WO2014097855A1 - Planetary gear mechanism - Google Patents

Planetary gear mechanism Download PDF

Info

Publication number
WO2014097855A1
WO2014097855A1 PCT/JP2013/082116 JP2013082116W WO2014097855A1 WO 2014097855 A1 WO2014097855 A1 WO 2014097855A1 JP 2013082116 W JP2013082116 W JP 2013082116W WO 2014097855 A1 WO2014097855 A1 WO 2014097855A1
Authority
WO
WIPO (PCT)
Prior art keywords
planetary gear
tooth surface
internal gear
teeth
gear
Prior art date
Application number
PCT/JP2013/082116
Other languages
French (fr)
Japanese (ja)
Inventor
秀行 山口
西村 光宣
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2014097855A1 publication Critical patent/WO2014097855A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/324Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising two axially spaced, rigidly interconnected, orbital gears

Definitions

  • the present invention relates to a planetary gear mechanism used for a speed reducer and a speed increaser.
  • the planetary gear mechanism is a structure in which the planetary gear is eccentrically arranged with respect to the internal gear, and the eccentricity is canceled by another planetary gear that is similarly arranged eccentrically and having a different number of teeth. It has become.
  • the locus drawn by the tooth surface contact portion of the conventional planetary gear mechanism is not designed to be an epitrochoid curve that rolls with the tooth surface of the planetary gear circumscribing the tooth surface of the internal gear.
  • the locus drawn by the tooth surface contact portion of the planetary gear mechanism is a hypotrochoidal curve in which the pitch circle of the planetary gear rolls while inscribed with respect to the pitch circle of the internal gear.
  • the tooth surface of the planetary gear is circumscribed with respect to the tooth surface of the internal gear and is not designed to have an epitrochoidal curve, the meshing tooth surfaces generate slip.
  • the friction loss of the tooth surface is (Load of tooth surface) ⁇ (Slip distance of tooth surface) ⁇ (Friction coefficient of tooth surface)
  • the slip at the tooth surface contact portion increases the friction loss of the planetary gear mechanism, and the mechanical efficiency deteriorates.
  • the mechanical efficiency of the differential gear mechanism greatly depends on the slip amount of the tooth surface contact portion, and it is an object of the present invention to suppress this slip.
  • the present invention sets S1 smaller than 0.5% of ⁇ D1 when the slip distance S1 of the tooth meshing portion of the internal gear and the planetary gear and the diameter of the pitch circle of the internal gear is ⁇ D1. is there.
  • the friction loss of the tooth surface is It is expressed by (load of tooth surface) ⁇ (slip distance of tooth surface) ⁇ (friction coefficient of tooth surface). Suppression of slip at the tooth surface contact portion reduces friction loss, and mechanical efficiency can be improved.
  • the tooth surface wear is Since it is suppressed by reducing (load of tooth surface) ⁇ (slip speed of tooth surface), wear is reduced and durability is improved by suppressing slip of the tooth surface contact portion.
  • the tooth surface shape for suppressing the slip may be an arc shape or not.
  • the difference in the number of teeth between the internal gear and the planetary gear is 2 or more
  • the diameter of the basic circle that is the center of the teeth of the internal gear is ⁇ C1
  • the diameter of the basic circle that is the center of the teeth of the planetary gear is When ⁇ C2 and the diameter of the pitch circle of the planetary gear are ⁇ D2, the relationship of ⁇ D2 / ⁇ D1> ⁇ C2 / ⁇ C1 is satisfied.
  • the tooth surface friction loss is represented by (tooth surface load) ⁇ (tooth surface slip distance) ⁇ (tooth surface friction coefficient), and suppression of tooth surface contact slip reduces friction loss, Mechanical efficiency can be improved. Further, tooth surface wear is suppressed by reducing (tooth surface load) ⁇ (tooth surface slip speed), so wear is reduced and durability is improved by suppressing slip on the tooth surface contact portion. .
  • the tooth surface shape for suppressing slip may be an arc shape or not an arc shape.
  • the diameter of the base circle that is the center of the teeth of the internal gear A is ⁇ C3
  • the diameter of the pitch circle of the internal gear A is ⁇ D3
  • the diameter of the base circle that is the center of the teeth of the fourth planetary gear is ⁇ C4
  • the relationship when the diameter of the pitch circle of the planetary gear is ⁇ D4 will be described.
  • the difference in the number of teeth between the internal gear A and the planetary gear A is 2 or more, the diameter of the basic circle that is the center of the teeth of the internal gear A is ⁇ C3, and the base that is the center of the teeth of the planetary gear A
  • the diameter of the circle is ⁇ C4 and the diameter of the pitch circle of the planetary gear A is ⁇ D4
  • the relationship of ⁇ D4 / ⁇ D3> ⁇ C4 / ⁇ C3 is satisfied.
  • the planetary gear mechanism operates as a differential gear mechanism, and the downsizing and the large speed reduction that are the features of the differential gear. Ratio or a large speed increase ratio can be realized.
  • the tooth surface of the planetary gear is circumscribed with respect to the tooth surface of the internal gear and is not designed to be an epitrochoid curve, the occurrence of slippage of the meshing tooth surfaces can be suppressed.
  • Sectional drawing of the planetary gear mechanism in the Example of this invention The figure which looked at FIG. 1 in the Example of this invention from the A direction BB sectional view of FIG. 1 in the embodiment of the present invention
  • the enlarged view of the C section of FIG. 2 in the Example of this invention The enlarged view of the D section of FIG. 6 in the Example of this invention.
  • the planetary gear mechanism of this embodiment is used as a reduction gear having a small size and a high gear ratio, and can be applied, for example, as an actuator for parking switching of an automobile.
  • FIG. 1 is a cross-sectional view of a planetary gear mechanism in an embodiment of the present invention
  • FIG. 2 is a view of FIG. 1 in the embodiment of the present invention as viewed from the direction A
  • FIG. Sectional drawing and FIG. 4 are perspective views of the planetary gear mechanism in the embodiment of the present invention.
  • the planetary gear mechanism of this embodiment is used as a reduction gear having a small size and a high gear ratio, and a housing 2 provided with a first internal gear 1 and a bearing (a first rolling to be described later).
  • a second internal gear 3 disposed concentrically with respect to the first internal gear 1 via a bearing 9), a first shaft 4 provided concentrically with the second internal gear 3;
  • a second shaft 6 provided with an eccentric portion 5 rotatably disposed via a bearing (second rolling bearing 10 described later) disposed around the one shaft 4, and a bearing disposed around the eccentric portion 5
  • a second planetary gear 8 provided with a first planetary gear 7 which is rotatably arranged via a third rolling bearing 11 which will be described later.
  • the second shaft 6 When used as a speed reducer, the second shaft 6 is an input shaft, and is rotatably supported by a second rolling bearing 10 disposed around the first shaft 4.
  • the first shaft 4 When used as a speed reducer, the first shaft 4 is an output shaft, and is attached so as to rotate concentrically integrally with the second internal gear 3, and is rotatable with respect to the housing 2 via the first rolling bearing 9.
  • the first planetary gear 7 is rotatably supported by the eccentric portion 5 via the third rolling bearing 11, and is centered on the pitch circle of the first internal gear 1 by the eccentric portion 5. It oscillates and rotates while meshing with the first internal gear 1.
  • the second planetary gear 8 is attached so as to rotate concentrically integrally with the first planetary gear 7, and is arranged so as to be concentrically rotatable with the first internal gear 1. Rotate while meshing.
  • the trochoid curve as a term used in the present embodiment will be described with reference to FIG.
  • a broad trochoidal curve is obtained when a rolling circle rolls around a pitch circle (base circle) without slipping, as shown by a, b, c, a ′, b ′, and c ′ in FIG.
  • This is a locus drawn by a point on the radius of the circle, where the rolling circle is a hypotrochoid that rolls inside the pitch circle (base circle) (a ', b', c '), and the rolling circle is outside the pitch circle (base circle).
  • A, b, c) that rolls are called epitrochoids.
  • hypotrochoid and epitrochoid used in this example refer to the above definitions.
  • the tooth shapes of the internal gear and the planetary gear will be described with reference to FIGS.
  • the tooth surface contact portions of the internal gear 1 and the planetary gear 7 have an arc shape, and the teeth are connected in an arc shape.
  • the difference in the number of teeth between the internal gear and the planetary gear is 2 or more, and the diameter of the basic circle that is the center of the teeth of the internal gear is ⁇ C1,
  • the diameter of the pitch circle of the internal gear is ⁇ D1
  • the diameter of the base circle that is the center of the planetary gear teeth is ⁇ C2,
  • ⁇ D2 / ⁇ D1> ⁇ C2 / ⁇ C1 Satisfying this relationship makes it possible to prevent tooth interference and secure an oil sump space at the tip of the tooth.
  • the number of teeth of the internal gear is N1
  • the number of teeth of the internal gear A is N2
  • the number of planetary gear teeth is N2
  • E When the amount of eccentricity of the planetary gear is E, The tooth surface of the planetary gear moves while rolling with the slip on the tooth surface of the internal gear, and the distance ⁇ S1 that moves while rolling is: E ⁇ (circumference ratio) ⁇ (N1-N2) / N1
  • the diameter ⁇ D1 of the pitch circle of the internal gear is It is represented by E ⁇ N1.
  • E 1.5 mm
  • ⁇ D1 ⁇ 45mm According to the drawing shown in FIG.
  • the distance S1 at which the tooth surface of the planetary gear slips on the tooth surface of the internal gear at this time is 0.02 mm
  • the tooth surface shape shown in FIG. 8 is a modification of the tooth surface shape shown in FIG. 6 and is obtained by removing the tip of the tooth surface that does not contribute to rotation transmission. Can be secured.

Abstract

Because the track traced by the tooth surface-contacting section of a planetary gear mechanism is not an epitrochoid curve, friction loss increases and mechanical efficiency is reduced due to slippage of the tooth surface-contacting section of a rotational force-transmitting section. The mechanical efficiency of said differential gear mechanism is significantly dependent on the amount of slippage between the tooth surface-contacting sections. The purpose of the present invention is to limit said slippage. When the slip distance of the tooth surface-meshing sections of an internal gear and a planetary gear is (S1) and the diameter of the pitch circle of the internal gear is (φD1), the present invention sets (S1) to be smaller than 0.5% of (φD1).

Description

遊星歯車機構Planetary gear mechanism
本発明は、減速機や増速機に用いられる遊星歯車機構に関するものである。 The present invention relates to a planetary gear mechanism used for a speed reducer and a speed increaser.
 遊星歯車機構は、内歯歯車に対して遊星歯車が偏心して配置され、同様に偏心して配置された歯数の異なるもう1つの遊星歯車により偏心をキャンセルする構造であり、差動歯車機構の構造となっている。
従来の遊星歯車機構の歯面接触部が描く軌跡は、内歯歯車の歯面に対して遊星歯車の歯面が外接して転がるエピトロコイド曲線となるように設計されていない。
The planetary gear mechanism is a structure in which the planetary gear is eccentrically arranged with respect to the internal gear, and the eccentricity is canceled by another planetary gear that is similarly arranged eccentrically and having a different number of teeth. It has become.
The locus drawn by the tooth surface contact portion of the conventional planetary gear mechanism is not designed to be an epitrochoid curve that rolls with the tooth surface of the planetary gear circumscribing the tooth surface of the internal gear.
特開2007-32836JP2007-32836A
遊星歯車機構の歯面接触部が描く軌跡がエピトロコイド曲線となっていないため、回転力伝達部の歯面接触部のスリップにより摩擦損失が増加し、機械効率が悪化する。 Since the locus drawn by the tooth surface contact portion of the planetary gear mechanism is not an epitrochoid curve, the friction loss increases due to the slip of the tooth surface contact portion of the rotational force transmitting portion, and the mechanical efficiency deteriorates.
 理論的に遊星歯車機構の歯面接触部の描く軌跡は、内歯歯車のピッチ円に対し、遊星歯車のピッチ円が内接しながら転がるハイポトロコイド曲線となる。
しかし、内歯歯車の歯面に対し、遊星歯車の歯面が外接して転がるエピトロコイド曲線となるように設計されていないため、噛み合う歯面はスリップを発生する。
Theoretically, the locus drawn by the tooth surface contact portion of the planetary gear mechanism is a hypotrochoidal curve in which the pitch circle of the planetary gear rolls while inscribed with respect to the pitch circle of the internal gear.
However, since the tooth surface of the planetary gear is circumscribed with respect to the tooth surface of the internal gear and is not designed to have an epitrochoidal curve, the meshing tooth surfaces generate slip.
 歯面の摩擦損失は、
(歯面の荷重)×(歯面のスリップ距離)×(歯面の摩擦係数)であり、歯面接触部のスリップは遊星歯車機構の摩擦損失を増加させ、機械効率が悪化する。
この差動歯車機構の機械効率が歯面接触部のスリップ量に大きく依存しており、このスリップを抑制することが本発明の目的となる。
The friction loss of the tooth surface is
(Load of tooth surface) × (Slip distance of tooth surface) × (Friction coefficient of tooth surface) The slip at the tooth surface contact portion increases the friction loss of the planetary gear mechanism, and the mechanical efficiency deteriorates.
The mechanical efficiency of the differential gear mechanism greatly depends on the slip amount of the tooth surface contact portion, and it is an object of the present invention to suppress this slip.
 本発明は、内歯歯車と遊星歯車との歯面噛み合い部のスリップする距離S1、内歯歯車のピッチ円の直径をφD1としたとき、S1をφD1の0.5%より小さく設定するものである。 The present invention sets S1 smaller than 0.5% of φD1 when the slip distance S1 of the tooth meshing portion of the internal gear and the planetary gear and the diameter of the pitch circle of the internal gear is φD1. is there.
 即ち、歯面の摩擦損失は、
(歯面の荷重)×(歯面のスリップ距離)×(歯面の摩擦係数)で表され、歯面接触部のスリップの抑制が摩擦損失を低減し、機械効率の向上が可能である。
また、歯面の磨耗は、
(歯面の荷重)×(歯面のスリップ速度)を小さくすることで抑制されるため、歯面接触部のスリップの抑制により磨耗が減少し耐久性が向上する。
なお、スリップを抑制するための歯面形状は、円弧形状でも良いし、そうでなくともよい。
That is, the friction loss of the tooth surface is
It is expressed by (load of tooth surface) × (slip distance of tooth surface) × (friction coefficient of tooth surface). Suppression of slip at the tooth surface contact portion reduces friction loss, and mechanical efficiency can be improved.
In addition, the tooth surface wear is
Since it is suppressed by reducing (load of tooth surface) × (slip speed of tooth surface), wear is reduced and durability is improved by suppressing slip of the tooth surface contact portion.
The tooth surface shape for suppressing the slip may be an arc shape or not.
 好ましい態様としては、内歯歯車の歯の中心となる基礎円の直径をφC1、遊星歯車の歯の中心となる基礎円の直径をφC2、遊星歯車のピッチ円の直径をφD2としたときの関係を説明する。すなわち、内歯歯車と遊星歯車との歯数差が2以上であり、かつ、内歯歯車の歯の中心となる基礎円の直径をφC1、遊星歯車の歯の中心となる基礎円の直径をφC2、遊星歯車のピッチ円の直径をφD2としたとき、φD2/φD1>φC2/φC1の関係を満たすことを特徴とするものである。
また、内歯歯車の歯数をN1、遊星歯車の歯数をN2、内歯歯車に対する遊星歯車の偏心量をEとしたときの関係を説明する。すなわち、内歯歯車の歯数をN1、遊星歯車の歯数をN2、内歯歯車に対する遊星歯車の偏心量をEとしたとき、φD1/N1=φD2/N2、φD1=N1×E、φD2=N2×Eの関係を満たすことを特徴とするものである。さらに好ましい態様として、内歯歯車Aと遊星歯車Aとの歯面噛み合い部のスリップする距離をS2、内歯歯車Aのピッチ円の直径をφD2としたとき、S2がφD2の0.5%より小さく設定するものである。すなわち、歯面の摩擦損失は、(歯面の荷重)×(歯面のスリップ距離)×(歯面の摩擦係数)で表され、歯面接触部のスリップの抑制が摩擦損失を低減し、機械効率の向上が可能である。また、歯面の磨耗は、(歯面の荷重)×(歯面のスリップ速度)を小さくすることで抑制されるため、歯面接触部のスリップの抑制により磨耗が減少し耐久性が向上する。なお、スリップを抑制するための歯面形状は、円弧状でも良いし、円弧形状でなくともよい。
また、内歯歯車Aの歯の中心となる基礎円の直径をφC3、内歯歯車Aのピッチ円の直径をφD3、第4遊星歯車の歯の中心となる基礎円の直径をφC4、第4遊星歯車のピッチ円の直径をφD4としたときの関係を説明する。すなわち、内歯歯車Aと遊星歯車Aとの歯数差は2以上であり、かつ、内歯歯車Aの歯の中心となる基礎円の直径をφC3、遊星歯車Aの歯の中心となる基礎円の直径をφC4、遊星歯車Aのピッチ円の直径をφD4としたとき、φD4/φD3>φC4/φC3の関係を満たすことを特徴とするものである。
As a preferred embodiment, the relationship when the diameter of the basic circle that is the center of the teeth of the internal gear is φC1, the diameter of the basic circle that is the center of the teeth of the planetary gear is φC2, and the diameter of the pitch circle of the planetary gear is φD2. Will be explained. That is, the difference in the number of teeth between the internal gear and the planetary gear is 2 or more, the diameter of the basic circle that is the center of the teeth of the internal gear is φC1, and the diameter of the basic circle that is the center of the teeth of the planetary gear is When φC2 and the diameter of the pitch circle of the planetary gear are φD2, the relationship of φD2 / φD1> φC2 / φC1 is satisfied.
The relationship when the number of teeth of the internal gear is N1, the number of teeth of the planetary gear is N2, and the amount of eccentricity of the planetary gear with respect to the internal gear is E will be described. That is, assuming that the number of teeth of the internal gear is N1, the number of teeth of the planetary gear is N2, and the amount of eccentricity of the planetary gear with respect to the internal gear is E, φD1 / N1 = φD2 / N2, φD1 = N1 × E, φD2 = It is characterized by satisfying the relationship of N2 × E. As a more preferable embodiment, when the slip distance of the tooth meshing portion between the internal gear A and the planetary gear A is S2, and the diameter of the pitch circle of the internal gear A is φD2, S2 is more than 0.5% of φD2. This is a small setting. That is, the tooth surface friction loss is represented by (tooth surface load) × (tooth surface slip distance) × (tooth surface friction coefficient), and suppression of tooth surface contact slip reduces friction loss, Mechanical efficiency can be improved. Further, tooth surface wear is suppressed by reducing (tooth surface load) × (tooth surface slip speed), so wear is reduced and durability is improved by suppressing slip on the tooth surface contact portion. . Note that the tooth surface shape for suppressing slip may be an arc shape or not an arc shape.
Further, the diameter of the base circle that is the center of the teeth of the internal gear A is φC3, the diameter of the pitch circle of the internal gear A is φD3, the diameter of the base circle that is the center of the teeth of the fourth planetary gear is φC4, The relationship when the diameter of the pitch circle of the planetary gear is φD4 will be described. That is, the difference in the number of teeth between the internal gear A and the planetary gear A is 2 or more, the diameter of the basic circle that is the center of the teeth of the internal gear A is φC3, and the base that is the center of the teeth of the planetary gear A When the diameter of the circle is φC4 and the diameter of the pitch circle of the planetary gear A is φD4, the relationship of φD4 / φD3> φC4 / φC3 is satisfied.
 また、内歯歯車Aの歯数をN3、遊星歯車Aの歯数をN4としたときの関係を説明する。すなわち、内歯歯車Aの歯数をN3、遊星歯車Aの歯数をN4としたとき、φD1/N1=φD3/N3=φD4/N4、φD3=N3×E、φD4=N4×Eの関係を満たすことを特徴とするものである。 The relationship when the number of teeth of the internal gear A is N3 and the number of teeth of the planetary gear A is N4 will be described. That is, when the number of teeth of the internal gear A is N3 and the number of teeth of the planetary gear A is N4, the relationship of φD1 / N1 = φD3 / N3 = φD4 / N4, φD3 = N3 × E, φD4 = N4 × E It is characterized by satisfying.
 また、内歯歯車と内歯歯車Aとの歯数差を1以上とすることで、この遊星歯車機構が差動歯車機構として動作し、差動歯車の特徴である小型化と、かつ大きな減速比あるいは大きな増速比の実現が可能である。 Further, by setting the difference in the number of teeth between the internal gear and the internal gear A to 1 or more, the planetary gear mechanism operates as a differential gear mechanism, and the downsizing and the large speed reduction that are the features of the differential gear. Ratio or a large speed increase ratio can be realized.
本発明によれば、内歯歯車の歯面に対し、遊星歯車の歯面が外接して転がるエピトロコイド曲線となるように設計されていないため、噛み合う歯面のスリップ発生を抑制できる。 According to the present invention, since the tooth surface of the planetary gear is circumscribed with respect to the tooth surface of the internal gear and is not designed to be an epitrochoid curve, the occurrence of slippage of the meshing tooth surfaces can be suppressed.
本発明の実施例における遊星歯車機構の断面図Sectional drawing of the planetary gear mechanism in the Example of this invention 本発明の実施例における図1をA方向から見た図The figure which looked at FIG. 1 in the Example of this invention from the A direction 本発明の実施例における図1のB-B断面図BB sectional view of FIG. 1 in the embodiment of the present invention 本発明の実施例における遊星歯車機構の斜視図The perspective view of the planetary gear mechanism in the Example of this invention トロコイド曲線の説明図Illustration of trochoid curve 本発明の実施例における図2のC部の拡大図The enlarged view of the C section of FIG. 2 in the Example of this invention 本発明の実施例における図6のD部の拡大図The enlarged view of the D section of FIG. 6 in the Example of this invention. 本発明の実施例における図6の変形例を示す図The figure which shows the modification of FIG. 6 in the Example of this invention.
本発明の実施の形態を、実施例および変形例を用いて説明する。この実施例の遊星歯車機構は、小型かつ高ギア比の減速機として用いられものであり、例えば、自動車のパーキング切替えのアクチュエータとして適用できる。 Embodiments of the present invention will be described using examples and modifications. The planetary gear mechanism of this embodiment is used as a reduction gear having a small size and a high gear ratio, and can be applied, for example, as an actuator for parking switching of an automobile.
 本発明が適用された遊星歯車機構を図1~図5を参照して説明する。図1は本発明の実施例における遊星歯車機構の断面図、図2は本発明の実施例における図1をA方向から見た図、図3は本発明の実施例における図1のB-B断面図、図4は本発明の実施例における遊星歯車機構の斜視図である。
この実施例の遊星歯車機構は、小型かつ高ギア比の減速機として用いられものであり、第1内歯歯車1が設けられたハウジング2と、このハウジング2に対し軸受(後述する第1転がり軸受け9)を介して第1内歯歯車1に対し同心回転自在に配置された第2内歯歯車3と、この第2内歯歯車3に同心に設けられた第1軸4と、この第1軸4の周囲に配置された軸受け(後述する第2転がり軸受10)を介し回転自在に配置された偏心部5を設けた第2軸6と、偏心部5の周囲に配置された軸受(後述する第3転がり軸受11)を介し回転自在に配置された第1遊星歯車7が設けられた第2遊星歯車8を備える。
A planetary gear mechanism to which the present invention is applied will be described with reference to FIGS. FIG. 1 is a cross-sectional view of a planetary gear mechanism in an embodiment of the present invention, FIG. 2 is a view of FIG. 1 in the embodiment of the present invention as viewed from the direction A, and FIG. Sectional drawing and FIG. 4 are perspective views of the planetary gear mechanism in the embodiment of the present invention.
The planetary gear mechanism of this embodiment is used as a reduction gear having a small size and a high gear ratio, and a housing 2 provided with a first internal gear 1 and a bearing (a first rolling to be described later). A second internal gear 3 disposed concentrically with respect to the first internal gear 1 via a bearing 9), a first shaft 4 provided concentrically with the second internal gear 3; A second shaft 6 provided with an eccentric portion 5 rotatably disposed via a bearing (second rolling bearing 10 described later) disposed around the one shaft 4, and a bearing disposed around the eccentric portion 5 ( There is provided a second planetary gear 8 provided with a first planetary gear 7 which is rotatably arranged via a third rolling bearing 11) which will be described later.
 減速機として使用する場合、第2軸6は入力軸であり、第1軸4の周囲に配置された第2転がり軸受10によって回転自在に支持される。 When used as a speed reducer, the second shaft 6 is an input shaft, and is rotatably supported by a second rolling bearing 10 disposed around the first shaft 4.
 減速機として使用する場合、第1軸4は出力軸であり、第2内歯歯車3と一体で同心回転するように取り付けられており、第1転がり軸受9を介してハウジング2に対し回転自在に支持される。
第1遊星歯車7は、上述したように、第3転がり軸受11を介して偏心部5に回転自在に支持されており、偏心部5の偏心により第1内歯歯車1のピッチ円の中心に対し揺動し、第1内歯歯車1と噛合いながら回転する。
When used as a speed reducer, the first shaft 4 is an output shaft, and is attached so as to rotate concentrically integrally with the second internal gear 3, and is rotatable with respect to the housing 2 via the first rolling bearing 9. Supported by
As described above, the first planetary gear 7 is rotatably supported by the eccentric portion 5 via the third rolling bearing 11, and is centered on the pitch circle of the first internal gear 1 by the eccentric portion 5. It oscillates and rotates while meshing with the first internal gear 1.
 第2遊星歯車8は、上述したように、第1遊星歯車7と一体で同心回転するように取り付けられており、第1内歯歯車1と同心回転自在に配置された第2内歯歯車3と噛合いながら回転する。 As described above, the second planetary gear 8 is attached so as to rotate concentrically integrally with the first planetary gear 7, and is arranged so as to be concentrically rotatable with the first internal gear 1. Rotate while meshing.
 本実施例で用いる用語としてのトロコイド曲線について、図5を参照して説明する。
広義のトロコイド曲線は、図5のa、b、c、a’、b’、c’に示されるように、ピッチ円(基円)の周りを転円が滑ることなく転がるときに、転円の半径上の一点が描く軌跡であり、転円がピッチ円(基円)の内部で転がるもの(a’, b’, c’)をハイポトロコイド、転円がピッチ円(基円)の外側で転がるもの(a、b、c)をエピトロコイドと呼ぶ。
The trochoid curve as a term used in the present embodiment will be described with reference to FIG.
A broad trochoidal curve is obtained when a rolling circle rolls around a pitch circle (base circle) without slipping, as shown by a, b, c, a ′, b ′, and c ′ in FIG. This is a locus drawn by a point on the radius of the circle, where the rolling circle is a hypotrochoid that rolls inside the pitch circle (base circle) (a ', b', c '), and the rolling circle is outside the pitch circle (base circle). (A, b, c) that rolls are called epitrochoids.
 本実施例で用いる用語としてのハイポトロコイドおよびエピトロコイドは上記の定義を指すものである。 The terms hypotrochoid and epitrochoid used in this example refer to the above definitions.
 内歯歯車および遊星歯車の歯形状について、図6~図8を参照して説明する。
図6において、内歯歯車1と遊星歯車7の歯面接触部は円弧形状であり、歯と歯の間は円弧形状で結ばれている。内歯歯車と遊星歯車の歯数差を2以上とし、かつ内歯歯車の歯の中心となる基礎円の直径をφC1、
内歯歯車のピッチ円の直径をφD1、
遊星歯車の歯の中心となる基礎円の直径をφC2、
遊星歯車のピッチ円の直径をφD2としたとき、
φD2/φD1>φC2/φC1
の関係を満たすことで、歯の干渉を防ぎ、かつ歯の先端部に油溜りの空間の確保が可能となる。
The tooth shapes of the internal gear and the planetary gear will be described with reference to FIGS.
In FIG. 6, the tooth surface contact portions of the internal gear 1 and the planetary gear 7 have an arc shape, and the teeth are connected in an arc shape. The difference in the number of teeth between the internal gear and the planetary gear is 2 or more, and the diameter of the basic circle that is the center of the teeth of the internal gear is φC1,
The diameter of the pitch circle of the internal gear is φD1,
The diameter of the base circle that is the center of the planetary gear teeth is φC2,
When the diameter of the pitch circle of the planetary gear is φD2,
φD2 / φD1> φC2 / φC1
Satisfying this relationship makes it possible to prevent tooth interference and secure an oil sump space at the tip of the tooth.
 図7において、
内歯歯車の歯数をN1、
内歯歯車Aの歯数をN2、
遊星歯車の歯数をN2、
遊星歯車の偏心量をEとするとき、
内歯歯車の歯面を遊星歯車の歯面がスリップを伴い転がりながら移動し、この転がりながら移動する距離ΔS1は、
E×(円周率)×(N1-N2)/N1で表され、
内歯歯車のピッチ円の直径φD1は、
E×N1で表される。
例えば、N1=30、N2=28、E=1.5mmとすると、ΔS1、φD1は、
ΔS1=0.31mm、
φD1=φ45mmとなり、
図7に表す作図によりこの時の内歯歯車の歯面を遊星歯車の歯面がスリップする距離S1は、0.02mm、
φD1に対するスリップ量は、
02mm÷φ45mm×100=0.044%
となりスリップを抑制した歯車の設計が可能となる。
In FIG.
The number of teeth of the internal gear is N1,
The number of teeth of the internal gear A is N2,
The number of planetary gear teeth is N2,
When the amount of eccentricity of the planetary gear is E,
The tooth surface of the planetary gear moves while rolling with the slip on the tooth surface of the internal gear, and the distance ΔS1 that moves while rolling is:
E × (circumference ratio) × (N1-N2) / N1
The diameter φD1 of the pitch circle of the internal gear is
It is represented by E × N1.
For example, if N1 = 30, N2 = 28, and E = 1.5 mm, ΔS1 and φD1 are
ΔS1 = 0.31 mm,
φD1 = φ45mm
According to the drawing shown in FIG. 7, the distance S1 at which the tooth surface of the planetary gear slips on the tooth surface of the internal gear at this time is 0.02 mm,
The slip amount for φD1 is
02mm ÷ φ45mm × 100 = 0.044%
Therefore, it is possible to design a gear that suppresses slippage.
 図8に示す歯面形状は、図6に示す歯面形状の変形例であり、回転伝達に寄与しない歯面の先端部を取り除いたものであり、歯面隙間を大きくでき、より大きな油溜りの確保が可能となる。 The tooth surface shape shown in FIG. 8 is a modification of the tooth surface shape shown in FIG. 6 and is obtained by removing the tip of the tooth surface that does not contribute to rotation transmission. Can be secured.
1…第1内歯歯車
2…ハウジング
3…第2内歯歯車
4…第1軸
5…偏心部
6…第2軸
7…第1遊星歯車
8…第2遊星歯車
9…第1転がり軸受
10…第2転がり軸受
11…第3転がり軸受
DESCRIPTION OF SYMBOLS 1 ... 1st internal gear 2 ... Housing 3 ... 2nd internal gear 4 ... 1st shaft 5 ... Eccentric part 6 ... 2nd shaft 7 ... 1st planetary gear 8 ... 2nd planetary gear 9 ... 1st rolling bearing 10 ... 2nd rolling bearing 11 ... 3rd rolling bearing

Claims (7)

  1.  歯面形状の一部または全部が円弧形状である内歯歯車と、この内歯歯車に対して偏心回転可能に配置された、歯面形状の一部または全部が円弧形状である遊星歯車とを持つ遊星歯車機構であり、前記内歯歯車の歯面と前記遊星歯車の歯面との接触部が回転力伝達時にスリップする距離S1は、
    前記内歯歯車のピッチ円の直径をφD1としたとき、
    φD1の0.5%より小さく設定されたことを特徴とする遊星歯車機構。
    An internal gear having part or all of a tooth surface shape having an arc shape, and a planetary gear having a part or all of the tooth surface shape having an arc shape arranged so as to be eccentrically rotatable with respect to the internal gear. A distance S1 at which a contact portion between the tooth surface of the internal gear and the tooth surface of the planetary gear slips when a rotational force is transmitted is:
    When the diameter of the pitch circle of the internal gear is φD1,
    A planetary gear mechanism characterized by being set to be smaller than 0.5% of φD1.
  2. 請求項1に記載の遊星歯車機構において、前記内歯歯車と前記遊星歯車との歯数差が2以上であり、かつ、
    前記内歯歯車の歯の中心となる基礎円の直径をφC1、
    前記遊星歯車の歯の中心となる基礎円の直径をφC2、
    前記遊星歯車のピッチ円の直径をφD2としたとき、
    φD2/φD1>φC2/φC1
    の関係を満たすことを特徴とする遊星歯車機構。
    The planetary gear mechanism according to claim 1, wherein a difference in the number of teeth between the internal gear and the planetary gear is 2 or more, and
    The diameter of the basic circle serving as the center of the teeth of the internal gear is φC1,
    The diameter of the base circle that is the center of the teeth of the planetary gear is φC2,
    When the diameter of the pitch circle of the planetary gear is φD2,
    φD2 / φD1> φC2 / φC1
    A planetary gear mechanism characterized by satisfying the above relationship.
  3. 請求項1~請求項2に記載の遊星歯車機構において、
    前記内歯歯車の歯数をN1、
    前記遊星歯車の歯数をN2、
    前記内歯歯車に対する前記遊星歯車の偏心量をEとしたとき、
    φD1/N1=φD2/N2
    φD1=N1×E
    φD2=N2×E
    の関係を満たすことを特徴とする遊星歯車機構。
    The planetary gear mechanism according to claim 1 or 2,
    The number of teeth of the internal gear is N1,
    The number of teeth of the planetary gear is N2,
    When E is the amount of eccentricity of the planetary gear with respect to the internal gear,
    φD1 / N1 = φD2 / N2
    φD1 = N1 × E
    φD2 = N2 × E
    A planetary gear mechanism characterized by satisfying the above relationship.
  4.  請求項1~請求項3に記載の遊星歯車機構において、前記内歯歯車に対して同心回転自在に配置され、歯面形状の一部または全部が円弧形状であるもう1つの内歯歯車(前記内歯車と区別するため、内歯歯車Aとする)の歯面と、前記遊星歯車に対し同心に回転方向を拘束して組み付けられ、歯面形状の一部または全部が円弧形状であるもう1つの遊星歯車(前記遊星歯車と区別するため、遊星歯車Aとする)の歯面との接触部が回転力伝達時にスリップする距離S2は、
    前記内歯歯車Aのピッチ円の直径をφD3としたとき、
    φD3の0.5%より小さく設定されたことを特徴とする遊星歯車機構。
    The planetary gear mechanism according to any one of claims 1 to 3, wherein the internal gear is arranged so as to be concentrically rotatable with respect to the internal gear, and another internal gear (a part or all of the tooth surface shape is an arc shape) In order to distinguish it from the internal gear, the tooth surface of the internal gear A) and the planetary gear are concentrically constrained in the rotational direction, and part or all of the tooth surface shape is an arc shape. The distance S2 at which the contact portion with the tooth surface of two planetary gears (referred to as planetary gear A for distinction from the planetary gears) slips when the rotational force is transmitted is:
    When the diameter of the pitch circle of the internal gear A is φD3,
    A planetary gear mechanism characterized by being set smaller than 0.5% of φD3.
  5. 請求項4に記載の遊星歯車機構において、前記内歯歯車Aと前記遊星歯車Aとの歯数差は2以上であり、かつ、
    前記内歯歯車Aの歯の中心となる基礎円の直径をφC3、
    前記遊星歯車Aの歯の中心となる基礎円の直径をφC4、
    前記遊星歯車Aのピッチ円の直径をφD4としたとき、
    φD4/φD3>φC4/φC3
    の関係を満たすことを特徴とする遊星歯車機構。
    The planetary gear mechanism according to claim 4, wherein a difference in the number of teeth between the internal gear A and the planetary gear A is 2 or more, and
    The diameter of the basic circle serving as the center of the teeth of the internal gear A is φC3,
    The diameter of the base circle that is the center of the teeth of the planetary gear A is φC4,
    When the diameter of the pitch circle of the planetary gear A is φD4,
    φD4 / φD3> φC4 / φC3
    A planetary gear mechanism characterized by satisfying the above relationship.
  6. 請求項4~請求項5に記載の遊星歯車機構において
    前記内歯歯車Aの歯数をN3、
    前記遊星歯車Aの歯数をN4としたとき、
    φD1/N1=φD3/N3=φD4/N4
    φD3=N3×E
    φD4=N4×E
    の関係を満たすことを特徴とする遊星歯車機構。
    The planetary gear mechanism according to any one of claims 4 to 5, wherein the number of teeth of the internal gear A is N3,
    When the number of teeth of the planetary gear A is N4,
    φD1 / N1 = φD3 / N3 = φD4 / N4
    φD3 = N3 × E
    φD4 = N4 × E
    A planetary gear mechanism characterized by satisfying the above relationship.
  7.  請求項1~請求項6に記載の遊星歯車機構において、前記内歯歯車と前記内歯歯車Aとの歯数差は、1以上であることを特徴とする遊星歯車機構。 The planetary gear mechanism according to any one of claims 1 to 6, wherein a difference in the number of teeth between the internal gear and the internal gear A is 1 or more.
PCT/JP2013/082116 2012-12-21 2013-11-29 Planetary gear mechanism WO2014097855A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012278822A JP2014122668A (en) 2012-12-21 2012-12-21 Planetary gear mechanism
JP2012-278822 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014097855A1 true WO2014097855A1 (en) 2014-06-26

Family

ID=50978194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082116 WO2014097855A1 (en) 2012-12-21 2013-11-29 Planetary gear mechanism

Country Status (2)

Country Link
JP (1) JP2014122668A (en)
WO (1) WO2014097855A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529863B2 (en) * 2015-08-28 2019-06-12 住友重機械工業株式会社 Eccentric oscillating gear device and industrial robot
JP7069937B2 (en) * 2018-03-27 2022-05-18 日本電産トーソク株式会社 Electric actuator
JP7154574B2 (en) * 2018-10-22 2022-10-18 テクノダイナミックス株式会社 Gear mechanism and internal planetary gear reducer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136041A (en) * 1984-12-03 1986-06-23 Ntn Toyo Bearing Co Ltd Speed reduction unit using trochoid tooth gear
JPH0650394A (en) * 1992-07-29 1994-02-22 Sumitomo Heavy Ind Ltd Inscribed meshing type planetary gear structure
JPH11173386A (en) * 1997-12-11 1999-06-29 Teijin Seiki Co Ltd Plant gear device
JP2010151196A (en) * 2008-12-24 2010-07-08 Kikuchi Haguruma Kk Speed reducer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136041A (en) * 1984-12-03 1986-06-23 Ntn Toyo Bearing Co Ltd Speed reduction unit using trochoid tooth gear
JPH0650394A (en) * 1992-07-29 1994-02-22 Sumitomo Heavy Ind Ltd Inscribed meshing type planetary gear structure
JPH11173386A (en) * 1997-12-11 1999-06-29 Teijin Seiki Co Ltd Plant gear device
JP2010151196A (en) * 2008-12-24 2010-07-08 Kikuchi Haguruma Kk Speed reducer

Also Published As

Publication number Publication date
JP2014122668A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
TWI550212B (en) Unit type harmonic gear device
TWI632309B (en) Harmonic gear unit
JP4112461B2 (en) Inscribed mesh planetary gear mechanism
JP4814351B2 (en) Rolling ball type two-stage low speed transmission
JP5256249B2 (en) Bending gear system
JP5970650B2 (en) Cycloid gear and gear mechanism
US8888374B1 (en) Bearing with antiskid design
JP4367503B2 (en) Planetary gear device for vehicle
US8986158B2 (en) Reduction gearing with a high reduction ratio
JP2016065579A (en) Inscription engagement planetary gear mechanism
JP2017053385A (en) Power transmission device for vehicle
WO2014097855A1 (en) Planetary gear mechanism
JP2011241974A (en) Speed reduction device
JP6958002B2 (en) Inscribed meshing planetary gear mechanism
EP2522880B1 (en) Gear transmission
JP2013142459A (en) Hypocycloid device
WO2016140234A1 (en) Speed reducer or speed increaser
TW201804098A (en) Harmonic wave generator and harmonic gear device characterized by reducing the hardnesses of the hollow rollers, the inner ring raceway surface, and the outer ring raceway surface
CN111219447B (en) Cambered surface secondary envelope crown gear nutation transmission device
JP5806968B2 (en) Eccentric oscillation type reducer
CN110259912B (en) Wave generator, harmonic reducer and transmission system
WO2011107845A1 (en) Hypoid gear
JP4107895B2 (en) Inscribed mesh planetary gear mechanism
JP2009030684A (en) Magnetic gear reducer
JP2012137113A (en) Shaft device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866473

Country of ref document: EP

Kind code of ref document: A1