WO2014101237A1 - 抗光解农药及其应用 - Google Patents

抗光解农药及其应用 Download PDF

Info

Publication number
WO2014101237A1
WO2014101237A1 PCT/CN2012/088140 CN2012088140W WO2014101237A1 WO 2014101237 A1 WO2014101237 A1 WO 2014101237A1 CN 2012088140 W CN2012088140 W CN 2012088140W WO 2014101237 A1 WO2014101237 A1 WO 2014101237A1
Authority
WO
WIPO (PCT)
Prior art keywords
pesticide
soluble
oil
water
photolysis
Prior art date
Application number
PCT/CN2012/088140
Other languages
English (en)
French (fr)
Inventor
熊东路
李谱超
曹明章
李广泽
崔继程
蔡贵忠
任太军
文琴
Original Assignee
深圳诺普信农化股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳诺普信农化股份有限公司 filed Critical 深圳诺普信农化股份有限公司
Priority to PCT/CN2012/088140 priority Critical patent/WO2014101237A1/zh
Publication of WO2014101237A1 publication Critical patent/WO2014101237A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/22Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing ingredients stabilising the active ingredients

Definitions

  • the invention relates to the technical field of pesticides, in particular to an anti-photolysis pesticide and application thereof.
  • the migration, transformation and fate of pesticides in the environment are affected by the biological and abiotic factors in the environment.
  • the non-biodegradation process is also important in the photochemical degradation process.
  • Photochemical decomposition of pesticides has a significant impact on pesticide residues, efficacy, toxicity and environment.
  • the photochemical degradation properties of pesticides have become one of the important indicators for evaluating the safety of pesticides.
  • research on photodegradation of pesticides has progressed rapidly, and the research results of photosensitizers and photoactivated products have shown important application prospects for environmental pollution control.
  • pesticide photolysis problem Light causes pesticide degradation, which is disadvantageous in some cases. Pesticide is not all light as soon as possible. In the natural environment, any pesticide can be photolyzed under ultraviolet light or sunlight, but the degree of photolysis is different. Some pesticides are very sensitive to ultraviolet light, such as organic phosphorus, nicotine, pyrethroids, and some biological insecticides, dinitroaniline herbicides, and some biological fungicides. They have a short half-life under the influence of natural factors such as ultraviolet light, such as: 3-4.8 days, quizalofop- 1-3 days, avermectin for about 6 hours, phoxim only 40 Minutes or so. This means that without special protection, these pesticides will lose their effect completely within a few days or even hours after application and will not protect the plants.
  • UV Ultraviolet
  • UV-A It is the longest wavelength of the three, with a wavelength range between 320 and 400 nm.
  • UV-B has a wavelength range between 290 and 320 nm.
  • the ultraviolet light belongs to UV-C, and this part of the ultraviolet light is completely absorbed by the ozone layer and does not reach the earth. Therefore, the ultraviolet light that affects the Earth's living things is mainly UV-A and UV-B.
  • a prior art technology based on UV light UV-A and UV-B can simultaneously photolyze photosensitive pesticides and simultaneously add UV-A ultraviolet absorber and UV-B ultraviolet absorber to the pesticide formulation.
  • the pesticide preparation has a certain alleviating effect on the photolysis of the photosensitive pesticide during storage and transportation.
  • the situation is not very satisfactory. This is mainly because most pesticide formulations are diluted with water and then sprayed onto the foliage of the plant at the end of the application.
  • the dilution factor is often several hundred times thousands of times or even higher.
  • the active ingredients of the pesticide and the ultraviolet absorber are oil-soluble, and are dispersed into water to form an emulsion under the action of a surfactant. After being diluted and dispersed, the effect of the ultraviolet absorber is very limited. If the added ultraviolet absorber is both water-soluble and oil-soluble, a part of the ultraviolet light is absorbed by the water-soluble ultraviolet absorber in the water, and cannot reach the surface of the oil bead where the photosensitive pesticide is located. Even if some of the UV light reaches the surface of the oil bead, it will be disposed of by the oil-soluble UV absorber in the oil bead. The protective effect of such anti-photolysis pesticide formulations on photosensitive pesticides may be greatly improved.
  • an anti-photolysis pesticide and its application can effectively alleviate the problem of photolysis failure of the active ingredient of the pesticide during storage and application, prolong the half-life of the active ingredient of the photosensitive pesticide, and improve the utilization efficiency of the pesticide product.
  • An anti-photolysis pesticide comprising the following components by mass percent: photosensitive pesticide active ingredient 0.1-90% Water-soluble UV absorber 0.2-30%; Oil-soluble UV absorber 0.2-20%; Antioxidant 0.2-20%; Surfactant 1-20%; Solvent or carrier 4-95%.
  • the above anti-photolysis pesticide is used for controlling plant diseases and insect pests.
  • the above anti-photolysis pesticide coexists with a water-soluble ultraviolet absorber and an oil-soluble ultraviolet absorber, and the ultraviolet absorber can absorb at least 30%. Ultraviolet light, even more than 50% of UV light. Since the pesticide usually needs to be diluted with water, the water-soluble ultraviolet absorber is dissolved in water, which can improve the ultraviolet resistance of the active ingredient of the photosensitive pesticide.
  • the above anti-photolysis pesticide has both water-soluble and oil-soluble ultraviolet absorbent, and has high adhesion on the surface of the plant, which is beneficial to improving the actual aging effect of the pesticide.
  • these UV absorbers can extend the half-life of photosensitive pesticide active ingredients by at least 25% and even by 50%. the above.
  • the extension of the half-life of the pesticide that is, the exposure time of the pest (bacteria, weeds or cockroaches) in the pesticide atmosphere, improves the use effect of the pesticide and reduces the amount of the pesticide.
  • the role of the antioxidant is to further inhibit the degradation of pesticides by capturing free radicals or decomposing peroxides in addition to the action of the ultraviolet absorber, thereby improving the use effect of the pesticides, and can be effectively applied to various types of prevention and treatment. Plant pests and diseases.
  • Figure 1 shows the mechanism of UV absorption of UV absorbers by electromigration under UV light.
  • Figure 2 shows the degradation of avermectin under ultraviolet light.
  • Embodiments of the present invention provide an anti-photolysis pesticide comprising the following components by mass percentage: photosensitive pesticide active ingredient 0.1-90% Water-soluble UV absorber 0.2-30%; oil-soluble UV absorber 0.2-20%; antioxidant 0.2-20%; surfactant 1-20%; solvent or carrier 4-95%.
  • the photosensitive pesticide active ingredient refers to an insecticide, a herbicide, a bactericide, an acaricide, etc. which are prone to photolysis and can control or eliminate plant diseases.
  • the photosensitive pesticide active ingredient refers to an active ingredient of a pesticide which decomposes under natural light and has a half-life of less than thirty days.
  • the photosensitive pesticidal active ingredient may be, but is not limited to, any one or more of the following: emamectin benzoate, avermectin, nitenpyram, phoxim, chlorantranil Formamide, thiacloprid, nitenpyram, cyhalothrin, chlorpyrifos, indole, quizalofop, acetamiprid, imidacloprid, indoxacarb, ether oxystrobin, pyraclostrobin, Chlorpyrifos, pyrethrin, etc.
  • At least one of the ultraviolet absorbers is water-soluble, at least one of which is oil-soluble, preferably each of a plurality of water-soluble ultraviolet absorbers and/or Or a variety of oil-soluble UV absorbers.
  • the water-soluble and oil-soluble ultraviolet absorbers preferably have both UVA and UVB types, that is, the water-soluble UV absorber contains both water-soluble UVA.
  • the ultraviolet absorber further comprises a water-soluble UVB ultraviolet absorber; the oil-soluble ultraviolet absorber comprises both an oil-soluble UVA ultraviolet absorber and an oil-soluble UVB. UV absorber.
  • the total mass percentage of the ultraviolet absorber in the photolytic pesticide is preferably 0.01-200% of the active ingredient of the photosensitive pesticide.
  • the anti-photolysis pesticide provided by the present invention further comprises at least one antioxidant, preferably comprising a plurality of antioxidants, and the total mass percentage thereof is preferably from 0.01 to 200% of the photosensitive pesticide active ingredient.
  • the ultraviolet absorber used in the photolytic pesticide of the embodiment of the present invention can absorb at least 30% of ultraviolet light, and in some preferred embodiments can absorb More than 50% of UV light.
  • the ultraviolet absorber can extend the half-life of the photosensitive pesticide active ingredient by at least 25%; in some preferred embodiments, the ultraviolet absorber and other components can synergize by 50%. the above. In this way, the ultraviolet absorber can prolong the half-life of the pesticide, increase the exposure time of the pest (bacteria, weeds or cockroaches, etc.) in the pesticide atmosphere, improve the use effect of the pesticide, and reduce the amount of the pesticide.
  • the ultraviolet absorber is classified, and the main absorption wavelength is
  • the ultraviolet absorber between 320 and 400 nm is called UV-A UV absorber, and the UV absorber which mainly absorbs wavelength between 290 and 320 nm is called UV-B.
  • Ultraviolet absorbers are oil soluble and water soluble.
  • the water-soluble ultraviolet absorber is relatively rare, and its structural formula generally contains a sulfonic acid or a carboxylic acid group, or a sulfonate, a carboxylate or the like.
  • UV absorbers are capable of absorbing UV light, usually due to the presence of conjugated ⁇ in the molecule of the compound. Electronic architecture and structure of hydrogen atom transfer. In general, UV absorbers have one or more benzene rings (conjugated electron systems) and have a hydroxyl group in the ortho position, which will be adjacent to the N atom or O. The atoms form intramolecular hydrogen bonds. After absorbing ultraviolet light, thermal vibration occurs in the molecule, and hydrogen bonds break and molecular isomerism occurs. This converts harmful UV light into heat and releases it, protecting the chemical. Taking the commonly used benzophenone and benzotriazole ultraviolet absorbers as an example, the mechanism is as shown in the figure. 1 is shown.
  • the six-membered chelate ring formed by intramolecular hydrogen bonding is opened by the action of ultraviolet light, and the energy of the chelating ring is set to be exactly the ultraviolet energy range of 290-400 nm.
  • UV absorption shifts electrons from phenoxide to nitrogen, making the N atom more basic than the oxygen atom, which causes protons to migrate (as shown in Figure 1). This changes from a ground state of stable non-radiative transition to an intermediate state (intermediate state is also called metastable or excited state). Radiation stops the UV absorber from returning to the ground state.
  • Various substituents in the ultraviolet absorber molecule R 1 , R 2 , R 3 , etc. in FIG.
  • UV absorber 1 affect various physical and chemical properties of the ultraviolet absorber such as polarity, volatility, solubility, etc., and particularly affect it.
  • the maximum absorption wavelength of UV absorption From the ultraviolet absorption curves of benzotriazole and benzophenone with different substituents, it can be found that their maximum absorption peaks vary from 290 to 400 nm, so that different ultraviolet absorbers can be used for different photosensitive pesticide active ingredients. .
  • Table 1 lists the names of more than 80 UV absorbers (only listed but not limited to these categories), CAS No., category, and solubility. These UV absorbers are essentially organic compounds. There are only two kinds of inorganic substances, titanium dioxide and zinc oxide, which do not absorb ultraviolet light, but are commonly used ultraviolet light shielding agents. Their effect on ultraviolet light is a physical effect, and the ultraviolet light is shielded by reflection to protect the active component of the photosensitive pesticide.
  • the ultraviolet absorber of this embodiment is selected from the following Table 1.
  • UV absorbers (A in the table refers to UVA; B refers to UVB) Serial number Name: (common name or product name) CAS category Solubility 1 Aminobenzoic acid; (papa) 150-13-0 B Water soluble 2 3,3,5-trimethylcyclohexyl salicylate; (humulizate) 118-56-9 B Oil soluble 3 2-hydroxy-4-methoxybenzophenone: (BP-3) 131-57-7 B, A Oil soluble 4 Phenylbenzimidazole sulfonic acid 27503-81-7 B Water soluble 5 P-Benzylmethylene camphorsulfonic acid: (McSinine filter ring; Mexoryl SX) 92761-26-7, 90457-82-2 UVA Water soluble 6 4-tert-butyl-4'-methoxydibenzoylmethane: (Avobenzoquinone) 70356 -09-1 A Oil soluble 7 2-Cyano-3,3-diphenyl-2-
  • the active ingredient of pesticide or other compound will change from the ground state to the excited state.
  • the active ingredient of the excited pesticide is very unstable and is easily oxidized.
  • Oxidation is a chemical reaction that transfers electrons from the molecules of the active ingredient of the pesticide to the oxidant. During the transfer process, free radicals are generated and the chain reaction is initiated.
  • Antioxidants are substances that slow or prevent oxidation. Antioxidants remove free radicals, terminate the chain reaction and inhibit other oxidation reactions while themselves being oxidized.
  • the role of the antioxidant can be understood as to further inhibit the degradation of the pesticide by capturing free radicals or decomposing peroxides in addition to the action of the ultraviolet absorber, thereby further improving the use effect of the pesticide.
  • Antioxidants are usually reducing agents, the most common being hindered amines and hindered phenols.
  • hindered amines For example, mercaptans, ascorbic acid, polyphenols, etc., all belong to the main antioxidant.
  • Some antioxidants often include some auxiliary antioxidants such as phosphites, thioesters and the like. Auxiliary antioxidants cannot be used alone, but help the primary antioxidant to increase antioxidant activity.
  • Table 2 lists the names, CAS numbers, categories, and solubilities of some antioxidants (only the listed listed are not limited to the listed antioxidants). Most of these antioxidants are ascorbic acid (vitamin C) and its sodium salt, butylated hydroxyanisole (BHA), di-tert-butyl-p-cresol (BHT). In addition, like 2,2-thiobis(4-tert-octylphenol)-n-butylamine nickel salt (UV-1084), this similar metal nickel salt is a commonly used radical scavenger.
  • the antioxidant of this embodiment is selected from one or more of the following Table 2, but is not limited thereto.
  • the pesticide formulation of the embodiment of the present invention can be applied to a pesticide preparation which needs to be diluted after being diluted with water, and is particularly suitable for use in an aqueous preparation such as an aqueous emulsion, a microemulsion, an aqueous suspension, a liquid, etc., not only in application.
  • an aqueous preparation such as an aqueous emulsion, a microemulsion, an aqueous suspension, a liquid, etc.
  • the solvent used in the pesticide formulation of the embodiment of the present invention is preferably an organic solvent, for example, a heavy aromatic hydrocarbon solvent such as Exxon Mobil. Solvesso series; vegetable oil solvents, such as ropetic oil ND60 from Noppin Agrochemical Co., Ltd.; fatty amide solvents such as RDA's ADMA-8, ADMA-10 Etc.; carbonate solvents such as Huntsman's JEFFSOL Series; etc.; and alcohol solvents such as butanol, methanol, etc.; ketone solvents such as cyclohexanone; ester solvents such as sec-butyl acetate; ether solvents such as ethylene glycol diacetate, triacetin Ester; a gemini-based solvent such as pyrrolidone.
  • a heavy aromatic hydrocarbon solvent such as Exxon Mobil. Solvesso series
  • vegetable oil solvents such as ropetic oil ND60 from Noppin Agrochemical Co., Ltd.
  • the surfactant used in the pesticide formulation of the embodiment of the present invention may be one or more kinds of an agricultural surfactant or a daily surfactant, preferably a fatty alcohol ethoxylate, EO/PO
  • an agricultural surfactant or a daily surfactant preferably a fatty alcohol ethoxylate, EO/PO
  • the block copolymer and its phosphate ester, castor oil polyoxyethylene ether, Tween, alkyl sulfonate, alkyl sulfate, these surfactants have superior effects.
  • the carrier used in the pesticide formulation of the embodiment of the present invention is preferably kaolinite, montmorillonite, talc, calcite, dolomite, gypsum, quicklime, magnesium lime, diatomaceous stone, apatite, attapulgite, corn cob core, Inorganic substances such as chaff powder, rice husk, tobacco powder, walnut shell, sawn wood powder, precipitated calcium carbonate hydrate, precipitated calcium carbonate, precipitated silica hydrate, and some organic substances such as vegetable oil.
  • the photosensitive pesticide active ingredient and the other components are directly mixed and prepared, and the prepared anti-photolysis pesticide dosage form includes but is not limited to emulsifiable concentrate, microemulsion, water emulsion, Aqueous agents, aqueous suspensions, oils, oil suspensions, microcapsule suspensions or water-dispersible granules.
  • the above-mentioned anti-photolysis pesticides can be mainly used for controlling plants, especially crop diseases and pests, as well as diseases such as bacteria, weeds or cockroaches.
  • crops especially crop diseases and pests, as well as diseases such as bacteria, weeds or cockroaches.
  • suitable UV absorbers, antioxidants and other ingredients select the corresponding photosensitive active pesticide ingredients, select suitable UV absorbers, antioxidants and other ingredients to obtain the corresponding pesticide formula, which can adapt to different practical application requirements.
  • the plant is preferably not limited to crops, but may be a garden, a lawn, or the like.
  • Abamectin is recrystallized from methanol and determined to be recrystallized before ABa1 (ABa1) It refers to the content of one of the two main components of avermectin, which is 81%, and 84% after re-knotification. The recrystallization has a slight increase in the content of ABa1.
  • ABa1 avermectin standard methanol solution
  • ABa1 content is controlled at 100mg/L.
  • the solution was photolyzed by ultraviolet light (an 18w UV lamp and a 125w solar lamp). The following figure shows the photolysis of avermectin over time.
  • avermectin has the fastest degradation in the first two hours and then tends to moderate. It can be seen from the figure that the half-life of avermectin is 2 h under the illumination conditions of the above experimental conditions. 4 ⁇ 6 reported in the literature The short hours are due to the presence of two lights. After 6 hours and 8 hours of light exposure, the residual rate of avermectin was 34.76% and 10.27%, respectively. Illumination 24 After an hour, avermectin was completely decomposed and the residual rate was only 2.62%.
  • Example 1 The avermectin standard solution prepared in Example 1 was added to the same mass (equivalent to half the mass of avermectin).
  • the ABa1 content was measured after 6 hours or 8 hours, respectively, under the same illumination conditions as in Example 1.
  • both the water-soluble and oil-soluble UV absorbers or antioxidants can extend the half-life of avermectin, and some can be extended to 24 hours.
  • Formulation A is a control without an anti-photolysis agent
  • Formula B is a water-soluble UV absorber and an oil-soluble UV absorber and an antioxidant as described in the present embodiment
  • Formulation C Only oil-soluble UV absorbers UVA and UVB were added.
  • avermectin EC Formulation A (the same ingredients in the following tables have the same reagents as in this table): Ingredients Avermectin 500# (emulsifier) 5500 (emulsifier) 700# (emulsifier) JFC (emulsifier) NMP (cosolvent) Xylene (solvent) Content (wt%) 5.3 5 1 4 2 7 Make up
  • Avermectin EC Formulation B (addition of the photolytic pesticide component described in this example): Ingredients Avermectin BP-5 Relying on Lilin BHA 500# 5500 700# JFC NMP Xylene Content (wt%) 5.3 3 2 2 5 1 4 2 7 Make up
  • avermectin emulsifiable concentrate C (only oil-soluble anti-photolysis agent added): Ingredients Avermectin UV-327 Relying on Lilin 500# 5500 700# JFC NMP Xylene Content (wt%) 5.3 3 2 5 1 4 2 7 Make up
  • Example 1 Take the above three 5% avermectin EC formulations for 8 hours, 16 hours and 24 hours under the light conditions in Example 1. In the hour, dilute with distilled water for 50 times, then for 8 hours and 16 hours, and dilute with distilled water for 100 times and then for 8 hours. After light, samples were taken for testing. The results are shown in Table 3.
  • the dilution factor can also affect the photolysis of avermectin: the same irradiation for 8 hours, the highest residual rate of avermectin when not diluted, the second time diluted 50 times, the lowest when diluted 100 times (formulas A, B and C) This is the case.)
  • Toxicity determination of Plutella xylostella using the three 5% avermectin EC formulations of Example 3 Plutella xylostella larvae were tested for activity by impregnation. A total of three experiments were carried out: each group took the same amount of formula A, formula B and formula C The avermectin emulsifiable concentrate is diluted with tap water by a certain multiple. After shaking, the quantitatively freshly picked leaves are completely immersed in the above avermectin emulsion, and then placed in the same ultraviolet lamp (18W). ) illuminate for a certain period of time.
  • the three sets of experiments were diluted 2000 times, UV light for 8 hours; diluted 4000 times, UV light for 8 hours and diluted 4000 times, UV light 16 Hours.
  • the same number of Plutella xylostella larvae were driven to the leaves treated with the above different treatments. After 48 hours, the number of deaths of Plutella xylostella larvae was counted and the mortality was calculated. The results are shown in Table 4.
  • the pesticide avermectin EC against photolysis pesticide formulation B according to the embodiment of the present invention It has obvious anti-photolysis effect: its bactericidal rate against 3rd instar larvae of Plutella xylostella is much higher than that of formula A without anti-photolysis agent under the condition of dilution 2000 times and ultraviolet light for 8 hours, slightly higher than anti-light Solution formula C .
  • its insecticidal rate against the 3rd instar larvae of Plutella xylostella is significantly better than that of anti-photolysis formula C.
  • the anti-photolysis pesticide formulation proposed by the invention can prolong the half-life of the active component of the photosensitive pesticide, and can greatly improve the insecticidal efficiency of the pesticide.
  • the following examples are anti-photolytic pesticide formulations of the various pesticide formulations described herein.
  • the pesticide formulations included in these formulations are aqueous emulsions, microemulsions, aqueous suspensions, oil suspensions, emulsifiable concentrates, oils, microcapsule suspensions, and water-dispersible granules.
  • the present invention is by no means limited to these types of preparations, and is by no means limited to the following examples. Since the photo-resistant pesticide formulation of the present invention contains both amphoteric ultraviolet light absorbers, the photo-resistance properties of the various types in the following examples are The effects of Example 3 are basically the same, and the anti-photolysis properties are not listed one by one below.
  • Example 5 20% atrazine oil suspension Ingredients Atrazine Methoxycinnamic acid DEA salt Oaklin BHA Gaseous SiO 2 C 12 -C 14 alcohol polyoxyethylene ether (emulsifier) Aqueous sorbitol polyoxyethylene ether (emulsifier) Lignosulfonate (emulsifier) Jatropha oil (carrier) Content (wt%) 20 3 2 4 0.6 0.3 0.2 0.2 Make up
  • Example 6 30% phoxim water emulsion Ingredients Phoxim Phenylbenzimidazole sulfonate TEA salt UV-531 BHT Ning Lotion 33 (emulsifier) SFR-T (emulsifier) ZEP-302 (emulsifier) Ethylene glycol (antifreeze) Xanthan gum (thickener) Silicone (antifoam) Octanol (cosolvent) water Content (wt%) 30 5 2 3 2.4 3.6 1 4 0.1 0.03 1 Make up
  • Example 7 40% chlorpyrifos ⁇ triazophos (two active ingredients) water emulsion Ingredients Chlorpyrifos Triazophos Xylene (solvent) Mexoryl SX UVT-150 UV-770 500# Ning milk 33# (emulsifier) Ethylene glycol (antifreeze) N-butanol (cosolvent) water Content (wt%) 20 20 10 3 2 2 3.6 5.4 4 3 Make up
  • Example 8 3.8% lambda-cyhalothrin microemulsion Ingredients Lacy-cyhalothrin Methoxycinnamic acid DEA salt Tinosorb M Antioxidant 1010 (primary antioxidant) Antioxidant 168 500# 600# (emulsifier) Methanol (cosolvent) water Content (wt%) 3.8 3 2 0.6 0.6 2.62 7.88 4.5 Make up
  • Example 9 30% aqueous solution of imidacloprid Ingredients Imidacloprid Phenylbenzimidazole sulfonic acid BP-3 Ascorbic acid (antioxidant) NNO (diffusion agent) 400# (emulsifier) Xanthan gum (thickener) White carbon black (stabilizer) Ethylene glycol (antifreeze) water Content (wt%) 30 3 4 3 2 2 0.1 1 5 Make up
  • Example 10 5% calcium salt microemulsion Ingredients Emamectin benzoate Phenylbenzimidazole sulfonate TEA salt BP-2 Kojic acid JFC (emulsifier) 1601 (emulsifier) Cyclohexanone (solubilizer) Isopropanol (solvent) water Quantity (wt%) 5 1.5 1 1 7 9 8 12 Make up
  • Example 11 25% Rice Wenling Oil Ingredients Rice Wenling Mexoryl SX BP-3 TBHQ (antioxidant) Fatty alcohol polyoxyethylene ether (emulsifier) Corn oil (carrier) Content (wt%) 25 5 5 5 5 Make up
  • Example 12 60% acetamiprid water dispersible granules Ingredients Acridine BP-4 UVT-150 TBHQ K12 (emulsifier) 2020 (dispersant) Calcium lignosulfonate (emulsifier) Ammonium sulfate (disintegrant/carrier) Content (wt%) 60 5 5 5 2 6 4 Make up
  • Example 13 50% Ethoxystrobin Water Dispersible Granules Ingredients Epoxystrobin Benzylidene camphorsulfonic acid Tinosorb M ascorbic acid 1004 (emulsifier) D425 (emulsifier) Lignin (dispersant) Ammonium sulfate (disintegrant) Calcined kaolin (carrier) Content (wt%) 50 4 3 3 2 6 8 10 Make up

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明公开了一种抗光解农药及其应用。该抗光解农药包括如下质量百分含量计的组分:光敏性农药活性成分0.1-90%,水溶性紫外吸收剂0.2-30%,油溶性紫外吸收剂0.2-20%,抗氧化剂0.2-20%,表面活性剂1-20%,溶剂或载体4-95%。该抗光解农药采用水溶性和油溶性紫外吸收剂协同作用,并同时加入抗氧化剂,能吸收至少30%的紫外光,甚至50%以上的紫外光,提高光敏性农药活性成分的抗紫外光性,能延长农药半衰期,即增加了害虫(细菌、杂草或螨等)在农药氛围中的暴露时间,提升了农药的使用效果,减少了农药的用量,可用于防治植物特别是农作物的各种病虫害。

Description

抗光解农药及其应用 技术领域
本发明涉及农药技术领域,具体涉及一种抗光解农药及其应用。
背景技术
农药在环境中的迁移、转化和归趋,受到环境中的生物和非生物因素两大方面的影响,其中非生物降解过程又以光化学降解过程为重要。农药光解对农药残留、药效、毒性及环境均有重大影响,农药光化学降解性质已成评价农药生态环境安全性的重要指标之一。近几十年来,农药光降解的研究进展迅速,其中光敏剂和光活化产物的研究成果,对环境污染治理显示出重要的应用前景。
然而,这只是农药光解问题的一个层面。光促使农药降解,在某些情况下是不利的。农药并不都是光解得越快越好。在自然环境中任何农药在紫外光或日光的照射下都能发生光解,只是光解的程度不一样。一部分农药对紫外光非常敏感,如有机磷、烟碱、菊酯、及一些生物性杀虫剂、二硝基苯胺类的除草剂、某些生物性杀菌剂等。它们在紫外光等自然因素的影响下半衰期很短,例如:稻瘟灵 3-4.8 天,精喹禾灵 1-3 天,阿维菌素约 6 小时,辛硫磷只有 40 分钟左右。这就意味着,如果不进行特殊保护,这些农药在施用后的几天甚至几小时将完全失去效果而达不到保护植物的作用。
由此可见,对易光解的农药进行抗光解的研究,缓解其光解作用,与利用光降解环境中残留农药的研究是同等重要的。这对于提高农业生产效率,节约资源,保护环境有很深远的意义。符合目前环保、低碳、安全、高效的发展理念。
可是,对农药抗光解方面的研究却远没有对农药残留问题研究得那么深入。农药抗光解的很多研究还处于刚刚起步的阶段。一些抗光解概念、理论、方法等都是借用在涂料,化妆品,塑料等行业中的相关知识,如:紫外光吸收、抗氧化、自由基捕获、防晒、抗老化等。在自然光中(主要为太阳光),紫外光是农药发生光解的主要原因,为了研究光敏性农药的光解,我们必须先对紫外光有一定的认识。
紫外光( Ultraviolet , UV )是一种电磁射线,它的波长比可见光短,但比 X- 射线长,波长范围在 10 nm 到 400 nm 之间,能量在 3 电子伏特到 124 电子伏特之间。其名字源于这种电磁波的波长比人类可以察觉的紫色光的波长长。根据波长的不同,紫外光可分为 UV-A , UV-B 和 UV-C 三种。 UV-A 是三者中波长最长的,波长范围在 320-400nm 之间。 UV-B 的波长范围在 290-320nm 之间。对于更短的波长(波长范围在 108-290nm 之间)的紫外光属于 UV-C ,这部分紫外光完全被臭氧层所吸收,不会到达地球。因此,对地球上的生物造成影响的紫外光主要是 UV-A 和 UV-B 。
现有一种技术基于紫外光线UV-A和UV-B能同时使光敏农药发生光解而往农药配方中同时加入UV-A紫外吸收剂和UV-B紫外吸收剂。这样这农药制剂在储运和施用过程中,对光敏农药的光解有一定的缓解作用。然而,在实际农药配方的应用中,情况却不十分理想。这主要因为大多数农药制剂,在最终施用时都是用水稀释后再喷洒到植物叶表。而且稀释的倍数往往是几百倍几千倍甚至更高。农药活性成份与紫外吸收剂大部分都是油溶性的,在表面活性剂的作用下被分散到水中形成乳状液。被稀释分散后,紫外吸收剂的作用非常有限。如果,加入的紫外吸收剂既有水溶性的又有油溶性的,这样一部分紫外光由于在水中就被水溶性的紫外吸收剂吸收掉了,而到达不了光敏农药所在的油珠表面。即使有一部分紫外光能达到油珠表面也会被油珠中的油溶性紫外吸收剂处理掉。这样的抗光解农药配方对光敏农药的保护作用可能就会大为改观。
技术问题
有鉴于此,提供一种抗光解农药及其应用,能有效缓解农药活性成份在储存与施用过程中因光解失效的问题,延长光敏性农药活性成份的半衰期,提高农药产品的利用效率。
技术解决方案
一种抗光解 农药 ,其 包括 如下质量百分含量计的组分: 光敏性农药活性成份 0.1-90% ;水溶性紫外吸收剂 0.2-30% ;油溶性紫外吸收剂 0.2-20% ;抗氧化剂 0.2-20% ;表面活性剂 1-20% ;溶剂或载 体 4-95%。
以及,上述抗光解农药用于防治植物病虫害 。
有益效果
上述抗光解农药采用水溶性紫外吸收剂和油溶性紫外吸收剂两种共存, 这些紫外吸收剂能吸收至少 30% 的紫外光,甚至 50% 以上的紫外光。由于农药通常需要兑水稀释, 水溶性紫外吸收剂溶于水中,能提高光 敏性农药活性成份的抗紫外光性 。 上述抗光解农药兼具水溶性和油溶性紫外吸收剂,在植物表面具有较高的粘附力,有利于提高农药作用实际时效。 而且,这些紫外吸收剂能使光敏性农药活性成份的半衰期延长至少 25% ,甚至能延长 50% 以上。这样,对农药半衰期的延长,即增加了害虫(细菌,杂草或螨等)在农药氛围中的暴露时间,提升了农药的使用效果,减少了农药的用量。抗氧化剂的作用是在紫外吸收剂作用之外,通过捕获自由基或分解过氧化物等方式进一步抑制农药降解,提升了农药的使用效果,可有效应用于防治各种 植物 病虫害。
附图说明
图 1 是紫外吸收剂在紫外光作用下通过电迁移进行紫外光吸收的作用机理。
图2显示阿维菌素在紫外光照下降解的情况。
本发明的实施方式
下面结合实施例和附图对本发明作进一步的详细说明。
本发明实施例提供一种抗光解农药,其包括如下质量百分含量计的组分:光敏性农药活性成份 0.1-90% ;水溶性紫外吸收剂 0.2-30% ;油溶性紫外吸收剂 0.2-20% ;抗氧化剂 0.2-20% ;表面活性剂 1-20% ;溶剂或载 体 4-95%。
光敏性农药活性成份是指易发生光解并能控制或消除植物病害的杀虫剂、除草剂、杀菌剂、杀螨剂等。具体地,从光敏性上来讲,光敏性农药活性成份是指在自然光照下分解且半衰期小于三十天的农药活性成份。光敏性农药活性成份可以是但并不限于如下列举中的任意一种或多种:甲氨基阿维菌素苯甲酸盐,阿维菌素、烯啶虫胺、辛硫磷、氯虫苯甲酰胺、噻虫啉、烯啶虫胺、高效氯氟氰菊酯、毒死蜱、稻瘟灵、精喹禾灵、啶虫脒、吡虫啉、茚虫威、醚菌酯、吡唑醚菌酯、毒死蜱、除虫菊素等。
紫外吸收剂至少有一种是水溶性的,至少有一种是油溶性的,分别优选为多种水溶性紫外吸收剂和 / 或多种油溶性紫外吸收剂。优选地,水溶性和油溶性紫外吸收剂最好做到兼顾 UVA 和 UVB 两种类型,即,水溶性紫外吸收剂既包含水溶性 UVA 紫外吸收剂又包含水溶性 UVB 紫外吸收剂;油溶性紫外吸收剂既包含油溶性 UVA 紫外吸收剂又包含油溶性 UVB 紫外吸收剂。该抗光解农药中紫外吸收剂总的质量百分比含量优选为光敏农药活性成份的 0.01-200% 。本发明提供的抗光解农药还包含至少一种抗氧化剂,优选为包含多种抗氧化剂,其总的质量百分比含量优选为光敏农药活性成份的 0.01-200% 。
本发明实施例的抗光解农药中使用的紫外吸收剂能吸收至少 30% 的紫外光,在一些优选的实施例中能吸收 50% 以上的紫外光。紫外吸收剂能使光敏性农药活性成份的半衰期延长至少 25% ;在一些优选的实施例中,通过紫外吸收剂及其他成份相互协同作用,能延长 50% 以上。这样,紫外吸收剂能延长农药半衰期,增加了害虫(细菌,杂草或螨等)在农药氛围中的暴露时间,提升了农药的使用效果,减少了农药的用量。
紫外线吸收剂是指能够吸收 290~400nm 波长范围的光,自身变为激发态,并把能量以热和光的形式再释放出来的一类物质。这类物质通常是有机化合物,分子当中一般具有吸收波长小于 400 nm 的发色基团如: -N=N- , =C=N- , =C=O , -N=O 等。根据紫外线吸收剂分子中所含发色基团的不同,紫外吸收剂又可分为以下几类:水杨酸酯类、苯酮类、苯并三唑类、取代丙烯腈类、三嗪类等。另外根据紫外吸收剂的最大吸收波长所处的波段对紫外吸收剂进行分类,把主要吸收波长在 320-400nm 之间的紫外线吸收剂称作 UV-A 紫外吸收剂,相应地主要吸收波长在 290-320nm 之间的紫外线吸收剂称作 UV-B 紫外吸收剂。紫外吸收剂有油溶性的,也有水溶性的。水溶性的紫外吸收剂种类相对较少,其结构式当中一般含有磺酸、或羧酸基团,或者是磺酸盐、羧酸盐等。
紫外吸收剂能够吸收紫外光通常是由于该类化合物分子中含有共轭 π 电子体系结构以及氢原子转移的结构。一般来说,紫外吸收剂,都会有一个或多个苯环(共轭电子体系),并且邻位有一个羟基,它会和相邻的 N 原子或 O 原子形成分子内氢键。在吸收紫外光后,分子内发生热振动,氢键会发生断裂,分子异构。这样就将有害的紫外光转变为热能释放出来,从而保护了化学品。以常用的二苯甲酮和苯并三唑类紫外吸收剂为例,其机理为如图 1 所示。
分子内氢键形成的六元螯合环在紫外光的作用下被打开,而打开此螯合环所对映的能量正好为 290~ 400 nm 波长的紫外线能量范围。在苯并三唑分子中,紫外吸收使电子从苯氧向氮原子转移,从而使得 N 原子碱性比氧原子强,这样使得质子发生迁移(如图 1 所示)。这就由稳定的无辐射跃迁的基态转变成了中介态(中介态又叫介稳态或激发态)。辐射停止紫外吸收剂有可能回复到基态。紫外吸收剂分子中各种取代基(图 1 中的 R1 , R2 , R3 等)影响着紫外吸收剂的各种理化性质如:极性,挥发性,溶解性等,特别能影响其紫外吸收的最大吸收波长。从不同取代基的苯并三唑与二苯甲酮的紫外吸收曲线可以发现它们的最大吸收峰在 290-400nm 范围内变化,这样不同的紫外吸收剂可以用于针对不同的光敏性农药活性成份。
表一列出八十多种紫外光吸收剂(表中只是列举但绝不仅限于这些种类)的名称、 CAS 号、所属类别、及溶解性能。这些紫外吸收剂基本上为有机化合物。只有二氧化钛和氧化锌两种无机物,它们不吸收紫外光,却是常用的紫外光屏蔽剂。它们对紫外光的作用是属于物理作用,通过反射把紫外光屏蔽掉而起到保护光敏性农药活性成份的作用。本实施例的紫外线吸收剂选自如表一。
表一常见的紫外光吸收剂(表中A指UVA;B指UVB)
序号 名称:(通用名或商品名) CAS 所属类别 溶解性能
1 胺基苯甲酸;(papa ) 150-13-0 B 水溶
2 3,3,5- 三甲基环已基水杨酸酯;(胡莫柳酯) 118-56-9 B 油溶
3 2- 羟基 -4- 甲氧基二苯甲酮:(BP-3) 131-57-7 B、A 油溶
4 苯基苯并咪唑磺酸 27503-81-7 B 水溶
5 对苯二亚甲基二樟脑磺酸:(麦素宁滤光环; Mexoryl SX) 92761-26-7, 90457-82-2 UVA 水溶
6 4-叔丁基-4'-甲氧基二苯酰甲烷:(阿伏苯腙) 70356 -09-1 A 油溶
7 2- 氰基 -3,3- 二苯基 -2- 丙烯酸 -2- 乙己酯:(奥克立林) 6197-30-4 B 油溶
8 2- 乙基已基对甲氧基肉桂酸酯:(对甲氧基肉桂酸辛酯) 5466-77-3 B 油溶
9 3-(4- 甲氧基苯基)-2- 丙酸-3- 甲基丁基酯:(甲氧基肉桂酸异戊酯) 71617-10-2 B 油溶
10 4,4',4''- (1,3,5- 三嗪 -2,4,6- 三亚氨基)三苯甲酸三(2-乙基己基)酯:(乙基己基三嗪酮; UVT-150) 88122-99-0 B 油溶
11 (±)-1,7,7-三甲基-[(4-甲基苯基)亚甲基]-双环[2,2,1]庚烷-2-酮(3-(4-甲基苯亚甲基)樟脑) 38102-62-4/36861-47-9 B 油溶
12 水杨酸-2-乙基己基酯 118-60-5 B 油溶
13 4- (二甲氨基)苯甲酸 -2- 乙基己酯对二甲氨基苯甲酸异辛酯 21245-02-3 B 油溶
14 苯基二苯并咪唑四磺酸酯二钠 180898-37-7 A 水溶
15 2- 羟基 -4- 甲氧基 -5- 磺酸二苯甲酮:(BP-4 ; Benzophenone-4 ) 4065-45-6 A 、B 水溶
16 2- 羟基 -4- 甲氧基二苯甲酮 -5- 磺酸钠:(BP-5 ; Benzophenone-5 ) 6628-37-1 A 、B 水溶
17 甲氧基肉桂酸 -2- 乙氧基乙酯:(西诺沙酯; Cinoxate) 104-28-9 B 油溶
18 甲氧基肉桂酸 DEA 盐 56265-46-4 A 、B 水溶
19 2- 氰基 -3,3- 二苯基 -2- 丙烯酸乙基酯:(依托立林) 5232-99-5 B 油溶
21 2,4- 二羟二苯甲酮:(UV0 ; BP-1 ; Benzophenone-1) 131-56-6 A 、B 油溶
22 2,2',4,4'- 四羟基二苯甲酮:(BP-2 ; Benzophenone-2) 131-55-5 A、B 油溶
24 2,2'- 二羟基 -4,4'- 二甲氧基二苯甲酮:(BP-6 ; Benzophenone-6 ) 131-54-4 A 、B 油溶
25 2,2'- 二羟基 -4- 甲氧基二苯甲酮:(BP-8 ; Benzophenone-8) 131-53-3 A 、B 油溶
26 2,2'- 二羟基 -4,4'- 二甲氧基二苯甲酮 -5,5'- 二磺酸钠:(BP-9 ; Benzophenone-9) 76656-36-5 A 、B 水溶
27 2-羟基-4-正辛氧基二苯甲酮:(UV-531;BP-12) 1843-05-6 A、 B 油溶
28 1,7,7- 三甲基 -3- (苯亚甲基)双环 [2,2,1] 庚 -2- 酮:(3- 亚苄基樟脑) 15087-24-8 B 油溶
29 N,N,N- 三甲基 -4-[ (4,7,7- 三甲基于 -3- 酮双环 [2,2,1] 庚 -2- 亚)甲基 ] 苯胺磺酸盐 52793-97-2 B 微溶于水
32 苯基二苯并咪唑四磺酸酯二钠 180898-37-7 A 水溶
33 双-乙基己氧苯酚甲氧苯基三嗪:(Tinosorb S) 187393-00-6 A 、B 油溶
34 4,4',4''-(1,3,5- 三嗪 -2,4,6- 三亚氨基)三苯甲酸三(2-乙基己基)酯:(乙基己基三嗪酮) 88122-99-0 B 油溶
35 4,4 ˊ -[[6-[[4--[[ (1,1- 二甲基乙基)氨基 ] 羰基 ] 苯基 ] 氨基 ]-1,3,5- 三嗪 -2,4- 二基 ] 二亚氨基 ] 双 ,- 双(2- 乙基己基)酯 ] :(二乙基己基丁酰胺基三嗪酮; Uvasorb HEB ) 154702-15-5 B 、A 油溶
36 甲酚曲唑三硅氧烷 155633-54-8 A 、B 油溶
37 双(3- 苯并三唑基 -2- 羟基 -5- 特辛基苯基)甲烷:(UV-360 ; Tinosorb M ) 103597-45-1 A 、B 油溶
38 5- 甲基 -2- (1- 甲基乙基) -2- 氨基苯甲酸环己醇酯:(薄荷醇邻氨基苯甲酸酯) 134-09-8 A 油溶
39 2- 叔丁基 - 6- (5- 氯 -2H- 苯并二基) -4- 甲基苯酚:(UV-326) 3896-11-5 A 油溶
40 2- (3 , 5- 二叔丁基 -2- 羟苯基) -5- 氯苯并三唑:(UV-327 ; Tinuvin 327) 3864-99-1 A 油溶
41 2- (2'- 羟基 -5'- 甲基苯基)苯并三唑:(UV-P ; Tinuvin P) 2440-22-4 A 油溶
42 2- (2- 羟基 -3 , 5- 二叔戊基苯基)苯并三唑:(UV-328) 25973-55-1 A 油溶
43 2- (2H- 苯并三唑 -2- 基) -4,6- 二(1- 甲基 -1- 苯乙基) - 苯酚:(UV-329) 3147-75-9 A 油溶
44 2- (3,5- 叔丁基 -2- 羟基苯) -2H- 苯并三唑:(UV-320) 3846-71-7 A 油溶
45 2- (2H- 苯并三唑 -2- 基) -6- 十二烷基 -4- 甲酚:(UV-571) 125304-04-3 A 油溶
46 2- (4,6- 二苯基 -1,3,5- 三唑 -2- 基) -5-[ (己基) - 氧 ]- 苯酚:(UV-1577) 147315-50-2 A 油溶
47 2- (4,6- 双(2,4- 二甲基苯基) -1,3,5- 三嗪 -2- 基) -5- 辛氧基酚:(UV-1164) 2725-22-6 A 油溶
48 3-[3- (2-H- 苯并三唑 -2- 基) -4- 羟基 -5- 叔丁基苯基 ]- 丙酸 - 聚乙二醇 300 酯:(Tinuvin-1130) 104810-48-2 A 油溶
49 2- (2H- 苯并三唑 -2- 基) -6- 十二烷基 -4- 甲基苯酚:(UV-234) 70321-86-7 A 油溶
50 2- (2H- 苯并三唑 -2- 基) -6- (1- 甲基 -1- 苯乙基) -4- (1,1,3,3- 四甲基丁基)苯酚:(UV-928) 73936-91-1 A 油溶
51 2-[4-[2- 羟基 -3- 十三烷氧基丙基 ] 氧基 ]-2- 羟基苯基 ]-4,6- 双(2,4- 二甲基苯基) -1,3,5- 三嗪和 2-[4-[2- 羟基 -3- 十二烷氧基丙基 ] 氧基 ]-2- 羟基苯基 ]-4,6- 双(2,4- 二甲基苯基) -1,3,5- 三嗪混合物:(UV-400 ; Tinuvin- 400) 153519-44-9 A 油溶
52 N- (乙氧基羰基苯基) -N'- 甲基 -N'- 苯基甲脒:(UV-1) 57834-33-0 B 油溶
53 N- (乙氧基羰基苯基) -N'- 乙基 -N'- 苯基甲脒:(UV-2) 65816-20-8 B 油溶
54 3,5- 二叔丁基 -4- 羟基苯甲酸正十六酯:(UV-2908) 67845-93-6 A 油溶
55 4- 甲氧基苯亚甲基丙二酸二甲酯:(UV-1988) 7443-25-6 A 油溶
56 季戊四醇四(2- 氰基 -3,3- 二苯丙烯酸酯):(UV-3030) 178671-58-4 A 油溶
57 2- (2'- 羟基 -4'- 苯甲酰氧苯基) -5- 氯苯并三氮唑 ; 紫外线吸收剂:(UV-366 ) 169198-72-5 A 油溶
58 三乙醇胺水杨酸盐 2174-16-5 B 水溶
59 3 , 5- 二叔丁基 -4- 羟基苯甲酸 -2' , 4'- 二叔丁基苯酚酯:(UV-120 ) 4221-80-1 A 油溶
60 聚硅氧烷:(Parsol SLX) 207574-74-1 B 油溶
61 甘油对氨基苯甲酸酯:(利沙地酯;甘油 PABA 酯) 136-44-7 B 油溶
62 薄荷醇水杨酸酯 89-46-3 B 油溶
63 4- 咪唑丙烯酸乙酯:(尿刊酸乙酯) 27538-35-8 B 醇溶
64 4- 咪唑丙烯酸:(尿刊酸) 104-98-3 B 水溶
65 苯基苯并咪唑磺酸钠 97-53-5 B 水溶
66 4- 异丙基苯基水杨酸酯 94134-93-7 B 油溶
67 苯基苯并咪唑磺酸 TEA 盐 73705-00-7 A 、B 水溶
68 4-[ 双 (2- 羟基丙基 ) 氨基 ] 苯甲酸乙酯 58882-17-0 B 油溶
69 2- 羟基 -5- 氯二苯甲酮 85-19-8 B 、A 油溶
70 2- 羟基 -4- 甲氧基 -4'- 甲基二苯甲酮 1641-17-4 B 、A 油溶
71 二苯甲酮 119-61-9 B 、A 油溶
72 2,2'4,4'- 四羟基二苯甲酮和 2,2'- 二羟基 -4,4'- 二甲氧基二苯甲酮:(二苯甲酮 -11 ) 1341-54-4 B 、A 油溶
73 亚苄基樟脑磺酸 56039-58-8 A 水溶
74 PEG-25 对氨基苯甲酸:(PEG-25 PABA) 116242-27-4 B 油溶
75 聚丙烯酰胺甲基亚苄基樟脑 113783-61-2 A 油溶
76 4- 甲氧基肉桂酸乙酯:(甘油二山嵛酸酯) 99880-64-5 B 油溶
77 4- 甲氧基肉桂酸异丙酯 5466-76-2 B 油溶
78 波尼酮 2226-11-1 A 油溶
79 肉桂酸乙酯 103-36-6 B 油溶
80 异丙基二苯甲酰甲烷 63250-25-9 A 油溶
81 二异丙基肉桂酸甲酯 32580-71-5 B 油溶
82 水杨酸苄酯:(柳酸苄酯) 118-58-1 B 油溶
83 二氧化钛 13463-67-7 A 、B 不溶
84 氧化锌 1314-13-2 A 、B 不溶
在一定紫外光作用下,农药活性成分或其它化合物会由基态变成激发态。激发态的农药活性成分是很不稳定的,极易被氧化。氧化是一种使电子自农药活性成分的分子转移至氧化剂的化学反应,转移过程中可生成自由基,进而启动链反应。抗氧化剂是指能减缓或防止氧化作用的物质。抗氧化剂则能去除自由基,终止连锁反应并且抑制其它氧化反应,同时其本身被氧化。抗氧化剂的作用可以理解为在紫外吸收剂作用之外,通过捕获自由基或分解过氧化物等方式进一步抑制农药降解,进一步提高农药使用效果。
抗氧化剂通常是还原剂,最常见的有受阻胺类和受阻酚类。例如硫醇、抗坏血酸、多酚等,它们都属于主抗氧剂。有些抗氧化剂往往还要加入一些辅助抗氧剂如亚磷酸酯类,硫代酯类等。辅助抗氧化剂不能单独使用,却能协助主抗氧化剂增加抗氧化作用。
表二列出的是一些抗氧化剂(表中只是列举绝不仅限于所列的抗氧化剂)的名称、CAS号、所属类别以及溶解性。这些抗氧剂中应用较多的是抗坏血酸(维生素C)及其钠盐,丁基羟基茴香醚(BHA)、二叔丁基对甲酚(BHT)。此外像2,2-硫代双(4-叔辛基苯酚)正丁胺镍盐(UV-1084),这种类似的金属镍盐是常用的自由基捕获剂。本实施例的抗氧化剂选自表二中的一种或多种,但并不限于此举例。
表二常见的抗氧化剂
序号 名称:(通用名;商品名) CAS 所属类别 溶解性能
1 2,2,6,6- 四甲基 -4- 哌啶硬脂酸酯:(UV-3853) 167078-06-0 受阻胺 油溶
2 癸二酸二(2 , 2 , 6 , 6- 四甲基哌啶基)酯(UV-770) 52829-07-9 受阻胺 油溶
3 [[3,5- 二叔丁基 -4- 羟基苯基 ] 甲基 ] 丁基丙二酸二 (1,2,2,6,6- 五甲基 -4- 哌啶基 ) 酯:(UV-144) 63843-89-0 受阻胺 油溶
4 2,2- 硫代双 (4- 叔辛基苯酚 ) 正丁胺镍盐:(UV-1084) 14516-71-3 萃灭剂 油溶
5 双 (1,2, 2, 6, 6- 五甲基 -4- 哌啶基 ) 癸二酸酯:(UV-292) 41556-26-7 受阻胺 油溶
6 双 (1- 辛氧基 -2,2,6,6- 四甲基 -4- 哌啶基 ) 癸二酸酯:(UV-123) 129757-67-1 受阻胺 油溶
7 3-(3,5- 二叔丁基 -4- 羟基苯基 ) 丙酸正十八烷醇酯:(抗氧剂 1076) 2082-79-3 受阻酚 油溶
8 1,1,3- 三 (2- 甲基 -4- 羟基 -5- 叔丁苯基 ) 丁烷:(抗氧剂 CA) 1843-03-4 受阻酚 油溶
9 2 , 6 二叔丁基对甲酚:(BHT) 128-37-0 受阻酚 油溶
10 叔丁基 -4- 羟基苯甲醚:(BHA) 25013-16-5 受阻酚 油溶
11 1,3,5- 三甲基 -2,4,6- 三 (3,5- 二叔丁基 -4- 羟基苄基 ) 苯:(抗氧剂 330 ) 1709-70-2 受阻酚 油溶
12 2,2'- 亚甲基双 -(1,1- 二甲基乙基 )-4- 乙基苯酚 88-24-4 受阻酚 油溶
13 N,N'- 双 -(3-(3,5- 二叔丁基 -4- 羟基苯基 ) 丙酰基 ) 己二胺;(抗氧剂 1089) 23128-74-7 受阻酚 油溶
14 4,4'- 硫代双 (6- 特丁基间甲酚 ) :(抗氧剂 300) 96-69-5 受阻酚 油溶
15 1,3,5- 三 (3,5- 二叔丁基 -4- 羟基苄基 ) 异氰尿酸:(抗氧剂 3114) 27676-62-6 受阻酚 油溶
16 2,2'- 亚甲基双 -(4- 甲基 -6- 叔丁基苯酚 ); (抗氧剂 2246) 119-47-1 受阻酚 油溶
17 4,4- 二叔辛基二苯胺 15721-78-5 辅助抗氧剂 油溶
18 三 (4- 壬基酚 ) 亚磷酸酯:(TNP) 3050-88-2 辅助抗氧剂 油溶
19 三 (2,4- 二叔丁基 ) 亚磷酸苯酯;亚磷酸三 (2,4- 二叔丁基苯基 ) 酯:(抗氧剂 168 ) 31570-04-4 辅助抗氧剂 油溶
20 双十八烷基季戊四醇双亚磷酸酯 ; (抗氧剂 618; 抗氧化剂 -PEP-8T) 3806-34-6 辅助抗氧剂 油溶
21 四 (2,4- 二叔丁基酚 ) 4,4'- 联苯二亚磷酸酯:(抗氧剂 THP-EPQ) 119345-01-6 辅助抗氧剂 油溶
22 硫代二丙酸双十二烷酯 123-28-4 辅助抗氧剂 油溶
23 2,3,4,5,6- 五羟基 -2- 己烯酸 -4- 内酯:(维生素 C ;抗坏血酸) 50-81-7 主抗氧剂 水溶
24 3,4,5- 三羟基苯甲酸丙酯:(没食子酸丙酯) 121-79-9 主抗氧剂 油溶
25 3,4,5- 三羟基苯甲酸辛酯:(没食子酸辛酯) 1034-01-1 主抗氧剂 油溶
26 没食子酸月桂酯; 3,4,5- 三羟基苯甲酸十二烷基酯 1166-52-5 主抗氧剂 油溶
27 6- 乙氧基 -2,2,4- 三甲基 -1,2- 二氢喹啉:(乙氧基喹啉) 91-53-2 主抗氧剂 油溶
28 D-2,3,4,5,6- 五羟基 -2- 己烯酸 -4- 内酯钠:(异抗坏血酸钠;异维生素 C 钠;赤藻糖酸钠) 6381-77-7 主抗氧剂 水溶
29 环己六醇磷酸酯:(植酸;肌醇六磷酸酯) 83-86-3 主抗氧剂 水溶
30 5- 羟基 -2- 羟甲基 -1,4- 吡喃酮(曲酸) 501-30-4 主抗氧剂 水溶
31 叔丁基对苯二酚(特丁基对苯二酚,叔丁基氢醌, TBHQ ) 1948-33-0 主抗氧剂 油溶
在一个具体应用中,本发明实施例的农药配方可适用于需要兑水稀释后再施用的农药制剂,特别适用于水性化制剂如水乳剂、微乳剂、水悬浮剂、水剂等,不仅在施用的过程中能抑制光敏性农药活性成份光解,在这些水性化制剂的储运过程中同样有很强的光解抑制作用。
本发明实施例的农药配方中使用的溶剂优选为有机溶剂,例如,重芳烃类溶剂,如埃克森美孚的 Solvesso 系列;植物油溶剂,如诺普信农化股份有限公司的松脂油 ND60 等;脂肪酰胺类溶剂,如罗地亚公司的 ADMA-8 , ADMA-10 等;碳酸酯类溶剂,如亨斯迈公司的 JEFFSOL 系列等;以及醇类溶剂,如丁醇,甲醇等;酮类溶剂,如环己酮;酯类溶剂,如乙酸仲丁酯;醚类溶剂,如乙二醇二乙酸酯,三乙酸甘油酯;双子基溶剂,如吡咯烷酮等。本发明实施例的农药配方中使用的表面活性剂可以为农用表面活性剂或日用表面活性剂的一种或多种混合,优选为脂肪醇聚氧乙烯醚、 EO/PO 嵌段共聚物及其磷酸酯、蓖麻油聚氧乙烯醚、吐温、烷基磺酸盐、烷基硫酸盐,这些表面活性剂的效果比较优越。本发明实施例的农药配方中使用的载体优选为高岭石、蒙脱石、滑石、方解石、白云石、石膏、生石灰、镁石灰、硅藻石、磷灰石、凹凸棒、玉米棒芯、谷壳粉、稻壳、烟草粉、胡桃壳、锯木粉、沉淀碳酸钙水合物、沉淀碳酸钙、沉淀二氧化硅水合物等无机物和一些有机物如植物油等。
上述的抗光解农药实际应用时,直接取所需的光敏性农药活性成分与其他成分依次混合配制而成,制成的抗光解农药的剂型包括但不限于乳油、微乳剂、水乳剂、水剂、水悬浮剂、油剂、油悬剂、微囊悬浮剂或水分散粒剂等。
上述的抗光解农药主要可用于防治植物特别是农作物病害虫等,以及对细菌、杂草或螨等病害防治。具体应用时,根据不同的病害情况,选用相应的光敏性活性农药成份,选择合适的紫外光吸收剂、抗氧化剂以及其他成份,得到对应的农药配方,可适应不同的实际应用需求。 植物优选并不限于农作物,也可以是园林、草坪等。
以下将通过具体实验的实施例来举例说明上述抗光解农药及其应用,并进行相应的应用实验,考察其效果。
实施例 1
阿维菌素于甲醇中重结晶,经测定重结晶前 ABa1 (ABa1 是指阿维菌素中两种主要成份中的一种)含量为 81% ,重结后为 84% ,重结晶对 ABa1 的含量稍有提高。配制阿维菌素标准甲醇溶液, ABa1 含量控制在 100mg/L 。使该溶液在紫外光(一个 18w 紫外灯和一个 125w 的太阳灯)照射下进行光解,下图是对阿维菌素随时间光解的情况。
请参阅图 2 ,从图中可以看出:阿维菌素在最初的两个小时降解最快,之后相对趋于缓和。由图可见,在上述实验条件的光照条件下,阿维菌素的半衰期为 2 h 。与文献报道的 4~6 小时短,是由于存在两种灯光共同作用。光照 6 小时和 8 小时后,阿维菌素残留率分别为 34.76% 和 10.27% 。光照 24 小时后,阿维菌素基本分解完全,残留率仅为 2.62% 。
实施例 2
实施例 1 中配制的阿维菌素标准溶液,分别加入相同质量的(相当于阿维菌素质量的一半) 56 种表一和表二所列的紫外吸收剂或抗氧化剂。在与实施例 1 相同的光照条件下,分别于 6 小时或 8 小时后检测其 ABa1 的含量。
在加入紫外光吸收剂后,无论是水溶性还是油溶性紫外吸收剂或是抗氧化剂,都能使阿维菌素的半衰期延长,有的可以延长至 24 小时。
实施例 3
以下为 5% 阿维菌素(原药中阿维菌素纯度95.3%,活性成份) 的乳油剂型抗光解农药配方 A 、 B 和 C 。配方 A 是不加抗光解剂的对照样,配方 B 为按本实施例所述的加入了水溶性紫外吸收剂和油溶性紫外吸收剂以及抗氧化剂,配方 C 中只加入油溶性的紫外吸收剂 UVA 和 UVB 。
5% 的阿维菌素乳油配方 A (下面各表中与本表相同的成份起到相同的试剂作用) :
成份 阿维菌素 500# (乳化剂) 5500 (乳化剂) 700# (乳化剂) JFC (乳化剂) NMP (助溶剂) 二甲苯(溶剂)
含量(wt%) 5.3 5 1 4 2 7 补足
5% 阿维菌素乳油配方 B (加入本实施例所述的抗光解农药成分):
成份 阿维菌素 BP-5 依托立林 BHA 500# 5500 700# JFC NMP 二甲苯
含量(wt%) 5.3 3 2 2 5 1 4 2 7 补足
5% 阿维菌素乳油配方 C (仅加入油溶性的抗光解剂):
成份 阿维菌素 UV-327 依托立林 500# 5500 700# JFC NMP 二甲苯
含量(wt%) 5.3 3 2 5 1 4 2 7 补足
取以上三种 5% 阿维菌素乳油配方按实施例 1 中的光照条件照射 8 小时、 16 小时和 24 小时,用蒸馏水稀释 50 倍后再照射 8 小时和 16 小时,以及用蒸馏水稀释 100 倍后照射 8 小时。光照后再取样进行检测,结果列于表三中。
表三 不同阿维菌素配方光照后的残留率
光照时间 对照配方 A 抗光解配方 B 抗光解配方 C
8 小时 49.75% 85.66% 79.99%
16 小时 25.41% 78.46% 75.25%
24 小时 12.30% 72.53% 68.49%
稀释 50 倍 8 小时 27.15% 80.33% 54.14%
稀释 50 倍 16 小时 6.45% 55.78% 14.63%
稀释 100 倍 8 小时 20.02% 70.79% 40.22%
从表三我们可以看出,配方 B 和配方 C 中的阿维菌素在相同的光照时间后(8 小时, 16 小时和 24 小时)的残留率明显高于没加抗光解成份的对照配方 A 。在不稀释的情况下,加入抗光解成份的配方 B 和配方 C 在相同的光照时间里,配方 B 的阿维菌素残留率略高于配方 C 。但是在加水稀释后,相同的照射时间,配方 B 中的阿维菌素残留率明显高于配方 C 。另外稀释的倍数也能影响阿维菌素的光解:同样照射 8 小时,不稀释时阿维菌素残留率最高,稀释 50 倍时次之,稀释 100 倍时最低(配方 A 、 B 和 C 的情况都是如此)。
以上实验可以得出如下结论: 1 、抗光解剂的加入能延长阿维菌素的半衰期; 2 、阿维菌素的农药配方稀释的倍数越大,越易发生光解; 3 、本发明提供的抗光解配方,效果要优于只加入单一油溶性紫外吸收剂的农药配方。
实施例 4 (药效对比实验)
室内 对小菜蛾的毒力测定:用实施例 3 的三种 5% 阿维菌素乳油配方对 3 龄小菜蛾幼虫采用浸渍法进行活性测定。一共进行了三组实验:每组都分别取相同量的配方 A 、配方 B 和配方 C 的阿维菌素乳油,分别用自来水稀释一定的倍数,摇匀后,把定量的新采摘的叶片完全浸没在上述阿维菌素乳液中,然后分别置于相同的紫外灯(18W )下照射一定时间。三组实验分别是稀释 2000 倍,紫外光照 8 小时;稀释 4000 倍,紫外光照 8 小时和稀释 4000 倍,紫外光照 16 小时。将相同数量的小菜蛾幼虫驱至经过上述不同处理的叶面上,经过 48 小时后,统计小菜蛾幼虫的死亡头数,计算死亡率,结果列于表四。
从表四的结果可以发现,本发明实施例涉及的农药阿维菌素乳油抗光解农药配方 B 有明显的抗光解效果:其在稀释 2000 倍,紫外光照 8 小时的情况下,对小菜蛾 3 龄幼虫的杀虫率远高于不加抗光解剂的配方 A ,略高于抗光解配方 C 。但是在稀释 4000 倍的情况下,无论是光照 8 小时还是 16 小时,其对小菜蛾 3 龄幼虫的杀虫率就明显优于抗光解配方 C 。
这些数据也验证了实施例 3 的结论。因此,本发明提出的抗光解农药配方能延长光敏性农药活性成份的半衰期,能大大提升农药杀虫效率。
表四 不同阿维菌素乳油配方对小菜蛾的杀虫活性试验结果
农药配方 稀释 倍数 光照时间(h) 供试虫数量(头) 48 小时死亡数(头) 死亡率(%)
配方 A 2000 8 66 45 68.18
配方 B 2000 8 66 64 96.97
配方 C 2000 8 66 60 90.91
配方 A 4000 8(16) 66 35(42) 53.03(63.63)
配方 B 4000 8(16) 66 58(64) 90.63(96.97)
配方 C 4000 8(16) 66 45(50) 68.18(75.76)
以下实施例是本发明所述的不同农药制剂的抗光解农药配方。这些配方包括的农药制剂有水乳剂、微乳剂、水悬浮剂、油悬剂、乳油、油剂、微囊悬浮剂和水分散粒剂等。但本发明绝非限于这些制剂类型,绝非限于以下例子。由于本发明的抗光解农药配方中同时含有两性紫外光吸收剂,因此,对于以下实施例中的各种类型,其抗光解性能与 实施例 3 的效果基本相同,下面不再一一列举其抗光解性能。
实施例 5: 20% 莠去津油悬剂
成份 莠去津 甲氧基肉桂酸 DEA 盐 奥克立林 BHA 气态SiO2 C12-C14 醇聚氧乙烯醚(乳化剂) 失水山梨醇聚氧乙烯醚(乳化剂) 木质素磺酸盐(乳化剂) 小桐子油(载体)
含量(wt%) 20 3 2 4 0.6 0.3 0.2 0.2 补足
实施例 6: 30% 辛硫磷水乳剂
成份 辛硫磷 苯基苯并咪唑磺酸 TEA 盐 UV-531 BHT 宁乳 33 (乳化剂) SFR-T (乳化剂) ZEP-302 (乳化剂) 乙二醇(防冻剂) 黄原胶(增稠剂) 有机硅 (消泡剂) 正辛醇 (助溶剂)
含量(wt%) 30 5 2 3 2.4 3.6 1 4 0.1 0.03 1 补足
实施例 7: 40% 毒死蜱 · 三唑磷(两种活性成份)水乳剂
成份 毒死蜱 三唑磷 二甲苯(溶剂) Mexoryl SX UVT-150 UV-770 500# 宁乳 33# (乳化剂) 乙二醇(防冻剂) 正丁醇(助溶剂)
含量(wt%) 20 20 10 3 2 2 3.6 5.4 4 3 补足
实施例 8: 3.8% 高效氯氟氰菊酯微乳剂
成份 高效氯氟氰菊酯 甲氧基肉桂酸 DEA 盐 Tinosorb M 抗氧剂 1010 (主抗氧化剂) 抗氧剂 168 500# 600# (乳化剂) 甲醇(助溶剂)
含量(wt%) 3.8 3 2 0.6 0.6 2.62 7.88 4.5 补足
实施例 9: 30% 吡虫啉水悬浮剂
成份 吡虫啉 苯基苯并咪唑磺酸 BP-3 抗坏血酸(抗氧化剂) NNO (扩散剂) 400# (乳化剂) 黄原胶(增稠剂) 白炭黑(稳定剂) 乙二醇(防冻剂)
含量(wt%) 30 3 4 3 2 2 0.1 1 5 补足
实施例 10 : 5% 甲维盐微乳剂
成份 甲维盐 苯基苯并咪唑磺酸 TEA 盐 BP-2 曲酸 JFC(乳化剂) 1601(乳化剂) 环己酮(增溶剂) 异丙醇(溶剂)
量(wt%) 5 1.5 1 1 7 9 8 12 补足
实施例 11 : 25% 稻温灵油剂
成份 稻温灵 Mexoryl SX BP-3 TBHQ (抗氧化剂) 脂肪醇聚氧乙烯醚(乳化剂) 玉米油(载体)
含量(wt%) 25 5 5 5 5 补足
实施例 12 : 60% 啶虫脒水分散粒剂
成份 啶虫脒 BP-4 UVT-150 TBHQ K12 (乳化剂) 2020 (分散剂) 木质素磺酸钙(乳化剂) 硫酸铵(崩解剂/载体)
含量(wt%) 60 5 5 5 2 6 4 补足
实施例 13 : 50% 醚菌酯水分散粒剂
成份 醚菌酯 亚苄基樟脑磺酸 Tinosorb M 抗坏血酸 1004 (乳化剂) D425 (乳化剂) 木质素(分散剂) 硫酸铵(崩解剂) 锻烧高岭土(载体)
含量(wt%) 50 4 3 3 2 6 8 10 补足
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种抗光解农药,其包括如下质量百分含量计的组分:光敏性农药活性成份0.1-90%;水溶性紫外吸收剂0.2-30%;油溶性紫外吸收剂
    0.2-20%;抗氧化剂0.2-20%;表面活性剂1-20%;溶剂或载体4-95%。
  2. 如权利要求 1 所述的抗光解农药,其特征在于,所述紫外光吸收剂的质量百分比含量为光敏性农药活性成份的 0.01-200%。
  3. 如权利要求 1 所述的抗光解农药,其特征在于,所述抗氧化剂包含多种抗氧化剂,所述水溶性紫外吸收剂包含多种水溶性紫外吸收剂,所述油溶性紫外吸收剂包含多种油溶性紫外吸收剂。
  4. 如权利要求 1 所述的抗光解农药,其特征在于,所述水溶性紫外吸收剂包含水溶性 UVA 紫外吸收剂和水溶性 UVB 紫外吸收剂,所述油溶性紫外吸收剂包含油溶性 UVA 紫外吸收剂和油溶性 UVB 紫外吸收剂。
  5. 如权利要求 1 所述的抗光解农药,其特征在于,所述抗氧化剂的质量百分比含量为光敏性农药活性成份的 0.01-200%。
  6. 如权利要求 1 所述的抗光解农药,其特征在于,所述抗光解农药的剂型是乳油、微乳剂、水乳剂、水剂、水悬浮剂、油剂、油悬剂、微囊悬浮剂或水分散粒剂。
  7. 如权利要求 1 所述的抗光解农药,其特征在于,所述光敏性农药活性成份是在自然光照下分解且半衰期小于三十天的农药活性成份。
  8. 如权利要求 1 所述的抗光解农药,其特征在于,所述光敏性农药活性成份选自甲氨基阿维菌素苯甲酸盐、阿维菌素、烯啶虫胺、辛硫磷、氯虫苯甲酰胺、噻虫啉、烯啶虫胺、高效氯氟氰菊酯、毒死蜱、稻瘟灵、精喹禾灵、啶虫脒、吡虫啉、茚虫威、醚菌酯、吡唑醚菌酯、毒死蜱、除虫菊素中的任意一种或多种。
  9. 如权利要求 1 所述的抗光解农药,其特征在于,所述溶剂为农药有机溶剂,所述载体为高岭石、蒙脱石、滑石、方解石、白云石、石膏、生石灰、镁石灰、硅藻石、磷灰石、凹凸棒、玉米棒芯、谷壳粉、稻壳、烟草粉、胡桃壳、锯木粉、沉淀碳酸钙水合物、沉淀碳酸钙、沉淀二氧化硅水合物或植物油。
  10. 如权利要求1-9任一项所述的抗光解农药用于防治植物病虫害。
PCT/CN2012/088140 2012-12-31 2012-12-31 抗光解农药及其应用 WO2014101237A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/088140 WO2014101237A1 (zh) 2012-12-31 2012-12-31 抗光解农药及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/088140 WO2014101237A1 (zh) 2012-12-31 2012-12-31 抗光解农药及其应用

Publications (1)

Publication Number Publication Date
WO2014101237A1 true WO2014101237A1 (zh) 2014-07-03

Family

ID=51019820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/088140 WO2014101237A1 (zh) 2012-12-31 2012-12-31 抗光解农药及其应用

Country Status (1)

Country Link
WO (1) WO2014101237A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157678A1 (en) * 2016-03-17 2017-09-21 Basf Se Reduced photodegradation by co-dissolving pyraclostrobin and uv absorber
WO2018185710A1 (en) * 2017-04-07 2018-10-11 Sabic Global Technologies B.V. Durable surface hardened coating or overcoating for protecting plants from pests
CN114145315A (zh) * 2021-12-29 2022-03-08 成都绿金生物科技有限责任公司 一种除虫菊提取物水乳剂及其制备方法
CN114766476A (zh) * 2022-04-18 2022-07-22 安徽农业大学 延长丙溴磷水溶液持效期的方法
US11684590B2 (en) 2018-06-27 2023-06-27 Cornell University Substituted alkylphenols as HCN1 antagonists

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101569311A (zh) * 2009-06-11 2009-11-04 北京市农林科学院 一种抗光解杀菌悬乳剂及制备和使用方法
WO2012117060A1 (en) * 2011-03-03 2012-09-07 Dsm Ip Assets B.V. New antifungal compositions
WO2012117055A1 (en) * 2011-03-03 2012-09-07 Dsm Ip Assets B.V. New antifungal compositions
CN102657236A (zh) * 2012-05-26 2012-09-12 福建农林大学 一种座壳孢菌油剂及其与烯啶虫胺的复配杀虫剂
CN103039444A (zh) * 2012-12-31 2013-04-17 深圳诺普信农化股份有限公司 抗光解农药及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101569311A (zh) * 2009-06-11 2009-11-04 北京市农林科学院 一种抗光解杀菌悬乳剂及制备和使用方法
WO2012117060A1 (en) * 2011-03-03 2012-09-07 Dsm Ip Assets B.V. New antifungal compositions
WO2012117055A1 (en) * 2011-03-03 2012-09-07 Dsm Ip Assets B.V. New antifungal compositions
CN102657236A (zh) * 2012-05-26 2012-09-12 福建农林大学 一种座壳孢菌油剂及其与烯啶虫胺的复配杀虫剂
CN103039444A (zh) * 2012-12-31 2013-04-17 深圳诺普信农化股份有限公司 抗光解农药及其应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017157678A1 (en) * 2016-03-17 2017-09-21 Basf Se Reduced photodegradation by co-dissolving pyraclostrobin and uv absorber
WO2018185710A1 (en) * 2017-04-07 2018-10-11 Sabic Global Technologies B.V. Durable surface hardened coating or overcoating for protecting plants from pests
US11684590B2 (en) 2018-06-27 2023-06-27 Cornell University Substituted alkylphenols as HCN1 antagonists
CN114145315A (zh) * 2021-12-29 2022-03-08 成都绿金生物科技有限责任公司 一种除虫菊提取物水乳剂及其制备方法
CN114766476A (zh) * 2022-04-18 2022-07-22 安徽农业大学 延长丙溴磷水溶液持效期的方法

Similar Documents

Publication Publication Date Title
WO2014101237A1 (zh) 抗光解农药及其应用
AU2002329822B2 (en) Photostable sunscreen compositions and methods of stabilizing
EP1008586B1 (de) Oligomere Diarylbutadiene
DE60014100T2 (de) Pestizide zusammensetzungen mit rosmarinöl
US7238726B2 (en) Synergistic and residual pesticidal compositions containing plant essential oils with enzyme inhibitors
CN103039444A (zh) 抗光解农药及其应用
US10172349B2 (en) Formulations for control and repellency of biting arthropods
US20160157477A1 (en) Use of visual cues to enhance bird repellent compositions
US11252959B2 (en) Synergistic biting arthropod repellent formulations
ITBO20090582A1 (it) Combinazione sinergica e composizione per uso come acaricida, insetticida, pupicida e/o larvicida.
US5427787A (en) Anti-ultraviolet biocidal composition
WO2008143376A1 (en) Mosquito repellent
WO2019131576A1 (ja) 有害生物防除組成物及びその用途
US8747875B2 (en) Photo-stable pest control
CA1185533A (en) Dialkyl malonates as organic sunscreen adjuvants
CN114766476B (zh) 延长丙溴磷水溶液持效期的方法
HU188391B (en) Insecticide composition containing salicylic acid derivatives as activators
CN103563961B (zh) 一种含噻虫啉和甲氧虫酰肼的复合杀虫组合物及其用途
EP0729702B1 (en) Communication disruptant for controlling pandemis heparana
KR101767206B1 (ko) 광차단용 조성물
CN110150298A (zh) 一种含戊唑醇和咪鲜胺的农药组合物
CN103583552A (zh) 一种用于防治稻飞虱的组合物
JP3474611B2 (ja) 除草剤組成物
CN110178850A (zh) 一种含有甲氨基阿维菌素和虫螨腈农药组合物
JPH1087402A (ja) 除草剤組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890753

Country of ref document: EP

Kind code of ref document: A1