WO2014097816A1 - 画像処理装置及び画像処理方法 - Google Patents

画像処理装置及び画像処理方法 Download PDF

Info

Publication number
WO2014097816A1
WO2014097816A1 PCT/JP2013/081406 JP2013081406W WO2014097816A1 WO 2014097816 A1 WO2014097816 A1 WO 2014097816A1 JP 2013081406 W JP2013081406 W JP 2013081406W WO 2014097816 A1 WO2014097816 A1 WO 2014097816A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
quantization
unit
quantization parameter
encoded
Prior art date
Application number
PCT/JP2013/081406
Other languages
English (en)
French (fr)
Inventor
佐藤 数史
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP13863956.2A priority Critical patent/EP2908526A4/en
Priority to MX2017001340A priority patent/MX367546B/es
Priority to CA2894637A priority patent/CA2894637A1/en
Priority to AU2013365309A priority patent/AU2013365309A1/en
Priority to KR1020157013021A priority patent/KR102258356B1/ko
Priority to KR1020217015631A priority patent/KR102307099B1/ko
Priority to JP2014553036A priority patent/JP6406014B2/ja
Priority to SG11201504504YA priority patent/SG11201504504YA/en
Priority to CN201380064914.8A priority patent/CN104871539B/zh
Priority to RU2015122700A priority patent/RU2639250C2/ru
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/441,671 priority patent/US9967578B2/en
Priority to EP17181919.6A priority patent/EP3273691B1/en
Priority to CN201811100458.9A priority patent/CN109068136B/zh
Priority to MX2015007443A priority patent/MX345489B/es
Priority to BR112015013768A priority patent/BR112015013768A2/pt
Publication of WO2014097816A1 publication Critical patent/WO2014097816A1/ja
Priority to ZA2015/03589A priority patent/ZA201503589B/en
Priority to PH12015501311A priority patent/PH12015501311A1/en
Priority to US15/892,972 priority patent/US10368082B2/en
Priority to AU2018201160A priority patent/AU2018201160B2/en
Priority to US16/406,616 priority patent/US10609400B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/34Scalability techniques involving progressive bit-plane based encoding of the enhancement layer, e.g. fine granular scalability [FGS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T9/00Image coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/147Data rate or code amount at the encoder output according to rate distortion criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/186Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a colour or a chrominance component
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/187Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a scalable video layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/33Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the spatial domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Color Television Systems (AREA)

Abstract

【課題】マルチレイヤコーデックにおいて、量子化に関連するパラメータをレイヤ間で再利用して符号化効率を高めること。 【解決手段】第1レイヤの色差成分に設定される第1の量子化パラメータオフセットに基づいて、前記第1レイヤを参照して復号される第2レイヤの色差成分に第2の量子化パラメータオフセットを設定する制御部と、前記制御部により設定された前記第2の量子化パラメータオフセットを用いて算出される量子化パラメータで、前記第2レイヤの色差成分の変換係数データを逆量子化する逆量子化部と、を備える画像処理装置を提供する。

Description

画像処理装置及び画像処理方法
 本開示は、画像処理装置及び画像処理方法に関する。
 現在、H.264/AVCよりも符号化効率をさらに向上することを目的として、ITU-TとISO/IECとの共同の標準化団体であるJCTVC(Joint Collaboration Team-Video Coding)により、HEVC(High Efficiency Video Coding)と呼ばれる画像符号化方式の標準化が進められている(例えば、下記非特許文献1参照)。
 HEVCは、MPEG2及びAVC(Advanced Video Coding)などの既存の画像符号化方式と同様、シングルレイヤの符号化のみならず、スケーラブル符号化をも提供する(例えば、下記非特許文献2参照)。HEVCのスケーラブル符号化技術を、SHVC(Scalable HEVC)ともいう。SHVCでは、エンハンスメントレイヤがHEVC方式で符号化される一方で、ベースレイヤはHEVC方式で符号化されてもよく、又はHEVC方式以外の画像符号化方式(例えば、AVC方式)で符号化されてもよい。
 スケーラブル符号化とは、一般には、粗い画像信号を伝送するレイヤと精細な画像信号を伝送するレイヤとを階層的に符号化する技術をいう。スケーラブル符号化において階層化される典型的な属性は、主に次の3種類である。
  -空間スケーラビリティ:空間解像度あるいは画像サイズが階層化される。
  -時間スケーラビリティ:フレームレートが階層化される。
  -SNR(Signal to Noise Ratio)スケーラビリティ:SN比が階層化される。
さらに、標準規格で未だ採用されていないものの、ビット深度スケーラビリティ及びクロマフォーマットスケーラビリティもまた議論されている。
 スケーラブル符号化では、レイヤ間で再利用可能なパラメータを1つのレイヤ内でのみ符号化することで、符号化効率を高めることができる(例えば、下記非特許文献3参照)。
Benjamin Bross, Woo-Jin Han, Jens-Rainer Ohm, Gary J. Sullivan, Thomas Wiegand, "High Efficiency Video Coding (HEVC) text specification draft 9"(JCTVC-K1003_v9, 2012年10月10-19日) Jill Boyce, Ye-Kui Wang, "NAL unit header and parameter set designs for HEVC extensions"(JCTVC-K1007, 2012年10月10-19日) Jill Boyce, Kawamura Kei, Haricharan Lakshman, "TE6: Inter-layer syntax prediction from AVC base layer"(JCTVC-K1106v2, 2012年10月10-19日)
 しかしながら、これまでに提案されてきたスケーラブル符号化の手法によれば、直交変換後の変換係数データの量子化に関連する多くのパラメータは、レイヤ間で再利用されない。符号化効率を最適化するためには、量子化に関連するパラメータもまた、レイヤ間で可能な限り再利用されることが望ましい。この点は、スケーラブル符号化のみならず、インターレイヤ予測をサポートするマルチレイヤコーデック一般について同様である。マルチレイヤコーデックの他の例は、マルチビューコーデックである。
 本開示によれば、第1レイヤの色差成分に設定される第1の量子化パラメータオフセットに基づいて、前記第1レイヤを参照して復号される第2レイヤの色差成分に第2の量子化パラメータオフセットを設定する制御部と、前記制御部により設定された前記第2の量子化パラメータオフセットを用いて算出される量子化パラメータで、前記第2レイヤの色差成分の変換係数データを逆量子化する逆量子化部と、を備える画像処理装置が提供される。
 上記画像処理装置は、典型的には、画像を復号する画像復号装置として実現され得る。
 また、本開示によれば、第1レイヤの色差成分に設定される第1の量子化パラメータオフセットに基づいて、前記第1レイヤを参照して復号される第2レイヤの色差成分に第2の量子化パラメータオフセットを設定することと、設定された前記第2の量子化パラメータオフセットを用いて算出される量子化パラメータで、前記第2レイヤの色差成分の変換係数データを逆量子化することと、を含む画像処理方法が提供される。
 また、本開示によれば、第1レイヤを参照して符号化される第2レイヤの色差成分の変換係数データを所与の量子化パラメータで量子化する量子化部と、前記第1レイヤの色差成分に設定された第1の量子化パラメータオフセットと前記所与の量子化パラメータとに基づいて算出される、前記第2レイヤの色差成分の第2の量子化パラメータオフセットを符号化する符号化部と、を備える画像処理装置が提供される。
 上記画像処理装置は、典型的には、画像を符号化する画像符号化装置として実現され得る。
 また、本開示によれば、第1レイヤを参照して符号化される第2レイヤの色差成分の変換係数データを所与の量子化パラメータで量子化することと、前記第1レイヤの色差成分に設定された第1の量子化パラメータオフセットと前記所与の量子化パラメータとに基づいて算出される、前記第2レイヤの色差成分の第2の量子化パラメータオフセットを符号化することと、を含む画像処理方法が提供される。
 本開示に係る技術によれば、マルチレイヤコーデックにおいて、量子化に関連するパラメータをレイヤ間で再利用して符号化効率を高めることができる。
スケーラブル符号化について説明するための説明図である。 レート制御の粒度について説明するための説明図である。 量子化パラメータと量子化ステップとの間の関係の一例を示す説明図である。 CTB内予測及びCTB間予測におけるブロック間の参照関係の一例を示す説明図である。 一実施形態に係る画像符号化装置の概略的な構成を示すブロック図である。 一実施形態に係る画像復号装置の概略的な構成を示すブロック図である。 図5に示したEL符号化部の構成の一例を示すブロック図である。 図7に示した量子化制御部の構成の一例を示すブロック図である。 量子化行列の再利用について説明するための第1の説明図である。 量子化行列の再利用について説明するための第2の説明図である。 量子化行列の再利用について説明するための第3の説明図である。 量子化行列の再利用について説明するための第4の説明図である。 一実施形態に係る符号化時の概略的な処理の流れの一例を示すフローチャートである。 エンハンスメントレイヤの符号化処理における量子化に関連する処理の流れの一例を示すフローチャートである。 図6に示したEL復号部の構成の一例を示すブロック図である。 図12に示した逆量子化制御部の構成の一例を示すブロック図である。 一実施形態に係る復号時の概略的な処理の流れの一例を示すフローチャートである。 エンハンスメントレイヤの復号処理における逆量子化に関連する処理の流れの一例を示すフローチャートである。 一実施形態において採用され得るエンハンスメントレイヤのシンタックスの一例について説明するための第1の説明図である。 一実施形態において採用され得るエンハンスメントレイヤのシンタックスの一例について説明するための第2の説明図である。 一実施形態において採用され得るエンハンスメントレイヤのシンタックスの一例について説明するための第3の説明図である。 エンハンスメントレイヤのシンタックスの第1の変形例について説明するための説明図である。 エンハンスメントレイヤのシンタックスの第2の変形例について説明するための説明図である。 許容され又は禁止され得るコーデックの組合せについて説明するための第1の説明図である。 許容され又は禁止され得るコーデックの組合せについて説明するための第2の説明図である。 テレビジョン装置の概略的な構成の一例を示すブロック図である。 携帯電話機の概略的な構成の一例を示すブロック図である。 記録再生装置の概略的な構成の一例を示すブロック図である。 撮像装置の概略的な構成の一例を示すブロック図である。 スケーラブル符号化の用途の第1の例について説明するための説明図である。 スケーラブル符号化の用途の第2の例について説明するための説明図である。 スケーラブル符号化の用途の第3の例について説明するための説明図である。 マルチビューコーデックについて説明するための説明図である。 マルチビューコーデックのための画像符号化装置の概略的な構成を示すブロック図である。 マルチビューコーデックのための画像復号装置の概略的な構成を示すブロック図である。 ビデオセットの概略的な構成の一例を示すブロック図である。 ビデオプロセッサの概略的な構成の一例を示すブロック図である。 ビデオプロセッサの概略的な構成の他の例を示すブロック図である。 コンテンツ再生システムの概要を示す説明図である。 コンテンツ再生システムにおけるデータの流れの一例を示す説明図である。 MPDの具体的な例を示す説明図である。 コンテンツサーバの構成の一例を示すブロック図である。 コンテンツ再生装置の構成の一例を示すブロック図である。 コンテンツサーバの構成の他の例を示すブロック図である。 Wi-FiのP2Pモードで形成される無線通信システムにおける基本的な動作シーケンスを示すシーケンス図の前半部である。 Wi-FiのP2Pモードで形成される無線通信システムにおける基本的な動作シーケンスを示すシーケンス図の後半部である。 拡張された動作シーケンスのためのMACフレームのフレームフォーマットの一例を示す説明図である。 拡張された動作シーケンスを示すシーケンス図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、以下の順序で説明を行う。
  1.概要
   1-1.スケーラブル符号化
   1-2.一般的なレート制御
   1-3.色差成分の量子化パラメータ
   1-4.量子化行列
   1-5.エンコーダの基本的な構成例
   1-6.デコーダの基本的な構成例
  2.一実施形態に係るEL符号化部の構成例
   2-1.全体的な構成
   2-2.量子化制御部の詳細な構成
  3.一実施形態に係る符号化時の処理の流れ
   3-1.概略的な流れ
   3-2.量子化に関連する処理
  4.一実施形態に係るEL復号部の構成例
   4-1.全体的な構成
   4-2.逆量子化制御部の詳細な構成
  5.一実施形態に係る復号時の処理の流れ
   5-1.概略的な流れ
   5-2.逆量子化に関連する処理
   5-3.シンタックスの例
  6.コーデックの組合せの例
  7.応用例
   7-1.様々な製品への応用
   7-2.スケーラブル符号化の様々な用途
   7-3.他のコーデックへの応用
   7-4.様々な実装レベル
   7-5.MPEG-DASHを利用するシステム
   7-6.Wi-FiのP2Pモードを利用するシステム
  8.まとめ
 <1.概要>
  [1-1.スケーラブル符号化]
 スケーラブル符号化においては、一連の画像をそれぞれ含む複数のレイヤが符号化される。ベースレイヤ(base layer)は、最初に符号化される、最も粗い画像を表現するレイヤである。ベースレイヤの符号化ストリームは、他のレイヤの符号化ストリームを復号することなく、独立して復号され得る。ベースレイヤ以外のレイヤは、エンハンスメントレイヤ(enhancement layer)と呼ばれる、より精細な画像を表現するレイヤである。エンハンスメントレイヤの符号化ストリームは、ベースレイヤの符号化ストリームに含まれる情報を用いて符号化される。従って、エンハンスメントレイヤの画像を再現するためには、ベースレイヤ及びエンハンスメントレイヤの双方の符号化ストリームが復号されることになる。スケーラブル符号化において扱われるレイヤの数は、2つ以上のいかなる数であってもよい。3つ以上のレイヤが符号化される場合には、最下位のレイヤがベースレイヤ、残りの複数のレイヤがエンハンスメントレイヤである。より上位のエンハンスメントレイヤの符号化ストリームは、より下位のエンハンスメントレイヤ又はベースレイヤの符号化ストリームに含まれる情報を用いて符号化され及び復号され得る。
 図1は、スケーラブル符号化される3つのレイヤL1、L2及びL3を示している。レイヤL1はベースレイヤであり、レイヤL2及びL3はエンハンスメントレイヤである。なお、ここでは、様々な種類のスケーラビリティのうち、空間スケーラビリティを例にとっている。レイヤL2のレイヤL1に対する空間解像度の比は、2:1である。レイヤL3のレイヤL1に対する空間解像度の比は、4:1である。なお、ここでの解像度比は一例に過ぎず、例えば1.5:1などの非整数の解像度比が使用されてもよい。レイヤL1のブロックB1は、ベースレイヤのピクチャ内の符号化処理の処理単位である。レイヤL2のブロックB2は、ブロックB1と共通するシーンを映したエンハンスメントレイヤのピクチャ内の符号化処理の処理単位である。ブロックB2は、レイヤL1のブロックB1に対応する。レイヤL3のブロックB3は、ブロックB1及びB2と共通するシーンを映したより上位のエンハンスメントレイヤのピクチャ内の符号化処理の処理単位である。ブロックB3は、レイヤL1のブロックB1及びレイヤL2のブロックB2に対応する。
 このようなレイヤ構造において、画像の周波数特性は、共通するシーンを映したレイヤ間で類似する。例えば、レイヤL1内のブロックB1の画像が平坦でその高周波成分が小さい場合、レイヤL2内のブロックB2の画像の高周波成分もまた小さい可能性が高い。レイヤL2内のブロックB2とレイヤL3内のブロックB3との間にも同じことが言える。
  [1-3.一般的なレート制御]
 画像の周波数特性は、直交変換の結果として発生する変換係数データのビット数を左右する。符号化ストリームのビットレートを一定に保つために、通常、変換係数データのビット数が多ければ、変換係数データは、より大きい量子化ステップで量子化される。期待されるビットレートを実現するためのレート制御方式の一例は、MPEG2テストモデルにおいて示されている。MPEG2テストモデルでは、まず、GOPに割当てられるビット量と、GOP内の各ピクチャのピクチャタイプ及び複雑度(Global Complexity Measure)とに基づいて、ピクチャごとの割当て符号量が決定される。そして、各ピクチャ内のマクロブロックごとの量子化パラメータ(量子化スケールコード)が、マクロブロックごとに算出されるアクティビティと当該ピクチャの割当て符号量とに基づいて算出される。ここでのアクティビティは、画像の複雑さを表す指標の一種である。なお、MPEG2テストモデルにおけるレート制御方式の詳細は、次のWebページにおいて公開されている。
-参考URL http://www.mpeg.org/MPEG/MSSG/tm5/Ch10/Ch10.html
 ところで、MPEG2方式では、16×16画素のサイズを有するマクロブロックごとに上述した量子化スケールコードが決定される。HEVC方式においてマクロブロックに相当するLCU(最大符号化単位:Largest Coding Unit)の最大サイズは、64×64画素である。しかし、レート制御の粒度が大き過ぎると、量子化ステップが局所的に画像の複雑さに適合しない領域が生じ得る。例えば、図2において、上段に示された画像の正規化アクティビティを64×64画素の粒度で算出した結果が中段に、当該正規化アクティビティを16×16画素の粒度で算出した結果が下段に示されている。ここでは、より高いアクティビティが白色で示されている。図2から理解されるように、64×64画素の粒度でレート制御を行うと、例えば複雑さが低いにも関わらず大きい量子化ステップで量子化され、又は複雑さが高いにも関わらず小さい量子化ステップでしか量子化されない領域が多く発生し得る。
 上述したブロックサイズに起因する不都合を回避してレート制御を適切に実行するために、HEVC方式では、LCUよりも小さいブロックの単位で量子化ステップを制御する手法が採用されている。より具体的には、上記非特許文献1に記載されたPPS(Picture Parameter Set)のシンタックスを参照すると、cu_qp_delta_enabled_flagがTrueである場合に、diff_cu_qp_delta_depthというサイズ情報によって、量子化ステップを指定する単位となるブロックのサイズが指定される。実際には、量子化ステップの対数がSN(Signal to Noise)比と比例関係にあるため、量子化ステップが直接的に指定される代わりに、量子化パラメータがブロックごとに指定される。量子化パラメータqp(quantization parameter)に対応する量子化ステップをS(qp)とすると、量子化ステップS(qp)が次式を満たすように、量子化パラメータqpと量子化ステップS(qp)との間の関係が定義される。
Figure JPOXMLDOC01-appb-M000001
 HEVC方式では、量子化パラメータ及び量子化ステップのレンジが最適化されるように、変数a=6、変数b=2という値が採用されている。この場合の量子化パラメータqpと量子化ステップS(qp)との間の関係を図3に示す。図3に示したように、量子化パラメータqpの値が6増えるごとに、量子化ステップS(qp)の値は2倍になる。
 量子化パラメータは実際には、複数の量子化関連パラメータの組合せによって指定される。上記非特許文献1に記載されたシンタックスを参照すると、PPS内のpic_init_qp_minus26及びスライスヘッダ内のslice_qp_deltaというパラメータによって、量子化パラメータが初期化される(SliceQPY=26+pic_init_qp_minus26+slice_qp_delta)。個々のCU(Coding Unit)の量子化パラメータは、上の隣接CU及び左の隣接CUの一方若しくは双方の量子化パラメータから予測され(CTB内予測)、又は復号順で直前のCUの量子化パラメータから予測される(CTB間予測)。図4には、CTB(Coding Tree Block)内及びCTB間の量子化パラメータの予測における参照関係が例示されている。上の隣接CU及び左の隣接CUの双方が参照可能な場合のCTB内予測では、量子化パラメータの予測値は、上の隣接CU及び左の隣接CUの量子化パラメータ(TopQP,LeftQP)の平均値((TopQP+LeftQP+1)>>1)に等しい。そして、TU(Transform Unit)内のcu_qp_delta_abs及びcu_qp_delta_signにより示される残差を上述した予測値に加算することにより、個々の量子化パラメータの値が算出される。
  [1-3.色差成分の量子化パラメータ]
 前項で説明した量子化パラメータの算出手法は、主に輝度成分の量子化パラメータについての手法である。色差成分については、輝度成分の量子化パラメータにオフセットを加算することにより、色差成分のために調整された量子化パラメータを使用することができる。上記非特許文献1に記載されたシンタックスを参照すると、色差成分の量子化パラメータのオフセットは、PPS内のpic_cb_qp_offset及びpic_cr_qp_offset、並びにスライスヘッダ内のslice_cb_qp_offset及びslice_cr_qp_offsetによって指定される。pic_cb_qp_offsetとslice_cb_qp_offsetとの和がCb成分の量子化パラメータのオフセットであり、pic_cr_qp_offsetとslice_cr_qp_offsetとの和がCr成分の量子化パラメータのオフセットである。
 なお、HEVC方式における輝度成分の量子化パラメータと色差成分の量子化パラメータとの間の具体的な関係式は、上記非特許文献1に記載されている。AVC方式との相違点として、AVC方式では、Cb成分及びCr成分のオフセットが等しい場合に、1つのchroma_qp_index_offsetのみがPPS内で符号化される。これに対し、HEVC方式では、上述したように、Cb成分及びCr成分のそれぞれのオフセットが、PPS及びスライスヘッダ内で符号化される。従って、HEVC方式の方がスライス単位で柔軟に色差成分の量子化パラメータを調整可能である。また、AVC方式では、色差成分の量子化パラメータの上限値は39である一方、HEVC方式では、色差成分の量子化パラメータの上限値は輝度成分と同じ51である。従って、HEVC方式では、HRD(Hypothetical Reference Decoder)バッファのオーバフローを、色差成分の変換係数データの情報量を削減することにより回避することが容易である。
  [1-4.量子化行列]
 量子化行列(スケーリングリストともいう)は、画像の高周波成分を感知しにくいという人間の視覚特性を利用して、高周波成分を低周波成分よりも粗く量子化するために導入される技術である。量子化行列が利用される場合、前項までに説明した量子化パラメータに対応する量子化ステップそのものの代わりに、量子化行列の各要素の値でスケーリングされた量子化ステップが、変換係数データを量子化し及び逆量子化するために使用される。AVC方式では、4×4画素及び8×8画素のサイズをそれぞれ有する量子化行列が利用可能である。これに対し、HEVC方式では、4×4画素、8×8画素、16×16画素及び32×32画素のサイズをそれぞれ有する量子化行列が利用可能である。但し、HEVC方式では、符号量の削減のために、16×16画素及び32×32画素の量子化行列は、直流成分を除いて、それぞれ8×8画素のサイズで符号化され、使用時に当該8×8画素のサイズからゼロ次オーダホールドでアップサンプリングされる。直流成分は別途符号化される。
 このように、HEVC方式の現在の仕様では、量子化に関連する様々なパラメータが符号化される。ここで、上述したように、画像の周波数特性は、レイヤ間で類似する。また、画像の周波数特性は、変換係数データのビット数を左右し、そのビット数は量子化によって制御される。従って、レイヤ間で共通するパラメータを用いて、スケーラブル符号化におけるベースレイヤ及びエンハンスメントレイヤの量子化を制御することにより、適切なレート制御を実現しつつ、量子化に関連するパラメータの符号量を削減することができるものと期待される。そこで、量子化に関連するパラメータをレイヤ間で再利用するための画像処理装置の実施形態について、次節より詳細に説明する。
  [1-5.エンコーダの基本的な構成例]
 図5は、スケーラブル符号化をサポートする、一実施形態に係る画像符号化装置10の概略的な構成を示すブロック図である。図5を参照すると、画像符号化装置10は、ベースレイヤ(BL)符号化部1a、エンハンスメントレイヤ(EL)符号化部1b、共通メモリ2及び多重化部3を備える。
 BL符号化部1aは、ベースレイヤ画像を符号化し、ベースレイヤの符号化ストリームを生成する。EL符号化部1bは、エンハンスメントレイヤ画像を符号化し、エンハンスメントレイヤの符号化ストリームを生成する。共通メモリ2は、レイヤ間で共通的に利用される情報を記憶する。多重化部3は、BL符号化部1aにより生成されるベースレイヤの符号化ストリームと、EL符号化部1bにより生成される1つ以上のエンハンスメントレイヤの符号化ストリームとを多重化し、マルチレイヤの多重化ストリームを生成する。
  [1-6.デコーダの基本的な構成例]
 図6は、スケーラブル符号化をサポートする、一実施形態に係る画像復号装置60の概略的な構成を示すブロック図である。図6を参照すると、画像復号装置60は、逆多重化部5、ベースレイヤ(BL)復号部6a、エンハンスメントレイヤ(EL)復号部6b及び共通メモリ7を備える。
 逆多重化部5は、マルチレイヤの多重化ストリームをベースレイヤの符号化ストリーム及び1つ以上のエンハンスメントレイヤの符号化ストリームに逆多重化する。BL復号部6aは、ベースレイヤの符号化ストリームからベースレイヤ画像を復号する。EL復号部6bは、エンハンスメントレイヤの符号化ストリームからエンハンスメントレイヤ画像を復号する。共通メモリ7は、レイヤ間で共通的に利用される情報を記憶する。
 図5に例示した画像符号化装置10において、ベースレイヤの符号化のためのBL符号化部1aの構成と、エンハンスメントレイヤの符号化のためのEL符号化部1bの構成とは、互いに類似する。BL符号化部1aにより生成され又は取得されるいくつかのパラメータは、共通メモリ2を用いてバッファリングされ、EL符号化部1bにより再利用される。次節では、そのようなEL符号化部1bの構成について詳細に説明する。
 同様に、図6に例示した画像復号装置60において、ベースレイヤの復号のためのBL復号部6aの構成と、エンハンスメントレイヤの復号のためのEL復号部6bの構成とは、互いに類似する。BL復号部6aにより生成され又は取得されるいくつかのパラメータは、共通メモリ7を用いてバッファリングされ、EL復号部6bにより再利用される。さらに次の節では、そのようなEL復号部6bの構成について詳細に説明する。
 <2.一実施形態に係るEL符号化部の構成例>
  [2-1.全体的な構成]
 図7は、図5に示したEL符号化部1bの構成の一例を示すブロック図である。図7を参照すると、EL符号化部1bは、並び替えバッファ11、減算部13、直交変換部14、量子化部15、可逆符号化部16、蓄積バッファ17、レート制御部18、逆量子化部21、逆直交変換部22、加算部23、デブロックフィルタ24、フレームメモリ25、セレクタ26及び27、イントラ予測部30、インター予測部35並びに量子化制御部40を備える。
 並び替えバッファ11は、一連の画像データに含まれる画像を並び替える。並び替えバッファ11は、符号化処理に係るGOP(Group of Pictures)構造に応じて画像を並び替えた後、並び替え後の画像データを減算部13、イントラ予測部30、及びインター予測部35へ出力する。
 減算部13には、並び替えバッファ11から入力される画像データ、及び後に説明するイントラ予測部30又はインター予測部35から入力される予測画像データが供給される。減算部13は、並び替えバッファ11から入力される画像データと予測画像データとの差分である予測誤差データを算出し、算出した予測誤差データを直交変換部14へ出力する。
 直交変換部14は、減算部13から入力される予測誤差データについて直交変換を行う。直交変換部14により実行される直交変換は、例えば、離散コサイン変換(Discrete Cosine Transform:DCT)又はカルーネン・レーベ変換などであってよい。直交変換部14は、直交変換処理により取得される変換係数データを量子化部15へ出力する。
 量子化部15には、直交変換部14から変換係数データが入力されると共に、後に説明する量子化制御部40から量子化パラメータが入力される。量子化部15には、量子化制御部40から量子化行列もまた入力され得る。量子化部15は、入力される量子化パラメータ(及び量子化行列)から決定される量子化ステップで、エンハンスメントレイヤの変換係数データを量子化し、量子化データ(量子化された変換係数データ)を生成する。そして、量子化部15は、量子化データを可逆符号化部16及び逆量子化部21へ出力する。
 可逆符号化部16は、量子化部15から入力される量子化データについて可逆符号化処理を行うことにより、エンハンスメントレイヤの符号化ストリームを生成する。また、可逆符号化部16は、符号化ストリームを復号する際に参照される様々なパラメータを符号化して、符号化されたパラメータを符号化ストリームのヘッダ領域に挿入する。可逆符号化部16により符号化されるパラメータは、後に説明するイントラ予測に関する情報、インター予測に関する情報及び量子化関連パラメータを含み得る。そして、可逆符号化部16は、生成した符号化ストリームを蓄積バッファ17へ出力する。
 蓄積バッファ17は、可逆符号化部16から入力される符号化ストリームを半導体メモリなどの記憶媒体を用いて一時的に蓄積する。そして、蓄積バッファ17は、蓄積した符号化ストリームを、伝送路の帯域に応じたレートで、図示しない伝送部(例えば、通信インタフェース又は周辺機器との接続インタフェースなど)へ出力する。
 レート制御部18は、蓄積バッファ17の空き容量を監視する。そして、レート制御部18は、蓄積バッファ17の空き容量に応じてレート制御信号を生成し、生成したレート制御信号を量子化制御部40へ出力する。レート制御部18は、上述したMPEG2テストモデルと同等のレート制御方式又はその他のレート制御方式に従って、符号化ストリームのレートを制御してよい。量子化制御部40へ出力されるレート制御信号は、量子化パラメータ及び量子化行列を含み得る。
 逆量子化部21、逆直交変換部22及び加算部23は、ローカルデコーダを構成する。逆量子化部21には、量子化部15から量子化データが入力されると共に、後に説明する量子化制御部40から量子化パラメータが入力される。逆量子化部21には、量子化制御部40から量子化行列もまた入力され得る。逆量子化部21は、入力される量子化パラメータ(及び量子化行列)から決定される量子化ステップで、エンハンスメントレイヤの量子化データを逆量子化し、変換係数データを復元する。そして、逆量子化部21は、復元した変換係数データを逆直交変換部22へ出力する。
 逆直交変換部22は、逆量子化部21から入力される変換係数データについて逆直交変換処理を行うことにより、予測誤差データを復元する。そして、逆直交変換部22は、復元した予測誤差データを加算部23へ出力する。
 加算部23は、逆直交変換部22から入力される復元された予測誤差データとイントラ予測部30又はインター予測部35から入力される予測画像データとを加算することにより、復号画像データ(エンハンスメントレイヤのリコンストラクト画像)を生成する。そして、加算部23は、生成した復号画像データをデブロックフィルタ24及びフレームメモリ25へ出力する。
 デブロックフィルタ24は、画像の符号化時に生じるブロック歪みを減少させるためのフィルタリング処理を行う。デブロックフィルタ24は、加算部23から入力される復号画像データをフィルタリングすることによりブロック歪みを除去し、フィルタリング後の復号画像データをフレームメモリ25へ出力する。
 フレームメモリ25は、加算部23から入力される復号画像データ及びデブロックフィルタ24から入力されるフィルタリング後の復号画像データを記憶媒体を用いて記憶する。
 セレクタ26は、イントラ予測のために使用されるフィルタリング前の復号画像データをフレームメモリ25から読み出し、読み出した復号画像データを参照画像データとしてイントラ予測部30に供給する。また、セレクタ26は、インター予測のために使用されるフィルタリング後の復号画像データをフレームメモリ25から読み出し、読み出した復号画像データを参照画像データとしてインター予測部35に供給する。
 セレクタ27は、イントラ予測モードにおいて、イントラ予測部30から出力されるイントラ予測の結果としての予測画像データを減算部13へ出力すると共に、イントラ予測に関する情報を可逆符号化部16へ出力する。また、セレクタ27は、インター予測モードにおいて、インター予測部35から出力されるインター予測の結果としての予測画像データを減算部13へ出力すると共に、インター予測に関する情報を可逆符号化部16へ出力する。セレクタ27は、イントラ予測モードとインター予測モードとを、コスト関数値の大きさに応じて切り替える。
 イントラ予測部30は、エンハンスメントレイヤの原画像データ及び復号画像データに基づいて、HEVC方式の予測単位(PU)ごとにイントラ予測処理を行う。例えば、イントラ予測部30は、予測モードセット内の各候補モードによる予測結果を所定のコスト関数を用いて評価する。次に、イントラ予測部30は、コスト関数値が最小となる予測モード、即ち圧縮率が最も高くなる予測モードを、最適な予測モードとして選択する。また、イントラ予測部30は、当該最適な予測モードに従ってエンハンスメントレイヤの予測画像データを生成する。そして、イントラ予測部30は、選択した最適な予測モードを表す予測モード情報を含むイントラ予測に関する情報、コスト関数値、及び予測画像データを、セレクタ27へ出力する。
 インター予測部35は、エンハンスメントレイヤの原画像データ及び復号画像データに基づいて、HEVC方式の予測単位ごとにインター予測処理を行う。例えば、インター予測部35は、予測モードセット内の各候補モードによる予測結果を所定のコスト関数を用いて評価する。次に、インター予測部35は、コスト関数値が最小となる予測モード、即ち圧縮率が最も高くなる予測モードを、最適な予測モードとして選択する。また、インター予測部35は、当該最適な予測モードに従ってエンハンスメントレイヤの予測画像データを生成する。そして、インター予測部35は、選択した最適な予測モードを表す予測モード情報と動き情報とを含むインター予測に関する情報、コスト関数値、及び予測画像データを、セレクタ27へ出力する。
 量子化制御部40は、共通メモリ2によりバッファリングされる情報を用いて、EL符号化部1bにおける量子化処理及び逆量子化処理を制御する。また、量子化制御部40は、量子化関連パラメータを生成する。本実施形態において、量子化制御部40により生成される量子化関連パラメータは、量子化パラメータを決定する際に使用されるパラメータ、及び量子化行列を決定する際に使用されるパラメータを含み得る。本明細書では、量子化パラメータを決定する際に使用されるパラメータをQP(Quantization Parameter)パラメータ、量子化行列を決定する際に使用されるパラメータをSL(Scaling List)パラメータという。
 QPパラメータは、主に輝度成分に関連するパラメータ群と、色差成分に関連するパラメータ群とを含む。一例として、輝度成分に関連するパラメータ群は、ピクチャ単位のパラメータであるpic_init_qp_minus26、スライス単位のパラメータであるslice_qp_delta、並びにCU単位のパラメータであるcu_qp_delta_abs及びcu_qp_delta_signを含み得る。色差成分に関連するパラメータ群は、スライス単位のパラメータであるslice_cbE_qp_offset及びslice_crE_qp_offsetを含み得る。既存の手法において生成される色差成分に関連するピクチャ単位のパラメータpic_cb_qp_offset及びpic_cr_qp_offsetは、本実施形態では生成されない。
 ベースレイヤに設定された量子化行列がエンハンスメントレイヤにおいて再利用されない場合には、エンハンスメントレイヤに設定すべき1つ以上のサイズの量子化行列を指定するSLパラメータが生成される。量子化行列がレイヤ間で再利用される場合において、ベースレイヤがHEVC方式で符号化されるときは、SLパラメータは生成されなくてよい。量子化行列がレイヤ間で再利用される場合において、ベースレイヤがAVC方式で符号化されるときは、エンハンスメントレイヤに設定すべき16×16画素及び32×32画素のサイズの量子化行列を指定するSLパラメータが生成され得る。量子化行列がレイヤ間で再利用される場合に、量子化行列が再利用されることを示すフラグ及びどのレイヤの量子化行列を再利用すべきかを示す情報などが、SLパラメータとして生成されてもよい。
 なお、変換係数データを量子化し及び逆量子化するために実際に使用される量子化ステップ(又は量子化パラメータ)は、例えば、レート制御部18から入力されるレート制御信号により指定されてもよい。その代わりに、実際に使用される量子化ステップ(又は量子化パラメータ)は、予めユーザにより指定されてもよい。
  [2-2.量子化制御部の詳細な構成]
 図8は、図7に示した量子化制御部40の構成の一例を示すブロック図である。図8を参照すると、量子化制御部40は、QP設定部41、QPパラメータ生成部42、SL設定部43及びSLパラメータ生成部44を有する。
   (1)QP設定部
 QP設定部41は、エンハンスメントレイヤの輝度成分及び色差成分の変換係数データを量子化する際に量子化部15により実際に使用される量子化パラメータを、エンハンスメントレイヤの各ブロックに設定する。QP設定部41により設定される当該量子化パラメータは、逆量子化部21が量子化データを逆量子化する際にも使用される。ここでのブロックは、LCUと等しいサイズ又はLCUよりも小さいサイズを有し得る。例えば、QP設定部41は、レート制御部18から入力されるレート制御信号に従って、輝度成分(Y)の量子化パラメータ及び色差成分(Cb,Cr)の量子化パラメータを設定してもよい。その代わりに、QP設定部41は、予めユーザにより指定される輝度成分の量子化パラメータ及び色差成分の量子化パラメータを設定してもよい。そして、QP設定部41は、エンハンスメントレイヤの各ブロックに設定した量子化パラメータ(QP(EL))を、量子化部15、逆量子化部21及びQPパラメータ生成部42へ出力する。
   (2)QPパラメータ生成部
 QPパラメータ生成部42は、QP設定部41から入力されるエンハンスメントレイヤの量子化パラメータと共通メモリ2によりバッファリングされるベースレイヤのQPパラメータとに基づいて、エンハンスメントレイヤのQPパラメータを生成する。輝度成分のQPパラメータは、上記非特許文献1に記載された仕様に従って生成されてよい。
 例えば、ベースレイヤがHEVC方式で符号化される場合、ベースレイヤのCb成分のQPパラメータは、pic_cb_qp_offset及びslice_cb_qp_offsetを含み得る。エンハンスメントレイヤのCb成分について実際に使用される所与の量子化パラメータに対応する量子化パラメータオフセットをcbE_qp_offsetとすると、エンハンスメントレイヤのCb成分のQPパラメータslice_cbE_qp_offsetは、例えば、次式に従って生成されてよい:
Figure JPOXMLDOC01-appb-M000002
 同様に、ベースレイヤがHEVC方式で符号化される場合、ベースレイヤのCr成分のQPパラメータは、pic_cr_qp_offset及びslice_cr_qp_offsetを含み得る。エンハンスメントレイヤのCr成分について実際に使用される所与の量子化パラメータに対応する量子化パラメータオフセットをcrE_qp_offsetとすると、エンハンスメントレイヤのCr成分のQPパラメータslice_crE_qp_offsetは、例えば、次式に従って生成されてよい:
Figure JPOXMLDOC01-appb-M000003
 式(2)及び式(3)によれば、QPパラメータ生成部42により生成されるQPパラメータslice_cbE_qp_offset及びslice_crE_qp_offsetは、エンハンスメントレイヤの量子化パラメータオフセット(cbE_qp_offset/crE_qp_offset)とベースレイヤの量子化パラメータオフセット(cbB_qp_offset/crB_qp_offset)との間の差分に等しい。ここでのベースレイヤの量子化パラメータオフセット(cbB_qp_offset/crB_qp_offset)は、ピクチャ単位のオフセットとスライス単位のオフセットとの和である。
 QPパラメータslice_cbE_qp_offset及びslice_crE_qp_offsetを生成するために、式(2)及び式(3)の代わりに、次の式(4)及び式(5)が使用されてもよい。
Figure JPOXMLDOC01-appb-M000004
 式(4)及び式(5)によれば、QPパラメータ生成部42により生成されるQPパラメータslice_cbE_qp_offset及びslice_crE_qp_offsetは、エンハンスメントレイヤの量子化パラメータオフセットとベースレイヤのピクチャ単位の量子化パラメータオフセット(pic_cb_qp_offset/pic_cr_qp_offset)との間の差分に等しい。
 ベースレイヤがAVC方式で符号化される場合、ベースレイヤの色差成分のQPパラメータは、スライス単位の量子化パラメータオフセットを含まず、ピクチャ単位のchroma_qp_index_offset及びsecond_chroma_qp_index_offsetを含み得る。second_chroma_qp_index_offsetが存在しない場合には、エンハンスメントレイヤのQPパラメータslice_cbE_qp_offset及びslice_crE_qp_offsetは、例えば、次の式(6)及び式(7)に従ってそれぞれ生成され得る:
Figure JPOXMLDOC01-appb-M000005
 second_chroma_qp_index_offsetが存在する場合には、上記式(7)は、次の式(8)に置き換えられる:
Figure JPOXMLDOC01-appb-M000006
 QPパラメータ生成部42は、このように生成されるエンハンスメントレイヤのQPパラメータslice_cbE_qp_offset及びslice_crE_qp_offsetを、可逆符号化部16へ出力する。
 なお、上述した例に限定されず、量子化制御部40は、レイヤ間でQPパラメータを再利用しなくてもよい。また、QPパラメータ生成部42は、レイヤ間で色差成分のQPパラメータを再利用すべきか、即ちベースレイヤの量子化パラメータオフセットに基づいてエンハンスメントレイヤの量子化パラメータオフセットを設定すべきかを示すQPパラメータ再利用フラグを生成してもよい。QPパラメータ再利用フラグは、典型的には、可逆符号化部16によりPPS内に符号化される。QPパラメータ再利用フラグが“True”を示す場合には、エンハンスメントレイヤにおいて、スライス単位のslice_cbE_qp_offset及びslice_crE_qp_offsetのみが、スライスヘッダ内に符号化され得る。QPパラメータ再利用フラグが“False”を示す場合には、エンハンスメントレイヤにおいて、ピクチャ単位のpic_cb_qp_offset及びpic_cr_qp_offsetもまた、PPS内に符号化され得る。
   (3)SL設定部
 SL設定部43は、エンハンスメントレイヤの輝度成分及び色差成分の変換係数データを量子化する際に量子化部15により実際に使用され得る量子化行列を、エンハンスメントレイヤの各ブロックに設定する。SL設定部43により設定される当該量子化行列は、逆量子化部21が量子化データを逆量子化する際にも使用され得る。例えば、SL設定部43は、レート制御部18から入力されるレート制御信号に従って、各色成分(Y,Cb,Cr)の各予測モード(イントラ/インター)の4×4画素、8×8画素、16×16画素及び32×32画素のサイズを有する量子化行列をそれぞれ設定してもよい。その代わりに、SL設定部43は、予めユーザにより指定される量子化行列を設定してもよい。そして、SL設定部43は、エンハンスメントレイヤの各ブロックに設定した量子化行列(SL(EL))を、量子化部15、逆量子化部21及びSLパラメータ生成部44へ出力する。
   (4)SLパラメータ生成部
 量子化行列がレイヤ間で再利用される場合において、SLパラメータ生成部44による処理は、ベースレイヤがHEVC方式で符号化されるか否かに依存して異なる。上記非特許文献2によれば、ベースレイヤがHEVC方式で符号化されるか否かは、VPS(Video Parameter Set)内に符号化されるフラグavc_base_layer_flagにより示される。図9A~図9Dは、量子化行列の再利用について説明するための説明図である。
 図9Aの例では、ベースレイヤはHEVC方式で符号化される。この場合、ベースレイヤにおいて、4×4画素、8×8画素、16×16画素及び32×32画素の量子化行列が設定される。従って、エンハンスメントレイヤではそれら量子化行列を再利用すればよいため、SLパラメータ生成部44は、エンハンスメントレイヤのSLパラメータを生成しない。これは、可逆符号化部16がエンハンスメントレイヤの量子化行列を符号化しないことを意味する。なお、ベースレイヤにおいては、これら量子化行列を指定するSLパラメータが、それぞれジグザグスキャンなどの手法で生成される。但し、16×16画素及び32×32画素の量子化行列のためのSLパラメータは、各量子化行列を8×8画素のサイズにダウンサンプリングした上で生成される(図中の網掛け部分)。
 図9Bの例では、ベースレイヤはAVC方式で符号化される。この場合、4×4画素及び8×8画素の量子化行列は、ベースレイヤにおいて各ブロックに設定され、エンハンスメントレイヤにおいて再利用される。従って、SLパラメータ生成部44は、4×4画素及び8×8画素の量子化行列を指定するSLパラメータを生成しない。一方、16×16画素及び32×32画素の量子化行列は、ベースレイヤにおいて設定されない。従って、SLパラメータ生成部44は、SL設定部43により設定されるエンハンスメントレイヤの16×16画素及び32×32画素の量子化行列を指定するSLパラメータを生成する。なお、これらSLパラメータは、各量子化行列を8×8画素のサイズにダウンサンプリングした上で生成される(図中の網掛け部分)。
 図9Cの例では、ベースレイヤはAVC方式で符号化される。図9Bの例と異なり、ここでは、ベースレイヤの量子化行列は、そのサイズに関わらず、エンハンスメントレイヤにおいて再利用されない。従って、SLパラメータ生成部44は、SL設定部43により設定されるエンハンスメントレイヤの4×4画素、8×8画素、16×16画素及び32×32画素の量子化行列を指定するSLパラメータを生成する。なお、16×16画素及び32×32画素の量子化行列についてのSLパラメータは、各量子化行列を8×8画素のサイズにダウンサンプリングした上で生成される。
 図9Bに例示した手法によれば、画像符号化方式に関わらず量子化行列が再利用可能であることから、量子化行列を指定するために要する符号量は最小化され得る。一方、図9Cに示した手法によれば、画像符号化方式が共通するレイヤ間でのみ量子化行列が再利用される。後者の場合、画像符号化方式の特性に合わせた最適な量子化行列を使用しつつ、量子化行列を可能な限り再利用して符号化効率を高めることができる。
 HEVC方式では、あるエンハンスメントレイヤについて1つ以上の下位レイヤが存在し得る。そこで、SLパラメータ生成部44により生成されるSLパラメータは、どのレイヤの量子化行列を再利用すべきかを指定する参照レイヤ情報を含んでもよい。図9Dの例では、レイヤBL0及びレイヤBL1は、エンハンスメントレイヤEL2の下位レイヤであり、共にHEVC方式で符号化される。エンハンスメントレイヤEL2において、4×4画素及び8×8画素の量子化行列は、レイヤBL0から再利用される。また、16×16画素及び32×32画素の量子化行列は、レイヤBL1から再利用される。従って、SLパラメータ生成部44により生成される参照レイヤ情報(ref_layer)は、4×4画素及び8×8画素についてはレイヤBL0を指定し、16×16画素及び32×32画素についてはレイヤBL1を指定する。参照レイヤ情報は、量子化行列の異なるサイズ又は異なる種類(色成分と予測モード(イントラ/インター)との組合せ)について別々に生成され及び符号化されてもよい。その代わりに、複数のサイズ又は複数の種類にわたって共通的な単一の参照レイヤ情報が生成され及び符号化されてもよい。
 あるサイズ及び種類の量子化行列がレイヤ間で再利用されない場合には、SLパラメータ生成部44は、SL設定部43により設定される当該サイズ及び種類のエンハンスメントレイヤ固有の量子化行列を指定するSLパラメータを生成する。
 SL設定部43は、エンハンスメントレイヤのSLパラメータを生成した場合には、生成したSLパラメータを可逆符号化部16へ出力する。
 なお、上述したように、量子化制御部40は、レイヤ間で量子化行列を再利用しなくてもよい。SLパラメータ生成部44は、レイヤ間で量子化行列を再利用すべきか、即ちベースレイヤの量子化行列に基づいてエンハンスメントレイヤの量子化行列を生成すべきかを示す量子化行列再利用フラグを生成してもよい。量子化行列再利用フラグは、典型的には、可逆符号化部16によりSPS又はPPS内に符号化される。量子化行列再利用フラグが“True”を示す場合には、エンハンスメントレイヤの量子化行列は、ベースレイヤの量子化行列から複製され又予測される。エンハンスメントレイヤにおいて、量子化行列の予測の残差が追加的に符号化されてもよい。SLパラメータ生成部44は、エンハンスメントレイヤの量子化行列を設定するための設定手法フラグを生成してもよい。設定手法フラグは、複製及び予測のいずれかを示し得る。SLパラメータ生成部44は、量子化行列再利用フラグ及び設定手法フラグを、量子化行列の異なるサイズ又は異なる種類について別々に生成してもよい。
 <3.一実施形態に係る符号化時の処理の流れ>
  [3-1.概略的な流れ]
 図10は、一実施形態に係る符号化時の概略的な処理の流れの一例を示すフローチャートである。なお、説明の簡明さのために、本開示に係る技術に直接的に関連しない処理ステップは、図から省略されている。
 図10を参照すると、まず、BL符号化部1aは、ベースレイヤの符号化処理を実行し、ベースレイヤの符号化ストリームを生成する(ステップS11)。
 共通メモリ2は、ベースレイヤの符号化処理において生成される量子化関連パラメータをバッファリングする(ステップS12)。ここでバッファリングされる量子化関連パラメータは、例えば、ベースレイヤの各ブロックに設定された色差成分の量子化パラメータオフセット、及び量子化行列を含み得る。
 次に、EL符号化部1bは、共通メモリ2によりバッファリングされている情報を用いて、エンハンスメントレイヤの符号化処理を実行し、エンハンスメントレイヤの符号化ストリームを生成する(ステップS13)。
 次に、多重化部4は、BL符号化部1aにより生成されるベースレイヤの符号化ストリームと、EL符号化部1bにより生成されるエンハンスメントレイヤの符号化ストリームとを多重化し、マルチレイヤの多重化ストリームを生成する(ステップS14)。
  [3-2.量子化に関連する処理]
 図11は、エンハンスメントレイヤの符号化処理(図10のステップS13)における量子化に関連する処理の流れの一例を示すフローチャートである。図11に示した処理は、例えば、エンハンスメントレイヤ画像内のスライスごとに繰り返され得る。
 図11を参照すると、まず、QP設定部41は、レート制御部18により決定され又はユーザにより指定される各色成分の量子化パラメータを、スライス内の各ブロックに設定する(ステップS21)。また、SL設定部43は、レート制御部18により決定され又はユーザにより指定される1つ以上の量子化行列を、スライス内の各ブロックに設定する(ステップS22)。
 次に、QPパラメータ生成部42は、QP設定部41によりエンハンスメントレイヤに設定された量子化パラメータに基づき、共通メモリ2によりバッファリングされている情報を用いて、エンハンスメントレイヤのQPパラメータを生成する(ステップS23)。例えば、QPパラメータ生成部42は、色差成分のQPパラメータとして、上記式(2)及び式(3)、又は上記式(4)及び式(5)に従い、量子化パラメータオフセット差分slice_cbE_qp_offset及びslice_crE_qp_offsetを生成する。
 また、SLパラメータ生成部44は、レイヤ間で量子化行列が再利用されるかを判定する(ステップS24)。レイヤ間で量子化行列が再利用される場合には、SLパラメータ生成部44は、さらに、ベースレイヤの符号化方式がHEVC方式であるかを判定する(ステップS25)。レイヤ間で量子化行列が再利用されない場合、又はベースレイヤの符号化方式がHEVC方式ではない場合、SLパラメータ生成部44は、エンハンスメントレイヤのSLパラメータを生成する(ステップS26)。例えば、SLパラメータ生成部44は、レイヤ間で量子化行列が再利用されない場合、必要とされる全てのエンハンスメントレイヤの量子化行列を指定するSLパラメータを生成し得る。また、SLパラメータ生成部44は、レイヤ間で量子化行列が再利用される場合において、ベースレイヤの符号化方式がAVC方式であるときは、エンハンスメントレイヤの16×16画素及び32×32画素の量子化行列を指定するSLパラメータを生成し得る。
 次に、量子化部15は、量子化制御部40により設定された量子化パラメータ(及び量子化行列)から決定される量子化ステップで、エンハンスメントレイヤの変換係数データを量子化し、量子化データを生成する(ステップS27)。そして、量子化部15は、量子化データを可逆符号化部16及び逆量子化部21へ出力する。
 次に、可逆符号化部16は、量子化部15から入力される量子化データを符号化して、エンハンスメントレイヤの符号化ストリームを生成する(ステップS28)。また、可逆符号化部16は、量子化制御部40から入力される(QPパラメータ及びSLパラメータを含み得る)量子化関連パラメータを符号化して、符号化されたパラメータを符号化ストリームのヘッダ領域に挿入する(ステップS29)。そして、可逆符号化部16は、エンハンスメントレイヤの符号化ストリームを蓄積バッファ17へ出力する。
 次に、逆量子化部21は、量子化制御部40により設定された量子化パラメータ(及び量子化行列)から決定される量子化ステップで、エンハンスメントレイヤの量子化データを逆量子化し、変換係数データを復元する(ステップS30)。そして、逆量子化部21は、復元した変換係数データを逆直交変換部22へ出力する。
 その後、逆直交変換、フィルタリング、イントラ予測及びインター予測などの後続の処理が実行される。
 <4.一実施形態に係るEL復号部の構成例>
  [4-1.全体的な構成]
 図12は、図6に示したEL復号部6bの構成の一例を示すブロック図である。図12を参照すると、EL復号部6bは、蓄積バッファ61、可逆復号部62、逆量子化部63、逆直交変換部64、加算部65、デブロックフィルタ66、並び替えバッファ67、D/A(Digital to Analogue)変換部68、フレームメモリ69、セレクタ70及び71、イントラ予測部75、インター予測部80並びに逆量子化制御部90を備える。
 蓄積バッファ61は、逆多重化部5から入力されるエンハンスメントレイヤの符号化ストリームを記憶媒体を用いて一時的に蓄積する。
 可逆復号部62は、蓄積バッファ61から入力されるエンハンスメントレイヤの符号化ストリームから、符号化の際に使用された符号化方式に従ってエンハンスメントレイヤの量子化データを復号する。また、可逆復号部62は、符号化ストリームのヘッダ領域に挿入されている情報を復号する。可逆復号部62により復号される情報は、例えば、イントラ予測に関する情報、インター予測に関する情報及び量子化関連パラメータを含み得る。可逆復号部62は、イントラ予測に関する情報をイントラ予測部75へ出力する。また、可逆復号部62は、インター予測に関する情報をインター予測部80へ出力する。また、可逆復号部62は、量子化データを逆量子化部63へ出力すると共に、量子化関連パラメータを逆量子化制御部90へ出力する。
 逆量子化部63は、可逆復号部62から入力される量子化データを、逆量子化制御部90から入力される量子化パラメータ(及び量子化行列)から決定される量子化ステップで逆量子化し、エンハンスメントレイヤの変換係数データを復元する。そして、逆量子化部63は、復元した変換係数データを逆直交変換部64へ出力する。
 逆直交変換部64は、符号化の際に使用された直交変換方式に従い、逆量子化部63から入力される変換係数データについて逆直交変換を行うことにより、予測誤差データを生成する。そして、逆直交変換部64は、生成した予測誤差データを加算部65へ出力する。
 加算部65は、逆直交変換部64から入力される予測誤差データと、セレクタ71から入力される予測画像データとを加算することにより、復号画像データを生成する。そして、加算部65は、生成した復号画像データをデブロックフィルタ66及びフレームメモリ69へ出力する。
 デブロックフィルタ66は、加算部65から入力される復号画像データをフィルタリングすることによりブロック歪みを除去し、フィルタリング後の復号画像データを並び替えバッファ67及びフレームメモリ69へ出力する。
 並び替えバッファ67は、デブロックフィルタ66から入力される画像を並び替えることにより、時系列の一連の画像データを生成する。そして、並び替えバッファ67は、生成した画像データをD/A変換部68へ出力する。
 D/A変換部68は、並び替えバッファ67から入力されるデジタル形式の画像データをアナログ形式の画像信号に変換する。そして、D/A変換部68は、例えば、画像復号装置60と接続されるディスプレイ(図示せず)にアナログ画像信号を出力することにより、エンハンスメントレイヤの画像を表示させる。
 フレームメモリ69は、加算部65から入力されるフィルタリング前の復号画像データ及びデブロックフィルタ66から入力されるフィルタリング後の復号画像データを記憶媒体を用いて記憶する。
 セレクタ70は、可逆復号部62により取得されるモード情報に応じて、画像内のブロックごとに、フレームメモリ69からの画像データの出力先をイントラ予測部75とインター予測部80との間で切り替える。例えば、セレクタ70は、イントラ予測モードが指定された場合には、フレームメモリ69から供給されるフィルタリング前の復号画像データを参照画像データとしてイントラ予測部75へ出力する。また、セレクタ70は、インター予測モードが指定された場合には、フィルタリング後の復号画像データを参照画像データとしてインター予測部80へ出力する。
 セレクタ71は、可逆復号部62により取得されるモード情報に応じて、加算部65へ供給すべき予測画像データの出力元をイントラ予測部75とインター予測部80との間で切り替える。例えば、セレクタ71は、イントラ予測モードが指定された場合には、イントラ予測部75から出力される予測画像データを加算部65へ供給する。また、セレクタ71は、インター予測モードが指定された場合には、インター予測部80から出力される予測画像データを加算部65へ供給する。
 イントラ予測部75は、可逆復号部62から入力されるイントラ予測に関する情報とフレームメモリ69からの参照画像データとに基づいてエンハンスメントレイヤのイントラ予測処理を行い、予測画像データを生成する。そして、イントラ予測部75は、生成したエンハンスメントレイヤの予測画像データをセレクタ71へ出力する。
 インター予測部80は、可逆復号部62から入力されるインター予測に関する情報とフレームメモリ69からの参照画像データとに基づいてエンハンスメントレイヤの動き補償処理を行い、予測画像データを生成する。そして、インター予測部80は、生成したエンハンスメントレイヤの予測画像データをセレクタ71へ出力する。
 逆量子化制御部90は、可逆復号部62により復号される量子化関連パラメータ及び共通メモリ7によりバッファリングされる情報を用いて、EL復号部6bにおける逆量子化処理を制御する。本実施形態において、量子化関連パラメータは、量子化パラメータを決定する際に使用されるQPパラメータ、及び量子化行列を決定する際に使用されるSLパラメータを含み得る。
  [4-2.逆量子化制御部の詳細な構成]
 図13は、図12に示した逆量子化制御部90の構成の一例を示すブロック図である。図13を参照すると、逆量子化制御部90は、QPパラメータ取得部91、QP設定部92、SLパラメータ取得部93及びSL設定部94を有する。
   (1)QPパラメータ取得部
 QPパラメータ取得部91は、エンハンスメントレイヤの符号化ストリームから可逆復号部62により復号されるQPパラメータを取得する。QPパラメータ取得部91により取得される輝度成分のQPパラメータは、上述したpic_init_qp_minus26、slice_qp_delta、cu_qp_delta_abs及びcu_qp_delta_signを含み得る。また、QPパラメータ取得部91により取得される色差成分のQPパラメータは、Cb成分についての量子化パラメータオフセット差分slice_cbE_qp_offset、及びCr成分についての量子化パラメータオフセット差分slice_crE_qp_offsetを含み得る。
 さらに、QPパラメータ取得部91は、可逆復号部62によりQPパラメータ再利用フラグが復号された場合に、復号された当該QPパラメータ再利用フラグを取得してもよい。QPパラメータ取得部91は、取得したこれらエンハンスメントレイヤのQPパラメータを、QP設定部92へ出力する。
   (2)QP設定部
 QP設定部92は、エンハンスメントレイヤの変換係数データを逆量子化する際に逆量子化部63により使用される量子化パラメータを、エンハンスメントレイヤの各ブロックに設定する。ここでのブロックは、LCUと等しいサイズ又はLCUよりも小さいサイズを有し得る。
 例えば、QP設定部92は、輝度成分について、pic_init_qp_minus26及びslice_qp_deltaを用いてCUごとに予測される量子化パラメータの予測値にcu_qp_delta_abs及びcu_qp_delta_signにより示される残差を加算することにより、量子化パラメータを算出する。そして、QP設定部92は、算出した量子化パラメータを逆量子化部63へ出力する。
 また、QP設定部92は、色差成分について、ベースレイヤの量子化パラメータオフセットに基づいて、エンハンスメントレイヤに量子化パラメータオフセットを設定する。エンハンスメントレイヤのCb成分及びCr成分の量子化パラメータオフセットcbE_qp_offset及びcrE_qp_offsetは、例えば、次の式(9)及び式(10)に従ってそれぞれ生成されてよい:
Figure JPOXMLDOC01-appb-M000007
 式(9)及び式(10)において、右辺の第1項は、QPパラメータ取得部91により取得される量子化パラメータオフセット差分slice_cbE_qp_offset及びslice_crE_qp_offsetである。右辺の第2項は、ベースレイヤの量子化パラメータオフセットcbB_qp_offset及びcrB_qp_offsetである。第1の手法において、ベースレイヤの量子化パラメータオフセットcbB_qp_offset及びcrB_qp_offsetは、次の式(11)及び式(12)の通り、ピクチャ単位のオフセットとスライス単位のオフセットとの和に等しい。
Figure JPOXMLDOC01-appb-M000008
 第2の手法において、ベースレイヤの量子化パラメータオフセットcbB_qp_offset及びcrB_qp_offsetは、次の式(13)及び式(14)の通り、ピクチャ単位のオフセットに等しい。
Figure JPOXMLDOC01-appb-M000009
 いずれの手法においても、ベースレイヤの量子化パラメータオフセットcbB_qp_offset及びcrB_qp_offsetは、共通メモリ7によりバッファリングされるベースレイヤのQPパラメータから決定される。
 QP設定部92は、さらに、上述したいずれかの手法に従って算出した量子化パラメータオフセットと輝度成分の量子化パラメータとの和を所定の関係式に入力することにより、エンハンスメントレイヤの色差成分の量子化パラメータを算出する。ここで使用される関係式は、上記非特許文献1に記載されている。そして、QP設定部92は、算出した量子化パラメータを逆量子化部63へ出力する。
 なお、QP設定部92は、QPパラメータ取得部91により取得され得るQPパラメータ再利用フラグが色差成分について量子化パラメータオフセットを再利用すべきこと(即ち、ベースレイヤの量子化パラメータオフセットに基づいてエンハンスメントレイヤの量子化パラメータオフセットを設定すべきこと)を示している場合に、色差成分についての上述した処理を実行してもよい。QPパラメータ再利用フラグが量子化パラメータオフセットを再利用すべきことを示していない場合には、QP設定部92は、ベースレイヤの量子化パラメータオフセットを参照することなく、エンハンスメントレイヤの色差成分の量子化パラメータオフセットを設定し得る。
   (3)SLパラメータ取得部
 SLパラメータ取得部93は、ベースレイヤがHEVC方式以外の画像符号化方式(例えば、AVC方式)で符号化されている場合に、エンハンスメントレイヤの符号化ストリームから、可逆復号部62により復号されるSLパラメータを取得する。例えば、SLパラメータ取得部93は、ベースレイヤがAVC方式で符号化される場合に、16×16画素及び32×32画素のサイズを有する量子化行列を指定するSLパラメータを取得する。また、SLパラメータ取得部93は、レイヤ間で量子化行列が再利用されない場合にも、エンハンスメントレイヤの符号化ストリームから、可逆復号部62により復号されるSLパラメータを取得する。この場合、4×4画素~32×32画素のサイズを有する量子化行列を指定するSLパラメータが取得される。なお、16×16画素以上のサイズを有する量子化行列のSLパラメータは、典型的には、図9Bを用いて説明したように、8×8画素のサイズに各量子化行列をダウンサンプリングした上で符号化されている。SLパラメータ取得部93は、取得したエンハンスメントレイヤのSLパラメータを、SL設定部94へ出力する。なお、SLパラメータ取得部93は、レイヤ間で量子化行列が再利用される場合において、ベースレイヤがHEVC方式で符号化されているときは、エンハンスメントレイヤのSLパラメータを取得しなくてよい。SLパラメータ取得部93は、ベースレイヤがHEVC方式で符号化されているか否かを、VPSから復号されるフラグavc_base_layer_flagを参照することにより判定し得る。
 さらに、SLパラメータ取得部93は、可逆復号部62により量子化行列再利用フラグ及び設定手法フラグが復号された場合に、復号された当該量子化行列再利用フラグ及び設定手法フラグをSL設定部94へ出力してもよい。
   (4)SL設定部
 SL設定部94は、エンハンスメントレイヤの輝度成分及び色差成分の変換係数データを逆量子化する際に逆量子化部63により使用される量子化行列を、エンハンスメントレイヤに設定する。
 例えば、SL設定部94は、ベースレイヤがHEVC方式又はAVC方式で符号化されている場合に、4×4画素及び8×8画素のサイズを有するベースレイヤの量子化行列を、共通メモリ7から取得する。例えば、SL設定部94は、取得したベースレイヤの量子化行列から、対応するエンハンスメントレイヤの量子化行列を複製してもよい。その代わりに、SL設定部94は、取得したベースレイヤの量子化行列から、対応するエンハンスメントレイヤの量子化行列を予測してもよい。後者の場合、量子化行列の予測の残差がエンハンスメントレイヤの符号化ストリームから追加的に復号され、当該残差が予測された量子化行列に加算され得る。SL設定部94は、SLパラメータ取得部93により取得される設定手法フラグに従って、エンハンスメントレイヤの量子化行列を複製すべきか又は予測すべきかを選択してもよい。
 SL設定部94は、ベースレイヤがHEVC方式で符号化されている場合には、16×16画素及び32×32画素のサイズを有するベースレイヤの量子化行列をも、共通メモリ7から取得する。そして、SL設定部94は、取得したベースレイヤの量子化行列から、対応するエンハンスメントレイヤの量子化行列を複製し又は予測する。SL設定部94は、ベースレイヤがAVC方式で符号化されている場合には、ベースレイヤの量子化行列に基づくことなく、SLパラメータ取得部93から入力されるSLパラメータに従って、16×16画素及び32×32画素のサイズを有するエンハンスメントレイヤの量子化行列をそれぞれ生成する。
 なお、SL設定部94は、SLパラメータ取得部93により取得され得る量子化行列再利用フラグが量子化行列を再利用しないこと(即ち、エンハンスメントレイヤの符号化ストリームから量子化行列を復号すべきこと)を示している場合には、ベースレイヤの量子化行列に基づくことなく、必要とされる全ての量子化行列をエンハンスメントレイヤのSLパラメータに従って生成し得る。量子化行列再利用フラグ及び設定手法フラグは、異なる量子化行列サイズ、異なる予測モード又は異なる色成分について別々にエンハンスメントレイヤの符号化ストリームから復号されてもよい。
 <5.一実施形態に係る復号時の処理の流れ>
  [5-1.概略的な流れ]
 図14は、一実施形態に係る復号時の概略的な処理の流れの一例を示すフローチャートである。なお、説明の簡明さのために、本開示に係る技術に直接的に関連しない処理ステップは、図から省略されている。
 図14を参照すると、まず、逆多重化部5は、マルチレイヤの多重化ストリームをベースレイヤの符号化ストリーム及びエンハンスメントレイヤの符号化ストリームに逆多重化する(ステップS60)。
 次に、BL復号部6aは、ベースレイヤの復号処理を実行し、ベースレイヤの符号化ストリームからベースレイヤ画像を再構築する(ステップS61)。
 共通メモリ7は、ベースレイヤの復号処理において復号される量子化関連パラメータをバッファリングする(ステップS62)。ここでバッファリングされる量子化関連パラメータは、例えば、ベースレイヤの各ブロックに設定された色差成分の量子化パラメータオフセット、及び量子化行列を含み得る。
 次に、EL復号部6bは、共通メモリ7によりバッファリングされている情報を用いて、エンハンスメントレイヤの復号処理を実行し、エンハンスメントレイヤ画像を再構築する(ステップS63)。
  [5-2.逆量子化に関連する処理]
 図15は、エンハンスメントレイヤの復号処理(図14のステップS63)における逆量子化に関連する処理の流れの一例を示すフローチャートである。図15に示した処理は、例えば、エンハンスメントレイヤ画像内のスライスごとに繰り返され得る。
 図15を参照すると、まず、QPパラメータ取得部91は、エンハンスメントレイヤの符号化ストリームから可逆復号部62により復号されるQPパラメータを取得する(ステップS71)。そして、QPパラメータ取得部91は、取得したエンハンスメントレイヤのQPパラメータを、QP設定部92へ出力する。
 また、SLパラメータ取得部93は、例えば量子化行列再利用フラグを参照することにより、レイヤ間で量子化行列が再利用されるかを判定する(ステップS72)。レイヤ間で量子化行列が再利用される場合には、SLパラメータ取得部93は、さらに、ベースレイヤの符号化方式がHEVC方式であるかを判定する(ステップS73)。レイヤ間で量子化行列が再利用されない場合、又はベースレイヤの符号化方式がHEVC方式ではない場合、SLパラメータ取得部93は、エンハンスメントレイヤの符号化ストリームから可逆復号部62により復号されるエンハンスメントレイヤのSLパラメータを取得する(ステップS74)。そして、SLパラメータ取得部93は、取得したエンハンスメントレイヤのSLパラメータを、SL設定部94へ出力する。
 次に、QP設定部92は、エンハンスメントレイヤの量子化パラメータを、エンハンスメントレイヤの各ブロックに設定する(ステップS75)。例えば、QP設定部92は、色差成分について、ベースレイヤの量子化パラメータオフセットとQPパラメータにより示される量子化パラメータオフセット差分とに基づいて、エンハンスメントレイヤの量子化パラメータオフセットを算出する。また、QP設定部92は、算出した当該量子化パラメータオフセットと輝度成分の量子化パラメータとの和を所定の関係式に入力することにより、エンハンスメントレイヤの量子化パラメータを算出する。そして、QP設定部92は、算出した量子化パラメータを逆量子化部63へ出力する。
 なお、QP設定部92は、QPパラメータ再利用フラグがベースレイヤの量子化パラメータオフセットを再利用すべきことを示さない場合には、色差成分について、ベースレイヤの量子化パラメータオフセットを参照することなく、QPパラメータにより示される量子化パラメータオフセットをエンハンスメントレイヤに設定し得る。
 また、SL設定部94は、エンハンスメントレイヤの量子化行列を、エンハンスメントレイヤの各ブロックに設定する(ステップS76)。例えば、SL設定部94は、ベースレイヤがHEVC方式又はAVC方式で符号化されている場合に、4×4画素及び8×8画素のサイズを有するベースレイヤの量子化行列を、共通メモリ7から取得する。また、SL設定部94は、ベースレイヤがHEVC方式で符号化されている場合に、16×16画素及び32×32画素のサイズを有するベースレイヤの量子化行列をも、共通メモリ7から取得する。そして、SL設定部94は、取得したベースレイヤの量子化行列から対応するエンハンスメントレイヤの量子化行列を複製し又は予測することにより、エンハンスメントレイヤの量子化行列を設定する。SL設定部94は、ベースレイヤがAVC方式で符号化されている場合には、SLパラメータ取得部93から入力されるSLパラメータに従って、16×16画素及び32×32画素のサイズを有するエンハンスメントレイヤの量子化行列を設定する。そして、SL設定部94は、設定した量子化行列を逆量子化部63へ出力する。
 なお、SL設定部94は、量子化行列再利用フラグがベースレイヤの量子化行列を再利用しないことを示している場合には、必要とされる全てのエンハンスメントレイヤの量子化行列を、SLパラメータ取得部93から入力されるSLパラメータに従って設定し得る。
 次に、可逆復号部62は、エンハンスメントレイヤの符号化ストリームから、エンハンスメントレイヤの量子化データを復号する(ステップS77)。そして、可逆復号部62は、復号した量子化データを逆量子化部63へ出力する。
 次に、逆量子化部63は、逆量子化制御部90から入力される量子化パラメータ(及び量子化行列)から決定される量子化ステップで、エンハンスメントレイヤの量子化データを逆量子化し、変換係数データを復元する(ステップS78)。そして、逆量子化部63は、復元した変換係数データを逆直交変換部64へ出力する。
 その後、逆直交変換、予測画像と予測誤差との加算、及びフィルタリングなどの後続の処理が実行される。
  [5-3.シンタックスの例]
   (1)基本的な例
 図16A~図16Cは、本開示に係る技術のために採用され得るエンハンスメントレイヤのシンタックスの一例について説明するための説明図である。ここでは、エンハンスメントレイヤのPPSにおいて、QPパラメータ再利用フラグ及び量子化行列再利用フラグが符号化される。
 図16A及び図16Bには、一例としてのPPSのシンタックスが示されている。図16Aにおいて、第15行には、QPパラメータ再利用フラグ“BL_chroma_qp_offset_flag”が存在する。QPパラメータ再利用フラグが“False”を示す場合、レイヤ間で量子化パラメータオフセットは再利用されず、第18行及び第19行においてピクチャ単位の量子化パラメータオフセット“pic_cb_qp_offset”及び“pic_cr_qp_offset”が符号化される。QPパラメータ再利用フラグが“True”を示す場合、ピクチャ単位の量子化パラメータオフセット“pic_cb_qp_offset”及び“pic_cr_qp_offset”の符号化は省略される。
 図16Bにおいて、第52行には、エンハンスメントレイヤのSLパラメータのための関数“scaling_list_data()”が存在する。図16Cには、関数“scaling_list_data()”の具体的なシンタックスが示されている。図16Cにおいて、第2行には、量子化行列再利用フラグ“BL_scaling_list_flag”が存在する。量子化行列再利用フラグが“True”を示す場合、レイヤ間で量子化行列が再利用される。但し、量子化行列再利用フラグが“True”であって、ベースレイヤがAVC方式で符号化される場合には、4×4画素及び8×8画素の量子化行列のみが再利用される(第7行参照。“sizeID=0”は4×4画素のサイズを、“sizeID=1”は8×8画素のサイズを意味する)。量子化行列が再利用されない場合、第8行以降でエンハンスメントレイヤの量子化行列を指定するSLパラメータが符号化される。
 なお、ここで説明したシンタックスは一例に過ぎない。例えば、QPパラメータ再利用フラグ及び量子化行列再利用フラグは、それぞれ、PPS以外のヘッダ領域(例えば、SPSなど)において符号化されてもよい。また、量子化行列が再利用される場合において、PPSは、上述した設定手法フラグ、又は量子化行列が予測される場合の残差データを含んでもよい。
   (2)変形例
 図16D及び図16Eは、エンハンスメントレイヤのシンタックスの変形例をそれぞれ示している。これら変形例では、EL符号化部1bにより符号化され及びEL復号部6bにより復号されるSLパラメータは、図9Dを用いて説明したような参照レイヤ情報を含む。
 図16Dに示した第1の変形例では、量子化行列の複数のサイズ及び複数の種類にわたって共通的な単一の参照レイヤ情報が符号化される。図16DのSPSの拡張(sps_extension())の第3行のフラグcopy_scaling_list_from_ref_layer_flagは、参照レイヤ情報により指定される下位レイヤの量子化行列に基づいてエンハンスメントレイヤの量子化行列を生成すべきかを示す量子化行列再利用フラグである。量子化行列再利用フラグが“True”を示す場合、第5行の参照レイヤ情報scaling_list_ref_layerがさらに符号化される。一例として、参照レイヤ情報scaling_list_ref_layerは、参照先のレイヤに付与されるレイヤ番号(例えば、符号無し6ビットの整数など)を用いて、量子化行列の複製又は予測の基礎となる下位レイヤを指定してよい。PPSの拡張(pps_extension())もまた、SPSの拡張と同様のシンタックスの参照レイヤ情報を含み得る。
 図16Eに示した第2の変形例では、量子化行列のサイズ及び種類ごとに異なる参照レイヤ情報が符号化される。図16EのSPSの拡張の第3行及びPPSの拡張の第3行の関数scaling_list_extension()は、参照レイヤ情報のためのシンタックスを定義する。関数scaling_list_extension()の第2行は、変数sizeIdで特定される量子化行列の4通りのサイズについての繰り返しを意味する。それに続く第3行は、変数matrixIdで特定される量子化行列の6通りの種類についての繰り返しを意味する(色差成分の最大サイズは16×16画素であるため、32×32画素については種類は2通りのみである)。各繰り返し中の第4行のフラグcopy_scaling_list_from_ref_layer_flag[sizeId][matrixId]は、レイヤ間で量子化行列を再利用すべきかを示す量子化行列再利用フラグである。量子化行列再利用フラグが“True”を示す場合、第6行の参照レイヤ情報scaling_list_ref_layer[sizeId][matrixId]がさらに符号化される。ここでも、参照レイヤ情報は、例えば参照先のレイヤに付与されるレイヤ番号を用いて、量子化行列の複製又は予測の基礎となる下位レイヤを指定してよい。
 なお、図9Cを用いて説明したように画像符号化方式の共通するレイヤ間でのみ量子化行列が再利用される場合において、最下位のベースレイヤがAVC方式で符号化されるときは、参照レイヤ情報は、最下位のベースレイヤの番号(例えば、ゼロ)以外のレイヤ番号を示し得る(通常、SHVCでは、AVC方式で符号化可能なレイヤは最下位レイヤのみである)。
 ここで説明したような参照レイヤ情報が導入されれば、再利用すべき量子化行列を複数の下位レイヤから柔軟に選択することで、エンハンスメントレイヤにおいて最適な量子化行列を使用し、符号化効率を効果的に高めることができる。
 <6.コーデックの組合せの例>
 本開示に係る技術は、様々なコーデックの組合せでのスケーラブル符号化に適用可能である。多重化されるレイヤの数は、2つ以上のいかなる数であってもよい。但し、標準化されていないコーデックの組合せが利用されると、デコーダが正常に動作しない可能性が生じ得る。そこで、予め定義されるコーデックの組合せのみが、階層的に符号化されることを許容されてもよい。その代わりに、いくつかのコーデックの組合せが、階層的に符号化されることを禁止されてもよい。
 図17A及び図17Bは、許容され又は禁止され得るコーデックの組合せについて説明するための説明図である。
 図17Aを参照すると、最も下位の第1のレイヤL10から最も上位の第5のレイヤL14までの5つのレイヤが示されている。第1のレイヤL10及び第2のレイヤL11は、MPEG2方式で符号化される。第3のレイヤL12及び第4のレイヤL13は、AVC方式で符号化される。第5のレイヤL14は、HEVC方式で符号化される。これらレイヤのうち、第1のレイヤL10及び第2のレイヤL11を階層的に符号化することは、コーデックが共通しているため、許容される。第2のレイヤL11及び第3のレイヤL12を階層的に符号化することは、MPEG2方式とAVC方式との組合せが標準化されていないため、禁止され得る。第3のレイヤL12及び第4のレイヤL13を階層的に符号化することは、コーデックが共通しているため、許容される。第4のレイヤL13及び第5のレイヤL14を階層的に符号化することは、AVC方式とHEVC方式との組合せが標準化されるため、許容される。図17Aの例では、第1のレイヤL10及び第2のレイヤL11の多重化ストリームと、第3のレイヤL12、第4のレイヤL13及び第5のレイヤL14の多重化ストリームとは、スケーラブル符号化ではなく、サイマルキャスト符号化(simulcast-coding)によって多重化され得る。
 図17Bを参照すると、最も下位の第1のレイヤL20から最も上位の第5のレイヤL24までの5つのレイヤが示されている。第1のレイヤL20及び第2のレイヤL21は、AVC方式で符号化される。第3のレイヤL22及び第4のレイヤL23は、MPEG2方式で符号化される。第5のレイヤL24は、HEVC方式で符号化される。これらレイヤのうち、第1のレイヤL20及び第2のレイヤL21を階層的に符号化することは、コーデックが共通しているため、許容される。第2のレイヤL21及び第3のレイヤL22を階層的に符号化することは、AVC方式とMPEG2方式との組合せが標準化されていないため、禁止され得る。第3のレイヤL22及び第4のレイヤL23を階層的に符号化することは、コーデックが共通しているため、許容される。第4のレイヤL23及び第5のレイヤL24を階層的に符号化することは、MPEG2方式とHEVC方式との組合せが標準化されるため、許容される。図17Bの例では、第1のレイヤL20及び第2のレイヤL21の多重化ストリームと、第3のレイヤL22、第4のレイヤL23及び第5のレイヤL24の多重化ストリームとは、スケーラブル符号化ではなく、サイマルキャスト符号化によって多重化され得る。
 <7.応用例>
  [7-1.様々な製品への応用]
 上述した実施形態に係る画像符号化装置10及び画像復号装置60は、衛星放送、ケーブルTVなどの有線放送、インターネット上での配信、及びセルラー通信による端末への配信などにおける送信機若しくは受信機、光ディスク、磁気ディスク及びフラッシュメモリなどの媒体に画像を記録する記録装置、又は、これら記憶媒体から画像を再生する再生装置などの様々な電子機器に応用され得る。以下、4つの応用例について説明する。
   (1)第1の応用例
 図18は、上述した実施形態を適用したテレビジョン装置の概略的な構成の一例を示している。テレビジョン装置900は、アンテナ901、チューナ902、デマルチプレクサ903、デコーダ904、映像信号処理部905、表示部906、音声信号処理部907、スピーカ908、外部インタフェース909、制御部910、ユーザインタフェース911、及びバス912を備える。
 チューナ902は、アンテナ901を介して受信される放送信号から所望のチャンネルの信号を抽出し、抽出した信号を復調する。そして、チューナ902は、復調により得られた符号化ビットストリームをデマルチプレクサ903へ出力する。即ち、チューナ902は、画像が符号化されている符号化ストリームを受信する、テレビジョン装置900における伝送手段としての役割を有する。
 デマルチプレクサ903は、符号化ビットストリームから視聴対象の番組の映像ストリーム及び音声ストリームを分離し、分離した各ストリームをデコーダ904へ出力する。また、デマルチプレクサ903は、符号化ビットストリームからEPG(Electronic Program Guide)などの補助的なデータを抽出し、抽出したデータを制御部910に供給する。なお、デマルチプレクサ903は、符号化ビットストリームがスクランブルされている場合には、デスクランブルを行ってもよい。
 デコーダ904は、デマルチプレクサ903から入力される映像ストリーム及び音声ストリームを復号する。そして、デコーダ904は、復号処理により生成される映像データを映像信号処理部905へ出力する。また、デコーダ904は、復号処理により生成される音声データを音声信号処理部907へ出力する。
 映像信号処理部905は、デコーダ904から入力される映像データを再生し、表示部906に映像を表示させる。また、映像信号処理部905は、ネットワークを介して供給されるアプリケーション画面を表示部906に表示させてもよい。また、映像信号処理部905は、映像データについて、設定に応じて、例えばノイズ除去などの追加的な処理を行ってもよい。さらに、映像信号処理部905は、例えばメニュー、ボタン又はカーソルなどのGUI(Graphical User Interface)の画像を生成し、生成した画像を出力画像に重畳してもよい。
 表示部906は、映像信号処理部905から供給される駆動信号により駆動され、表示デバイス(例えば、液晶ディスプレイ、プラズマディスプレイ又はOLEDなど)の映像面上に映像又は画像を表示する。
 音声信号処理部907は、デコーダ904から入力される音声データについてD/A変換及び増幅などの再生処理を行い、スピーカ908から音声を出力させる。また、音声信号処理部907は、音声データについてノイズ除去などの追加的な処理を行ってもよい。
 外部インタフェース909は、テレビジョン装置900と外部機器又はネットワークとを接続するためのインタフェースである。例えば、外部インタフェース909を介して受信される映像ストリーム又は音声ストリームが、デコーダ904により復号されてもよい。即ち、外部インタフェース909もまた、画像が符号化されている符号化ストリームを受信する、テレビジョン装置900における伝送手段としての役割を有する。
 制御部910は、CPU(Central Processing Unit)などのプロセッサ、並びにRAM(Random Access Memory)及びROM(Read Only Memory)などのメモリを有する。メモリは、CPUにより実行されるプログラム、プログラムデータ、EPGデータ、及びネットワークを介して取得されるデータなどを記憶する。メモリにより記憶されるプログラムは、例えば、テレビジョン装置900の起動時にCPUにより読み込まれ、実行される。CPUは、プログラムを実行することにより、例えばユーザインタフェース911から入力される操作信号に応じて、テレビジョン装置900の動作を制御する。
 ユーザインタフェース911は、制御部910と接続される。ユーザインタフェース911は、例えば、ユーザがテレビジョン装置900を操作するためのボタン及びスイッチ、並びに遠隔制御信号の受信部などを有する。ユーザインタフェース911は、これら構成要素を介してユーザによる操作を検出して操作信号を生成し、生成した操作信号を制御部910へ出力する。
 バス912は、チューナ902、デマルチプレクサ903、デコーダ904、映像信号処理部905、音声信号処理部907、外部インタフェース909及び制御部910を相互に接続する。
 このように構成されたテレビジョン装置900において、デコーダ904は、上述した実施形態に係る画像復号装置60の機能を有する。それにより、テレビジョン装置900が画像をマルチレイヤコーデックで復号する際に、量子化に関連するパラメータをレイヤ間で再利用して符号化効率を高めることができる。
   (2)第2の応用例
 図19は、上述した実施形態を適用した携帯電話機の概略的な構成の一例を示している。携帯電話機920は、アンテナ921、通信部922、音声コーデック923、スピーカ924、マイクロホン925、カメラ部926、画像処理部927、多重分離部928、記録再生部929、表示部930、制御部931、操作部932、及びバス933を備える。
 アンテナ921は、通信部922に接続される。スピーカ924及びマイクロホン925は、音声コーデック923に接続される。操作部932は、制御部931に接続される。バス933は、通信部922、音声コーデック923、カメラ部926、画像処理部927、多重分離部928、記録再生部929、表示部930、及び制御部931を相互に接続する。
 携帯電話機920は、音声通話モード、データ通信モード、撮影モード及びテレビ電話モードを含む様々な動作モードで、音声信号の送受信、電子メール又は画像データの送受信、画像の撮像、及びデータの記録などの動作を行う。
 音声通話モードにおいて、マイクロホン925により生成されるアナログ音声信号は、音声コーデック923に供給される。音声コーデック923は、アナログ音声信号を音声データへ変換し、変換された音声データをA/D変換し圧縮する。そして、音声コーデック923は、圧縮後の音声データを通信部922へ出力する。通信部922は、音声データを符号化及び変調し、送信信号を生成する。そして、通信部922は、生成した送信信号をアンテナ921を介して基地局(図示せず)へ送信する。また、通信部922は、アンテナ921を介して受信される無線信号を増幅し及び周波数変換し、受信信号を取得する。そして、通信部922は、受信信号を復調及び復号して音声データを生成し、生成した音声データを音声コーデック923へ出力する。音声コーデック923は、音声データを伸張し及びD/A変換し、アナログ音声信号を生成する。そして、音声コーデック923は、生成した音声信号をスピーカ924に供給して音声を出力させる。
 また、データ通信モードにおいて、例えば、制御部931は、操作部932を介するユーザによる操作に応じて、電子メールを構成する文字データを生成する。また、制御部931は、文字を表示部930に表示させる。また、制御部931は、操作部932を介するユーザからの送信指示に応じて電子メールデータを生成し、生成した電子メールデータを通信部922へ出力する。通信部922は、電子メールデータを符号化及び変調し、送信信号を生成する。そして、通信部922は、生成した送信信号をアンテナ921を介して基地局(図示せず)へ送信する。また、通信部922は、アンテナ921を介して受信される無線信号を増幅し及び周波数変換し、受信信号を取得する。そして、通信部922は、受信信号を復調及び復号して電子メールデータを復元し、復元した電子メールデータを制御部931へ出力する。制御部931は、表示部930に電子メールの内容を表示させると共に、電子メールデータを記録再生部929の記憶媒体に記憶させる。
 記録再生部929は、読み書き可能な任意の記憶媒体を有する。例えば、記憶媒体は、RAM又はフラッシュメモリなどの内蔵型の記憶媒体であってもよく、ハードディスク、磁気ディスク、光磁気ディスク、光ディスク、USBメモリ、又はメモリカードなどの外部装着型の記憶媒体であってもよい。
 また、撮影モードにおいて、例えば、カメラ部926は、被写体を撮像して画像データを生成し、生成した画像データを画像処理部927へ出力する。画像処理部927は、カメラ部926から入力される画像データを符号化し、符号化ストリームを記録再生部929の記憶媒体に記憶させる。
 また、テレビ電話モードにおいて、例えば、多重分離部928は、画像処理部927により符号化された映像ストリームと、音声コーデック923から入力される音声ストリームとを多重化し、多重化したストリームを通信部922へ出力する。通信部922は、ストリームを符号化及び変調し、送信信号を生成する。そして、通信部922は、生成した送信信号をアンテナ921を介して基地局(図示せず)へ送信する。また、通信部922は、アンテナ921を介して受信される無線信号を増幅し及び周波数変換し、受信信号を取得する。これら送信信号及び受信信号には、符号化ビットストリームが含まれ得る。そして、通信部922は、受信信号を復調及び復号してストリームを復元し、復元したストリームを多重分離部928へ出力する。多重分離部928は、入力されるストリームから映像ストリーム及び音声ストリームを分離し、映像ストリームを画像処理部927、音声ストリームを音声コーデック923へ出力する。画像処理部927は、映像ストリームを復号し、映像データを生成する。映像データは、表示部930に供給され、表示部930により一連の画像が表示される。音声コーデック923は、音声ストリームを伸張し及びD/A変換し、アナログ音声信号を生成する。そして、音声コーデック923は、生成した音声信号をスピーカ924に供給して音声を出力させる。
 このように構成された携帯電話機920において、画像処理部927は、上述した実施形態に係る画像符号化装置10及び画像復号装置60の機能を有する。それにより、携帯電話機920が画像をマルチレイヤコーデックで符号化し又は復号する際に、量子化に関連するパラメータをレイヤ間で再利用して符号化効率を高めることができる。
   (3)第3の応用例
 図20は、上述した実施形態を適用した記録再生装置の概略的な構成の一例を示している。記録再生装置940は、例えば、受信した放送番組の音声データ及び映像データを符号化して記録媒体に記録する。また、記録再生装置940は、例えば、他の装置から取得される音声データ及び映像データを符号化して記録媒体に記録してもよい。また、記録再生装置940は、例えば、ユーザの指示に応じて、記録媒体に記録されているデータをモニタ及びスピーカ上で再生する。このとき、記録再生装置940は、音声データ及び映像データを復号する。
 記録再生装置940は、チューナ941、外部インタフェース942、エンコーダ943、HDD(Hard Disk Drive)944、ディスクドライブ945、セレクタ946、デコーダ947、OSD(On-Screen Display)948、制御部949、及びユーザインタフェース950を備える。
 チューナ941は、アンテナ(図示せず)を介して受信される放送信号から所望のチャンネルの信号を抽出し、抽出した信号を復調する。そして、チューナ941は、復調により得られた符号化ビットストリームをセレクタ946へ出力する。即ち、チューナ941は、記録再生装置940における伝送手段としての役割を有する。
 外部インタフェース942は、記録再生装置940と外部機器又はネットワークとを接続するためのインタフェースである。外部インタフェース942は、例えば、IEEE1394インタフェース、ネットワークインタフェース、USBインタフェース、又はフラッシュメモリインタフェースなどであってよい。例えば、外部インタフェース942を介して受信される映像データ及び音声データは、エンコーダ943へ入力される。即ち、外部インタフェース942は、記録再生装置940における伝送手段としての役割を有する。
 エンコーダ943は、外部インタフェース942から入力される映像データ及び音声データが符号化されていない場合に、映像データ及び音声データを符号化する。そして、エンコーダ943は、符号化ビットストリームをセレクタ946へ出力する。
 HDD944は、映像及び音声などのコンテンツデータが圧縮された符号化ビットストリーム、各種プログラム及びその他のデータを内部のハードディスクに記録する。また、HDD944は、映像及び音声の再生時に、これらデータをハードディスクから読み出す。
 ディスクドライブ945は、装着されている記録媒体へのデータの記録及び読み出しを行う。ディスクドライブ945に装着される記録媒体は、例えばDVDディスク(DVD-Video、DVD-RAM、DVD-R、DVD-RW、DVD+R、DVD+RW等)又はBlu-ray(登録商標)ディスクなどであってよい。
 セレクタ946は、映像及び音声の記録時には、チューナ941又はエンコーダ943から入力される符号化ビットストリームを選択し、選択した符号化ビットストリームをHDD944又はディスクドライブ945へ出力する。また、セレクタ946は、映像及び音声の再生時には、HDD944又はディスクドライブ945から入力される符号化ビットストリームをデコーダ947へ出力する。
 デコーダ947は、符号化ビットストリームを復号し、映像データ及び音声データを生成する。そして、デコーダ947は、生成した映像データをOSD948へ出力する。また、デコーダ904は、生成した音声データを外部のスピーカへ出力する。
 OSD948は、デコーダ947から入力される映像データを再生し、映像を表示する。また、OSD948は、表示する映像に、例えばメニュー、ボタン又はカーソルなどのGUIの画像を重畳してもよい。
 制御部949は、CPUなどのプロセッサ、並びにRAM及びROMなどのメモリを有する。メモリは、CPUにより実行されるプログラム、及びプログラムデータなどを記憶する。メモリにより記憶されるプログラムは、例えば、記録再生装置940の起動時にCPUにより読み込まれ、実行される。CPUは、プログラムを実行することにより、例えばユーザインタフェース950から入力される操作信号に応じて、記録再生装置940の動作を制御する。
 ユーザインタフェース950は、制御部949と接続される。ユーザインタフェース950は、例えば、ユーザが記録再生装置940を操作するためのボタン及びスイッチ、並びに遠隔制御信号の受信部などを有する。ユーザインタフェース950は、これら構成要素を介してユーザによる操作を検出して操作信号を生成し、生成した操作信号を制御部949へ出力する。
 このように構成された記録再生装置940において、エンコーダ943は、上述した実施形態に係る画像符号化装置10の機能を有する。また、デコーダ947は、上述した実施形態に係る画像復号装置60の機能を有する。それにより、記録再生装置940が画像をマルチレイヤコーデックで符号化し又は復号する際に、量子化に関連するパラメータをレイヤ間で再利用して符号化効率を高めることができる。
   (4)第4の応用例
 図21は、上述した実施形態を適用した撮像装置の概略的な構成の一例を示している。撮像装置960は、被写体を撮像して画像を生成し、画像データを符号化して記録媒体に記録する。
 撮像装置960は、光学ブロック961、撮像部962、信号処理部963、画像処理部964、表示部965、外部インタフェース966、メモリ967、メディアドライブ968、OSD969、制御部970、ユーザインタフェース971、及びバス972を備える。
 光学ブロック961は、撮像部962に接続される。撮像部962は、信号処理部963に接続される。表示部965は、画像処理部964に接続される。ユーザインタフェース971は、制御部970に接続される。バス972は、画像処理部964、外部インタフェース966、メモリ967、メディアドライブ968、OSD969、及び制御部970を相互に接続する。
 光学ブロック961は、フォーカスレンズ及び絞り機構などを有する。光学ブロック961は、被写体の光学像を撮像部962の撮像面に結像させる。撮像部962は、CCD又はCMOSなどのイメージセンサを有し、撮像面に結像した光学像を光電変換によって電気信号としての画像信号に変換する。そして、撮像部962は、画像信号を信号処理部963へ出力する。
 信号処理部963は、撮像部962から入力される画像信号に対してニー補正、ガンマ補正、色補正などの種々のカメラ信号処理を行う。信号処理部963は、カメラ信号処理後の画像データを画像処理部964へ出力する。
 画像処理部964は、信号処理部963から入力される画像データを符号化し、符号化データを生成する。そして、画像処理部964は、生成した符号化データを外部インタフェース966又はメディアドライブ968へ出力する。また、画像処理部964は、外部インタフェース966又はメディアドライブ968から入力される符号化データを復号し、画像データを生成する。そして、画像処理部964は、生成した画像データを表示部965へ出力する。また、画像処理部964は、信号処理部963から入力される画像データを表示部965へ出力して画像を表示させてもよい。また、画像処理部964は、OSD969から取得される表示用データを、表示部965へ出力する画像に重畳してもよい。
 OSD969は、例えばメニュー、ボタン又はカーソルなどのGUIの画像を生成して、生成した画像を画像処理部964へ出力する。
 外部インタフェース966は、例えばUSB入出力端子として構成される。外部インタフェース966は、例えば、画像の印刷時に、撮像装置960とプリンタとを接続する。また、外部インタフェース966には、必要に応じてドライブが接続される。ドライブには、例えば、磁気ディスク又は光ディスクなどのリムーバブルメディアが装着され、リムーバブルメディアから読み出されるプログラムが、撮像装置960にインストールされ得る。さらに、外部インタフェース966は、LAN又はインターネットなどのネットワークに接続されるネットワークインタフェースとして構成されてもよい。即ち、外部インタフェース966は、撮像装置960における伝送手段としての役割を有する。
 メディアドライブ968に装着される記録媒体は、例えば、磁気ディスク、光磁気ディスク、光ディスク、又は半導体メモリなどの、読み書き可能な任意のリムーバブルメディアであってよい。また、メディアドライブ968に記録媒体が固定的に装着され、例えば、内蔵型ハードディスクドライブ又はSSD(Solid State Drive)のような非可搬性の記憶部が構成されてもよい。
 制御部970は、CPUなどのプロセッサ、並びにRAM及びROMなどのメモリを有する。メモリは、CPUにより実行されるプログラム、及びプログラムデータなどを記憶する。メモリにより記憶されるプログラムは、例えば、撮像装置960の起動時にCPUにより読み込まれ、実行される。CPUは、プログラムを実行することにより、例えばユーザインタフェース971から入力される操作信号に応じて、撮像装置960の動作を制御する。
 ユーザインタフェース971は、制御部970と接続される。ユーザインタフェース971は、例えば、ユーザが撮像装置960を操作するためのボタン及びスイッチなどを有する。ユーザインタフェース971は、これら構成要素を介してユーザによる操作を検出して操作信号を生成し、生成した操作信号を制御部970へ出力する。
 このように構成された撮像装置960において、画像処理部964は、上述した実施形態に係る画像符号化装置10及び画像復号装置60の機能を有する。それにより、撮像装置960が画像をマルチレイヤコーデックで符号化し又は復号する際に、量子化に関連するパラメータをレイヤ間で再利用して符号化効率を高めることができる。
  [7-2.スケーラブル符号化の様々な用途]
 上述したスケーラブル符号化の利点は、様々な用途において享受され得る。以下、3つの用途の例について説明する。
   (1)第1の例
 第1の例において、スケーラブル符号化は、データの選択的な伝送のために利用される。図22を参照すると、データ伝送システム1000は、ストリーム記憶装置1001及び配信サーバ1002を含む。配信サーバ1002は、ネットワーク1003を介して、いくつかの端末装置と接続される。ネットワーク1003は、有線ネットワークであっても無線ネットワークであってもよく、又はそれらの組合せであってもよい。図22には、端末装置の例として、PC(Personal Computer)1004、AV機器1005、タブレット装置1006及び携帯電話機1007が示されている。
 ストリーム記憶装置1001は、例えば、画像符号化装置10により生成される多重化ストリームを含むストリームデータ1011を記憶する。多重化ストリームは、ベースレイヤ(BL)の符号化ストリーム及びエンハンスメントレイヤ(EL)の符号化ストリームを含む。配信サーバ1002は、ストリーム記憶装置1001に記憶されているストリームデータ1011を読み出し、読み出したストリームデータ1011の少なくとも一部分を、ネットワーク1003を介して、PC1004、AV機器1005、タブレット装置1006、及び携帯電話機1007へ配信する。
 端末装置へのストリームの配信の際、配信サーバ1002は、端末装置の能力又は通信環境などの何らかの条件に基づいて、配信すべきストリームを選択する。例えば、配信サーバ1002は、端末装置が扱うことのできる画質を上回るほど高い画質を有する符号化ストリームを配信しないことにより、端末装置における遅延、オーバフロー又はプロセッサの過負荷の発生を回避してもよい。また、配信サーバ1002は、高い画質を有する符号化ストリームを配信しないことにより、ネットワーク1003の通信帯域が占有されることを回避してもよい。一方、配信サーバ1002は、これら回避すべきリスクが存在しない場合、又はユーザとの契約若しくは何らかの条件に基づいて適切だと判断される場合に、多重化ストリームの全てを端末装置へ配信してもよい。
 図22の例では、配信サーバ1002は、ストリーム記憶装置1001からストリームデータ1011を読み出す。そして、配信サーバ1002は、高い処理能力を有するPC1004へ、ストリームデータ1011をそのまま配信する。また、AV機器1005は低い処理能力を有するため、配信サーバ1002は、ストリームデータ1011から抽出されるベースレイヤの符号化ストリームのみを含むストリームデータ1012を生成し、ストリームデータ1012をAV機器1005へ配信する。また、配信サーバ1002は、高い通信レートで通信可能であるタブレット装置1006へストリームデータ1011をそのまま配信する。また、携帯電話機1007は低い通信レートでしか通信できないため、配信サーバ1002は、ベースレイヤの符号化ストリームのみを含むストリームデータ1012を携帯電話機1007へ配信する。
 このように多重化ストリームを用いることにより、伝送されるトラフィックの量を適応的に調整することができる。また、個々のレイヤがそれぞれ単独に符号化されるケースと比較して、ストリームデータ1011の符号量は削減されるため、ストリームデータ1011の全体が配信されるとしても、ネットワーク1003に掛かる負荷は抑制される。さらに、ストリーム記憶装置1001のメモリリソースも節約される。
 端末装置のハードウエア性能は、装置ごとに異なる。また、端末装置において実行されるアプリケーションのケイパビリティも様々である。さらに、ネットワーク1003の通信容量もまた様々である。データ伝送のために利用可能な容量は、他のトラフィックの存在に起因して、時々刻々と変化し得る。そこで、配信サーバ1002は、ストリームデータの配信を開始する前に、配信先の端末装置との間のシグナリングを通じて、端末装置のハードウエア性能及びアプリケーションケイパビリティなどに関する端末情報と、ネットワーク1003の通信容量などに関するネットワーク情報とを取得してもよい。そして、配信サーバ1002は、取得した情報に基づいて、配信すべきストリームを選択し得る。
 なお、復号すべきレイヤの抽出は、端末装置において行われてもよい。例えば、PC1004は、受信した多重化ストリームから抽出され復号されるベースレイヤ画像をその画面に表示してもよい。また、PC1004は、受信した多重化ストリームからベースレイヤの符号化ストリームを抽出してストリームデータ1012を生成し、生成したストリームデータ1012を記憶媒体に記憶させ、又は他の装置へ転送してもよい。
 図22に示したデータ伝送システム1000の構成は一例に過ぎない。データ伝送システム1000は、いかなる数のストリーム記憶装置1001、配信サーバ1002、ネットワーク1003、及び端末装置を含んでもよい。
   (2)第2の例
 第2の例において、スケーラブル符号化は、複数の通信チャネルを介するデータの伝送のために利用される。図23を参照すると、データ伝送システム1100は、放送局1101及び端末装置1102を含む。放送局1101は、地上波チャネル1111上で、ベースレイヤの符号化ストリーム1121を放送する。また、放送局1101は、ネットワーク1112を介して、エンハンスメントレイヤの符号化ストリーム1122を端末装置1102へ送信する。
 端末装置1102は、放送局1101により放送される地上波放送を受信するための受信機能を有し、地上波チャネル1111を介してベースレイヤの符号化ストリーム1121を受信する。また、端末装置1102は、放送局1101と通信するための通信機能を有し、ネットワーク1112を介してエンハンスメントレイヤの符号化ストリーム1122を受信する。
 端末装置1102は、例えば、ユーザからの指示に応じて、ベースレイヤの符号化ストリーム1121を受信し、受信した符号化ストリーム1121からベースレイヤ画像を復号してベースレイヤ画像を画面に表示してもよい。また、端末装置1102は、復号したベースレイヤ画像を記憶媒体に記憶させ、又は他の装置へ転送してもよい。
 また、端末装置1102は、例えば、ユーザからの指示に応じて、ネットワーク1112を介してエンハンスメントレイヤの符号化ストリーム1122を受信し、ベースレイヤの符号化ストリーム1121とエンハンスメントレイヤの符号化ストリーム1122とを多重化することにより多重化ストリームを生成してもよい。また、端末装置1102は、エンハンスメントレイヤの符号化ストリーム1122からエンハンスメントレイヤ画像を復号してエンハンスメントレイヤ画像を画面に表示してもよい。また、端末装置1102は、復号したエンハンスメントレイヤ画像を記憶媒体に記憶させ、又は他の装置へ転送してもよい。
 上述したように、多重化ストリームに含まれる各レイヤの符号化ストリームは、レイヤごとに異なる通信チャネルを介して伝送され得る。それにより、個々のチャネルに掛かる負荷を分散させて、通信の遅延若しくはオーバフローの発生を抑制することができる。
 また、何らかの条件に応じて、伝送のために使用される通信チャネルが動的に選択されてもよい。例えば、データ量が比較的多いベースレイヤの符号化ストリーム1121は帯域幅の広い通信チャネルを介して伝送され、データ量が比較的少ないエンハンスメントレイヤの符号化ストリーム1122は帯域幅の狭い通信チャネルを介して伝送され得る。また、特定のレイヤの符号化ストリーム1122が伝送される通信チャネルが、通信チャネルの帯域幅に応じて切り替えられてもよい。それにより、個々のチャネルに掛かる負荷をより効果的に抑制することができる。
 なお、図23に示したデータ伝送システム1100の構成は一例に過ぎない。データ伝送システム1100は、いかなる数の通信チャネル及び端末装置を含んでもよい。また、放送以外の用途において、ここで説明したシステムの構成が利用されてもよい。
   (3)第3の例
 第3の例において、スケーラブル符号化は、映像の記憶のために利用される。図24を参照すると、データ伝送システム1200は、撮像装置1201及びストリーム記憶装置1202を含む。撮像装置1201は、被写体1211を撮像することにより生成される画像データをスケーラブル符号化し、多重化ストリーム1221を生成する。多重化ストリーム1221は、ベースレイヤの符号化ストリーム及びエンハンスメントレイヤの符号化ストリームを含む。そして、撮像装置1201は、多重化ストリーム1221をストリーム記憶装置1202へ供給する。
 ストリーム記憶装置1202は、撮像装置1201から供給される多重化ストリーム1221を、モードごとに異なる画質で記憶する。例えば、ストリーム記憶装置1202は、通常モードにおいて、多重化ストリーム1221からベースレイヤの符号化ストリーム1222を抽出し、抽出したベースレイヤの符号化ストリーム1222を記憶する。これに対し、ストリーム記憶装置1202は、高画質モードにおいて、多重化ストリーム1221をそのまま記憶する。それにより、ストリーム記憶装置1202は、高画質での映像の記録が望まれる場合にのみ、データ量の多い高画質のストリームを記録することができる。そのため、画質の劣化のユーザへの影響を抑制しながら、メモリリソースを節約することができる。
 例えば、撮像装置1201は、監視カメラであるものとする。撮像画像に監視対象(例えば侵入者)が映っていない場合には、通常モードが選択される。この場合、撮像画像は重要でない可能性が高いため、データ量の削減が優先され、映像は低画質で記録される(即ち、ベースレイヤの符号化ストリーム1222のみが記憶される)。これに対し、撮像画像に監視対象(例えば、侵入者である被写体1211)が映っている場合には、高画質モードが選択される。この場合、撮像画像は重要である可能性が高いため、画質の高さが優先され、映像は高画質で記録される(即ち、多重化ストリーム1221が記憶される)。
 図24の例では、モードは、例えば画像解析結果に基づいて、ストリーム記憶装置1202により選択される。しかしながら、かかる例に限定されず、撮像装置1201がモードを選択してもよい。後者の場合、撮像装置1201は、通常モードにおいて、ベースレイヤの符号化ストリーム1222をストリーム記憶装置1202へ供給し、高画質モードにおいて、多重化ストリーム1221をストリーム記憶装置1202へ供給してもよい。
 なお、モードを選択するための選択基準は、いかなる基準であってもよい。例えば、マイクロフォンを通じて取得される音声の大きさ又は音声の波形などに応じて、モードが切り替えられてもよい。また、周期的にモードが切り替えられてもよい。また、ユーザがらの指示に応じてモードが切り替えられてもよい。さらに、選択可能なモードの数は、階層化されるレイヤの数を超えない限り、いかなる数であってもよい。
 図24に示したデータ伝送システム1200の構成は一例に過ぎない。データ伝送システム1200は、いかなる数の撮像装置1201を含んでもよい。また、監視カメラ以外の用途において、ここで説明したシステムの構成が利用されてもよい。
  [7-3.他のコーデックへの応用]
   (1)マルチビューコーデックへの応用
 マルチビューコーデックは、マルチレイヤコーデックの一種であり、いわゆる多視点映像を符号化し及び復号するための画像符号化方式である。図25は、マルチビューコーデックについて説明するための説明図である。図25を参照すると、3つの視点においてそれぞれ撮影される3つのビューのフレームのシーケンスが示されている。各ビューには、ビューID(view_id)が付与される。これら複数のビューのうちいずれか1つのビューが、ベースビュー(base view)に指定される。ベースビュー以外のビューは、ノンベースビューと呼ばれる。図25の例では、ビューIDが“0”であるビューがベースビューであり、ビューIDが“1”又は“2”である2つのビューがノンベースビューである。これらビューが階層的に符号化される場合、各ビューがレイヤに相当し得る。図中に矢印で示したように、ノンベースビューの画像は、ベースビューの画像を参照して符号化され及び復号される(他のノンベースビューの画像も参照されてよい)。
 図26は、マルチビューコーデックをサポートする画像符号化装置10vの概略的な構成を示すブロック図である。図26を参照すると、画像符号化装置10vは、第1レイヤ符号化部1c、第2レイヤ符号化部1d、共通メモリ2及び多重化部3を備える。
 第1レイヤ符号化部1cの機能は、入力としてベースレイヤ画像の代わりにベースビュー画像を受け取ることを除き、図5を用いて説明したBL符号化部1aの機能と同等である。第1レイヤ符号化部1cは、ベースビュー画像を符号化し、第1レイヤの符号化ストリームを生成する。第2レイヤ符号化部1dの機能は、入力としてエンハンスメントレイヤ画像の代わりにノンベースビュー画像を受け取ることを除き、図5を用いて説明したEL符号化部1bの機能と同等である。第2レイヤ符号化部1dは、ノンベースビュー画像を符号化し、第2レイヤの符号化ストリームを生成する。共通メモリ2は、レイヤ間で共通的に利用される情報を記憶する。多重化部3は、第1レイヤ符号化部1cにより生成される第1レイヤの符号化ストリームと、第2レイヤ符号化部1dにより生成される第2レイヤの符号化ストリームとを多重化し、マルチレイヤの多重化ストリームを生成する。
 図27は、マルチビューコーデックをサポートする画像復号装置60vの概略的な構成を示すブロック図である。図27を参照すると、画像復号装置60vは、逆多重化部5、第1レイヤ復号部6c、第2レイヤ復号部6d及び共通メモリ7を備える。
 逆多重化部5は、マルチレイヤの多重化ストリームを第1レイヤの符号化ストリーム及び第2レイヤの符号化ストリームに逆多重化する。第1レイヤ復号部6cの機能は、入力としてベースレイヤ画像の代わりにベースビュー画像が符号化された符号化ストリームを受け取ることを除き、図6を用いて説明したBL復号部6aの機能と同等である。第1レイヤ復号部6cは、第1レイヤの符号化ストリームからベースビュー画像を復号する。第2レイヤ復号部6dの機能は、入力としてエンハンスメントレイヤ画像の代わりにノンベースビュー画像が符号化された符号化ストリームを受け取ることを除き、図6を用いて説明したEL復号部6bの機能と同等である。第2レイヤ復号部6dは、第2レイヤの符号化ストリームからノンベースビュー画像を復号する。共通メモリ7は、レイヤ間で共通的に利用される情報を記憶する。
 本開示に係る技術に従って、マルチビューの画像データを符号化し又は復号する際、ベースビューの量子化に関連するパラメータをノンベースビューにおいて再利用することにより、全体としての符号量を削減することができる。それにより、スケーラブル符号化のケースと同様に、マルチビューコーデックにおいても、符号化効率を一層向上させることができる。
   (2)ストリーミング技術への応用
 本開示に係る技術は、ストリーミングプロトコルに適用されてもよい。例えば、MPEG-DASH(Dynamic Adaptive Streaming over HTTP)では、解像度などのパラメータが互いに異なる複数の符号化ストリームがストリーミングサーバにおいて予め用意される。そして、ストリーミングサーバは、複数の符号化ストリームからストリーミングすべき適切なデータをセグメント単位で動的に選択し、選択したデータを配信する。このようなストリーミングプロトコルにおいて、1つの符号化ストリームの量子化に関連するパラメータが他の符号化ストリームにおいて再利用されてもよい。
  [7-4.様々な実装レベル]
 本開示に係る技術は、例えば、システムLSI(Large Scale Integration)などのプロセッサ、複数のプロセッサを用いるモジュール、複数のモジュールを用いるユニット、ユニットにさらにその他の機能を付加したセットなどの様々な実装レベルにおいて実現されてよい。
   (1)ビデオセット
 本開示に係る技術をセットとして実現する場合の例について、図28を参照して説明する。図28は、ビデオセットの概略的な構成の一例を示すブロック図である。
 近年、電子機器は多機能化している。電子機器の開発又は製造は、個々の機能ごとに行われた後、複数の機能を統合する段階へと進む。従って、電子機器の一部のみを製造し又は販売する事業者が存在する。当該事業者は、単一の機能若しくは互いに関連する複数の機能を有する構成要素を提供し、又は統合的な機能群を有するセットを提供する。図28に示したビデオセット1300は、画像の符号化及び復号(いずれか一方でもよい)のための構成要素と、それら機能に関連する他の機能を有する構成要素とを統合的に含むセットである。
 図28を参照すると、ビデオセット1300は、ビデオモジュール1311、外部メモリ1312、パワーマネージメントモジュール1313、及びフロントエンドモジュール1314を含むモジュール群と、コネクティビティモジュール1321、カメラ1322、及びセンサ1323を含む関連機能のためのデバイス群と、を有する。
 モジュールは、互いに関連するいくつかの機能のための部品を集約することにより形成される構成要素である。モジュールは、どのような物理的構成を有していてもよい。一例として、モジュールは、同一の又は異なる機能を有する複数のプロセッサと、抵抗及びコンデンサなどの電子回路素子と、その他のデバイスとを回路基板に一体的に配置することにより形成され得る。モジュールに他のモジュール又はプロセッサなどを組合せることにより、別のモジュールが形成されてもよい。
 図28の例では、ビデオモジュール1311において、画像処理に関する機能のための部品が集約されている。ビデオモジュール1311は、アプリケーションプロセッサ1331、ビデオプロセッサ1332、ブロードバンドモデム1333、及びベースバンドモジュール1334を有する。
 プロセッサは、例えばSOC(System On a Chip)又はシステムLSI(Large Scale Integration)であってよい。SoC又はシステムLSIは、所定のロジックを実装するハードウェアを含んでもよい。また、SoC又はシステムLSIは、CPUと、当該CPUに所定の機能を実行させるためのプログラムを記憶する非一時的な有形の媒体(non-transitory tangible media)とを含んでもよい。プログラムは、例えば、ROMにより記憶され、実行時にRAM(Random Access Memory)に読み込まれた上でCPUにより実行され得る。
 アプリケーションプロセッサ1331は、画像処理に関するアプリケーションを実行するプロセッサである。アプリケーションプロセッサ1331において実行されるアプリケーションは、画像処理のための何らかの演算に加えて、例えばビデオプロセッサ1332及びその他の構成要素の制御を行ってもよい。ビデオプロセッサ1332は、画像の符号化及び復号に関する機能を有するプロセッサである。なお、アプリケーションプロセッサ1331及びビデオプロセッサ1332は、1つのプロセッサに一体化されてもよい(図中の点線1341参照)。
 ブロードバンドモデム1333は、インターネット又は公衆交換電話網などのネットワークを介する通信に関する処理を行うモジュールである。例えば、ブロードバンドモデム1333は、送信データを含むデジタル信号をアナログ信号に変換するためのデジタル変調、及び受信データを含むアナログ信号をデジタル信号に変換するためのデジタル復調を実行する。ブロードバンドモデム1333により処理される送信データ及び受信データは、例えば、画像データ、画像データの符号化ストリーム、アプリケーションデータ、アプリケーションプログラム及び設定データなどの任意の情報を含み得る。
 ベースバンドモジュール1334は、フロントエンドモジュール1314を介して送受信されるRF(Radio Frequency)信号のためのベースバンド処理を行うモジュールである。例えば、ベースバンドモジュール1334は、送信データを含む送信ベースバンド信号を変調し及びRF信号へと周波数変換して、RF信号をフロントエンドモジュール1314へ出力する。また、ベースバンドモジュール1334は、フロントエンドモジュール1314から入力されるRF信号を周波数変換し及び復調して、受信データを含む受信ベースバンド信号を生成する。
 外部メモリ1312は、ビデオモジュール1311の外部に設けられる、ビデオモジュール1311からアクセス可能なメモリデバイスである。多数のフレームを含む映像データのような大規模データが外部メモリ1312に格納される場合、外部メモリ1312は、例えばDRAM(Dynamic Random Access Memory)のような比較的安価で大容量の半導体メモリを含み得る。
 パワーマネージメントモジュール1313は、ビデオモジュール1311及びフロントエンドモジュール1314への電力供給を制御するモジュールである。
 フロントエンドモジュール1314は、ベースバンドモジュール1334に接続され、フロントエンド機能を提供するモジュールである。図28の例において、フロントエンドモジュール1314は、アンテナ部1351、フィルタ1352及び増幅部1353を有する。アンテナ部1351は、無線信号を送信し又は受信する1つ以上のアンテナ素子と、アンテナスイッチなどの関連する構成要素とを有する。アンテナ部1351は、増幅部1353により増幅されるRF信号を無線信号として送信する。また、アンテナ部1351は、無線信号として受信されるRF信号をフィルタ1352へ出力し、当該RF信号をフィルタ1352にフィルタリングさせる。
 コネクティビティモジュール1321は、ビデオセット1300の外部接続に関する機能を有するモジュールである。コネクティビティモジュール1321は、任意の外部接続プロトコルをサポートしてよい。例えば、コネクティビティモジュール1321は、Bluetooth(登録商標)、IEEE802.11(例えばWi-Fi(登録商標))、NFC(Near Field Communication)又はIrDA(InfraRed Data Association)などの無線接続プロトコルをサポートするサブモジュールと、対応するアンテナとを有していてもよい。また、コネクティビティモジュール1321は、USB(Universal Serial Bus)又はHDMI(High-Definition Multimedia Interface)などの有線接続プロトコルをサポートするサブモジュールと、対応する接続端子とを有していてもよい。
 また、コネクティビティモジュール1321は、磁気ディスク、光ディスク、光磁気ディスク、若しくは半導体メモリなどの記憶媒体、又はSSD(Solid State Drive)若しくはNAS(Network Attached Storage)などのストレージデバイスへのデータの書込み及び当該記憶媒体からのデータの読出しを行うドライブを含んでもよい。コネクティビティモジュール1321は、これら記憶媒体又はストレージデバイスを含んでもよい。また、コネクティビティモジュール1321は、画像を出力するディスプレイ又は音声を出力するスピーカへの接続性を提供してもよい。
 カメラ1322は、被写体を撮像することにより撮像画像を取得するモジュールである。カメラ1322により取得される一連の撮像画像は、映像データを構成する。カメラ1322により生成される映像データは、例えば、必要に応じてビデオプロセッサ1332により符号化され、外部メモリ1312により又はコネクティビティモジュール1321に接続される記憶媒体により記憶され得る。
 センサ1323は、例えば、GPSセンサ、音声センサ、超音波センサ、光センサ、照度センサ、赤外線センサ、角速度センサ、角加速度センサ、速度センサ、加速度センサ、ジャイロセンサ、地磁気センサ、衝撃センサ及び温度センサのうちの1つ以上を含み得るモジュールである。センサ1323により生成されるセンサデータは、例えば、アプリケーションプロセッサ1331によりアプリケーションの実行のために利用され得る。
 このように構成されたビデオセット1300において、本開示に係る技術は、例えば、ビデオプロセッサ1332において利用され得る。この場合、ビデオセット1300は、本開示に係る技術を適用したセットとなる。
 なお、ビデオセット1300は、画像データを処理する様々な種類の装置として実現されてよい。例えば、ビデオセット1300は、図18~図21を用いて説明したテレビジョン装置900、携帯電話機920、記録再生装置940又は撮像装置960に相当してもよい。また、ビデオセット1300は、図22を用いて説明したデータ伝送システム1000におけるPC1004、AV機器1005、タブレット装置1006若しくは携帯電話機1007などの端末装置、図23を用いて説明したデータ伝送システム1100における放送局1101若しくは端末装置1102、又は、図24を用いて説明したデータ伝送システム1200における撮像装置1201若しくはストリーム記憶装置1202に相当してもよい。さらに、ビデオセット1300は、図31に例示するコンテンツ再生システム、又は図40に例示する無線通信システムに含まれる装置に相当してもよい。
   (2)ビデオプロセッサ
 図29は、ビデオプロセッサ1332の概略的な構成の一例を示すブロック図である。ビデオプロセッサ1332は、入力映像信号及び入力音声信号をそれぞれ符号化して映像データ及び音声データを生成する機能と、符号化された映像データ及び音声データを復号して出力映像信号及び出力音声信号を生成する機能と、を有する。
 図29を参照すると、ビデオプロセッサ1332は、ビデオ入力処理部1401、第1スケーリング部1402、第2スケーリング部1403、ビデオ出力処理部1404、フレームメモリ1405、メモリ制御部1406、エンコード・デコードエンジン1407、ビデオES(Elementary Stream)バッファ1408A及び1408B、オーディオESバッファ1409A及び1409B、オーディオエンコーダ1410、オーディオデコーダ1411、多重化部(MUX)1412、逆多重化部(DEMUX)1413、並びに、ストリームバッファ1414を有する。
 ビデオ入力処理部1401は、例えばコネクティビティモジュール1321から入力された映像信号をデジタル画像データに変換する。第1スケーリング部1402は、ビデオ入力処理部1401から入力される画像データについてフォーマット変換及びスケーリング(拡大/縮小)を行う。第2スケーリング部1403は、ビデオ出力処理部1404へ出力される画像データについてのフォーマット変換及びスケーリング(拡大/縮小)を行う。第1スケーリング部1402及び第2スケーリング部1403におけるフォーマット変換は、例えば、4:2:2/Y-Cb-Cr方式と4:2:0/Y-Cb-Cr方式との間の変換などであってよい。ビデオ出力処理部1404は、デジタル画像データを出力映像信号に変換し、出力映像信号を例えばコネクティビティモジュール1321へ出力する。
 フレームメモリ1405は、ビデオ入力処理部1401、第1スケーリング部1402、第2スケーリング部1403、ビデオ出力処理部1404、及びエンコード・デコードエンジン1407によって共用される、画像データを記憶するメモリデバイスである。フレームメモリ1405は、例えばDRAMなどの半導体メモリを用いて実現されてよい。
 メモリ制御部1406は、エンコード・デコードエンジン1407から入力される同期信号に基づき、アクセス管理テーブル1406Aに記憶されるフレームメモリ1405についてのアクセススケジュールに従って、フレームメモリ1405へのアクセスを制御する。アクセス管理テーブル1406Aは、エンコード・デコードエンジン1407、第1スケーリング部1402及び第2スケーリング部1403などにおいて実行される処理に依存し、メモリ制御部1406により更新される。
 エンコード・デコードエンジン1407は、画像データを符号化して符号化映像ストリームを生成するためのエンコード処理、並びに、符号化映像ストリームから画像データを復号するためのデコード処理を行う。例えば、エンコード・デコードエンジン1407は、フレームメモリ1405から読み出した画像データを符号化し、符号化映像ストリームをビデオESバッファ1408Aに順次書き込む。また、例えば、ビデオESバッファ1408Bから符号化映像ストリームを順次読み出し、復号した画像データをフレームメモリ1405に書き込む。エンコード・デコードエンジン1407は、これら処理において、フレームメモリ1405を作業領域として使用し得る。エンコード・デコードエンジン1407は、例えば、各LCU(Largest Coding Unit)の処理を開始するタイミングで、メモリ制御部1406へ同期信号を出力する。
 ビデオESバッファ1408Aは、エンコード・デコードエンジン1407によって生成された符号化映像ストリームをバッファリングする。ビデオESバッファ1408Aによりバッファリングされる符号化映像ストリームは、多重化部1412へ出力される。ビデオESバッファ1408Bは、逆多重化部1413から入力される符号化映像ストリームをバッファリングする。ビデオESバッファ1408Bによりバッファリングされる符号化映像ストリームは、エンコード・デコードエンジン1407へ出力される。
 オーディオESバッファ1409Aは、オーディオエンコーダ1410によって生成された符号化音声ストリームをバッファリングする。オーディオESバッファ1409Aによりバッファリングされる符号化音声ストリームは、多重化部1412へ出力される。オーディオESバッファ1409Bは、逆多重化部1413から入力される符号化音声ストリームをバッファリングする。オーディオESバッファ1409Bによりバッファリングされる符号化音声ストリームは、オーディオデコーダ1411へ出力される。
 オーディオエンコーダ1410は、例えばコネクティビティモジュール1321から入力される入力音声信号をデジタル変換し、例えばMPEGオーディオ方式又はAC3(Audio Code number 3)方式などの音声符号化方式に従って入力音声信号を符号化する。オーディオエンコーダ1410は、符号化音声ストリームをオーディオESバッファ1409Aに順次書き込む。オーディオデコーダ1411は、オーディオESバッファ1409Bから入力される符号化音声ストリームから音声データを復号し、アナログ信号へ変換する。オーディオデコーダ1411は、再生されたアナログ音声信号として、例えばコネクティビティモジュール1321へ音声信号を出力する。
 多重化部1412は、符号化映像ストリームと符号化音声ストリームとを多重化して、多重化ビットストリームを生成する。多重化ビットストリームのフォーマットは、いかなるフォーマットであってもよい。多重化部1412は、所定のヘッダ情報をビットストリームに付加してもよい。また、多重化部1412は、ストリームのフォーマットを変換してもよい。例えば、多重化部1412は、符号化映像ストリームと符号化音声ストリームとが多重化されたトランスポートストリーム(転送用フォーマットのビットストリーム)を生成し得る。また、多重化部1412は、符号化映像ストリームと符号化音声ストリームとが多重化されたファイルデータ(記録用フォーマットのデータ)を生成し得る。
 逆多重化部1413は、多重化部1412による多重化とは逆の手法で、多重化ビットストリームから符号化映像ストリーム及び符号化音声ストリームを逆多重化する。即ち、逆多重化部1413は、ストリームバッファ1414から読み出されるビットストリームから映像ストリームと音声ストリームとを抽出(又は分離)する。逆多重化部1413は、ストリームのフォーマットを変換(逆変換)してもよい。例えば、逆多重化部1413は、コネクティビティモジュール1321又はブロードバンドモデム1333から入力され得るトランスポートストリームをストリームバッファ1414を介して取得し、当該トランスポートストリームを映像ストリームと音声ストリームとに変換してもよい。また、逆多重化部1413は、コネクティビティモジュール1321により記憶媒体から読み出されるファイルデータをストリームバッファ1414を介して取得し、当該ファイルデータを映像ストリームと音声ストリームとに変換してもよい。
 ストリームバッファ1414は、ビットストリームをバッファリングする。例えば、ストリームバッファ1414は、多重化部1412から入力されるトランスポートストリームをバッファリングし、所定のタイミングで又は外部からの要求に応じて、例えばコネクティビティモジュール1321又はブロードバンドモデム1333へトランスポートストリームを出力する。また、例えば、ストリームバッファ1414は、多重化部1412から入力されるファイルデータをバッファリングし、所定のタイミングで又は外部からの要求に応じて、例えばコネクティビティモジュール1321へ、当該ファイルデータを記録のために出力する。さらに、ストリームバッファ1414は、例えばコネクティビティモジュール1321又はブロードバンドモデム1333を介して取得されるトランスポートストリームをバッファリングし、所定のタイミングで又は外部からの要求に応じて、当該トランスポートストリームを逆多重化部1413へ出力する。また、ストリームバッファ1414は、例えばコネクティビティモジュール1321により記憶媒体から読み出されたファイルデータをバッファリングし、所定のタイミングで又は外部からの要求に応じて、当該ファイルデータを逆多重化部1413へ出力する。
 このように構成されたビデオプロセッサ1332において、本開示に係る技術は、例えば、エンコード・デコードエンジン1407において利用され得る。この場合、ビデオプロセッサ1332は、本開示に係る技術を適用したチップ又はモジュールとなる。
 図30は、ビデオプロセッサ1332の概略的な構成の他の例を示すブロック図である。図30の例において、ビデオプロセッサ1332は、映像データを所定の方式で符号化し及び復号する機能を有する。
 図30を参照すると、ビデオプロセッサ1332は、制御部1511、ディスプレイインタフェース1512、ディスプレイエンジン1513、画像処理エンジン1514、内部メモリ1515、コーデックエンジン1516、メモリインタフェース1517、多重化/逆多重化部1518、ネットワークインタフェース1519、及びビデオインタフェース1520を有する。
 制御部1511は、ディスプレイインタフェース1512、ディスプレイエンジン1513、画像処理エンジン1514、及びコーデックエンジン1516などの、ビデオプロセッサ1332内の様々な処理部の動作を制御する。制御部1511は、例えば、メインCPU1531、サブCPU1532及びシステムコントローラ1533を有する。メインCPU1531は、ビデオプロセッサ1332内の各処理部の動作を制御するためのプログラムを実行する。メインCPU1531は、プログラムの実行を通じて生成される制御信号を各処理部に供給する。サブCPU1532は、メインCPU1531の補助的な役割を果たす。例えば、サブCPU1532は、メインCPU1531が実行するプログラムの子プロセス及びサブルーチンを実行する。システムコントローラ1533は、メインCPU1531及びサブCPU1532によるプログラムの実行を管理する。
 ディスプレイインタフェース1512は、制御部1511による制御の下、画像データを例えばコネクティビティモジュール1321へ出力する。例えば、ディスプレイインタフェース1512は、デジタル画像データから変換されるアナログ画像信号又はデジタル画像データそのものを、コネクティビティモジュール1321に接続されるディスプレイへ出力する。ディスプレイエンジン1513は、制御部1511による制御の下、画像データの属性が出力先のディスプレイの仕様に適合するように、画像データについてのフォーマット変換、サイズ変換及び色域変換などを実行する。画像処理エンジン1514は、制御部1511による制御の下、画像データについて、画質改善などの目的を有するフィルタリング処理を含み得る画像処理を実行する。
 内部メモリ1515は、ディスプレイエンジン1513、画像処理エンジン1514、及びコーデックエンジン1516により共用される、ビデオプロセッサ1332の内部に設けられるメモリデバイスである。内部メモリ1515は、例えば、ディスプレイエンジン1513、画像処理エンジン1514、及びコーデックエンジン1516の間で画像データを入出力する際に利用される。内部メモリ1515は、いかなる種類のメモリデバイスであってもよい。例えば、内部メモリ1515は、ブロック単位の画像データ及び関連するパラメータを記憶するための、比較的小さいメモリサイズを有していてもよい。内部メモリ1515は、例えばSRAM(Static Random Access Memory)のような(例えば、外部メモリ1312に対して相対的に)小容量だが応答速度の速いメモリであってもよい。
 コーデックエンジン1516は、画像データを符号化して符号化映像ストリームを生成するためのエンコード処理、並びに、符号化映像ストリームから画像データを復号するためのデコード処理を行う。コーデックエンジン1516によりサポートされる画像符号化方式は、任意の1つ又は複数の方式であってよい。図30の例において、コーデックエンジン1516は、MPEG-2 Video用ブロック1541、AVC/H.264用ブロック1542、HEVC/H.265用ブロック1543、HEVC/H.265(スケーラブル)用ブロック1544、HEVC/H.265(マルチビュー)用ブロック1545、及びMPEG-DASH用ブロック1551を有する。これら機能ブロックは、それぞれ、対応する画像符号化方式に従って画像データを符号化し及び復号する。
 MPEG-DASH用ブロック1551は、画像データをMPEG-DASH方式に従って伝送することを可能とするための機能ブロックである。MPEG-DASH用ブロック1551は、標準仕様に準拠するストリームの生成、及び生成したストリームの伝送の制御を実行する。伝送される画像データの符号化及び復号は、コーデックエンジン1516に含まれる他の機能ブロックにより実行されてよい。
 メモリインタフェース1517は、ビデオプロセッサ1332を外部メモリ1312と接続するためのインタフェースである。画像処理エンジン1514又はコーデックエンジン1516により生成されるデータは、メモリインタフェース1517を介して外部メモリ1312へ出力される。また、外部メモリ1312から入力されるデータは、メモリインタフェース1517を介して画像処理エンジン1514又はコーデックエンジン1516へ供給される。
 多重化/逆多重化部1518は、符号化映像ストリーム及び関連するビットストリームの多重化及び逆多重化を行う。多重化の際に、多重化/逆多重化部1518は、多重化ストリームに所定のヘッダ情報を付加してもよい。また、逆多重化の際に、多重化/逆多重化部1518は、分離された個々のストリームに所定のヘッダ情報を付加してもよい。即ち、多重化/逆多重化部1518は、多重化又は逆多重化と共にフォーマット変換を実行し得る。例えば、多重化/逆多重化部1518は、複数のビットストリームと転送用フォーマットを有する多重化ストリームであるトランスポートストリームとの間の変換及び逆変換、並びに、複数のビットストリームと記録用フォーマットを有するファイルデータとの間の変換及び逆変換をサポートしてもよい。
 ネットワークインタフェース1519は、例えば、ビデオプロセッサ1332をブロードバンドモデム1333又はコネクティビティモジュール1321へ接続するためのインタフェースである。ビデオインタフェース1520は、例えば、ビデオプロセッサ1332をコネクティビティモジュール1321又はカメラ1322へ接続するためのインタフェースである。
 このように構成されたビデオプロセッサ1332において、本開示に係る技術は、例えば、コーデックエンジン1516において利用され得る。この場合、ビデオプロセッサ1332は、本開示に係る技術を適用したチップ又はモジュールとなる。
 なお、ビデオプロセッサ1332の構成は、上述した2つの例に限定されない。例えば、ビデオプロセッサ1332は、1つの半導体チップとして実現されてもよく、又は複数の半導体チップとして実現されてもよい。また、ビデオプロセッサ1332は、複数の半導体を積層することにより形成される3次元積層LSI、又は複数のLSIの組合せとして実現されてもよい。
  [7-5.MPEG-DASHを利用するシステム]
   (1)コンテンツ再生システムの概要
 まず、図31~図33を用いて、本開示に係る技術を適用可能なコンテンツ再生システムについて概略的に説明する。図31は、コンテンツ再生システムの概要を示す説明図である。図31に示したコンテンツ再生システムは、コンテンツサーバ1610及び1611と、ネットワーク1612と、コンテンツ再生装置(クライアント装置)1620(1620A、1620B及び1620C)と、を含む。
 コンテンツサーバ1610及び1611は、ネットワーク1612を介してコンテンツ再生装置1620と接続されている。ネットワーク1612は、ネットワーク1612に接続される装置により送信され又は受信される情報のための、有線又は無線の伝送路である。例えば、ネットワーク1612は、インターネット、公衆交換電話網若しくは衛星通信網などのパブリックネットワークであってもよく、又はEthernet(登録商標)を含むLAN(Local Area Network)、WAN(Wide Area Network)若しくはIP-VPN(Internet Protocol-Virtual Private Network)などのプライベートネットワークであってもよい。
 コンテンツサーバ1610は、コンテンツデータを符号化することにより生成される符号化データ及び関連するメタデータを含むデータファイルを蓄積するデータベースを有するサーバ装置である。コンテンツサーバ1610がMP4ファイルフォーマットに従ってデータファイルを生成する場合、符号化データは「mdat」ボックスに、メタデータは「moov」ボックスにそれぞれ格納され得る。コンテンツデータは、音楽、講演又はラジオ番組などの音声コンテンツを含んでもよい。また、コンテンツデータは、映画、テレビジョンプログラム又はビデオプログラムなどの映像コンテンツを含んでもよい。また、コンテンツデータは、写真、文書、絵画又は図表などの画像コンテンツを含んでもよい。さらに、コンテンツデータは、ゲームデータ又はソフトウエアプログラムなどの他の種類のコンテンツを含んでもよい。
 コンテンツサーバ1610は、同一のコンテンツについて、互いに異なるビットレートで複数のデータファイルを生成する。また、コンテンツサーバ1611は、コンテンツ再生装置1620からのコンテンツ再生要求への応答として、コンテンツサーバ1610のURLに加えて当該URLに付加すべきパラメータに関する情報をコンテンツ再生装置1620へ送信する。
 図32は、上述したコンテンツ再生システムにおけるデータの流れの一例を示す説明図である。コンテンツサーバ1610は、同一のコンテンツを異なるビットレートで符号化し、例えば、図32に示したような2MbpsのファイルA、1.5MbpsのファイルB及び1MbpsのファイルCを生成する。相対的に、ファイルAは高いビットレートを、ファイルBは標準的なビットレートを、ファイルCは低いビットレートをそれぞれ有する。
 また、図32に示したように、各ファイルの符号化データは複数のセグメントに区分される。例えば、ファイルAの符号化データは「A1」、「A2」、「A3」、…「An」というセグメントに、ファイルBの符号化データは「B1」、「B2」、「B3」、…「Bn」というセグメントに、ファイルCの符号化データは「C1」、「C2」、「C3」、…「Cn」というセグメントにそれぞれ区分されている。
 各セグメントは、例えば、MP4のシンクサンプル(sync samples)(例えば、IDRピクチャを含むサンプル)で開始され、セグメント単体で再生可能な1つ以上のサンプルのシーケンスであってよい。例えば、1秒当たり30フレームの映像データが15フレーム分の固定長を有するGOP構造で符号化される場合、各セグメントは、4個のGOPに相当する2秒分の映像及び音声を含んでもよく、又は20個のGOPに相当する10秒分の映像及び音声を含んでもよい。ファイルA、ファイルB及びファイルC内の同じ位置のセグメントの時間的な再生範囲は、典型的には、同一である。例えば、セグメント「A2」、セグメント「B2」及びセグメント「C2」の再生範囲は同一である。各セグメントが再生時に2秒分の時間長を占める場合、セグメント「A2」、セグメント「B2」及びセグメント「C2」の再生範囲は、いずれもコンテンツの2秒目から4秒目の範囲に相当し得る。
 コンテンツサーバ1610は、このような複数のセグメントを含むファイルA~ファイルCを生成し、生成したファイルA~ファイルCを記憶する。そして、コンテンツサーバ1610は、図32に示したように、各ファイルに含まれるセグメントをコンテンツ再生装置1620へストリーミングする。コンテンツ再生装置1620は、順次受信されるセグメントに基づいて、コンテンツを再生する。
 コンテンツサーバ1610は、各符号化データのビットレート情報及びアクセス情報を含むプレイリストファイル(以下、MPD(Media Presentation Description)という)をコンテンツ再生装置1620へ送信する。コンテンツ再生装置1620は、コンテンツサーバ1610から受信されるMPDに基づき、複数のビットレートのうちのいずれかのビットレートを選択し、選択したビットレートに対応するセグメントの送信をコンテンツサーバ1610に要求する。
 図33は、MPDの具体的な例を示す説明図である。図33に示したように、MPDには、異なるビットレート(bandwidth)を有する複数の符号化データに関するアクセス情報が含まれる。図33に示したMPDは、256Kbps、512Kbps、1.024Mbps、1.384Mbps、1.536Mbps及び2.048Mbpsのビットレートをそれぞれ有する6通りの符号化データが存在することを示している。また、当該MPDは、各符号化データに関するアクセス情報を含む。コンテンツ再生装置1620は、このようなMPDを参照することにより、ストリーミング再生されるコンテンツのビットレートを動的に選択することができる。
 なお、図31にはコンテンツ再生装置1620の一例として携帯端末を示しているが、コンテンツ再生装置1620はかかる例に限定されない。例えば、コンテンツ再生装置1620は、PC、PDA、スマートフォン、コンテンツレコーダ、コンテンツプレーヤ、ゲーム機器又はデジタル家電機器などの端末装置であってもよい。
   (2)コンテンツサーバの構成例
 図34は、コンテンツサーバ1610の構成の一例を示すブロック図である。図34を参照すると、コンテンツサーバ1610は、ファイル生成部1631、記憶部1632及び通信部1633を備える。
 ファイル生成部1631は、コンテンツデータを符号化するエンコーダ1641を有し、同一のコンテンツデータから互いに異なるビットレートを有する複数の符号化データを生成する。また、ファイル生成部1631は、上述したMPDを生成する。例えば、ファイル生成部1631は、256Kbps、512Kbps、1.024Mbps、1.384Mbps、1.536Mbps及び2.048Mbpsのビットレートをそれぞれ有する6通りの符号化データを生成し、図33に例示したようなMPDを生成し得る。
 記憶部1632は、ファイル生成部1631により生成される複数の符号化データ及び対応するMPDを記憶する。記憶部1632は、不揮発性メモリ、磁気ディスク、光ディスク又はMO(Magneto Optical)ディスクなどの記憶媒体を含み得る。例えば、不揮発性メモリは、EEPROM(Electrically Erasable Programmable Read-Only Memory)又はEPROM(Erasable Programmable ROM)であってよい。磁気ディスクは、ハードディスク又は円盤型磁性体ディスクであってよい。光ディスクは、CD(Compact Disc)、DVD-R(Digital Versatile Disc Recordable)又はBD(Blu-Ray Disc(登録商標))であってよい。
 通信部1633は、コンテンツ再生装置1620との間の通信のための通信インタフェース又は機能エンティティである。通信部1633は、ネットワーク1612を介して、コンテンツ再生装置1620と通信する。より具体的には、通信部1633は、HTTPサーバとしての機能を有する。例えば、通信部1633は、MPDをコンテンツ再生装置1620へ提供する。そして、通信部1633は、コンテンツ再生装置1620においてMPDに基づいて選択されるビットレートを有する符号化データのセグメントを、コンテンツ再生装置1620からのHTTPリクエストに応じて、HTTPレスポンスとしてコンテンツ再生装置1620へ送信する。
   (3)コンテンツ再生装置の構成例
 図35は、コンテンツ再生装置1620の構成の一例を示すブロック図である。図35を参照すると、コンテンツ再生装置1620は、通信部1651、記憶部1652、再生部1653、選択部1654及び位置取得部1656を備える。
 通信部1651は、コンテンツサーバ1610との間の通信のための通信インタフェース又は機能エンティティである。通信部1651は、コンテンツサーバ1610へHTTPリクエストを送信し、コンテンツサーバ1610からHTTPレスポンスを受信する。即ち、通信部1651は、HTTPクライアントとして動作し得る。通信部1651は、HTTPレンジ(HTTP Range)リクエストを利用することにより、コンテンツサーバ1610から、対象のコンテンツのMPD及び符号化データのセグメントを選択的に取得することができる。
 記憶部1652は、コンテンツの再生に関する様々なデータを記憶する。例えば、記憶部1652は、通信部1651によりコンテンツサーバ1610から取得されるセグメントを順次バッファリングする。記憶部1652によりバッファリングされるセグメントは、例えばFIFO(First In First Out)の原理に従って、再生部1653へ出力され得る。また、記憶部1652は、コンテンツサーバ1610から受信されるMPDに記述されている、コンテンツのURLに付加すべきパラメータの定義を記憶する。また、記憶部1652は、後述するコンテンツサーバ1611から受信されるパラメータ選択情報を記憶してもよい。
 再生部1653は、記憶部1652によりバッファリングされるセグメントを順次取得し、取得したセグメントからコンテンツデータを復号する。そして、再生部1653は、復号したコンテンツデータについてDA変換及びレンダリングを実行し、コンテンツを再生する。
 選択部1654は、MPDにおいて定義された複数のビットレートのうち再生部1653による再生に適したビットレートを動的に選択する。そして、選択したビットレートに対応する符号化データのセグメントを取得するためのHTTPリクエストを、通信部1651からコンテンツサーバ1610へ送信させる。
 位置取得部1656は、コンテンツ再生装置1620の現在位置を示す位置データを取得するモジュールである。位置取得部1656は、例えばGPS(Global Positioning System)受信器であってもよい。その代わりに、位置取得部1656は、無線ネットワークを使用して現在位置を取得する測位エンジンであってもよい。
   (4)コンテンツサーバの構成の他の例
 図36は、コンテンツサーバ1611の構成の一例を示すブロック図である。図36を参照すると、コンテンツサーバ1611は、記憶部1671及び通信部1672を備える。
 記憶部1671は、各コンテンツへアクセスするためのURLを特定するURL情報を記憶する。また、記憶部1671は、各コンテンツのURLに付加すべきパラメータをコンテンツ再生装置1620が選択する際に参照され得るパラメータ選択情報を記憶する。パラメータ選択情報は、例えば、クライアントの現在位置、クライアントのユーザID、クライアントが有するメモリのメモリサイズ及びクライアントが有するストレージの容量などの指標に、対応するパラメータをマッピングし得る。
 通信部1672は、コンテンツ再生装置1620との間の通信のための通信インタフェース又は機能エンティティである。通信部1672は、ネットワーク1612を介して、コンテンツ再生装置1620と通信する。より具体的には、通信部1672は、コンテンツ再生装置1620からのリクエストに応じて、記憶部1671により記憶されているURL情報及びパラメータ選択情報をコンテンツ再生装置1620へ送信する。コンテンツ再生装置1620は、コンテンツサーバ1611から受信されるパラメータ選択情報に従って、コンテンツサーバ1610へコンテンツのストリーミングを要求する際にURLに付加すべきパラメータを選択してもよい。
 図31~図36を用いて説明したコンテンツ再生システムにおいて、本開示に係る技術は、例えば、コンテンツサーバ1610のエンコーダ1641において利用され得る。
  [7-6.Wi-FiのP2Pモードを利用するシステム]
 本節では、本開示に係る技術がWi-FiのP2Pモードを利用するシステムに応用される例について説明する。
   (1)基本的な動作シーケンス
 図37及び図38は、Wi-FiのP2Pモードで形成される無線通信システムにおける基本的な動作シーケンスを示すシーケンス図である。ここでは、第1無線通信装置1701と第2無線通信装置1702との間でP2P(Peer to Peer)接続が確立され、特定のアプリケーションの動作が開始されるまでのシーケンスが示されている。より具体的には、図示したシーケンスは、Wi-Fiアライアンスにおいて標準化されたWi-Fiダイレクト(Wi-Fi P2Pとも呼ばれ得る)の仕様に従っている。
 まず、第1無線通信装置1701と第2無線通信装置1702との間で、デバイスディスカバリ手続が実行される(ステップS1711)。デバイスディスカバリ手続において、例えば、第1無線通信装置1701は、プローブリクエスト(応答要求信号)をブロードキャストする。そして、第1無線通信装置1701は、プローブリクエストを受信した第2無線通信装置1702から、プローブレスポンス(応答信号)を受信する。それにより、第1無線通信装置1701及び第2無線通信装置1702は、互いの存在を発見する。また、デバイスディスカバリ手続において、各装置のデバイス名及びタイプ(テレビジョン装置、PC、スマートフォンなど)などの属性情報が交換され得る。
 次に、第1無線通信装置1701と第2無線通信装置1702との間でサービスディスカバリ手続が実行される(ステップS1712)。サービスディスカバリ手続において、例えば、第1無線通信装置1701は、第2無線通信装置1702へサービスディスカバリクエリを送信することにより、第2無線通信装置1702がサポートしているサービス又はプロトコルを問合せる。そして、第1無線通信装置1701は、第2無線通信装置1702からサービスディスカバリレスポンスを受信することにより、第2無線通信装置1702がサポートしているサービス又はプロトコルを認識する。各装置によりサポートされ得るプロトコルの例は、DLNA(Digital Living Network Alliance)を含み得る。また、各装置によりサポートされ得るサービスの例は、DLNAのDMR(Digital Media Renderer)を含み得る。
 次に、ユーザにより、接続相手を選択するための操作(接続相手選択操作)が行われる(ステップS1713)。接続相手選択操作は、第1無線通信装置1701及び第2無線通信装置1702の一方においてのみ行われてもよく、又は双方において行われてもよい。例えば、第1無線通信装置1701のディスプレイに、接続相手選択画面が表示される。そして、ユーザは、接続相手選択画面に選択肢として表示された第2無線通信装置1702を、所定のユーザ入力によって選択する。
 接続相手選択操作の後、第1無線通信装置1701と第2無線通信装置1702との間で、グループオーナの交渉(Group Owner Negotiation)が実行される(ステップS1714)。ここでは、交渉の結果として、第1無線通信装置1701がグループオーナ1715になり、第2無線通信装置1702がクライアント1716になるものとする。
 次に、第1無線通信装置1701と第2無線通信装置1702との間で、アソシエーション(L2リンク)が確立され(ステップS1717)、さらにセキュアリンクが確立される(ステップS1718)。さらに、第1無線通信装置1701と第2無線通信装置1702との間で、IPアドレスの割当て(ステップS1719)、及び、SSDP(Simple Service Discovery Protocol)を用いたL3上でのL4セットアップ(ステップS1720)が実行される。なお、L2は第2層(データリンク層)、L3は第3層(ネットワーク層)、L4は第4層(トランスポート層)をそれぞれ意味する。
 次に、ユーザにより、特定のアプリケーションを起動するための操作(アプリケーション起動操作)が行われる(ステップS1721)。アプリケーション起動操作は、第1無線通信装置1701及び第2無線通信装置1702の一方においてのみ行われてもよく、又は双方において行われてもよい。例えば、第1無線通信装置1701のディスプレイに、アプリケーション指定/起動画面が表示される。そして、ユーザは、アプリケーション指定/起動画面にリストアップされた候補のうちの所望のアプリケーションを、所定のユーザ入力によって指定する。
 アプリケーション起動操作の後、指定されたアプリケーションが第1無線通信装置1701及び第2無線通信装置1702において起動し、アプリケーションのトラフィックがこれら装置の間で交換される(ステップS1722)。
 ここで、Wi-Fiダイレクトよりも前に標準化されたIEEE802.11の仕様においても、アクセスポイント(AP)とステーション(STA)との間でP2P接続を確立することは可能であった。しかし、それら過去の仕様によれば、L2リンクが確立される前に、接続相手のタイプ又はどのようなサービスを接続相手がサポートしているかなどの情報を知ることはできなかった。これに対し、Wi-Fiダイレクトにおいては、デバイスディスカバリ手続及びサービスディスカバリ手続において、接続相手についての情報を事前に取得することができる。そして、ユーザは、取得された接続相手についての情報を参照して、所望の接続相手を選択することができる。
   (2)拡張された動作シーケンス
 上述したデバイスディスカバリ手続及びサービスディスカバリ手続の仕組みを拡張し、L2リンクが確立される前に所望のアプリケーションをユーザに指定させることにより、L2リンク確立後のアプリケーション起動操作を省略することも可能である。そうした拡張のためのMACフレームのフレームフォーマットの一例を図39に、動作シーケンスの一例を図40にそれぞれ示す。
 図39を参照すると、L2接続の確立を試行する際に送信されるアソシエーションリクエスト/レスポンスのMACフレームのフレームフォーマットの一例が示されている。Frame Controlフィールド1751からSequence Controlフィールド1756までの6個のフィールドは、MACヘッダを構成する。例えば、Frame Controlフィールド1751には、アソシエーションリクエストとアソシエーションレスポンスとを識別するための値が設定される。その他のフィールドの多くはIEEE802.11-2007仕様書において定義された情報要素(IE)のためのフィールドであるものの、いくつかのフィールドは拡張されている。
 Information Element IDフィールド1761には、Vendor Specific IEフィールド1760にベンダ固有の情報が設定されることを示す値(10進数で127)が設定される。この場合、Vendor Specific IEフィールド1760において、Lengthフィールド1762、OUIフィールド1763及びVendor Specific Contentフィールド1764が続く。本拡張において、Vendor Specific Contentフィールド1764は、IE Typeフィールド1765、及び1つ以上のSubelementフィールド1766を含む。Subelementフィールド1766は、例えば、起動されるべきアプリケーションを識別するフィールド1767、アプリケーションに関連するデバイスの役割を識別するフィールド1768、アプリケーションに対応するポート番号を含み得るL4セットアップ情報のためのフィールド1769及びアプリケーションのケイパビリティに関する情報のためのフィールド1770のうちの1つ以上を含んでよい。ケイパビリティに関する情報は、例えば、DLNAアプリケーションについて、音声配信、音声再生、映像配信及び映像再生をそれぞれ実行可能かを特定する情報を含んでよい。
 上述した拡張されたアソシエーションリクエスト及びアソシエーションレスポンスは、例えば、図40のシーケンスにおいて、第1無線通信装置1701と第2無線通信装置1702との間のアソシエーション(L2リンク)の確立の試行の際に交換される(ステップS1717b)。アソシエーションリクエストは、接続相手選択操作(ステップS1713b)においてユーザにより指定されたアプリケーションを特定し得る。そして、L2リンクの確立後に、アプリケーション起動操作が行われることなく、ユーザにより事前に指定されたアプリケーションが自動的に起動する(ステップS1720b)。
 本節で説明した無線通信システムにおいて、本開示に係る技術は、例えば、アプリケーションのトラフィックに含まれる映像データを符号化し又は復号する際に利用されてよい。なお、本節で説明したシーケンス図は、説明の簡明さのために、動作シーケンスに含まれ得る処理ステップの一部のみを示している。実際には、動作シーケンスは、追加的なパケットの交換などのさらなる処理ステップを含んでもよい。
 <8.まとめ>
 ここまで、図1~図40を用いて、本開示に係る技術の実施形態について詳細に説明した。上述した実施形態によれば、第1レイヤを参照して復号される第2レイヤの色差成分の変換係数データを量子化し又は逆量子化する際に使用される量子化パラメータのための量子化パラメータオフセットが、上記第1レイヤの色差成分の量子化パラメータオフセットに基づいて設定される。従って、スケーラブル符号化において、量子化に関連するパラメータの冗長的な符号化を回避し、全体としての符号化効率を高めることができる。一般的に、色差成分の量子化パラメータの調整は、各画像に現れる色の傾向に依存する一方で、レイヤの相違(あるいは解像度の相違)には依存しない。従って、色差成分の量子化パラメータを調整するための量子化パラメータオフセットがレイヤ間で再利用されるとしても、調整を適切に行うことが可能である。
 また、上述した実施形態によれば、第2レイヤに設定される量子化パラメータオフセットは、第1レイヤの量子化パラメータオフセットと第2レイヤにおいて符号化され及び復号される量子化パラメータオフセット差分との和に等しい。かかる構成によれば、第1レイヤの量子化パラメータオフセットを再利用することにより符号量を削減しつつ、量子化パラメータオフセット差分を用いて第2レイヤの量子化パラメータオフセットを適応的に変化させることができる。それにより、第2レイヤの色差成分の画質を、例えばスライスごとに最適化することが可能となる。
 また、上述した実施形態によれば、第2レイヤの量子化パラメータオフセットは、第2レイヤのCb成分及びCr成分について別々に設定される。それにより、例えば、赤色の強い画像において階調を維持するためにCb成分の量子化パラメータを相対的に低くし、又は青色の強い画像において階調を維持するためにCr成分の量子化パラメータを相対的に低くするといったような柔軟な調整が可能となる。
 また、上述した実施形態によれば、第2レイヤの変換係数データを量子化し又は逆量子化する際に使用される量子化行列が、第1レイヤの量子化行列に基づいて設定される。この場合にも、マルチレイヤコーデックにおいて、量子化に関連するパラメータの冗長的な符号化を回避し、全体としての符号化効率を高めることができる。量子化行列の再利用のために参照すべきレイヤを指定する参照レイヤ情報が符号化され及び復号される場合には、第2レイヤにおいて、最適な量子化行列を柔軟に再利用することが可能となる。
 第1レイヤの量子化行列から第2レイヤの量子化行列が複製される場合には、第2レイヤの量子化行列のために符号は発生しない。第1レイヤの量子化行列から第2レイヤの量子化行列が予測される場合には、比較的小さい残差のための符号が発生するものの、第2レイヤにおいて符号量をある程度削減しつつ最適な量子化行列を使用することができる。
 また、上述した実施形態によれば、第1レイヤがAVC方式で符号化され、第2レイヤがHEVC方式で符号化される場合には、8×8画素以下のサイズを有する量子化行列がレイヤ間で再利用される一方で、16×16画素以上のサイズを有する量子化行列は第2レイヤにおいて符号化され及び復号され得る。かかる構成によれば、量子化行列の再利用によって符号量を削減しつつ、不足する量子化行列を補完して装置の適切な動作を保証することができる。
 また、上述した実施形態によれば、量子化パラメータオフセットをレイヤ間で再利用すべきかを示すフラグ、量子化行列をレイヤ間で再利用すべきかを示すフラグ、第2レイヤの量子化行列の設定手法を指定するフラグなどの様々なフラグが符号化され及び復号され得る。量子化行列のためのこれらフラグは、異なる量子化行列サイズ、異なる予測モード又は異なる色成分について別々に符号化され及び復号されてよい。これらフラグの採用により、ユーザ要件、装置の性能、アプリケーションのケイパビリティ又は通信環境などの多様な条件に応じた柔軟な符号化処理の設計が可能となる。
 なお、本明細書では、量子化に関する情報が、符号化ストリームのヘッダに多重化されて、符号化側から復号側へ伝送される例について主に説明した。しかしながら、これら情報を伝送する手法はかかる例に限定されない。例えば、これら情報は、符号化ビットストリームに多重化されることなく、符号化ビットストリームと関連付けられた別個のデータとして伝送され又は記録されてもよい。ここで、「関連付ける」という用語は、ビットストリームに含まれる画像(スライス若しくはブロックなど、画像の一部であってもよい)と当該画像に対応する情報とを復号時にリンクさせ得るようにすることを意味する。即ち、情報は、画像(又はビットストリーム)とは別の伝送路上で伝送されてもよい。また、情報は、画像(又はビットストリーム)とは別の記録媒体(又は同一の記録媒体の別の記録エリア)に記録されてもよい。さらに、情報と画像(又はビットストリーム)とは、例えば、複数フレーム、1フレーム、又はフレーム内の一部分などの任意の単位で互いに関連付けられてよい。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 第1レイヤの色差成分に設定される第1の量子化パラメータオフセットに基づいて、前記第1レイヤを参照して復号される第2レイヤの色差成分に第2の量子化パラメータオフセットを設定する制御部と、
 前記制御部により設定された前記第2の量子化パラメータオフセットを用いて算出される量子化パラメータで、前記第2レイヤの色差成分の変換係数データを逆量子化する逆量子化部と、
 を備える画像処理装置。
(2)
 前記第2の量子化パラメータオフセットは、前記第1の量子化パラメータオフセットと量子化パラメータオフセット差分との和に等しい、前記(1)に記載の画像処理装置。
(3)
 前記画像処理装置は、符号化ストリームから前記量子化パラメータオフセット差分を復号する復号部、をさらに備える、前記(2)に記載の画像処理装置。
(4)
 前記第1の量子化パラメータオフセットは、ピクチャ単位で前記第1レイヤに設定されるオフセットとスライス単位で前記第1レイヤに設定されるオフセットとの和に等しい、前記(1)~(3)のいずれか1項に記載の画像処理装置。
(5)
 前記第1の量子化パラメータオフセットは、ピクチャ単位で前記第1レイヤに設定されるオフセットに等しい、前記(1)~(3)のいずれか1項に記載の画像処理装置。
(6)
 前記制御部は、前記第2レイヤのCb成分及びCr成分について別々に、前記第2の量子化パラメータオフセットを設定する、前記(1)~(5)のいずれか1項に記載の画像処理装置。
(7)
 前記制御部は、符号化ストリームから復号される第1のフラグが前記第1の量子化パラメータオフセットに基づいて前記第2の量子化パラメータオフセットを設定すべきことを示している場合に、前記第1の量子化パラメータオフセットに基づいて前記第2の量子化パラメータオフセットを設定する、前記(1)~(6)のいずれか1項に記載の画像処理装置。
(8)
 前記制御部は、前記第1レイヤに設定される第1の量子化行列に基づいて、前記第2レイヤに第2の量子化行列を設定し、
 前記逆量子化部は、前記制御部により設定された前記第2の量子化行列を用いて、前記第2レイヤの変換係数データを逆量子化する、
 前記(1)~(7)のいずれか1項に記載の画像処理装置。
(9)
 前記制御部は、参照レイヤ情報が参照レイヤとして前記第1レイヤを指定する場合に、前記第1レイヤに設定される前記第1の量子化行列に基づいて、前記第2レイヤに前記第2の量子化行列を設定する、前記(8)に記載の画像処理装置。
(10)
 前記制御部は、前記第1の量子化行列から前記第2の量子化行列を複製し又は予測する、前記(8)又は前記(9)に記載の画像処理装置。
(11)
 前記制御部は、符号化ストリームから復号される第2のフラグが前記第1の量子化行列に基づいて前記第2の量子化行列を設定すべきことを示している場合に、前記第1の量子化行列に基づいて前記第2の量子化行列を設定する、前記(8)~(10)のいずれか1項に記載の画像処理装置。
(12)
 前記第2のフラグは、異なる量子化行列サイズ、異なる予測モード又は異なる色成分について別々に前記符号化ストリームから復号される、前記(11)に記載の画像処理装置。
(13)
 前記制御部は、符号化ストリームから復号される第3のフラグに従って、前記第2の量子化行列を設定するための設定手法を選択する、前記(10)に記載の画像処理装置。
(14)
 前記第3のフラグは、異なる量子化行列サイズ、異なる予測モード又は異なる色成分について別々に前記符号化ストリームから復号される、前記(13)に記載の画像処理装置。
(15)
 前記第2レイヤは、HEVC(High Efficiency Video Coding)方式で符号化され、
 前記制御部は、前記第1レイヤがAVC(Advanced Video Coding)方式で符号化される場合には、8×8画素以下のサイズを有する前記第2の量子化行列を前記第1の量子化行列に基づいて前記第2レイヤに設定し、16×16画素以上のサイズを有する第3の量子化行列を前記第1の量子化行列に基づくことなく前記第2レイヤに設定する、
 前記(8)~(14)のいずれか1項に記載の画像処理装置。
(16)
 第1レイヤの色差成分に設定される第1の量子化パラメータオフセットに基づいて、前記第1レイヤを参照して復号される第2レイヤの色差成分に第2の量子化パラメータオフセットを設定することと、
 設定された前記第2の量子化パラメータオフセットを用いて算出される量子化パラメータで、前記第2レイヤの色差成分の変換係数データを逆量子化することと、
 を含む画像処理方法。
(17)
 第1レイヤを参照して符号化される第2レイヤの色差成分の変換係数データを所与の量子化パラメータで量子化する量子化部と、
 前記第1レイヤの色差成分に設定された第1の量子化パラメータオフセットと前記所与の量子化パラメータとに基づいて算出される、前記第2レイヤの色差成分の第2の量子化パラメータオフセットを符号化する符号化部と、
 を備える画像処理装置。
(18)
 前記量子化部は、所与の量子化行列を用いて、前記第2レイヤの変換係数データを量子化し、
 前記符号化部は、デコーダが前記第1レイヤに設定される量子化行列に基づいて前記所与の量子化行列を前記第2レイヤに設定すべきである場合に、前記所与の量子化行列を符号化しない、
 前記(17)に記載の画像処理装置。
(19)
 前記符号化部は、前記所与の量子化行列を設定する際に参照すべき参照レイヤとして前記第1レイヤを指定する参照レイヤ情報を符号化する、前記(18)に記載の画像処理装置。
(20)
 第1レイヤを参照して符号化される第2レイヤの色差成分の変換係数データを所与の量子化パラメータで量子化することと、
 前記第1レイヤの色差成分に設定された第1の量子化パラメータオフセットと前記所与の量子化パラメータとに基づいて算出される、前記第2レイヤの色差成分の第2の量子化パラメータオフセットを符号化することと、
 を含む画像処理方法。
 10,10v 画像符号化装置(画像処理装置)
 1a     ベースレイヤ符号化部
 1b     エンハンスメントレイヤ符号化部
 15     量子化部
 16     可逆符号化部
 21     逆量子化部
 40     量子化制御部
 60,60v 画像復号装置(画像処理装置)
 6a     ベースレイヤ復号部
 6b     エンハンスメントレイヤ復号部
 62     可逆復号部
 63     逆量子化部
 90     逆量子化制御部
 

Claims (20)

  1.  第1レイヤの色差成分に設定される第1の量子化パラメータオフセットに基づいて、前記第1レイヤを参照して復号される第2レイヤの色差成分に第2の量子化パラメータオフセットを設定する制御部と、
     前記制御部により設定された前記第2の量子化パラメータオフセットを用いて算出される量子化パラメータで、前記第2レイヤの色差成分の変換係数データを逆量子化する逆量子化部と、
     を備える画像処理装置。
  2.  前記第2の量子化パラメータオフセットは、前記第1の量子化パラメータオフセットと量子化パラメータオフセット差分との和に等しい、請求項1に記載の画像処理装置。
  3.  前記画像処理装置は、符号化ストリームから前記量子化パラメータオフセット差分を復号する復号部、をさらに備える、請求項2に記載の画像処理装置。
  4.  前記第1の量子化パラメータオフセットは、ピクチャ単位で前記第1レイヤに設定されるオフセットとスライス単位で前記第1レイヤに設定されるオフセットとの和に等しい、請求項1に記載の画像処理装置。
  5.  前記第1の量子化パラメータオフセットは、ピクチャ単位で前記第1レイヤに設定されるオフセットに等しい、請求項1に記載の画像処理装置。
  6.  前記制御部は、前記第2レイヤのCb成分及びCr成分について別々に、前記第2の量子化パラメータオフセットを設定する、請求項1に記載の画像処理装置。
  7.  前記制御部は、符号化ストリームから復号される第1のフラグが前記第1の量子化パラメータオフセットに基づいて前記第2の量子化パラメータオフセットを設定すべきことを示している場合に、前記第1の量子化パラメータオフセットに基づいて前記第2の量子化パラメータオフセットを設定する、請求項1に記載の画像処理装置。
  8.  前記制御部は、前記第1レイヤに設定される第1の量子化行列に基づいて、前記第2レイヤに第2の量子化行列を設定し、
     前記逆量子化部は、前記制御部により設定された前記第2の量子化行列を用いて、前記第2レイヤの変換係数データを逆量子化する、
     請求項1に記載の画像処理装置。
  9.  前記制御部は、参照レイヤ情報が参照レイヤとして前記第1レイヤを指定する場合に、前記第1レイヤに設定される前記第1の量子化行列に基づいて、前記第2レイヤに前記第2の量子化行列を設定する、請求項8に記載の画像処理装置。
  10.  前記制御部は、前記第1の量子化行列から前記第2の量子化行列を複製し又は予測する、請求項8に記載の画像処理装置。
  11.  前記制御部は、符号化ストリームから復号される第2のフラグが前記第1の量子化行列に基づいて前記第2の量子化行列を設定すべきことを示している場合に、前記第1の量子化行列に基づいて前記第2の量子化行列を設定する、請求項8に記載の画像処理装置。
  12.  前記第2のフラグは、異なる量子化行列サイズ、異なる予測モード又は異なる色成分について別々に前記符号化ストリームから復号される、請求項11に記載の画像処理装置。
  13.  前記制御部は、符号化ストリームから復号される第3のフラグに従って、前記第2の量子化行列を設定するための設定手法を選択する、請求項10に記載の画像処理装置。
  14.  前記第3のフラグは、異なる量子化行列サイズ、異なる予測モード又は異なる色成分について別々に前記符号化ストリームから復号される、請求項13に記載の画像処理装置。
  15.  前記第2レイヤは、HEVC(High Efficiency Video Coding)方式で符号化され、
     前記制御部は、前記第1レイヤがAVC(Advanced Video Coding)方式で符号化される場合には、8×8画素以下のサイズを有する前記第2の量子化行列を前記第1の量子化行列に基づいて前記第2レイヤに設定し、16×16画素以上のサイズを有する第3の量子化行列を前記第1の量子化行列に基づくことなく前記第2レイヤに設定する、
     請求項8に記載の画像処理装置。
  16.  第1レイヤの色差成分に設定される第1の量子化パラメータオフセットに基づいて、前記第1レイヤを参照して復号される第2レイヤの色差成分に第2の量子化パラメータオフセットを設定することと、
     設定された前記第2の量子化パラメータオフセットを用いて算出される量子化パラメータで、前記第2レイヤの色差成分の変換係数データを逆量子化することと、
     を含む画像処理方法。
  17.  第1レイヤを参照して符号化される第2レイヤの色差成分の変換係数データを所与の量子化パラメータで量子化する量子化部と、
     前記第1レイヤの色差成分に設定された第1の量子化パラメータオフセットと前記所与の量子化パラメータとに基づいて算出される、前記第2レイヤの色差成分の第2の量子化パラメータオフセットを符号化する符号化部と、
     を備える画像処理装置。
  18.  前記量子化部は、所与の量子化行列を用いて、前記第2レイヤの変換係数データを量子化し、
     前記符号化部は、デコーダが前記第1レイヤに設定される量子化行列に基づいて前記所与の量子化行列を前記第2レイヤに設定すべきである場合に、前記所与の量子化行列を符号化しない、
     請求項17に記載の画像処理装置。
  19.  前記符号化部は、前記所与の量子化行列を設定する際に参照すべき参照レイヤとして前記第1レイヤを指定する参照レイヤ情報を符号化する、請求項18に記載の画像処理装置。
  20.  第1レイヤを参照して符号化される第2レイヤの色差成分の変換係数データを所与の量子化パラメータで量子化することと、
     前記第1レイヤの色差成分に設定された第1の量子化パラメータオフセットと前記所与の量子化パラメータとに基づいて算出される、前記第2レイヤの色差成分の第2の量子化パラメータオフセットを符号化することと、
     を含む画像処理方法。
PCT/JP2013/081406 2012-12-18 2013-11-21 画像処理装置及び画像処理方法 WO2014097816A1 (ja)

Priority Applications (20)

Application Number Priority Date Filing Date Title
US14/441,671 US9967578B2 (en) 2012-12-18 2013-11-21 Image processing device and image processing method
MX2017001340A MX367546B (es) 2012-12-18 2013-11-21 Dispositvo para procesamiento de imagen y método para procesamiento de imagen.
AU2013365309A AU2013365309A1 (en) 2012-12-18 2013-11-21 Image processing device and image processing method
KR1020157013021A KR102258356B1 (ko) 2012-12-18 2013-11-21 화상 처리 장치 및 화상 처리 방법
KR1020217015631A KR102307099B1 (ko) 2012-12-18 2013-11-21 화상 처리 장치 및 화상 처리 방법
JP2014553036A JP6406014B2 (ja) 2012-12-18 2013-11-21 画像処理装置及び画像処理方法
SG11201504504YA SG11201504504YA (en) 2012-12-18 2013-11-21 Image processing device and image processing method
EP17181919.6A EP3273691B1 (en) 2012-12-18 2013-11-21 Image processing device and image processing method
RU2015122700A RU2639250C2 (ru) 2012-12-18 2013-11-21 Устройство обработки изображения и способ обработки изображения
EP13863956.2A EP2908526A4 (en) 2012-12-18 2013-11-21 IMAGE PROCESSING DEVICE AND IMAGE PROCESSING METHOD
CA2894637A CA2894637A1 (en) 2012-12-18 2013-11-21 Image processing device and image processing method
CN201380064914.8A CN104871539B (zh) 2012-12-18 2013-11-21 图像处理装置和图像处理方法
CN201811100458.9A CN109068136B (zh) 2012-12-18 2013-11-21 图像处理装置和图像处理方法、计算机可读存储介质
MX2015007443A MX345489B (es) 2012-12-18 2013-11-21 Dispositivo para procesamiento de imagen y metodo para procesamiento de imagen.
BR112015013768A BR112015013768A2 (pt) 2012-12-18 2013-11-21 dispositivo, e, método de processamento de imagem
ZA2015/03589A ZA201503589B (en) 2012-12-18 2015-05-21 Image processing device and image processing method
PH12015501311A PH12015501311A1 (en) 2012-12-18 2015-06-09 Image processing device and image processing method
US15/892,972 US10368082B2 (en) 2012-12-18 2018-02-09 Image processing device and image processing method
AU2018201160A AU2018201160B2 (en) 2012-12-18 2018-02-16 Image processing device and image processing method
US16/406,616 US10609400B2 (en) 2012-12-18 2019-05-08 Image processing device and image processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-275775 2012-12-18
JP2012275775 2012-12-18
JP2013-144930 2013-07-10
JP2013144930 2013-07-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/441,671 A-371-Of-International US9967578B2 (en) 2012-12-18 2013-11-21 Image processing device and image processing method
US15/892,972 Continuation US10368082B2 (en) 2012-12-18 2018-02-09 Image processing device and image processing method

Publications (1)

Publication Number Publication Date
WO2014097816A1 true WO2014097816A1 (ja) 2014-06-26

Family

ID=50978159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081406 WO2014097816A1 (ja) 2012-12-18 2013-11-21 画像処理装置及び画像処理方法

Country Status (15)

Country Link
US (3) US9967578B2 (ja)
EP (2) EP2908526A4 (ja)
JP (2) JP6406014B2 (ja)
KR (2) KR102307099B1 (ja)
CN (2) CN109068136B (ja)
AU (2) AU2013365309A1 (ja)
BR (1) BR112015013768A2 (ja)
CA (1) CA2894637A1 (ja)
CO (1) CO7380755A2 (ja)
MX (2) MX345489B (ja)
PH (1) PH12015501311A1 (ja)
RU (2) RU2639250C2 (ja)
SG (1) SG11201504504YA (ja)
WO (1) WO2014097816A1 (ja)
ZA (1) ZA201503589B (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9591302B2 (en) * 2012-07-02 2017-03-07 Microsoft Technology Licensing, Llc Use of chroma quantization parameter offsets in deblocking
US9414054B2 (en) 2012-07-02 2016-08-09 Microsoft Technology Licensing, Llc Control and use of chroma quantization parameter values
US10356405B2 (en) * 2013-11-04 2019-07-16 Integrated Device Technology, Inc. Methods and apparatuses for multi-pass adaptive quantization
US20150195549A1 (en) * 2014-01-08 2015-07-09 Qualcomm Incorporated Support of non-hevc base layer in hevc multi-layer extensions
US11039141B2 (en) 2014-10-03 2021-06-15 Nec Corporation Video coding device, video decoding device, video coding method, video decoding method and program
EP3041233A1 (en) * 2014-12-31 2016-07-06 Thomson Licensing High frame rate-low frame rate transmission technique
WO2017063168A1 (zh) * 2015-10-15 2017-04-20 富士通株式会社 图像编码方法、装置以及图像处理设备
CN106856571B (zh) * 2015-12-09 2019-12-06 阿里巴巴集团控股有限公司 一种转码方法及装置
WO2017171370A1 (ko) 2016-03-28 2017-10-05 주식회사 케이티 비디오 신호 처리 방법 및 장치
US10432936B2 (en) * 2016-04-14 2019-10-01 Qualcomm Incorporated Apparatus and methods for perceptual quantization parameter (QP) weighting for display stream compression
WO2017197646A1 (zh) * 2016-05-20 2017-11-23 华为技术有限公司 一种通信方法和装置
BR112019025471A2 (pt) * 2017-06-09 2020-06-23 Sony Semiconductor Solutions Corporation Dispositivo de transmissão de figura, e, dispositivo de recepção de figura
WO2019009776A1 (en) * 2017-07-05 2019-01-10 Telefonaktiebolaget Lm Ericsson (Publ) DECODING VIDEO SAMPLE BLOCK
US11019339B2 (en) * 2017-07-12 2021-05-25 Futurewei Technologies, Inc. Fractional quantization parameter offset in video compression
CN109819253B (zh) * 2017-11-21 2022-04-22 腾讯科技(深圳)有限公司 视频编码方法、装置、计算机设备和存储介质
US10873778B2 (en) * 2018-03-08 2020-12-22 Dish Network L.L.C. Reducing digital video recorder storage through reduced encoding of certain program portions
US11463763B2 (en) 2018-03-08 2022-10-04 Dish Network L.L.C. Reducing digital video recorder storage through reduced encoding of certain program portions
JP7105675B2 (ja) 2018-11-02 2022-07-25 株式会社東芝 送信装置、サーバ装置、送信方法およびプログラム
EP3993389A4 (en) * 2019-06-28 2022-08-17 Sony Semiconductor Solutions Corporation TRANSMITTER, RECEIVER AND TRANSPORT SYSTEM
TWI731579B (zh) * 2020-02-11 2021-06-21 日商東芝股份有限公司 傳輸裝置、通訊系統、傳輸方法及電腦程式產品
WO2023132532A1 (ko) * 2022-01-07 2023-07-13 엘지전자 주식회사 피쳐 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6788740B1 (en) * 1999-10-01 2004-09-07 Koninklijke Philips Electronics N.V. System and method for encoding and decoding enhancement layer data using base layer quantization data
US7263124B2 (en) * 2001-09-26 2007-08-28 Intel Corporation Scalable coding scheme for low latency applications
WO2003092297A1 (en) * 2002-04-23 2003-11-06 Nokia Corporation Method and device for indicating quantizer parameters in a video coding system
JP4196726B2 (ja) * 2003-05-14 2008-12-17 ソニー株式会社 画像処理装置および画像処理方法、記録媒体、並びに、プログラム
EP1675402A1 (en) * 2004-12-22 2006-06-28 Thomson Licensing Optimisation of a quantisation matrix for image and video coding
US7995656B2 (en) * 2005-03-10 2011-08-09 Qualcomm Incorporated Scalable video coding with two layer encoding and single layer decoding
JP2007006390A (ja) * 2005-06-27 2007-01-11 Sony Corp 画像処理装置、画像処理方法及びプログラム
EP1913778A4 (en) * 2005-07-08 2010-04-28 Lg Electronics Inc METHOD FOR MODELING THE CODING OF INFORMATION OF A VIDEO SIGNAL FOR COMPRESSING / DECOMPRESSING THE INFORMATION
JP2007266749A (ja) * 2006-03-27 2007-10-11 Sanyo Electric Co Ltd 符号化方法
US20070230564A1 (en) * 2006-03-29 2007-10-04 Qualcomm Incorporated Video processing with scalability
US7773672B2 (en) * 2006-05-30 2010-08-10 Freescale Semiconductor, Inc. Scalable rate control system for a video encoder
US8059714B2 (en) * 2006-07-10 2011-11-15 Sharp Laboratories Of America, Inc. Methods and systems for residual layer scaling
CN101507282B (zh) * 2006-07-10 2012-06-27 夏普株式会社 用于组合多层比特流中的层的方法和系统
KR101366249B1 (ko) * 2007-06-28 2014-02-21 삼성전자주식회사 스케일러블 영상 부호화장치 및 방법과 그 영상 복호화장치및 방법
US9648325B2 (en) * 2007-06-30 2017-05-09 Microsoft Technology Licensing, Llc Video decoding implementations for a graphics processing unit
KR101375663B1 (ko) * 2007-12-06 2014-04-03 삼성전자주식회사 영상을 계층적으로 부호화/복호화하는 방법 및 장치
US8897359B2 (en) * 2008-06-03 2014-11-25 Microsoft Corporation Adaptive quantization for enhancement layer video coding
US20100309975A1 (en) * 2009-06-05 2010-12-09 Apple Inc. Image acquisition and transcoding system
US20120063515A1 (en) * 2010-09-09 2012-03-15 Qualcomm Incorporated Efficient Coding of Video Parameters for Weighted Motion Compensated Prediction in Video Coding
SG188255A1 (en) * 2010-09-30 2013-04-30 Panasonic Corp Image decoding method, image coding method, image decoding apparatus, image coding apparatus, program, and integrated circuit
BR112013019937B1 (pt) * 2011-02-10 2022-05-03 Velos Media International Limited Dispositivo e método de processamento de imagem
CN103535037B (zh) * 2011-05-20 2017-06-09 索尼公司 图像处理装置和图像处理方法
TWI575933B (zh) * 2011-11-04 2017-03-21 杜比實驗室特許公司 階層式視覺動態範圍編碼中之層分解技術
KR102030205B1 (ko) * 2012-01-20 2019-10-08 선 페이턴트 트러스트 시간 움직임 벡터 예측을 사용하여 비디오를 부호화 및 복호하는 방법 및 장치
US9635356B2 (en) * 2012-08-07 2017-04-25 Qualcomm Incorporated Multi-hypothesis motion compensation for scalable video coding and 3D video coding
US9344718B2 (en) * 2012-08-08 2016-05-17 Qualcomm Incorporated Adaptive up-sampling filter for scalable video coding
US20150229967A1 (en) * 2012-08-21 2015-08-13 Samsung Electronics Co., Ltd. Inter-layer video coding method and device for predictive information based on tree structure coding unit, and inter-layer video decoding method and device for predictive informationbased on tree structure coding unit
WO2014166328A1 (en) * 2013-04-08 2014-10-16 Mediatek Singapore Pte. Ltd. Method and apparatus for quantization matrix signaling and representation in scalable video coding

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BENJAMIN BROSS; WOO-JIN HAN; JENS-RAINER OHM; GARY J. SULLIVAN; THOMAS WIEGAND: "High Efficiency Video Coding (HEVC) text specification draft 9", JCTVC-KL003_V9, 10 October 2012 (2012-10-10)
EDOUARD FRANCOIS ET AL.: "On the derivation of chroma QPs", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG11 LLTH MEETING:SHANGHAI, CN, 19 October 2012 (2012-10-19), pages 1 - 12, XP030054848 *
JILL BOYCE; KAWAMURA KEI; HARICHARAN LAKSHMAN: "TE6: Inter-layer syntax prediction from AVC base layer", JCTVC-KLL06V2, 10 October 2012 (2012-10-10)
JILL BOYCE; YE-KUI WANG: "NAL unit header and parameter set designs for HEVC extensions", JCTVC-K1007, 10 October 2012 (2012-10-10)
JUNICHI TANAKA ET AL.: "Enhancement of quantization matrix coding for HEVC", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG11 6TH MEETING:TORINO, IT ,14- 22 JULY,2011, 22 July 2011 (2011-07-22), pages 1 - 11, XP030049468 *
See also references of EP2908526A4
YUNFEI WANG ET AL.: "CE4:Subtest 2.4 Layered quantization matrices representation and compression", JOINT COLLABORATIVE TEAM ON VIDEO CODING (JCT-VC) OF ITU-T SG 16 WP 3 AND ISO/IEC JTC 1/SC 29/WG11 8TH MEETING:SAN JOSE, CA , USA, 10 February 2012 (2012-02-10), pages 1 - 13, XP030051714 *

Also Published As

Publication number Publication date
MX2015007443A (es) 2015-09-16
US9967578B2 (en) 2018-05-08
JP6406014B2 (ja) 2018-10-17
CO7380755A2 (es) 2015-09-10
CA2894637A1 (en) 2014-06-26
CN104871539B (zh) 2018-11-13
RU2015122700A (ru) 2017-01-10
AU2013365309A1 (en) 2015-04-30
EP3273691A1 (en) 2018-01-24
CN109068136A (zh) 2018-12-21
SG11201504504YA (en) 2015-07-30
US10609400B2 (en) 2020-03-31
JP2019004497A (ja) 2019-01-10
ZA201503589B (en) 2017-04-26
MX345489B (es) 2017-02-02
EP2908526A1 (en) 2015-08-19
CN104871539A (zh) 2015-08-26
CN109068136B (zh) 2022-07-19
RU2639250C2 (ru) 2017-12-20
JP6610735B2 (ja) 2019-11-27
KR20150096381A (ko) 2015-08-24
KR102307099B1 (ko) 2021-10-01
BR112015013768A2 (pt) 2017-07-11
MX367546B (es) 2019-08-27
PH12015501311A1 (en) 2015-08-24
KR20210063474A (ko) 2021-06-01
EP2908526A4 (en) 2016-07-13
US20150256840A1 (en) 2015-09-10
US20180167625A1 (en) 2018-06-14
AU2018201160B2 (en) 2020-03-19
EP3273691B1 (en) 2021-09-22
US10368082B2 (en) 2019-07-30
AU2018201160A1 (en) 2018-03-08
RU2667719C1 (ru) 2018-09-24
US20190268613A1 (en) 2019-08-29
JPWO2014097816A1 (ja) 2017-01-12
KR102258356B1 (ko) 2021-05-31

Similar Documents

Publication Publication Date Title
JP6610735B2 (ja) 画像処理装置及び画像処理方法
AU2020200093B2 (en) Image processing device and method
JP6455434B2 (ja) 画像処理装置及び画像処理方法
US20230308646A1 (en) Image encoding device and method and image decoding device and method
WO2015146278A1 (ja) 画像処理装置及び画像処理方法
WO2014203763A1 (ja) 復号装置および復号方法、並びに、符号化装置および符号化方法
JPWO2015005025A1 (ja) 画像処理装置及び画像処理方法
KR102197557B1 (ko) 화상 처리 장치 및 방법
WO2015052979A1 (ja) 画像処理装置及び画像処理方法
WO2014050311A1 (ja) 画像処理装置及び画像処理方法
WO2014203505A1 (en) Image decoding apparatus, image encoding apparatus, and image processing system
WO2015098231A1 (ja) 画像処理装置及び画像処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013863956

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013365309

Country of ref document: AU

Date of ref document: 20131121

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14441671

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157013021

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014553036

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15126734

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: 12015501311

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2894637

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2015122700

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201503525

Country of ref document: ID

Ref document number: MX/A/2015/007443

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015013768

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015013768

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150611