WO2014098538A1 - 이동통신 시스템에서 서빙 셀들의 측정 구간을 제어하기 위한 방법 및 장치 - Google Patents

이동통신 시스템에서 서빙 셀들의 측정 구간을 제어하기 위한 방법 및 장치 Download PDF

Info

Publication number
WO2014098538A1
WO2014098538A1 PCT/KR2013/012021 KR2013012021W WO2014098538A1 WO 2014098538 A1 WO2014098538 A1 WO 2014098538A1 KR 2013012021 W KR2013012021 W KR 2013012021W WO 2014098538 A1 WO2014098538 A1 WO 2014098538A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
measurement
information
base station
frequency bands
Prior art date
Application number
PCT/KR2013/012021
Other languages
English (en)
French (fr)
Inventor
김상범
김성훈
리에샤우트게르트 잔 반
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP13865872.9A priority Critical patent/EP2938012B1/en
Priority to US14/653,109 priority patent/US9949158B2/en
Publication of WO2014098538A1 publication Critical patent/WO2014098538A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present invention relates to a method and apparatus for effectively controlling measurement intervals of serving cells having different TDD configuration information in a carrier aggregation technology of a mobile communication system.
  • a mobile communication system has been developed for the purpose of providing communication while securing user mobility.
  • Such a mobile communication system has reached a stage capable of providing high-speed data communication service as well as voice communication due to the rapid development of technology.
  • LTE-A Long Term Evolution Advanced
  • 3GPP is working on specifications for Long Term Evolution Advanced (LTE-A).
  • LTE-A is a technology that implements high-speed packet-based communication with a transmission rate of up to 100 Mbps, which is higher than currently provided data rate, aiming for commercialization in 2012.
  • various methods are discussed. For example, a method of simplifying a network structure to reduce the number of nodes located on a communication path or a method of bringing wireless protocols as close to the wireless channel as possible is discussed.
  • the data service unlike the voice service, is determined according to the amount of data to be transmitted and the channel conditions and resources that can be allocated. Therefore, in a wireless communication system such as a mobile communication system, management such as allocating transmission resources is performed in consideration of the amount of resources to be transmitted by the scheduler, the situation of the channel, and the amount of data. This is the same in LTE, one of the next generation mobile communication systems, and a scheduler located in a base station manages and allocates radio transmission resources.
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • UE terminal
  • eNB base station
  • the secondary carrier uses a primary carrier and one or more subcarriers. The amount of transmission can be dramatically increased by the number of carriers.
  • a primary carrier is called a PCell (Primary Cell) and a secondary carrier is called a SCell (Secondary Cell).
  • An object of the present invention is to provide a method and apparatus for effectively controlling a measurement gap of serving cells having different TDD configuration information in a carrier aggregation technology of a mobile communication system.
  • a method of measuring a terminal in a mobile communication system comprising: transmitting a terminal information message including information for setting a measurement interval for a plurality of frequency bands to a base station; Receiving measurement interval setting information set based on the information included in the terminal information message from the base station; And performing measurement according to the measurement section setting information.
  • the method for controlling the measurement interval setting of the terminal in the mobile communication system including information for setting the measurement interval for the plurality of frequency bands of the terminal; Receiving; And transmitting measurement interval setting information set based on the information included in the terminal information message to the terminal.
  • the measurement apparatus of the mobile communication system for achieving the above technical problem, the base station and the transceiver for transmitting and receiving messages and data; And a terminal information message including information for setting a measurement interval for a plurality of frequency bands to the base station, and receiving and measuring measurement interval setting information set based on the information included in the terminal information message from the base station. It includes; a control unit for performing.
  • the apparatus for controlling the measurement interval setting of the terminal in the mobile communication system includes.
  • a measurement gap in the mobile communication system, can be set identically or separately for serving cells having different TDD configuration information, and can effectively set whether to limit backward transmission after the measurement interval.
  • FIG. 1 is a diagram illustrating a structure of an LTE system to which the present invention is applied.
  • FIG. 2 is a diagram illustrating a radio protocol structure in an LTE system to which the present invention is applied.
  • 3 is a diagram for describing carrier aggregation in a terminal.
  • FIG. 4 is a diagram for explaining a frame structure in TDD.
  • 5 is a view for explaining the operation of the terminal in the present invention.
  • FIG. 6 is a diagram illustrating a configuration of measurement section setting information.
  • FIG. 7 is a diagram for describing a process of determining a radio frame and a subframe in which a measurement gap is performed in TDD.
  • FIG. 8 is a diagram illustrating a process of controlling a measurement gap for each frequency band according to the present invention.
  • FIG. 9 is a diagram illustrating a measurement gap operation when carrier aggregation technology is applied.
  • FIG. 10 is a diagram illustrating a process in which a terminal performs measurement by applying a measurement gap according to the present invention.
  • FIG. 11 is a diagram illustrating a process of a base station controlling a measurement gap setting in a terminal according to the present invention.
  • FIG. 12 is a block diagram illustrating a terminal operation for explaining the present invention.
  • FIG. 13 is a block diagram of a base station for explaining the present invention.
  • an OFDM-based wireless communication system in particular the 3GPP EUTRA standard will be the main target, but the main subject of the present invention is another communication system having a similar technical background and channel form.
  • the main subject of the present invention is another communication system having a similar technical background and channel form.
  • the present invention relates to a method and apparatus for effectively controlling a measurement gap of serving cells having different TDD configuration information in a carrier aggregation technology of a mobile communication system.
  • FIG. 1 is a diagram illustrating a structure of an LTE system to which the present invention is applied.
  • a radio access network of an LTE system includes a next generation base station (hereinafter referred to as an Evolved Node B, ENB, Node B, or base station) 105, 110, 115, and 120 and an MME 125. Entity) and S-GW 130 (Serving-Gateway).
  • the user equipment (hereinafter referred to as UE or UE) 135 is connected to the external network through the ENBs 105 to 120 and the S-GW 130.
  • the ENBs 105 to 120 correspond to existing Node Bs of the UMTS system.
  • the ENB is connected to the UE 135 by a radio channel and performs a more complicated role than the existing Node B.
  • all user traffic including real-time services such as Voice over IP (VoIP) over the Internet protocol, is serviced through a shared channel, so information on the status of buffers, available transmit power, and channel status of UEs is available. It is necessary to have a device for scheduling the collection of this, ENB (105 ⁇ 120) is in charge.
  • One ENB 105-120 typically controls a number of cells.
  • an LTE system uses Orthogonal Frequency Division Multiplexing (OFDM) as a radio access technology in a 20 MHz bandwidth.
  • OFDM Orthogonal Frequency Division Multiplexing
  • AMC adaptive modulation & coding
  • the S-GW 130 is a device that provides a data bearer, and generates or removes a data bearer under the control of the MME 125.
  • the MME 125 is a device that is responsible for various control functions as well as mobility management function for the terminal and is connected to a plurality of base stations.
  • FIG. 2 is a diagram illustrating a radio protocol structure in an LTE system to which the present invention is applied.
  • the radio protocol of the LTE system includes packet data convergence protocol (PDCP) 205 and 240 and radio link control (LCC) 210 and 235 in the UE and ENB, respectively.
  • PDCP packet data convergence protocol
  • LCC radio link control
  • MAC Media access control
  • the PDCPs 205 and 240 are in charge of operations such as IP header compression / restore, and the RLCs 210 and 235 reconfigure PDCP packet data units (PDUs) to appropriate sizes.
  • the MACs 215 and 230 are connected to several RLC layer devices configured in one terminal, and multiplex RLC PDUs to MAC PDUs and demultiplex RLC PDUs from MAC PDUs.
  • the physical layer (PHY) 220 and 225 channel-codes and modulates higher layer data, transmits them to a wireless channel by making OFDM symbols, or demodulates, channel decodes, and transmits the OFDM symbols received through the wireless channel to a higher layer. It works.
  • the physical layer uses a hybrid automatic repeat request (HARQ) for additional error correction, and the receiving end transmits the reception of the packet transmitted by the transmitting end as 1 bit.
  • HARQ ACK / NACK information Downlink HARQ ACK / NACK information for uplink transmission is transmitted through PHICH (Physical Hybrid-ARQ Indicator Channel) physical channel, and uplink HARQ ACK / NACK information for downlink transmission is PUCCH (Physical Uplink Control Channel) or PUSCH. (Physical Uplink Shared Channel) It may be transmitted through a physical channel.
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • 3 is a diagram for describing carrier aggregation in a terminal.
  • multiple carriers are generally transmitted and received over several frequency bands.
  • a carrier 315 having a center frequency of f1 and a carrier having a center frequency of f3 310 are transmitted from the base station 305
  • one terminal 330 conventionally uses one of the two carriers. Data was sent and received.
  • the terminal 330 having carrier aggregation capability may transmit and receive data from several carriers at the same time.
  • the base station 305 may increase the transmission speed of the terminal 330 by allocating more carriers to the terminal 330 having the carrier aggregation capability according to the situation.
  • carrier aggregation may be understood as a terminal transmitting and receiving data through multiple cells at the same time. will be. Through this, the maximum transmission rate is increased in proportion to the number of carriers integrated.
  • the UE receiving data through an arbitrary forward carrier or transmitting data through an arbitrary backward carrier means that a control channel provided by a cell corresponding to a center frequency and a frequency band that characterizes the carrier is provided. It has the same meaning as transmitting and receiving data using the data channel.
  • embodiments of the present invention will be described assuming an LTE system for convenience of description, but the present invention can be applied to various wireless communication systems supporting carrier aggregation.
  • the LTE standard supports two types of duplexes: frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD uses the same frequency band for uplink and downlink. Accordingly, in TDD, frequency bands should be used alternately as uplinks during a specific subframe and as downlinks during another subframe.
  • the UE must know exactly the subframes for which downlink is used in each phase, and the base station provides such subframe information to the UE in advance.
  • the subframe information used for the downlink is called a TDD configuration, and as shown in Table 1 below, the base station may provide one of a total of seven TDD configurations to the terminal.
  • each subframe is divided into an uplink subframe, a downlink subframe, and a special subframe.
  • a downlink subframe denoted as 'D' is used to transmit downlink data
  • an uplink subframe denoted as 'U' is allocated to transmit uplink data.
  • the special subframe corresponds to a subframe between the downlink subframe and the uplink subframe.
  • the reason for providing a special subframe as described above is that timing at which each terminal completely receives a downlink subframe and timing at which each terminal transmits uplink data are different according to the position of the terminal. For example, a terminal far from the base station may receive data from the base station later. On the contrary, in order for the base station to receive data from the terminal within a specific time, the terminal must start transmitting data at an earlier time. In contrast, no special subframe is needed between the uplink subframe and the downlink subframe.
  • FIG. 4 is a diagram for explaining a frame structure in TDD.
  • One radio frame 400 having a length of 10 ms consists of 10 subframes. Each subframe is 1 ms and consists of two slots. 4 illustrates a situation in which subframe # 0 405 and subframe # 5 415 are downlink subframes, and subframe # 2 410 and subframe # 7 435 are uplink subframes.
  • the special subframe is divided into three periods indicated by a downlink pilot timeslot (420), a guard period (425), and an uplink pilot timeslot (430).
  • DwPTS is a time interval for downlink reception
  • UpPTS is a time interval for uplink transmission.
  • GP is a period in which no transmission or reception is performed.
  • Optimal DwPTS and UpPTS values may vary depending on the propagation environment. Therefore, the base station informs the terminal of the appropriate DwPTS and UpPTS values in advance, as shown in Table 2 below.
  • TDD configuration in Table 1 and the DwPTS and UpPTS values in Table 2 are included in the TDD configuration information (IE Tdd-Config) of the system information block type 1 (SystemInformationBlockType1, SIB1) that is broadcasted from the base station. Delivered.
  • IE Tdd-Config the system information block type 1 (SystemInformationBlockType1, SIB1) that is broadcasted from the base station. Delivered.
  • a measurement gap is used to perform inter-frequency or inter-RAT measurement.
  • the terminal does not perform data transmission / reception with the base station in the measurement gap, and performs inter-frequency or inter-RAT measurement.
  • FIG. 5 is a diagram for describing a process in which a terminal performs inter-frequency or inter-RAT measurement using a measurement gap.
  • the base station sets a measurement gap using an RRCConnectionReconfiguration message.
  • the RRCConnectionReconfiguration message may include measurement interval configuration information (IE MeasGapConfig).
  • measurement interval setting information includes period information of a measurement gap and start subframe information of a measurement interval.
  • one of two patterns is applied to the measurement gap.
  • the first pattern "gp0" has a 40 ms period
  • the second pattern "gp1" has a 80 ms period.
  • the period of such a measurement interval is called a measurement interval repetition period (MGRP).
  • MGRP measurement interval repetition period
  • the measurement interval setting information together with the MGRP period information provides a gap offset value used to calculate a start subframe of a measurement gap.
  • the radio frame and subframe in which the measurement interval is performed are determined by Equations 1 and 2 below.
  • the system frame number (SFN) is used to indicate a radio frame in which the measurement interval is performed, and has a value ranging from 0 to 1023.
  • T is MGRP / 10.
  • inter-frequency or inter-RAT measurement is performed in step S505 based on a subframe within a radio frame determined by the above equations.
  • the information measured in step S510 is reported to the base station using a measurement report message.
  • FIG. 7 is a diagram for describing a process of determining a radio frame and a subframe in which a measurement gap is performed in TDD.
  • the subframes shown in FIG. 7 are configured to correspond to the TDD configuration 3 of Table 1.
  • the measurement section setting information includes information that the measurement section has a 'gp0' pattern, that is, the measurement section has a period (MGRP) of 40 ms and the gap offset value is set to 17.
  • Equation 1 The number of radio frames in which a measurement gap is performed is determined by Equation 1.
  • the length 725 of the measurement gap is fixed to 6 ms, that is, 6 subframes.
  • the terminal performs inter-frequency or inter-RAT measurement.
  • Terminal transmission is limited in a subframe 715 after the measurement gap is finished according to a specific condition.
  • a subframe immediately before the measurement gap starts is a downlink subframe
  • data transmission from the terminal to the base station is restricted in the subframe after the measurement gap ends.
  • the subframe 720 is the downlink subframe D just before the measurement gap 725 starts, the subframe after the measurement gap 725 ends.
  • data transmission from the terminal to the base station is restricted.
  • the present invention proposes a method for effectively controlling a measurement gap of serving cells having different TDD configuration information when applying the measurement gap configuration described above to a terminal having carrier aggregation capability.
  • the concept of a frequency band (frequency band or serving cell) is used as shown in Table 3.
  • the LTE carrier belongs to one frequency band, and parameter values applied when calculating the terminal transmission power and the like vary according to the frequency band.
  • carrier aggregation technology carriers belonging to the same band or different bands may be used together. Therefore, in order to support the carrier aggregation technology, the terminal implementation will have a plurality of RF (Radio Frequency) modules. If carriers used by the UE belong to bands adjacent to each other in frequency, they may be used in the same RF module, but if they belong to bands far apart in frequency, another RF module will have to be used. This is because the performance characteristics of the RF module vary greatly depending on the frequency band applied.
  • the present invention proposes a method of controlling the measurement gap for each frequency band.
  • FIG. 8 is a diagram illustrating a process of controlling a measurement gap for each frequency band according to the present invention.
  • the terminal may provide at least one of the following two pieces of information to the base station through a terminal information (UECapabilityInformation) message.
  • the first information indicates whether a measurement gap is required for the UE to measure a specific frequency band for each band combination.
  • the second information indicates whether a band-specific measurement gap operation is possible for each band combination, that is, whether the UE can separately set a measurement gap for each of a plurality of frequency bands.
  • step S805 the base station determines whether a measurement gap is set and a band-specific measurement gap operation is set with reference to the performance of the terminal.
  • step S810 the base station transmits band-specific measurement gap configuration information through an RRCConnectionReconfiguration message.
  • the measurement gap configuration information transmitted from the base station to the terminal includes an identifier indicating which band (or serving cell) to apply the measurement gap to, and a measurement interval to be applied to each measurement gap operation.
  • (measurement gap) Includes a gap offset value and MGRP cycle information to be used for calculation of a start time.
  • the measurement gap setting information may include a gap offset value and MGRP period information applied to the measurement gap operation of all bands or serving cells.
  • step S815 the UE performs an operation related to a measurement gap.
  • a measurement gap related operation performed by the terminal when the carrier aggregation technology is applied will be described in detail with reference to FIG. 9.
  • step S820 the terminal reports the measured information to the base station using a measurement report (MeasurementReport) message.
  • FIG. 9 is a diagram illustrating a measurement gap operation when carrier aggregation technology is applied.
  • Carriers using different RF modules may each independently operate in a measurement gap. Accordingly, the case of FIG. 9 is applied to carriers controlled by one RF module.
  • Two carriers belonging to a single frequency band (or each belonging to an adjacent frequency band) use a single RF module, one configuring a primary carrier PCell 900 and the other subcarrier SCell 905.
  • the present invention particularly provides a method of determining whether to apply the case of limiting backward transmission after the measurement gap described above is terminated when the TDD configuration of the PCell and the SCell is different.
  • the measurement interval setting information includes information that a measurement gap has a 'gp0' pattern and a gap offset value is set to 17.
  • the radio frame performed in the measurement gap is determined by Equation 1 above.
  • the length of the measurement gap 935 is fixed to 6 ms, that is, 6 subframes.
  • the UE performs inter-frequency or inter-RAT measurement during the measurement gap 935.
  • Subframe 925 after the measurement gap 935 is finished the terminal transmission is limited according to a specific condition. As described above, if the subframe immediately before the measurement gap starts is a downlink subframe, data transmission from the terminal to the base station is restricted in the subframe after the measurement gap ends.
  • the subframe 930 immediately before the measurement gap starts is not a downlink subframe to the special subframe S.
  • the subframe 930 is a downlink subframe D just before the measurement gap starts, which corresponds to a condition that backward transmission is limited.
  • the UE operation when considering a plurality of carriers, the UE operation must be newly defined in applying a measurement gap.
  • a measurement gap that is, serving cells
  • the subframe 920 is a downlink subframe
  • backward transmission in the subframe 925 after the measurement gap is prohibited in all serving cells to which the same measurement gap is applied.
  • the terminal identifies a group of serving cells to which the measurement gap is to be applied.
  • serving cells explicitly indicated by the base station or serving cells configured in a frequency band explicitly indicated by the base station are a group of serving cells to which a measurement gap is to be applied.
  • the serving cells configured to apply the measurement gap are referred to as a measurement gap set.
  • the UE applies a measurement gap to a measurement gap set and when the measurement gap ends, the serving cell that is currently active in the measurement gap set is activated. Check for). If there is an active serving cell, it is checked whether there is a serving cell whose subframe immediately after the measurement gap is a reverse subframe among the serving cells.
  • the UE It is checked whether any of the serving cells in which the subframe immediately before the measurement gap is present among the serving cells in the active state of the measurement gap set exists in the forward subframe. If present, the UE prohibits backward transmission in the subframe immediately after the measurement gap in the serving cells that are active among the serving cells in the measurement gap set.
  • FIG. 10 is a diagram illustrating a process in which a terminal performs measurement by applying a measurement gap according to the present invention.
  • the terminal includes two pieces of information in the UE capability information message to be sent to the base station.
  • the first information included in the UE information message indicates whether a measurement gap is required when the UE measures a specific frequency band for each band combination.
  • the second information indicates whether a band-specific measurement gap operation is possible for each band combination.
  • step S1005 the terminal transmits a UE capability information message to the base station.
  • step S1010 the terminal receives an RRCConnectionReconfiguration message from the base station.
  • step S1015 the UE determines whether band-specific measurement gap configuration information is included in the RRCConnectionReconfiguration message.
  • the measurement gap setting information includes an identifier indicating which band (or serving cell) the measurement gap is to be applied to, and the start of the measurement gap to be applied to each measurement gap operation. It includes a gap offset value and MGRP period information to be used to calculate a viewpoint.
  • the UE performs a measurement gap related operation only for the serving cell designated using the measurement interval configuration information in step S1020.
  • the UE performs a measurement gap related operation according to the conventional method in step S1025.
  • the terminal reports the measured information to the base station using a measurement report (MeasurementReport) message.
  • FIG. 11 is a diagram illustrating a process of a base station controlling a measurement gap setting in a terminal according to the present invention.
  • step S1100 the base station receives a UE capability information message including the above two information from the terminal.
  • step S1105 the base station determines whether to set a band-specific measurement gap (band-specific measurement gap) to the terminal.
  • the base station If a band-specific measurement interval is configured in the terminal, the base station includes band-specific measurement gap configuration information in the RRC connection reconfiguration message in step S1110.
  • the band-specific measurement interval setting information includes an identifier indicating which band (or serving cell) a measurement gap is to be applied, and the start of the measurement gap to be applied to each measurement gap operation. It includes a gap offset value and MGRP period information to be used to calculate a viewpoint.
  • the base station If the band-specific measurement interval is not configured for the UE, the base station includes the conventional measurement gap configuration information in the RRC connection reconfiguration message (S1115).
  • step S1120 the base station transmits an RRCConnectionReconfiguration message to the terminal.
  • step S1125 the base station receives a measurement report message including information measured from the terminal.
  • FIG. 12 is a block diagram illustrating an internal structure of a terminal to which the present invention is applied.
  • the terminal transmits and receives data with the upper layer 1210 and transmits and receives control messages through the control message processor 1215.
  • the terminal transmits data through the transmitter 1200 after multiplexing through the multiplexing device 1205 under the control of the controller 1220 when transmitting a control signal or data to the base station.
  • the terminal receives a physical signal to the receiver 1200 under the control of the control unit 1220, and then demultiplexed the received signal by the demultiplexer 1205, respectively message information According to the transfer to the upper layer 1210 or the control message processor 1215.
  • the control message processing unit 1215 When the terminal performs the measurement method according to the present invention, the control message processing unit 1215 generates a terminal information message including the two information described above, the control unit 1220 under the control of the multiplexing device 1205 By multiplexing and then transmitting to the base station through the transmitter 1200.
  • the demultiplexing apparatus 1205 demultiplexes and processes the result by the control message processor 1215.
  • FIG. 13 is a block diagram illustrating a configuration of a base station according to the present invention.
  • the base station apparatus of FIG. 13 includes a transceiver 1305, a controller 1310, a multiplexing and demultiplexing unit 1320, a control message processing unit 1335, and various types.
  • the upper layer processor 1325 and 1330 and the scheduler 1315 are included.
  • the transceiver 1305 transmits data and a predetermined control signal through a forward carrier and receives data and a predetermined control signal through a reverse carrier. When a plurality of carriers are set, the transceiver 1305 performs data transmission and control signal transmission and reception to the plurality of carriers.
  • the multiplexing and demultiplexing unit 1320 multiplexes data generated by the upper layer processing units 1325 and 1330 or the control message processing unit 1335 or demultiplexes the data received by the transmitting and receiving unit 1305 so that an appropriate upper layer processing unit 1325, 1330, the control message processor 1335, or the controller 1310.
  • the controller 1310 determines whether to apply a band-specific measurement gap to a specific terminal and determines whether to include measurement interval configuration information in an RRCConnectionReconfiguration message.
  • the control message processor 1335 receives an instruction from the controller 1310, generates an RRCConnectionRecnofiguraiton to be delivered to the terminal, and transmits the generated RRCConnectionRecnofiguraiton to the lower layer.
  • the upper layer processing units 1325 and 1330 may be configured for each terminal service, and may process data generated from user services such as FTP or VoIP, and deliver the data to the multiplexing and demultiplexing unit 1320 or the multiplexing and demultiplexing unit 1320. Process the data delivered from) and deliver it to the service application of the upper layer.
  • the scheduler 1315 allocates a transmission resource to the terminal at a suitable time in consideration of the buffer state, the channel state and the active time of the terminal, and processes a signal transmitted by the terminal to the transceiver 1305. Process to transmit a signal to the terminal.

Abstract

본 발명의 실시 예는 이동통신 시스템에서 단말의 측정 방법 및 기지국의 측정 정보 설정 방법에 대한 것으로, 복수의 주파수 대역에 대하여 측정 구간을 설정하기 위한 정보를 포함하는 단말 정보 메시지를 기지국으로 전송하는 단계, 상기 기지국으로부터 상기 단말 정보 메시지에 포함된 정보를 기초로 설정된 측정 구간 설정 정보를 수신하는 단계 및 상기 측정 구간 설정 정보에 따라 측정을 수행하는 단계를 포함하는 것을 특징으로하는 단말의 측정 방법 및 장치, 그리고 단말에 상기 정보들을 설정하는 기지국의 설정 방법 및 장치를 제공하는 것을 특징으로 한다.

Description

이동통신 시스템에서 서빙 셀들의 측정 구간을 제어하기 위한 방법 및 장치
본 발명은 이동통신 시스템의 반송파 집적 기술에서 다른 TDD 설정 정보를 가진 서빙 셀들의 측정 구간을 효과적으로 제어하기 위한 방법 및 장치에 관한 것이다.
일반적으로 이동통신 시스템은 사용자의 이동성을 확보하면서 통신을 제공하기 위한 목적으로 개발되었다. 이러한 이동통신 시스템은 기술의 비약적인 발전에 힘입어 음성 통신은 물론 고속의 데이터 통신 서비스를 제공할 수 있는 단계에 이르렀다.
근래에는 차세대 이동통신 시스템 중 하나로 3GPP에서 LTE-A(Long Term Evolution Advanced)에 대한 규격 작업이 진행 중이다. LTE-A는 2012년 정도를 상용화 목표로 해서, 현재 제공되고 있는 데이터 전송률보다 높은 최대 100 Mbps 정도의 전송 속도를 가지는 고속 패킷 기반 통신을 구현하는 기술이다. 이를 위해 여러 가지 방안이 논의되고 있는데, 예를 들어 네트워크의 구조를 간단히 해서 통신로 상에 위치하는 노드의 수를 줄이는 방안이나, 무선 프로토콜들을 최대한 무선 채널에 근접시키는 방안 등이 논의 중이다.
한편, 데이터 서비스는 음성 서비스와 달리 전송하고자 하는 데이터의 양과 채널 상황에 따라 할당할 수 있는 자원 등이 결정된다. 따라서 이동통신 시스템과 같은 무선 통신 시스템에서는 스케줄러에서 전송하고자 하는 자원의 양과 채널의 상황 및 데이터의 양 등을 고려하여 전송 자원을 할당하는 등의 관리가 이루어진다. 이는 차세대 이동통신 시스템 중 하나인 LTE에서도 동일하게 이루어지며 기지국에 위치한 스케줄러가 무선 전송 자원을 관리하고 할당한다.
최근 LTE 통신 시스템에 여러 가지 신기술을 접목해서 전송 속도를 향상시키는 진화된 LTE 통신 시스템 (LTE-Advanced, LTE-A)에 대한 논의가 본격화되고 있다. 상기 새롭게 도입될 기술 중 대표적인 것으로 반송파 집적 (Carrier Aggregation)을 들 수 있다. 반송파 집적 기술이란 기존의 통신에서 단말 (UE, 이하 단말이라 칭함) 과 기지국 (eNB, 이하 기지국이라 칭함) 사이에서 하나의 반송파만 사용하던 것을, 주반송파와 하나 혹은 복수개의 부차반송파를 사용하여 부차반송파의 갯수만큼 전송량을 획기적으로 늘릴 수 있다. 한편, LTE에서는 주반송파를 PCell (Primary Cell)이라 하며, 부차반송파를 SCell (Secondary Cell)이라 칭한다.
본 발명이 이루고자 하는 기술적 과제는, 이동통신 시스템의 반송파 집적 기술에서 다른 TDD 설정 정보를 가진 서빙 셀들의 측정 구간(measurement gap)을 효과적으로 제어하기 위한 방법 및 장치를 제공하는 데 있다.
상기의 기술적 과제를 달성하기 위한, 본 발명에 따른 이동통신 시스템에서의 단말의 측정 방법은, 복수의 주파수 대역에 대하여 측정 구간을 설정하기 위한 정보를 포함하는 단말 정보 메시지를 기지국으로 전송하는 단계; 상기 기지국으로부터 상기 단말 정보 메시지에 포함된 정보를 기초로 설정된 측정 구간 설정 정보를 수신하는 단계; 및 상기 측정 구간 설정 정보에 따라 측정을 수행하는 단계;를 포함한다.
상기의 기술적 과제를 달성하기 위한, 본 발명에 따른 이동통신 시스템에서 단말의 측정 구간 설정을 제어하는 방법은, 상기 단말이 복수의 주파수 대역에 대하여 측정 구간을 설정하기 위한 정보를 포함하는 단말 정보 메시지를 수신하는 단계; 및 상기 단말 정보 메시지에 포함된 정보를 기초로 설정된 측정 구간 설정 정보를 상기 단말로 전송하는 단계;를 포함한다.
또한 상기의 기술적 과제를 달성하기 위한, 본 발명에 따른 이동통신 시스템의 측정 장치는, 기지국과 메시지 및 데이터를 송수신하는 송수신부; 및 복수의 주파수 대역에 대하여 측정 구간을 설정하기 위한 정보를 포함하는 단말 정보 메시지를 상기 기지국으로 전송하고, 상기 기지국으로부터 상기 단말 정보 메시지에 포함된 정보를 기초로 설정된 측정 구간 설정 정보를 수신하여 측정을 수행하는 제어부;를 포함한다.
상기의 기술적 과제를 달성하기 위한, 본 발명에 따른 이동통신 시스템에서 단말의 측정 구간 설정을 제어하는 장치는, 상기 단말과 메시지 및 데이터를 송수신하는 송수신부; 및 상기 단말이 복수의 주파수 대역에 대하여 측정 구간을 설정하기 위한 정보를 포함하는 단말 정보 메시지를 수신하면 상기 단말 정보 메시지에 포함된 정보를 기초로 설정된 측정 구간 설정 정보를 상기 단말로 전송하는 제어부;를 포함한다.
본 발명에 따르면, 이동통신 시스템에서 다른 TDD 설정 정보를 가진 서빙 셀들에 대해 동일하게, 또는 각각 별개로 측정 구간(measurement gap)을 설정할 수 있으며, 측정 구간 이후 역방향 전송의 제한 여부를 효과적으로 설정할 수 있다.
도 1은 본 발명이 적용되는 LTE 시스템의 구조를 도시하는 도면이다.
도 2는 본 발명이 적용되는 LTE 시스템에서 무선 프로토콜 구조를 나타낸 도면이다.
도 3은 단말에서 반송파 집적을 설명하기 위한 도면이다.
도 4는 TDD에서 프레임 구조를 설명하기 위한 도면이다.
도 5는 본 발명에서 단말 동작을 설명하기 위한 도면이다.
도 6은 측정 구간 설정 정보의 구성을 나타낸 도면이다.
도 7은 TDD에서 측정 구간(measurement gap)이 수행되는 라디오 프레임과 서브프레임을 결정하는 과정을 설명하기 위한 도면이다.
도 8은 본 발명에 의해 주파수 밴드별로 측정 구간(measurement gap)을 제어하는 과정을 도시한 도면이다.
도 9는 반송파 집적 기술이 적용될 경우의 측정 구간(measurement gap) 동작을 설명하기 위한 도면이다.
도 10은 본 발명에 따라 단말이 측정 구간(measurement gap)을 적용하여 측정을 수행하는 과정을 도시한 도면이다.
도 11은 본 발명에 따라 기지국이 단말에서의 측정 구간(measurement gap) 설정을 제어하는 과정을 도시한 도면이다.
도 12는 본 발명을 설명하기 위한 단말 동작 블록도이다.
도 13은 본 발명을 설명하기 위한 기지국 동작 블록도이다.
이하 본 발명의 실시예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
또한, 본 발명의 실시예들을 구체적으로 설명함에 있어서, OFDM 기반의 무선통신 시스템, 특히 3GPP EUTRA 표준을 주된 대상으로 할 것이지만, 본 발명의 주요한 요지는 유사한 기술적 배경 및 채널형태를 가지는 여타의 통신 시스템에도 본 발명의 범위를 크게 벗어나지 아니하는 범위에서 약간의 변형으로 적용 가능하며, 이는 본 발명의 기술분야에서 숙련된 기술적 지식을 가진 자의 판단으로 가능할 것이다.
본 발명은 이동통신 시스템의 반송파 집적 기술에서 다른 TDD 설정 정보를 가진 서빙 셀들의 측정 구간 (measurement gap)을 효과적으로 제어하기 위한 방법 및 장치에 관한 것이다.
도 1은 본 발명이 적용되는 LTE 시스템의 구조를 도시하는 도면이다.
도 1을 참조하면, 도시한 바와 같이 LTE 시스템의 무선 액세스 네트워크는 차세대 기지국(Evolved Node B, 이하 ENB, Node B 또는 기지국이라 함)(105, 110, 115, 120)과 MME (125, Mobility Management Entity) 및 S-GW(130, Serving-Gateway)로 구성된다. 사용자 단말(User Equipment, 이하 UE 또는 단말이라 함)(135)은 ENB(105 ~ 120) 및 S-GW(130)를 통해 외부 네트워크에 접속한다.
도 1에서 ENB(105 ~ 120)는 UMTS 시스템의 기존 노드 B에 대응된다. ENB는 UE(135)와 무선 채널로 연결되며 기존 노드 B 보다 복잡한 역할을 수행한다. LTE 시스템에서는 인터넷 프로토콜을 통한 VoIP(Voice over IP)와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스 되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 ENB(105 ~ 120)가 담당한다. 하나의 ENB(105~120)는 통상 다수의 셀들을 제어한다. 예컨대, 100 Mbps의 전송 속도를 구현하기 위해서 LTE 시스템은 20 MHz 대역폭에서 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 함)을 무선 접속 기술로 사용한다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 함) 방식을 적용한다.
S-GW(130)는 데이터 베어러를 제공하는 장치이며, MME(125)의 제어에 따라서 데이터 베어러를 생성하거나 제거한다. MME(125)는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결된다.
도 2는 본 발명이 적용되는 LTE 시스템에서 무선 프로토콜 구조를 나타낸 도면이다.
도 2를 참조하면, LTE 시스템의 무선 프로토콜은 UE와 ENB에서 각각 패킷 데이터 컨버전스 프로토콜(Packet Data Convergence Protocol, PDCP)(205, 240), 무선 링크 제어 (Radio Link Control, RLC)(210, 235), 매체 접근 제어 (Medium Access Control, MAC(215,230)로 이루어진다.
PDCP (205, 240)는 IP 헤더 압축/복원 등의 동작을 담당하고, RLC(210, 235)는 PDCP 패킷 데이터 유닛(Packet Data Unit, PDU)을 적절한 크기로 재구성한다. MAC(215,230)은 한 단말에 구성된 여러 RLC 계층 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행한다. 물리 계층(PHY)(220, 225)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 한다. 또한 물리 계층에서도 추가적인 오류 정정을 위해, 하이브리드 자동 재송 요구(Hybrid Automatic Repeat Request, HARQ)를 사용하고 있으며, 수신단에서는 송신단에서 전송한 패킷의 수신여부를 1 비트로 전송한다. 이를 HARQ ACK/NACK 정보라 한다. 업링크 전송에 대한 다운링크 HARQ ACK/NACK 정보는 PHICH (Physical Hybrid-ARQ Indicator Channel) 물리 채널을 통해 전송되며 다운링크 전송에 대한 업링크 HARQ ACK/NACK 정보는 PUCCH (Physical Uplink Control Channel)이나 PUSCH (Physical Uplink Shared Channel) 물리 채널을 통해 전송될 수 있다.
도 3은 단말에서 반송파 집적을 설명하기 위한 도면이다.
도 3을 참조하면, 하나의 기지국에서는 일반적으로 여러 주파수 대역에 걸쳐서 다중 반송파들이 송출되고 수신된다. 예를 들어 기지국(305)에서 중심 주파수가 f1인 반송파(315)와 중심 주파수가 f3(310)인 반송파가 송출될 때, 종래에는 하나의 단말(330)이 상기 두 개의 반송파 중 하나의 반송파를 이용해서 데이터를 송수신하였다. 그러나 반송파 집적 능력을 가지고 있는 단말(330)은 동시에 여러 개의 반송파로부터 데이터를 송수신할 수 있다. 기지국(305)은 반송파 집적 능력을 가지고 있는 단말(330)에 대해서는 상황에 따라 더 많은 반송파를 할당함으로써 상기 단말(330)의 전송 속도를 높일 수 있다.
전통적인 의미로 하나의 기지국에서 송출되고 수신되는 하나의 순방향 반송파와 하나의 역방향 반송파가 하나의 셀을 구성한다고 할 때, 반송파 집적이란 단말이 동시에 여러 개의 셀을 통해서 데이터를 송수신하는 것으로 이해될 수도 있을 것이다. 이를 통해 최대 전송 속도는 집적되는 반송파의 수에 비례해서 증가된다.
이하 본 발명을 설명함에 있어서 단말이 임의의 순방향 반송파를 통해 데이터를 수신하거나 임의의 역방향 반송파를 통해 데이터를 전송한다는 것은 상기 반송파를 특징짓는 중심 주파수와 주파수 대역에 대응되는 셀에서 제공하는 제어 채널과 데이터 채널을 이용해서 데이터를 송수신한다는 것과 동일한 의미를 가진다. 또한 이하 본 발명의 실시 예는 설명의 편의를 위해 LTE 시스템을 가정하여 설명될 것이나, 본 발명은 반송파 집적을 지원하는 각종 무선 통신 시스템에 적용될 수 있다.
LTE 표준에서는 주파수 분할 듀플렉스(Frequency Division Duplex, FDD), 시분할 듀플렉스(Time Division Duplex, TDD)의 두 가지 듀플렉스(Duplex)를 지원한다. FDD는 상, 하향링크가 각기 다른 주파수 대역을 가지며, TDD는 상, 하향링크가 동일 주파수 대역을 사용한다. 따라서, TDD에서는 특정 서브프레임 동안에는 상향링크로, 또 다른 서브프레임 동안 동안에는 하향링크로 교대로 주파수 대역을 사용하여야 한다. 단말은 각 상, 하향링크가 사용되는 서브프레임을 정확히 알고 있어야 하며, 기지국은 미리 이러한 서브프레임 정보를 단말에게 제공해준다. 상, 하향링크로 사용되는 서브프레임 정보를 TDD 설정(configuration)으로 칭하며, 다음의 표 1에서와 같이 기지국에서는 총 7 가지의 TDD 설정(configuration) 중 하나를 단말에 제공해줄 수 있다.
표 1
Figure PCTKR2013012021-appb-T000001
TDD 설정(configuration)에 따라, 각 서브프레임은 상향링크 서브프레임, 하향링크 서브프레임, 스페셜(special) 서브프레임으로 나누어진다. 표 1에서 ‘D’로 표기되는 하향링크 서브프레임은 하향링크 데이터를 전송하는데 이용되며, ‘U’로 표기되는 상향링크 서브프레임은 상향링크 데이터를 전송하는데 할당된다. 스페셜(Special) 서브프레임은 하향링크 서브프레임과 상향링크 서브프레임 사이의 서브프레임에 해당된다. 이와 같이 스페셜(special) 서브프레임을 두는 이유는 단말의 위치에 따라, 각 단말이 하향링크 서브프레임을 완전히 수신하는 타이밍과 각 단말이 상향링크 데이터를 전송하는 타이밍이 다르기 때문이다. 예를 들어, 기지국과 멀리 떨어져 있는 단말은 기지국으로부터의 데이터를 더 늦게 수신하게 된다. 반대로, 단말로부터의 데이터를 기지국이 특정 시간 이내에 수신하기 위해서는 단말이 더 이른 시간에 데이터 송신을 시작해야 한다. 반대로, 상향링크 서브프레임과 하향링크 서브프레임 사이에는 스페셜(special) 서브프레임이 필요가 없다.
도 4는 TDD에서 프레임 구조를 설명하기 위한 도면이다. 10 ms의 길이를 갖는 하나의 라디오 프레임(radio frame, 400)은 10개의 서브프레임으로 구성된다. 각 서브프레임은 1 ms이며, 두 개의 슬롯(slot)으로 구성된다. 도 4는 서브프레임 #0(405)과 서브프레임 #5(415)가 하향링크 서브프레임이고, 서브프레임 #2(410)와 서브프레임 #7(435)이 상향링크 서브프레임인 상황, 즉, 표 1의 TDD 설정(configuration) 0, 1, 2, 6중에 하나이다. 따라서, 서브프레임 #0과 #2 사이, 그리고 서브프레임 #5와 #7 사이의 서브프레임은 스페셜(special) 서브프레임이 된다.
스페셜(Special) 서브프레임은 DwPTS (Downlink Pilot TimeSlot, 420), GP (Guard Period, 425), UpPTS (Uplink pilot Timeslot, 430)으로 지시되는 3 구간으로 나누어진다. DwPTS는 하향링크 수신을 위한 시간 구간이며, UpPTS는 상향링크 송신을 위한 시간 구간이다. GP는 어떠한 송수신도 이루어지지 않는 구간이다. 최적의 DwPTS와 UpPTS 값은 전파 환경에 따라 달라질 수 있다. 따라서 기지국은 적절한 DwPTS와 UpPTS 값을 미리 단말에게 알려주며, 이는 다음의 표 2와 같다. 표 1에서의 TDD 설정(configuration)과 표 2의 DwPTS와 UpPTS 값은 기지국으로부터 방송(broadcast)되는 시스템 정보 블록 유형1(SystemInformationBlockType1,SIB1)의 TDD 설정 정보(IE Tdd-Config)에 포함되어 단말에게 전달된다.
표 2
Figure PCTKR2013012021-appb-T000002
LTE표준에서는 주파수 간(inter-frequency) 또는 이기종망 간(inter-RAT) 측정(measurement)을 수행하기 위해 측정 구간(measurement gap)을 이용한다. 단말은 측정 구간(measurement gap)에서는 기지국과 데이터 송수신을 수행하지 않고, 주파수 간(inter-frequency) 또는 이기종망 간(inter-RAT) 측정을 수행한다.
도 5는 단말이 측정 구간(measurement gap)을 이용하여 주파수 간(inter-frequency) 또는 이기종망 간(inter-RAT) 측정을 수행하는 과정을 설명하기 위한 도면이다. S500 단계에서 기지국은 RRC 연결 재설정(RRCConnectionReconfiguration) 메시지를 이용하여 측정 구간(measurement gap)을 설정한다. RRCConnectionReconfiguration 메시지에는 측정 구간 설정 정보(IE MeasGapConfig)가 포함될 수 있다.
도 6은 측정 구간 설정 정보의 구성을 나타낸 도면이다. 도 6을 참조하면, 측정 구간 설정 정보에는 측정 구간(measurement gap)의 주기 정보 및 측정 구간의 시작 서브프레임 정보가 포함된다. 구체적으로, 측정 구간(Measurement gap)은 두 패턴 중 하나가 적용된다. 첫번째 패턴 ‘gp0’은 40 ms 주기를 가지며, 두번째 패턴 ‘gp1’은 80 ms 주기를 가진다. 이와 같은 측정 구간의 주기를 측정 구간 반복 주기(Measurement Gap Repetition Period,MGRP)라 칭한다. 또한 측정 구간 설정 정보는 MGRP 주기 정보와 함께 측정 구간(measurement gap)의 시작 서브프레임을 계산하는데 이용되는 구간 오프셋(gap offset) 값도 제공한다.
측정 구간 이 수행되는 라디오 프레임과 서브프레임은 다음의 수학식 1 및 수학식 2 에 의해 결정된다.
수학식 1
Figure PCTKR2013012021-appb-M000001
수학식 2
Figure PCTKR2013012021-appb-M000002
여기서, 시스템 프레임 번호(System Frame Number, SFN)는 측정 구간이 수행되는 라디오 프레임을 지시하는데 사용되며, 0~1023 범위의 값을 가진다. T는 MGRP/10이다.
다시 도 5를 참조하면, 위 수식들에 의해 정해진 라디오 프레임 내의 서브프레임을 시작점으로 S505 단계에서 주파수 간(inter-frequency) 또는 이기종망 간(inter-RAT) 측정 을 수행한다. S510 단계에서 측정된 정보를 측정 보고(MeasurementReport) 메시지를 이용하여 기지국에게 보고한다.
도 7은 TDD에서 측정 구간(measurement gap)이 수행되는 라디오 프레임과 서브프레임을 결정하는 과정을 설명하기 위한 도면이다.
도 7에는 SFN=0, 1, 2인 3개의 라디오 프레임이 도시되어 있으며, 화살표는 특정 동작이 수행되는 시점을 가리킨다. 또한 도 7에 도시된 서브프레임들은 표 1의 TDD 설정 3에 대응하여 구성된다.
700 시점에서 단말은 SFN=0인 라디오 프레임에서 기지국으로부터 측정 구간 설정(measurement gap configuration) 정보를 수신한다. 측정 구간 설정 정보에는 측정 구간이 ‘gp0’ 패턴을 가지며, 즉 측정 구간이 40ms의 주기(MGRP)를 가지며, 구간 오프셋(gap offset) 값이 17로 설정된다는 정보가 포함되어 있다.
측정 구간(Measurement gap)이 수행되는 라디오 프레임의 번호는 수학식 1에 의해 결정된다. 수학식 1에 의해 도출된 값은 1이며, 다음 라디오 프레임의 SFN은 1로 일치된다. 따라서, 705 시점에서 SFN=1인 라디오 프레임에서는 측정 구간(measurement gap)이 시작될 것이다.
또한 수학식 2에 의해, 측정 구간(measurement gap)이 시작하는 서브프레임의 번호를 계산한다. 수학식 2에 의해 계산된 값은 7이므로 SFN=1인 라디오 프레임 내의 7번째 서브프레임에 해당하는 710 시점부터 측정 구간(measurement gap)이 시작한다. 측정 구간(Measurement gap)의 길이(725)는 6 ms, 즉 6 개의 서브프레임으로 고정되어 있다. 측정 구간(725) 동안, 단말은 주파수 간(inter-frequency) 또는 이기종망 간(inter-RAT) 측정 을 수행한다.
측정 구간(Measurement gap)이 끝나고 난 후의 서브프레임(715)은 특정 조건에 따라 단말 송신이 제한된다. 구체적으로, 측정 구간(measurement gap)이 시작되기 바로 전 서브프레임이 하향링크 서브프레임이라면, 측정 구간(Measurement gap)이 끝나고 난 후의 서브프레임에서는 단말로부터 기지국으로의 데이터 전송이 제한된다. 이는 단말 위치에 따른 수신 지연으로 측정 구간(measurement gap)이 시작되기 바로 전 서브프레임에서 기지국으로부터 전송된 하향링크 데이터 수신이 측정 구간(measurement gap)으로 넘어올 수 있다는 점을 반영한 것이다. 따라서 6 ms의 측정 구간(measurement gap)을 보장해주기 위해, 측정 구간(measurement gap)이 시작되기 바로 전 서브프레임이 하향링크 서브프레임이라면 측정 구간(measurement gap)이 끝나고 난 후의 서브프레임에서는 데이터 전송이 제한된다. 도 7의 경우, 측정 구간(measurement gap)(725)이 시작되기 바로 전 서브프레임(720)이 하향링크 서브프레임(D)이기 때문에, 측정 구간(measurement gap)(725)이 끝나고 난 후의 서브프레임(715)에서는 단말로부터 기지국으로의 데이터 전송이 제한된다.
본 발명은 이상에서 설명한 측정 구간(measurement gap) 설정을 반송파 집적 능력을 가지는 단말에 적용함에 있어서 서로 다른 TDD 설정 정보를 가진 서빙 셀들의 측정 구간(measurement gap)을 효과적으로 제어하기 위한 방법을 제안한다.
LTE 표준에서는 표 3과 같이 주파수 밴드(주파수 대역 또는 서빙 셀) 개념이 사용된다. LTE 반송파는 하나의 주파수 밴드에 속하게 되며, 주파수 밴드에 따라 단말 송신 전력 등을 계산할 때 적용되는 파라미터값들이 달라진다. 반송파 집적 기술에서는 동일한 밴드 또는 다른 밴드에 속한 반송파들을 함께 사용할 수 있다. 따라서, 반송파 집적 기술을 지원하기 위해, 단말 구현 상, 복수 개의 RF (Radio Frequency) 모듈을 가질 것이다. 단말이 사용할 반송파들이 주파수 상 인접해 있는 밴드들에 속해 있다면, 동일한 RF 모듈에서 이용될 수 있지만, 그렇지 않고, 주파수 상 멀리 떨어진 밴드들에 속해 있다면, 다른 RF 모듈을 이용해야 할 것이다. 이는 적용되는 주파수 대역에 따라 RF 모듈의 성능 특성이 크게 달라지기 때문이다.
표 3
Figure PCTKR2013012021-appb-T000003
Figure PCTKR2013012021-appb-I000001
Figure PCTKR2013012021-appb-I000002
만약 단말이 사용할 반송파들이 주파수 상 인접해 있는 밴드들에 속해 동일한 RF 모듈을 사용한다면, 측정 구간(measurement gap)을 수행할 경우, 해당 반송파들은 모두 측정 구간(measurement gap) 동안 데이터 송수신이 제한될 것이다. 즉, 한 RF 모듈에 속한 반송파들은 분리하여 측정 구간(measurement gap)을 수행할 수 없다. 이와 대조적으로, 단말이 사용할 반송파들이 주파수 상 멀리 떨어진 밴드들에 속해 있어, 복수 개의 RF 모듈을 이용한다면, 모든 반송파들에 대해 측정 구간(measurement gap)을 수행하는 것은 바람직하지 못하다. 측정 구간(Measurement gap)은 데이터 송수신을 제한하여, 스루풋(throughput)을 떨어뜨리기 때문이다. 따라서 하나의 RF 모듈을 사용하는 반송파들만 측정 구간(measurement gap)을 적용하여, 주파수 간(inter-frequency) 또는 이기종망 간(inter-RAT) 측정을 수행한다면, 스루풋(throughput) 성능 열화를 막을 수 있을 것이다. 따라서 본 발명에서는 주파수 밴드별로 measurement gap을 제어하는 방법을 제안한다.
도 8은 본 발명에 의해 주파수 밴드별로 측정 구간(measurement gap)을 제어하는 과정을 도시한 도면이다.
S800 단계에서 단말은 기지국에게 단말 정보(UECapabilityInformation) 메시지를 통해 다음의 두 가지 정보 중 적어도 하나를 제공할 수 있다. 첫 번째 정보는 단말이 밴드 조합 별로 특정 주파수 대역을 측정함에 있어서 측정 구간(measurement gap)이 필요한지 여부를 지시한다. 두 번째 정보는 밴드 조합 별로 밴드-특이적인 측정 구간(band-specific measurement gap) 동작이 가능한지 여부, 즉 단말이 복수의 주파수 대역 각각에 대해 별도로 측정 구간(measurement gap) 설정이 가능한지 여부를 지시한다.
S805 단계에서 기지국은 단말의 성능을 참조해서 측정 구간(measurement gap) 설정 여부 및 밴드-특이적인 측정 구간(band-specific measurement gap) 동작 설정 여부를 판단한다. S810 단계에서 기지국은 밴드-특이적인 측정 구간(band-specific measurement gap) 설정 정보를 RRC 연결 재설정(RRCConnectionReconfiguration) 메시지를 통해 전달한다.
기지국으로부터 단말로 전달되는 측정 구간(measurement gap) 설정 정보에는 어느 밴드(혹은 서빙 셀)에 측정 구간(measurement gap)을 적용할지를 지시하는 식별자, 그리고, 각 측정 구간(measurement gap) 동작에 적용될 측정 구간(measurement gap) 시작 시점의 계산에 사용될 구간 오프셋(gap offset) 값과 MGRP 주기 정보가 포함된다. 이때 측정 구간(measurement gap) 설정 정보에는 모든 밴드 또는 서빙 셀의 측정 구간(measurement gap) 동작에 적용되는 구간 오프셋(Gap offset) 값과 MGRP 주기 정보가 포함될 수도 있다.
S815 단계에서 단말은 측정 구간(measurement gap) 관련 동작을 수행한다. 반송파 집적 기술이 적용될 경우에 단말이 수행하는 측정 구간(measurement gap) 관련 동작은 이후 도 9를 참조하여 상세히 설명한다.
S820 단계에서 단말은 측정된 정보를 측정 보고(MeasurementReport) 메시지를 이용하여 기지국에 보고한다.
도 9는 반송파 집적 기술이 적용될 경우의 측정 구간(measurement gap) 동작을 설명하기 위한 도면이다. 다른 RF 모듈을 사용하는 반송파들은 각각 독립적으로 측정 구간(measurement gap)을 운용할 수 있다. 따라서, 도 9의 경우는 하나의 RF 모듈에 의해 제어되는 반송파들에 적용되는 것이다. 단일 주파수 밴드 (또는 각기 인접 주파수 밴드에 속한)에 속한 두 개의 반송파들은 단일 RF 모듈을 이용하며, 하나는 주반송파 PCell (900), 다른 하나는 부차반송파 SCell (905)을 구성한다. 본 발명은 특히 PCell과 SCell의 TDD 설정(configuration)이 다른 경우에 앞에서 설명한 측정 구간(measurement gap)이 종료된 후 역방향 전송을 제한하는 경우를 적용할지 여부를 판단하는 방법을 제시한다.
910 시점에서 단말은 SFN=0인 라디오 프레임에서 측정 구간 설정(measurement gap configuration) 정보를 수신한다. 측정 구간 설정 정보에는 측정 구간(measurement gap)이 ‘gp0’ 패턴을 가지며, 구간 오프셋(gap offset) 값이 17로 설정된다는 정보가 포함되어 있다.
측정 구간(Measurement gap)에 수행되는 라디오 프레임은 위 수학식 1에 의해 결정된다. 수학식 1에 의해 도출된 값은 1이며, 다음 라디오 프레임의 SFN은 1로 일치된다. 따라서, 915 시점에서 SFN=1인 라디오 프레임에서는 측정 구간(measurement gap)이 시작될 것이다.
또한 수학식 2에 의해, 측정 구간(measurement gap)이 시작하는 서브프레임이 계산된다. 계산된 값은 7이므로 SFN=1인 라디오 프레임 내의 7번째 서브프레임 920부터 측정 구간(measurement gap)이 시작한다. 측정 구간(Measurement gap)(935)의 길이는 6 ms, 즉 6 개의 서브프레임으로 고정되어 있다. 측정 구간(Measurement gap)(935) 동안 단말은 주파수 간(inter-frequency) 또는 이기종망 간(inter-RAT) 측정을 수행한다.
측정 구간(Measurement gap)(935)이 끝나고 난 후의 서브프레임(925)은 특정 조건에 따라 단말 송신이 제한된다. 앞서 설명하였듯이, 측정 구간(measurement gap)이 시작되기 바로 전 서브프레임이 하향링크 서브프레임이라면, 측정 구간(Measurement gap)이 끝나고 난 후의 서브프레임에서는 단말로부터 기지국으로의 데이터 전송이 제한된다.
그런데 도 9의 경우, 주반송파 PCell (900)에서는 측정 구간(measurement gap)이 시작되기 바로 전 서브프레임(930)이 스페셜 서브프레임(S)으로 하향링크 서브프레임이 아니다. 반면, 부차반송파 SCell(905)에서는 측정 구간(measurement gap)이 시작되기 바로 전 서브프레임(930)이 하향링크 서브프레임(D)이므로 앞에서 설명한 역방향 전송이 제한되는 조건에 해당된다.
따라서, 복수 개의 반송파들을 고려하는 경우에는 측정 구간(measurement gap)을 적용하는 데 있어서 단말 동작이 새로 정의되어야 한다. 본 발명에서는 동일한 측정 구간(measurement gap)이 적용되도록 설정된 복수의 주파수 밴드, 즉 서빙 셀들 중, 적어도 하나라도 역방향 전송이 제한되는 위 조건을 만족하면, 즉 측정 구간(measurement gap)이 시작되기 바로 전 서브프레임(920)이 하향링크 서브프레임이라면, 동일한 측정 구간(measurement gap)이 적용되는 모든 서빙 셀들에서 측정 구간(Measurement gap)이 끝나고 난 후의 서브프레임(925)에서의 역방향 전송이 금지된다.
좀 더 자세히 설명하면, 단말은 기지국으로부터 측정 구간(measurement gap) 설정 정보를 수신하면, 측정 구간(measurement gap)을 적용할 일군의 서빙 셀들을 식별한다. 예를 들어 기지국이 명시적으로 지시한 서빙 셀들 혹은 기지국이 명시적으로 지시한 주파수 대역에 설정된 서빙 셀들이 측정 구간(measurement gap)이 적용될 일군의 서빙 셀들이다. 이하 설명의 편의를 위해서 측정 구간(measurement gap)이 적용되도록 설정된 서빙 셀들을 측정 구간 셋(measurement gap set)으로 명명한다.
단말은 측정 구간 셋(measurement gap set)에 대해서 측정 구간(measurement gap)을 적용하고 측정 구간(measurement gap)이 종료되면, 측정 구간 셋(measurement gap set) 중 현재 활성화 상태인 서빙 셀(activated serving cell)이 있는지 검사한다. 만약 활성화 상태인 서빙 셀이 있다면 해당 서빙 셀들 중 측정 구간(measurement gap) 직후의 서브 프레임이 역방향 서브 프레임인 서빙 셀이 있는지 검사한다.
만약 위 조건이 충족된다면(즉, 측정 구간 셋(measurement gap set)에 속하는 서빙 셀들 중 적어도 하나 이상의 서빙 셀이 활성화 상태인 동시에 측정 구간(measurement gap) 직후의 서브 프레임이 역방향 서브 프레임이라면) 단말은 측정 구간 셋(measurement gap set)의 활성화 상태인 서빙 셀들 중 측정 구간(measurement gap) 직전의 서브 프레임이 순방향 서브 프레임인 서빙 셀이 하나라도 존재하는지 검사한다. 만약 존재한다면 단말은 측정 구간 셋(measurement gap set)의 서빙 셀들 중 활성화 상태인 서빙 셀들에서는 측정 구간(measurement gap) 직후의 서브 프레임에서 역방향 전송을 금지한다.
도 10은 본 발명에 따라 단말이 측정 구간(measurement gap)을 적용하여 측정을 수행하는 과정을 도시한 도면이다.
S1000 단계에서 단말은 기지국에게 보내질 단말 정보(UE capability information) 메시지에 두 가지 정보를 포함시킨다. 앞에서도 설명한 바와 같이 단말 정보 메시지에 포함되는 첫 번째 정보는 단말이 밴드 조합 별로 특정 주파수 대역을 측정함에 있어서 측정 구간(measurement gap)이 필요한지 여부를 지시한다. 두 번째 정보는 밴드 조합 별로 밴드-특이적인 측정 구간(band-specific measurement gap) 동작이 가능한지 여부를 지시한다.
S1005 단계에서 단말은 기지국에게 단말 정보(UE capability information) 메시지를 전송한다. S1010 단계에서 단말은 기지국으로부터 RRC 연결 재설정(RRCConnectionReconfiguration) 메시지를 수신한다. S1015 단계에서 단말은 밴드-특이적인 측정 구간(band-specific measurement gap) 설정 정보가 RRC 연결 재설정(RRCConnectionReconfiguration) 메시지에 포함되었는지 판단한다. 측정 구간(measurement gap) 설정 정보에는 어느 밴드(혹은 서빙 셀)에 측정 구간(measurement gap)을 적용할지를 지시하는 식별자, 그리고, 각 측정 구간(measurement gap) 동작에 적용될 측정 구간(measurement gap)의 시작 시점을 계산하는 데 사용될 구간 오프셋(gap offset) 값과 MGRP 주기 정보를 포함한다.
RRCConnectionReconfiguration 메시지에 밴드-특이적인 측정 구간 설정 정보가 포함되어 있다면, 단말은 S1020 단계에서 측정 구간 설정 정보를 이용하여 지정된 서빙 셀에 대해서만 측정 구간(measurement gap) 관련 동작을 수행한다.
RRCConnectionReconfiguration 메시지에 밴드-특이적인 측정 구간 설정 정보가 포함되어 있지 않다면, 단말은 S1025 단계에서 종래의 방법에 따라 측정 구간(measurement gap) 관련 동작을 수행한다. S1030 단계에서 단말은 측정된 정보를 측정 보고(MeasurementReport) 메시지를 이용하여 기지국에 보고한다.
도 11은 본 발명에 따라 기지국이 단말에서의 측정 구간(measurement gap) 설정을 제어하는 과정을 도시한 도면이다.
S1100 단계에서 기지국은 단말로부터 앞에서 설명한 두 가지 정보를 포함한 단말 정보(UE capability information) 메시지를 수신한다. S1105 단계에서 기지국은 단말에게 밴드-특이적인 측정 구간(band-specific measurement gap)을 설정할지를 결정한다.
단말에 밴드-특이적인 측정 구간을 설정한다면, S1110 단계에서 기지국은 밴드-특이적인 측정 구간(band-specific measurement gap) 설정 정보를 RRC 연결 재설정(RRCConnectionReconfiguration) 메시지에 포함시킨다. 밴드-특이적인 측정 구간 설정 정보에는 어느 밴드(혹은 서빙 셀)에 측정 구간(measurement gap)을 적용할지를 지시하는 식별자, 그리고, 각 측정 구간(measurement gap) 동작에 적용될 측정 구간(measurement gap)의 시작 시점을 계산하는 데 사용될 구간 오프셋(gap offset) 값과 MGRP 주기 정보를 포함한다.
단말에 밴드-특이적인 측정 구간을 설정하지 않는다면, 기지국은 S1115 단계에서 종래의 측정 구간(measurement gap) 설정 정보를 RRC 연결 재설정(RRCConnectionReconfiguration) 메시지에 포함시킨다.
S1120 단계에서 기지국은 단말에게 RRCConnectionReconfiguration 메시지를 전송한다. S1125 단계에서 기지국은 단말로부터 측정된 정보를 포함한 측정 보고(MeasurementReport) 메시지를 수신한다.
도 12는 본 발명을 적용한 단말의 내부 구조를 도시하는 블록도이다.
단말은 상위 계층 (1210)과 데이터 등을 송수신하며, 제어 메시지 처리부 (1215)를 통해 제어 메시지들을 송수신한다. 그리고 상기 단말은 기지국으로 제어 신호 또는 데이터 송신 시, 제어부 (1220)의 제어에 따라 다중화 장치 (1205)를 통해 다중화 후 송신기 (1200)를 통해 데이터를 전송한다. 반면, 기지국으로부터 제어 신호 또는 데이터 수신 시, 단말은 제어부 (1220)의 제어에 따라 수신기 (1200)로 물리신호를 수신한 후, 역다중화 장치 (1205)으로 수신 신호를 역다중화하고, 각각 메시지 정보에 따라 상위 계층 (1210) 혹은 제어메시지 처리부 (1215)로 전달한다.
단말이 본 발명에 따른 측정 방법을 수행하는 경우, 제어 메시지 처리부(1215)에 의해 앞에서 설명한 두 가지 정보를 포함하는 단말 정보 메시지를 생성하고, 제어부(1220)의 제어에 따라 다중화 장치(1205)에 의해 다중화한 후 송신기(1200)를 통해 기지국으로 전송한다. 또한 수신기(1200)를 통해 기지국으로부터 측정 구간 설정 정보가 포함된 RRC 연결 재설정 메시지를 수신하면, 역다중화 장치(1205)에 의해 역다중화한 후 제어 메시지 처리부(1215)에 의해 처리한다.
도 13은 본 발명에 따른 기지국의 구성을 나타낸 블록도로서, 도 13의 기지국 장치는 송수신부 (1305), 제어부(1310), 다중화 및 역다중화부 (1320), 제어 메시지 처리부 (1335), 각종 상위 계층 처리부 (1325, 1330), 스케줄러(1315)를 포함한다.
송수신부(1305)는 순방향 캐리어로 데이터 및 소정의 제어 신호를 전송하고 역방향 캐리어로 데이터 및 소정의 제어 신호를 수신한다. 다수의 캐리어가 설정된 경우, 송수신부(1305)는 상기 다수의 캐리어로 데이터 송수신 및 제어 신호 송수신을 수행한다.
다중화 및 역다중화부(1320)는 상위 계층 처리부(1325, 1330)나 제어 메시지 처리부(1335)에서 발생한 데이터를 다중화하거나 송수신부(1305)에서 수신된 데이터를 역다중화해서 적절한 상위 계층 처리부(1325, 1330)나 제어 메시지 처리부(1335), 혹은 제어부 (1310)로 전달하는 역할을 한다. 제어부(1310)는 밴드-특이적인 측정 구간(band-specific measurement gap) 을 특정 단말에게 적용할지를 결정하고, 측정 구간 설정 정보를 RRCConnectionReconfiguration 메시지에 포함시킬지를 결정한다.
제어 메시지 처리부(1335)는 제어부(1310)의 지시를 받아, 단말에게 전달할 RRCConnectionRecnofiguraiton을 생성해서 하위 계층으로 전달한다.
상위 계층 처리부(1325, 1330)는 단말 별 서비스 별로 구성될 수 있으며, FTP나 VoIP 등과 같은 사용자 서비스에서 발생하는 데이터를 처리해서 다중화 및 역다중화부(1320)로 전달하거나 다중화 및 역다중화부(1320)로부터 전달한 데이터를 처리해서 상위 계층의 서비스 어플리케이션으로 전달한다.
스케줄러(1315)는 단말의 버퍼 상태, 채널 상태 및 단말의 활성 시간(Active Time) 등을 고려해서 단말에게 적절한 시점에 전송 자원을 할당하고, 송수신부(1305)에게 단말이 전송한 신호를 처리하거나 단말에게 신호를 전송하도록 처리한다.
본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
한편, 본 명세서와 도면에는 본 발명의 바람직한 실시 예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.

Claims (18)

  1. 이동통신 시스템에서 단말의 측정 방법에 있어서,
    복수의 주파수 대역에 대하여 측정 구간을 설정하기 위한 정보를 포함하는 단말 정보 메시지를 기지국으로 전송하는 단계;
    상기 기지국으로부터 상기 단말 정보 메시지에 포함된 정보를 기초로 설정된 측정 구간 설정 정보를 수신하는 단계; 및
    상기 측정 구간 설정 정보에 따라 측정을 수행하는 단계;를 포함하는 것을 특징으로 하는 측정 방법.
  2. 제 1항에 있어서,
    상기 단말 정보 메시지는 상기 단말이 상기 복수의 주파수 대역에 대하여 각각 측정 구간을 설정할 수 있는지 여부 및 상기 복수의 주파수 대역에 대하여 상기 측정 구간의 설정을 필요로 하는지 여부를 나타내는 정보를 포함하는 것을 특징으로 하는 측정 방법.
  3. 제 1항에 있어서,
    상기 측정 구간 설정 정보에 의해 동일한 측정 구간이 설정된 복수의 주파수 대역 중 적어도 하나의 주파수 대역에 대하여 상기 측정 구간 직후의 서브프레임이 업링크 서브프레임이고 상기 측정 구간 직전의 서브프레임이 다운링크 서브프레임인지 판단하는 단계; 및
    상기 측정 구간 직후의 서브프레임에서 상기 기지국으로 데이터를 전송하지 않도록 제어하는 단계;를 더 포함하는 것을 특징으로 하는 측정 방법.
  4. 제 1항에 있어서,
    상기 측정 구간 설정 정보는 상기 복수의 주파수 대역 중에서 상기 측정 구간을 설정할 주파수 대역을 지시하는 정보 및 라디오프레임 내에서 상기 측정 구간의 시작점을 산출하기 위한 정보를 포함하는 것을 특징으로 하는 측정 방법.
  5. 제 1항에 있어서,
    측정 결과를 포함하는 보고 메시지를 상기 기지국에 전송하는 단계를 더 포함하는 것을 특징으로 하는 측정 방법.
  6. 이동통신 시스템에서 단말의 측정 구간 설정을 제어하는 방법에 있어서,
    상기 단말이 복수의 주파수 대역에 대하여 측정 구간을 설정하기 위한 정보를 포함하는 단말 정보 메시지를 상기 단말로부터 수신하는 단계; 및
    상기 단말 정보 메시지에 포함된 정보를 기초로 설정된 측정 구간 설정 정보를 상기 단말로 전송하는 단계;를 포함하는 것을 특징으로 하는 제어 방법.
  7. 제 6항에 있어서,
    상기 단말 정보 메시지는 상기 단말이 상기 복수의 주파수 대역에 대하여 각각 측정 구간을 설정할 수 있는지 여부 및 상기 복수의 주파수 대역에 대하여 상기 측정 구간의 설정을 필요로 하는지 여부를 나타내는 정보를 포함하는 것을 특징으로 하는 제어 방법.
  8. 제 6항에 있어서,
    상기 측정 구간 설정 정보는 상기 복수의 주파수 대역 중에서 상기 측정 구간을 설정할 주파수 대역을 지시하는 정보 및 라디오프레임 내에서 상기 측정 구간의 시작점을 산출하기 위한 정보를 포함하는 것을 특징으로 하는 제어 방법.
  9. 제 6항에 있어서,
    상기 단말로부터 측정 결과를 포함하는 보고 메시지를 수신하는 단계를 더 포함하는 것을 특징으로 하는 제어 방법.
  10. 이동통신 시스템의 측정 장치에 있어서,
    기지국과 메시지 및 데이터를 송수신하는 송수신부; 및
    복수의 주파수 대역에 대하여 측정 구간을 설정하기 위한 정보를 포함하는 단말 정보 메시지를 상기 기지국으로 전송하고, 상기 기지국으로부터 상기 단말 정보 메시지에 포함된 정보를 기초로 설정된 측정 구간 설정 정보를 수신하여 측정을 수행하는 제어부;를 포함하는 것을 특징으로 하는 측정 장치.
  11. 제 10항에 있어서,
    상기 단말 정보 메시지는 상기 단말이 상기 복수의 주파수 대역에 대하여 각각 측정 구간을 설정할 수 있는지 여부 및 상기 복수의 주파수 대역에 대하여 상기 측정 구간의 설정을 필요로 하는지 여부를 나타내는 정보를 포함하는 것을 특징으로 하는 측정 장치.
  12. 제 10항에 있어서,
    상기 제어부는 상기 측정 구간 설정 정보에 의해 동일한 측정 구간이 설정된 복수의 주파수 대역 중 적어도 하나의 주파수 대역에 대하여 상기 측정 구간 직후의 서브프레임이 업링크 서브프레임이고 상기 측정 구간 직전의 서브프레임이 다운링크 서브프레임이면 상기 측정 구간 직후의 서브프레임에서 상기 기지국으로 데이터를 전송하지 않는 것을 특징으로 하는 측정 장치.
  13. 제 10항에 있어서,
    상기 측정 구간 설정 정보는 상기 복수의 주파수 대역 중에서 상기 측정 구간을 설정할 주파수 대역을 지시하는 정보 및 라디오프레임 내에서 상기 측정 구간의 시작점을 산출하기 위한 정보를 포함하는 것을 특징으로 하는 측정 장치.
  14. 제 10항에 있어서,
    상기 제어부는 측정 결과를 포함하는 보고 메시지를 상기 기지국에 전송하는 것을 특징으로 하는 측정 방법.
  15. 이동통신 시스템에서 단말의 측정 구간 설정을 제어하는 장치에 있어서,
    상기 단말과 메시지 및 데이터를 송수신하는 송수신부; 및
    상기 단말이 복수의 주파수 대역에 대하여 측정 구간을 설정하기 위한 정보를 포함하는 단말 정보 메시지를 상기 단말로부터 수신하면 상기 단말 정보 메시지에 포함된 정보를 기초로 설정된 측정 구간 설정 정보를 상기 단말로 전송하는 제어부;를 포함하는 것을 특징으로 하는 제어 장치.
  16. 제 15항에 있어서,
    상기 단말 정보 메시지는 상기 단말이 상기 복수의 주파수 대역에 대하여 각각 측정 구간을 설정할 수 있는지 여부 및 상기 복수의 주파수 대역에 대하여 상기 측정 구간의 설정을 필요로 하는지 여부를 나타내는 정보를 포함하는 것을 특징으로 하는 제어 장치.
  17. 제 15항에 있어서,
    상기 측정 구간 설정 정보는 상기 복수의 주파수 대역 중에서 상기 측정 구간을 설정할 주파수 대역을 지시하는 정보 및 라디오프레임 내에서 상기 측정 구간의 시작점을 산출하기 위한 정보를 포함하는 것을 특징으로 하는 제어 장치.
  18. 제 15항에 있어서,
    상기 송수신부는 상기 단말로부터 측정 결과를 포함하는 보고 메시지를 수신하는 것을 특징으로 하는 제어 장치.
PCT/KR2013/012021 2012-12-21 2013-12-23 이동통신 시스템에서 서빙 셀들의 측정 구간을 제어하기 위한 방법 및 장치 WO2014098538A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13865872.9A EP2938012B1 (en) 2012-12-21 2013-12-23 Method and apparatus for controlling measurement gaps of serving cells in mobile communication system
US14/653,109 US9949158B2 (en) 2012-12-21 2013-12-23 Method and apparatus for controlling measurement gaps of serving cells in mobile communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120150505A KR20140081118A (ko) 2012-12-21 2012-12-21 이동통신 시스템에서 서빙 셀들의 측정 구간을 제어하기 위한 방법 및 장치
KR10-2012-0150505 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014098538A1 true WO2014098538A1 (ko) 2014-06-26

Family

ID=50978759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/012021 WO2014098538A1 (ko) 2012-12-21 2013-12-23 이동통신 시스템에서 서빙 셀들의 측정 구간을 제어하기 위한 방법 및 장치

Country Status (4)

Country Link
US (1) US9949158B2 (ko)
EP (1) EP2938012B1 (ko)
KR (1) KR20140081118A (ko)
WO (1) WO2014098538A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016164782A1 (en) * 2015-04-09 2016-10-13 Intel IP Corporation Signalling for per component carrier based enhanced measurement gap configuration
WO2016184217A1 (zh) * 2015-05-18 2016-11-24 中兴通讯股份有限公司 异频测量间隙配置方法、系统、基站、终端和存储介质
US11627607B2 (en) 2017-09-11 2023-04-11 Qualcomm Incorporated Techniques and apparatuses for random access resource indication using a time offset

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014184602A1 (en) * 2013-05-15 2014-11-20 Blackberry Limited Method and system for the allocation of measurement gaps in a carrier aggregation environment
EP3193525B1 (en) * 2014-09-12 2021-02-24 Nec Corporation Wireless station, wireless terminal and method for terminal measurement
WO2016153286A1 (ko) * 2015-03-26 2016-09-29 엘지전자 주식회사 복수의 rf 체인을 구비하는 무선 기기에서 측정을 수행하는 방법
KR20180052607A (ko) * 2015-09-10 2018-05-18 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 채널 측정과 측정 결과 리포팅 방법 및 장치
JPWO2017078035A1 (ja) * 2015-11-05 2018-08-30 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
KR102474525B1 (ko) * 2016-03-11 2022-12-06 삼성전자 주식회사 이동통신 시스템에서 단말의 제어 정보 전송 방법 및 장치
US10306483B2 (en) 2017-01-05 2019-05-28 Futurewei Technologies, Inc. Measurement gap schedule supporting multiple beams
WO2018144584A1 (en) * 2017-02-02 2018-08-09 Intel IP Corporation Devices for per-cc measurement gap configuration
WO2018199653A1 (ko) 2017-04-28 2018-11-01 엘지전자 주식회사 5g를 위한 nr에서 측정을 수행하는 방법 및 무선 기기
CN113170345A (zh) * 2018-11-01 2021-07-23 中兴通讯股份有限公司 用于频率测量和间隙配置的方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080318577A1 (en) * 2007-06-25 2008-12-25 Interdigital Technology Corporation Method and apparatus for supporting inter-frequency and inter-radio access technology handover
JP2010516185A (ja) * 2007-01-08 2010-05-13 インターデイジタル テクノロジー コーポレーション モビリティをサポートする測定ギャップパターンスケジューリング
US20110080962A1 (en) * 2009-10-05 2011-04-07 Futurewei Technologies, Inc. System and Method for User Equipment Measurement Timing in a Relay Cell
WO2012087360A1 (en) * 2010-12-23 2012-06-28 Qualcomm Incorporated Tdd-lte measurement gap for performing td-scdma measurement
US20120178465A1 (en) * 2011-01-10 2012-07-12 Mediatek, Inc. Measurement Gap Configuration in Wireless Communication Systems with Carrier Aggregation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9467885B2 (en) 2010-11-08 2016-10-11 Qualcomm Incorporated Inter-frequency measurement control in a multi-carrier system
CN102595475B (zh) * 2011-01-06 2017-12-19 中兴通讯股份有限公司 一种上报测量能力的方法
KR20120099568A (ko) 2011-01-18 2012-09-11 삼성전자주식회사 무선 통신 시스템에서 단말기 내에 복수 개의 이종 통신 모듈이 있을 경우 간섭을 측정하는 방법 및 장치
CN104335631B (zh) * 2012-04-09 2018-06-19 瑞典爱立信有限公司 用于通过管理不确定测量时机来增强网络定位测量性能的方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516185A (ja) * 2007-01-08 2010-05-13 インターデイジタル テクノロジー コーポレーション モビリティをサポートする測定ギャップパターンスケジューリング
US20080318577A1 (en) * 2007-06-25 2008-12-25 Interdigital Technology Corporation Method and apparatus for supporting inter-frequency and inter-radio access technology handover
US20110080962A1 (en) * 2009-10-05 2011-04-07 Futurewei Technologies, Inc. System and Method for User Equipment Measurement Timing in a Relay Cell
WO2012087360A1 (en) * 2010-12-23 2012-06-28 Qualcomm Incorporated Tdd-lte measurement gap for performing td-scdma measurement
US20120178465A1 (en) * 2011-01-10 2012-07-12 Mediatek, Inc. Measurement Gap Configuration in Wireless Communication Systems with Carrier Aggregation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2938012A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016164782A1 (en) * 2015-04-09 2016-10-13 Intel IP Corporation Signalling for per component carrier based enhanced measurement gap configuration
CN107637120A (zh) * 2015-04-09 2018-01-26 英特尔Ip公司 基于每个分量载波的增强的测量间隙配置的信令
US10243704B2 (en) 2015-04-09 2019-03-26 Intel IP Corporation Signalling for per carrier-component based enhanced measurement gap configuration
CN114640433A (zh) * 2015-04-09 2022-06-17 苹果公司 基于每个分量载波的增强的测量间隙配置的信令
CN114640433B (zh) * 2015-04-09 2024-03-29 苹果公司 基于每个分量载波的增强的测量间隙配置的信令
WO2016184217A1 (zh) * 2015-05-18 2016-11-24 中兴通讯股份有限公司 异频测量间隙配置方法、系统、基站、终端和存储介质
CN106304128A (zh) * 2015-05-18 2017-01-04 中兴通讯股份有限公司 一种多载波异频测量间隙配置方法、系统、基站和终端
US11627607B2 (en) 2017-09-11 2023-04-11 Qualcomm Incorporated Techniques and apparatuses for random access resource indication using a time offset

Also Published As

Publication number Publication date
US9949158B2 (en) 2018-04-17
KR20140081118A (ko) 2014-07-01
EP2938012B1 (en) 2018-06-27
EP2938012A1 (en) 2015-10-28
EP2938012A4 (en) 2016-07-13
US20150341815A1 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
WO2014098538A1 (ko) 이동통신 시스템에서 서빙 셀들의 측정 구간을 제어하기 위한 방법 및 장치
WO2011049359A2 (en) Power headroom reporting method and device for wireless communication system
WO2011084005A2 (ko) 무선 통신 시스템에서 시간 동기 명령을 수신하는 방법 및 장치
WO2012138154A2 (ko) 이동통신시스템 반송파 집적화에서 랜덤 엑세스와 타 셀의 다른 상향링크 채널들을 전송하는 방법 및 장치
WO2014088295A1 (en) Method and apparatus for supporting control plane and user plane in wireless communication system
WO2013168960A1 (ko) 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 송수신하는 방법 및 장치
WO2015115844A1 (ko) 이동 통신 시스템에서 랜덤 액세스를 수행하는 방법 및 장치
WO2012060671A2 (ko) 반송파 집적 기술을 사용하는 무선통신시스템에서 부차 반송파의 활성화 방법 및 장치
WO2011019204A2 (en) Apparatus and method for allocating resources for logical channels in wireless communication system
WO2010107221A2 (ko) 반송파 집성을 지원하기 위한 방법 및 장치
WO2012138157A2 (ko) 반송파 집적 시스템에서 반송파 활성화 방법 및 장치
WO2012150831A2 (ko) 무선 통신 시스템에서 mbms 서비스를 수신하는 단말이 mbsfn 서브프레임에서 반영구적 스케쥴링 을 처리하는 방법 및 장치
WO2012153993A2 (ko) 반송파 집적 기술을 사용하는 무선통신시스템에서 타임 정렬 타이머를 적용하는 방법 및 장치
WO2012096485A2 (en) Random access method and apparatus of ue in mobile communication system
WO2014171596A1 (ko) 무선 통신 시스템에서 리소스 할당 방법 및 장치
WO2018203697A1 (en) Method and device for transmitting data unit
WO2010053334A2 (en) Uplink syncronization in multiple carrier system
WO2013172618A1 (ko) 기지국간 반송파 집적 기술을 사용하는 무선통신시스템에서 버퍼 상태 보고를 처리하는 방법 및 장치
WO2012020976A2 (en) Method and apparatus for configuring power headroom information in mobile communication system supporting carrier aggregation
WO2013051858A2 (ko) 무선 통신 시스템에서 이종망 간 셀 재선택하는 방법 및 장치
WO2012108640A2 (en) Method for signaling a subframe pattern for preventing inter-cell interference from occurring in a heterogeneous network system and appartus for the same
WO2011084006A2 (ko) 무선 통신 시스템에서 요소 반송파 관리 방법 및 장치
WO2016126033A1 (ko) 풀-듀플렉스 무선 통신 시스템에서 단말간 간섭을 고려한 자원 할당 방법 및 이를 위한 장치
WO2012134071A2 (en) Method and apparatus for managing uplink time alignment
WO2014182131A1 (ko) 이중연결을 지원하는 무선 통신 시스템에서 단말 식별자 구성 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865872

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013865872

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14653109

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE