WO2014098464A1 - Human serum albumin heat-stabilizing composition, and production method for heat-stabilized human serum albumin using same - Google Patents

Human serum albumin heat-stabilizing composition, and production method for heat-stabilized human serum albumin using same Download PDF

Info

Publication number
WO2014098464A1
WO2014098464A1 PCT/KR2013/011792 KR2013011792W WO2014098464A1 WO 2014098464 A1 WO2014098464 A1 WO 2014098464A1 KR 2013011792 W KR2013011792 W KR 2013011792W WO 2014098464 A1 WO2014098464 A1 WO 2014098464A1
Authority
WO
WIPO (PCT)
Prior art keywords
human serum
serum albumin
acid
albumin
fatty acid
Prior art date
Application number
PCT/KR2013/011792
Other languages
French (fr)
Korean (ko)
Other versions
WO2014098464A8 (en
Inventor
신동해
전길자
김미선
박지민
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130012592A external-priority patent/KR101545778B1/en
Priority claimed from KR1020130093289A external-priority patent/KR101568360B1/en
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to US14/357,995 priority Critical patent/US20150165000A1/en
Publication of WO2014098464A1 publication Critical patent/WO2014098464A1/en
Publication of WO2014098464A8 publication Critical patent/WO2014098464A8/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/12Carboxylic acids; Salts or anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • C07K14/765Serum albumin, e.g. HSA

Definitions

  • the present invention comprises a composition for thermal stabilization for preparing a human serum albumin preparation comprising a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof; A first step of adjusting the concentration of human serum albumin to 1 to 40 mg / ml; And a second step of adding the fatty acid or a pharmaceutically acceptable salt thereof to human serum albumin; And treating the human serum albumin with the fatty acid or a pharmaceutically acceptable salt thereof to heat-treat the human serum albumin.
  • a composition for thermal stabilization for preparing a human serum albumin preparation comprising a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof; A first step of adjusting the concentration of human serum albumin to 1 to 40 mg / ml; And a second step of adding the fatty acid or a pharmaceutically acceptable salt thereof to human serum albumin; And treating the human serum albumin with the fatty acid or a pharmaceutically
  • HSA human serum albumin
  • Cys34 one free cysteine
  • albumin plays a role in maintaining and restoring plasma volume, in combination with various ligands such as cations such as water, calcium, sodium, potassium, fatty acids, hormones, bilirubin, and drugs to regulate and deliver colloidal osmotic pressure in the blood, and Malnutrition serves as a source of amino acids [Bar-Or, D. et al. , Eur J. Biochem., 2001, 268: 42-47].
  • the combination of the drug and albumin is greatly involved in the drug expression of the drug.
  • Purified HSAs are used for the treatment of hypoalbuminemia due to albumin loss and albumin synthetic dysfunction, such as, for example, surgery, hemorrhagic shock or burns and nephrotic syndromes.
  • Albumin is also used as a pharmaceutical additive in formulating protein for supplementation and treatment of media used for the growth of higher eukaryotic cells.
  • Another known function of serum albumin is that it acts as an oxygen carrier that adsorbs and desorbs oxygen under oxygen partial pressure, similar to hemoglobin. It can therefore be administered in place of hemoglobin in an emergency.
  • albumin is met by albumin extracted from human blood.
  • HSA is a low-temperature ethanol fraction of Con (Cone) from human plasma or a method equivalent thereto, after obtaining an HSA-containing fraction (fraction V), it is prepared through various purification methods.
  • purification methods generally used in protein chemistry, for example, salting out method, ultrafiltration, isoelectric point precipitation, electrophoresis, ion exchange chromatography, gel filtration chromatography, Affinity chromatography and the like can be used.
  • salting out method for example, salting out method, ultrafiltration, isoelectric point precipitation, electrophoresis, ion exchange chromatography, gel filtration chromatography, Affinity chromatography and the like
  • the amount of albumin purified from human plasma is inevitably limited.
  • yeast Korean, O. et al. , J. Biochem., 1991, 110: 103-110
  • Bacillus subtilis Bacillus subtilis [Saunders, CW et al. , J. Bacteriol., 1987, 169: 2917-2925, have been developed for the production of human serum albumin.
  • albumin preparations in aqueous form are subjected to a heat treatment at 60 ° C. for 10 hours to inactivate viruses that may contaminate the preparation.
  • industrial production of albumin is carried out under conditions different from the environment in the human body. Therefore, considering the properties of albumin which are easily denatured and aggregated by heat or the like, there is a high possibility of denaturation or multimer formation during this series of processes.
  • albumin preparations currently on the market to prevent denaturation by heat treatment are prepared by adding sodium octanoate and N-acetyl tryptophan as stabilizers.
  • albumin exhibits physiological activity in combination with various substances such as water, ions, fatty acids, hormones. Therefore, in order to utilize recombinant human serum albumin in the production of albumin preparations, it is necessary to identify the elements necessary for albumin to exhibit its physiological activity and to identify how they bind, and apply it to recombinant human serum albumin to have physiological activity. It is necessary.
  • the present inventors have made efforts to identify ligands that naturally bind to human serum albumin, which is naturally physiologically active in vivo, and to find a substance capable of stabilizing albumin against heat treatment, which is an essential process of the albumin preparation process.
  • Human serum albumin is combined with saturated or unsaturated fatty acids having 16 to 22 carbon atoms such as oleic acid and linoleic acid, and the fatty acid improves the thermal stability to albumin, thereby preventing denaturation during the heat treatment process required for the production of albumin preparations It was confirmed that can be represented.
  • the fatty acid or its salt is added to human serum albumin at a concentration of 1 to 40 mg / ml, it was confirmed that stability can be maintained high even after a long heat treatment for about 10 hours, thereby completing the present invention.
  • One object of the present invention is to provide a composition for thermal stabilization for preparing a human serum albumin preparation comprising a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof.
  • Another object of the present invention is the first step of adjusting the concentration of human serum albumin to 1 to 40 mg / ml; And a second step of adding a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof to human serum albumin, the method of preparing heat stabilized human serum albumin.
  • Another object of the present invention is a method for preparing a human serum albumin preparation, the step of treating the human serum albumin by heat treatment with a fatty acid selected from the group consisting of fatty acids having 16 to 22 or a pharmaceutically acceptable salt thereof It provides a method for producing a human serum albumin containing.
  • Adding a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms according to the present invention it can be usefully used to produce stable albumin even during the heat treatment process in the preparation of human serum albumin preparation.
  • a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms according to the present invention, it can be usefully used to produce stable albumin even during the heat treatment process in the preparation of human serum albumin preparation.
  • human serum albumin with stable stability can be prepared.
  • recombinant human serum albumin when used, it is possible to produce recombinant human serum albumin that is most structurally similar to that of human origin, so it can be used industrially without side effects, and even when using plasma-derived human serum albumin, it is not a foreign substance.
  • a composition containing various fatty acids naturally present in the preparation the preparation can be made without worrying about toxicity or side effects.
  • FIG. 1 is a diagram showing a three-dimensional conformation of human serum albumin crystals obtained from a 20% human serum albumin injection of Green Cross, which is prepared from plasma-derived human serum albumin, which is obtained by X-ray crystallography. .
  • the stick position of L-tryptophan which is a decomposition product of octanoic acid and N-acetyl tryptophan, used as a heat stabilizer in the manufacturing process of plasma-derived human serum albumin, Indicated.
  • the binding position of oleic acid which is one of the C18 fatty acids, is represented by a sphere model.
  • Figure 2 is a diagram showing the mass spectrometry results of the 20% human serum albumin injection of Green Cross, which is formulated and commercialized using plasma-derived human serum albumin.
  • FIG. 3 is a diagram showing the mass spectrometry results of a 20% human serum albumin injection prepared by commercially available plasma-derived human serum albumin.
  • FIG. 4 is a view showing the sustainable treatment time according to the temperature of the fatty acid free human serum albumin solution and the human serum albumin solution added with oleic acid in minutes and log units thereof.
  • FIG. 5 shows five human serum albumin samples (Green Cross Albumin, A3782 Albumin, A1653 Albumin, Green Cross Albumin + Oleic Acid (1: 1 molar ratio), A3782 Albumin + Oleic Acid (1: 1 molar ratio) when heated at 60 ° C. for 10 hours.
  • the figure which shows the result of having measured circular dichroism.
  • Figure 6 shows five human serum albumin samples (green cross albumin, A3782 albumin, A1653 albumin, green cross albumin + oleic acid (1: 1 molar ratio), A3782 albumin + oleic acid (1: 1 molar ratio) when heated at 70 °C for 10 hours
  • the figure which shows the result of having measured circular dichroism.
  • FIG. 7 shows five human serum albumin samples (Green Cross Albumin, A3782 Albumin, A1653 Albumin, Green Cross Albumin + Oleic Acid (1: 1 molar ratio), A3782 Albumin + Oleic Acid (1: 1 molar ratio) when heated at 80 ° C. for 10 hours.
  • the figure which shows the result of having measured circular dichroism.
  • FIG. 8 shows the results of measurement of circular dichroism when 10 human serum albumin samples having different concentrations (1 to 45 mg / ml A3782 albumin + oleic acid (1: 1 molar ratio)) were heated at 70 ° C. for 10 hours. It is also.
  • Figure 9 shows five human serum albumin samples with different fatty acids (A3782 albumin + oleic acid (1: 1 molar ratio), A3782 albumin + linoleic acid (1: 1 molar ratio), A3782 albumin + ⁇ -linolenic acid (1: 1 molar ratio), A3782 The results of measurement of circular dichroism when albumin + ⁇ -linolenic acid (1: 1 molar ratio) and A3782 albumin + palmitoleic acid (1: 1 molar ratio) were heated at 70 ° C for 10 hours.
  • the present invention comprises a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof, for thermal stabilization for preparing a human serum albumin preparation To provide a composition.
  • recombinant human serum albumin in the method for producing human serum albumin preparation of the present invention can solve the problem of limited source in the preparation of conventional plasma-derived albumin preparation.
  • human serum albumin binds to various ligands in vivo to form a stable structure and exhibits physiological activity
  • the structure of the bioactive albumin and / or the ligand bound thereto must be preceded. something to do.
  • foreign substances such as sodium octanoate and N-acetyl tryptophan, which have not been tested for stability, have been added to impart stability to heat treatment.
  • the present inventors have confirmed that recombination by confirming that fatty acids selected from the group consisting of fatty acids having 16 to 22 carbon atoms are bound to plasma-derived human serum albumin, and that they can impart stabilization of human serum albumin, in particular, stability to heat treatment.
  • the addition of a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms to human serum albumin can form stable albumin even during the heat treatment process, it was confirmed that the preparation of the preparation using the same.
  • albumin of the present invention is one of the proteins constituting the basic substance of the cell, is present in the blood very much, it is produced in the liver. It has the lowest molecular weight of simple proteins in nature. Serum albumin in the blood maintains and restores the plasma volume, preventing shock from excessive bleeding, and is used for surgery and burn treatment. It is also known to have oxygen transfer capacity similar to hemoglobin.
  • the composition of the present invention is to impart stability to heat treatment in the process of formulating the albumin, the albumin of the subject may include all the albumin that can be formulated, preferably human plasma Or recombinant human serum albumin produced by genetic engineering.
  • human serum albumin is a term used as a concept for contrasting with natural human serum albumin derived from human plasma, and refers to human serum albumin produced artificially.
  • human serum albumin obtained from a transformant prepared to express a polypeptide having the amino acid sequence of SEQ ID NO: 1 (HSA sequence) may have the same amino acid sequence as human serum albumin isolated from plasma, but is not limited thereto. It doesn't work.
  • the term "transformant" of the present invention is an organism that has been genetically modified to express a particular gene through genetic engineering, for the purposes of the present invention, preferably the particular gene is It may be a gene encoding an amino acid sequence of SEQ ID NO: 1, such as human serum albumin.
  • the genetically modified organism is transformed into bacteria, fungi and yeasts. It may be a cell or a transgenic animal, but is not limited thereto.
  • mammals such as mice, rats, and guinea pigs may be used, but are not limited thereto.
  • Human serum albumin formulations of the present invention is a concept including all formulations made with human serum albumin, which may be formulated in a form that can be administered to an individual including a human, and may include albumin formulations currently on the market. It may also include formulations having similar ingredients, functions, and medicaments as commercially available albumin formulations, prepared to replace them. Commercially available albumin preparations have a problem of relying on a limited source of blood, and as an alternative to solve this, recombinant human serum albumin preparations using recombinant human serum albumin may be prepared.
  • the recombinant human serum albumin preparation of the present invention may include recombinant human serum albumin obtained from a transformant prepared to express human serum albumin of SEQ ID NO: 1 as an active ingredient.
  • human serum albumin In order to prepare the human serum albumin as an agent that can be administered to the human body, a heat treatment process is required to prevent contamination of the virus and / or other infections.
  • human serum albumin may cause degeneration such as structure change or aggregation when treated at high temperatures. Therefore, an additive for stabilizing this is required, and octanates such as sodium octanoate and N-acetyl tryptophan are used in the preparation process of plasma-derived albumin.
  • these substances are not added to the original plasma, but are added arbitrarily to improve the stability of the heat treatment process. Unlike natural human serum albumin, these substances may cause side effects when administered into the human body. There is this.
  • fatty acid having 16 to 22 carbon atoms refers to a fatty acid having 16 to 22 carbons among fatty acids, and includes one end with a hydrophilic carboxyl group, and the other end is composed of a hydrophobic carbon chain.
  • the type can be varied depending on the number and position of the double bonds in the carbon chain, preferably palmitic acid (palmitic acid) and palmitoleic acid (palmitoleic acid), a fatty acid of 16 carbon atoms, stearic acid of 18 fatty acids (stearic acid; octadecanoic acid), oleic acid, linoleic acid and linolenic acid, eicosapentaenoic acid (EPA), a fatty acid with 20 carbon atoms, and docosa, a fatty acid with 22 carbon atoms It may be selected from hexaenoic acid (DHA; docosahexaenoic acid), or a combination thereof, but is not limited thereto.
  • the fatty acids may also be used in the form of pharmaceutically acceptable salts.
  • the term "palmitic acid” is a saturated fatty acid having 16 carbon chains and is called hexadecanoic acid in the name of IUPAC. It has the formula CH 3 (CH 2 ) 14 CO 2 H and is the most common fatty acid found in flora and fauna and microorganisms. It is also present in palm oil, meat, cheese, butter and dairy products. The salt and ester forms of palmitic acid are called palmitates. At basic pH it is present in the form of palmitate anion. Excess carbohydrates are converted to palmitic acid in the body. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is a precursor to long-chain fatty acids. Biologically, some proteins can be modified by binding to palmitoyl groups and this is called palmitoylation, which is important for protein localization of proteins.
  • the term "palmitoleic acid” is also referred to as omega-7 monounsaturated fatty acid, cis-palmitoleic acid, and 9-cis-hexadecenoic acid.
  • the IUPAC name is hexadec-9-enoic acid.
  • stearic acid is a saturated fatty acid having 18 carbon chains and is referred to as octadecanoic acid in the name of IUPAC. It is a waxy solid with the formula CH 3 (CH 2 ) 16 CO 2 H. Its salts and esters are called stearate.
  • the stearic acid, together with palmitic acid, is one of the most widely saturated fatty acids in nature. It has dual functionality because it has a polar head that can bind metal ions and a nonpolar chain that provides solubility in organic solvents. Due to these properties, they can be used as surfactants or softeners.
  • the term "linolenic acid” refers to two forms of linolenic acid, ⁇ and ⁇ , or a mixture thereof.
  • the linolenic acid is usually present in the vegetable oil in the form of linolenate.
  • Double ⁇ -linolenic acid is a carboxylic acid with 18 carbon chains and 3 cis double bonds, the first double bond being a polyunsaturated n-3 fatty acid located at the methyl end, i. Has the chemical name of all-cis-9,12,15-octadecatrienoic acid.
  • ⁇ -linolenic acid is a polyunsaturated n-6 fatty acid having the same carbon number chain containing the same number of double bonds as the ⁇ -linolenic acid, but the first double bond being located at the 6th carbon from the n-terminal. The positions of the double bonds in the chains are different.
  • ⁇ -linolenic acid also called gamolenic acid, is known to exhibit effects on inflammatory and autoimmune diseases.
  • EPA eicosapentaenoic acid
  • EPA omega-3 fatty acid
  • timnodonic acid the chemical structure is a carboxylic acid having five cis double bonds on 20 carbon chains. .
  • the first double bond is located at the omega end, the third carbon from the hydrocarbon end.
  • EPA is a polyunsaturated fatty acid (PUFA), which is the eicosanoid prostaglandin-3 (platelet coagulation inhibition), thromboxane-3 and leukotriene-5 Acts as a precursor. It is present in large amounts in seaweeds and fish, especially fish oils, and also in human breast milk. Fish do not naturally produce EPA, but are obtained from algae they consume.
  • EPA acts as a precursor of DHA.
  • DHA docosahexaenoic acid
  • omega-3 fatty acid that is also a primary component of the human brain, cerebral cortex, skin, sperm, testis and retina. It can be synthesized from alpha-linolenic acid or obtained directly from breast milk or fish oil.
  • the chemical structure is a carboxylic acid with six cis double bonds on 22 carbon chains. The first double bond is located at the omega end, the third carbon from the hydrocarbon end.
  • cervonic acid IUPAC names (4Z, 7Z, 10Z, 13Z, 16Z, 19Z) -docosa-4,7,10,13,16,19-hexaenoic acid ((4Z, 7Z, 10Z, 13Z, 16Z, 19Z) -docosa-4,7,10,13,16,19-hexaenoic acid). It is known to be abundant in deep sea fish oil. It is derived from photosynthetic and other nutrient microalgae and concentrated in organisms located at the top of the food chain.
  • DHA can be produced by the conversion of alpha-linolenic acid in the body, which conversion is about 15% higher in women and the conversion to DHA is reduced when testosterone is administered or the conversion of testosterone to estradiol is reduced.
  • ingesting DHA can reduce the risk of heart disease by reducing blood triglyceride levels.
  • sub-normal DHA levels are also associated with Alzheimer's.
  • the fatty acids may be represented by N: X (n-Y) by the notation according to the number of lipids.
  • N represents the carbon number of the entire chain, that is, 16, 18, 20 or 22
  • X represents the number of double bonds contained in the chain
  • Y represents the position of the carbon from which the double bond starts from the methyl terminal of each fatty acid.
  • may be written in the n dash.
  • palmitic acid of the present invention is a saturated fatty acid having 16 carbon atoms
  • 16: 0, and palmitoleic acid have one double bond to the seventh carbon from the methyl terminal, so that 16: 1 (n-7) or 16: 1 ( ⁇ - 7)
  • stearic acid is a saturated fatty acid of 18 carbon atoms
  • 18: 0, oleic acid has one double bond from the methyl terminal to the ninth carbon, so 18: 1 (n-9) or 18: 1 ( ⁇ -9)
  • linolenic acid- ⁇ is 18: 3 (n-3) or 18: 3 ( ⁇ -3)
  • linolenic acid- ⁇ is 18: 3 (n -6) or 18: 3 ( ⁇ -6)
  • EPA is 20: 5 (n-3) and finally DHA is 22: 6 (n-3).
  • oleic acid or other fatty acid having 18 carbon atoms fatty acid having 16 carbon atoms, EPA or DHA is added to a fatty acid free human serum albumin solution and subjected to high temperature treatment, and human serum albumin added with oleic acid having 18 carbon atoms is oleic acid.
  • salts retains the desired biological and / or physiological activity of the composition and minimizes the unwanted toxicological effects, which are not toxic to cells or humans exposed to the composition. Means all salts represented.
  • salts are acid addition salts formed with pharmaceutically acceptable free acids.
  • Acid addition salts are prepared by conventional methods, for example by dissolving a compound in an excess of aqueous acid solution and precipitating the salt using a water miscible organic solvent such as methanol, ethanol, acetone or acetonitrile. Equivalent molar amounts of the compound and acid or alcohol (eg, glycol monomethyl ether) in water can be heated and the mixture can then be evaporated to dryness or the precipitated salts can be suction filtered.
  • inorganic acids and organic acids may be used as the free acid
  • hydrochloric acid, hydrobromic acid, phosphoric acid, nitric acid, sulfuric acid, tartaric acid, and the like may be used as the inorganic acid
  • methane sulfonic acid, p-toluene sulfonic acid, acetic acid, and triacid may be used as the organic acid.
  • Fruroacetic acid maleic acid, succinic acid, oxalic acid, benzoic acid, tartaric acid, fumaric acid, manderic acid, propionic acid, citric acid, lactic acid, glycolic acid ( glycollic acid, gluconic acid, galacturonic acid, glutamic acid, glutaric acid, glucuronic acid, aspartic acid, ascorbic acid, carbonic acid, vanillic acid, hydroiodic acid, etc. Can be used, but not limited to these.
  • bases may be preferably used to make pharmaceutically acceptable metal salts.
  • Alkali metal or alkaline earth metal salts are obtained, for example, by dissolving a compound in an excess of alkali metal hydroxide or alkaline earth metal hydroxide solution, filtering the insoluble compound salt, and then evaporating and drying the filtrate.
  • the metal salt it is particularly suitable to prepare sodium, potassium or calcium salt, but is not limited thereto.
  • Corresponding silver salts may also be obtained by reacting alkali or alkaline earth metal salts with a suitable silver salt (eg, silver nitrate).
  • the fatty acids having 16 to 22 carbon atoms or pharmaceutically acceptable salts thereof include salts of acidic or basic groups which may be present in the fatty acids having 16 to 22 carbon atoms unless otherwise indicated.
  • pharmaceutically acceptable salts may include sodium, calcium and potassium salts of the hydroxy group
  • other pharmaceutically acceptable salts of the amino group include hydrobromide, sulfate, hydrogen sulphate, phosphate, hydrogen phosphate, Hydrogen phosphate, acetate, succinate, citrate, tartrate, lactate, mandelate, methanesulfonate (mesylate) and p-toluenesulfonate (tosylate) salts; and the like through the methods for preparing salts known in the art.
  • it may be an alkali metal or alkaline earth metal salt, but is not limited thereto.
  • the composition for thermal stabilization of the present invention may be added such that the fatty acid or pharmaceutically acceptable salt thereof is in a molar ratio of 1: 0.5 to 1: 2 with respect to albumin, and preferably 1: 0.7 to 1: 1.5, more preferably 1: 0.8 to 1: 1.2, even more preferably may be added to a molar ratio of 1: 1, but is not limited thereto.
  • the present invention comprises the steps of adjusting the concentration of human serum albumin to 1 to 40 mg / ml; And a second step of adding a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof to human serum albumin, the method of preparing heat stabilized human serum albumin.
  • the fatty acids having 16 to 22 carbon atoms, or pharmaceutically acceptable salts thereof, preferred amounts thereof, and human serum albumin are as described above.
  • the first and second steps may be performed in sequence or in reverse order.
  • the concentration of human serum albumin sample containing 16 to 22 carbon atoms is 1-40 mg / ml.
  • the heat treatment after adjusting to a low level it is characterized in that the stability can be maintained even after several hours of heat treatment.
  • the fatty acid having 16 to 22 carbon atoms to be added is 1: 0.5 to 1: 2, preferably 1: 0.7 to 1: 1.5, more preferably 1: 0.8 to 1: 1.2, and even more preferably human serum albumin.
  • a molar ratio of 1: 1. Therefore, the second step of adding fatty acids having 16 to 22 carbon atoms to human serum albumin is before or after adjusting the concentration of human serum albumin regardless of the order, as long as the final concentration of human serum albumin is maintained at the above level. Can be performed.
  • ⁇ -helical structure of human serum albumin prior to heating up to 5 to 16 hours when heat is applied to low-concentration human serum albumin of 1 to 40 mg / ml of the C16-C24 fatty acid according to the preparation method of the present invention. up to 80 to 100% of ( ⁇ -Helix).
  • dilution buffers generally used in the preparation of albumin preparations can be used.
  • dilution buffers may include histidine-buffer, citrate-buffer, succinate-buffer, acetate-buffer or phosphate-buffer, and the like, preferably 50 mM potassium phosphate and 150 mM NaCl (pH 7.5). It may be a mixed solution of, but is not limited thereto.
  • heat-stabilized human serum albumin provided according to the method of the present invention is intended to be formulated as described above and administered to humans, the preparation method thereof may include a heat treatment process to block the possibility of contamination and / or infection. .
  • thermostable human serum albumin even when heated at the temperature for 6 hours to 15 hours, preferably 8 hours to 12 hours, more preferably 10 hours, ⁇ of the human serum albumin It is characterized by the fact that the spiral structure ( ⁇ -Helix) can be maintained.
  • the present invention provides a method for preparing a human serum albumin preparation, wherein the human serum albumin is heat treated by treating a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof. It provides a method for producing a human serum albumin preparation comprising the step.
  • the fatty acids having 16 to 22 carbon atoms, or pharmaceutically acceptable salts thereof, preferred amounts thereof, and human serum albumin are as described above.
  • treatment is a general term for all processes of including a fatty acid having 16 to 24 carbon atoms or a pharmaceutically acceptable salt thereof in any form, such as chemical or biological action, for thermal stabilization.
  • it may be applied at any stage prior to heat treatment, such as incorporating it into the medium composition during the culturing to prepare heat stabilized human serum albumin, or in the form of the composition in the processing of human serum albumin.
  • the human serum albumin preparation according to the present invention may be prepared using albumin isolated from human plasma or recombinant human serum albumin prepared by genetic engineering.
  • the preparation method thereof includes a heat treatment process for blocking the possibility of contamination and / or infection. Accordingly, in order to prevent denaturation of the protein by the heat treatment process, the step of thermally stabilizing by treating the human serum albumin fatty acid selected from the group consisting of fatty acids having 16 to 22 or a pharmaceutically acceptable salt thereof Is characteristic.
  • the recombinant human serum albumin when using recombinant human serum albumin, may be obtained from a transformant expressing human serum albumin, which is preferably a polypeptide having an amino acid sequence of SEQ ID NO: 1. have.
  • the definition of the transformant is the same as described above.
  • treatment is a general term for all processes of including a fatty acid having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof in any form, such as chemical or biological action, for thermal stabilization.
  • it may be applied at any stage before heat treatment, such as inclusion in the medium composition in the culture process for producing human serum albumin, or in the form of the composition in the processing of human serum albumin.
  • the production method of the present invention may comprise the step of culturing the transformed cells.
  • the process of treating a fatty acid having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof may be achieved by adding the composition of the present invention to a culture medium for culturing the transformed cells.
  • the transformed cells include cells isolated from transgenic animals expressing human serum albumin as well as transformed bacteria, fungi and yeast.
  • recombinant human serum albumin is isolated and / or purified from cells isolated from cultured transformed cells or transgenic animals, from said cell culture or culture or from blood or plasma of transgenic animals, or from human plasma.
  • a step of treating the composition for thermal stabilization comprising the fatty acid of the present invention or a pharmaceutically acceptable salt thereof may be performed.
  • the isolated human serum albumin is human serum albumin isolated and / or purified from blood or serum of a transgenic animal expressing human serum albumin, transformed cells, culture or culture of the cells, or human blood or serum. Can be.
  • Methods for preparing human serum albumin preparations currently used in the art include heat treatment at 60 ° C. for 10 hours to inactivate viruses, such as AIDS and hepatitis B virus, which may be included therein.
  • viruses such as AIDS and hepatitis B virus
  • the heat treatment is performed at a temperature of 60 ° C. or higher.
  • the degree of degeneration was found to be around 70 ° C. depending on the type of fatty acid, but the rate of denaturation was reduced compared to the human serum albumin solution without the fatty acid treatment.
  • the present invention is particularly heat-stabilized human serum by adding fatty acids having 16 to 22 carbon atoms before or after the concentration control, so long as the concentration of human serum albumin is maintained at a low level of 1 to 40 mg / ml.
  • Albumin may be provided.
  • the heat stabilized human serum albumin may have stability capable of maintaining a secondary structure for at least 10 hours even if the heat treatment temperature is increased to 80 ° C. Moreover, even in 100 degreeC, it can maintain a stable state, without being denatured for several minutes.
  • the human serum albumin is controlled at a low concentration of 1 to 40 mg / ml before or after treatment with 16 to 22 carbon atoms or pharmaceutically acceptable salts thereof. Can be.
  • the concentration of human serum albumin is 1 to 40 mg / ml. Can be adjusted with.
  • the sample containing human serum albumin is treated with a fatty acid having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof. Or later, to a concentration of 1 to 40 mg / ml.
  • the sample when the sample is adjusted to a concentration of 1 to 40 mg / ml, the sample may be heated to a temperature of 60 to 80 ° C., as described above, by formulating a thermostable human serum albumin according to the present invention to human Corresponds to the heat treatment procedure to block the possibility of contamination and / or infection for administration to.
  • the step may be concentrated to a concentration suitable for the subject, such as a concentration of 50 to 200 mg / mL, which is higher than the physiologically active concentration.
  • a concentration suitable for the subject such as a concentration of 50 to 200 mg / mL, which is higher than the physiologically active concentration.
  • This corresponds to the step of concentrating a human serum albumin sample adjusted to 1 to 40 mg / ml for a long term heat treatment to an appropriate concentration for administration to a subject including a human after heat treatment.
  • the concentration step may be made by a commonly used concentration method, for example, using an ultrafiltration membrane having a MWCO (Molecular Weight Cut Off) of 10 to 30 kD can be concentrated until the proper concentration by centrifugation method This is not restrictive.
  • MWCO Molecular Weight Cut Off
  • An appropriate concentration of the human serum albumin preparation is not particularly limited as long as it can be used as a human serum albumin preparation, but may be 50 to 200 mg / ml.
  • Human serum albumin preparations prepared by such a process can be administered to a subject, including humans, by any device in which the active substance can migrate to target cells.
  • Preferred modes of administration and preparations can be injections, such as intravenous, subcutaneous, intradermal, intramuscular, intraocular, or injectable.
  • injectables include aqueous solvents such as physiological saline solution and ring gel solution, vegetable oils, higher fatty acid esters (e.g., oleic acid, etc.), and non-aqueous solvents such as alcohols (e.g., ethanol, benzyl alcohol, propylene glycol, glycerin, etc.).
  • Stabilizers e.g., ascorbic acid, sodium bisulfite, sodium pyrosulfite, BHA, tocopherol, EDTA, etc.
  • emulsifiers e.g., ascorbic acid, sodium bisulfite, sodium pyrosulfite, BHA, tocopherol, EDTA, etc.
  • buffers for pH adjustment preservatives to prevent microbial growth (Eg, phenyl mercury nitrate, chimerosal, benzalkonium chloride, phenol, cresol, benzyl alcohol, and the like).
  • Green serum human serum albumin was crystallized for the structural analysis of plasma-derived human serum albumin.
  • the optimum concentration for crystallization determined through the precipitant experiment was determined to be 80 mg / ml.
  • Initial crystallization was done using screen I & II, index screen reagent, a screening kit from Hampton Research (Naguna Niguel, Ca, USA) based on sparse matrix theory (Jancarik & Kim, 1991). It was carried out by manual or automated method using drop or sitting drop vapor diffusion method. The automated method was performed using Hydra e-Drop (Thermo Scientific, Waltham, Mass., USA) used in the high-throughput crystallization system manufactured in this laboratory.
  • the final crystallization conditions of human serum albumin determined through the above procedure are as follows: 35% PEG 600, containing 0.1 M MES (2- (N-Morpholino) ethanesulfonic Acid) pH 6.5 and 0.2 M ammonium sulfate 2 ⁇ l of a hanging drop made by mixing the crystallization solution and the 150 mg / ml protein solution in a well containing 200 ⁇ l of a mother liquor, that is, a crystallization solution, was put on a cover glass. The crystals were placed by the hanging drop diffusion method.
  • Finding stabilized freezing conditions is an essential step in the data collection process using Synchrotron. This is because the intensity of the radiation from the synchrotron is so strong that crystals are easily decayed during the data collection process and complete data collection is not possible. Therefore, the conditions of the crystallization solution that can flash frozen the crystals should be found.
  • LV CryoOil (MiTeGen, Ithaca, NY) was used for human serum albumin of Green Cross. 2 ⁇ l of LV CryoOil was placed next to the drop containing Green Serum Albumin crystals of Green Cross, the crystals were transferred to the mounting loop, soaked in the LV CryoOil, and the crystals were again frozen to the mounting loop.
  • the crystal structure of human serum albumin of Green Cross was determined by molecular replacement method. That is, when structural similarity between proteins is expected, a solution of the phase problem by molecular replacement was used using a known structure. The method finds the orientation of molecules by using a fast rotation function, such as a translation function, an R-factor search, a correlation search, and the like. The calculation finds the position of the molecule. The approximate orientations and positions thus obtained are further refined by rigid body refinement or R-factor minimization search, followed by refinement and model modification of atomic positions. rebuilding). In this study, the solution of human serum albumin (Green Cross) using EPMR using the structure of apo-human serum albumin (apo-HSA, PDB ID: 1AO6) as a search model Found.
  • a fast rotation function such as a translation function, an R-factor search, a correlation search, and the like.
  • the calculation finds the position of the molecule.
  • the approximate orientations and positions thus obtained are further refined by rigid body refinement or R-factor minimization search,
  • the phase of human serum albumin of Green Cross was obtained by molecular replacement method using human albumin model. Early models were created using COOT and O, which are graphic software, and energy minimization was performed using the CNS. The final model was obtained through PHENIX. Refinement values of the final model are reported in Table 2.
  • the three-dimensional structure identified in this way is basically similar to the existing apo-HSA structure.
  • the binding sites of octanoic acid and N-acetyl tryptophan used in the preparation of pharmaceutical grade plasma-derived HSA were also identified.
  • the unexpected binding of fatty acids was confirmed, and after the X-ray structure and mass spectrometry analysis, it was confirmed that the fatty acids are fatty acids having 18 carbon atoms such as oleic acid.
  • Mass spectrometry results of 20% human serum albumin injections of Green Cross and SK, which are currently commercialized, are shown in FIGS. 2 and 3, respectively.
  • the purpose of this study was to investigate the effect of oleic acid found to be bound to plasma-derived human serum albumin.
  • the present inventors predicted that the stability may be affected by temperature. Therefore, after adding oleic acid to a fatty acid free human serum albumin (A3782, Sigma-Aldrich) solution and performing a heat treatment experiment at a high temperature, the changes occurring are observed and the results are shown in Tables 3 to 6 and FIG. 4 is shown.
  • a fatty acid free human serum albumin solution without oleic acid was used as a control.
  • the concentration of the human serum albumin solution was 50 mg / ml, 25 ⁇ l of the solution was added, and oleic acid was added to the experimental group in the same molar ratio.
  • the temperature was maintained at 65 ° C., 70 ° C., and 75 ° C. to determine whether precipitates were formed due to protein denaturation at 30, 5, and 3 minute intervals, respectively.
  • 75 ° C the highest temperature, no difference was observed between the control and experimental groups.
  • precipitation began to occur after 10 minutes at 70 ° C. and after 30 minutes at 65 ° C., whereas precipitation began to form after 30 minutes at 70 ° C. and after 330 minutes at 65 ° C. in the oleic acid-added group. Therefore, it was confirmed that oleic acid can contribute significantly to the stabilization of human serum albumin at high temperature.
  • Example 6.1 In the same manner as the experiment that confirmed the stability to the denaturation by heat treatment using the oleic acid in Example 6.1. 70 °C using oleic acid as well as other C18 fatty acids stearic acid, linoleic acid, ⁇ - linolenic acid and ⁇ - linolenic acid The thermal stabilization effect was confirmed at. Up to 30 minutes were observed at 3 minute intervals and thereafter at 5 minute intervals. As a control, a fatty acid free human serum albumin solution which was not treated with fatty acids was used as in Example 6.1. As shown in Table 7 below, it was confirmed that all of the experimental groups treated with the C18 fatty acid had stability against denaturation by excellent heat treatment compared to the control human serum albumin. As described in Example 6.1 above, each fatty acid was added to have the same molar ratio as albumin.
  • Example 6.1 above.
  • Palmitic acid palmitic acid
  • palmitol as fatty acids of 16 carbon atoms as well as oleic acid of 18 carbon atoms
  • the thermal stabilization effect was confirmed at 65 ° C. using lemic acid. Samples were warmed to 65 ° C. and observed at 5 minute intervals.
  • Example 6.1 as a control.
  • a fatty acid free human serum albumin solution which was not treated with fatty acids was used.
  • Example 6.1 above. EPA (eicosapentaenoic acid) and DHA (docosahexanoic), which are fatty acids having 20 and 22 carbon atoms, as well as oleic acid having 18 carbon atoms, in the same manner as in the experiments that confirmed the stability to degeneration by heat treatment using various fatty acids having 16 and 18 carbon atoms in 6.3. acid) was used to determine the thermal stabilization effect at 65 °C. The samples were warmed to 65 ° C. and observed at 5 minute intervals for the first 60 minutes, then at 10 minute intervals up to 130 minutes, and then at 30 minute intervals thereafter.
  • Example 6.1 as a control. Fatty acid free human serum albumin solution without fatty acid treatment was used as in 6.3.
  • Example 7 Structural Stability Test of Heat Treatment of Low Concentration Human Serum Albumin Sample
  • Green cross albumin, A3782 albumin (Sigma) and A1653 albumin (Sigma) were diluted with 20 mM potassium phosphate buffer (pH 7.5) to 1 mg / ml, respectively. And oleic acid was added to green cross albumin and A3782 albumin so that albumin and molar ratio was 1: 1, and then reacted overnight at 4 ° C. to prepare a total of five human serum albumin samples; i) Green cross (room temperature), ii) A1653 albumin, iii) A3782 albumin, iv) A3782 albumin + oleic acid (1: 1 molar ratio), v) Green cross albumin + oleic acid (1: 1 molar ratio).
  • Circular dichroism can predict the composition ratio of the secondary structure of the protein and can measure the structural change of the heat denatured protein.
  • the original non-thermally denatured green cross albumin and all five thermally denatured albumin samples were diluted with 20 mM potassium phosphate buffer (pH 7.5) to 0.25 mg / ml.
  • the circular dichroism was measured using a Jasco J-715 spectropolarimeter with a quartz cuvette with a path length of 0.1 cm and measured three times with a data pitch of 0.2 nm, band width of 1.0 nm, response time of 4 seconds, and scanning speed of 50 nm / min. It was. From the measured circular dichroism measurements, the composition ratio of the secondary structure was predicted using the SELCON3 program included in the Dicroprot program.
  • Example 7 Five human serum albumin samples (green cross albumin, A3782 albumin, A1653 albumin, green cross albumin + oleic acid (1: 1 molar ratio), A3782 albumin + oleic acid (1: 1 molar ratio) prepared in Example 7 (1) were 60 ° C. Heated at 10 h.
  • the green cross albumin + oleic acid (1: 1) sample was found to be very stable even when heated at 60 ° C for 10 hours because the ratio was similar to that of the green cross (room temperature) sample.
  • the A3782 albumin + oleic acid (1: 1) samples also showed higher thermal stability due to a higher ratio of ⁇ -helix ( ⁇ -Helix) after heat denaturation compared to A3782 albumin. This suggests that thermal stability increases when albumin reacts with oleic acid.
  • Example 7 Five human serum albumin samples (Green Cross Albumin, A3782 Albumin, A1653 Albumin, Green Cross Albumin + Oleic Acid (1: 1 molar ratio), A3782 Albumin + Oleic Acid (1: 1 molar ratio) prepared in Example 7 (1) were prepared at 70 ° C. Heated at 10 h.
  • the ratio of ⁇ -helix ( ⁇ -Helix) of the thermally denatured specimens is generally reduced and disorderly compared to the green cross (room temperature) specimen without thermal denaturation. (unordered) structure increased.
  • the green cross albumin + oleic acid (1: 1 molar ratio) sample and the A3782 albumin + oleic acid (1: 1 molar ratio) sample subjected to heat treatment after oleic acid reaction had a ratio of ⁇ -helix ( ⁇ -Helix) to green cross (room temperature) sample. Similar to that of the albumin which did not react with oleic acid was confirmed to be very stable even when heated at 70 °C for 10 hours.
  • Example 7 Five human serum albumin samples (Green Cross Albumin, A3782 Albumin, A1653 Albumin, Green Cross Albumin + Oleic Acid (1: 1 molar ratio), A3782 Albumin + Oleic Acid (1: 1 molar ratio) prepared in Example 7 (1) were prepared at 80 ° C. Heated at 10 h.
  • A3782 albumin 20 mM potassium phosphate to make A3782 albumin (Sigma) 1 mg / ml, 5mg / ml, 10mg / ml, 15mg / ml, 20mg / ml, 25mg / ml, 30mg / ml, 35mg / ml, 40mg / ml, 45mg / ml Diluted with pH 7.5 buffer. And oleic acid was added to A3782 albumin so as to have a molar ratio of albumin 1: 1 and then reacted overnight at 4 ° C.
  • Circular dichroism of albumin was measured according to the method of Example 7 (2), and as a result, a sample of 1 mg / ml A3782 albumin + oleic acid (1: 1 molar ratio) was not denatured green cross. And the ratio of ⁇ -helix ( ⁇ -Helix) was similar (Table 11 and Figure 6).
  • A3782 albumin (Sigma) was diluted with 20 mM potassium phosphate pH 7.5 buffer to 1 mg / ml. Then, oleic acid, linoleic acid, ⁇ -linolenic acid, ⁇ -linolenic acid and palmitoleic acid were added to A3782 albumin so that the molar ratio of albumin was 1: 1 and then reacted at 4 ° C. overnight.
  • Circular dichroism of albumin was measured according to the method of Example 7 (2). As a result, the samples of A3782 albumin + oleic acid (1: 1 molar ratio) were not denatured and the green cross specimen was ⁇ -. The ratio of the helix structure ( ⁇ -Helix) was similar (Table 11 and Figure 6). In the circular dichroism graph of the albumin sample containing 16 to 24 unsaturated fatty acids, the sample containing the unsaturated fatty acid having 16 to 22 carbon atoms except for oleic acid was generally different from the sample containing oleic acid and the circular dichroism spectrum. Similarly it was confirmed that there is no significant change in the secondary structure of the protein (Fig. 9).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to: a heat-stabilizing composition for producing a human serum albumin preparation, the composition comprising a fatty acid selected from the group consisting of C16 to C22 fatty acids, or a pharmaceutically acceptable salt thereof; a production method for heat-stabilized human serum albumin, the method comprising a first step of adjusting the human serum albumin concentration to between 1 and 40 mg/ml, and a second step of adding an above fatty acid or pharmaceutically acceptable salt thereof to the human serum albumin; and a production method for a human serum albumin preparation, the method comprising a heat-treatment step in which an above fatty acid or pharmaceutically acceptable salt thereof is treated in human serum albumin.

Description

인간혈청알부민 열안정화용 조성물 및 이를 이용한 열안정화된 인간혈청알부민의 제조방법Composition for heat stabilization of human serum albumin and method for preparing thermostable albumin for thermostabilization using same
본 발명은 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산 또는 이의 약학적으로 허용가능한 염을 포함하는, 인간혈청알부민 제제를 제조하기 위한 열안정화용 조성물; 인간혈청알부민의 농도를 1 내지 40 mg/㎖로 조절하는 제1단계; 및 인간혈청알부민에 상기 지방산 또는 이의 약학적으로 허용가능한 염을 첨가하는 제2단계를 포함하는, 열안정화된 인간혈청알부민의 제조방법; 및 인간혈청알부민에 상기 지방산 또는 이의 약학적으로 허용가능한 염을 처리하여 열처리하는 단계를 포함하는, 인간혈청알부민 제제의 제조방법에 관한 것이다.The present invention comprises a composition for thermal stabilization for preparing a human serum albumin preparation comprising a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof; A first step of adjusting the concentration of human serum albumin to 1 to 40 mg / ml; And a second step of adding the fatty acid or a pharmaceutically acceptable salt thereof to human serum albumin; And treating the human serum albumin with the fatty acid or a pharmaceutically acceptable salt thereof to heat-treat the human serum albumin.
알부민은 혈액에 매우 많이 존재하는 단백질로, 간에서 생성된다. 구조적으로 인간혈청알부민(human serum albumin; HSA)은 585개의 아미노산(66,438 Da)으로 이루어져 있으며, 17개의 이황 가교(disulfide bridge)와 하나의 자유 시스테인(Cys34)으로 구성되어 있다[Dugiaczyk, A. et al., Proc. Natl Acad. Sci. USA, 1982, 79: 71-75]. 또한 알부민은 혈장부피를 유지 및 회복시키는 역할, 물, 칼슘, 나트륨, 칼륨 등의 양이온, 지방산, 호르몬, 빌리루빈(bilirubin), 약물 등 다양한 리간드와 결합하여 혈액의 콜로이드 삼투압을 조절, 전달하는 역할 및 영양 불량시 아미노산 공급원으로서의 역할을 한다[Bar-Or, D. et al., Eur J. Biochem., 2001, 268: 42-47]. 특히 약물과 알부민의 결합은 약물의 약효 발현에 크게 관여한다. 한편, 순화한 HSA는 예를 들어 외과수술, 출혈성 쇼크 또는 화상 및 신증후군(nephrotic syndromes) 등 알부민 상실 및 알부민 합성 기능 장애에 의한 저알부민혈증의 치료에 사용된다. 알부민은 또한 보다 높은 진핵 세포의 성장에 사용되는 매체의 보충 및 치료용 단백질 배합에 있어서 의약품 첨가제로 사용된다. 혈청알부민의 또 다른 알려진 기능은 헤모글로빈과 유사하게 산소 분압에 따라 산소와 흡착하고 탈착하는 산소 캐리어로서의 작용이다. 따라서 비상시에 헤모글로빈을 대신하여 투여될 수 있다. 현재, 알부민 제품에 대한 수요는 인간 혈액으로부터 추출된 알부민에 의하여 충당되고 있다.Albumin is a protein found in the blood and is produced by the liver. Structurally, human serum albumin (HSA) consists of 585 amino acids (66,438 Da) and consists of 17 disulfide bridges and one free cysteine (Cys34) [Dugiaczyk, A. et. al. , Proc. Natl Acad. Sci. USA, 1982, 79: 71-75. In addition, albumin plays a role in maintaining and restoring plasma volume, in combination with various ligands such as cations such as water, calcium, sodium, potassium, fatty acids, hormones, bilirubin, and drugs to regulate and deliver colloidal osmotic pressure in the blood, and Malnutrition serves as a source of amino acids [Bar-Or, D. et al. , Eur J. Biochem., 2001, 268: 42-47]. In particular, the combination of the drug and albumin is greatly involved in the drug expression of the drug. Purified HSAs, on the other hand, are used for the treatment of hypoalbuminemia due to albumin loss and albumin synthetic dysfunction, such as, for example, surgery, hemorrhagic shock or burns and nephrotic syndromes. Albumin is also used as a pharmaceutical additive in formulating protein for supplementation and treatment of media used for the growth of higher eukaryotic cells. Another known function of serum albumin is that it acts as an oxygen carrier that adsorbs and desorbs oxygen under oxygen partial pressure, similar to hemoglobin. It can therefore be administered in place of hemoglobin in an emergency. Currently, the demand for albumin products is met by albumin extracted from human blood.
종래 HSA는 인간 혈장으로부터 콘(Cone)의 저온 에탄올 분획법 또는 그에 준하는 방법으로, HSA 함유 분획물(분획물 V)을 얻은 후, 각종 정제방법을 통해 제조된다. 정제방법으로는, 일반적으로 단백질화학에서 통상 사용되는 정제방법, 예를 들어, 염석법(salting out method), 한외여과법, 등전점침전법, 전기영동법, 이온교환 크로마토그래피법, 겔여과 크로마토그래피법, 친화(affinity) 크로마토그래피법 등을 사용할 수 있다. 실제로는 혈장으로부터 얻은 시료 내에는, 생체조직, 세포, 혈액 등으로부터 유래하는 많은 종류의 오염물질이 혼재하여 있기 때문에 인간혈청알부민의 정제는 상기 방법을 조합하여 사용할 필요가 있다. 그러나 이와 같이 인간 혈장으로부터 정제되는 알부민의 양은 제한적일 수 밖에 없다. 따라서, 최근에는 원료를 인간 혈장에 의존하지 않는 방법으로 유전자 조작기술을 응용하여 효모[Ken, O. et al., J. Biochem., 1991, 110: 103-110] 및 고초균(Bacillus subtilis)[Saunders, C. W. et al., J. Bacteriol., 1987, 169: 2917-2925]을 이용하여 인간혈청알부민을 제조하는 방법이 개발되었다.Conventional HSA is a low-temperature ethanol fraction of Con (Cone) from human plasma or a method equivalent thereto, after obtaining an HSA-containing fraction (fraction V), it is prepared through various purification methods. As a purification method, purification methods generally used in protein chemistry, for example, salting out method, ultrafiltration, isoelectric point precipitation, electrophoresis, ion exchange chromatography, gel filtration chromatography, Affinity chromatography and the like can be used. In fact, since many kinds of contaminants derived from biological tissues, cells, blood, and the like are mixed in a sample obtained from plasma, it is necessary to use human serum albumin in combination. However, the amount of albumin purified from human plasma is inevitably limited. Therefore, in recent years, yeast [Ken, O. et al. , J. Biochem., 1991, 110: 103-110] and Bacillus subtilis [Saunders, CW et al. , J. Bacteriol., 1987, 169: 2917-2925, have been developed for the production of human serum albumin.
통상적으로 수용액 형태의 알부민 제제는 제제를 오염시킬 수 있는 바이러스를 불활성화시키기 위하여 60℃에서 10시간 동안 열처리 과정을 거친다. 또한 알부민의 공업적 생산은 인체 내 환경과 다른 조건에서 수행된다. 따라서, 열 등에 의해 쉽게 변성되고 응집되는 알부민의 특성을 고려할 때, 이러한 일련의 과정을 수행하는 동안 변성되거나 다량체를 형성할 수 있는 가능성이 높다. 현재로서는 시판 중인 5% 또는 20% 알부민 제제가 별다른 부작용없이 널리 사용되고 있어 제제 중 포함되어 있는 다량체가 인체에 무해한 것으로 여겨지고 있으나, 변성된 알부민 주사제에 의한 혈압 상승, 발열, 빈맥, 떨림, 홍조, 두드러기, 오한 등의 부작용이 보고되고 있다. 따라서, 열처리 과정에 의한 변성을 방지하기 위하여 현재 시판되고 있는 알부민 제제는 안정화제로서 옥탄산 나트륨(sodium octanoate) 및 N-아세틸 트립토판(N-acetyl tryptophan)을 첨가하여 제조된다.Typically, albumin preparations in aqueous form are subjected to a heat treatment at 60 ° C. for 10 hours to inactivate viruses that may contaminate the preparation. In addition, industrial production of albumin is carried out under conditions different from the environment in the human body. Therefore, considering the properties of albumin which are easily denatured and aggregated by heat or the like, there is a high possibility of denaturation or multimer formation during this series of processes. Currently, commercially available 5% or 20% albumin preparations are widely used without any side effects, and the multimers contained in the preparations are considered to be harmless to humans.However, blood pressure rise, fever, tachycardia, tremor, flushing and hives caused by denatured albumin injections , Side effects such as chills have been reported. Thus, albumin preparations currently on the market to prevent denaturation by heat treatment are prepared by adding sodium octanoate and N-acetyl tryptophan as stabilizers.
알부민의 다양한 순기능에 대한 연구가 지속되고 있고 이에 따라, 새로운 알부민 제제 개발 가능성이 높음을 고려할 때, 그 수요는 지속적으로 증가할 것으로 예상된다. 그러나, 현재 유일한 인간혈청알부민의 공급원은 인간의 혈액으로, 다소 제한적이어서, 알부민의 특성 연구 뿐만 아니라 새로운 공급원의 개발이 시급하다. 현재 생명과학기술분야의 높은 기술력을 고려할 때, 형질전환체를 이용한 재조합 인간혈청알부민은 알부민 제제 생산을 위한 또 다른 공급원이 될 수 있을 것이다.Given the continued research on the various net functions of albumin and the possibility of developing new albumin preparations, the demand is expected to continue to increase. However, at present, the only source of human serum albumin is human blood, which is rather limited, and therefore it is urgent to develop new sources as well as to study the properties of albumin. Given the current high technology in life science and technology, recombinant human serum albumin using transformants may be another source for the production of albumin preparations.
한편, 상기한 바와 같이 알부민은 물, 이온, 지방산, 호르몬 등의 다양한 물질과 결합하여 생리활성을 나타낸다. 따라서, 재조합 인간혈청알부민을 알부민 제제 생산에 활용하기 위해서는 이들 물질 중 알부민이 생리활성을 나타내기 위해 필수적인 요소를 동정하고 이들이 어떻게 결합하는지를 확인하고, 이를 재조합 인간혈청알부민에 적용하여 생리활성을 갖도록 하는 것이 필요하다.On the other hand, as described above albumin exhibits physiological activity in combination with various substances such as water, ions, fatty acids, hormones. Therefore, in order to utilize recombinant human serum albumin in the production of albumin preparations, it is necessary to identify the elements necessary for albumin to exhibit its physiological activity and to identify how they bind, and apply it to recombinant human serum albumin to have physiological activity. It is necessary.
본 발명자들은 생체 내에서 자연적으로 생리활성의 인간혈청알부민과 결합하고 있는 리간드를 동정하고, 이들 중 알부민 제제 제조과정의 필수적인 과정인 열처리에 대해 알부민을 안정화할 수 있는 물질을 발굴하고자 예의 연구 노력한 결과, 인간혈청알부민에는 올레산, 리놀레산 등의 탄소수 16 내지 22의 포화 또는 불포화 지방산이 결합되어 있으며, 상기 지방산이 알부민에 열적 안정성을 향상시키므로, 알부민 제제 생산에 필요한 과정인 열처리 과정에서 변성을 방지하는 효과를 나타낼 수 있음을 확인하였다. 나아가, 상기 지방산 또는 이의 염을 1 내지 40 mg/㎖ 농도의 인간혈청알부민에 첨가할 경우, 10시간 가량의 장시간 열처리에도 안정성을 높게 유지시킬 수 있음을 확인하고, 본 발명을 완성하였다.The present inventors have made efforts to identify ligands that naturally bind to human serum albumin, which is naturally physiologically active in vivo, and to find a substance capable of stabilizing albumin against heat treatment, which is an essential process of the albumin preparation process. , Human serum albumin is combined with saturated or unsaturated fatty acids having 16 to 22 carbon atoms such as oleic acid and linoleic acid, and the fatty acid improves the thermal stability to albumin, thereby preventing denaturation during the heat treatment process required for the production of albumin preparations It was confirmed that can be represented. Furthermore, when the fatty acid or its salt is added to human serum albumin at a concentration of 1 to 40 mg / ml, it was confirmed that stability can be maintained high even after a long heat treatment for about 10 hours, thereby completing the present invention.
본 발명의 하나의 목적은 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산 또는 이의 약학적으로 허용가능한 염을 포함하는, 인간혈청알부민 제제를 제조하기 위한 열안정화용 조성물을 제공하는 것이다.One object of the present invention is to provide a composition for thermal stabilization for preparing a human serum albumin preparation comprising a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof.
본 발명의 다른 목적은 인간혈청알부민의 농도를 1 내지 40 mg/㎖로 조절하는 제1단계; 및 인간혈청알부민에 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산 또는 이의 약학적으로 허용가능한 염을 첨가하는 제2단계를 포함하는, 열안정화된 인간혈청알부민의 제조방법을 제공하는 것이다.Another object of the present invention is the first step of adjusting the concentration of human serum albumin to 1 to 40 mg / ㎖; And a second step of adding a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof to human serum albumin, the method of preparing heat stabilized human serum albumin.
본 발명의 또 다른 목적은 인간혈청알부민 제제를 제조하는 방법에 있어서, 인간혈청알부민에 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산 또는 이의 약학적으로 허용가능한 염을 처리하여 열처리하는 단계를 포함하는, 인간혈청알부민 제제의 제조방법을 제공하는 것이다.Another object of the present invention is a method for preparing a human serum albumin preparation, the step of treating the human serum albumin by heat treatment with a fatty acid selected from the group consisting of fatty acids having 16 to 22 or a pharmaceutically acceptable salt thereof It provides a method for producing a human serum albumin containing.
본 발명에 따른 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산을 첨가하면, 인간혈청알부민 제제의 제조시 열처리 과정에도 안정한 알부민을 생산하는데 유용하게 이용될 수 있다. 특히, 상기 지방산을 1 내지 40 mg/㎖ 농도의 인간혈청알부민에 첨가함으로써 60℃ 이상의 고온에서 10시간 이상 열처리를 하여도, 안정성이 유지된 인간혈청알부민을 제조할 수 있다. 한편, 재조합 인간혈청알부민을 이용하는 경우 인간 유래의 것과 구조적으로 가장 유사한 재조합 인간혈청알부민을 생산할 수 있어 부작용없이 산업적으로 유용하게 사용할 수 있으며, 혈장유래 인간혈청알부민을 이용하는 경우에도 외래의 물질이 아닌 생체 내에 자연적으로 존재하는 다양한 지방산을 포함하는 조성물을 이용하므로 독성이나 부작용의 걱정 없이 제제를 생산할 수 있다.Adding a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms according to the present invention, it can be usefully used to produce stable albumin even during the heat treatment process in the preparation of human serum albumin preparation. In particular, by adding the fatty acid to human serum albumin at a concentration of 1 to 40 mg / ml, even when heat-treated at a high temperature of 60 ° C. or higher for 10 hours or more, human serum albumin with stable stability can be prepared. On the other hand, when recombinant human serum albumin is used, it is possible to produce recombinant human serum albumin that is most structurally similar to that of human origin, so it can be used industrially without side effects, and even when using plasma-derived human serum albumin, it is not a foreign substance. By using a composition containing various fatty acids naturally present in the preparation, the preparation can be made without worrying about toxicity or side effects.
도 1은 X-선 결정학법에 의해 획득한 제제화되어 상용화되고 있는 혈장유래 인간혈청알부민을 원료로 하는 녹십자사의 20% 인간혈청알부민 주사제로부터 수득한 인간혈청알부민 결정의 3차원 입체구조를 나타낸 도이다. 종래 혈장유래 인간혈청알부민의 제조공정에서 열안정화제로 사용되는 옥탄산염(octanoic acid)과 N-아세틸 트립토판(N-acetyl tryptophan)의 분해산물인 L-트립토판의 결합위치를 막대모델(stick model)로 표시하였다. 탄소수 18의 지방산 중 하나인 올레산의 결합위치는 구형모델(sphere model)로 표시하였다.1 is a diagram showing a three-dimensional conformation of human serum albumin crystals obtained from a 20% human serum albumin injection of Green Cross, which is prepared from plasma-derived human serum albumin, which is obtained by X-ray crystallography. . The stick position of L-tryptophan, which is a decomposition product of octanoic acid and N-acetyl tryptophan, used as a heat stabilizer in the manufacturing process of plasma-derived human serum albumin, Indicated. The binding position of oleic acid, which is one of the C18 fatty acids, is represented by a sphere model.
도 2는 제제화되어 상용화되고 있는 혈장유래 인간혈청알부민을 원료로 하는 녹십자사의 20% 인간혈청알부민 주사제의 질량분석 결과를 나타낸 도이다.Figure 2 is a diagram showing the mass spectrometry results of the 20% human serum albumin injection of Green Cross, which is formulated and commercialized using plasma-derived human serum albumin.
도 3은 제제화되어 상용화되고 있는 혈장유래 인간혈청알부민을 원료로 하는 SK사의 20% 인간혈청알부민 주사제의 질량분석 결과를 나타낸 도이다.FIG. 3 is a diagram showing the mass spectrometry results of a 20% human serum albumin injection prepared by commercially available plasma-derived human serum albumin.
도 4는 지방산 유리(fatty acid free) 인간혈청알부민 용액과 올레산을 첨가한 인간혈청알부민 용액의 온도에 따른 지속처리 가능시간을 분 단위 및 이의 로그단위로 나타낸 도이다.4 is a view showing the sustainable treatment time according to the temperature of the fatty acid free human serum albumin solution and the human serum albumin solution added with oleic acid in minutes and log units thereof.
도 5는 5가지 인간혈청알부민 검체(녹십자 알부민, A3782 알부민, A1653 알부민, 녹십자 알부민+올레산(1:1 몰비), A3782 알부민+올레산(1:1 몰비))를 60℃에서 10시간 가열하였을 때 원편광이색성을 측정한 결과를 나타낸 도이다.FIG. 5 shows five human serum albumin samples (Green Cross Albumin, A3782 Albumin, A1653 Albumin, Green Cross Albumin + Oleic Acid (1: 1 molar ratio), A3782 Albumin + Oleic Acid (1: 1 molar ratio) when heated at 60 ° C. for 10 hours. The figure which shows the result of having measured circular dichroism.
도 6은 5가지 인간혈청알부민 검체(녹십자 알부민, A3782 알부민, A1653 알부민, 녹십자 알부민+올레산(1:1 몰비), A3782 알부민+올레산(1:1 몰비))를 70℃에서 10시간 가열하였을 때 원편광이색성을 측정한 결과를 나타낸 도이다.Figure 6 shows five human serum albumin samples (green cross albumin, A3782 albumin, A1653 albumin, green cross albumin + oleic acid (1: 1 molar ratio), A3782 albumin + oleic acid (1: 1 molar ratio) when heated at 70 ℃ for 10 hours The figure which shows the result of having measured circular dichroism.
도 7은 5가지 인간혈청알부민 검체(녹십자 알부민, A3782 알부민, A1653 알부민, 녹십자 알부민+올레산(1:1 몰비), A3782 알부민+올레산(1:1 몰비))를 80℃에서 10시간 가열하였을 때 원편광이색성을 측정한 결과를 나타낸 도이다.FIG. 7 shows five human serum albumin samples (Green Cross Albumin, A3782 Albumin, A1653 Albumin, Green Cross Albumin + Oleic Acid (1: 1 molar ratio), A3782 Albumin + Oleic Acid (1: 1 molar ratio) when heated at 80 ° C. for 10 hours. The figure which shows the result of having measured circular dichroism.
도 8은 농도를 달리한 10가지 인간혈청알부민 검체(1 내지 45 mg/ml A3782 알부민+올레산(1:1몰비))를 70℃에서 10시간 가열하였을 때 원편광이색성을 측정한 결과를 나타낸 도이다.FIG. 8 shows the results of measurement of circular dichroism when 10 human serum albumin samples having different concentrations (1 to 45 mg / ml A3782 albumin + oleic acid (1: 1 molar ratio)) were heated at 70 ° C. for 10 hours. It is also.
도 9는 지방산을 달리한 5가지 인간혈청알부민 검체(A3782 알부민+올레산(1:1몰비), A3782 알부민+리놀레산(1:1몰비), A3782 알부민+α-리놀렌산(1:1몰비), A3782 알부민+γ-리놀렌산(1:1 몰비), A3782 알부민+팔미톨레산(1:1 몰비))를 70℃에서 10시간 가열하였을 때 원편광이색성을 측정한 결과를 나타낸 도이다.Figure 9 shows five human serum albumin samples with different fatty acids (A3782 albumin + oleic acid (1: 1 molar ratio), A3782 albumin + linoleic acid (1: 1 molar ratio), A3782 albumin + α-linolenic acid (1: 1 molar ratio), A3782 The results of measurement of circular dichroism when albumin + γ-linolenic acid (1: 1 molar ratio) and A3782 albumin + palmitoleic acid (1: 1 molar ratio) were heated at 70 ° C for 10 hours.
상기 목적을 달성하기 위한 하나의 양태로서, 본 발명은 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산 또는 이의 약학적으로 허용가능한 염을 포함하는, 인간혈청알부민 제제를 제조하기 위한 열안정화용 조성물을 제공한다.As one embodiment for achieving the above object, the present invention comprises a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof, for thermal stabilization for preparing a human serum albumin preparation To provide a composition.
본 발명의 인간혈청알부민 제제의 제조방법에 재조합 인간혈청알부민을 이용하면, 종래 혈장유래 알부민 제제 제조에 있어서 공급원이 제한적인 문제를 해결할 수 있다. 그러나, 인간혈청알부민은 생체 내에서 다양한 리간드와 결합하여 안정한 구조를 형성하고 생리활성을 나타내므로, 재조합 인간혈청알부민을 제제화하기 위해서는 생리활성 알부민의 구조 및/또는 이에 결합한 리간드에 대한 고찰이 선행되어야 할 것이다. 한편, 종래의 혈장유래 인간혈청알부민을 이용한 제제의 제조방법에 있어서도 열처리에 대해 안정성을 부여하기 위하여 안정성 여부가 검증되지 않은 옥탄산 나트륨 및 N-아세틸 트립토판와 같은 외래물질을 첨가하였으나, 이를 대체할 수 있는 생체 내에 자연적으로 존재하는 물질을 발굴할 필요가 있다. 이에 본 발명자들은 혈장유래 인간혈청알부민에 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산이 결합하고 있으며, 이들이 인간혈청알부민의 안정화 특히, 열처리에 대한 안정성을 부여할 수 있음을 확인함으로써, 재조합 인간혈청알부민에 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산을 첨가하여 열처리 과정에도 안정한 알부민을 형성할 수 있으므로 이를 이용한 제제의 제조가 가능함을 확인하였다.The use of recombinant human serum albumin in the method for producing human serum albumin preparation of the present invention can solve the problem of limited source in the preparation of conventional plasma-derived albumin preparation. However, since human serum albumin binds to various ligands in vivo to form a stable structure and exhibits physiological activity, in order to formulate recombinant human serum albumin, the structure of the bioactive albumin and / or the ligand bound thereto must be preceded. something to do. Meanwhile, in the conventional method for preparing a preparation using plasma-derived human serum albumin, foreign substances such as sodium octanoate and N-acetyl tryptophan, which have not been tested for stability, have been added to impart stability to heat treatment. There is a need to discover substances that exist naturally in living organisms. Accordingly, the present inventors have confirmed that recombination by confirming that fatty acids selected from the group consisting of fatty acids having 16 to 22 carbon atoms are bound to plasma-derived human serum albumin, and that they can impart stabilization of human serum albumin, in particular, stability to heat treatment. The addition of a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms to human serum albumin can form stable albumin even during the heat treatment process, it was confirmed that the preparation of the preparation using the same.
본 발명의 용어 "알부민"은 세포의 기본 물질을 구성하는 단백질의 하나로,혈액 중에 매우 많이 존재하며, 간에서 생성된다. 자연상태에 존재하는 단순 단백질 중 가장 분자량이 적다. 혈액 중의 혈청알부민은 혈장부피를 유지하고 회복시키는 기능이 있어서 과다 출혈에 따른 쇼크를 방지하고 수술 및 화상치료 등에 사용된다. 또한 헤모글로빈과 유사한 산소전달 능력을 갖는 것으로 알려져 있다. 본 발명의 목적상, 본 발명의 조성물은 상기 알부민을 제제화하는 과정에서 열처리에 대한 안정성을 부여하기 위한 것으로서, 그 대상이 되는 알부민은 제제화가 가능한 모든 알부민을 포함할 수 있으며, 바람직하게는 인간혈장으로부터 유래한 것이거나, 유전자 조작에 의해 제조된 재조합 인간혈청알부민일 수 있다.The term "albumin" of the present invention is one of the proteins constituting the basic substance of the cell, is present in the blood very much, it is produced in the liver. It has the lowest molecular weight of simple proteins in nature. Serum albumin in the blood maintains and restores the plasma volume, preventing shock from excessive bleeding, and is used for surgery and burn treatment. It is also known to have oxygen transfer capacity similar to hemoglobin. For the purpose of the present invention, the composition of the present invention is to impart stability to heat treatment in the process of formulating the albumin, the albumin of the subject may include all the albumin that can be formulated, preferably human plasma Or recombinant human serum albumin produced by genetic engineering.
본 발명에서 용어, "재조합 인간혈청알부민"은 인간의 혈장에서 유래한 자연적인 인간혈청알부민과 대비되기 위한 개념으로 사용되는 용어로서, 인위적으로 생산되는 인간혈청알부민을 통칭하는 의미이다. 예컨대, 서열번호 1(HSA의 서열)의 아미노산 서열을 갖는 폴리펩티드를 발현하도록 제조된 형질전환체로부터 획득한 인간혈청알부민으로서, 혈장으로부터 분리된 인간혈청알부민과 동일한 아미노산 서열을 가질 수 있으나, 이에 제한되지 않는다.As used herein, the term "recombinant human serum albumin" is a term used as a concept for contrasting with natural human serum albumin derived from human plasma, and refers to human serum albumin produced artificially. For example, human serum albumin obtained from a transformant prepared to express a polypeptide having the amino acid sequence of SEQ ID NO: 1 (HSA sequence) may have the same amino acid sequence as human serum albumin isolated from plasma, but is not limited thereto. It doesn't work.
본 발명의 용어 "형질전환체(transformant)"는 유전자 조작(genetic engineering)을 통해 특정 유전자를 발현하도록 유전적으로 변형된 유기체(genetically modified organism)로서, 본 발명의 목적상, 바람직하게 상기 특정 유전자는 서열번호 1의 아미노산 서열을 갖는 폴리펩티드, 예컨대 인간혈청알부민을 코딩하는 유전자일 수 있다. 바람직하게 상기 유전적으로 변형된 유기체는 형질전환시킨 박테리아, 균류 및 효모 등의 세포 또는 유전자 삽입 동물(transgenic animal)일 수 있으며, 이에 제한되지 않는다. 바람직하게 상기 유전자 삽입 동물로는 마우스, 랫트, 기니피그 등의 포유동물이 사용될 수 있으며, 이에 제한되지 않는다.The term "transformant" of the present invention is an organism that has been genetically modified to express a particular gene through genetic engineering, for the purposes of the present invention, preferably the particular gene is It may be a gene encoding an amino acid sequence of SEQ ID NO: 1, such as human serum albumin. Preferably, the genetically modified organism is transformed into bacteria, fungi and yeasts. It may be a cell or a transgenic animal, but is not limited thereto. Preferably, as the transgenic animal, mammals such as mice, rats, and guinea pigs may be used, but are not limited thereto.
본 발명의 "인간혈청알부민 제제"는 인간을 포함한 개체에 투여될 수 있는 형태로 제제화될 수 있는 인간혈청알부민으로 제조한 모든 제제를 포함하는 개념으로서, 현재 시판되고 있는 알부민 제제를 포함할 수 있으며, 이를 대체할 수 있도록 제조된, 시판용 알부민 제제와 유사한 성분, 기능 및 약효를 갖는 제제 역시 포함할 수 있다. 시판되고 있는 알부민 제제의 경우 제한적인 공급원인 혈액에 의존해야 하는 문제점을 안고 있으며, 이를 해결하기 위한 대안으로 재조합 인간혈청알부민을 이용한 재조합 인간혈청알부민 제제가 제조될 수 있다. 바람직하게, 상기 본 발명의 재조합 인간혈청알부민 제제는 서열번호 1의 인간혈청알부민을 발현하도록 제조된 형질전환체로부터 획득한 재조합 인간혈청알부민을 유효성분으로 포함할 수 있다."Human serum albumin formulations" of the present invention is a concept including all formulations made with human serum albumin, which may be formulated in a form that can be administered to an individual including a human, and may include albumin formulations currently on the market. It may also include formulations having similar ingredients, functions, and medicaments as commercially available albumin formulations, prepared to replace them. Commercially available albumin preparations have a problem of relying on a limited source of blood, and as an alternative to solve this, recombinant human serum albumin preparations using recombinant human serum albumin may be prepared. Preferably, the recombinant human serum albumin preparation of the present invention may include recombinant human serum albumin obtained from a transformant prepared to express human serum albumin of SEQ ID NO: 1 as an active ingredient.
상기 인간혈청알부민을 인체에 투여 가능한 제제로 제조하기 위해서는 바이러스의 오염 및/또는 기타 감염을 방지하기 위하여 열처리 과정을 필요로 한다. 그러나 보통의 단백질과 유사하게 인간혈청알부민은 고온으로 처리시 구조가 변하거나 응집되는 등 변성을 일으킬 수 있다. 따라서, 이를 안정화시키기 위한 첨가제를 필요로 하며, 현재 혈장유래 알부민 제제의 제조 공정에서는 옥탄산염, 예를 들어 옥탄산 나트륨(sodium octanoate)과 N-아세틸 트립토판(N-acetyl tryptophan) 등이 사용되고 있다. 그러나 이들 물질은, 본래 혈장 내에 존재하는 물질이 아닌 열처리 과정에 대한 안정성을 향상시키기 위하여 임의로 첨가한 물질로서, 자연적인 인간혈청알부민과는 달리, 인체 내로 투여되었을 때, 그에 따른 부작용 등이 발생할 가능성이 있다.In order to prepare the human serum albumin as an agent that can be administered to the human body, a heat treatment process is required to prevent contamination of the virus and / or other infections. However, similar to normal proteins, human serum albumin may cause degeneration such as structure change or aggregation when treated at high temperatures. Therefore, an additive for stabilizing this is required, and octanates such as sodium octanoate and N-acetyl tryptophan are used in the preparation process of plasma-derived albumin. However, these substances are not added to the original plasma, but are added arbitrarily to improve the stability of the heat treatment process. Unlike natural human serum albumin, these substances may cause side effects when administered into the human body. There is this.
따라서, 가능하다면 인간혈장유래 또는 재조합 인간혈청알부민 제제의 제조시에 자연적인 인간혈청알부민과 가장 유사한 형태와 구조를 유지할 필요가 있다. 또한, 재조합 인간혈청알부민은 인간 혈장에서 추출한 인간혈청알부민과 몇몇 속성이 다르므로, 재조합 인간혈청알부민 제제를 제조하기 위한 열안정화용 조성물로서 임의의 첨가물이 아닌 생체 내에 존재하는 물질을 처리하는 것이 보다 안전할 수 있다. 이에 본 발명에서는 혈장으로부터 분리한 인간혈청알부민에 결합되어 있는 것으로 확인하여 동정된 탄소수 16 내지 22의 지방산을 이용하였다.Thus, where possible, there is a need to maintain the form and structure most similar to natural human serum albumin in the preparation of human plasma-derived or recombinant human serum albumin preparations. In addition, since recombinant human serum albumin has some properties different from human serum albumin extracted from human plasma, it is more preferable to treat a substance present in the living body rather than any additives as a composition for thermostabilization to prepare a recombinant human serum albumin preparation. It can be safe. In the present invention, it was confirmed that the binding to the human serum albumin separated from the plasma fatty acids having 16 to 22 carbon atoms identified.
본 발명에서 용어, "탄소수 16 내지 22의 지방산"은 지방산 중에서 16 내지 22개의 탄소를 갖는 지방산을 총칭하는 의미로서, 일 말단에는 친수성 카르복실기 포함하며, 다른 말단은 소수성 탄소사슬로 구성된다. 이때, 탄소사슬에서 이중결합의 수와 위치에 따라 종류가 달라질 수 있으며, 바람직하게는 탄소수 16의 지방산인 팔미트산(palmitic acid) 및 팔미톨레산(palmitoleic acid), 탄소수 18의 지방산인 스테아르산(stearic acid; octadecanoic acid), 올레산(oleic acid), 리놀레산(linoleic acid) 및 리놀렌산(linolenic acid), 탄소수 20의 지방산인 에이코사펜타엔산(EPA; eicosapentaenoic acid) 및 탄소수 22의 지방산인 도코사헥사엔산(DHA; docosahexaenoic acid), 또는 이들의 조합으로부터 선택되는 것일 수 있으며, 이에 제한되지 않는다. 또한 상기 지방산은 약학적으로 허용가능한 염의 형태로 이용될 수 있다.As used herein, the term "fatty acid having 16 to 22 carbon atoms" refers to a fatty acid having 16 to 22 carbons among fatty acids, and includes one end with a hydrophilic carboxyl group, and the other end is composed of a hydrophobic carbon chain. At this time, the type can be varied depending on the number and position of the double bonds in the carbon chain, preferably palmitic acid (palmitic acid) and palmitoleic acid (palmitoleic acid), a fatty acid of 16 carbon atoms, stearic acid of 18 fatty acids (stearic acid; octadecanoic acid), oleic acid, linoleic acid and linolenic acid, eicosapentaenoic acid (EPA), a fatty acid with 20 carbon atoms, and docosa, a fatty acid with 22 carbon atoms It may be selected from hexaenoic acid (DHA; docosahexaenoic acid), or a combination thereof, but is not limited thereto. The fatty acids may also be used in the form of pharmaceutically acceptable salts.
본 발명에서 용어, "팔미트산"은 16개 탄소 사슬을 갖는 포화 지방산으로 IUPAC 명으로는 헥사데칸산(hexadecanoic acid)이라고 한다. CH3(CH2)14CO2H의 화학식을 가지며, 동식물 및 미생물에서 발견되는 가장 보편적인 지방산이다. 야자나무 기름의 주성분이나 육류, 치즈, 버터 및 유제품에도 존재한다. 팔미트산의 염 및 에스테르 형태를 팔미테이트라고 한다. 염기성 pH에서는 팔미테이트 음이온의 형태로 존재한다. 체내에서 과량의 탄수화물은 팔미트산으로 전환된다. 팔미트산은 지방산 합성과정에서 생산되는 첫번째 지방산으로 장쇄 지방산의 전구물질이다. 생물학적으로 일부 단백질은 팔미토일기와 결합하여 수식될 수 있으며 이를 팔미토일화(palmitoylation)라 하고 이는 단백질의 막국부화(membrane localisation)에 중요하다.In the present invention, the term "palmitic acid" is a saturated fatty acid having 16 carbon chains and is called hexadecanoic acid in the name of IUPAC. It has the formula CH 3 (CH 2 ) 14 CO 2 H and is the most common fatty acid found in flora and fauna and microorganisms. It is also present in palm oil, meat, cheese, butter and dairy products. The salt and ester forms of palmitic acid are called palmitates. At basic pH it is present in the form of palmitate anion. Excess carbohydrates are converted to palmitic acid in the body. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is a precursor to long-chain fatty acids. Biologically, some proteins can be modified by binding to palmitoyl groups and this is called palmitoylation, which is important for protein localization of proteins.
본 발명에서 용어, "팔미톨레산"은 오메가-7 일불포화 지방산(omega-7 monounsaturated fatty acid), 시스-팔미톨레산, 9-시스-헥사데케노익산(9-cis-hexadecenoic acid)라고도 하며, IUPAC 명은 헥사데크-9-에노익산(hexadec-9-enoic acid)이다. 하나의 이중결합을 포함하는 탄소 16의 지방산으로 CH3(CH2)5CH=CH(CH2)7CO2H의 화학식을 갖지며, 인간 지방조직의 글리세라이드(glyceride)의 성분이다. 모든 조직에 존재하여 주로 간에서 높은 농도로 발견된다. 델타-9 탈포화효소(delta-9 desaturase)의 작용에 의해 팔미트산으로부터 생합성된다. 유익한 지방산으로 인슐린-분비 이자베타세포의 파괴를 저해할 뿐만 아니라 염증을 억제하여 인슐린 민감성을 증가시킨다. 동식물 및 해양생물의 기름으로부터 식용 팔미톨레산을 추출할 수 있다.As used herein, the term "palmitoleic acid" is also referred to as omega-7 monounsaturated fatty acid, cis-palmitoleic acid, and 9-cis-hexadecenoic acid. The IUPAC name is hexadec-9-enoic acid. A fatty acid of carbon 16 including one double bond has a chemical formula of CH 3 (CH 2 ) 5 CH = CH (CH 2 ) 7 CO 2 H and is a component of glyceride of human adipose tissue. It is present in all tissues and is found in high concentrations in the liver. It is biosynthesized from palmitic acid by the action of delta-9 desaturase. Beneficial fatty acids not only inhibit the destruction of insulin-secreting isabeta cells, but also inhibit inflammation and increase insulin sensitivity. Edible palmitoleic acid can be extracted from the oils of plants and animals.
본 발명에서 용어, "스테아르산"은 18개 탄소 사슬을 갖는 포화 지방산으로 IUPAC 명으로는 옥타데칸산(octadecanoic acid)이라고 한다. CH3(CH2)16CO2H의 화학식을 갖는 납질의 고체(waxy solid)이다. 이의 염 및 에스테르는 스테아레이트(stearate)라고 한다. 상기 스테아르산은 팔미트산과 더불어 자연계에 가장 널리 존재하는 포화 지방산 중 하나이다. 금속 이온과 결합할 수 있는 극성 머리부분과 유기 용매에 대한 용해도를 제공하는 비극성 사슬을 가지므로 이중 기능성을 갖는다. 이러한 특성으로 인해 계면활성제 또는 유연제로 사용될 수 있다.In the present invention, the term "stearic acid" is a saturated fatty acid having 18 carbon chains and is referred to as octadecanoic acid in the name of IUPAC. It is a waxy solid with the formula CH 3 (CH 2 ) 16 CO 2 H. Its salts and esters are called stearate. The stearic acid, together with palmitic acid, is one of the most widely saturated fatty acids in nature. It has dual functionality because it has a polar head that can bind metal ions and a nonpolar chain that provides solubility in organic solvents. Due to these properties, they can be used as surfactants or softeners.
본 발명에서 용어, "올레산"은 다양한 동식물의 유지로부터 생산되는 무색무취의 오일이다. 시판되는 제품은 노란색을 띠기도 한다. 화학적으로 일불포화 오메가-9 지방산(monounsaturated omega-9 fatty acid)로 분류되며 CH3(CH2)7CH=CH(CH2)7CO2H의 화학식을 갖는다. 한편 올레산은 인간 지방조직에서 가장 풍부한 지방산이다.As used herein, the term "oleic acid" is a colorless odorless oil produced from fats and oils of various plants and animals. Commercially available products may be yellow in color. It is chemically classified as monounsaturated omega-9 fatty acid and has the formula CH 3 (CH 2 ) 7 CH = CH (CH 2 ) 7 CO 2 H. Oleic acid, meanwhile, is the most abundant fatty acid in human adipose tissue.
본 발명에서 용어, "리놀레산"은 불포화 n-6 지방산이며 실온에서는 무색의 액체이다. 상기 리놀레산은 체내에서 다른 음식성분으로부터 합성될 수 없는 필수 지방산 중 하나이다. 특히 아라키돈산 나아가 일부 프로스타글란딘의 생합성에 사용되는 다중불포화 지방산이다. 세포막 지질에서 발견되며 식물성 오일에 풍부하다. 화학적으로 18개 탄소로 구성된 사슬과 두 개의 시스(cis) 이중결합을 갖는 카르복시산으로 첫번째 이중결합은 소수성 말단인 메틸말단으로부터 6번째 탄소에 위치하며, CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH의 화학식을 갖는다. As used herein, the term "linoleic acid" is an unsaturated n-6 fatty acid and a colorless liquid at room temperature. Linoleic acid is one of the essential fatty acids that cannot be synthesized from other food components in the body. In particular, it is a polyunsaturated fatty acid used for the biosynthesis of arachidonic acid and some prostaglandins. Found in cell membrane lipids and abundant in vegetable oils. Chemically a carboxylic acid with a chain of 18 carbons and two cis double bonds, the first double bond is located at the sixth carbon from the hydrophobic methyl end, CH 3 (CH 2 ) 4 CH = CHCH 2 CH = CH (CH 2 ) 7 COOH.
본 발명에서 용어, "리놀렌산"은 α와 γ의 두 가지 형태의 리놀렌산을 총칭하거나 이의 혼합물을 일컫는 말이다. 상기 리놀렌산은 보통 에스테르 형태(linolenate)로 식물성 오일에 존재한다. 이중 α-리놀렌산은 18개 탄소 사슬 및 3개의 시스 이중결합을 갖는 카르복시산으로, 첫 번째 이중결합은 메틸말단 즉, n 말단으로부터 3번째 탄소에 위치하는 다중불포화 n-3 지방산이며, 올-시스-9,12,15-옥타데카트리에노산(all-cis-9,12,15-octadecatrienoic acid)의 화학식명을 갖는다. 이의 이성질체(isomer)인 γ-리놀렌산은 상기 α-리놀렌산과 동일한 수의 이중결합을 포함하는 동일한 탄소수의 사슬을 갖지만 첫 번째 이중결합이 n 말단으로부터 6번째 탄소에 위치하는 다중불포화 n-6 지방산으로, 사슬 내에서 이중결합의 위치가 서로 상이하다. γ-리놀렌산은 가몰렌산(gamolenic acid)라고도 불리며, 염증성 및 자가면역성 질환에 대한 효과를 나타내는 것으로 알려져 있다.As used herein, the term "linolenic acid" refers to two forms of linolenic acid, α and γ, or a mixture thereof. The linolenic acid is usually present in the vegetable oil in the form of linolenate. Double α-linolenic acid is a carboxylic acid with 18 carbon chains and 3 cis double bonds, the first double bond being a polyunsaturated n-3 fatty acid located at the methyl end, i. Has the chemical name of all-cis-9,12,15-octadecatrienoic acid. Its isomer, γ-linolenic acid, is a polyunsaturated n-6 fatty acid having the same carbon number chain containing the same number of double bonds as the α-linolenic acid, but the first double bond being located at the 6th carbon from the n-terminal. The positions of the double bonds in the chains are different. γ-linolenic acid, also called gamolenic acid, is known to exhibit effects on inflammatory and autoimmune diseases.
본 발명에서 용어, "EPA(에이코사펜타엔산; eicosapentaenoic acid)"는 오메가-3 지방산으로 팀노돈산(timnodonic acid)라고도 하며, 화학구조는 20개 탄소 사슬에 5개 시스 이중결합을 갖는 카르복시산이다. 첫 번째 이중결합은 오메가 말단 즉, 탄화수소 말단으로부터 세 번째 탄소에 위치한다. EPA는 다중불포화 지방산(polyunsaturated fatty acid; PUFA)으로 아이코사노이드(eicosanoid)인 프로스타글란딘-3(prostaglandin-3; 혈소판응고 억제), 트롬복산-3(thromboxane-3) 및 류코트리엔-5(leukotriene-5)의 전구체로 작용한다. 해초류 및 생선류 특히 생선 오일에 다량 존재하며 인간의 모유에도 존재한다. 생선은 자연적으로 EPA를 생산하지 못하나 이들이 소비하는 조류(algae)로부터 획득한다. 인간 체내에서 알파-리놀렌산을 EPA로 전환할 수 있으나, 효율이 매우 낮다. 한편, EPA는 DHA의 전구체로 작용한다. 상기 EPA는 CH3CH2(CH=CHCH2)5(CH2)2COOH의 화학식을 갖는다.In the present invention, the term "EPA (eicosapentaenoic acid)" is an omega-3 fatty acid, also called timnodonic acid, and the chemical structure is a carboxylic acid having five cis double bonds on 20 carbon chains. . The first double bond is located at the omega end, the third carbon from the hydrocarbon end. EPA is a polyunsaturated fatty acid (PUFA), which is the eicosanoid prostaglandin-3 (platelet coagulation inhibition), thromboxane-3 and leukotriene-5 Acts as a precursor. It is present in large amounts in seaweeds and fish, especially fish oils, and also in human breast milk. Fish do not naturally produce EPA, but are obtained from algae they consume. It is possible to convert alpha-linolenic acid to EPA in humans, but the efficiency is very low. EPA, on the other hand, acts as a precursor of DHA. The EPA has the formula CH 3 CH 2 (CH = CHCH 2 ) 5 (CH 2 ) 2 COOH.
본 발명에서 용어, "DHA(도코사헥사엔산; docosahexaenoic acid)"는 역시 인간 뇌, 대뇌피질, 피부, 정자, 고환 및 망막의 일차적 구성요소인 오메가-3 지방산이다. 알파-리놀렌산으로부터 합성되거나, 모유 또는 생선 오일로부터 직접 얻을 수 있다. 화학적 구조는 22개 탄소 사슬에 6개 시스 이중결합을 갖는 카르복시산이다. 첫 번째 이중결합은 오메가 말단 즉, 탄화수소 말단으로부터 세 번째 탄소에 위치한다. 관용명으로는 세르본산(cervonic acid), IUPAC 명으로는 (4Z,7Z,10Z,13Z,16Z,19Z)-도코사-4,7,10,13,16,19-헥사엔산((4Z,7Z,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-hexaenoic acid)이라고도 한다. 심해어류 오일에 풍부하게 존재하는 것으로 알려져 있다. 광합성 및 타가영양생물 미세조류로부터 유래하여 먹이사슬의 상부에 위치한 생물에 농축된다. 체내에서 알파-리놀렌산의 전환으로 생성될 수 있으며, 상기 전환율은 여성에서 15% 정도 높고, 테스토스테론을 투여하거나 테스토스테론의 에스트라다이올로의 전환을 억제하였을 경우 DHA로의 전환이 감소한다. 정자, 뇌인지질 및 망막의 주된 지방산으로, DHA를 섭취하면 혈중 트리글리세라이드 수준을 감소시킴으로써 심장병의 위험을 감소시킬 수 있다. 또한, 정상치 미만의 DHA 수준은 알츠하이머와도 관련된다.As used herein, the term "DHA" (docosahexaenoic acid) is an omega-3 fatty acid that is also a primary component of the human brain, cerebral cortex, skin, sperm, testis and retina. It can be synthesized from alpha-linolenic acid or obtained directly from breast milk or fish oil. The chemical structure is a carboxylic acid with six cis double bonds on 22 carbon chains. The first double bond is located at the omega end, the third carbon from the hydrocarbon end. Common names are cervonic acid, IUPAC names (4Z, 7Z, 10Z, 13Z, 16Z, 19Z) -docosa-4,7,10,13,16,19-hexaenoic acid ((4Z, 7Z, 10Z, 13Z, 16Z, 19Z) -docosa-4,7,10,13,16,19-hexaenoic acid). It is known to be abundant in deep sea fish oil. It is derived from photosynthetic and other nutrient microalgae and concentrated in organisms located at the top of the food chain. It can be produced by the conversion of alpha-linolenic acid in the body, which conversion is about 15% higher in women and the conversion to DHA is reduced when testosterone is administered or the conversion of testosterone to estradiol is reduced. As the main fatty acids in sperm, brainphospholipids and retinas, ingesting DHA can reduce the risk of heart disease by reducing blood triglyceride levels. In addition, sub-normal DHA levels are also associated with Alzheimer's.
상기 지방산들은 지질 수에 따른 표기법에 의해 N:X(n-Y)로 표기할 수 있다. 상기 N은 전체 사슬의 탄소수 즉, 16, 18, 20 또는 22, X는 사슬 중에 포함된 이중결합의 수를 나타내며, Y는 각 지방산의 메틸말단으로부터 이중결합이 시작되는 탄소의 위치를 나타낸다. 상기 n 대시에 ω를 쓰기도 한다. 예컨대, 본 발명의 팔미트산은 탄소수 16의 포화지방산이므로 16:0, 팔미톨레산은 메틸말단으로부터 7번째 탄소에 하나의 이중결합을 가지므로 16:1(n-7) 또는 16:1(ω-7), 스테아르산은 탄소수 18의 포화지방산이므로 18:0, 올레산은 메틸말단으로부터 9번째 탄소에 하나의 이중결합을 가지므로 18:1(n-9) 또는 18:1(ω-9), 리놀레산은 18:2(n-6) 또는 18:2(ω-6), 리놀렌산-α는 18:3(n-3) 또는 18:3(ω-3), 리놀렌산-γ는 18:3(n-6) 또는 18:3(ω-6), EPA는 20:5(n-3), 마지막으로 DHA는 22:6(n-3)으로 표기한다.The fatty acids may be represented by N: X (n-Y) by the notation according to the number of lipids. N represents the carbon number of the entire chain, that is, 16, 18, 20 or 22, X represents the number of double bonds contained in the chain, Y represents the position of the carbon from which the double bond starts from the methyl terminal of each fatty acid. Ω may be written in the n dash. For example, since palmitic acid of the present invention is a saturated fatty acid having 16 carbon atoms, 16: 0, and palmitoleic acid have one double bond to the seventh carbon from the methyl terminal, so that 16: 1 (n-7) or 16: 1 (ω- 7) Since stearic acid is a saturated fatty acid of 18 carbon atoms, 18: 0, oleic acid has one double bond from the methyl terminal to the ninth carbon, so 18: 1 (n-9) or 18: 1 (ω-9), linoleic acid Is 18: 2 (n-6) or 18: 2 (ω-6), linolenic acid-α is 18: 3 (n-3) or 18: 3 (ω-3), and linolenic acid-γ is 18: 3 (n -6) or 18: 3 (ω-6), EPA is 20: 5 (n-3) and finally DHA is 22: 6 (n-3).
본 발명의 일 실시예에 따르면, 혈장유래 인간혈청알부민을 원료로 하는 주사제의 구조를 확인하고 질량분석을 수행한 결과, 올레산을 비롯한 탄소수 18의 지방산이 결합하고 있음을 확인하였다(도 2 및 3). 또한 알부민에 대한 상기 지방산의 결합위치를 확인하였다(도 1). 이에 올레산 또는 이외의 탄소수 18의 지방산, 탄소수 16의 지방산, EPA 또는 DHA를 지방산 유리(fatty acid free) 인간혈청알부민 용액에 첨가하여 고온 처리하여, 탄소수 18의 올레산을 첨가한 인간혈청알부민은 올레산을 첨가하지 않은 지방산 유리 인간혈청알부민 용액에 비해 70℃의 고온에서도 훨씬 더 오랫동안(2배 이상) 변성되지 않고 안정한 형태를 유지할 수 있음을 확인하였으며(표 3 내지 6), 이외의 다른 탄소수 18의 지방산을 첨가한 알부민 용액도 지방산 유리 알부민 용액에 비해 오랜 시간 변형 없이 지속될 수 있음을 확인하였다(표 7). 또한 이외에 탄소수 16의 지방산, EPA 및 DHA에 대해서도 동일한 효과가 나타남을 확인하였다(표 8 및 9).According to one embodiment of the present invention, as a result of mass spectrometry and mass spectrometry analysis of the injection-derived plasma-derived human serum albumin, it was confirmed that 18 fatty acids including oleic acid are bound (FIGS. 2 and 3). ). In addition, the binding position of the fatty acid to albumin was confirmed (FIG. 1). Thus, oleic acid or other fatty acid having 18 carbon atoms, fatty acid having 16 carbon atoms, EPA or DHA is added to a fatty acid free human serum albumin solution and subjected to high temperature treatment, and human serum albumin added with oleic acid having 18 carbon atoms is oleic acid. Compared to the free fatty acid free human serum albumin solution, it was confirmed that even at a high temperature of 70 ° C., it could maintain a stable form without degeneration for a long time (more than 2 times) (Tables 3 to 6). It was confirmed that the added albumin solution can be maintained without deformation for a longer time compared to the fatty acid free albumin solution (Table 7). In addition, it was confirmed that the same effect is shown for fatty acids having 16 carbon atoms, EPA and DHA (Tables 8 and 9).
본 발명의 용어 "약학적으로 허용가능한 염"은 상기 조성물의 원하는 생물학적 및/또는 생리학적 활성을 보유하고 있고, 상기 조성물에 노출되는 세포나 인간에게 독성이 없는, 원하지 않는 독물학적 효과는 최소한으로 나타내는 모든 염을 의미한다. 염으로는 약학적으로 허용가능한 유리산(free acid)에 의해 형성된 산부가염이 유용하다. 산부가염은 통상의 방법, 예를 들어 화합물을 과량의 산 수용액에 용해시키고, 이 염을 수혼화성 유기 용매, 예를 들어 메탄올, 에탄올, 아세톤 또는 아세토니트릴을 사용하여 침전시켜서 제조한다. 동 몰량의 화합물 및 물 중의 산 또는 알콜(예, 글리콜 모노메틸 에테르)을 가열하고, 이어서 상기 혼합물을 증발시켜 건조시키거나, 또는 석출된 염을 흡인 여과시킬 수 있다. 이때, 유리산으로는 무기산과 유기산을 사용할 수 있으며, 무기산으로는 염산, 히드로브롬산, 인산, 질산, 황산, 주석산 등을 사용할 수 있고, 유기산으로는 메탄 술폰산, p-톨루엔 술폰산, 아세트산, 트리프루오로아세트산, 말레인산(maleic acid), 숙신산, 옥살산, 벤조산, 타르타르산, 푸마르산(fumaric acid), 만데르산, 프로피온산(propionic acid), 구연산(citric acid), 젖산(lactic acid), 글리콜산(glycollic acid), 글루콘산(gluconic acid), 갈락투론산, 글루탐산, 글루타르산(glutaric acid), 글루쿠론산(glucuronic acid), 아스파르트산, 아스코르브산, 카본산, 바닐릭산, 히드로아이오딕산 등을 사용할 수 있으며, 이들에 제한되지 않는다.The term "pharmaceutically acceptable salts" of the present invention retains the desired biological and / or physiological activity of the composition and minimizes the unwanted toxicological effects, which are not toxic to cells or humans exposed to the composition. Means all salts represented. As salts are acid addition salts formed with pharmaceutically acceptable free acids. Acid addition salts are prepared by conventional methods, for example by dissolving a compound in an excess of aqueous acid solution and precipitating the salt using a water miscible organic solvent such as methanol, ethanol, acetone or acetonitrile. Equivalent molar amounts of the compound and acid or alcohol (eg, glycol monomethyl ether) in water can be heated and the mixture can then be evaporated to dryness or the precipitated salts can be suction filtered. In this case, inorganic acids and organic acids may be used as the free acid, and hydrochloric acid, hydrobromic acid, phosphoric acid, nitric acid, sulfuric acid, tartaric acid, and the like may be used as the inorganic acid, and methane sulfonic acid, p-toluene sulfonic acid, acetic acid, and triacid may be used as the organic acid. Fruroacetic acid, maleic acid, succinic acid, oxalic acid, benzoic acid, tartaric acid, fumaric acid, manderic acid, propionic acid, citric acid, lactic acid, glycolic acid ( glycollic acid, gluconic acid, galacturonic acid, glutamic acid, glutaric acid, glucuronic acid, aspartic acid, ascorbic acid, carbonic acid, vanillic acid, hydroiodic acid, etc. Can be used, but not limited to these.
또한, 바람직하게는 염기를 사용하여 약학적으로 허용가능한 금속염을 만들 수 있다. 알칼리 금속 또는 알칼리 토금속염은, 예를 들어 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리 토금속 수산화물 용액 중에 용해시키고, 비용해 화합물 염을 여과한 후 여액을 증발, 건조시켜 얻는다. 이때, 금속염으로서는 특히 나트륨, 칼륨 또는 칼슘염을 제조하는 것이 제약상 적합하나 이들에 제한되는 것은 아니다. 또한, 이에 대응하는 은염은 알칼리 금속 또는 알칼리 토금속 염을 적당한 은염(예, 질산은)과 반응시켜 얻을 수 있다.In addition, bases may be preferably used to make pharmaceutically acceptable metal salts. Alkali metal or alkaline earth metal salts are obtained, for example, by dissolving a compound in an excess of alkali metal hydroxide or alkaline earth metal hydroxide solution, filtering the insoluble compound salt, and then evaporating and drying the filtrate. In this case, as the metal salt, it is particularly suitable to prepare sodium, potassium or calcium salt, but is not limited thereto. Corresponding silver salts may also be obtained by reacting alkali or alkaline earth metal salts with a suitable silver salt (eg, silver nitrate).
상기 탄소수 16 내지 22의 지방산 또는 이의 약학적으로 허용가능한 염은, 달리 지시되지 않는 한, 탄소수 16 내지 22의 지방산에 존재할 수 있는 산성 또는 염기성 기의 염을 포함한다. 예를 들어 약학적으로 허용가능한 염으로는 히드록시기의 나트륨, 칼슘 및 칼륨 염 등이 포함될 수 있고, 아미노기의 기타 약학적으로 허용가능한 염으로는 히드로브로마이드, 황산염, 수소 황산염, 인산염, 수소 인산염, 이수소 인산염, 아세테이트, 숙시네이트, 시트레이트, 타르트레이트, 락테이트, 만델레이트, 메탄술포네이트(메실레이트) 및 p-톨루엔술포네이트(토실레이트) 염 등이 있으며 당업계에서 알려진 염의 제조방법을 통하여 제조될 수 있다. 바람직하게는 알칼리 금속 또는 알칼리 토금속 염일 수 있으나, 이에 제한되지 않는다.The fatty acids having 16 to 22 carbon atoms or pharmaceutically acceptable salts thereof include salts of acidic or basic groups which may be present in the fatty acids having 16 to 22 carbon atoms unless otherwise indicated. For example, pharmaceutically acceptable salts may include sodium, calcium and potassium salts of the hydroxy group, and other pharmaceutically acceptable salts of the amino group include hydrobromide, sulfate, hydrogen sulphate, phosphate, hydrogen phosphate, Hydrogen phosphate, acetate, succinate, citrate, tartrate, lactate, mandelate, methanesulfonate (mesylate) and p-toluenesulfonate (tosylate) salts; and the like through the methods for preparing salts known in the art. Can be prepared. Preferably, it may be an alkali metal or alkaline earth metal salt, but is not limited thereto.
바람직하게 상기 본 발명의 열안정화용 조성물은 알부민에 대해 상기 지방산 또는 이의 약학적으로 허용가능한 염이 1:0.5 내지 1:2의 몰비가 되도록 첨가될 수 있으며, 바람직하게는 1:0.7 내지 1:1.5, 보다 바람직하게는 1:0.8 내지 1:1.2, 보다 더 바람직하게는 1:1의 몰비가 되도록 첨가될 수 있으나 이에 제한되지 않는다.Preferably, the composition for thermal stabilization of the present invention may be added such that the fatty acid or pharmaceutically acceptable salt thereof is in a molar ratio of 1: 0.5 to 1: 2 with respect to albumin, and preferably 1: 0.7 to 1: 1.5, more preferably 1: 0.8 to 1: 1.2, even more preferably may be added to a molar ratio of 1: 1, but is not limited thereto.
또 하나의 양태로서, 본 발명은 인간혈청알부민의 농도를 1 내지 40 mg/㎖로 조절하는 제1단계; 및 인간혈청알부민에 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산 또는 이의 약학적으로 허용가능한 염을 첨가하는 제2단계를 포함하는, 열안정화된 인간혈청알부민의 제조방법을 제공한다.In another embodiment, the present invention comprises the steps of adjusting the concentration of human serum albumin to 1 to 40 mg / ㎖; And a second step of adding a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof to human serum albumin, the method of preparing heat stabilized human serum albumin.
상기 탄소수 16 내지 22의 지방산, 또는 이의 약학적으로 허용가능한 염, 이의 바람직한 첨가량 및 인간혈청알부민에 대해서는 상기에서 설명한 바와 같다.The fatty acids having 16 to 22 carbon atoms, or pharmaceutically acceptable salts thereof, preferred amounts thereof, and human serum albumin are as described above.
이전에는 알부민의 감염성 질환 부작용이 보고되면서, 이를 극복하기 위한 방법으로 냉에탄올에 의한 바이러스 사멸효과와 함께 60℃에서 10시간 열처리 공정을 도입하였다. 그러나 알부민은 구조적으로 매우 안정한 단백질임에도 불구하고 상기 열처리 과정에서 이합체, 소중합체와 중합체의 형성이 유발될 수 있으며, 심한 경우 겔화(gelation)되는 현상이 보고되었다. 따라서, 인간혈청알부민 제제의 제조에 있어, 필요한 열처리 공정에서 인간혈청알부민의 안정성을 장시간 유지시킬 수 있는 방법의 개발이 중요하다. 이에 본 발명에서는 1 내지 40 mg/㎖의 저농도 인간혈청알부민에 대하여 탄소수 16 내지 22의 지방산 또는 이의 약학적으로 허용가능한 염을 처리하였을 때, 60 내지 80℃의 온도에서 10시간 이상을 열처리하여도 알부민의 이차구조가 유지됨을 규명하였다. 이와 같은 본 발명의 방법은 수시간의 열처리 공정에도 알부민 구조의 안정성을 부여함으로써, 안정성이 증대된 알부민 제제의 개발에 대한 유용성을 가질 수 있다.Previously reported side effects of infectious diseases of albumin, as a way to overcome this, introduced a heat treatment process at 60 ℃ with a virus killing effect by cold ethanol for 10 hours. However, although albumin is a structurally very stable protein, the formation of dimers, oligomers and polymers may be induced during the heat treatment, and in severe cases, gelation has been reported. Therefore, in the preparation of human serum albumin preparations, it is important to develop a method capable of maintaining the stability of human serum albumin for a long time in the required heat treatment step. Therefore, in the present invention, when treated with a low concentration of human serum albumin of 1 to 40 mg / ㎖ of 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof, even if the heat treatment for 10 hours at a temperature of 60 to 80 ℃ The secondary structure of albumin was maintained. Such a method of the present invention may have a usefulness for the development of albumin preparations having increased stability by imparting stability of the albumin structure to the heat treatment process for several hours.
바람직하게, 상기 제1단계 및 제2단계는 순서대로 또는 역순으로 수행될 수 있다. 본 발명의 열안정화된 인간혈청알부민의 제조방법은 탄소수 16 내지 22의 지방산이 첨가된 인간혈청알부민 시료의 농도를 1 내지 40 mg/㎖의 낮은 수준으로 조절한 다음 열처리하는 경우, 수 시간의 열처리에도 안정성을 유지할 수 있는 것이 특징이다. 이때, 첨가되는 탄소수 16 내지 22의 지방산은 인간혈청알부민에 대하여 1:0.5 내지 1:2, 바람직하게는 1:0.7 내지 1:1.5, 보다 바람직하게는 1:0.8 내지 1:1.2, 보다 더 바람직하게는 1:1의 몰비가 되도록 첨가할 수 있다. 따라서, 인간혈청알부민에 탄소수 16 내지 22의 지방산을 첨가하는 제2단계는 최종 인간혈청알부민의 농도를 상기 수준으로 유지하는 한, 순서에 무관하게 인간혈청알부민의 농도를 조절하는 단계의 전 또는 후에 수행될 수 있다.Preferably, the first and second steps may be performed in sequence or in reverse order. In the method for preparing thermostable human serum albumin of the present invention, the concentration of human serum albumin sample containing 16 to 22 carbon atoms is 1-40 mg / ml. When the heat treatment after adjusting to a low level, it is characterized in that the stability can be maintained even after several hours of heat treatment. In this case, the fatty acid having 16 to 22 carbon atoms to be added is 1: 0.5 to 1: 2, preferably 1: 0.7 to 1: 1.5, more preferably 1: 0.8 to 1: 1.2, and even more preferably human serum albumin. Preferably a molar ratio of 1: 1. Therefore, the second step of adding fatty acids having 16 to 22 carbon atoms to human serum albumin is before or after adjusting the concentration of human serum albumin regardless of the order, as long as the final concentration of human serum albumin is maintained at the above level. Can be performed.
본 발명의 제조방법에 따라 상기 탄소수 16 내지 24의 지방산을 1 내지 40 mg/㎖의 저농도 인간혈청알부민에 처리하여, 이에 열을 가할 경우 5 내지 16 시간까지 가열 전 인간혈청알부민의 α-나선구조(α-Helix)의 80 내지 100%까지 유지할 수 있다.Α-helical structure of human serum albumin prior to heating up to 5 to 16 hours when heat is applied to low-concentration human serum albumin of 1 to 40 mg / ml of the C16-C24 fatty acid according to the preparation method of the present invention. up to 80 to 100% of (α-Helix).
이때, 상기 인간혈청알부민의 농도를 1 내지 40 mg/㎖로 조절하기 위하여, 알부민 제제의 제조에 일반적으로 사용되는 다양한 희석 완충액이 사용될 수 있다. 이러한 희석 완충액의 예로는, 히스티딘-완충액, 시트레이트-완충액, 숙신에이트-완충액, 아세테이트-완충액 또는 포스페이트-완충액 등을 포함할 수 있으며, 바람직하게는 50 mM 포타슘 포스페이트 및 150 mM NaCl(pH 7.5)의 혼합용액일 수 있으나, 이에 제한되지 않는다.At this time, in order to adjust the concentration of the human serum albumin to 1 to 40 mg / ㎖, various dilution buffers generally used in the preparation of albumin preparations can be used. Examples of such dilution buffers may include histidine-buffer, citrate-buffer, succinate-buffer, acetate-buffer or phosphate-buffer, and the like, preferably 50 mM potassium phosphate and 150 mM NaCl (pH 7.5). It may be a mixed solution of, but is not limited thereto.
본 발명의 방법에 따라 제공된 열안정화된 인간혈청알부민은 전술한 바와 같이 제제화하여 인간에 투여하는 것을 목적으로 하므로, 이의 제조방법은 오염 및/또는 감염 가능성을 차단하기 위한 열처리 과정을 포함할 수 있다. Since heat-stabilized human serum albumin provided according to the method of the present invention is intended to be formulated as described above and administered to humans, the preparation method thereof may include a heat treatment process to block the possibility of contamination and / or infection. .
따라서, 이를 제제화하기 위해서는 상기 인간혈청알부민을 60 내지 80℃로 가열하는 단계를 포함할 수 있고, 바람직하게는 65 내지 75℃, 더욱 바람직하게는 70℃로 가열할 수 있다. 이때, 본 발명에 따른 열안정화된 인간혈청알부민은 상기 온도에서 6시간 내지 15시간 동안, 바람직하게는 8시간 내지 12시간 동안, 더욱 바람직하게는 10시간 동안 가열하였을 때에도, 상기 인간혈청알부민의 α-나선구조(α-Helix)가 유지될 수 있는 것이 특징이다.Therefore, in order to formulate it may include the step of heating the human serum albumin to 60 to 80 ℃, preferably may be heated to 65 to 75 ℃, more preferably 70 ℃. At this time, the thermostable human serum albumin according to the present invention, even when heated at the temperature for 6 hours to 15 hours, preferably 8 hours to 12 hours, more preferably 10 hours, α of the human serum albumin It is characterized by the fact that the spiral structure (α-Helix) can be maintained.
본 발명의 일 실시예에서는, 1 mg/㎖ 농도의 인간혈청알부민에 올레산을 1:1의 몰비로 처리하고 60 내지 80℃에서 10시간 동안 가열한 후, 원편광이색성 측정값으로부터 α-나선구조의 구성비를 통하여 알부민의 구조안정성을 관찰한 결과, 60℃ 및 70℃에서는 안정성이 유지되었으나 80℃ 이상에서는 안정성이 감소하였음을 확인하였다(실시예 7, 도 5 내지 7).In one embodiment of the present invention, after treatment with human serum albumin at a concentration of 1 mg / ㎖ oleic acid in a molar ratio of 1: 1 and heated at 60 to 80 ℃ for 10 hours, α-helix from the measurement of circular dichroism As a result of observing the structural stability of albumin through the composition ratio of the structure, it was confirmed that the stability was maintained at 60 ℃ and 70 ℃, but the stability was reduced above 80 ℃ (Example 7, Figures 5 to 7).
또한, 1 내지 40 mg/㎖ 농도의 인간혈청알부민에 올레산을 1:1의 몰비로 처리하고 70℃에서 10시간동안 가열한 후에도, 안정성이 유지됨을 확인하였으며(실시예 8, 도 8), 올레산 이외에도 대표적으로 리놀레산, α-리놀렌산, γ-리놀렌산 및 팔미톨레산의 지방산을 처리하고, 70℃에서 10시간 동안 가열한 후에도, 안정성이 유지됨을 확인하였다(실시예 9, 도 9).In addition, it was confirmed that even after treatment with oleic acid in a molar ratio of 1: 1 to human serum albumin at a concentration of 1 to 40 mg / ml and heating at 70 ° C. for 10 hours (Example 8, FIG. 8), oleic acid In addition, after treating the fatty acids of linoleic acid, α-linolenic acid, γ-linolenic acid and palmitoleic acid typically, and after heating for 10 hours at 70 ℃, it was confirmed that the stability is maintained (Example 9, Figure 9).
이는 1 내지 40 mg/㎖의 저농도 인간혈청알부민의 열안정성이 올레산과 같은 탄소수 16 내지 24의 지방산의 첨가에 의해 현저히 높아짐을 시사한다. This suggests that the thermal stability of low concentrations of human serum albumin of 1 to 40 mg / ml is significantly increased by the addition of 16 to 24 carbon atoms such as oleic acid.
또 하나의 양태로서, 본 발명은 인간혈청알부민 제제를 제조하는 방법에 있어서, 인간혈청알부민에 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산 또는 이의 약학적으로 허용가능한 염을 처리하여 열처리하는 단계를 포함하는, 인간혈청알부민 제제의 제조방법을 제공한다.In still another aspect, the present invention provides a method for preparing a human serum albumin preparation, wherein the human serum albumin is heat treated by treating a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof. It provides a method for producing a human serum albumin preparation comprising the step.
상기 탄소수 16 내지 22의 지방산, 또는 이의 약학적으로 허용가능한 염, 이의 바람직한 첨가량 및 인간혈청알부민에 대해서는 상기에서 설명한 바와 같다.The fatty acids having 16 to 22 carbon atoms, or pharmaceutically acceptable salts thereof, preferred amounts thereof, and human serum albumin are as described above.
본 발명에서 사용되는 용어, "처리"는 열안정화를 위하여 탄소수 16 내지 24의 지방산 또는 이의 약학적으로 허용가능한 염을 화학적, 생물학적 작용 등 어떠한 형태로든 포함시키는 모든 과정을 총칭하는 의미이다. 예컨대, 열안정화된 인간혈청알부민을 제조하기 위한 배양과정에서 이를 배지 조성물에 포함시키거나, 인간혈청알부민의 가공과정에서 조성물의 형태로 포함시키는 등 열처리 이전의 어떠한 단계에서든지 적용시킬 수 있다.As used herein, the term "treatment" is a general term for all processes of including a fatty acid having 16 to 24 carbon atoms or a pharmaceutically acceptable salt thereof in any form, such as chemical or biological action, for thermal stabilization. For example, it may be applied at any stage prior to heat treatment, such as incorporating it into the medium composition during the culturing to prepare heat stabilized human serum albumin, or in the form of the composition in the processing of human serum albumin.
바람직하게 본 발명에 따른 인간혈청알부민 제제는 인간혈장으로부터 분리한 알부민 또는 유전자 조작에 의해 제조된 재조합 인간혈청알부민을 사용하여 제조할 수 있다.Preferably, the human serum albumin preparation according to the present invention may be prepared using albumin isolated from human plasma or recombinant human serum albumin prepared by genetic engineering.
본 발명에 따른 인간혈청알부민 제제는 전술한 바와 같이 인간에 투여하는 것을 목적으로 하므로, 이의 제조방법은 오염 및/또는 감염 가능성을 차단하기 위한 열처리 과정을 포함한다. 이에 따라, 상기 열처리 과정에 의한 단백질의 변성을 방지하기 위하여 인간혈청알부민에 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산 또는 이의 약학적으로 허용가능한 염을 처리하여 열안정화하는 단계를 포함하는 것이 특징이다.Since the human serum albumin preparation according to the present invention aims to be administered to humans as described above, the preparation method thereof includes a heat treatment process for blocking the possibility of contamination and / or infection. Accordingly, in order to prevent denaturation of the protein by the heat treatment process, the step of thermally stabilizing by treating the human serum albumin fatty acid selected from the group consisting of fatty acids having 16 to 22 or a pharmaceutically acceptable salt thereof Is characteristic.
기존의 인간혈청알부민 제제의 제조 과정에서는 옥탄산나트륨 및/또는 N-아세틸트립토판 등을 사용하여 열처리에 대한 안정성을 부여하였으나, 본 발명에서는 탄소수 16 내지 22의 지방산이 상기 화합물들에 비해 동등하거나 우수한 열안정화 효과를 가짐을 확인하였으며, 추가로 탄소수 18의 지방산의 경우 인간혈청알부민 제제에 포함되어 있는 바 부작용이 전혀 없이 자연적인 인간혈청알부민과 가장 유사한 형태 및 구조를 유지할 수 있다는 장점이 있다.In the conventional manufacturing process of human serum albumin, sodium octanoate and / or N-acetyl tryptophan are used to impart stability to heat treatment, but in the present invention, C16-C22 fatty acids have the same or superior heat compared to the compounds. It has been confirmed that it has a stabilizing effect, and in addition, the fatty acid having 18 carbon atoms has the advantage of being able to maintain the most similar form and structure to natural human serum albumin without any side effects included in the human serum albumin preparation.
본 발명의 제제를 제조함에 있어서, 재조합 인간혈청알부민을 사용하는 경우, 상기 재조합 인간혈청알부민은 바람직하게는 서열번호 1의 아미노산 서열을 갖는 폴리펩티드인 인간혈청알부민을 발현하는 형질전환체로부터 수득할 수 있다. 상기 형질전환체의 정의는 전술한 바와 동일하다.In preparing a preparation of the present invention, when using recombinant human serum albumin, the recombinant human serum albumin may be obtained from a transformant expressing human serum albumin, which is preferably a polypeptide having an amino acid sequence of SEQ ID NO: 1. have. The definition of the transformant is the same as described above.
본 발명에서 사용되는 용어, "처리"는 열안정화를 위하여 탄소수 16 내지 22의 지방산 또는 이의 약학적으로 허용가능한 염을 화학적, 생물학적 작용 등 어떠한 형태로든 포함시키는 모든 과정을 총칭하는 의미이다. 예컨대, 인간혈청알부민을 제조하기 위한 배양과정에서 배지 조성물에 포함시키거나, 인간혈청알부민의 가공과정에서 조성물의 형태로 포함시키는 등 열처리 이전의 어떠한 단계에서든지 적용시킬 수 있다.As used herein, the term "treatment" is a general term for all processes of including a fatty acid having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof in any form, such as chemical or biological action, for thermal stabilization. For example, it may be applied at any stage before heat treatment, such as inclusion in the medium composition in the culture process for producing human serum albumin, or in the form of the composition in the processing of human serum albumin.
바람직하게 형질전환 세포로부터 재조합 인간혈청알부민을 수득하는 경우, 본 발명의 제조방법은 형질전환 세포를 배양하는 단계를 포함할 수 있다. 이때, 탄소수 16 내지 22의 지방산 또는 이의 약학적으로 허용가능한 염을 처리하는 과정은 상기 형질전환 세포를 배양하는 배지에 본 발명의 조성물을 첨가하여 배양함으로써 달성될 수 있다.Preferably, when obtaining recombinant human serum albumin from the transformed cells, the production method of the present invention may comprise the step of culturing the transformed cells. At this time, the process of treating a fatty acid having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof may be achieved by adding the composition of the present invention to a culture medium for culturing the transformed cells.
상기 형질전환세포는 형질전환된 박테리아, 균류 및 효모 뿐만 아니라 인간혈청알부민을 발현하는 유전자 삽입 동물로부터 분리된 세포를 포함한다.The transformed cells include cells isolated from transgenic animals expressing human serum albumin as well as transformed bacteria, fungi and yeast.
또는, 배양된 형질전환 세포 또는 유전자 삽입 동물로부터 분리된 세포, 상기 세포 배양물 또는 배양액으로부터 또는 유전자 삽입 동물의 혈액 또는 혈장으로부터 재조합 인간혈청알부민을 분리 및/또는 정제한 후, 또는 인간혈장으로부터 인간혈청알부민을 분리 및/또는 정제한 후, 본 발명의 지방산 또는 이의 약학적으로 허용가능한 염을 포함하는 열안정화용 조성물을 처리하는 단계를 수행할 수 있다.Alternatively, recombinant human serum albumin is isolated and / or purified from cells isolated from cultured transformed cells or transgenic animals, from said cell culture or culture or from blood or plasma of transgenic animals, or from human plasma. After separation and / or purification of serum albumin, a step of treating the composition for thermal stabilization comprising the fatty acid of the present invention or a pharmaceutically acceptable salt thereof may be performed.
상기 분리된 인간혈청알부민은 인간혈청알부민을 발현하는 형질전환동물의 혈액 또는 혈청, 형질전환세포, 상기 세포의 배양물 또는 배양액, 또는 인간의 혈액 또는 혈청으로부터 분리 및/또는 정제된 인간혈청알부민일 수 있다.The isolated human serum albumin is human serum albumin isolated and / or purified from blood or serum of a transgenic animal expressing human serum albumin, transformed cells, culture or culture of the cells, or human blood or serum. Can be.
현재 당업계에 이용되고 있는 인간혈청알부민 제제의 제조방법은 이에 포함되어 있을 수 있는 바이러스 예컨대, AIDS 및 B형 간염바이러스 등을 불활성화시키기 위하여 60℃에서 10시간 동안 열처리하는 단계를 포함한다.Methods for preparing human serum albumin preparations currently used in the art include heat treatment at 60 ° C. for 10 hours to inactivate viruses, such as AIDS and hepatitis B virus, which may be included therein.
본 발명의 구체적인 실시예에 따르면, 생리활성 농도 예컨대, 50 mg/㎖ 농도의 지방산 유리 인간혈청알부민 용액에 탄소수 16 내지 22의 다양한 지방산을 1:1의 몰비로 처리한 후 60℃ 이상의 온도에서 열처리하면서 단백질의 변성정도를 확인한 결과, 70℃ 전후의 온도까지는 지방산의 종류에 따라 정도의 차이는 있으나, 지방산을 처리하지 않은 인간혈청알부민 용액에 비해 변성속도가 감소된 것을 확인하였다. 특히, 올레산을 처리한 경우 일반적인 인간혈청알부민 제제의 제조방법에 사용되는 열처리 온도인 60℃에서 10시간 이상 변성이 관찰되지 않았음은 물론 이보다 높은 65℃에서도 6시간 가까이 변성되지 않고 유지됨을 확인할 수 있었다(표 3).According to a specific embodiment of the present invention, after treating various fatty acids having 16 to 22 carbon atoms in a molar ratio of 1: 1 to a physiologically active concentration such as 50 mg / ml of fatty acid free human serum albumin solution, the heat treatment is performed at a temperature of 60 ° C. or higher. As a result of confirming the degree of protein denaturation, the degree of degeneration was found to be around 70 ° C. depending on the type of fatty acid, but the rate of denaturation was reduced compared to the human serum albumin solution without the fatty acid treatment. Particularly, when oleic acid was treated, no denaturation was observed for 10 hours or more at 60 ° C., which is a heat treatment temperature used in a general method for preparing human serum albumin preparations, and it was confirmed that it was maintained without being denatured for almost 6 hours even at a higher 65 ° C. (Table 3).
또한, 전술한 바와 같이, 본 발명은 특히 인간혈청알부민의 농도를 1 내지 40 mg/㎖의 낮은 수준으로 유지하는 한, 농도조절 전 또는 후에 탄소수 16 내지 22의 지방산을 첨가하여 열안정화된 인간혈청알부민을 제공할 수 있다. 본 발명의 일구현예에 따르면, 상기 열안정화된 인간혈청알부민은 열처리 온도를 80℃까지 증가시켜도 10시간 이상 이차구조를 유지할 수 있는 안정성을 가질 수 있다. 또한 100℃에서도 수 분간 변성되지 않고 안정한 상태를 유지할 수 있다. 따라서, 본 발명에 따른 인간혈청알부민 제제의 제조방법에서, 상기 인간혈청알부민은 탄소수 16 내지 22의 지방산 또는 이의 약학적으로 허용가능한 염을 처리하기 전 또는 후에 1 내지 40 mg/㎖의 저농도로 조절할 수 있다.In addition, as described above, the present invention is particularly heat-stabilized human serum by adding fatty acids having 16 to 22 carbon atoms before or after the concentration control, so long as the concentration of human serum albumin is maintained at a low level of 1 to 40 mg / ml. Albumin may be provided. According to one embodiment of the present invention, the heat stabilized human serum albumin may have stability capable of maintaining a secondary structure for at least 10 hours even if the heat treatment temperature is increased to 80 ° C. Moreover, even in 100 degreeC, it can maintain a stable state, without being denatured for several minutes. Therefore, in the preparation method of the human serum albumin preparation according to the present invention, the human serum albumin is controlled at a low concentration of 1 to 40 mg / ml before or after treatment with 16 to 22 carbon atoms or pharmaceutically acceptable salts thereof. Can be.
이와 같이 저농도로 조절된 경우에는 80℃까지 온도를 높여도 변성되지 않고 안정한 상태로 존재하는 시간이 길어지므로, 장시간의 열처리 공정이 적용되는 경우 이와 같이 인간혈청알부민의 농도를 1 내지 40 mg/㎖로 조절할 수 있다.In this case, when the concentration is adjusted to 80 ° C., the time to increase the temperature to 80 ° C. is not denatured and remains stable. Therefore, when a long heat treatment process is applied, the concentration of human serum albumin is 1 to 40 mg / ml. Can be adjusted with.
따라서, 본 발명에 따른 인간혈청알부민 제제의 제조방법에서, 80℃ 가량의 고온 열처리가 장시간 필요한 경우에는 상기 인간혈청알부민을 포함하는 시료를 탄소수 16 내지 22의 지방산 또는 이의 약학가능한 염을 처리하기 전 또는 후에 1 내지 40 mg/㎖의 농도로 조절할 수 있다.Therefore, in the method for preparing human serum albumin preparation according to the present invention, when high temperature heat treatment of about 80 ° C. is required for a long time, the sample containing human serum albumin is treated with a fatty acid having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof. Or later, to a concentration of 1 to 40 mg / ml.
이와 같이 시료를 1 내지 40 mg/㎖의 농도로 조절한 경우에는 60 내지 80℃의 온도로 가열할 수 있으며, 이는 상기에서 설명한 바와 같이, 본 발명에 따른 열안정화된 인간혈청알부민을 제제화하여 인간에 투여하기 위하여 오염 및/또는 감염 가능성을 차단하기 위한 열 처리 과정에 해당한다.As such, when the sample is adjusted to a concentration of 1 to 40 mg / ml, the sample may be heated to a temperature of 60 to 80 ° C., as described above, by formulating a thermostable human serum albumin according to the present invention to human Corresponds to the heat treatment procedure to block the possibility of contamination and / or infection for administration to.
이와 같은 열처리 수행 후에는 개체에 적용하기 알맞은 농도, 예컨대 생리 활성 농도 이상인 50 내지 200mg/mL의 농도로 농축하는 단계를 거칠 수 있다. 이는 상기에서 장기간의 열처리를 위하여 1 내지 40 mg/㎖로 조절된 인간혈청알부민 시료를 열처리 후 인간을 포함하는 개체에 투여하기 위해 적정한 농도로 농축하는 단계에 해당한다.After performing such heat treatment, the step may be concentrated to a concentration suitable for the subject, such as a concentration of 50 to 200 mg / mL, which is higher than the physiologically active concentration. This corresponds to the step of concentrating a human serum albumin sample adjusted to 1 to 40 mg / ml for a long term heat treatment to an appropriate concentration for administration to a subject including a human after heat treatment.
상기 농축단계는 일반적으로 통용되는 농축방법에 의해 이루어질 수 있으며, 그 예로 10 내지 30kD의 MWCO(Molecular Weight Cut Off)를 가지는 한외여과막을 사용하여 원심분리 방법으로 적정 농도가 될 때까지 농축할 수 있으나, 이에 제한되지 않는다.The concentration step may be made by a commonly used concentration method, for example, using an ultrafiltration membrane having a MWCO (Molecular Weight Cut Off) of 10 to 30 kD can be concentrated until the proper concentration by centrifugation method This is not restrictive.
상기 인간혈청알부민 제제의 적정 농도는 인간혈청알부민 제제로서 사용될 수 있는 농도라면 특별히 이에 제한되지 않으나, 50 내지 200 mg/㎖ 농도일 수 있다.An appropriate concentration of the human serum albumin preparation is not particularly limited as long as it can be used as a human serum albumin preparation, but may be 50 to 200 mg / ml.
상기와 같은 과정으로 제조한 인간혈청알부민 제제는 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 인간을 포함하는 개체에 투여될 수 있다. 바람직한 투여방식 및 제제는 정맥 주사제, 피하 주사제, 피내 주사제, 근육 주사제, 점적 주사제 등의 주사제일 수 있다. 주사제는 생리식염액, 링겔액 등의 수성용제, 식물유, 고급 지방산 에스테르(예, 올레인산에칠 등), 알코올 류(예, 에탄올, 벤질알코올, 프로필렌글리콜, 글리세린 등) 등의 비수성용제 등을 이용하여 제조할 수 있고, 변질 방지를 위한 안정화제(예, 아스코르빈산, 아황산수소나트륨, 피로아황산나트륨, BHA, 토코페롤, EDTA 등), 유화제, pH 조절을 위한 완충제, 미생물 발육을 저지하기 위한 보존제(예, 질산페닐수은, 치메로살, 염화벤잘코늄, 페놀, 크레솔, 벤질알코올 등) 등의 약학적 담체를 포함할 수 있다.Human serum albumin preparations prepared by such a process can be administered to a subject, including humans, by any device in which the active substance can migrate to target cells. Preferred modes of administration and preparations can be injections, such as intravenous, subcutaneous, intradermal, intramuscular, intraocular, or injectable. Injectables include aqueous solvents such as physiological saline solution and ring gel solution, vegetable oils, higher fatty acid esters (e.g., oleic acid, etc.), and non-aqueous solvents such as alcohols (e.g., ethanol, benzyl alcohol, propylene glycol, glycerin, etc.). Stabilizers (e.g., ascorbic acid, sodium bisulfite, sodium pyrosulfite, BHA, tocopherol, EDTA, etc.), emulsifiers, buffers for pH adjustment, preservatives to prevent microbial growth (Eg, phenyl mercury nitrate, chimerosal, benzalkonium chloride, phenol, cresol, benzyl alcohol, and the like).
이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are intended to illustrate the present invention more specifically, but the scope of the present invention is not limited by these examples.
생리활성을 갖는 혈장유래 인간혈청알부민의 구조분석을 위하여 녹십자사의 인간혈청알부민을 결정화하였다. 이하, 침전제 실험을 통하여 결정된 결정화를 위한 최적의 농도는 80 mg/ml로 결정하였다. 초기 결정화는 희소행렬(sparse matrix) 이론(Jancarik & Kim, 1991)에 의거한 Hampton research 사(Naguna Niguel, Ca, USA)의 스크리닝 키트인 스크린 I & II, 인덱스 스크린 시약을 이용하였으며 행잉드롭(hanging drop) 또는 시팅드롭(sitting drop) 증기확산법(vapor diffusion method)을 이용하여 수동 또는 자동화 방법으로 수행하였다. 자동화 방법은 본 실험실에서 제작한 고효율 결정화 시스템(high-throughput crystallization system)에서 사용하는 Hydra e-Drop(Thermo Scientific, Waltham, MA, USA)을 이용하여 수행하였다.Green serum human serum albumin was crystallized for the structural analysis of plasma-derived human serum albumin. Hereinafter, the optimum concentration for crystallization determined through the precipitant experiment was determined to be 80 mg / ml. Initial crystallization was done using screen I & II, index screen reagent, a screening kit from Hampton Research (Naguna Niguel, Ca, USA) based on sparse matrix theory (Jancarik & Kim, 1991). It was carried out by manual or automated method using drop or sitting drop vapor diffusion method. The automated method was performed using Hydra e-Drop (Thermo Scientific, Waltham, Mass., USA) used in the high-throughput crystallization system manufactured in this laboratory.
이후 데이터 수집에 적합한 결정화를 위하여 수동 정제 스크린(manual refine screen)을 통하여 녹십자사의 인간혈청알부민의 결정화를 위한 최적의 농도를 결정하기 위하여 150 mg/ml로 진행하였다.Thereafter, the crystallization process was performed at 150 mg / ml to determine the optimal concentration for crystallization of human serum albumin from Green Cross through a manual refine screen.
상기 과정을 통하여 결정된 인간혈청알부민의 최종 결정화 조건은 하기와 같다: 35% PEG 600, 0.1 M MES(2-(N-Morpholino) ethanesulfonic Acid) pH 6.5 및 0.2 M 황산암모늄(ammonium sulfate)을 포함하는 모액(mother liquor) 즉, 결정화용액 200 ㎕가 들어있는 웰에 상기 결정화 용액과 150 mg/ml 단백질 용액을 1:1로 섞어서 만든 행잉드롭(hanging drop) 2 ㎕를 커버글래스(cover glass)에 올려놓고 행잉드롭 확산법(diffusion method)으로 결정을 만들었다.The final crystallization conditions of human serum albumin determined through the above procedure are as follows: 35% PEG 600, containing 0.1 M MES (2- (N-Morpholino) ethanesulfonic Acid) pH 6.5 and 0.2 M ammonium sulfate 2 μl of a hanging drop made by mixing the crystallization solution and the 150 mg / ml protein solution in a well containing 200 μl of a mother liquor, that is, a crystallization solution, was put on a cover glass. The crystals were placed by the hanging drop diffusion method.
실시예 2: 혈장유래 인간혈청알부민의 동결(cryo) 조건 탐색Example 2: Screening of cryo conditions of plasma-derived human serum albumin
안정화된 동결조건을 찾는 과정은 싱크로트론(Synchrotron)을 이용한 데이터 수집과정에서 있어서 필수적인 단계이다. 이는 싱크로트론으로부터의 방사선(radiation)의 세기가 강해, 결정들이 데이터 수집과정에서 쉽게 분해(decay)되어 완전한 데이터 수집이 불가능하기 때문이다. 따라서 결정을 순간 냉동(flash frozen)시킬 수 있는 결정화 용액의 조건을 찾아내야 한다.Finding stabilized freezing conditions is an essential step in the data collection process using Synchrotron. This is because the intensity of the radiation from the synchrotron is so strong that crystals are easily decayed during the data collection process and complete data collection is not possible. Therefore, the conditions of the crystallization solution that can flash frozen the crystals should be found.
이에 본 발명에서는 녹십자사의 인간혈청알부민에 대하여 LV CryoOil(MiTeGen, Ithaca, NY)을 사용하였다. 녹십자사의 인간혈청알부민 결정이 있는 드롭 옆에 2㎕의 LV CryoOil을 놓고 결정을 마운팅 루프(mounting loop)로 건져서 LV CryoOil에 담갔다가 다시 결정을 마운팅 루프로 건져서 순간 냉동시켰다.Therefore, in the present invention, LV CryoOil (MiTeGen, Ithaca, NY) was used for human serum albumin of Green Cross. 2 μl of LV CryoOil was placed next to the drop containing Green Serum Albumin crystals of Green Cross, the crystals were transferred to the mounting loop, soaked in the LV CryoOil, and the crystals were again frozen to the mounting loop.
실시예 3: 혈장유래 인간혈청알부민의 X-선 자료수집Example 3: X-ray Data Collection of Plasma-Derived Human Serum Albumin
녹십자사의 인간혈청알부민에 대한 데이터를 X-선 오스트레일리아 싱크로트론(Australian Synchrotron)에서 2.17 Å까지 수집하였다. 검출기는 ADSC Q315r였다. 각 수치는 하기 표 1에 나타내었다. 또한 이로부터 혈청유래 인간혈청알부민 결정의 3차원 구조를 계산하여 도 1에 나타내었다.Data on human serum albumin from Green Cross were collected up to 2.17 mm 3 on X-ray Australian Synchrotron. The detector was an ADSC Q315r. Each value is shown in Table 1 below. In addition, the three-dimensional structure of the serum-derived human serum albumin crystal from this is shown in FIG.
표 1
Figure PCTKR2013011792-appb-T000001
Table 1
Figure PCTKR2013011792-appb-T000001
실시예 4: 분자치환법을 이용한 혈장유래 인간혈청알부민의 위상문제 해결Example 4 Solving the Phase Problem of Plasma-Derived Human Serum Albumin Using Molecular Substitution
녹십자사의 인간혈청알부민의 결정구조는 분자치환법(molecular replacement)으로 규명하였다. 즉, 단백질 사이의 구조적인 유사성이 예상되는 경우 기존에 알려진 구조를 이용하여 분자치환(molecular replacement)에 의한 위상문제의 해결방법을 사용하였다. 상기 방법은 빠른 회전 기능(fast rotation function)을 이용하여 분자의 방향성(orientation)을 찾고, 번역 기능(translation function), R-인자 검색(R-factor search), 상관관계 검색(correlation search) 등의 계산을 통하여 분자의 위치를 찾는다. 이렇게 얻어낸 근사적인 방향성과 위치를 강체 정밀화 계산(rigid body refinement) 또는 R-인자 최소화 검색(R-factor minimization search) 방법으로 더 정밀하게 한 다음, 원자위치의 정밀화 계산(refinement)과 모델수정(model rebuilding)을 진행하였다. 본 연구에서는 아포-인간혈청알부민(apo-human serum albumin; apo-HSA, PDB ID:1AO6)의 구조를 검색 모델(search model)로 이용하여 EPMR을 사용, 녹십자사의 인간혈청알부민에 대한 해법(solution)을 찾아내었다.The crystal structure of human serum albumin of Green Cross was determined by molecular replacement method. That is, when structural similarity between proteins is expected, a solution of the phase problem by molecular replacement was used using a known structure. The method finds the orientation of molecules by using a fast rotation function, such as a translation function, an R-factor search, a correlation search, and the like. The calculation finds the position of the molecule. The approximate orientations and positions thus obtained are further refined by rigid body refinement or R-factor minimization search, followed by refinement and model modification of atomic positions. rebuilding). In this study, the solution of human serum albumin (Green Cross) using EPMR using the structure of apo-human serum albumin (apo-HSA, PDB ID: 1AO6) as a search model Found.
실시예 5: 혈장유래 인간혈청알부민의 삼차원 결정구조 규명Example 5 Identification of Three-Dimensional Crystal Structure of Plasma-Derived Human Serum Albumin
녹십자사의 인간혈청알부민의 위상은 인간알부민 모델을 이용한 분자치환법으로 얻었다. 초기 모델은 그래픽 소프트웨어인 COOT와 O를 이용하여 만들었으며 에너지 최소화(energy minimization)는 CNS를 이용하여 진행하였다. 최종적인 모델은 PHENIX를 통하여 얻었다. 최종 모델의 정밀화 값은 표 2에 기록하였다.The phase of human serum albumin of Green Cross was obtained by molecular replacement method using human albumin model. Early models were created using COOT and O, which are graphic software, and energy minimization was performed using the CNS. The final model was obtained through PHENIX. Refinement values of the final model are reported in Table 2.
표 2
Figure PCTKR2013011792-appb-T000002
TABLE 2
Figure PCTKR2013011792-appb-T000002
이와 같은 방법으로 규명된 삼차원 구조는 기본적으로 기존의 apo-HSA 구조와 유사하다. 제제 수준의 혈장유래 인간혈청알부민(pharmaceutical grade plasma-derived HSA)의 제조공정에서 사용되는 옥탄산염(octanoic acid)과 N-아세틸 트리립토판(N-acetyl tryptophan)의 결합위치도 확인하였다. 두 개의 옥탄산염은 지방산 결합부위로 알려진 자리에 결합되었고 N-아세틸 트립토판은 Sudlow site II에 결합되었다. 이와 더불어, 예상치 못한 지방산의 결합이 확인되었고, 이후 X-ray 구조와 질량분광법 분석 결과 상기 지방산은 올레산 등의 탄소수 18의 지방산인 것을 확인하였다. 현재 상용화되고 있는 녹십자사와 SK사의 20% 인간혈청알부민 주사제의 질량분석결과를 각각 도 2와 3에 나타내었다.The three-dimensional structure identified in this way is basically similar to the existing apo-HSA structure. The binding sites of octanoic acid and N-acetyl tryptophan used in the preparation of pharmaceutical grade plasma-derived HSA were also identified. Two octanates bound to sites known as fatty acid binding sites and N-acetyl tryptophan bound to Sudlow site II. In addition, the unexpected binding of fatty acids was confirmed, and after the X-ray structure and mass spectrometry analysis, it was confirmed that the fatty acids are fatty acids having 18 carbon atoms such as oleic acid. Mass spectrometry results of 20% human serum albumin injections of Green Cross and SK, which are currently commercialized, are shown in FIGS. 2 and 3, respectively.
실시예 6: 인간혈청알부민의 열변성에 대한 지방산의 효과Example 6 Effect of Fatty Acids on Thermal Degeneration of Human Serum Albumin
6.1. 인간혈청알부민의 열변성에 대한 올레산의 효과6.1. Effect of Oleic Acid on the Heat Degeneration of Human Serum Albumin
녹십자사의 인간혈청알부민의 구조규명 결과 혈장유래 인간혈청알부민에 결합되어 있는 것으로 확인된 올레산에 의한 영향을 규명하고자 하였다. 이에 본 발명자들은 온도에 따른 안정성에 영향을 줄 수 있을 것으로 예측하였다. 따라서 지방산 유리(fatty acid free) 인간혈청알부민(A3782, Sigma-Aldrich) 용액에 올레산을 첨가하고 고온에서의 열처리 실험을 수행한 후, 발생하는 변화를 관찰하고 그 결과를 하기 표 3 내지 6 및 도 4에 나타냈다. 대조군으로는 올레산을 처리하지 않은 지방산 유리(fatty acid free) 인간혈청알부민 용액을 사용하였다. 상기 인간혈청알부민 용액의 농도는 50 mg/ml 이었으며, 상기 용액을 25 ㎕ 취하고 실험군에는 이와 동일한 몰비가 되도록 올레산을 첨가하였다. 구체적으로 온도를 65℃, 70℃ 및 75℃로 유지하면서 각각 30분, 5분 및 3분 간격으로 단백질의 변성으로 인한 침전 형성 여부를 확인하였다. 가장 높은 온도인 75℃에서는 대조군과 실험군에서의 차이를 관찰할 수 없었다. 그러나, 대조군은 70℃에서는 10분 후부터, 65℃에서는 30분 후부터 침전이 생기기 시작하는 반면, 올레산을 첨가한 군에서는 70℃에서는 30분 후부터, 65℃에서는 330분 후부터 침전이 형성되기 시작하였다. 따라서, 올레산이 고온에서 인간혈청알부민의 안정화에 크게 기여할 수 있음을 확인하였다. 즉, 올레산의 첨가로 제제화에 필수적인 과정인 열처리 과정에 대한 안정성을 부여할 수 있으므로, 기존의 열안정화제로 첨가되었던 옥탄산 나트륨 및 N-아세틸 트립토판을 대신하여 사용될 수 있음을 확인하였다.The purpose of this study was to investigate the effect of oleic acid found to be bound to plasma-derived human serum albumin. The present inventors predicted that the stability may be affected by temperature. Therefore, after adding oleic acid to a fatty acid free human serum albumin (A3782, Sigma-Aldrich) solution and performing a heat treatment experiment at a high temperature, the changes occurring are observed and the results are shown in Tables 3 to 6 and FIG. 4 is shown. As a control, a fatty acid free human serum albumin solution without oleic acid was used. The concentration of the human serum albumin solution was 50 mg / ml, 25 μl of the solution was added, and oleic acid was added to the experimental group in the same molar ratio. Specifically, the temperature was maintained at 65 ° C., 70 ° C., and 75 ° C. to determine whether precipitates were formed due to protein denaturation at 30, 5, and 3 minute intervals, respectively. At 75 ° C, the highest temperature, no difference was observed between the control and experimental groups. However, in the control group, precipitation began to occur after 10 minutes at 70 ° C. and after 30 minutes at 65 ° C., whereas precipitation began to form after 30 minutes at 70 ° C. and after 330 minutes at 65 ° C. in the oleic acid-added group. Therefore, it was confirmed that oleic acid can contribute significantly to the stabilization of human serum albumin at high temperature. That is, since the addition of oleic acid can give stability to the heat treatment process, which is an essential process for the formulation, it was confirmed that it can be used in place of sodium octanate and N-acetyl tryptophan, which was added as a conventional heat stabilizer.
표 3
Figure PCTKR2013011792-appb-T000003
TABLE 3
Figure PCTKR2013011792-appb-T000003
표 4
Figure PCTKR2013011792-appb-T000004
Table 4
Figure PCTKR2013011792-appb-T000004
표 5
Figure PCTKR2013011792-appb-T000005
Table 5
Figure PCTKR2013011792-appb-T000005
표 6
Figure PCTKR2013011792-appb-T000006
Table 6
Figure PCTKR2013011792-appb-T000006
6.2. 인간혈청알부민의 열변성에 대한 다양한 탄소수 18의 지방산의 효과6.2. Effects of Various C18 Fatty Acids on Thermal Degeneration of Human Serum Albumin
상기 실시예 6.1.에서 올레산을 이용하여 열처리에 의한 변성에 대한 안정성을 확인한 실험과 동일한 방법으로 올레산 뿐만 아니라 다른 탄소수 18의 지방산인 스테아르산, 리놀레산, α-리놀렌산 및 γ-리놀렌산을 이용하여 70℃에서 열안정화 효과를 확인하였다. 30분까지는 3분 간격으로 이후로는 5분 간격으로 관찰하였다. 대조군으로는 실시예 6.1.과 동일하게 지방산을 처리하지 않은 지방산 유리(fatty acid free) 인간혈청알부민 용액을 사용하였다. 하기 표 7에 나타난 결과와 같이, 상기 탄소수 18의 지방산을 처리한 실험군 모두가 대조군 인간혈청알부민에 비해 뛰어난 열처리에 의한 변성에 대한 안정성을 갖는 것을 확인하였다. 상기 실시예 6.1.에 기재한 바와 같이 각각의 지방산은 알부민과 동일한 몰비를 갖도록 첨가하였다.In the same manner as the experiment that confirmed the stability to the denaturation by heat treatment using the oleic acid in Example 6.1. 70 ℃ using oleic acid as well as other C18 fatty acids stearic acid, linoleic acid, α- linolenic acid and γ- linolenic acid The thermal stabilization effect was confirmed at. Up to 30 minutes were observed at 3 minute intervals and thereafter at 5 minute intervals. As a control, a fatty acid free human serum albumin solution which was not treated with fatty acids was used as in Example 6.1. As shown in Table 7 below, it was confirmed that all of the experimental groups treated with the C18 fatty acid had stability against denaturation by excellent heat treatment compared to the control human serum albumin. As described in Example 6.1 above, each fatty acid was added to have the same molar ratio as albumin.
표 7
Figure PCTKR2013011792-appb-T000007
TABLE 7
Figure PCTKR2013011792-appb-T000007
6.3. 인간혈청알부민의 열변성에 대한 다양한 탄소수 16의 지방산의 효과6.3. Effects of Fatty Acids of Various Carbon Numbers 16 on Thermal Degeneration of Human Serum Albumin
상기 실시예 6.1. 및 6.2.에서 올레산을 비롯한 다양한 탄소수 18의 지방산을 이용하여 열처리에 의한 변성에 대한 안정성을 확인한 실험과 동일한 방법으로 탄소수 18의 올레산 뿐만 아니라 탄소수 16의 지방산인 팔미트산(palmitic acid) 및 팔미톨레산(palmitoleic acid)을 이용하여 65℃에서 열안정화 효과를 확인하였다. 시료를 65℃로 가온하고 5분 간격으로 관찰하였다. 대조군으로는 상기 실시예 6.1. 및 6.2.과 동일하게 지방산을 처리하지 않은 지방산 유리 인간혈청알부민 용액을 사용하였다. 하기 표 8에 나타난 결과와 같이, 상기 탄소수 16의 지방산을 처리한 실험군 모두가 대조군 인간혈청알부민에 비해 현저히 뛰어난 열처리에 의한 변성에 대한 안정성을 갖는 것을 확인하였다. 상기 실시예 6.1. 및 6.2.에 기재한 바와 같이 각각의 지방산은 알부민과 동일한 몰비를 갖도록 첨가하였다.Example 6.1 above. In the same manner as in the experiment to confirm the stability of the denaturation by heat treatment using a variety of carbon 18 fatty acids, including oleic acid and in 6.2. Palmitic acid (palmitic acid) and palmitol as fatty acids of 16 carbon atoms as well as oleic acid of 18 carbon atoms The thermal stabilization effect was confirmed at 65 ° C. using lemic acid. Samples were warmed to 65 ° C. and observed at 5 minute intervals. Example 6.1 as a control. And as in 6.2, a fatty acid free human serum albumin solution which was not treated with fatty acids was used. As shown in Table 8 below, it was confirmed that all of the experimental groups treated with the C16 fatty acid had stability against denaturation by heat treatment significantly superior to the control human serum albumin. Example 6.1 above. And each fatty acid was added to have the same molar ratio as albumin.
표 8
Figure PCTKR2013011792-appb-T000008
Table 8
Figure PCTKR2013011792-appb-T000008
6.4. 인간혈청알부민의 열변성에 대한 EPA 및 DHA의 효과6.4. Effect of EPA and DHA on Heat Degeneration of Human Serum Albumin
상기 실시예 6.1. 내지 6.3.에서 다양한 탄소수 16 및 18의 지방산을 이용하여 열처리에 의한 변성에 대한 안정성을 확인한 실험과 동일한 방법으로 탄소수 18의 올레산 뿐만 아니라 탄소수 20 및 22의 지방산인 EPA(eicosapentaenoic acid) 및 DHA(docosahexanoic acid)를 이용하여 65℃에서 열안정화 효과를 확인하였다. 시료를 65℃로 가온하고 처음 60분간은 5분 간격으로, 이후 130분까지는 10분 간격으로, 그 이후로는 30분 간격으로 관찰하였다. 대조군으로는 상기 실시예 6.1. 내지 6.3.과 동일하게 지방산을 처리하지 않은 지방산 유리 인간혈청알부민 용액을 사용하였다. 하기 표 9에 나타난 결과와 같이, 상기 EPA 및 DHA을 처리한 실험군 모두가 대조군 인간혈청알부민에 비해 현저히 뛰어난 올레산과 유사한 수준의 열처리에 의한 변성에 대한 안정성을 갖는 것을 확인하였다. 상기 실시예 6.1. 내지 6.3.에 기재한 바와 같이 각각의 지방산은 알부민과 동일한 몰비를 갖도록 첨가하였다.Example 6.1 above. EPA (eicosapentaenoic acid) and DHA (docosahexanoic), which are fatty acids having 20 and 22 carbon atoms, as well as oleic acid having 18 carbon atoms, in the same manner as in the experiments that confirmed the stability to degeneration by heat treatment using various fatty acids having 16 and 18 carbon atoms in 6.3. acid) was used to determine the thermal stabilization effect at 65 ℃. The samples were warmed to 65 ° C. and observed at 5 minute intervals for the first 60 minutes, then at 10 minute intervals up to 130 minutes, and then at 30 minute intervals thereafter. Example 6.1 as a control. Fatty acid free human serum albumin solution without fatty acid treatment was used as in 6.3. As shown in the following Table 9, it was confirmed that all of the experimental group treated with EPA and DHA had a stability against denaturation by heat treatment at a level similar to oleic acid, which is significantly superior to the control human serum albumin. Example 6.1 above. Each fatty acid was added to have the same molar ratio as albumin as described in 6.3.
표 9
Figure PCTKR2013011792-appb-T000009
Table 9
Figure PCTKR2013011792-appb-T000009
실시예 7: 저농도의 인간혈청알부민 시료의 열처리에 대한 구조적 안정성 시 Example 7: Structural Stability Test of Heat Treatment of Low Concentration Human Serum Albumin Sample
(1) 인간혈청알부민 시료의 준비(1) Preparation of human serum albumin sample
녹십자 알부민, A3782 알부민(Sigma), A1653 알부민(Sigma)을 각각 1mg/㎖가 되도록 20mM 인산칼륨 완충액(Potassium phosphate buffer, pH 7.5)로 희석하였다. 그리고 올레산을 알부민과 몰비가 1:1이 되도록 녹십자 알부민과 A3782 알부민에 각각 가한 후 4℃에서 밤새 반응시켜, 총 5가지 인간혈청알부민 검체로 준비하였다; i) 녹십자(상온), ii) A1653 알부민, iii) A3782 알부민, iv) A3782 알부민+올레산(1:1 몰비), v) 녹십자 알부민+올레산(1:1 몰비).Green cross albumin, A3782 albumin (Sigma) and A1653 albumin (Sigma) were diluted with 20 mM potassium phosphate buffer (pH 7.5) to 1 mg / ml, respectively. And oleic acid was added to green cross albumin and A3782 albumin so that albumin and molar ratio was 1: 1, and then reacted overnight at 4 ° C. to prepare a total of five human serum albumin samples; i) Green cross (room temperature), ii) A1653 albumin, iii) A3782 albumin, iv) A3782 albumin + oleic acid (1: 1 molar ratio), v) Green cross albumin + oleic acid (1: 1 molar ratio).
(2) 알부민의 원편광이색성(circular dichroism) 측정 방법(2) Measurement method of circular dichroism of albumin
원편광이색성(Circular dichroism)은 단백질의 이차구조의 구성비를 예측할 수 있어 열 변성된 단백질의 구조 변화를 측정할 수 있다. 열 변성되지 않은 원래의 녹십자 알부민과 열 변성된 다섯 종류의 알부민 검체를 모두 0.25 mg/㎖이 되도록 20mM 인산칼륨 완충액(Potassium phosphate buffer, pH 7.5)으로 희석하였다.Circular dichroism can predict the composition ratio of the secondary structure of the protein and can measure the structural change of the heat denatured protein. The original non-thermally denatured green cross albumin and all five thermally denatured albumin samples were diluted with 20 mM potassium phosphate buffer (pH 7.5) to 0.25 mg / ml.
원편광이색성의 측정은 Jasco J-715 spectropolarimeter로 path length가 0.1cm인 quartz cuvette을 사용하였고, data pitch 0.2nm, band width 1.0nm, response time 4초, scanning speed 50 nm/min로 각 3회씩 측정하였다. 측정한 원편광이색성 측정값으로부터 이차구조의 구성비를 Dicroprot 프로그램에 포함되어 있는 SELCON3 프로그램을 이용하여 예측하였다.The circular dichroism was measured using a Jasco J-715 spectropolarimeter with a quartz cuvette with a path length of 0.1 cm and measured three times with a data pitch of 0.2 nm, band width of 1.0 nm, response time of 4 seconds, and scanning speed of 50 nm / min. It was. From the measured circular dichroism measurements, the composition ratio of the secondary structure was predicted using the SELCON3 program included in the Dicroprot program.
(3) 60℃에서의 인간혈청알부민의 열처리에 대한 구조적 안정성 시험(3) Structural stability test for heat treatment of human serum albumin at 60 ° C
상기 실시예 7(1)에서 준비된 5가지 인간혈청알부민 검체(녹십자 알부민, A3782 알부민, A1653 알부민, 녹십자 알부민+올레산(1:1 몰비), A3782 알부민+올레산(1:1 몰비))를 60℃에서 10시간 가열하였다.Five human serum albumin samples (green cross albumin, A3782 albumin, A1653 albumin, green cross albumin + oleic acid (1: 1 molar ratio), A3782 albumin + oleic acid (1: 1 molar ratio) prepared in Example 7 (1) were 60 ° C. Heated at 10 h.
이후, 상기 실시예 7(2)의 방법으로 원편광이색성 측정을 한 결과, 상기 알부민 검체의 2차 구조의 구성비는 하기 표 10과 같았다.Then, as a result of measuring the circular dichroism by the method of Example 7 (2), the composition ratio of the secondary structure of the albumin sample was as shown in Table 10 below.
표 10
α-Helix β-sheet Turn poly(Pro)Ⅱ Unordered
녹십자(상온) 0.706 0.038 0.070 0.022 0.193
A1653 알부민 0.481 0.072 0.105 0.042 0.311
A3782 알부민 0.308 0.130 0.133 0.052 0.379
녹십자 알부민 0.514 0.071 0.109 0.029 0.302
A3782 알부민+올레산(1:1) 0.514 0.079 0.104 0.030 0.283
녹십자 알부민+올레산(1:1) 0.740 0.011 0.096 0.013 0.151
Table 10
α-Helix β-sheet Turn poly (Pro) Ⅱ Unordered
Green Cross (room temperature) 0.706 0.038 0.070 0.022 0.193
A1653 albumin 0.481 0.072 0.105 0.042 0.311
A3782 albumin 0.308 0.130 0.133 0.052 0.379
Green Cross Albumin 0.514 0.071 0.109 0.029 0.302
A3782 albumin + oleic acid (1: 1) 0.514 0.079 0.104 0.030 0.283
Green Cross Albumin + Oleic Acid (1: 1) 0.740 0.011 0.096 0.013 0.151
그 결과, 표 10에 나타낸 바와 같이 열 변성을 하지 않은 녹십자(상온) 검체에 비해 열 변성된 검체들의 α-나선구조(α-Helix)의 비율이 대체적으로 줄어 들고, 무질서한(unordered) 구조가 증가하는 결과를 보였다. As a result, as shown in Table 10, the ratio of the α-helix of the thermally denatured specimens is generally reduced, and the unordered structure is increased compared to the green cross (normal temperature) specimen that does not denature. Showed results.
그러나, 녹십자 알부민+올레산(1:1) 검체는 그 비율이 녹십자(상온) 검체와 비슷하여 60℃에서 10시간 동안 가열하여도 매우 안정한 것을 알 수 있었다. 또한 A3782 알부민+올레산(1:1) 검체 역시 A3782 알부민에 비해 열 변성 후에도 α-나선구조(α-Helix)의 비율이 더 높아 열 안정성이 더 높음을 알 수 있었다. 이는 알부민에 올레산을 반응시켰을 경우 열안정성이 증가함을 시사한다.However, the green cross albumin + oleic acid (1: 1) sample was found to be very stable even when heated at 60 ° C for 10 hours because the ratio was similar to that of the green cross (room temperature) sample. In addition, the A3782 albumin + oleic acid (1: 1) samples also showed higher thermal stability due to a higher ratio of α-helix (α-Helix) after heat denaturation compared to A3782 albumin. This suggests that thermal stability increases when albumin reacts with oleic acid.
(4) 70℃에서의 인간혈청알부민의 열처리에 대한 구조적 안정성 시험(4) Structural Stability Test of Heat Treatment of Human Serum Albumin at 70 ° C
상기 실시예 7(1)에서 준비된 5가지 인간혈청알부민 검체(녹십자 알부민, A3782 알부민, A1653 알부민, 녹십자 알부민+올레산(1:1 몰비), A3782 알부민+올레산(1:1 몰비))를 70℃에서 10시간 가열하였다.Five human serum albumin samples (Green Cross Albumin, A3782 Albumin, A1653 Albumin, Green Cross Albumin + Oleic Acid (1: 1 molar ratio), A3782 Albumin + Oleic Acid (1: 1 molar ratio) prepared in Example 7 (1) were prepared at 70 ° C. Heated at 10 h.
이후, 상기 7(2)의 방법으로 원편광이색성 측정을 한 결과, 상기 알부민 검체의 2차 구조의 구성비는 하기 표 11과 같았다.Then, as a result of measuring the circular dichroism by the method of 7 (2), the composition ratio of the secondary structure of the albumin sample was as shown in Table 11.
표 11
α-Helix β-sheet Turn poly(Pro)Ⅱ Unordered
녹십자(상온) 0.706 0.038 0.070 0.022 0.193
A1653 알부민 0.330 0.124 0.144 0.055 0.369
A3782 알부민 0.309 0.107 0.141 0.053 0.378
녹십자 알부민 0.441 0.022 0.207 0.022 0.314
A3782 알부민+올레산(1:1) 0.724 0.017 0.079 0.030 0.163
녹십자 알부민+올레산(1:1) 0.627 0.036 0.081 0.030 0.234
Table 11
α-Helix β-sheet Turn poly (Pro) Ⅱ Unordered
Green Cross (room temperature) 0.706 0.038 0.070 0.022 0.193
A1653 albumin 0.330 0.124 0.144 0.055 0.369
A3782 albumin 0.309 0.107 0.141 0.053 0.378
Green Cross Albumin 0.441 0.022 0.207 0.022 0.314
A3782 albumin + oleic acid (1: 1) 0.724 0.017 0.079 0.030 0.163
Green Cross Albumin + Oleic Acid (1: 1) 0.627 0.036 0.081 0.030 0.234
표 11에 나타난 바와 같이, 상기와 같이 열처리를 한 결과, 열 변성을 하지 않은 녹십자(상온) 검체에 비해 열 변성된 검체들의 α-나선구조(α-Helix)의 비율이 대체적으로 줄어 들고, 무질서한(unordered) 구조가 증가하였다. As shown in Table 11, as a result of the heat treatment as described above, the ratio of α-helix (α-Helix) of the thermally denatured specimens is generally reduced and disorderly compared to the green cross (room temperature) specimen without thermal denaturation. (unordered) structure increased.
그러나 올레산을 반응시킨 후 열처리를 한 녹십자 알부민+올레산(1:1 몰비) 검체와 A3782 알부민+올레산(1:1 몰비) 검체는 α-나선구조(α-Helix)의 비율이 녹십자(상온) 검체와 비슷하여 올레산을 반응시키지 않은 알부민들에 비해서 70℃에서 10시간 동안 가열하여도 매우 안정한 것을 확인하였다.However, the green cross albumin + oleic acid (1: 1 molar ratio) sample and the A3782 albumin + oleic acid (1: 1 molar ratio) sample subjected to heat treatment after oleic acid reaction had a ratio of α-helix (α-Helix) to green cross (room temperature) sample. Similar to that of the albumin which did not react with oleic acid was confirmed to be very stable even when heated at 70 ℃ for 10 hours.
(5) 80℃에서의 인간혈청알부민의 열처리에 대한 구조적 안정성 시험(5) Structural stability test for heat treatment of human serum albumin at 80 ° C
상기 실시예 7(1)에서 준비된 5가지 인간혈청알부민 검체(녹십자 알부민, A3782 알부민, A1653 알부민, 녹십자 알부민+올레산(1:1 몰비), A3782 알부민+올레산(1:1 몰비))를 80℃에서 10시간 가열하였다.Five human serum albumin samples (Green Cross Albumin, A3782 Albumin, A1653 Albumin, Green Cross Albumin + Oleic Acid (1: 1 molar ratio), A3782 Albumin + Oleic Acid (1: 1 molar ratio) prepared in Example 7 (1) were prepared at 80 ° C. Heated at 10 h.
이후, 상기 7(2)의 방법으로 원편광이색성 측정을 한 결과, 상기 알부민 검체의 2차 구조의 구성비는 하기 표 12와 같았다.Then, as a result of measuring the circular dichroism by the method of 7 (2), the composition ratio of the secondary structure of the albumin sample was as shown in Table 12 below.
표 12
α-Helix β-sheet Turn poly(Pro)Ⅱ Unordered
녹십자(상온) 0.706 0.038 0.070 0.022 0.193
A1653 알부민 0.270 0.127 0.149 0.054 0.390
A3782 알부민 0.217 0.143 0.178 0.043 0.432
녹십자 알부민 0.298 0.135 0.131 0.064 0.380
A3782 알부민+올레산(1:1) 0.212 0.169 0.162 0.066 0.404
녹십자 알부민+올레산(1:1) 0.132 0.223 0.188 0.061 0.404
Table 12
α-Helix β-sheet Turn poly (Pro) Ⅱ Unordered
Green Cross (room temperature) 0.706 0.038 0.070 0.022 0.193
A1653 albumin 0.270 0.127 0.149 0.054 0.390
A3782 albumin 0.217 0.143 0.178 0.043 0.432
Green Cross Albumin 0.298 0.135 0.131 0.064 0.380
A3782 albumin + oleic acid (1: 1) 0.212 0.169 0.162 0.066 0.404
Green Cross Albumin + Oleic Acid (1: 1) 0.132 0.223 0.188 0.061 0.404
표 12에 나타난 바와 같이, 상기 열 처리 결과, 열 변성을 하지 않은 녹십자 (상온) 검체에 비해 열 변성된 모든 검체들의 α-나선구조(α-Helix)의 비율이 줄어들었고, 무질서한(unordered) 구조가 증가하였다. As shown in Table 12, as a result of the heat treatment, the ratio of α-helix (α-Helix) of all thermally denatured specimens was reduced compared to the non-thermally denatured green cross (normal temperature) specimens, and the order was unordered. Increased.
다만, 60℃, 70℃에서와는 달리 녹십자 알부민+올레산(1:1 몰비) 검체와 A3782 알부민+올레산(1:1 몰비) 모두 α-나선구조(α-Helix)의 비율이 감소하였고, 무질서한(unordered) 구조가 증가하였다.However, unlike at 60 ℃ and 70 ℃, the ratio of α-helix (α-Helix) decreased and unordered in both green cross albumin + oleic acid (1: 1 molar ratio) sample and A3782 albumin + oleic acid (1: 1 molar ratio). ) Structure increased.
실시예 8: 열안정성이 유지되는 알부민의 농도 범위 시험Example 8 Concentration Range Test of Albumin Maintaining Thermal Stability
A3782 알부민(Sigma)을 1mg/㎖, 5mg/㎖, 10mg/㎖, 15mg/㎖, 20mg/㎖, 25mg/㎖, 30mg/㎖, 35mg/㎖, 40mg/㎖, 45mg/㎖이 되도록 20mM 포타슘 포스페이트 pH 7.5 완충액으로 희석하였다. 그리고 올레산을 알부민과 1:1의 몰비가 되도록 A3782 알부민에 가한 후 4℃에서 밤새 반응시켰다.20 mM potassium phosphate to make A3782 albumin (Sigma) 1 mg / ml, 5mg / ml, 10mg / ml, 15mg / ml, 20mg / ml, 25mg / ml, 30mg / ml, 35mg / ml, 40mg / ml, 45mg / ml Diluted with pH 7.5 buffer. And oleic acid was added to A3782 albumin so as to have a molar ratio of albumin 1: 1 and then reacted overnight at 4 ° C.
이후, 1mg/㎖ A3782 알부민+올레산(1:1몰비), 5mg/㎖ A3782 알부민+올레산(1:1몰비), 10mg/㎖ A3782 알부민+올레산(1:1몰비), 15mg/㎖ A3782 알부민+올레산(1:1몰비), 20mg/㎖ A3782 알부민+올레산(1:1몰비), 25mg/㎖ A3782 알부민+올레산(1:1몰비), 30mg/㎖ A3782 알부민+올레산(1:1몰비), 35mg/㎖ A3782 알부민+올레산(1:1몰비), 40mg/㎖ A3782 알부민+올레산(1:1몰비), 45mg/㎖ A3782 알부민+올레산(1:1몰비)와 같이 10종류의 검체를 70℃에서 10시간 가열하였다.Then, 1 mg / ml A3782 albumin + oleic acid (1: 1 molar ratio), 5 mg / ml A3782 albumin + oleic acid (1: 1 molar ratio), 10 mg / ml A3782 albumin + oleic acid (1: 1 molar ratio), 15 mg / ml A3782 albumin + Oleic acid (1: 1 molar ratio), 20 mg / ml A3782 albumin + oleic acid (1: 1 molar ratio), 25 mg / ml A3782 albumin + oleic acid (1: 1 molar ratio), 30 mg / ml A3782 albumin + oleic acid (1: 1 molar ratio), Ten kinds of specimens, such as 35mg / ml A3782 albumin + oleic acid (1: 1 molar ratio), 40mg / ml A3782 albumin + oleic acid (1: 1 molar ratio), 45mg / ml A3782 albumin + oleic acid (1: 1 molar ratio) Heated at 10 h.
상기 실시예 7(2)의 방법에 따라 알부민의 원편광이색성(circular dichroism)을 측정하였고, 그 결과, 1mg/㎖ A3782 알부민+올레산(1:1 몰비)의 검체는 열 변성하지 않은 녹십자 검체와 α-나선구조(α-Helix)의 비율이 비슷하였다(표 11 및 도 6). 열변성된 1 내지 45 mg/㎖ A3782 알부민+올레산(1:1 몰비) 검체의 원이색성편광 그래프에서 1 내지 40 mg/㎖의 A3782 알부민+올레산(1:1몰비)는 1 mg/㎖ A3782 알부민+올레산(1:1 몰비)과 그 스펙트럼이 유사해 단백질 이차구조의 구성비가 크게 변하지 않았음을 확인하였다(도 7).Circular dichroism of albumin was measured according to the method of Example 7 (2), and as a result, a sample of 1 mg / ml A3782 albumin + oleic acid (1: 1 molar ratio) was not denatured green cross. And the ratio of α-helix (α-Helix) was similar (Table 11 and Figure 6). 1-40 mg / ml of A3782 albumin + oleic acid (1: 1 molar ratio) in the dichroic polarization graph of the thermally denatured 1-45 mg / ml A3782 albumin + oleic acid (1: 1 molar ratio) sample was 1 mg / ml A3782 Albumin + oleic acid (1: 1 molar ratio) and its spectrum was similar to confirm that the composition ratio of the protein secondary structure did not change significantly (Fig. 7).
반면 45 mg/㎖ A3782 알부민+올레산(1:1) 검체는 현저히 원이색성편광의 신호가 약해져 α-Helix의 비율이 낮아지고, unordered 구조가 증가하였다. 따라서 A3782 알부민+올레산(1:1 몰비) 검체는 그 농도가 1 내지 40 mg/㎖ 범위 내에서 높은 열안정성이 유지됨을 확인하였다(도 8).On the other hand, the 45 mg / ml A3782 albumin + oleic acid (1: 1) sample significantly weakened the dichroic polarization signal, which lowered the ratio of α-Helix and increased the unordered structure. Therefore, the A3782 albumin + oleic acid (1: 1 molar ratio) specimen was confirmed that the high thermal stability is maintained in the concentration range of 1 to 40 mg / ㎖ (Fig. 8).
실시예 9: 탄소수 16 내지 22의 불포화지방산의 첨가에 따른 알부민의 열안정성 평가Example 9 Evaluation of Thermal Stability of Albumin with Addition of Unsaturated Fatty Acids of 16 to 22
A3782 알부민(Sigma)을 1mg/㎖가 되도록 20mM 포타슘 포스페이트 pH 7.5 완충액으로 희석하였다. 그리고 올레산, 리놀레산, α-리놀렌산, γ-리놀렌산 및 팔미톨레산을 알부민과 몰수 비가 1:1이 되도록 A3782 알부민에 가한 후 4℃에서 밤새 반응시켰다. A3782 albumin (Sigma) was diluted with 20 mM potassium phosphate pH 7.5 buffer to 1 mg / ml. Then, oleic acid, linoleic acid, α-linolenic acid, γ-linolenic acid and palmitoleic acid were added to A3782 albumin so that the molar ratio of albumin was 1: 1 and then reacted at 4 ° C. overnight.
A3782 알부민+올레산(1:1몰비), A3782 알부민+리놀레산(1:1몰비), A3782 알부민+α-리놀렌산(1:1몰비), A3782 알부민+γ-리놀렌산(1:1 몰비), A3782 알부민+팔미톨레산(1:1 몰비)와 같이 5종류의 검체를 70℃에서 10시간 가열하였다.A3782 albumin + oleic acid (1: 1 molar ratio), A3782 albumin + linoleic acid (1: 1 molar ratio), A3782 albumin + α-linolenic acid (1: 1 molar ratio), A3782 albumin + γ-linolenic acid (1: 1 molar ratio), A3782 albumin Five specimens were heated at 70 ° C. for 10 hours, such as + palmitoleic acid (1: 1 molar ratio).
상기 실시예 7(2)의 방법에 따라 알부민의 원편광이색성(circular dichroism)을 측정하였고, 그 결과, A3782 알부민+올레산(1:1몰비)의 검체는 열 변성하지 않은 녹십자 검체와 α-나선구조(α-Helix)의 비율이 비슷하였다(표 11 및 도 6). 열변성된 16 내지 24의 불포화 지방산을 첨가한 알부민 검체의 원편광이색성 그래프에서 올레산을 제외한 탄소수 16 내지 22의 불포화 지방산을 첨가한 검체는 대체적으로 올레산을 첨가한 검체와 원편광이색성 스펙트럼이 유사하게 나와 단백질의 이차구조에 큰 변화가 없음을 확인하였다(도 9).Circular dichroism of albumin was measured according to the method of Example 7 (2). As a result, the samples of A3782 albumin + oleic acid (1: 1 molar ratio) were not denatured and the green cross specimen was α-. The ratio of the helix structure (α-Helix) was similar (Table 11 and Figure 6). In the circular dichroism graph of the albumin sample containing 16 to 24 unsaturated fatty acids, the sample containing the unsaturated fatty acid having 16 to 22 carbon atoms except for oleic acid was generally different from the sample containing oleic acid and the circular dichroism spectrum. Similarly it was confirmed that there is no significant change in the secondary structure of the protein (Fig. 9).
이러한 결과는 올레산 이외에도 탄소수 16 내지 22의 지방산을 본 발명의 방법에 사용하여도 동일 또는 상응하는 효과를 얻을 수 있음을 시사하는 것이다.These results suggest that the same or corresponding effects can be obtained by using fatty acids having 16 to 22 carbon atoms in addition to oleic acid in the method of the present invention.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 예들은 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위의 의미 및 범위, 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art will appreciate that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. In this regard, the examples described above are illustrative in all respects and should be understood as not limiting. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the following claims and equivalent concepts rather than the detailed description are included in the scope of the present invention.

Claims (18)

  1. 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산 또는 이의 약학적으로 허용가능한 염을 포함하는, 인간혈청알부민 제제를 제조하기 위한 열안정화용 조성물.A composition for thermal stabilization for preparing a human serum albumin preparation comprising a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof.
  2. 제1항에 있어서,The method of claim 1,
    상기 인간혈청알부민은 인간혈장유래 또는 재조합 인간혈청알부민인 것인 조성물.Wherein said human serum albumin is human plasma-derived or recombinant human serum albumin.
  3. 제1항에 있어서,The method of claim 1,
    상기 지방산은 팔미트산(palmitic acid), 팔미톨레산(palmitoleic acid), 스테아르산(stearic acid; octadecanoic acid), 올레산(oleic acid), 리놀레산(linoleic acid), 리놀렌산(linolenic acid), EPA(eicosapentaenoic acid) 및 DHA(docosahexaenoic acid)로 구성된 군으로부터 선택되는 것인 조성물.The fatty acid may be palmitic acid, palmitoleic acid, stearic acid (octadecanoic acid), oleic acid, linoleic acid, linolenic acid, EPA (eicosapentaenoic) acid) and DHA (docosahexaenoic acid).
  4. 제1항에 있어서,The method of claim 1,
    상기 지방산의 염은 알칼리 금속 또는 알칼리 토금속 염인 것인 조성물.The salt of the fatty acid is an alkali metal or alkaline earth metal salt.
  5. 제1항에 있어서,The method of claim 1,
    상기 지방산은 알부민에 대해 1:0.5 내지 1:2의 몰비가 되도록 첨가되는 것이 특징인 조성물.Wherein said fatty acid is added in a molar ratio of 1: 0.5 to 1: 2 relative to albumin.
  6. 인간혈청알부민의 농도를 1 내지 40 mg/㎖로 조절하는 제1단계; 및A first step of adjusting the concentration of human serum albumin to 1 to 40 mg / ml; And
    인간혈청알부민에 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산 또는 이의 약학적으로 허용가능한 염을 첨가하는 제2단계를 포함하는, 열안정화된 인간혈청알부민의 제조방법.A method for producing thermostable human serum albumin comprising the step of adding a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms or a pharmaceutically acceptable salt thereof to human serum albumin.
  7. 제6항에 있어서,The method of claim 6,
    제1단계 및 제2단계는 순서대로 또는 역순으로 수행되는 것인 열안정화된 인간혈청알부민의 제조방법.The first and second steps are carried out in the order or in the reverse order to prepare a thermostable human serum albumin.
  8. 제6항에 있어서,The method of claim 6,
    상기 지방산은 팔미트산(palmitic acid), 팔미톨레산(palmitoleic acid), 스테아르산(stearic acid; octadecanoic acid), 올레산(oleic acid), 리놀레산(linoleic acid), 리놀렌산(linolenic acid), EPA(eicosapentaenoic acid) 및 DHA(docosahwxaenoic acid)로 구성된 군으로부터 선택된 하나 이상의 지방산인 열안정화된 인간혈청알부민의 제조방법.The fatty acid may be palmitic acid, palmitoleic acid, stearic acid (octadecanoic acid), oleic acid, linoleic acid, linolenic acid, EPA (eicosapentaenoic) acid) and DHA (docosahwxaenoic acid) is a method for producing thermostable human serum albumin which is at least one fatty acid selected from the group consisting of.
  9. 제6항에 있어서,The method of claim 6,
    상기 열안정화된 인간혈청알부민을 60 내지 80℃ 온도에서 6시간 내지 15시간 동안 열처리하였을 때, α-나선구조(α-Helix)가 80% 이상 유지되는 것을 특징으로 하는, 열안정화된 인간혈청알부민의 제조방법.When the heat-stabilized human serum albumin is heat treated at a temperature of 60 to 80 ° C. for 6 to 15 hours, α-helical structure (α-Helix) is maintained at 80% or more, heat stabilized human serum albumin Manufacturing method.
  10. 제6항에 있어서,The method of claim 6,
    상기 지방산 또는 이의 약학적으로 허용가능한 염은 인간혈청알부민에 대하여 1:0.5 내지 1:2의 몰비가 되도록 첨가하는 것을 특징으로 하는 열안정화된 인간혈청알부민의 제조방법.The fatty acid or a pharmaceutically acceptable salt thereof is added in a molar ratio of 1: 0.5 to 1: 2 relative to human serum albumin.
  11. 인간혈청알부민 제제를 제조하는 방법에 있어서,In the method for producing a human serum albumin preparation,
    인간혈청알부민에 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산 또는 이의 약학적으로 허용가능한 염을 처리하여 열처리하는 단계를 포함하는, 인간혈청알부민 제제의 제조방법.A method for producing a human serum albumin preparation comprising the step of treating human serum albumin with a fatty acid or a pharmaceutically acceptable salt thereof selected from the group consisting of fatty acids having 16 to 22 carbon atoms.
  12. 제11항에 있어서,The method of claim 11,
    상기 인간혈청알부민은 인간혈장유래 또는 재조합 인간혈청알부민인 것인 인간혈청알부민 제제의 제조방법.The human serum albumin is human plasma-derived or recombinant human serum albumin is a method for producing a human serum albumin preparation.
  13. 제11항에 있어서,The method of claim 11,
    상기 인간혈청알부민은 서열번호 1의 아미노산 서열을 갖는 인간혈청알부민을 발현하는 형질전환세포를 배양하는 단계를 포함하는 방법으로 제조된 것인 인간혈청알부민 제제의 제조방법.The human serum albumin is prepared by the method comprising the step of culturing the transformed cells expressing human serum albumin having the amino acid sequence of SEQ ID NO: 1.
  14. 제11항에 있어서,The method of claim 11,
    분리된 인간혈청알부민에 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산을 첨가하는 것이 특징인 인간혈청알부민 제제의 제조방법.A method for producing a human serum albumin preparation, characterized by adding a fatty acid selected from the group consisting of fatty acids having 16 to 22 carbon atoms to the isolated human serum albumin.
  15. 제14항에 있어서,The method of claim 14,
    상기 분리된 인간혈청알부민은 인간혈청알부민을 발현하는 유전자 삽입 동물의 혈액 또는 혈청, 또는 형질전환세포, 상기 세포의 배양물 또는 배양액, 또는 인간의 혈액 또는 혈청으로부터 분리된 것인 인간혈청알부민 제제의 제조방법.The isolated human serum albumin is a human serum albumin preparation isolated from blood or serum of a transgenic animal expressing human serum albumin, or transformed cells, culture or culture of the cells, or human blood or serum. Manufacturing method.
  16. 제11항에 있어서,The method of claim 11,
    상기 인간혈청알부민은 탄소수 16 내지 22의 지방산으로 구성된 군으로부터 선택되는 지방산 또는 이의 약학적으로 허용가능한 염을 처리하기 전 또는 후에 1 내지 40 mg/㎖ 농도로 조절된 것인 인간혈청알부민 제제의 제조방법.The human serum albumin is adjusted to a concentration of 1 to 40 mg / ㎖ before or after the treatment of a fatty acid or a pharmaceutically acceptable salt thereof selected from the group consisting of fatty acids having 16 to 22 carbon atoms to prepare a human serum albumin preparation Way.
  17. 제16항에 있어서,The method of claim 16,
    상기 열처리는 60 내지 80℃에서 수행되는 것인, 인간혈청알부민 제제의 제조방법.The heat treatment is to be carried out at 60 to 80 ℃, method for preparing human serum albumin.
  18. 제17항에 있어서,The method of claim 17,
    상기 방법은 열처리된 인간혈청알부민을 50 내지 200 mg/㎖ 농도로 농축하는 단계를 추가로 포함하는 것인, 인간혈청알부민 제제의 제조방법.The method further comprises the step of concentrating the heat-treated human serum albumin to a concentration of 50 to 200 mg / ㎖, human serum albumin preparation method.
PCT/KR2013/011792 2012-12-18 2013-12-18 Human serum albumin heat-stabilizing composition, and production method for heat-stabilized human serum albumin using same WO2014098464A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/357,995 US20150165000A1 (en) 2012-12-18 2013-12-18 Composition for thermostabilization of human serum albumin and method of preparing thermally stabilized human serum albumin using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2012-0148271 2012-12-18
KR20120148271 2012-12-18
KR10-2013-0012592 2013-02-04
KR1020130012592A KR101545778B1 (en) 2012-12-18 2013-02-04 A composition for thermal-stability of human serum albumin
KR10-2013-0093289 2013-08-06
KR1020130093289A KR101568360B1 (en) 2013-08-06 2013-08-06 Method for preparing thermal-stabilized human serum albumin

Publications (2)

Publication Number Publication Date
WO2014098464A1 true WO2014098464A1 (en) 2014-06-26
WO2014098464A8 WO2014098464A8 (en) 2015-06-18

Family

ID=50978712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011792 WO2014098464A1 (en) 2012-12-18 2013-12-18 Human serum albumin heat-stabilizing composition, and production method for heat-stabilized human serum albumin using same

Country Status (1)

Country Link
WO (1) WO2014098464A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100386762B1 (en) * 1992-05-20 2005-12-09 미쯔비시 웰 파마 가부시키가이샤 Method of producing recombinant human serum albumin
KR20070020204A (en) * 2004-01-20 2007-02-20 쥬리디컬 파운데이션 더 케모-세로-쎄라퓨틱 리서치 인스티튜트 Process for producing human serum albumin by heating in presence of divalent cation
KR20110112301A (en) * 2008-11-18 2011-10-12 메리맥 파마슈티컬즈, 인크. Human serum albumin linkers and conjugates thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100386762B1 (en) * 1992-05-20 2005-12-09 미쯔비시 웰 파마 가부시키가이샤 Method of producing recombinant human serum albumin
KR20070020204A (en) * 2004-01-20 2007-02-20 쥬리디컬 파운데이션 더 케모-세로-쎄라퓨틱 리서치 인스티튜트 Process for producing human serum albumin by heating in presence of divalent cation
KR20110112301A (en) * 2008-11-18 2011-10-12 메리맥 파마슈티컬즈, 인크. Human serum albumin linkers and conjugates thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAMRAN MOUSAVI HOSSEINI ET AL.: "Study of the Heat-Treated Human Albumin Stabilization by Caprylate and Acetyltryptophanate.", IRANIAN BIOMEDICAL JOURNAL., vol. 6, no. 4, October 2002 (2002-10-01), pages 135 - 140 *
KIYOSHI HAYASE ET AL.: "Lipase activity in the human aorta.", JOURNAL OF LIPID RESEARCH., vol. 11, no. 3, May 1970 (1970-05-01), pages 209 - 219 *

Also Published As

Publication number Publication date
WO2014098464A8 (en) 2015-06-18

Similar Documents

Publication Publication Date Title
KR100266502B1 (en) A stabilized pharmaceutical formulation comprising growth hormone and histidine.
Spaccapelo et al. Plasmepsin 4-deficient Plasmodium berghei are virulence attenuated and induce protective immunity against experimental malaria
JP2894355B2 (en) Growth hormone stabilization by modification of cysteine residues using site-directed mutagenesis or chemical derivatization
CA1292686C (en) Pharmaceutical compositions of recombinant interleukin-2 and formulation process
JP2524446B2 (en) Growth hormone crystals and process for producing such GH-crystals
TW200300340A (en) Erythropoietin colution preparation
US20150165000A1 (en) Composition for thermostabilization of human serum albumin and method of preparing thermally stabilized human serum albumin using the same
WO2017048028A1 (en) Novel antimicrobial peptide derived from myxinidin peptide, and use thereof
DE69627340T2 (en) TRANSFORMING GROWTH FACTOR BETA CRYSTALS
CN1078494A (en) Protein compound, coding nucleotide sequence produces clone and its application
JP5410233B2 (en) Methods and royal jelly as novel uses of histone deacetylase inhibitors in the alteration of MRJP3 protein in royal jelly
HUT55804A (en) Process for producing new insulin derivatives and pharmaceutical compositions containing them as active components
WO2014098464A1 (en) Human serum albumin heat-stabilizing composition, and production method for heat-stabilized human serum albumin using same
EP2277387A1 (en) New use of histone deacetylase inhibitors in changing MRJP3 protein in royal jelly
CN111574619B (en) Lipopeptide Lin-Lf4NH2And Lin-Lf5NH2And uses thereof
EA024936B1 (en) Preparation for increasing sperm production in stud livestock and roosters and method for the use thereof
EA021849B1 (en) Use of peptide pharmaceutical composition as a means for treatment of helicobacter pylori induced gastroduodenal diseases
EP3216456B1 (en) Tau protein production accelerator, and therapeutic or preventive agent for diseases caused by tau protein deficiency
NO320171B1 (en) Process for the preparation of growth hormone crystals or functional derivatives thereof, crystals prepared by the process, use of chemical compound for the preparation of the crystals, suspension for injection, dry formulation and depot formulation comprising the crystals, use of the crystals for the preparation of growth hormone .
KR101545778B1 (en) A composition for thermal-stability of human serum albumin
US4355025A (en) Biologically active amides
KR101649785B1 (en) A novel functional serum albumin and the preparation method thereof
KR101568360B1 (en) Method for preparing thermal-stabilized human serum albumin
JP7364560B2 (en) Media for assisted reproductive technology
EP0496013A1 (en) Synthetic peptide derived from human lipocortin V and use thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14357995

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863851

Country of ref document: EP

Kind code of ref document: A1