温流动。次传热介质(208)在太阳能热利用系统停止运行或停止追踪太阳光时,吸收主传热介质(209)的热量。该双传热结构(102,214,216)保证了该系统的正常运行,并最大化地利用太阳能,省掉了电加热熔盐的装置并节约了用电成本。

Description

一种应用于太阳能热利用系统的双传热结构
技术领域 本发明涉及一种应用于太阳能领域的太阳能热利用系统的双传热结构。 背景技术
现有的太阳能是比较理想的非化石能源, 无污染, 生态环境和谐的清洁 能源, 且取之不尽用之不绝; 目前太阳能热利用技术, 特别是太阳能热发电 技术日益受到大家的重视, 成为解决将来能源问题的重要手段。
太阳能热发电系统中汽轮机的进气参数对汽轮机的发电效率具有很大的 影响, 当高温高压蒸汽推动汽轮机发电可以获得相对较高的发电效率, 从而 提高热能的利用率, 可以减少太阳能电厂的建设成本; 较高进气参数的获得 需要更高的储热介质热品位; 较高储热介质热品位的获得需要较高的集热器 的出口温度参数; 导热油作为太阳能电厂的传热介质已经工业化多年, 但受 限于导热油本身的材料稳定性能, 只能工作在 400°C温度下工作, 如此无法获 得超过 400 °C的汽轮机进气温度参数; 目前硝酸盐传热介质体系可以很好的解 决该问题, 硝酸盐传热介质能工作在 550°C , 在 600°C下不发生分解; 如此可 以很好的解决汽轮机进口温度及压力参数的问题, 提高汽轮机的发电效率, 更加高效的利用太阳能; 但是不论是导热油传热介质系统或者为硝酸盐传热 介质系统, 都需要面临一个共同的问题, 即传热介质在镜场退出光线跟踪后, 在低温下都会发生凝固, 传热介质在工作中一旦发生凝固造成局部塞管, 对 系统的安全性将是灾难性的; 传统的做法是在夜间对管路内的熔盐保持低速 循环 , 用热源对其加热保温,确保不会凝固,由于一般熔盐凝固点较高,所以保 温循环造成的热损失艮大; 或者在集热器或传输管道外部增加辅助电加热系 统, 而直接电加热容易造成过温,对系统的安全性来说都是未知数, 且增加的 电厂的额外电使用量, 电厂的维护无疑也是一个巨大的成本。 再者, 储热罐 在退出运行时, 例如连续阴雨天气或者电站计划维修期间, 储热系统的冷罐 或热罐或相联通的管道也有可能发生冻结; 储热罐一旦冻结, 发电系统完全 处于瘫痪中, 系统将遭受巨大的损失。 集热器或储热罐现有的伴热装置多为电源加热, 加热功率选择不当时会 造成过温分解, 导致传热介质的性能发生变化。 考虑到 CSP ( Concentrating Solar Power )发电系统中都具有蒸汽发生系统, 且带有储热系统, 通过储热 介质换热, 而基本不需用电就可以得到蒸汽, 例如油 -水蒸气换热装置, 盐- 水蒸气换热装置; 电站中的辅助锅炉也能产生特定压力下的饱和蒸汽或过热 蒸汽,并且饱和温度点 (相变温度)可方便控制,经济方便并且无过温分解风险, 避免凝结盐超温熔化引起的性能变化和安全隐患问题。 发明内容 本发明的目的在于, 提供一种应用于太阳能热利用系统的双传热结构, 可简单有效地解决太阳能热利用过程中的传热介质低温凝固堵塞的问题, 并 最大化利用太阳能热量, 避免外部加热运营模式的安全隐患, 减少厂用电量 并降低运营维护成本。
本发明提供一种应用于太阳能热利用系统的双传热结构, 所述双传热结 构包括主管道、 主传热介质、 辅助管及次传热介质; 所述辅助管布置于主管 道内部, 次传热介质在辅助管内部流动, 主传热介质在辅助管外壁与主管道 内壁形成的空间内流动。
进一步地, 所述的辅助管布置于太阳能热利用系统的集热系统和运输管 道系统中; 集热系统主要包括吸收管, 该吸收管可以等效理解为双传热结构 中的主管道; 运输管道系统主要包括主干管, 该主干管可以等效理解为双传 热结构中的主管道; 或者理解为集热系统和运输管道系统是双传热结构的不 同的实施方式(以下全文可以^故此类似理解) 。
进一步地,所述辅助管布置于太阳能热利用系统中正常吸热传热循环的全 部热传输管道内部, 所述全部热传输管道包括主传热介质所有流通管道和储 热介质所有流通管道内部。
进一步地, 所述辅助管布置于太阳能热利用系统的储热系统或换热装置 或膨胀伸缩节或低压加热器或除氧器内; 在系统连续正常运行情况下, 当主 传热介质凝固后, 流经辅助管内的次传热介质例如水, 利用储热系统或者换 热装置内的热量,变为饱和蒸汽或过热蒸汽后通过辅助管向主传热介质放热, 用以融化集热系统或运输管道的凝固态主传热介质; 在非正常运行情况下, 例如系统处于停歇期间后, 储热系统或者换热装置内的主传热介质或储热介 质凝固后, 可通过吸收外部热源热量产生饱和蒸汽或过热蒸汽, 通过辅助管 流通并传热至储热系统或换热装置及集热系统或运输管道内, 以融化已凝固 的储热介质或主传热介质。
进一步地, 所述辅助管布置于贴近泵体或阀体的位置处; 或者连通于泵 体或阀体加热装置; 用以控制热利用系统中所有泵体或阀门的温度, 使阀门 或泵内部的主传热介质在需要时处于熔化状态或者在需要时凝固降温放出热 量。
进一步地, 所述双传热结构中主传热介质为单质盐或混合盐或导热油或 低熔点金属, 例如硝酸盐、 混合硝酸盐、 导热油、 低熔点金属等等。
进一步地,所述主传热介质与储热系统内部布置的储热介质为同一物质 , 主传热介质吸收热量后直接进入储热系统存储热量。
进一步地, 所述热利用系统在开始太阳光线追踪前, 次传热介质高温态 流入辅助管, 将热量释放给主传热介质; 主传热介质吸收热量后融化, 变为 可流动状态后开始循环流动实施融化开机, 此时太阳岛系统可开始光线追踪 取热。
进一步地, 所述热利用系统在结束光线跟踪后, 次传热介质低温态流入 辅助管内, 循环带走主传热介质中的热量至储热体系内或直接利用, 主动使 主传热介质温度下降并凝固, 有效利用集热系统内存留热量, 减少夜间被动 自然散热的热量损失。
进一步地, 所述辅助管内的次传热介质为水、 蒸汽、 气体等; 所述气体 可以为空气, 二氧化碳, 氮气或惰性气体等。
进一步地, 所述的多个平行的辅助管布置于同一运输管道系统中的主干 管内; 即所述运输管道系统中的主干管 (等效双传热结构的主管道) 内部具 有主传热介质、 多个并列布置的辅助管、 及辅助管内的次传热介质。
进一步地, 所述的至少一个辅助管分别布置于运输管道系统中的多个主 干管内部; 即所述运输管道系统包括多个并列的主干管, 单个主干管内部具 有主传热介质、 一个或多个并列布置的辅助管及辅助管内的次传热介质。
本发明所述的应用于太阳能热利用系统的双传热结构较以往传统的太阳 能光热利用系统的传热结构相比, 具有以下优势: 1、 本发明釆取特殊的双传 热结构, 在主传热介质凝固时可以使用辅助管中流动的次传热介质带来的热 量对凝固的主传热介质进行加热, 使主传热介质能够熔化流动保证系统的正 常运行,能根本解决传统热传体系的冻堵问题; 2、 能通过次传热介质充分吸 收管路中主传热介质凝固释放的热量,最大限度地利用太阳能热, 提高热利用 效率; 3、 由于取消了传统电加热传热介质的装置, 使整套系统的装置配备相 对简单, 并且节约了装置和电能的费用, 提高系统安全性能, 降低整体运营 的成本。 附图说明
图 1为本发明的应用于太阳能热利用系统的双传热结构的实施例整体布 局示意图;
图 2-1为本发明的应用于太阳能热利用系统的双传热结构的一种布置方 式结构示意图;
图 2-2为本发明的应用于太阳能热利用系统的双传热结构的第二种布置 方式结构示意图;
图 2-3为本发明的应用于太阳能热利用系统的双传热结构的第三种布置 方式结构示意图;
图 3为本发明的应用于太阳能热利用系统的双传热结构实施例早上正常 运行前预热状态的次传热介质循环路线示意图;
图 4为本发明的应用于太阳能热利用系统的双传热结构实施例傍晚停止 太阳光追踪时次传热介质循环路线示意图;
图 5为本发明的应用于太阳能热利用系统的双传热结构与循环泵连接结 构示意图。 具体实施方式 图 1为本发明的应用于太阳能热利用系统的双传热结构的实施例整体布 局示意图。 如图 1所示, 该双传热结构布置于太阳能热利用系统中, 太阳能 热利用系统包括聚光系统 101、 双传热结构 102、 储热系统以及热利用系统。 所述聚光系统 101为槽式或菲涅尔式聚光系统或塔式聚光系统或蝶式聚光系 统。 所述双传热结构 102包括主管道、 主传热介质、 辅助管及次传热介质, 所述辅助管布置于主管道内部, 次传热介质在辅助管内部流动, 主传热介质 在辅助管外壁与主管道内壁形成的空间内流动。 图 1中双传热结构中实线代 表主传热介质的循环回路, 虚线代表次传热介质的循环回路; 所述的辅助管 布置于太阳能热利用系统的集热系统和运输管道系统中; 所述集热系统布置 于聚光系统 101的聚焦位置; 所述运输管道系统连接集热系统, 二者内部贯 通, 流经二者的主传热介质将太阳能热量输送至储热系统或热利用系统; 所 述热利用系统例如为发电系统, 太阳能热利用系统利用太阳光转化的热能产 生过热蒸汽, 推动汽轮机 106进行发电, 太阳岛系统釆集的多余热量通过储 热系统进行存储, 在太阳光不足或者夜间时双传热结构将储热系统中的热量 取出, 保证发电系统的正常运行。 所述储热系统包括储热热罐 103和储热冷 罐 105 , 储热热罐 103内布置高温储热介质, 储热冷罐 105内布置低温储热 介质,所述高温储热介质和低温储热介质例如为硝酸钠 wt60%+硝酸钾 wt40% 的混合盐; 所述辅助管布置于太阳能热利用系统中吸热传热循环的全部热传 输管道内部, 所述全部热传输管道包括主传热介质所有流通管道和储热介质 所有流通管道内部。 进一步地, 所述辅助管同时布置在所述储热系统的储热 热罐 103和储热冷罐 105或热利用系统中的换热装置 104内或膨胀伸缩节或 低压加热器或除氧器内。 在正常运行情况下, 流经辅助管内的次传热介质利 用储热系统或者换热装置内的热量, 获得饱和蒸汽或过热蒸汽, 用以融化其 它位置凝固态的储热介质或主传热介质; 防止主传热介质或储热介质在管道 内部或泵体或阀体内发生堵塞现象; 在非正常运行情况下, 例如系统处于长 时间停歇期间后,储热系统或者换热装置内的主传热介质或储热介质凝固后, 能够通过外部热源例如燃气锅炉产生的饱和蒸汽或过热蒸汽, 在辅助管内流 经储热系统或换热装置及其它位置以融化凝固的储热介质或主传热介质, 使 系统重新恢复正常运行状态。
图 2-1为本发明的应用于太阳能热利用系统的双传热结构的一种布置方 式结构示意图。 如图所示, 双传热结构包括主管道 210、 主传热介质 209、 辅 助管 211及次传热介质 208。 所述辅助管 211布置于太阳能热利用系统的集 热系统和运输管道系统中; 集热系统主要包括吸收管, 该吸热管可以等效理 解为双传热结构中的主管道 210; 运输管道系统主要包括主干管, 该主干管 可以等效理解为双传热结构中的主管道 210; 或者理解为集热系统和运输管 道系统是双传热结构的不同的实施方式(以下全文可以做此类似理解) 。 所 述主传热介质 209为单质盐或混合盐或导热油或低熔点金属; 所述次换热介 质 208为水、 蒸汽或气体, 所述气体可以为空气, 二氧化碳, 氮气或惰性气 体; 所述辅助管 211布置于主管道 210内部, 次传热介质可在辅助管 211内 部流动, 主传热介质 209例如混合盐布置于辅助管 211外壁与主管道 210内 壁形成的空间内。 所述主管道 210可布置在光线汇聚位置, 将汇聚至其表面 的太阳光转化为热能, 主传热介质 209流经主管道 210时将热量带走; 所述 主传热介质 209能够吸收次传热介质 208的热量, 自身融化处于熔融流动状 态; 或者主传热介质 209释放热量给次传热介质后凝固并降低温度, 减少热 量向外界释放导致的浪费, 提高太阳能热利用效率。
图 2-2为本发明的应用于太阳能热利用系统的双传热结构的第二种布置 方式结构示意图。 因太阳能热利用系统的运输管道系统中的主干管尺寸一般 较大; 将所述的多个阵列的辅助管布置于同一运输管道系统中的主干管中, 即所述运输管道系统中的主干管 (等效双传热结构的主管道 210 ) 内部具有 主传热介质 209、 多个并列布置的辅助管 211〜辅助管 213、 及辅助管内的次 传热介质 208。所述多个辅助管 211 ~辅助管 213分散布置于主管道 210内部, 与主管道 210内部布置的主传热介质 209进行换热; 所述次传热介质 208布 置于辅助管 211 ~辅助管 213内部, 吸收主传热介质 209释放的热量或将热 量释放给主传热介质 209。
图 2-3为本发明的应用于太阳能热利用系统的双传热结构的第三种布置 方式结构示意图。 如图 2-3所示, 至少一个辅助管分别布置于运输管道系统 中的多个主干管内部; 即所述运输管道系统包括多个并列的双传热结构 214〜 双传热结构单元 216; 以双传热结构 214为例, 双传热结构 214包括主干管 (即主管道) , 单个主干管内部具有主传热介质、 一个或多个并列布置的辅 助管及辅助管内的次传热介质 (图中已显示单个主干管内布置单个辅助管); 根据太阳能热利用系统的双传热结构要求完成热量的吸收或释放; 多个双传 热结构布置于支撑管 230的内部, 实施统一保温。
图 3为本发明的应用于太阳能热利用系统的双传热结构实施例早上正常 运行前预热状态的次传热介质循环路线示意图。 当夜晚温度较低, 主传热介 质为凝固态, 这样第二天早上集热系统 302将无法正常运行。 太阳能热利用 系统的双传热结构依靠储热系统提供的热量来加热主传热介质。如图 3所示, 次传热介质为例如为水时, 控制辅助管内的压力为 4MPA, (使饱和蒸汽温度 为 250°C ,超过主传热介质的熔化温度 30°C); 当次传热介质为空气或氮气时, 控制输入温度为 500°C〜550°C ,超过主传热介质的熔化温度并低于其分解温 度。 预热时, 次传热介质泵送至换热装置 304, 流经换热装置 304时进行换 热, 吸收热量后温度升高, 升温后的次传热介质进入集热系统和运输管路系 统中对辅助管进行加热, 通过辅助管将热量传递给凝固的主传热介质, 凝固 的主传热介质吸收热量后, 温度升高进而逐渐融化, 当辅助管流出的次传热 介质温度高于 230°C (主传热介质为常见硝酸混合盐,熔点约 220°C )且持续 时间超过 30min, 可以判断为主管道内的主传热介质都已经融化可以正常流 动, 结束加热过程, 预热状态结束, 系统进入白天正常运行发电状态,主传热 介质开始正常循环。
图 4为本发明的应用于太阳能热利用系统的双传热结构实施例傍晚停止 太阳光追踪时次传热介质循环路线示意图。 当傍晚太阳能热利用系统的双传 热结构停止追踪太阳光或者太阳光无法利用时, 低温的次传热介质吸收主传 热介质释放的热量, 减少主传热介质因夜间环境温度低自然降温而造成的热 量损失, 有效利用或储存系统内存留热量。 当次传热介质选择选择为水时, 输入压力例如为 2MPA, 温度例如为 35°C , 当次传热介质选择为空气或氮气 时, 输入温度例如为 10°C。 如图 4所示, 处于该运行模式下, 关闭截止阀 a 和截止阀 c, 避免该运行模式下, 获得的水介质流入储热热罐 403 , 带走储热 热罐 403内部热量, 降低储热热罐 403内部储热介质温度品位; 低温的次传 热介质泵送至集热系统和管路运输系统, 其中的液态主传热介质将热量释放 给次传热介质, 主传热介质经过液态温度降低、 凝固、 固态温度降低三个阶 段, 次传热介质吸热后温度升高, 如果次传热介质为水, 升温后变为水蒸气, 次传热介质从集热系统 402中流出, 吸收热量后的次传热介质出口温度高于 290 °C时经过截止阀 b进入储热冷罐 405进行热量的储存,使低温储热介质温 度升高; 可以理解为主传热介质都已经凝固并降到较低温度, 可结束取热过 程。 当温度低于 290 °C进入储热系统的前级系统进行低温储存或利用; 当次 传热介质为气态物质, 例如氮气, 辅助管经过低压加热器或高压加热器, 对 给水进行加热升温。 具体为次传热介质进入低压加热器或高压加热器, 与汽 轮机凝固后的介质换热, 次传热介质释放热量, 加热后的水经过换热装置或 者锅炉进行进一步换热蒸发, 温度升高后进入汽轮机进行发电。 当次传热介 质输出的液体的温度低于 100°C (混合盐为主传热介质)且持续时间超过 30min, 取热结束。
图 5为本发明的应用于太阳能热利用系统的双传热结构与循环泵连接结 构示意图; 如图 5所示, 循环泵包括电机 532和泵头 531 ; 泵头 531的两端 连接主管道 510; 因为泵头 531内无法贯穿通过辅助管, 可以通过图中所示, 经过泵头时, 辅助管 511贴近循环泵体缠绕; 利用次传热介质的热量加热泵 头有主传热介质通过的位置, 防止循环泵长时间停止后主传热介质凝结堵塞 泵头的现象出现。 相同或类似处理:次传热介质流经内部包含有泵体特定部件 或阀门特定部件的密闭空间(泵体或阀体夹套, 也可称为泵体或阀体加热器) 内, 利用次传热介质的热量将整个热利用系统中所有的泵体或阀门处于正常 运行温度中。
以中国西北部地区建立的 12万平米反射镜太阳能镜场为例, 进行描述: 其中集热器开口以 6m计算, 集热器总长度大约为 20000m, 真空吸热管尺寸 为 70mm*2.5mm;内部的辅助管尺寸为 25mm*2;主传热介质为硝酸钠 60wt%+ 硝酸钾 40%wt, 单列总长 200m, 总列数 100; 主管道总长 750m, 内部的辅 助管 100列, 共 2列; 集热管道内总的主传热介质的体积为 56.5m3, 总质量 108T; 主管道内总主传热介质 725T; 该设计能在短的时间内将系统内部的热 量取出, 避免热量较大的损失, 例如上述集热管参数管壁面温度夜间保温至 300 °C , 按照一种国外生产的真空吸热管实验数据, 热损失为 100W/m; 真空 吸热管总长度 20000m, 持续 18小时, 则一夜热量总损失为 36MWh热量。 热利用系统在 4艮短的时间内将凝固的盐安全融化,可以高效吸收和利用此部 分热量, 并能够在早上太阳升起前迅速恢复正常循环运行状态,经济方便高 效, 且安全性高。
显而易见, 在不偏离本发明的真实精神和范围的前提下, 在此描述的本 发明可以有许多变化。 因此, 所有对于本领域技术人员来说显而易见的改变, 都应包括在本权利要求书所涵盖的范围之内。 本发明所要求保护的范围仅由 所述的权利要求书进行限定。

Claims

权 利 要 求 书
1、 一种应用于太阳能热利用系统的双传热结构, 其特征在于, 所述双传 热结构包括主管道、 主传热介质、 辅助管及次传热介质; 所述辅助管布置于 所述主管道内部, 所述次传热介质在所述辅助管内部流动, 所述主传热介质 在所述辅助管外壁与所述主管道内壁形成的空间内流动。
2、 根据权利要求 1所述的应用于太阳能热利用系统的双传热结构, 其特 征在于,所述辅助管布置于太阳能热利用系统的集热系统和运输管道系统中。
3、 根据权利要求 1所述的应用于太阳能热利用系统的双传热结构, 其特 征在于, 所述辅助管布置于太阳能热利用系统中正常吸热传热循环的全部热 传输管道内部。
4、根据权利要求 1所述的应用于太阳能热利用系统的双传热结构, 其特 征在于, 所述辅助管布置于太阳能热利用系统的储热系统或换热装置或膨胀 伸缩节或低压加热器或除氧器内。
5、根据权利要求 1所述的应用于太阳能热利用系统的双传热结构, 其特 征在于, 所述辅助管布置于贴近泵体或阀体的位置处; 或者连通于泵体或阀 体加热装置。
6、 根据权利要求 1所述的应用于太阳能热利用系统的双传热结构, 其特 征在于, 所述双传热结构中主传热介质为单质盐或混合盐或导热油或低熔点 金属。
7、 根据权利要求 1所述的应用于太阳能热利用系统的双传热结构, 其特 征在于, 所述辅助管内的次传热介质为水、 蒸汽、 空气、 二氧化碳、 氮气或 惰性气体。
8、根据权利要求 1所述的应用于太阳能热利用系统的双传热结构, 其特 征在于, 所述次传热介质高温态流入所述辅助管, 并将热量传递至所述主传 热介质, 实施融 4t开机。
9、 根据权利要求 1所述的应用于太阳能热利用系统的双传热结构, 其特 征在于, 所述次传热介质低温态流入所述辅助管内, 主动吸热回收所述主传 热介质的热量使其凝固。
10、根据权利要求 4所述的应用于太阳能热利用系统的双传热结构, 其特 征在于, 所述主传热介质与所述储热系统内部布置的储热介质为同一物质, 所述主传热介质吸收热量后直接进入所述储热系统存储热量。
11、根据权利要求 2所述的应用于太阳能热利用的双传热结构, 其特征在 于, 所述辅助管为多个, 平行布置于同一所述运输管道系统中的主干管内。
12、根据权利要求 2所述的应用于太阳能热利用的双传热结构, 其特征在 于, 所述运输管道系统包括多个并列的主干管, 单个所述主干管内部具有 所述主传热介质、 一个或多个并列布置的所述辅助管, 及所述辅助管内的 所述次传热介质。
PCT/CN2013/090401 2012-12-25 2013-12-25 一种应用于太阳能热利用系统的双传热结构 WO2014101762A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210571196.0 2012-12-25
CN201210571196.0A CN103900271B (zh) 2012-12-25 2012-12-25 一种应用于太阳能热利用系统的双传热结构

Publications (1)

Publication Number Publication Date
WO2014101762A1 true WO2014101762A1 (zh) 2014-07-03

Family

ID=50991756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090401 WO2014101762A1 (zh) 2012-12-25 2013-12-25 一种应用于太阳能热利用系统的双传热结构

Country Status (2)

Country Link
CN (1) CN103900271B (zh)
WO (1) WO2014101762A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091437B (zh) * 2016-07-25 2018-08-07 华电电力科学研究院 太阳能聚热电站熔盐循环管道的伴热系统及伴热方法
CN106940093B (zh) * 2017-04-12 2023-02-07 北京态金科技有限公司 太阳能供热系统以及利用其的太阳能发电系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207744A (en) * 1977-04-20 1980-06-17 Matsushita Electric Industrial Company, Limited Solar refrigeration system
GB2389649A (en) * 2001-09-13 2003-12-17 Kuo-Yuan Lynn Solar collectors and solar cells mounted on a board or louver.
CN101382277A (zh) * 2008-09-10 2009-03-11 东莞理工学院 太阳能熔盐套管式蒸汽发生方法及其装置
CN102032684A (zh) * 2009-09-28 2011-04-27 许鸿涛 套管式双腔太阳能集热器
WO2013026928A2 (de) * 2011-08-25 2013-02-28 Hitachi Power Europe Gmbh Mittels eines wärmeträgermediums beheizbares wärmetauscherrohr einer solarthermischen anlage und wärmeübertragungsverfahren
CN203148063U (zh) * 2012-12-25 2013-08-21 北京兆阳能源技术有限公司 一种应用于太阳能热利用系统的双传热结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207744A (en) * 1977-04-20 1980-06-17 Matsushita Electric Industrial Company, Limited Solar refrigeration system
GB2389649A (en) * 2001-09-13 2003-12-17 Kuo-Yuan Lynn Solar collectors and solar cells mounted on a board or louver.
CN101382277A (zh) * 2008-09-10 2009-03-11 东莞理工学院 太阳能熔盐套管式蒸汽发生方法及其装置
CN102032684A (zh) * 2009-09-28 2011-04-27 许鸿涛 套管式双腔太阳能集热器
WO2013026928A2 (de) * 2011-08-25 2013-02-28 Hitachi Power Europe Gmbh Mittels eines wärmeträgermediums beheizbares wärmetauscherrohr einer solarthermischen anlage und wärmeübertragungsverfahren
CN203148063U (zh) * 2012-12-25 2013-08-21 北京兆阳能源技术有限公司 一种应用于太阳能热利用系统的双传热结构

Also Published As

Publication number Publication date
CN103900271A (zh) 2014-07-02
CN103900271B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5311366B2 (ja) タービンシステム、超臨界二酸化炭素タービンにエネルギを供給するシステムおよび方法
US7051529B2 (en) Solar dish concentrator with a molten salt receiver incorporating thermal energy storage
US9476402B2 (en) Pressurized solar power system
RU2599697C1 (ru) Комплементарная тепловая энергосистема с использованием солнечной энергии и биомассы
CN106014891B (zh) 一种槽式太阳能联合循环发电系统
CN103742373B (zh) 一种采用超临界水吸热器和熔盐蓄热的塔式太阳能热发电站
CN102146899B (zh) 多塔式二元工质太阳能高温热发电系统
JP2014092086A (ja) 太陽熱発電プラント及び太陽熱蓄熱放熱装置
CN203177503U (zh) 一种用于太阳能光热发电的熔盐蓄热换热装置
CN103512224B (zh) 一种太阳能光热接收装置
CN111677640A (zh) 解耦集热储热与放热发电的槽式光热发电系统及运行方法
JP2004069197A (ja) 自然エネルギー・地中熱併用システムおよびその運転方法
WO2019080809A1 (zh) 太阳能光热-生物质发电系统
CN104764217A (zh) 广义闭式布列顿型塔式太阳能热发电方法及系统
CN104359233B (zh) 太阳能跟踪聚焦发电及制冷系统
CN108061395B (zh) 光热发电系统及光热电站
CN106121942A (zh) 一种采用液态铅铋传热和储热的超临界太阳能电站
CN204313498U (zh) 太阳能跟踪聚焦发电及制冷系统
WO2014101762A1 (zh) 一种应用于太阳能热利用系统的双传热结构
CN202811236U (zh) 一种用于塔式太阳能的双工质发电系统
ES2620279B1 (es) Procedimiento para el funcionamiento de una central térmica solar y central térmica solar que funciona de acuerdo a dicho procedimiento
CN203148063U (zh) 一种应用于太阳能热利用系统的双传热结构
CN215057943U (zh) 一种制氨用固定焦点碟式聚光储热熔盐系统
WO2019085785A1 (zh) 碟式光热发电系统
CN209431693U (zh) 一种碟式太阳能热发电系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867040

Country of ref document: EP

Kind code of ref document: A1