WO2014100769A1 - Systèmes de pile à combustible à régénération d'acide nitrique - Google Patents

Systèmes de pile à combustible à régénération d'acide nitrique Download PDF

Info

Publication number
WO2014100769A1
WO2014100769A1 PCT/US2013/077318 US2013077318W WO2014100769A1 WO 2014100769 A1 WO2014100769 A1 WO 2014100769A1 US 2013077318 W US2013077318 W US 2013077318W WO 2014100769 A1 WO2014100769 A1 WO 2014100769A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow stream
catholyte
cathode
conduit
regeneration
Prior art date
Application number
PCT/US2013/077318
Other languages
English (en)
Inventor
Tsali CROSS
Derek REIMAN
Corina MARGINEANU
Original Assignee
Neah Power Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/721,055 external-priority patent/US9112215B1/en
Priority claimed from US13/721,063 external-priority patent/US9231266B1/en
Application filed by Neah Power Systems, Inc. filed Critical Neah Power Systems, Inc.
Publication of WO2014100769A1 publication Critical patent/WO2014100769A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • H01M8/222Fuel cells in which the fuel is based on compounds containing nitrogen, e.g. hydrazine, ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention in one embodiment is directed to a recirculating nitric acid regeneration fuel cell system 110 that uses a hydrogen peroxide secondary oxidant to regenerate a nitric acid primary oxidant.
  • the nitric acid regeneration fuel cell system 110 comprises an anode 112 and a cathode 114 that is confronting and spaced apart from the anode 112.
  • the anode 112 and cathode 114 define an electrode pair assembly 113 that is ionically connected together via an interposing electrolyte (not shown), as well as to an external load (not shown) that completes the circuit.
  • the electrolyte used preferably is an acid selected from phosphoric acid, sulfuric acid, trifluoromethane sulfonic acid (triflic acid), difluoromethane diphosphoric acid, difluoromethane disulfonic acid, trifluoro acetic acid, or a combination thereof.
  • the anolyte flow stream is an approximate 4M MeOH/4M H 2 SO 4 liquid fuel/electrolyte mixture
  • the catholyte flow stream is an approximate 2M HNO 3 /4M H 2 SO 4 liquid oxidant/electrolyte flow stream.
  • the molarities of the different chemical constituents associated with the anolyte and catholyte flow streams may however, vary substantially from these exemplary values.
  • the hydrogen peroxide flow stream may be replaced with an air flow stream, thereby allowing oxygen from the air to contact and react with nitric oxide so as to regenerate nitric acid.
  • an appropriately sized hydrogen peroxide pump (not shown) is preferably used to transport hydrogen peroxide associated with the hydrogen peroxide flow stream 122 from the hydrogen peroxide reservoir 152 to the hydrogen peroxide oxidation zone 124, and also the regenerated nitric acid flow stream 126 back to the catholyte recirculation reservoir 128.
  • an anolyte flow stream inlet zone 230 outwardly bounds the outer side 216 of the first flow-through electrode 212
  • a catholyte flow stream inlet zone 232 outwardly bounds the outer side 222 of the second flow-through electrode 214.
  • an anolyte effluent flow stream outlet zone 234C and a catholyte outlet zone 234B outwardly bound a portion of the inner sides 218, 224 of each flow-through electrode 212, 214.
  • the silicon substrate was then etched with 4 wt % HF - H 2 0 solution with an additional 1 vol % (of the HF solution) surfactant (NCW-1001, Wako Chemicals, Inc., USA) at a current density of about 10 mA/cm 2 at 14 °C.
  • a potential of 1.4 V (min) to 6 V (max) was applied with backside illumination at 880 nm.
  • the silicon substrate was etched for about 15 hours. The resulting acicular or columnar pores were perpendicular into the wafer with an average depth of 400 about microns.
  • the backside of the sample was ground with a polisher to create the porous hydrodynamic flow-through region (having about 39% porosity).
  • the silicon substrate was then doped with a solid-source
  • the liquid nitric acid catholyte flow stream 16 is configured to flowingly contact and pass adjacent to the porous flow- by cathode 20 such that a portion of the catholyte flow stream 16 reacts at the cathode 20 but does not substantially pass through the cathode 20 and into the central plenum 22. More specifically, the catalyzed separation layer 31 substantially prevents the catholyte flow stream 16 from passing into the plenum 22 by acting as a physical barrier for fluid transport.
  • the catalyzed separation layer 31 is a porous interconnected network of catalyst particles embedded within a polymeric binder material.
  • the catalyzed separation layer 31 may be applied (e.g., painted) onto the cathode 20 as a polymer-based ink coating that contains a major amount of platinum nanoparticles.
  • a portion of the anode conduits, the cathode conduits and the regeneration conduit can include a microfluidic conduit disposed within a plate sandwiched between other plates.
  • the regeneration conduit can be coupled to the outlet cathode conduit or a reservoir of the catholyte flow stream.
  • the regeneration conduit can be coupled to the catholyte effluent flow stream through a porous element.
  • the regeneration conduit can be coupled to the catholyte effluent flow stream through a check valve.

Abstract

La présente invention a trait à des procédés et à des systèmes permettant de régénérer une pile à combustible, lesquels procédés et systèmes comprennent une étape consistant à arroser un liquide de catholyte avec un écoulement gazeux contenant de l'oxygène. De plus, les sous-produits gazeux dans le catholyte peuvent être collectés puis convertis sous formes liquides pour une mise au rebus aisée. Selon certains modes de réalisation, le processus de régénération comprend une étape consistant à régénérer par intermittence un écoulement d'oxydant, par exemple, sur la base de conditions détectées. Selon certains modes de réalisation, le processus de régénération comprend une étape consistant à basculer entre différents modes de régénération d'oxydant, par exemple, sur la base de conditions détectées.
PCT/US2013/077318 2012-12-20 2013-12-20 Systèmes de pile à combustible à régénération d'acide nitrique WO2014100769A1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201213721060A 2012-12-20 2012-12-20
US13/721,055 US9112215B1 (en) 2003-10-17 2012-12-20 Nitric acid regeneration fuel cell systems
US13/721,063 2012-12-20
US13/721,060 2012-12-20
US13/721,055 2012-12-20
US13/721,063 US9231266B1 (en) 2003-10-17 2012-12-20 Nitric acid regeneration fuel cell systems

Publications (1)

Publication Number Publication Date
WO2014100769A1 true WO2014100769A1 (fr) 2014-06-26

Family

ID=50979294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/077318 WO2014100769A1 (fr) 2012-12-20 2013-12-20 Systèmes de pile à combustible à régénération d'acide nitrique

Country Status (1)

Country Link
WO (1) WO2014100769A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018129660A1 (de) 2018-11-26 2020-05-28 Audi Ag Verfahren zur Regeneration von mindestens einer Brennstoffzelle eines Brennstoffzellensystems und Brennstoffzellensystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281274A (en) * 1962-09-14 1966-10-25 Exxon Research Engineering Co Electrochemical cell and method of regenerating nitric acid in an electrochemical cell
US3979225A (en) * 1974-12-13 1976-09-07 United Technologies Corporation Nitrogen dioxide regenerative fuel cell
US4528250A (en) * 1983-09-19 1985-07-09 Struthers Ralph C Fuel cell catholyte regenerating apparatus
US20050084738A1 (en) * 2003-10-17 2005-04-21 Ohlsen Leroy J. Nitric acid regeneration fuel cell systems
US20050084737A1 (en) * 2003-10-20 2005-04-21 Wine David W. Fuel cells having cross directional laminar flowstreams

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3281274A (en) * 1962-09-14 1966-10-25 Exxon Research Engineering Co Electrochemical cell and method of regenerating nitric acid in an electrochemical cell
US3979225A (en) * 1974-12-13 1976-09-07 United Technologies Corporation Nitrogen dioxide regenerative fuel cell
US4528250A (en) * 1983-09-19 1985-07-09 Struthers Ralph C Fuel cell catholyte regenerating apparatus
US20050084738A1 (en) * 2003-10-17 2005-04-21 Ohlsen Leroy J. Nitric acid regeneration fuel cell systems
US20050084737A1 (en) * 2003-10-20 2005-04-21 Wine David W. Fuel cells having cross directional laminar flowstreams

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018129660A1 (de) 2018-11-26 2020-05-28 Audi Ag Verfahren zur Regeneration von mindestens einer Brennstoffzelle eines Brennstoffzellensystems und Brennstoffzellensystem

Similar Documents

Publication Publication Date Title
US20050084737A1 (en) Fuel cells having cross directional laminar flowstreams
US9184463B2 (en) Nitric acid regeneration fuel cell systems
US7488547B1 (en) Fuel cell, components and systems
EP2274781B1 (fr) Pile électrochimique, et particulièrement pile à combustible métallique présentant un écoulement non parallèle
EP2109909B1 (fr) Cellule électrochimique à écoulement de transport situé au niveau d'un intervalle
Shaegh et al. Air-breathing membraneless laminar flow-based fuel cell with flow-through anode
AU2009249449B2 (en) Electrochemical cell, and particularly a cell with electrodeposited fuel
EP2543104B1 (fr) Piles à combustible
US7927731B2 (en) Redox flow cell
US7968248B2 (en) Liquid-liquid fuel cell systems having flow-through anodes and flow-by cathodes
WO2010015092A1 (fr) Pile à combustible à écoulement orthogonal à réactifs mixtes
Gautier et al. Integration of porous silicon in microfuel cells: a review
Ho et al. Microfluidic fuel cell systems
US20120148931A1 (en) Self-pumping membraneless fuel cell
US8304144B2 (en) Fuel cell formed in a single layer of monocrystalline silicon and fabrication process
US9112215B1 (en) Nitric acid regeneration fuel cell systems
WO2014100769A1 (fr) Systèmes de pile à combustible à régénération d'acide nitrique
US9231266B1 (en) Nitric acid regeneration fuel cell systems
US20140134509A1 (en) Direct alcohol fuel cell system
JP2006066390A (ja) 燃料電池のための表面電解質sefc
Meng et al. Micro-and nanofluidics for energy conversion
JP2022143970A (ja) 二酸化炭素電解装置
JP2006210357A (ja) 液体燃料直接供給型燃料電池
Kjeang et al. Devices
KR20090021626A (ko) 패시브형 연료전지 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865380

Country of ref document: EP

Kind code of ref document: A1