WO2014097897A1 - Tantalum sputtering target and method for producing same - Google Patents
Tantalum sputtering target and method for producing same Download PDFInfo
- Publication number
- WO2014097897A1 WO2014097897A1 PCT/JP2013/082764 JP2013082764W WO2014097897A1 WO 2014097897 A1 WO2014097897 A1 WO 2014097897A1 JP 2013082764 W JP2013082764 W JP 2013082764W WO 2014097897 A1 WO2014097897 A1 WO 2014097897A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tantalum
- rolling
- sputtering target
- target
- plane
- Prior art date
Links
- 229910052715 tantalum Inorganic materials 0.000 title claims abstract description 69
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 title claims abstract description 69
- 238000005477 sputtering target Methods 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 238000004544 sputter deposition Methods 0.000 claims abstract description 38
- 239000013078 crystal Substances 0.000 claims abstract description 28
- 238000005096 rolling process Methods 0.000 claims description 73
- 238000010438 heat treatment Methods 0.000 claims description 24
- 238000009792 diffusion process Methods 0.000 claims description 14
- 238000005242 forging Methods 0.000 claims description 13
- 230000004888 barrier function Effects 0.000 claims description 11
- 238000001953 recrystallisation Methods 0.000 claims description 9
- 238000000137 annealing Methods 0.000 claims description 8
- 238000005097 cold rolling Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 4
- 239000010409 thin film Substances 0.000 claims description 4
- 238000005498 polishing Methods 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 6
- 150000003481 tantalum Chemical class 0.000 abstract 1
- 239000010408 film Substances 0.000 description 31
- 230000005856 abnormality Effects 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- 239000013077 target material Substances 0.000 description 10
- 239000010410 layer Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000011109 contamination Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000010273 cold forging Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000009721 upset forging Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3414—Targets
- H01J37/3426—Material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
- C01B21/0615—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
- C01B21/0617—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with vanadium, niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/02—Alloys based on vanadium, niobium, or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02266—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/2855—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
- H01L23/53228—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
- H01L23/53238—Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a tantalum sputtering target and a manufacturing method thereof.
- the present invention relates to a tantalum sputtering target used for forming a Ta film or a TaN film as a diffusion barrier layer for copper wiring in an LSI and a method for manufacturing the same.
- a Ta film or a TaN film is formed by sputtering a tantalum target.
- various impurities, gas components, crystal plane orientation, crystal grain size, etc. contained in the target are related to the effect on sputtering performance, film formation speed, film thickness uniformity, particle generation, etc. Is known to affect.
- Patent Document 1 describes that the uniformity of the film is improved by forming a crystal structure in which (222) orientation is preferential from the position of 30% of the target thickness toward the center plane of the target.
- Patent Document 2 describes that by making the crystal orientation of the tantalum target random (not aligning with a specific crystal orientation), the film formation rate is increased and the uniformity of the film is improved.
- Patent Document 3 discloses that the film orientation is improved by selectively increasing the plane orientation of (110), (200), (211) having a high atomic density on the sputtering surface, and variation in plane orientation is also observed. The improvement of uniformity is described by suppressing.
- Patent Document 8 describes that a tantalum ingot is forged, subjected to heat treatment twice or more in this forging process, further subjected to cold rolling, and subjected to recrystallization heat treatment.
- the idea of controlling the crystal orientation on the sputtering surface of the target to lower the discharge voltage of the tantalum target, facilitate the generation of plasma, and improve the stability of the plasma is Absent.
- JP 2004-107758 A International Publication No. 2005/045090 Japanese Patent Laid-Open No. 11-80942 Japanese Patent Laid-Open No. 2002-36336 Special table 2008-532765 gazette Japanese Patent No. 4754617 International Publication No. 2011-061897 Japanese Patent No. 4714123
- a tantalum sputtering target characterized in that, on the sputtering surface of a tantalum sputtering target, the orientation ratio of the (200) plane exceeds 70% and the orientation ratio of the (222) plane is 30% or less.
- the present invention also provides: 5) Forging and recrystallization annealing of the cast tantalum ingot, followed by rolling and heat treatment, the (200) plane orientation ratio exceeds 70%, and the (222) plane orientation ratio on the sputtering surface of the target.
- the tantalum sputtering target of the present invention is excellent in that the crystal orientation on the sputtering surface of the target can be controlled to lower the discharge voltage of the tantalum target, facilitate the generation of plasma, and improve the stability of the plasma. It has the effect. In particular, it has an excellent effect in forming a diffusion barrier layer made of Ta film or TaN film that can effectively prevent contamination around the wiring due to active Cu diffusion.
- the tantalum sputtering target has a (200) plane orientation ratio of over 70% and a (222) plane orientation ratio of less than 30%.
- the orientation rate of the (200) plane is 80% or more and the orientation rate of the (222) plane is 20% or less.
- the sputtering rate (deposition rate) is reduced under normal conditions.
- the discharge voltage of the tantalum target can be lowered, so that there is an advantage that plasma is easily generated and the plasma can be stabilized.
- the voltage and current are adjusted so that the discharge can be maintained at a set input power.
- the current may decrease due to some influence, and the voltage may increase in an attempt to maintain the power at a constant value.
- a discharge abnormality In the tantalum sputtering target, the discharge voltage of the tantalum target can be lowered and the plasma can be stabilized by controlling the crystal orientation on the sputtering surface of the target. Occurrence can be suppressed.
- the discharge abnormality occurrence rate can be reduced.
- the orientation rate is a standardized measurement intensity of each diffraction peak obtained by X-ray diffraction (110), (200), (211), (310), (222), (321), This means the intensity ratio of a specific plane orientation when the sum of the plane orientation intensities is 100.
- JCPDS Joint Committee for Powder Diffraction Standard
- the orientation ratio (%) of the (200) plane is [[(measured intensity of (200) / JCPDS intensity of (200)] / ⁇ (measured intensity of each face / JCPDS intensity of each face)] ⁇ 10 0.
- the tantalum sputtering target of the present invention can be used for forming a diffusion barrier layer such as a Ta film or a TaN film in a copper wiring. Even when nitrogen is introduced into the atmosphere during sputtering to form a TaN film, the sputtering target of the present invention is By controlling the crystal orientation on the sputter surface of the target, the discharge voltage of the tantalum target can be lowered, the plasma can be easily generated, and the plasma stability can be improved. In the formation of a copper wiring provided with a diffusion barrier layer such as a film or a TaN film, and further in the manufacture of a semiconductor device provided with the copper wiring, the product yield can be improved.
- a tantalum target is manufactured by the above manufacturing process.
- the (200) plane orientation ratio is increased, and the (222) plane orientation ratio is high. Is to lower.
- a tantalum raw material having a purity of 99.995% was melted by electron beam and cast into an ingot having a diameter of 195 mm ⁇ .
- this ingot was clamped and forged at room temperature to a diameter of 150 mm ⁇ , and this was recrystallized and annealed at a temperature of 1100 to 1400 ° C.
- Example 1 In Example 1, the obtained target material was cold-rolled using a rolling roll having a rolling roll diameter of 400 mm at a rolling speed of 10 m / min and a rolling rate of 86% to obtain a thickness of 14 mm and a diameter of 520 mm ⁇ . Heat treatment was performed at a temperature of ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, a tantalum sputtering target having a crystal structure in which the orientation ratio of the (200) plane was 84.3% and the orientation ratio of the (222) plane was 9.9% could be obtained. When sputtering was performed using this sputtering target, the discharge voltage was 613.5 V, the discharge voltage variation was 7.1 V, and the discharge abnormality occurrence rate was good at 3.5%. The results are shown in Table 1.
- Example 2 In Example 2, the obtained target material was cold-rolled using a rolling roll having a rolling roll diameter of 400 mm at a rolling speed of 15 m / min and a rolling rate of 88% to a thickness of 14 mm and a diameter of 520 mm ⁇ . Heat treatment was performed at a temperature of ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, a tantalum sputtering target having a crystal structure in which the orientation ratio of the (200) plane was 77.7% and the orientation ratio of the (222) plane was 16.2% could be obtained. When sputtering was performed using this sputtering target, the discharge voltage was 614.7 V, the discharge voltage variation was 12.3 V, and the discharge abnormality occurrence rate was good at 5.8%. The results are shown in Table 1.
- Example 5 (Example 5)
- the obtained target material was cold-rolled with a rolling roll having a rolling roll diameter of 500 mm at a rolling speed of 20 m / min and a rolling rate of 84% to a thickness of 14 mm and a diameter of 520 mm ⁇ .
- Heat treatment was performed at a temperature of ° C. Thereafter, the surface was cut and polished to obtain a target.
- a tantalum sputtering target having a crystal structure in which the (200) plane orientation ratio was 70.8% and the (222) plane orientation ratio was 19.7% could be obtained.
- the discharge voltage was 61.2 V
- the discharge voltage variation was 12.2 V
- the discharge abnormality occurrence rate was good at 8.1%.
- Table 1 The results are shown in Table 1.
- Comparative Example 1 In Comparative Example 1, the obtained target material was cold-rolled at a rolling speed of 15 m / min and a rolling rate of 80% using a rolling roll having a rolling roll diameter of 650 mm to a thickness of 14 mm and a diameter of 520 mm ⁇ . Heat treatment was performed at a temperature of ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, a tantalum sputtering target having a crystal structure in which the orientation ratio of the (200) plane was 43.6% and the orientation ratio of the (222) plane was 39.1% could be obtained. When sputtering was performed using this sputtering target, the discharge voltage was 622.5 V, the discharge voltage variation was 17.0 V, and the discharge abnormality occurrence rate was poor at 16.6%. The results are shown in Table 1.
- Comparative Example 2 In Comparative Example 2, the obtained target material was cold-rolled using a rolling roll having a rolling roll diameter of 500 mm at a rolling speed of 10 m / min and a rolling rate of 78% to obtain a thickness of 14 mm and a diameter of 520 mm ⁇ . Heat treatment was performed at a temperature of ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, a tantalum sputtering target having a crystal structure with a (200) plane orientation ratio of 60.1% and a (222) plane orientation ratio of 24.0% could be obtained. When sputtering was performed using this sputtering target, the discharge voltage was 627.0 V, the discharge voltage variation was 18.0 V, and the discharge abnormality occurrence rate was poor at 20.5%. The results are shown in Table 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Plasma & Fusion (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Optics & Photonics (AREA)
- Physical Vapour Deposition (AREA)
- Forging (AREA)
Abstract
Description
また、特許文献2は、タンタルターゲットの結晶配向をランダムにする(特定の結晶方位にそろえない)ことにより、成膜速度が大きく、膜の均一性を向上させることが記載されている。
また、特許文献3には、原子密度の高い(110)、(200)、(211)の面方位をスパッタ面に選択的に多くすることにより成膜速度が向上し、かつ面方位のばらつきを抑えることでユニフォーミティの向上が記載されている。 For example, Patent Document 1 describes that the uniformity of the film is improved by forming a crystal structure in which (222) orientation is preferential from the position of 30% of the target thickness toward the center plane of the target. Has been.
Patent Document 2 describes that by making the crystal orientation of the tantalum target random (not aligning with a specific crystal orientation), the film formation rate is increased and the uniformity of the film is improved.
Patent Document 3 discloses that the film orientation is improved by selectively increasing the plane orientation of (110), (200), (211) having a high atomic density on the sputtering surface, and variation in plane orientation is also observed. The improvement of uniformity is described by suppressing.
また、特許文献5には、スエージング、押し出し、回転鍛造、無潤滑の据え込み鍛造をクロック圧延と組み合わせて用い、非常に強い(111)、(100)などの結晶学集合組織を持つ円形の金属ターゲットを作製できると述べられている。 Further, Patent Document 4 describes that the uniformity of the film thickness is improved by making the variation of the intensity ratio of the (110) plane obtained by X-ray diffraction within 20% depending on the location of the sputter surface portion. ing.
Further, Patent Document 5 uses swaging, extrusion, rotary forging, and non-lubricated upset forging in combination with clock rolling, and has a very strong crystallographic texture such as (111) or (100). It is stated that a metal target can be made.
しかしながら、上記特許文献のいずれにも、ターゲットのスパッタ面における結晶配向を制御することによって、タンタルターゲットの放電電圧を低くし、プラズマを発生し易くすると共に、プラズマの安定性を向上させるという発想はない。 Further, Patent Document 8 describes that a tantalum ingot is forged, subjected to heat treatment twice or more in this forging process, further subjected to cold rolling, and subjected to recrystallization heat treatment.
However, in any of the above patent documents, the idea of controlling the crystal orientation on the sputtering surface of the target to lower the discharge voltage of the tantalum target, facilitate the generation of plasma, and improve the stability of the plasma is Absent.
特に、活発なCuの拡散による配線周囲の汚染を効果的に防止することができるTa膜又はTaN膜などからなる拡散バリア層の形成に有用なタンタルスパッタリングターゲットを提供することを課題とする。 It is an object of the present invention to lower the discharge voltage of a tantalum target by controlling the crystal orientation on the sputtering surface of the tantalum sputtering target, to easily generate plasma, and to improve the stability of the plasma. To do.
In particular, it is an object of the present invention to provide a tantalum sputtering target useful for forming a diffusion barrier layer made of a Ta film or a TaN film that can effectively prevent contamination around wiring due to active Cu diffusion.
1)タンタルスパッタリングターゲットのスパッタ面において、(200)面の配向率が70%を超え、かつ、(222)面の配向率が30%以下であることを特徴とするタンタルスパッタリングターゲット
2)タンタルスパッタリングターゲットのスパッタ面において、(200)面の配向率が80%以上、かつ、(222)面の配向率が20%以下であることを特徴とする上記1)記載のタンタルスパッタリングターゲット
3)上記1)~2)のいずれかに記載のスパッタリングターゲットを用いて形成した拡散バリア層用薄膜
4)上記3)記載の拡散バリア層用薄膜を用いられた半導体デバイス In order to solve the above-described problems, the present invention provides the following inventions.
1) A tantalum sputtering target characterized in that, on the sputtering surface of a tantalum sputtering target, the orientation ratio of the (200) plane exceeds 70% and the orientation ratio of the (222) plane is 30% or less. 1) The tantalum sputtering target according to 1) above, wherein the (200) plane orientation ratio is 80% or more and the (222) plane orientation ratio is 20% or less on the sputtering surface of the target. ) Diffusion barrier layer thin film formed using the sputtering target according to any one of 2) to 2) 4) Semiconductor device using the diffusion barrier layer thin film according to 3) above
5)溶解鋳造したタンタルインゴットを鍛造及び再結晶焼鈍した後、圧延及び熱処理し、ターゲットのスパッタ面において、(200)面の配向率が70%を超え、かつ、(222)面の配向率が30%以下である結晶組織を形成することを特徴とするタンタルスパッタリングターゲットの製造方法
6)溶解鋳造したタンタルインゴットを鍛造及び再結晶焼鈍した後、圧延及び熱処理し、ターゲットのスパッタ面において、(200)面の配向率が80%以上、かつ、(222)面の配向率が20%以下である結晶組織を形成することを特徴とする上記5)記載のタンタルスパッタリングターゲットの製造方法。
7)圧延ロール径500mm以下の圧延ロールを用いて、圧延速度10m/分以上、圧延率80%超で冷間圧延することを特徴とする上記5)~6)のいずれかに記載のタンタルスパッタリングターゲットの製造方法。
8)温度900℃~1400℃で熱処理することを特徴とする上記5)~7)のいずれかに記載のタンタルスパッタリングターゲットの製造方法。
9)圧延及び熱処理後、切削、研磨により表面仕上げを行うことを特徴とする上記5)~8)のいずれかに記載のタンタルスパッタリングターゲットの製造方法、を提供する。 The present invention also provides:
5) Forging and recrystallization annealing of the cast tantalum ingot, followed by rolling and heat treatment, the (200) plane orientation ratio exceeds 70%, and the (222) plane orientation ratio on the sputtering surface of the target. A tantalum sputtering target manufacturing method characterized by forming a crystal structure of 30% or less 6) Forging and recrystallization annealing of a cast tantalum ingot, followed by rolling and heat treatment, (200 5) The method for producing a tantalum sputtering target according to 5) above, wherein a crystal structure having a plane orientation ratio of 80% or more and a (222) plane orientation ratio of 20% or less is formed.
7) Tantalum sputtering according to any one of 5) to 6) above, wherein cold rolling is performed at a rolling speed of 10 m / min or more and a rolling rate of more than 80% using a rolling roll having a rolling roll diameter of 500 mm or less. Target manufacturing method.
8) The method for producing a tantalum sputtering target according to any one of 5) to 7) above, wherein the heat treatment is performed at a temperature of 900 ° C. to 1400 ° C.
9) The method for producing a tantalum sputtering target according to any one of 5) to 8) above, wherein surface finishing is performed by cutting and polishing after rolling and heat treatment.
タンタルの結晶構造は体心立方格子構造(略称、BCC)であるため、(222)面の方が(200)面よりも隣接する原子間距離が短く、(222)面の方が(200)面よりも原子が密に詰まっている状態にある。このため、スパッタリングの際、(222)面の方が(200)面よりもタンタル原子をより多く放出して、スパッタレート(成膜速度)が早くなると考えられる。 The tantalum sputtering target of the present invention is characterized by increasing the orientation ratio of the (200) plane on the sputtering surface and decreasing the orientation ratio of the (222) plane.
Since the crystal structure of tantalum is a body-centered cubic lattice structure (abbreviation, BCC), the (222) plane has a shorter interatomic distance than the (200) plane, and the (222) plane has the (200) plane. Atoms are more densely packed than the surface. For this reason, it is considered that during sputtering, the (222) plane releases more tantalum atoms than the (200) plane, and the sputtering rate (film formation rate) is increased.
このようにスパッタ面における(200)面の配向率を高く、(222)面の配向率を低くすることにより、通常の条件ではスパッタレート(成膜速度)が遅くなることが考えられる。しかし、成膜速度を過度に上げる必要が無い場合には、タンタルターゲットの放電電圧を低くすることができるので、プラズマが発生し易くなり、プラズマを安定させることができるというメリットがある。 In the present invention, the tantalum sputtering target has a (200) plane orientation ratio of over 70% and a (222) plane orientation ratio of less than 30%. Preferably, the orientation rate of the (200) plane is 80% or more and the orientation rate of the (222) plane is 20% or less.
Thus, by increasing the orientation ratio of the (200) plane and lowering the orientation ratio of the (222) plane on the sputtering surface, it is conceivable that the sputtering rate (deposition rate) is reduced under normal conditions. However, when it is not necessary to increase the film formation rate excessively, the discharge voltage of the tantalum target can be lowered, so that there is an advantage that plasma is easily generated and the plasma can be stabilized.
本発明は、タンタルスパッタリングターゲットにおいて、ターゲットのスパッタ面における結晶配向を制御することにより、タンタルターゲットの放電電圧を低くし、プラズマを安定させることができるので、上記のようなスパッタリング時の放電異常の発生を抑制することが可能となる。特に、放電電圧を620V以下且つ、放電電圧バラつきを20V以下とすることで、放電異常発生率を低減することが可能となる。 Usually, when a tantalum film is formed by sputtering, the voltage and current are adjusted so that the discharge can be maintained at a set input power. However, the current may decrease due to some influence, and the voltage may increase in an attempt to maintain the power at a constant value. Generally, such a state is called a discharge abnormality.
In the tantalum sputtering target, the discharge voltage of the tantalum target can be lowered and the plasma can be stabilized by controlling the crystal orientation on the sputtering surface of the target. Occurrence can be suppressed. In particular, by setting the discharge voltage to 620 V or less and the discharge voltage variation to 20 V or less, the discharge abnormality occurrence rate can be reduced.
例えば、(200)面の配向率(%)は、[[(200)の測定強度/(200)のJCPDS強度]/Σ(各面の測定強度/各面のJCPDS強度)]×10
0となる。 In the present invention, the orientation rate is a standardized measurement intensity of each diffraction peak obtained by X-ray diffraction (110), (200), (211), (310), (222), (321), This means the intensity ratio of a specific plane orientation when the sum of the plane orientation intensities is 100. For standardization, JCPDS (Joint Committee for Powder Diffraction Standard) was used.
For example, the orientation ratio (%) of the (200) plane is [[(measured intensity of (200) / JCPDS intensity of (200)] / Σ (measured intensity of each face / JCPDS intensity of each face)] × 10
0.
ターゲットのスパッタ面における結晶配向を制御することによって、タンタルターゲットの放電電圧を低くし、プラズマを発生し易くすると共に、プラズマの安定性を向上させることができるという優れた効果を有するので、当該Ta膜又はTaN膜などの拡散バリア層を備えた銅配線形成、さらに、その銅配線を備えた半導体デバイス製造において、製品歩留まりを向上することができる。 The tantalum sputtering target of the present invention can be used for forming a diffusion barrier layer such as a Ta film or a TaN film in a copper wiring. Even when nitrogen is introduced into the atmosphere during sputtering to form a TaN film, the sputtering target of the present invention is
By controlling the crystal orientation on the sputter surface of the target, the discharge voltage of the tantalum target can be lowered, the plasma can be easily generated, and the plasma stability can be improved. In the formation of a copper wiring provided with a diffusion barrier layer such as a film or a TaN film, and further in the manufacture of a semiconductor device provided with the copper wiring, the product yield can be improved.
配向の制御に大きくかかわるのは、主として圧延工程である。圧延工程においては、圧延ロールの径、圧延速度、圧延率等のパラメータを制御することにより、圧延時に導入される歪みの量や分布を変えることが可能となり、(200)面の配向率及び(222)面の配向率の制御が可能となる。
面配向率の調整を効果的に行うには、ある程度の繰り返しの条件設定が必要であるが、一旦(200)面の配向率及び(222)面の配向率の調整ができると、その製造条件を設定することにより、恒常的特性の(一定レベルの特性を持つ)ターゲットの製造が可能となる。 A tantalum target is manufactured by the above manufacturing process. Particularly important in the present invention, in the crystal orientation of the sputtering surface of the target, the (200) plane orientation ratio is increased, and the (222) plane orientation ratio is high. Is to lower.
It is mainly the rolling process that is greatly involved in controlling the orientation. In the rolling process, it is possible to change the amount and distribution of strain introduced during rolling by controlling parameters such as the diameter of the rolling roll, the rolling speed, the rolling rate, and the (200) plane orientation rate and ( 222) The orientation ratio of the plane can be controlled.
In order to effectively adjust the plane orientation ratio, it is necessary to set conditions to some extent, but once the (200) plane orientation ratio and (222) plane orientation ratio can be adjusted, the manufacturing conditions By setting this, it becomes possible to manufacture a target having a constant characteristic (having a certain level of characteristic).
さらに、溶解鋳造したタンタルインゴット又はビレットに鍛造し、圧延等の加工を加えた後は、再結晶焼鈍し、組織を微細かつ均一化するのが望ましい。 Usually, when manufacturing a target, it is effective to use a rolling roll having a rolling roll diameter of 500 mm or less, a rolling speed of 10 m / min or more, and a one-pass rolling rate of 8 to 12%. However, as long as the manufacturing process can achieve the crystal orientation of the present invention, it is not necessarily limited to this manufacturing process. In a series of processing, it is effective to set conditions for destroying the cast structure by forging and rolling and sufficiently performing recrystallization.
Furthermore, after forging a melt-cast tantalum ingot or billet and applying a process such as rolling, it is desirable to recrystallize and to make the structure fine and uniform.
純度99.995%のタンタル原料を電子ビーム溶解し、これを鋳造して直径195mmφのインゴットとした。次に、このインゴットを室温で締め鍛造して直径150mmφとし、これを1100~1400℃の温度で再結晶焼鈍した。再度、これを室温で鍛造して厚さ100mm、直径150mmφとし(一次鍛造)、これを再結晶温度~1400℃の温度で再結晶焼鈍した。さらに、これを室温で鍛造して厚さ70~100mm、直径150~185mmφとし(二次鍛造)、これを再結晶温度~1400℃の温度で再結晶焼鈍して、ターゲット素材を得た。 Next, the present invention will be described based on examples. The following examples are for ease of understanding, and the present invention is not limited by these examples. That is, modifications and other embodiments based on the technical idea of the present invention are naturally included in the present invention.
A tantalum raw material having a purity of 99.995% was melted by electron beam and cast into an ingot having a diameter of 195 mmφ. Next, this ingot was clamped and forged at room temperature to a diameter of 150 mmφ, and this was recrystallized and annealed at a temperature of 1100 to 1400 ° C. Again, this was forged at room temperature to a thickness of 100 mm and a diameter of 150 mmφ (primary forging), and this was recrystallized and annealed at a recrystallization temperature of ˜1400 ° C. Further, this was forged at room temperature to a thickness of 70 to 100 mm and a diameter of 150 to 185 mmφ (secondary forging), and this was recrystallized and annealed at a recrystallization temperature of 1400 ° C. to obtain a target material.
実施例1では、得られたターゲット素材を、圧延ロール径400mmの圧延ロールを用いて、圧延速度10m/min、圧延率86%で冷間圧延して厚さ14mm、直径520mmφとし、これを1000℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。
以上の工程により、(200)面の配向率が84.3%、(222)面の配向率が9.9%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は613.5V、放電電圧バラツキは7.1Vであり、放電異常発生率は3.5%と良好であった。この結果を、表1に示す。 (Example 1)
In Example 1, the obtained target material was cold-rolled using a rolling roll having a rolling roll diameter of 400 mm at a rolling speed of 10 m / min and a rolling rate of 86% to obtain a thickness of 14 mm and a diameter of 520 mmφ. Heat treatment was performed at a temperature of ° C. Thereafter, the surface was cut and polished to obtain a target.
Through the above steps, a tantalum sputtering target having a crystal structure in which the orientation ratio of the (200) plane was 84.3% and the orientation ratio of the (222) plane was 9.9% could be obtained.
When sputtering was performed using this sputtering target, the discharge voltage was 613.5 V, the discharge voltage variation was 7.1 V, and the discharge abnormality occurrence rate was good at 3.5%. The results are shown in Table 1.
<成膜条件>
電源:直流方式
電力:15kW
到達真空度:5×10-8Torr
雰囲気ガス組成:Ar
スパッタガス圧:5×10-3Torr
スパッタ時間:15秒 Normally, the discharge abnormality occurrence rate is calculated by dividing the number of times that the voltage has reached 1000 V, which is the upper limit value of the power supply, by the total number of discharges. The tantalum film was formed under the following conditions (the same applies to the following examples and comparative examples).
<Film formation conditions>
Power supply: DC method Power: 15kW
Ultimate vacuum: 5 × 10 −8 Torr
Atmospheric gas composition: Ar
Sputtering gas pressure: 5 × 10 −3 Torr
Sputtering time: 15 seconds
実施例2では、得られたターゲット素材を、圧延ロール径400mmの圧延ロールを用いて、圧延速度15m/min、圧延率88%で冷間圧延して厚さ14mm、直径520mmφとし、これを900℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。
以上の工程により、(200)面の配向率が77.7%、(222)面の配向率が16.2%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は614.7V、放電電圧バラツキは12.3Vであり、放電異常発生率は5.8%と良好であった。この結果を、表1に示す。 (Example 2)
In Example 2, the obtained target material was cold-rolled using a rolling roll having a rolling roll diameter of 400 mm at a rolling speed of 15 m / min and a rolling rate of 88% to a thickness of 14 mm and a diameter of 520 mmφ. Heat treatment was performed at a temperature of ° C. Thereafter, the surface was cut and polished to obtain a target.
Through the above steps, a tantalum sputtering target having a crystal structure in which the orientation ratio of the (200) plane was 77.7% and the orientation ratio of the (222) plane was 16.2% could be obtained.
When sputtering was performed using this sputtering target, the discharge voltage was 614.7 V, the discharge voltage variation was 12.3 V, and the discharge abnormality occurrence rate was good at 5.8%. The results are shown in Table 1.
実施例3では、得られたターゲット素材を、圧延ロール径400mmの圧延ロールを用いて、圧延速度20m/min、圧延率82%で冷間圧延して厚さ14mm、直径520mmφとし、これを1100℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。以上の工程により、(200)面の配向率が74.3%、(222)面の配向率が14.8%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は603.2V、放電電圧バラツキは18.2Vであり、放電異常発生率は6.0%と良好であった。この結果を、表1に示す。 (Example 3)
In Example 3, the obtained target material was cold-rolled at a rolling speed of 20 m / min and a rolling rate of 82% using a rolling roll having a rolling roll diameter of 400 mm to a thickness of 14 mm and a diameter of 520 mmφ. Heat treatment was performed at a temperature of ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, a tantalum sputtering target having a crystal structure with a (200) plane orientation ratio of 74.3% and a (222) plane orientation ratio of 14.8% could be obtained.
When sputtering was performed using this sputtering target, the discharge voltage was 603.2 V, the discharge voltage variation was 18.2 V, and the discharge abnormality occurrence rate was good at 6.0%. The results are shown in Table 1.
実施例4では、得られたターゲット素材を、圧延ロール径500mmの圧延ロールを用いて、圧延速度15m/min、圧延率90%で冷間圧延して厚さ14mm、直径520mmφとし、これを800℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。以上の工程により、(200)面の配向率が71.4%、(222)面の配向率が20.7%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は614.1V、放電電圧バラツキは15.3Vであり、放電異常発生率は7.0%と良好であった。この結果を、表1に示す。 Example 4
In Example 4, the obtained target material was cold-rolled using a rolling roll having a rolling roll diameter of 500 mm at a rolling speed of 15 m / min and a rolling rate of 90% to a thickness of 14 mm and a diameter of 520 mmφ. Heat treatment was performed at a temperature of ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, a tantalum sputtering target having a crystal structure in which the (200) plane orientation ratio was 71.4% and the (222) plane orientation ratio was 20.7% could be obtained.
When sputtering was carried out using this sputtering target, the discharge voltage was 614.1 V, the discharge voltage variation was 15.3 V, and the discharge abnormality occurrence rate was good at 7.0%. The results are shown in Table 1.
実施例5では、得られたターゲット素材を、圧延ロール径500mmの圧延ロールを用いて、圧延速度20m/min、圧延率84%で冷間圧延して厚さ14mm、直径520mmφとし、これを1400℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。以上の工程により、(200)面の配向率が70.8%、(222)面の配向率が19.7%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は611.2V、放電電圧バラツキは12.2Vであり、放電異常発生率は8.1%と良好であった。この結果を、表1に示す。 (Example 5)
In Example 5, the obtained target material was cold-rolled with a rolling roll having a rolling roll diameter of 500 mm at a rolling speed of 20 m / min and a rolling rate of 84% to a thickness of 14 mm and a diameter of 520 mmφ. Heat treatment was performed at a temperature of ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, a tantalum sputtering target having a crystal structure in which the (200) plane orientation ratio was 70.8% and the (222) plane orientation ratio was 19.7% could be obtained.
When sputtering was performed using this sputtering target, the discharge voltage was 61.2 V, the discharge voltage variation was 12.2 V, and the discharge abnormality occurrence rate was good at 8.1%. The results are shown in Table 1.
比較例1では、得られたターゲット素材を、圧延ロール径650mmの圧延ロールを用いて、圧延速度15m/min、圧延率80%で冷間圧延して厚さ14mm、直径520mmφとし、これを800℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。以上の工程により、(200)面の配向率が43.6%、(222)面の配向率が39.1%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は622.5V、放電電圧バラツキは17.0Vであり、放電異常発生率は16.6%と悪かった。この結果を、表1に示す。 (Comparative Example 1)
In Comparative Example 1, the obtained target material was cold-rolled at a rolling speed of 15 m / min and a rolling rate of 80% using a rolling roll having a rolling roll diameter of 650 mm to a thickness of 14 mm and a diameter of 520 mmφ. Heat treatment was performed at a temperature of ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, a tantalum sputtering target having a crystal structure in which the orientation ratio of the (200) plane was 43.6% and the orientation ratio of the (222) plane was 39.1% could be obtained.
When sputtering was performed using this sputtering target, the discharge voltage was 622.5 V, the discharge voltage variation was 17.0 V, and the discharge abnormality occurrence rate was poor at 16.6%. The results are shown in Table 1.
比較例2では、得られたターゲット素材を、圧延ロール径500mmの圧延ロールを用いて、圧延速度10m/min、圧延率78%で冷間圧延して厚さ14mm、直径520mmφとし、これを800℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。以上の工程により、(200)面の配向率が60.1%、(222)面の配向率が24.0%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は627.0V、放電電圧バラツキは18.0Vであり、放電異常発生率は20.5%と悪かった。この結果を、表1に示す。 (Comparative Example 2)
In Comparative Example 2, the obtained target material was cold-rolled using a rolling roll having a rolling roll diameter of 500 mm at a rolling speed of 10 m / min and a rolling rate of 78% to obtain a thickness of 14 mm and a diameter of 520 mmφ. Heat treatment was performed at a temperature of ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, a tantalum sputtering target having a crystal structure with a (200) plane orientation ratio of 60.1% and a (222) plane orientation ratio of 24.0% could be obtained.
When sputtering was performed using this sputtering target, the discharge voltage was 627.0 V, the discharge voltage variation was 18.0 V, and the discharge abnormality occurrence rate was poor at 20.5%. The results are shown in Table 1.
比較例3では、得られたターゲット素材を、圧延ロール径500mmの圧延ロールを用いて、圧延速度15m/min、圧延率85%で冷間圧延して厚さ14mm、直径520mmφとし、これを800℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。以上の工程により、(200)面の配向率が51.4%、(222)面の配向率が37.3%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は624.0V、放電電圧バラツキは25.1Vであり、放電異常発生率は26.2%と悪かった。この結果を、表1に示す。 (Comparative Example 3)
In Comparative Example 3, the obtained target material was cold-rolled using a rolling roll having a rolling roll diameter of 500 mm at a rolling speed of 15 m / min and a rolling rate of 85% to obtain a thickness of 14 mm and a diameter of 520 mmφ. Heat treatment was performed at a temperature of ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, a tantalum sputtering target having a crystal structure in which the orientation ratio of the (200) plane was 51.4% and the orientation ratio of the (222) plane was 37.3% could be obtained.
When sputtering was performed using this sputtering target, the discharge voltage was 624.0 V, the discharge voltage variation was 25.1 V, and the discharge abnormality occurrence rate was 26.2%. The results are shown in Table 1.
比較例4では、得られたターゲット素材を、圧延ロール径650mmの圧延ロールを用いて、圧延速度20m/min、圧延率86%で冷間圧延して厚さ14mm、直径520mmφとし、これを1000℃の温度で熱処理した。その後、表面を切削、研磨してターゲットとした。以上の工程により、(200)面の配向率が66.2%、(222)面の配向率が31.0%の結晶組織を有するタンタルスパッタリングターゲットを得ることができた。
このスパッタリングターゲットを使用して、スパッタリングを実施したところ、放電電圧は603.4V、放電電圧バラツキは28.4Vであり、放電異常発生率は18.3%と悪かった。この結果を、表1に示す。 (Comparative Example 4)
In Comparative Example 4, the obtained target material was cold-rolled using a rolling roll having a rolling roll diameter of 650 mm at a rolling speed of 20 m / min and a rolling rate of 86% to obtain a thickness of 14 mm and a diameter of 520 mmφ. Heat treatment was performed at a temperature of ° C. Thereafter, the surface was cut and polished to obtain a target. Through the above steps, a tantalum sputtering target having a crystal structure in which the orientation ratio of the (200) plane was 66.2% and the orientation ratio of the (222) plane was 31.0% could be obtained.
When sputtering was performed using this sputtering target, the discharge voltage was 603.4 V, the discharge voltage variation was 28.4 V, and the discharge abnormality occurrence rate was as bad as 18.3%. The results are shown in Table 1.
Claims (9)
- タンタルスパッタリングターゲットのスパッタ面において、(200)面の配向率が70%を超え、かつ、(222)面の配向率が30%以下であることを特徴とするタンタルスパッタリングターゲット。 A tantalum sputtering target having a (200) plane orientation ratio of more than 70% and a (222) plane orientation ratio of 30% or less on the sputtering surface of the tantalum sputtering target.
- タンタルスパッタリングターゲットのスパッタ面において、(200)面の配向率が80%以上、かつ、(222)面の配向率が20%以下であることを特徴とする請求項1記載のタンタルスパッタリングターゲット。 2. The tantalum sputtering target according to claim 1, wherein the (200) plane orientation ratio is 80% or more and the (222) plane orientation ratio is 20% or less on the sputtering surface of the tantalum sputtering target.
- 請求項1~2のいずれかに記載のスパッタリングターゲットを用いて形成した拡散バリア層用薄膜。 A thin film for a diffusion barrier layer formed using the sputtering target according to claim 1.
- 請求項3記載の拡散バリア層用薄膜を用いられた半導体デバイス。 A semiconductor device using the thin film for a diffusion barrier layer according to claim 3.
- 溶解鋳造したタンタルインゴットを鍛造及び再結晶焼鈍した後、圧延及び熱処理し、ターゲットのスパッタ面において、(200)面の配向率が70%を超え、かつ、(222)面の配向率が30%以下である結晶組織を形成することを特徴とするタンタルスパッタリングターゲットの製造方法。 The forged and recrystallized annealing of the tantalum ingot that has been melt cast, followed by rolling and heat treatment, the (200) plane orientation ratio exceeds 70% and the (222) plane orientation ratio is 30% on the sputtering surface of the target. The manufacturing method of the tantalum sputtering target characterized by forming the following crystal structures.
- 溶解鋳造したタンタルインゴットを鍛造及び再結晶焼鈍した後、圧延及び熱処理し、ターゲットのスパッタ面において、(200)面の配向率が80%以上、かつ、(222)面の配向率が20%以下である結晶組織を形成することを特徴とする請求項5記載のタンタルスパッタリングターゲットの製造方法。 After forging and recrystallization annealing of the cast tantalum ingot, rolling and heat treatment are performed, and on the sputtering surface of the target, the orientation ratio of (200) plane is 80% or more and the orientation ratio of (222) plane is 20% or less. The method for producing a tantalum sputtering target according to claim 5, wherein a crystal structure is formed.
- 圧延ロール径500mm以下の圧延ロールを用いて、圧延速度10m/分以上、圧延率80%超で冷間圧延することを特徴とする請求項5~6のいずれかに記載のタンタルスパッタリングターゲットの製造方法。 The production of a tantalum sputtering target according to any one of claims 5 to 6, wherein cold rolling is performed at a rolling speed of 10 m / min or more and a rolling rate of over 80% using a rolling roll having a rolling roll diameter of 500 mm or less. Method.
- 温度900℃~1400℃で熱処理することを特徴とする請求項5~7のいずれかに記載のタンタルスパッタリングターゲットの製造方法。 The method for producing a tantalum sputtering target according to any one of claims 5 to 7, wherein the heat treatment is performed at a temperature of 900 ° C to 1400 ° C.
- 圧延及び熱処理後、切削、研磨により表面仕上げを行うことを特徴とする請求項5~8のいずれかに記載のタンタルスパッタリングターゲットの製造方法。 The method for producing a tantalum sputtering target according to any one of claims 5 to 8, wherein the surface finish is performed by cutting and polishing after rolling and heat treatment.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13866236.6A EP2878699B1 (en) | 2012-12-19 | 2013-12-06 | Tantalum sputtering target and method for producing same |
CN201380053775.9A CN105431565B (en) | 2012-12-19 | 2013-12-06 | Tantalum spattering target and its manufacturing method |
SG11201501175TA SG11201501175TA (en) | 2012-12-19 | 2013-12-06 | Tantalum sputtering target and method for producing same |
US14/433,948 US10490393B2 (en) | 2012-12-19 | 2013-12-06 | Tantalum sputtering target and method for producing same |
KR1020157007541A KR101950549B1 (en) | 2012-12-19 | 2013-12-06 | Tantalum sputtering target and method for producing same |
KR1020177007784A KR20170036120A (en) | 2012-12-19 | 2013-12-06 | Tantalum sputtering target and method for producing same |
JP2014524215A JP5847309B2 (en) | 2012-12-19 | 2013-12-06 | Tantalum sputtering target and manufacturing method thereof |
IL237919A IL237919B (en) | 2012-12-19 | 2015-03-24 | Tantalum sputtering target and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-276883 | 2012-12-19 | ||
JP2012276883 | 2012-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014097897A1 true WO2014097897A1 (en) | 2014-06-26 |
Family
ID=50978232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/082764 WO2014097897A1 (en) | 2012-12-19 | 2013-12-06 | Tantalum sputtering target and method for producing same |
Country Status (9)
Country | Link |
---|---|
US (1) | US10490393B2 (en) |
EP (1) | EP2878699B1 (en) |
JP (1) | JP5847309B2 (en) |
KR (2) | KR20170036120A (en) |
CN (1) | CN105431565B (en) |
IL (1) | IL237919B (en) |
SG (1) | SG11201501175TA (en) |
TW (1) | TWI580796B (en) |
WO (1) | WO2014097897A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020032455A (en) * | 2018-08-31 | 2020-03-05 | アイシン・エィ・ダブリュ株式会社 | Manufacturing method of metal component |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SG11201501370PA (en) | 2012-12-19 | 2015-04-29 | Jx Nippon Mining & Metals Corp | Tantalum sputtering target and method for producing same |
WO2014136679A1 (en) | 2013-03-04 | 2014-09-12 | Jx日鉱日石金属株式会社 | Tantalum sputtering target and production method therefor |
KR20170141280A (en) | 2013-10-01 | 2017-12-22 | 제이엑스금속주식회사 | Tantalum sputtering target |
WO2016190160A1 (en) | 2015-05-22 | 2016-12-01 | Jx金属株式会社 | Tantalum sputtering target, and production method therefor |
SG11201708112TA (en) | 2015-05-22 | 2017-11-29 | Jx Nippon Mining & Metals Corp | Tantalum sputtering target, and production method therefor |
TW201738395A (en) * | 2015-11-06 | 2017-11-01 | 塔沙Smd公司 | Method of making a tantalum sputtering target with increased deposition rate |
CN109338316B (en) * | 2018-09-12 | 2020-04-28 | 中南大学 | Ultra-pure tantalum with controllable structure and texture and preparation method and application thereof |
CN114990502B (en) * | 2022-06-02 | 2024-10-11 | 有研亿金新材料(山东)有限公司 | Preparation method of high-performance tantalum target blank |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1180942A (en) * | 1997-09-10 | 1999-03-26 | Japan Energy Corp | Ta sputtering target, its production and assembled body |
JP2002518593A (en) * | 1998-06-17 | 2002-06-25 | ジヨンソン マテイ エレクトロニクス,インコーポレーテツド | Metal product having fine and uniform structure and texture and method for manufacturing the same |
JP2004107758A (en) | 2002-09-20 | 2004-04-08 | Nikko Materials Co Ltd | Tantalum sputtering target and its production method |
JP2008532765A (en) | 2005-02-10 | 2008-08-21 | キャボット コーポレイション | Sputtering target and manufacturing method thereof |
WO2011018895A1 (en) * | 2009-08-12 | 2011-02-17 | 株式会社アルバック | Sputtering target and method for manufacturing a sputtering target |
WO2011061897A1 (en) | 2009-11-17 | 2011-05-26 | 株式会社 東芝 | Tantalum sputtering target, method for manufacturing tantalum sputtering target, and method for manufacturing semiconductor device |
JP4714123B2 (en) | 2006-10-30 | 2011-06-29 | 株式会社東芝 | Method for producing high purity Ta material for sputtering target |
JP4754617B2 (en) | 2003-04-01 | 2011-08-24 | Jx日鉱日石金属株式会社 | Method for manufacturing tantalum sputtering target |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4817536B2 (en) | 2001-06-06 | 2011-11-16 | 株式会社東芝 | Sputter target |
US7081148B2 (en) | 2001-09-18 | 2006-07-25 | Praxair S.T. Technology, Inc. | Textured-grain-powder metallurgy tantalum sputter target |
JP4263900B2 (en) | 2002-11-13 | 2009-05-13 | 日鉱金属株式会社 | Ta sputtering target and manufacturing method thereof |
US6794753B2 (en) | 2002-12-27 | 2004-09-21 | Lexmark International, Inc. | Diffusion barrier and method therefor |
JP4672967B2 (en) | 2003-01-10 | 2011-04-20 | Jx日鉱日石金属株式会社 | Target manufacturing method |
EP1681368B1 (en) * | 2003-11-06 | 2021-06-30 | JX Nippon Mining & Metals Corporation | Method to produce a tantalum sputtering target |
KR100559395B1 (en) | 2003-11-10 | 2006-03-10 | 현대자동차주식회사 | Micro boring bearing |
US7686926B2 (en) | 2004-05-26 | 2010-03-30 | Applied Materials, Inc. | Multi-step process for forming a metal barrier in a sputter reactor |
US8177947B2 (en) | 2005-04-28 | 2012-05-15 | Jx Nippon Mining & Metals Corporation | Sputtering target |
WO2007040014A1 (en) | 2005-10-04 | 2007-04-12 | Nippon Mining & Metals Co., Ltd. | Sputtering target |
EP1970947B1 (en) | 2005-12-02 | 2016-08-24 | Ulvac, Inc. | METHOD FOR FORMING Cu FILM |
CN101960042B (en) | 2008-02-29 | 2013-05-08 | 新日铁高新材料股份有限公司 | Metallic sputtering target material |
WO2010138811A2 (en) | 2009-05-29 | 2010-12-02 | Arizona Board Of Regents, For And On Behalf Of Arizona State University | Method of providing a flexible semiconductor device at high temperatures and flexible semiconductor device thereof |
JP5583140B2 (en) | 2008-12-02 | 2014-09-03 | アリゾナ・ボード・オブ・リージェンツ,フォー・アンド・オン・ビハーフ・オブ・アリゾナ・ステート・ユニバーシティ | Method for preparing flexible substrate assembly and flexible substrate assembly prepared by the method |
SG173141A1 (en) | 2009-05-22 | 2011-08-29 | Jx Nippon Mining & Metals Corp | Tantalum sputtering target |
SG174153A1 (en) | 2009-08-11 | 2011-10-28 | Jx Nippon Mining & Metals Corp | Tantalum sputtering target |
KR101338630B1 (en) | 2009-08-11 | 2013-12-06 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Tantalum sputtering target |
KR101051945B1 (en) | 2009-12-02 | 2011-07-27 | 황도희 | How to prepare instant seasoned ribs sauce |
SG186765A1 (en) | 2010-08-09 | 2013-02-28 | Jx Nippon Mining & Metals Corp | Tantalum sputtering target |
EP2604719B1 (en) | 2010-08-09 | 2020-11-11 | JX Nippon Mining & Metals Corporation | Tantalum spattering target |
KR20160108570A (en) | 2011-11-30 | 2016-09-19 | 제이엑스금속주식회사 | Tantalum sputtering target and method for manufacturing same |
JP5324016B1 (en) | 2012-03-21 | 2013-10-23 | Jx日鉱日石金属株式会社 | Tantalum sputtering target, manufacturing method thereof, and barrier film for semiconductor wiring formed using the target |
SG11201501370PA (en) | 2012-12-19 | 2015-04-29 | Jx Nippon Mining & Metals Corp | Tantalum sputtering target and method for producing same |
WO2014136679A1 (en) | 2013-03-04 | 2014-09-12 | Jx日鉱日石金属株式会社 | Tantalum sputtering target and production method therefor |
KR20170141280A (en) | 2013-10-01 | 2017-12-22 | 제이엑스금속주식회사 | Tantalum sputtering target |
WO2015146516A1 (en) | 2014-03-27 | 2015-10-01 | Jx日鉱日石金属株式会社 | Tantalum sputtering target and production method therefor |
-
2013
- 2013-12-06 WO PCT/JP2013/082764 patent/WO2014097897A1/en active Application Filing
- 2013-12-06 KR KR1020177007784A patent/KR20170036120A/en not_active Application Discontinuation
- 2013-12-06 US US14/433,948 patent/US10490393B2/en active Active
- 2013-12-06 JP JP2014524215A patent/JP5847309B2/en active Active
- 2013-12-06 SG SG11201501175TA patent/SG11201501175TA/en unknown
- 2013-12-06 KR KR1020157007541A patent/KR101950549B1/en active IP Right Grant
- 2013-12-06 EP EP13866236.6A patent/EP2878699B1/en active Active
- 2013-12-06 CN CN201380053775.9A patent/CN105431565B/en active Active
- 2013-12-11 TW TW102145544A patent/TWI580796B/en active
-
2015
- 2015-03-24 IL IL237919A patent/IL237919B/en active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1180942A (en) * | 1997-09-10 | 1999-03-26 | Japan Energy Corp | Ta sputtering target, its production and assembled body |
JP2002518593A (en) * | 1998-06-17 | 2002-06-25 | ジヨンソン マテイ エレクトロニクス,インコーポレーテツド | Metal product having fine and uniform structure and texture and method for manufacturing the same |
JP2004107758A (en) | 2002-09-20 | 2004-04-08 | Nikko Materials Co Ltd | Tantalum sputtering target and its production method |
JP4754617B2 (en) | 2003-04-01 | 2011-08-24 | Jx日鉱日石金属株式会社 | Method for manufacturing tantalum sputtering target |
JP2008532765A (en) | 2005-02-10 | 2008-08-21 | キャボット コーポレイション | Sputtering target and manufacturing method thereof |
JP4714123B2 (en) | 2006-10-30 | 2011-06-29 | 株式会社東芝 | Method for producing high purity Ta material for sputtering target |
WO2011018895A1 (en) * | 2009-08-12 | 2011-02-17 | 株式会社アルバック | Sputtering target and method for manufacturing a sputtering target |
WO2011061897A1 (en) | 2009-11-17 | 2011-05-26 | 株式会社 東芝 | Tantalum sputtering target, method for manufacturing tantalum sputtering target, and method for manufacturing semiconductor device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020032455A (en) * | 2018-08-31 | 2020-03-05 | アイシン・エィ・ダブリュ株式会社 | Manufacturing method of metal component |
JP7053411B2 (en) | 2018-08-31 | 2022-04-12 | 株式会社アイシン | Manufacturing method of metal parts |
Also Published As
Publication number | Publication date |
---|---|
CN105431565A (en) | 2016-03-23 |
US10490393B2 (en) | 2019-11-26 |
EP2878699A4 (en) | 2016-03-30 |
JPWO2014097897A1 (en) | 2017-01-12 |
TW201439335A (en) | 2014-10-16 |
KR101950549B1 (en) | 2019-02-20 |
TWI580796B (en) | 2017-05-01 |
IL237919B (en) | 2018-02-28 |
SG11201501175TA (en) | 2015-05-28 |
US20150279637A1 (en) | 2015-10-01 |
KR20150046278A (en) | 2015-04-29 |
CN105431565B (en) | 2018-06-05 |
EP2878699B1 (en) | 2020-07-15 |
KR20170036120A (en) | 2017-03-31 |
JP5847309B2 (en) | 2016-01-20 |
EP2878699A1 (en) | 2015-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6133357B2 (en) | Tantalum sputtering target and manufacturing method thereof | |
JP5847309B2 (en) | Tantalum sputtering target and manufacturing method thereof | |
JP5905600B2 (en) | Tantalum sputtering target and manufacturing method thereof | |
JP5829757B2 (en) | Tantalum sputtering target and manufacturing method thereof | |
JP6009683B2 (en) | Tantalum sputtering target and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380053775.9 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2014524215 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13866236 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013866236 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 237919 Country of ref document: IL |
|
ENP | Entry into the national phase |
Ref document number: 20157007541 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14433948 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |