WO2014097541A1 - Steering control device and steering control method - Google Patents

Steering control device and steering control method Download PDF

Info

Publication number
WO2014097541A1
WO2014097541A1 PCT/JP2013/006884 JP2013006884W WO2014097541A1 WO 2014097541 A1 WO2014097541 A1 WO 2014097541A1 JP 2013006884 W JP2013006884 W JP 2013006884W WO 2014097541 A1 WO2014097541 A1 WO 2014097541A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
torque
assist torque
assist
steering torque
Prior art date
Application number
PCT/JP2013/006884
Other languages
French (fr)
Japanese (ja)
Inventor
祐香 片平
山村 智弘
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014097541A1 publication Critical patent/WO2014097541A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications

Definitions

  • the present invention relates to a steering control device and a steering control method.
  • Patent Document 1 describes that the control for preventing lane departure is stopped when the own vehicle greatly deviates from the traveling lane and the lateral deviation amount with respect to the traveling lane becomes larger than the threshold value.
  • the subject of this invention is adjusting the timing at the time of giving assist torque to a steering mechanism according to a road curvature, and improving an operation feeling.
  • the steering control device detects the road curvature ahead of the own vehicle course, and turns in the turning direction in accordance with the road curvature at a predetermined forward position in order to turn along the own car course. Assist torque is applied to the steering mechanism. Further, when detecting the steering torque of the driver and controlling the assist torque in the turning direction, the front position is changed according to the direction and magnitude of the steering torque.
  • the front position is changed according to the direction and magnitude of the steering torque. Therefore, the timing when the assist torque is applied is adjusted, and the operation feeling is adjusted. Can be improved.
  • FIG. 2 is a schematic configuration of the controller 20. It is a map used for calculation of the steering angle ratio R according to the vehicle speed V. It is a map used for calculation of the steering angle ratio R according to the steering angle ⁇ s.
  • 3 is a block diagram showing an operation side motor control unit 22.
  • FIG. It is a flowchart which shows a steering reaction force setting process. It is a flowchart which shows the assist torque setting process of 1st Embodiment. It is a graph which shows the relationship between steering angle (theta) s and steering torque Ts. It is a figure which shows the relationship between the steering angle (theta) s according to the vehicle speed V, and the steering torque Ts.
  • FIG. 1 is a schematic configuration diagram of a steering device using steering-by-wire.
  • the steering wheel 1 is connected to a steering shaft 2, and steered wheels (steering wheels) 3L and 3R are connected to a pinion shaft 7 through a knuckle arm 4, a tie rod 5, and a rack and pinion 6 in this order.
  • the steering shaft 2 and the pinion shaft 7 are connected via a clutch 10 so as to be able to be interrupted. Therefore, in a state where the clutch 10 is connected (fastened), when the steering wheel 1 is rotated, the steering shaft 2, the clutch 10, and the pinion shaft 7 are rotated.
  • the rotational movement of the pinion shaft 7 is a forward and backward movement of the tie rod 5 by the rack and pinion 6, and the steered wheels 3L and 3R are steered through the knuckle arm 4.
  • a steered side motor 9 is connected to the pinion shaft 7.
  • the pinion shaft 7 rotates, so that the steered wheels 3L and 3R are rotated.
  • the steering angle ⁇ w of the steered wheels 3L and 3R is controlled by detecting the steering angle ⁇ s of the steering wheel 1 and drivingly controlling the steered side motor 9 according to the detected steering angle ⁇ s.
  • An operation side motor 8 is connected to the steering shaft 2. When the operation side motor 8 is driven in a state where the clutch 10 is disconnected, a reaction torque is applied to the steering shaft 2.
  • the reaction force received from the road surface when the steered wheels 3L and 3R are steered is detected or estimated, and the operation side motor 8 is driven and controlled in accordance with the detected or estimated reaction force, so that the driver can perform the steering operation.
  • an operation reaction force is applied.
  • the steering side motor 9 is driven and controlled while the clutch 10 is disengaged, and the operation side motor 8 is driven and controlled to execute steer-by-wire to realize desired steering characteristics and turning behavior characteristics. In addition, a good operation feeling is realized.
  • the steer-by-wire is stopped and the clutch 10 is returned to the engaged state as fail-safe to ensure mechanical backup.
  • the steered side motor 9 and the operation side motor 8 are driven and controlled by a controller 20 constituted by, for example, a microcomputer.
  • the controller 20 inputs various signals detected by the steering angle sensor 11, the turning angle sensor 12, the hub sensor 13, the vehicle speed sensor 14, the yaw rate sensor 15, the torque sensor 31, and the lateral acceleration sensor 32. Further, the controller 20 inputs various data from the front camera 33 and the navigation system 34.
  • the steering angle sensor 11 detects the steering angle ⁇ s of the steering shaft 2.
  • the steering angle sensor 11 detects, for example, rotation of a magnet built in a detection gear that rotates in synchronization with the steering shaft 2 by two MR (ferro-Magneto Resistance) elements, and a magnetic field accompanying rotation of the steering shaft 2.
  • the direction vector change is converted into an electric signal and input to the controller 20.
  • the controller 20 determines the steering angle ⁇ s of the steering shaft 2 from the input electric signal.
  • the steering angle sensor 11 detects right turn as a positive value and detects left turn as a negative value.
  • the turning angle sensor 12 detects the turning angle ⁇ w of the pinion shaft 7.
  • the turning angle sensor 12 detects, for example, rotation of a magnet built in a detection gear that rotates in synchronization with the pinion shaft 7 with two MR (ferro-Magneto®Resistance) elements, and accompanies the rotation of the pinion shaft 7.
  • the vector change in the magnetic field direction is converted into an electrical signal and input to the controller 20.
  • the controller 20 determines the turning angle ⁇ w of the pinion shaft 7 from the input electrical signal.
  • the turning angle sensor 12 detects a right turn as a positive value and a left turn as a negative value.
  • the hub sensor 13 detects the tire lateral force Fy.
  • the hub sensor 13 is provided in each hub unit of the left and right wheels, and converts, for example, a change in displacement difference between the inner ring and the outer ring in a bearing in the hub unit into an electric signal using a hall element and a magnetized encoder. Input to the controller 20.
  • the controller 20 determines the tire lateral force from the input electrical signal.
  • the tire lateral force Fy is a total value of the tire lateral forces of the left and right wheels detected by the hub sensor 13.
  • the vehicle speed sensor 14 detects a vehicle body speed (hereinafter referred to as a vehicle speed) V.
  • This vehicle speed sensor 14 is provided, for example, in a driven gear on the output side of the transmission, detects the magnetic lines of force of the sensor rotor by a detection circuit, converts the change in the magnetic field accompanying the rotation of the sensor rotor into a pulse signal, and inputs it to the controller 20. To do.
  • the controller 20 determines the vehicle speed V from the input pulse signal.
  • the yaw rate sensor 15 detects the yaw rate ⁇ of the vehicle body.
  • the yaw rate sensor 15 is provided on a body on a spring, and vibrates a vibrator made of, for example, a crystal tuning fork with an alternating voltage, and converts the distortion amount of the vibrator caused by the Coriolis force at the time of angular velocity input into an electric signal. Input to the controller 20.
  • the controller 20 determines the yaw rate ⁇ of the vehicle from the input electric signal.
  • the yaw rate sensor 15 detects right turn as a positive value and detects left turn as a negative value.
  • the torque sensor 31 detects the torque Ts input to the steering shaft 2.
  • the torque sensor 31 detects the torsion angle of the torsion bar interposed between the input side and the output side of the steering shaft 2 with, for example, a Hall element, and generates magnetic flux as a relative angular displacement between the multipolar magnet and the yoke. The change in density is converted into an electrical signal and input to the controller 20.
  • the torque sensor 31 detects the right steering of the driver as a positive value and detects the left steering as a negative value.
  • the lateral acceleration sensor 32 detects the lateral acceleration of the vehicle.
  • the lateral acceleration sensor 9 detects, for example, the displacement of the movable electrode relative to the fixed electrode as a change in capacitance, and converts it into a voltage signal proportional to the lateral acceleration and inputs it to the controller 6.
  • the controller 6 determines the lateral acceleration from the input voltage signal.
  • the controller 20 inputs each detection signal directly from sensors, it is not limited to this.
  • the controller 20 is connected to another control unit, and receives various data via an in-vehicle communication network (in-vehicle LAN) such as CSMA / CA multiplex communication (CAN: Controller Area Network) or Flex Ray. May be.
  • the front camera 33 images the front of the vehicle body.
  • the front camera 33 is composed of, for example, a CCD wide-angle camera provided in the upper part of the front window in the vehicle interior, and inputs imaged image data in front of the vehicle body to the controller 20.
  • the navigation system 17 recognizes the current position of the host vehicle and road information at the current position.
  • This navigation system 17 has a GPS receiver, and recognizes the position (latitude, longitude, altitude) of the host vehicle and the traveling direction based on the time difference between radio waves arriving from four or more GPS satellites. Then, the road information including the road type, road alignment, lane width, vehicle traffic direction, etc. stored in the DVD-ROM drive or hard disk drive is referred to, and the road information at the current position of the host vehicle is recognized. input.
  • DSSS Driving Safety Support Systems
  • two-way wireless communication DSRC: Dedicated Short Range Communication
  • FIG. 2 is a schematic configuration of the controller 20.
  • the controller 20 includes a steered side motor control unit 21 that drives and controls the steered side motor 9, and an operation side motor control unit 22 that drives and controls the operation side motor 8.
  • the steering angle ratio R is determined, for example, in the following manner. For example, the steering angle ratio R is calculated according to the vehicle speed V with reference to the map of FIG. FIG.
  • the steering angle ratio R decreases as the vehicle speed V decreases. Therefore, at the time of stationary driving or low speed traveling, a large turning angle ⁇ w can be obtained with a small steering angle ⁇ s, so that the operation burden on the driver is reduced. On the other hand, during high speed traveling, the change in the steering angle ⁇ w with respect to the change in the steering angle ⁇ s is suppressed, so that sensitive vehicle behavior is suppressed and traveling stability is ensured.
  • the steering angle ratio R may be calculated according to the steering angle ⁇ s with reference to the map of FIG. FIG. 4 is a map used for calculating the steering angle ratio R according to the steering angle ⁇ s. According to this map, the steering angle ratio R increases as the steering angle ⁇ s decreases. Therefore, as the steering angle ⁇ s is further increased, a larger turning angle ⁇ w is obtained, so that the operation burden on the driver is reduced. On the other hand, in a scene such as when traveling substantially straight, the change in the turning angle ⁇ w with respect to the change in the steering angle ⁇ s is suppressed, so that a sensitive vehicle is suppressed and traveling stability is ensured.
  • the steering angle ratio R may be determined according to both the vehicle speed V and the steering angle ⁇ s.
  • the steering angle ratio Rv corresponding to the vehicle speed V and the steering angle ratio Rs corresponding to the steering angle ⁇ s are individually calculated, and an average of these is calculated or added after weighting each.
  • the final steering angle ratio R may be determined.
  • the target turning angle ⁇ w * is calculated according to the steering angle ⁇ s and the steering angle ratio R, and the turning angle ⁇ w is included in the target turning angle ⁇ w *.
  • the driving of the steered side motor 9 is controlled using a robust model matching method or the like.
  • FIG. 5 is a block diagram showing the operation side motor control unit 22.
  • the operation side motor control unit 22 includes a steering reaction force setting unit 23, an assist torque setting unit 24, an addition unit 25, and a drive control unit 26.
  • the steering reaction force setting unit 23 sets a steering reaction force TR for the driver's steering operation.
  • the assist torque setting unit 24 sets an assist torque TA for turning along the own vehicle path.
  • the adding unit 25 adds the steering reaction force TR and the assist torque TA to set the final drive torque TD.
  • the drive control unit 26 drives and controls the operation side motor 8 according to the drive torque TD.
  • FIG. 6 is a flowchart showing the steering reaction force setting process.
  • step S101 the steering speed d ⁇ s is calculated by differentiating the steering angle ⁇ s with respect to time.
  • the angular term torque TRa is calculated by multiplying the steering angle ⁇ s by the gain Ka.
  • TRa Ka ⁇ ⁇ s (1)
  • the speed term torque TRs is calculated by multiplying the steering speed d ⁇ s by the gain Ks as shown in the following equation (2).
  • TRs Ks ⁇ d ⁇ s (2)
  • the steering reaction force Tr is calculated by adding the angular torque TRa and the speed term torque TRs as shown in the following equation (3).
  • TR TRa + TRs (3)
  • the road surface friction coefficient ⁇ is calculated based on the vehicle speed V, the yaw rate ⁇ , and the lateral acceleration Yg, for example. Further, the road surface friction coefficient ⁇ may be estimated according to the relationship between the braking / driving force of each wheel and the slip ratio, and if the road surface friction coefficient ⁇ is available from the infrastructure, it may be used.
  • an upper limit value TL of the steering reaction force is calculated based on the vehicle speed V, the steering angle ⁇ s, and the road surface friction coefficient ⁇ .
  • the smaller one of the steering reaction force TR and the upper limit value TL is calculated as the final steering reaction force TR, and then the process returns to a predetermined main program. The above is the steering reaction force setting process.
  • FIG. 7 is a flowchart showing the assist torque setting process of the first embodiment.
  • first threshold values Te1 and Tt1 for the steering torque Ts when the assist torque TA is controlled are set.
  • the first threshold Te1 is a threshold for determining that the assist torque TA is too early, and is set to about ⁇ 1 Nm, for example.
  • the first threshold value Tt1 is a threshold value for determining that the assist torque TA is too slow, and is set to about ⁇ 1 Nm, for example.
  • These first threshold values Te1 and Tt1 may not be the same value.
  • FIG. 8 is a graph showing the relationship between the steering angle ⁇ s and the steering torque Ts.
  • the relationship between the steering angle ⁇ s and the steering torque Ts is expressed by coordinates with the steering angle ⁇ s as the horizontal axis and the steering torque Ts as the vertical axis, with the right turn being a positive value and the left turn being a negative value.
  • the characteristic line Ln shows the relationship between the steering angle ⁇ s and the steering torque Ts when a steering operation is performed with a conventional steering mechanism that does not apply the assist torque TA.
  • the steering angle ⁇ s is increased in the positive direction from 0 (initial steering angle), and when the steering torque Ts is decreased in the negative direction, the steering angle is increased. ⁇ s decreases from 0 in the negative direction.
  • the absolute value of the steering angle ⁇ s is increased, a relatively large steering torque Ts is required at the initial stage of the steering operation.
  • a steering angle ⁇ s for traveling along a curve is set as a required steering angle
  • a steering torque Ts for obtaining the required steering angle is set as a required torque
  • this required torque is set as an assist torque TA.
  • the required steering angle is achieved even when the steering torque Ts of the driver is zero.
  • a relationship between the steering angle ⁇ s and the steering torque Ts in a state where the assist torque TA is applied is indicated by a characteristic line La.
  • This characteristic line La is obtained by translating the characteristic line Ln in the positive direction along the horizontal axis by the required steering angle. According to this characteristic line La, when the steering torque Ts is increased from 0 to the positive direction, the steering angle ⁇ s is increased from the required steering angle to the positive direction, and when the steering torque Ts is decreased from 0 to the negative direction, the steering angle is increased. ⁇ s decreases in the negative direction from the required steering angle.
  • the characteristic line Ls shows the relationship between the steering angle ⁇ s and the steering torque Ts when the control of the assist torque TA in the positive direction and the steering operation of the driver are performed substantially simultaneously (synchronously).
  • the driver performs the steering operation himself in hope of increasing the steering angle ⁇ s in the positive direction.
  • the assist torque TA is controlled almost simultaneously with the steering angle Ts, the steering torque Ts becomes substantially 0, and the steering is performed as it is.
  • the angle ⁇ s increases in the positive direction and the required steering angle is achieved.
  • the assist torque TA in the turning direction is controlled substantially simultaneously with the driver's steering operation, the steering torque Ts becomes substantially zero.
  • the relationship between the steering angle ⁇ s and the steering torque Ts when the driver feels too early for the control of the assist torque TA in the positive direction is indicated by a characteristic line Le.
  • this characteristic line Le when the assist torque TA in the positive direction starts to be applied, the driver does not yet want to increase the steering angle ⁇ s in the positive direction, so the steering is held against the assist torque TA in the positive direction. Therefore, the direction of the steering torque Ts is generated in the negative direction.
  • the driver wants to increase the steering angle ⁇ s in the positive direction, so this time, the steering torque Ts in the negative direction is relaxed and the assist torque TA is followed (or left).
  • the steering torque Ts in the negative direction increases in the positive direction along the characteristic line La and eventually becomes 0, and at this time, the necessary steering angle is achieved.
  • the direction of the steering torque Ts is opposite to the turning direction. Therefore, in this embodiment, when the direction of the steering torque Ts is opposite to the turning direction and the absolute value of the steering torque Ts is equal to or greater than the first threshold value Te1, the driver is quicker than the control of the assist torque TA. Judge that you feel too much.
  • the relationship between the steering angle ⁇ s and the steering torque Ts when the driver feels that the driver is too slow with respect to the control of the assist torque TA in the forward direction is indicated by a characteristic line Lt.
  • the driver since the driver desires to increase the steering angle ⁇ s in the positive direction before the assist torque TA, the driver himself increases the steering torque Ts in the positive direction. At this time, the steering torque Ts increases in the positive direction along the characteristic line Ln.
  • the positive assist torque TA starts to be applied, so that the positive steering torque Ts is relaxed and the assist torque TA is followed (or left).
  • the steering angle ⁇ s tends to overshoot beyond the necessary steering angle. Accordingly, since the correction steering is performed to return the steering angle ⁇ s by the excessive amount, the forward steering torque Ts decreases along the characteristic line La and eventually becomes 0, and the necessary steering angle is achieved at this time. .
  • the direction of the steering torque Ts is the same as the turning direction. Therefore, in the present embodiment, when the direction of the steering torque Ts is the same as the turning direction and the absolute value of the steering torque Ts is equal to or greater than the first threshold value Tt1, the driver is delayed with respect to the control of the assist torque TA. Judge that you feel too much.
  • the above is the relationship between the assist torque TA and the steering torque Ts regarding the setting of the first thresholds Te1 and Tt1.
  • the vehicle speed V is read.
  • the threshold values Te1 and Tt1 are adjusted according to the vehicle speed V.
  • the absolute values of the thresholds Te1 and Tt1 are adjusted to a larger value as the vehicle speed V is higher, and the absolute values of the thresholds Te1 and Tt1 are adjusted to a smaller value as the vehicle speed V is lower. This is because in order to obtain the same steering angle ⁇ s while traveling, a larger steering torque Ts is required as the vehicle speed V is higher.
  • FIG. 9 is a diagram showing the relationship between the steering angle ⁇ s and the steering torque Ts according to the vehicle speed V.
  • the steering torque Ts is about 1.0 Nm when the vehicle speed V is about 100 km / h, but the steering torque Ts is about 1.3 Nm when the vehicle speed V is about 120 km / h.
  • the steering torque Ts is about 0.7 Nm. Therefore, the absolute values of the threshold values Te1 and Tt1 are adjusted to larger values as the vehicle speed V is higher, and the absolute values of the threshold values Te1 and Tt1 are adjusted to smaller values as the vehicle speed V is lower.
  • the road surface friction coefficient ⁇ is acquired.
  • the road surface friction coefficient ⁇ is calculated based on the vehicle speed V, the yaw rate ⁇ , and the lateral acceleration Yg. Further, the road surface friction coefficient ⁇ may be estimated according to the relationship between the braking / driving force of each wheel and the slip ratio, and if the road surface friction coefficient ⁇ is available from the infrastructure, it may be used.
  • the threshold values Te1 and Tt1 are adjusted according to the road surface friction coefficient ⁇ .
  • the absolute values of the threshold values Te1 and Tt1 are adjusted to smaller values as the road surface friction coefficient ⁇ is lower, and the absolute values of the threshold values Te1 and Tt1 are adjusted to larger values as the road surface friction coefficient ⁇ is higher. This is because, in order to obtain the same steering angle ⁇ s, a smaller steering torque Ts is required as the road surface friction coefficient ⁇ is lower.
  • FIG. 10 is a diagram showing the relationship between the steering angle ⁇ s and the steering torque Ts according to the road surface friction coefficient ⁇ .
  • the steering torque Ts is about 1.0 Nm on a normal road surface with a high road surface friction coefficient ⁇ such as a dry road, for example, a rainy road, a snowy road, a frozen road, etc.
  • the road surface is a slippery road surface having a low friction coefficient ⁇
  • the steering torque Ts is about 0.7 Nm.
  • the absolute values of the threshold values Te1 and Tt1 are adjusted to smaller values as the road surface friction coefficient ⁇ is lower, and the absolute values of the threshold values Te1 and Tt1 are adjusted to larger values as the road surface friction coefficient ⁇ is higher.
  • the road curvature ⁇ at the forward position X is detected.
  • the forward position X is a distance from the host vehicle.
  • it is calculated from image data picked up by the front camera 33, or acquired based on the current position of the host vehicle recognized by the navigation system 17 and road information at the current position.
  • the assist torque TA is set according to the road curvature ⁇ at the forward position X.
  • the required steering angle corresponding to the road curvature ⁇ of the forward position X is calculated, for example, the required torque required to achieve the required steering angle is calculated according to the above-described characteristic line Ln, and this required torque amount is calculated.
  • the assist torque TA is output to the adding unit 25.
  • the drive control unit 26 drives and controls the operation side motor 8 according to the final drive torque TD obtained by adding the steering reaction force TR and the assist torque TA.
  • the steering torque Ts is read.
  • step S120 the signs of the steering torque Ts and the road curvature ⁇ are determined, and it is determined whether or not the direction of the steering torque Ts and the direction of the road curvature ⁇ are opposite.
  • the steering torque Ts and the road curvature ⁇ are in the opposite directions, it is determined that the application of the assist torque TA is earlier than the driver's steering operation, and the process proceeds to step S121.
  • the steering torque Ts and the road curvature ⁇ are in the same direction, it is determined that the application of the assist torque TA is later than the steering operation by the driver, and the process proceeds to step S123.
  • step S121 it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold Te1.
  • the determination result is “
  • the determination result is “
  • step S122 in order to delay the timing for applying the assist torque TA, the front position X at which the road curvature ⁇ is read is corrected to the front.
  • a position (X ⁇ X) that is closer to the front by a predetermined distance ⁇ X from the front position X is corrected to a new front position X and then returned to a predetermined main program.
  • the corrected road curvature ⁇ at the forward position X is read.
  • the forward position X is changed by a predetermined allowable amount per unit time.
  • step S123 it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold value Tt1 described above.
  • the determination result is “
  • the determination result is “
  • the driver does not feel that it is too late with respect to the timing of applying the assist torque TA, and the predetermined main program is directly executed.
  • step S124 the forward position X at which the road curvature ⁇ is read is corrected far away in order to advance the timing for applying the assist torque TA.
  • a position (X + ⁇ X) that is far away from the front position X by a predetermined distance ⁇ X is corrected to a new front position X and then returned to a predetermined main program.
  • the corrected road curvature ⁇ at the forward position X is read.
  • the forward position X is changed by a predetermined allowable amount per unit time.
  • a road curvature ⁇ at a predetermined forward position X is read (step S116), and an assist torque TA corresponding to the road curvature ⁇ is set (step S117). Since the assist torque TA corresponds to the necessary torque for obtaining the necessary steering angle according to the road curvature ⁇ , by outputting the assist torque TA (step S118), the driver's steering torque Ts is made substantially zero. Can also achieve the required steering angle. That is, it is possible to reduce the operation burden since the vehicle can turn along the own vehicle path while only putting a hand on the steering wheel 1.
  • the timing for applying the assist torque TA according to the road curvature ⁇ is optimized. That is, the timing of the assist torque TA is adjusted when the driver feels too early or too late with respect to the timing of applying the assist torque TA.
  • FIG. 11 is a time chart showing the assist torque TA and the steering torque Ts when the driver feels too early.
  • the driver does not yet want to increase the steering angle ⁇ s in the positive direction, so that the steering torque Ts is maintained in order to keep the steering against the positive assist torque TA.
  • the direction of is generated in the negative direction. That is, the direction of the steering torque Ts is opposite to the turning direction (the determination in step S120 is “Yes”).
  • the forward position X for reading the road curvature ⁇ is corrected to a position (X ⁇ X) closer to the front by ⁇ X (step S122).
  • the road curvature ⁇ at the forward position X after correction is read.
  • the assist torque TA decreases, and the steering torque Ts against the assist torque TA also decreases.
  • the corrected forward position X and the forward position of the driver's gaze substantially coincide, that is, when the timing of the assist torque TA substantially coincides with the driver's feeling, the steering torque Ts becomes substantially zero. Thereafter, even if the assist torque TA increases or decreases according to the road curvature ⁇ , the steering torque Ts remains substantially zero as long as the timing substantially matches the driver's feeling.
  • the timing when the assist torque TA is applied by correcting the forward position X for reading the road curvature ⁇ to the front. Can be delayed and optimized.
  • the assist torque TA is applied almost simultaneously with the driver's steering operation, so that the vehicle can turn along the vehicle's own course while the hand is touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved. Even if the forward position X is brought closer to the front by ⁇ X, when the absolute value of the steering torque Ts is still equal to or larger than the absolute value of the first threshold Te1, the front position X is further brought closer to the front by ⁇ X.
  • FIG. 12 is a time chart showing the assist torque TA and the steering torque Ts when the driver feels too late.
  • the driver himself increases the steering torque Ts in the positive direction before the assist torque TA. That is, the direction of the steering torque Ts is the same as the turning direction (determination in step S120 is “No”).
  • the steering torque Ts in the positive direction becomes equal to or greater than the first threshold value Tt1 (determination in step S123 is “Yes”), it is determined that the driver feels too late with respect to the application of the assist torque TA. .
  • the front position X where the road curvature ⁇ is read is corrected to a position (X + ⁇ X) far away by ⁇ X (step S124).
  • the road curvature ⁇ at the forward position X after correction is read.
  • the assist torque TA starts to be applied and increases, so that the driver follows (trusts) the assist torque TA and the steering torque Ts decreases.
  • the corrected forward position X substantially coincides with the forward position of the driver's gaze, that is, when the assist torque TA timing substantially coincides with the driver's feeling, the steering torque Ts becomes substantially zero. Thereafter, even if the assist torque TA increases or decreases according to the road curvature ⁇ , the steering torque Ts remains substantially zero as long as the timing substantially matches the driver's feeling.
  • the timing when the assist torque TA is applied by correcting the forward position X for reading the road curvature ⁇ in the distance. Can be optimized early.
  • the assist torque TA is applied almost simultaneously with the driver's steering operation, so that the vehicle can turn along the vehicle's own course while the hand is touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved.
  • the front position X is moved away by ⁇ X, when the absolute value of the steering torque Ts is still equal to or larger than the absolute value of the first threshold value Tt1, the front position X is further moved away by ⁇ X.
  • the distance is corrected by ⁇ X in the distance. Therefore, since the adjustment of the front position X is continuously performed until the absolute value of the steering torque Ts becomes less than the absolute value of the first threshold value Tt1, the timing when the assist torque TA is applied can be optimized. .
  • the configuration applied to steering-by-wire has been described.
  • the present invention is not limited to this, and may be applied to any other configuration as long as the assist torque TA can be applied to the steering mechanism.
  • the present embodiment may be applied to an electric power steering device.
  • the present invention can be applied even when electric power steering control is executed by at least one of the operation side motor 8 or the steered side motor 9 when the clutch 10 is connected in a fail-safe manner.
  • the configuration in which the steering reaction force TR and the assist torque TA are added to set the final drive torque TD has been described, but the present invention is not limited to this.
  • the driver may select one of the steering reaction force TR set by the steering reaction force setting unit 23 and the assist torque TA set by the assist torque setting unit 24 by a switch operation. According to this, the driver can arbitrarily select whether to execute normal steering-by-wire control or to perform assist control that applies assist torque TA along the curve.
  • the front position X is changed according to the direction and magnitude of the steering torque Ts, but is not limited to this. That is, according to the direction and magnitude of the steering torque Ts, either the road curvature ⁇ or the assist torque TA may be directly changed so as to be the same as when the front position X is changed. According to this, the same effect as the case where the front position X is changed according to the direction and magnitude of the steering torque Ts can be obtained.
  • the processing in step S116 corresponds to the “curvature detection unit”
  • step S119 corresponds to the “torque detection unit”
  • the processing in steps S117, S118, and S120 to S124 corresponds to the “assist control unit”.
  • the process of step S112 corresponds to the “vehicle speed detection unit”
  • the process of step S114 corresponds to the “friction coefficient acquisition unit”.
  • the assist torque TA in the turning direction is applied to the steering mechanism
  • the front position X from which the road curvature ⁇ is read is changed according to the direction and magnitude of the steering torque Ts, so the assist torque TA is applied. Timing can be optimized and operational feeling can be improved.
  • the steering torque Ts when shifting from straight traveling to curve traveling, the steering torque Ts is opposite to the turning direction, and the absolute value of the steering torque Ts is greater than or equal to a predetermined first threshold value Te1.
  • the front position X is changed to a position close to the host vehicle.
  • the driver feels that the driver is too early with respect to the timing for applying the assist torque TA. Can be judged. Therefore, by changing the front position X to a position close to the host vehicle and delaying the timing for applying the assist torque TA, the timing for applying the assist torque TA can be optimized and the operation feeling can be improved. .
  • the steering torque Ts when shifting from straight traveling to curve traveling, the steering torque Ts is the same as the turning direction, and the absolute value of the steering torque Ts is greater than or equal to a predetermined first threshold value Tt1.
  • the front position X is changed to a position far from the host vehicle.
  • the driver feels that the driver is too late with respect to the timing for applying the assist torque TA. Can be judged. Therefore, by changing the front position X to a position far from the host vehicle and accelerating the timing for applying the assist torque TA, the timing for applying the assist torque TA can be optimized and the operation feeling can be improved. .
  • the front position X is changed by a predetermined allowable amount per unit time.
  • a sudden change of the front position X can be suppressed by changing the unit time value by a predetermined allowable amount. Therefore, since the sudden change in the assist torque TA can be suppressed, the driver does not feel uncomfortable.
  • the front position X is changed by a predetermined distance ⁇ X. As described above, when the front position X is changed, the front position X is changed by the predetermined distance ⁇ X, so that the front position X can be prevented from being changed unnecessarily. That is, when the timing for applying the assist torque TA is delayed, the excessive response of the front position X being too close to the front or the front position X being too far away when the timing for applying the assist torque TA is advanced is suppressed. it can.
  • the first threshold values Te1 and Tt1 are set to larger values as the vehicle speed V is higher.
  • the first threshold values Te1 and Tt1 that are optimal for the traveling scene can be set by setting the first threshold values Te1 and Tt1 to larger values as the vehicle speed V increases.
  • the first threshold values Te1 and Tt1 are set to smaller values as the road surface friction coefficient ⁇ is lower.
  • the first threshold values Te1 and Tt1 that are optimal for the traveling scene can be set by setting the first threshold values Te1 and Tt1 to smaller values as the road surface friction coefficient ⁇ is lower.
  • FIG. 13 is a flowchart illustrating assist torque setting processing according to the second embodiment.
  • step S122 in the first embodiment described above is changed to a process in new step S201, and the processes in other steps S111 to S121, S123, and S124 are the same as those in the first embodiment described above. Since it is the same, detailed description is omitted about a common part.
  • step S201 the assist torque TA at that time is maintained for a predetermined time ⁇ t. Thereafter, in order to delay the timing of applying the assist torque TA, the front position X at which the road curvature ⁇ is read is corrected to the front. That is, as shown below, a position (X ⁇ X) that is closer to the front by a predetermined distance ⁇ X from the front position X is corrected to a new front position X and then returned to a predetermined main program. In the subsequent calculation, the corrected road curvature ⁇ at the forward position X is read. In order to avoid a sudden change in the forward position X, the forward position X is changed by a predetermined allowable amount per unit time. X ⁇ X- ⁇ X The above is the assist torque setting process of the second embodiment.
  • FIG. 14 is a time chart showing the assist torque TA and the steering torque Ts when the driver feels too early in the second embodiment.
  • the assist torque TA in the positive direction starts to be applied, the driver does not yet want to increase the steering angle ⁇ s in the positive direction, so that the steering torque Ts is maintained in order to keep the steering against the positive assist torque TA.
  • the direction of is generated in the negative direction. That is, the direction of the steering torque Ts is opposite to the turning direction (the determination in step S120 is “Yes”).
  • the assist torque TA at that time is first maintained for ⁇ t. Thereafter, in order to delay the timing of applying the assist torque TA, the forward position X at which the road curvature ⁇ is read is corrected to a position closer to the front by ⁇ X (X ⁇ X) (step S201).
  • the road curvature ⁇ at the forward position X after correction is read.
  • the assist torque TA is fixed, the increase / decrease in the assist torque TA before and after ⁇ t is suppressed, and the influence on the operation feeling is reduced.
  • the assist torque TA decreases, so the steering torque Ts against it also decreases.
  • the corrected forward position X substantially coincides with the forward position of the driver's gaze, that is, when the assist torque TA timing substantially coincides with the driver's feeling
  • the steering torque Ts becomes substantially zero. Thereafter, even if the assist torque TA increases or decreases according to the road curvature ⁇ , the steering torque Ts remains substantially zero as long as the timing substantially matches the driver's feeling.
  • the assist torque TA at that time is first maintained for a certain time ⁇ t, and then the forward position X from which the road curvature ⁇ is read is set in front.
  • the assist torque TA is applied almost simultaneously with the driver's steering operation, so that the vehicle can turn along the vehicle's own course while the hand is touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved.
  • the assist torque TA at the time when the absolute value of the steering torque Ts becomes equal to or greater than the first threshold Te1 is determined in advance.
  • the front position X is changed to a position close to the host vehicle.
  • the assist torque TA at the time when the absolute value of the steering torque Ts becomes equal to or greater than the first threshold Te1 is maintained for a predetermined time ⁇ t, and then the front position X is corrected forward, thereby assist torque. While suppressing increase / decrease of TA, the timing which gives it can be delayed and optimized, and operation feeling can be improved.
  • FIG. 15 is a flowchart illustrating assist torque setting processing according to the third embodiment.
  • the processing in steps S121 to S124 in the first embodiment described above is changed to the processing in new steps S301 to S312.
  • the processing in other steps S111 to S120 is the same as that in the first embodiment described above. Since it is the same, detailed description is omitted about a common part.
  • step S301 it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold Te1.
  • the determination result is “
  • the determination result is “
  • step S302 in order to delay the timing at which the assist torque TA is applied, the forward position X at which the road curvature ⁇ is read is corrected so as to be gradually closer to the front.
  • the amount is changed by a predetermined allowable amount per unit time, and after returning to the predetermined main program, a new forward position X is set.
  • the correction flag fc is a flag indicating whether or not the correction is performed on the front position X.
  • step S305 it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to a predetermined second threshold Te2 within a range smaller than the absolute value of the first threshold Te1.
  • the second threshold value Te2 is a value that does not cause hunting even when the adjustment of the assist torque TA is stopped at that value, and is, for example, about ⁇ 0.6 Nm.
  • the determination result is “
  • the process proceeds to step S302.
  • step S307 it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold value Tt1.
  • the determination result is “
  • the determination result is “
  • step S308 in order to delay the timing at which the assist torque TA is applied, the forward position X at which the road curvature ⁇ is read is increased and corrected so as to gradually move away.
  • the amount is changed by a predetermined allowable amount per unit time, and after returning to the predetermined main program, a new forward position X is set.
  • the correction flag fc is a flag indicating whether or not the correction is performed on the front position X.
  • step S311 it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to a predetermined second threshold value Tt2 within a range smaller than the absolute value of the first threshold value Tt1.
  • the second threshold value Tt2 is a value that does not cause hunting even if adjustment of the assist torque TA is stopped at that value, and is, for example, about ⁇ 0.6 Nm.
  • the determination result is “
  • the process proceeds to step S308.
  • FIG. 16 is a time chart showing the assist torque TA and the steering torque Ts when the driver feels too early in the third embodiment.
  • the assist torque TA in the positive direction starts to be applied, the driver does not yet want to increase the steering angle ⁇ s in the positive direction, so that the steering torque Ts is maintained in order to keep the steering against the positive assist torque TA.
  • the direction of is generated in the negative direction. That is, the direction of the steering torque Ts is opposite to the turning direction (the determination in step S120 is “Yes”).
  • the forward position X for reading the road curvature ⁇ is corrected to decrease so as to gradually approach the front (step S302).
  • the assist torque TA decreases, and the steering torque Ts against the assist torque TA also decreases.
  • the reduction correction of the forward position X is executed until the absolute value of the steering torque Ts becomes less than the second threshold value Te2.
  • the steering torque Ts becomes substantially zero when the forward position X after the decrease correction substantially coincides with the forward position at which the driver gazes, that is, when the timing of the assist torque TA and the driver's feeling substantially coincide. Thereafter, even if the assist torque TA increases or decreases according to the road curvature ⁇ , the steering torque Ts remains substantially zero as long as the timing substantially matches the driver's feeling.
  • the timing when the assist torque TA is applied by correcting the forward position X for reading the road curvature ⁇ to the front. Can be delayed and optimized.
  • the assist torque TA is applied almost simultaneously with the driver's steering operation, so that the vehicle can turn along the vehicle's own course while the hand is touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved.
  • the front position X is gradually corrected toward the front until the absolute value of the steering torque Ts becomes less than the absolute value of the second threshold value Te2. Thereby, the timing at the time of providing the assist torque TA can be optimized while suppressing hunting.
  • FIG. 17 is a time chart showing the assist torque TA and the steering torque Ts when the driver feels too late in the third embodiment.
  • the driver himself increases the steering torque Ts in the positive direction before the assist torque TA. That is, the direction of the steering torque Ts is the same as the turning direction (determination in step S120 is “No”).
  • the steering torque Ts in the positive direction becomes equal to or greater than the first threshold value Tt1 (the determination in step S307 is “Yes”), it is determined that the driver feels too late with respect to the application of the assist torque TA. .
  • the forward position X at which the road curvature ⁇ is read is increased and corrected so as to gradually move away (step S308).
  • the assist torque TA starts to be applied and increases, so that the driver follows (trusts) the assist torque TA and the steering torque Ts decreases.
  • the increase correction of the forward position X is executed until the absolute value of the steering torque Ts becomes less than the second threshold value Tt2.
  • the steering torque Ts becomes substantially zero. Thereafter, even if the assist torque TA increases or decreases according to the road curvature ⁇ , the steering torque Ts remains substantially zero as long as the timing substantially matches the driver's feeling.
  • the timing when the assist torque TA is applied by correcting the forward position X for reading the road curvature ⁇ in the distance. can be optimized early.
  • the assist torque TA is applied almost simultaneously with the driver's steering operation, so that the vehicle can turn along the vehicle's own course while the hand is touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved.
  • the forward position X is gradually corrected toward the front until the absolute value of the steering torque Ts becomes less than the absolute value of the second threshold value Tt2. Thereby, the timing at the time of providing the assist torque TA can be optimized while suppressing hunting.
  • Other parts common to the first embodiment described above are assumed to have the same operational effects and will not be described in detail.
  • the processes in steps S117, S118, S120, and S301 to S312 correspond to the “assist control unit”.
  • FIG. 18 is a flowchart illustrating assist torque setting processing according to the fourth embodiment.
  • step S302 in the third embodiment described above is changed to a process in new step S401, and the processes in other steps S111 to S120, S301, and S303 to S312 are described in the third embodiment described above. Since the configuration is the same as that of the embodiment, detailed description of common portions is omitted.
  • step S401 thereafter, the assist torque TA at the time when the absolute value of the steering torque Ts becomes equal to or greater than the first threshold Te1 is maintained.
  • the above is the assist torque setting process of the fourth embodiment.
  • FIG. 19 is a time chart showing the assist torque TA and the steering torque Ts when the driver feels too early in the fourth embodiment.
  • the assist torque TA in the positive direction starts to be applied, the driver does not yet want to increase the steering angle ⁇ s in the positive direction, so that the steering torque Ts is maintained in order to keep the steering against the positive assist torque TA.
  • the direction of is generated in the negative direction. That is, the direction of the steering torque Ts is opposite to the turning direction (the determination in step S120 is “Yes”).
  • the assist torque TA at that time is maintained.
  • at least the increase in the assist torque TA is suppressed, so that the increase in the steering torque Ts can be suppressed.
  • the assist torque TA is fixed, the increase / decrease in the assist torque TA before and after ⁇ t is suppressed, and the influence on the operation feeling is reduced.
  • the assist torque TA is maintained until the absolute value of the steering torque Ts becomes less than the second threshold value Te2.
  • the timing of the assist torque TA substantially matches the driver's feeling, and the steering torque Ts is substantially zero. It becomes.
  • the forward position X at the time when the absolute value of the steering torque Ts becomes less than the second threshold Te2 is used. Even if the assist torque TA increases or decreases, the steering torque Ts is maintained in a substantially zero state as long as the timing substantially matches the driver's feeling.
  • the assist torque TA is applied while suppressing the variation of the assist torque TA.
  • the assist torque TA is applied almost simultaneously with the driver's steering operation, so that the vehicle can turn along the vehicle's own course while the hand is touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved.
  • the front position X is gradually corrected toward the front until the absolute value of the steering torque Ts becomes less than the absolute value of the second threshold value Te2. Thereby, the timing at the time of providing the assist torque TA can be optimized while suppressing hunting.
  • FIG. 20 is a flowchart illustrating assist torque setting processing according to the fifth embodiment.
  • the processing in steps S120 to S124 in the first embodiment described above is changed to new processing in steps S501 to S505, and the processing in other steps S111 to S119 is the same as that in the first embodiment described above. Since it is the same, detailed description is omitted about a common part.
  • step S501 the signs of the steering torque Ts and the road curvature ⁇ are determined, and it is determined whether the direction of the steering torque Ts and the direction of the road curvature ⁇ are the same direction.
  • the process proceeds to step S502.
  • the steering torque Ts and the road curvature ⁇ are in the opposite directions, it is determined that the application of the assist torque TA is later than the steering operation by the driver, and the process proceeds to step S504.
  • step S502 it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold Te1.
  • the determination result is “
  • the determination result is “
  • step S503 in order to delay the timing for applying the assist torque TA, the front position X at which the road curvature ⁇ is read is corrected to the front.
  • a position (X ⁇ X) that is closer to the front by a predetermined distance ⁇ X from the front position X is corrected to a new front position X and then returned to a predetermined main program.
  • the corrected road curvature ⁇ at the forward position X is read.
  • the forward position X is changed by a predetermined allowable amount per unit time.
  • step S504 it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold value Tt1 described above.
  • the determination result is “
  • the determination result is “
  • the driver does not feel that it is too late with respect to the timing of applying the assist torque TA, and the predetermined main program is directly executed.
  • step S505 the forward position X at which the road curvature ⁇ is read is corrected far away in order to advance the timing for applying the assist torque TA.
  • a position (X + ⁇ X) that is far away from the front position X by a predetermined distance ⁇ X is corrected to a new front position X and then returned to a predetermined main program.
  • the corrected road curvature ⁇ at the forward position X is read.
  • the forward position X is changed by a predetermined allowable amount per unit time.
  • FIG. 21 is a graph showing the relationship between the steering angle ⁇ s and the steering torque Ts in the fifth embodiment.
  • the relationship between the steering angle ⁇ s and the steering torque Ts is expressed by coordinates with the steering angle ⁇ s as the horizontal axis and the steering torque Ts as the vertical axis, with the right turn being a positive value and the left turn being a negative value.
  • the state in which the steering wheel 1 is turned off is the initial steering angle
  • the characteristic line Ls shows the relationship between the steering angle ⁇ s and the steering torque Ts when the positive assist torque TA is applied and the driver's steering operation is performed substantially simultaneously.
  • the driver performs the steering operation by himself in hopes of decreasing the steering angle ⁇ s, but the assist torque TA is released almost simultaneously with it, so the steering torque Ts becomes substantially 0 and the steering angle ⁇ s decreases as it is.
  • the required steering angle is achieved.
  • the steering torque Ts becomes substantially zero.
  • the relationship between the steering angle ⁇ s and the steering torque Ts when the driver feels too early with respect to the decrease in the assist torque TA is indicated by a characteristic line Le.
  • this characteristic line Le when the assist torque TA in the positive direction starts to decrease, the driver does not yet want to decrease the steering angle ⁇ s. Therefore, the steering torque is maintained to resist the decrease in the assist torque TA.
  • the direction of Ts occurs in the positive direction.
  • the driver wants to decrease the steering angle ⁇ s, so this time, the steering torque Ts is relaxed and the assist torque TA is decreased (subjected). Accordingly, the steering torque Ts in the positive direction decreases along the characteristic line Ln and eventually becomes 0, and at this time, the necessary steering angle is achieved.
  • the direction of the steering torque Ts is the same as the turning direction. Therefore, in the present embodiment, when the direction of the steering torque Ts is the same as the turning direction (the determination in step S501 is “Yes”), and the absolute value of the steering torque Ts is greater than or equal to the first threshold Te1 (in step S502) If the determination is “Yes”), it is determined that the driver feels that the assist torque TA is decreased too early.
  • the front position X for reading the road curvature ⁇ is corrected to a position (X ⁇ X) that is closer to the front by ⁇ X (step S503), In the calculation, the road curvature ⁇ at the forward position X after correction is read.
  • the steering torque Ts resisting it also reduces.
  • the corrected forward position X substantially coincides with the forward position of the driver's gazing, that is, when the decrease timing of the assist torque TA substantially coincides with the driver's feeling, the steering torque Ts becomes substantially zero. Thereafter, even if the assist torque TA increases or decreases according to the road curvature ⁇ , the steering torque Ts remains substantially zero as long as the timing substantially matches the driver's feeling.
  • the driver torque TA is decreased.
  • the assist torque TA is decreased substantially simultaneously with the driver's steering operation, so that the vehicle can turn along the own vehicle path with the hand just touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved. Even if the forward position X is brought closer to the front by ⁇ X, when the absolute value of the steering torque Ts is still equal to or larger than the absolute value of the first threshold Te1, the front position X is further brought closer to the front by ⁇ X.
  • the relationship between the steering angle ⁇ s and the steering torque Ts when the driver feels that the assist torque TA is too slow is indicated by a characteristic line Lt.
  • the driver desires to decrease the steering angle ⁇ s prior to the assist torque TA, so the driver himself decreases the steering torque Ts in the negative direction.
  • the steering torque Ts decreases in the negative direction along the characteristic line La.
  • the assist torque TA starts to decrease, so this time, the steering torque Ts in the negative direction is relaxed and the decrease in the assist torque TA is followed (or left).
  • the steering torque Ts in the negative direction eventually becomes 0 so as to increase, and at this time, the necessary steering angle is achieved.
  • step S501 when the driver feels that the decrease in the assist torque TA is too slow, the direction of the steering torque Ts is opposite to the turning direction. Therefore, in the present embodiment, when the direction of the steering torque Ts is opposite to the turning direction (the determination in step S501 is “No”) and the absolute value of the steering torque Ts is equal to or greater than the first threshold value Tt1 (in step S504). If the determination is “Yes”), it is determined that the driver feels that the assist torque TA is decreased too late.
  • the forward position X at which the road curvature ⁇ is read is corrected to a position (X + ⁇ X) farther away by ⁇ X (step S505).
  • the road curvature ⁇ at the forward position X after correction is read.
  • the assist torque TA starts to decrease, so that the driver follows (trusts) the decrease in the assist torque TA, and the steering torque Ts decreases.
  • the corrected forward position X substantially coincides with the forward position of the driver's gazing, that is, when the decrease timing of the assist torque TA substantially coincides with the driver's feeling
  • the steering torque Ts becomes substantially zero. Thereafter, even if the assist torque TA increases or decreases according to the road curvature ⁇ , the steering torque Ts remains substantially zero as long as the timing substantially matches the driver's feeling.
  • the forward position X for reading the road curvature ⁇ is corrected to a far distance so that the decrease timing of the assist torque TA is adjusted. It can be optimized early. As a result, the assist torque TA is decreased substantially simultaneously with the driver's steering operation, so that the vehicle can turn along the own vehicle path with the hand just touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved.
  • the steering torque Ts when the vehicle travels from the curve traveling to the straight traveling, the steering torque Ts is opposite to the turning direction, and the absolute value of the steering torque Ts is equal to or greater than a predetermined first threshold value Tt1.
  • the front position X is changed to a position far from the host vehicle.
  • the driver feels that the driver is too late with respect to the timing of decreasing the assist torque TA. Can be judged. Therefore, by changing the front position X to a position far from the host vehicle and accelerating the timing at which the assist torque TA is decreased, the timing at which the assist torque TA is decreased can be optimized and the operation feeling can be improved.
  • FIG. 22 is a flowchart illustrating assist torque setting processing according to the sixth embodiment.
  • the process in step S503 in the fifth embodiment described above is changed to a process in new step S601.
  • the processes in other steps S111 to S119, S501, S502, S504, and S505 are described above. Since it is the same as that of 5 embodiment, detailed description is abbreviate
  • step S601 the assist torque TA at that time is maintained for a predetermined time ⁇ t. Thereafter, in order to delay the timing of decreasing the assist torque TA, the front position X at which the road curvature ⁇ is read is corrected to the front. That is, as shown below, a position (X ⁇ X) that is closer to the front by a predetermined distance ⁇ X from the front position X is corrected to a new front position X and then returned to a predetermined main program. In the subsequent calculation, the corrected road curvature ⁇ at the forward position X is read. In order to avoid a sudden change in the forward position X, the forward position X is changed by a predetermined allowable amount per unit time. X ⁇ X- ⁇ X The above is the assist torque setting process of the sixth embodiment.
  • the assist torque TA at the time when the absolute value of the steering torque Ts becomes equal to or greater than the first threshold Te1 is maintained for a predetermined time ⁇ t, and then the front position X
  • FIG. 23 is a flowchart illustrating assist torque setting processing according to the seventh embodiment.
  • steps S502 to S505 in the fifth embodiment described above are changed to the processes in new steps S701 to S712, and the processes in other steps S111 to S119 and S501 are described in the fifth embodiment described above. Since the configuration is the same as that of the embodiment, detailed description of common portions is omitted.
  • step S701 it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold Te1.
  • the determination result is “
  • the determination result is “
  • step S702 in order to delay the timing at which the assist torque TA is decreased, the forward position X at which the road curvature ⁇ is read is corrected so as to be gradually closer to the front.
  • the amount is changed by a predetermined allowable amount per unit time, and after returning to the predetermined main program, a new forward position X is set.
  • the correction flag fc is a flag indicating whether or not the correction is performed on the front position X.
  • step S705 it is determined whether or not the absolute value of the steering torque Ts is equal to or greater than a predetermined second threshold Te2 within a range smaller than the absolute value of the first threshold Te1.
  • the second threshold value Te2 is a value that does not cause hunting even when the adjustment of the assist torque TA is stopped at that value, and is, for example, about ⁇ 0.6 Nm.
  • the determination result is “
  • the process proceeds to step S702.
  • the determination result is “
  • step S707 it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold value Tt1.
  • the determination result is “
  • the determination result is “
  • step S708 in order to delay the timing at which the assist torque TA is decreased, the forward position X at which the road curvature ⁇ is read is corrected to increase gradually so that it is farther away.
  • the amount is changed by a predetermined allowable amount per unit time, and after returning to the predetermined main program, a new forward position X is set.
  • step S710 it is determined whether the correction flag fc is set to 1.
  • the process proceeds to S711.
  • step S711 it is determined whether or not the absolute value of the steering torque Ts is equal to or greater than a second threshold value Tt2 that is predetermined within a range smaller than the absolute value of the first threshold value Tt1.
  • the second threshold value Tt2 is a value that does not cause hunting even if adjustment of the assist torque TA is stopped at that value, and is, for example, about ⁇ 0.6 Nm.
  • the determination result is “
  • the process proceeds to step S708.
  • the determination result is “
  • the above is the assist torque setting process of the seventh embodiment.
  • the forward position X is gradually corrected toward the front until the absolute value of the steering torque Ts becomes less than the absolute values of the second threshold values Te2 and Tt2.
  • Te2 and Tt2 the absolute values of the second threshold values
  • FIG. 24 is a flowchart illustrating assist torque setting processing according to the eighth embodiment.
  • the process of step S702 in the seventh embodiment described above is changed to a new process of step S801, and the processes of other steps S111 to S119, S501, S701, and S703 to S712 are described above. Since it is the same as that of 7 embodiment, detailed description is abbreviate
  • step S801 thereafter, the assist torque TA at the time when the absolute value of the steering torque Ts becomes equal to or greater than the first threshold Te1 is maintained.
  • the above is the assist torque setting process of the eighth embodiment.

Abstract

The present invention improves operator feeling by adjusting timing when imparting assist torque to a steering mechanism according to the curvature of the road. In order to turn and drive along a vehicle route, assist torque (TA) in the turning direction is imparted according to the curvature (ρ) of the road at a forward position (X). When imparting the assist torque (TA) in the turning direction, the forward position (X) changes according to the orientation and size of the steering torque (Ts). For example, when transitioning from driving straight to driving along a curve, the forward position (X) changes to a position near the vehicle when the steering torque (Ts) is opposite the turning direction and the absolute value of the steering torque (Ts) reaches or exceeds a pre-set first threshold (Te1). In addition, when transitioning from driving straight to driving along a curve, the forward position (X) changes to a position far from the vehicle when the steering torque (Ts) is the same as the turning direction and the absolute value of the steering torque (Ts) reaches or exceeds a pre-set first threshold (Tt1).

Description

ステアリング制御装置、ステアリング制御方法Steering control device and steering control method
 本発明は、ステアリング制御装置、及びステアリング制御方法に関するものである。 The present invention relates to a steering control device and a steering control method.
 特許文献1には、自車両が走行車線から大きく逸脱し、走行車線に対する横ずれ量が閾値よりも大きくなったときに、車線逸脱防止の制御を停止することが記載されており、横ずれ量に対する閾値は、操舵トルクに応じて設定されている。例えば、操舵トルクが大きいときには、意図的な操作であると考えられるため、閾値を小さい値に設定することで、制御の停止タイミングを早めている。一方、操舵トルクが小さいときには、意図的な操作とは限らないため、閾値を大きい値に設定することで、制御の停止タイミングを遅らせている。 Patent Document 1 describes that the control for preventing lane departure is stopped when the own vehicle greatly deviates from the traveling lane and the lateral deviation amount with respect to the traveling lane becomes larger than the threshold value. Is set according to the steering torque. For example, when the steering torque is large, it is considered that the operation is an intentional operation. Therefore, the control stop timing is advanced by setting the threshold value to a small value. On the other hand, when the steering torque is small, the operation is not necessarily an intentional operation, so the control stop timing is delayed by setting the threshold value to a large value.
特開2011-168194号公報JP 2011-168194 A
 上記の技術は、制御の停止タイミングの改善を図るものであるが、制御を実行しているときのタイミングについても検討する必要がある。例えばカーブを走行する際に、カーブの曲率に応じてステアリング機構にアシストトルクを付与する構成においては、そのアシストトルクと運転者のステアリング操作のタイミングがずれると、操作フィーリングが低下してしまう。
 本発明の課題は、道路曲率に応じてステアリング機構にアシストトルクを付与する際のタイミングを調整し、操作フィーリングを向上させることである。
Although the above technique is intended to improve the control stop timing, it is also necessary to consider the timing when the control is executed. For example, in a configuration in which assist torque is applied to the steering mechanism according to the curvature of the curve when traveling on a curve, if the assist torque deviates from the timing of the driver's steering operation, the operation feeling is reduced.
The subject of this invention is adjusting the timing at the time of giving assist torque to a steering mechanism according to a road curvature, and improving an operation feeling.
 本発明の一態様に係るステアリング制御装置は、自車進路前方の道路曲率を検出し、自車進路に沿って旋回走行するために、予め定めた前方位置の道路曲率に応じて、旋回方向のアシストトルクをステアリング機構に付与する。また、運転者の操舵トルクを検出し、旋回方向のアシストトルクを制御する際に、操舵トルクの向き及び大きさに応じて、前方位置を変更する。 The steering control device according to one aspect of the present invention detects the road curvature ahead of the own vehicle course, and turns in the turning direction in accordance with the road curvature at a predetermined forward position in order to turn along the own car course. Assist torque is applied to the steering mechanism. Further, when detecting the steering torque of the driver and controlling the assist torque in the turning direction, the front position is changed according to the direction and magnitude of the steering torque.
 本発明によれば、旋回方向のアシストトルクを制御する際に、操舵トルクの向き及び大きさに応じて、前方位置を変更するので、アシストトルクを付与する際のタイミングを調整し、操作フィーリングを向上させることができる。 According to the present invention, when the assist torque in the turning direction is controlled, the front position is changed according to the direction and magnitude of the steering torque. Therefore, the timing when the assist torque is applied is adjusted, and the operation feeling is adjusted. Can be improved.
ステアリングバイワイヤによるステアリング装置の概略構成図である。It is a schematic block diagram of the steering device by a steering by wire. コントローラ20の概略構成である。2 is a schematic configuration of the controller 20. 車速Vに応じた舵角比Rの算出に用いるマップである。It is a map used for calculation of the steering angle ratio R according to the vehicle speed V. 操舵角θsに応じた舵角比Rの算出に用いるマップである。It is a map used for calculation of the steering angle ratio R according to the steering angle θs. 操作側モータ制御部22を示すブロック図である。3 is a block diagram showing an operation side motor control unit 22. FIG. 操舵反力設定処理を示すフローチャートである。It is a flowchart which shows a steering reaction force setting process. 第1実施形態のアシストトルク設定処理を示すフローチャートである。It is a flowchart which shows the assist torque setting process of 1st Embodiment. 操舵角θsと操舵トルクTsとの関係を示すグラフである。It is a graph which shows the relationship between steering angle (theta) s and steering torque Ts. 車速Vに応じた操舵角θsと操舵トルクTsとの関係を示す図である。It is a figure which shows the relationship between the steering angle (theta) s according to the vehicle speed V, and the steering torque Ts. 路面摩擦係数μに応じた操舵角θsと操舵トルクTsとの関係を示す図である。It is a figure which shows the relationship between the steering angle (theta) s according to the road surface friction coefficient (micro | micron | mu) s, and the steering torque Ts. 運転者が早過ぎると感じる場合のアシストトルクTA及び操舵トルクTsを示すタイムチャートである。It is a time chart which shows assist torque TA and steering torque Ts when a driver feels too early. 運転者が遅過ぎると感じる場合のアシストトルクTA及び操舵トルクTsを示すタイムチャートである。It is a time chart which shows assist torque TA and steering torque Ts when a driver feels too late. 第2実施形態のアシストトルク設定処理を示すフローチャートである。It is a flowchart which shows the assist torque setting process of 2nd Embodiment. 第2実施形態で運転者が早過ぎると感じる場合のアシストトルクTA及び操舵トルクTsを示すタイムチャートである。It is a time chart which shows assist torque TA and steering torque Ts when a driver feels that it is too early in 2nd Embodiment. 第3実施形態のアシストトルク設定処理を示すフローチャートである。It is a flowchart which shows the assist torque setting process of 3rd Embodiment. 第3実施形態で運転者が早過ぎると感じる場合のアシストトルクTA及び操舵トルクTsを示すタイムチャートである。It is a time chart which shows assist torque TA and steering torque Ts when a driver feels that it is too early in 3rd Embodiment. 第3実施形態で運転者が遅過ぎると感じる場合のアシストトルクTA及び操舵トルクTsを示すタイムチャートである。It is a time chart which shows the assist torque TA and steering torque Ts when a driver feels that it is too late in 3rd Embodiment. 第4実施形態のアシストトルク設定処理を示すフローチャートである。It is a flowchart which shows the assist torque setting process of 4th Embodiment. 第4実施形態で運転者が早過ぎると感じる場合のアシストトルクTA及び操舵トルクTsを示すタイムチャートである。It is a time chart which shows assist torque TA and steering torque Ts when a driver feels too early in a 4th embodiment. 第5実施形態のアシストトルク設定処理を示すフローチャートである。It is a flowchart which shows the assist torque setting process of 5th Embodiment. 第5実施形態における操舵角θsと操舵トルクTsとの関係を示すグラフである。It is a graph which shows the relationship between steering angle (theta) s and steering torque Ts in 5th Embodiment. 第6実施形態のアシストトルク設定処理を示すフローチャートである。It is a flowchart which shows the assist torque setting process of 6th Embodiment. 第7実施形態のアシストトルク設定処理を示すフローチャートである。It is a flowchart which shows the assist torque setting process of 7th Embodiment. 第8実施形態のアシストトルク設定処理を示すフローチャートである。It is a flowchart which shows the assist torque setting process of 8th Embodiment.
 以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
 《構成》
 本実施形態は、運転者のステアリング操作を誘導することで、運転操作支援を行うものであり、特に極低速で或る程度の大きな操作量と操作精度が求められるようなシーンにおいて、適切なステアリング操作を促すものである。
 図1は、ステアリングバイワイヤによるステアリング装置の概略構成図である。
 ステアリングホイール1は、ステアリングシャフト2に連結され、転舵輪(操向輪)3L及び3Rは、ナックルアーム4、タイロッド5、及びラックアンドピニヨン6を順に介してピニヨンシャフト7に連結される。ステアリングシャフト2及びピニヨンシャフト7は、クラッチ10を介して断続可能な状態で連結されている。
 したがって、クラッチ10を接続(締結)した状態では、ステアリングホイール1を回転させると、ステアリングシャフト2、クラッチ10、及びピニヨンシャフト7が回転する。ピニヨンシャフト7の回転運動は、ラック&ピニヨン6によってタイロッド5の進退運動となり、ナックルアーム4を介して転舵輪3L及び3Rが転舵される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<< First Embodiment >>
"Constitution"
In the present embodiment, driving operation support is performed by guiding the steering operation of the driver. In particular, in a scene where a certain amount of operation amount and operation accuracy at a very low speed are required, appropriate steering is performed. It encourages operation.
FIG. 1 is a schematic configuration diagram of a steering device using steering-by-wire.
The steering wheel 1 is connected to a steering shaft 2, and steered wheels (steering wheels) 3L and 3R are connected to a pinion shaft 7 through a knuckle arm 4, a tie rod 5, and a rack and pinion 6 in this order. The steering shaft 2 and the pinion shaft 7 are connected via a clutch 10 so as to be able to be interrupted.
Therefore, in a state where the clutch 10 is connected (fastened), when the steering wheel 1 is rotated, the steering shaft 2, the clutch 10, and the pinion shaft 7 are rotated. The rotational movement of the pinion shaft 7 is a forward and backward movement of the tie rod 5 by the rack and pinion 6, and the steered wheels 3L and 3R are steered through the knuckle arm 4.
 ピニヨンシャフト7には、転舵側モータ9を連結してあり、クラッチ10を遮断した状態で、転舵側モータ9を駆動すると、ピニヨンシャフト7が回転することで、転舵輪3L及び3Rが転舵される。したがって、ステアリングホイール1の操舵角θsを検出し、検出した操舵角θsに応じて転舵側モータ9を駆動制御することで、転舵輪3L及び3Rの転舵角θwが制御される。
 ステアリングシャフト2には、操作側モータ8を連結してあり、クラッチ10を遮断した状態で、操作側モータ8を駆動すると、ステアリングシャフト2に反力トルクが付与される。したがって、転舵輪3L及び3Rを転舵したときに路面から受ける反力を検出又は推定し、検出又は推定した反力に応じて操作側モータ8を駆動制御することで、運転者のステアリング操作に対して操作反力が付与される。
A steered side motor 9 is connected to the pinion shaft 7. When the steered side motor 9 is driven in a state where the clutch 10 is disconnected, the pinion shaft 7 rotates, so that the steered wheels 3L and 3R are rotated. Steered. Therefore, the steering angle θw of the steered wheels 3L and 3R is controlled by detecting the steering angle θs of the steering wheel 1 and drivingly controlling the steered side motor 9 according to the detected steering angle θs.
An operation side motor 8 is connected to the steering shaft 2. When the operation side motor 8 is driven in a state where the clutch 10 is disconnected, a reaction torque is applied to the steering shaft 2. Accordingly, the reaction force received from the road surface when the steered wheels 3L and 3R are steered is detected or estimated, and the operation side motor 8 is driven and controlled in accordance with the detected or estimated reaction force, so that the driver can perform the steering operation. In contrast, an operation reaction force is applied.
 通常は、クラッチ10を遮断した状態で、転舵側モータ9を駆動制御すると共に、操作側モータ8を駆動制御することで、ステアバイワイヤを実行し、所望のステアリング特性や旋回挙動特性を実現し、且つ良好な操作フィーリングを実現する。一方、システムに異常が生じた場合には、ステアバイワイヤを中止し、フェイルセーフとしてクラッチ10を締結状態に戻すことで、機械的なバックアップを確保する。
 転舵側モータ9及び操作側モータ8は、例えばマイクロコンピュータで構成されたコントローラ20によって駆動制御される。コントローラ20は、操舵角センサ11、転舵角センサ12、ハブセンサ13、車速センサ14、ヨーレートセンサ15、トルクセンサ31、横加速度センサ32で検出される各種信号を入力する。さらに、コントローラ20は、前方カメラ33、及びナビゲーションシステム34から各種データを入力する。
Normally, the steering side motor 9 is driven and controlled while the clutch 10 is disengaged, and the operation side motor 8 is driven and controlled to execute steer-by-wire to realize desired steering characteristics and turning behavior characteristics. In addition, a good operation feeling is realized. On the other hand, when an abnormality occurs in the system, the steer-by-wire is stopped and the clutch 10 is returned to the engaged state as fail-safe to ensure mechanical backup.
The steered side motor 9 and the operation side motor 8 are driven and controlled by a controller 20 constituted by, for example, a microcomputer. The controller 20 inputs various signals detected by the steering angle sensor 11, the turning angle sensor 12, the hub sensor 13, the vehicle speed sensor 14, the yaw rate sensor 15, the torque sensor 31, and the lateral acceleration sensor 32. Further, the controller 20 inputs various data from the front camera 33 and the navigation system 34.
 操舵角センサ11は、ステアリングシャフト2の操舵角θsを検出する。この操舵角センサ11は、例えばステアリングシャフト2と同期して回転する検出ギヤに内蔵された磁石の回転を、二つのMR(ferro-Magneto Resistance)素子で検出し、ステアリングシャフト2の回転に伴う磁界方向のベクトル変化を電気信号に変換してコントローラ20に入力する。コントローラ20は、入力された電気信号からステアリングシャフト2の操舵角θsを判断する。なお、操舵角センサ11は、右旋回を正の値として検出し、左旋回を負の値として検出する。 The steering angle sensor 11 detects the steering angle θs of the steering shaft 2. The steering angle sensor 11 detects, for example, rotation of a magnet built in a detection gear that rotates in synchronization with the steering shaft 2 by two MR (ferro-Magneto Resistance) elements, and a magnetic field accompanying rotation of the steering shaft 2. The direction vector change is converted into an electric signal and input to the controller 20. The controller 20 determines the steering angle θs of the steering shaft 2 from the input electric signal. The steering angle sensor 11 detects right turn as a positive value and detects left turn as a negative value.
 転舵角センサ12は、ピニヨンシャフト7の転舵角θwを検出する。この転舵角センサ12は、例えばピニヨンシャフト7と同期して回転する検出ギヤに内蔵された磁石の回転を、二つのMR(ferro-Magneto Resistance)素子で検出し、ピニヨンシャフト7の回転に伴う磁界方向のベクトル変化を電気信号に変換してコントローラ20に入力する。コントローラ20は、入力された電気信号からピニヨンシャフト7の転舵角θwを判断する。なお、転舵角センサ12は、右旋回を正の値として検出し、左旋回を負の値として検出する。 The turning angle sensor 12 detects the turning angle θw of the pinion shaft 7. The turning angle sensor 12 detects, for example, rotation of a magnet built in a detection gear that rotates in synchronization with the pinion shaft 7 with two MR (ferro-Magneto®Resistance) elements, and accompanies the rotation of the pinion shaft 7. The vector change in the magnetic field direction is converted into an electrical signal and input to the controller 20. The controller 20 determines the turning angle θw of the pinion shaft 7 from the input electrical signal. The turning angle sensor 12 detects a right turn as a positive value and a left turn as a negative value.
 ハブセンサ13は、タイヤ横力Fyを検出する。このハブセンサ13は、左右輪の夫々のハブユニットに設けられ、例えばホール素子と着磁式のエンコーダを用いて、ハブユニット内の軸受における内輪と外輪の変位差の変化を電気信号に変換してコントローラ20に入力する。コントローラ20は、入力された電気信号からタイヤ横力を判断する。なお、タイヤ横力Fyは、ハブセンサ13で検出された左右輪のタイヤ横力の合計値とする。
 車速センサ14は、車体速度(以下、車速と称す)Vを検出する。この車速センサ14は、例えばトランスミッションにおける出力側のドリブンギヤに設けられ、センサロータの磁力線を検出回路によって検出しており、センサロータの回転に伴う磁界の変化をパルス信号に変換してコントローラ20に入力する。コントローラ20は、入力されたパルス信号から車速Vを判断する。
The hub sensor 13 detects the tire lateral force Fy. The hub sensor 13 is provided in each hub unit of the left and right wheels, and converts, for example, a change in displacement difference between the inner ring and the outer ring in a bearing in the hub unit into an electric signal using a hall element and a magnetized encoder. Input to the controller 20. The controller 20 determines the tire lateral force from the input electrical signal. The tire lateral force Fy is a total value of the tire lateral forces of the left and right wheels detected by the hub sensor 13.
The vehicle speed sensor 14 detects a vehicle body speed (hereinafter referred to as a vehicle speed) V. This vehicle speed sensor 14 is provided, for example, in a driven gear on the output side of the transmission, detects the magnetic lines of force of the sensor rotor by a detection circuit, converts the change in the magnetic field accompanying the rotation of the sensor rotor into a pulse signal, and inputs it to the controller 20. To do. The controller 20 determines the vehicle speed V from the input pulse signal.
 ヨーレートセンサ15は、車体のヨーレートγを検出する。このヨーレートセンサ15は、バネ上となる車体に設けられ、例えば水晶音叉からなる振動子を交流電圧によって振動させ、そして角速度入力時のコリオリ力によって生じる振動子の歪み量を電気信号に変換してコントローラ20に入力する。コントローラ20は、入力された電気信号から車両のヨーレートγを判断する。なお、ヨーレートセンサ15は、右旋回を正の値として検出し、左旋回を負の値として検出する。
 トルクセンサ31は、ステアリングシャフト2に入力されるトルクTsを検出する。このトルクセンサ31は、ステアリングシャフト2の入力側と出力側との間に介在させたトーションバーの捩れ角を、例えばホール素子で検出し、多極磁石とヨークとの相対角度変位としてによって生じる磁束密度の変化を電気信号に変換してコントローラ20に入力する。なお、トルクセンサ31は、運転者の右操舵を正の値として検出し、左操舵を負の値として検出する。
The yaw rate sensor 15 detects the yaw rate γ of the vehicle body. The yaw rate sensor 15 is provided on a body on a spring, and vibrates a vibrator made of, for example, a crystal tuning fork with an alternating voltage, and converts the distortion amount of the vibrator caused by the Coriolis force at the time of angular velocity input into an electric signal. Input to the controller 20. The controller 20 determines the yaw rate γ of the vehicle from the input electric signal. The yaw rate sensor 15 detects right turn as a positive value and detects left turn as a negative value.
The torque sensor 31 detects the torque Ts input to the steering shaft 2. The torque sensor 31 detects the torsion angle of the torsion bar interposed between the input side and the output side of the steering shaft 2 with, for example, a Hall element, and generates magnetic flux as a relative angular displacement between the multipolar magnet and the yoke. The change in density is converted into an electrical signal and input to the controller 20. The torque sensor 31 detects the right steering of the driver as a positive value and detects the left steering as a negative value.
 横加速度センサ32は、車両の横加速度を検出する。この横加速度センサ9は、例えば固定電極に対する可動電極の位置変位を静電容量の変化として検出しており、横加速度と方向に比例した電圧信号に変換してコントローラ6に入力する。コントローラ6は、入力された電圧信号から横加速度を判断する。
 なお、コントローラ20は、センサ類から各検出信号を直接入力しているが、これに限定されるものではない。コントローラ20を他のコントロールユニットと接続し、例えばCSMA/CA方式の多重通信(CAN:Controller Area Network)やフレックスレイ(Flex Ray)等の車載通信ネットワーク(車載LAN)を介して各種データを受信してもよい。
 前方カメラ33は、車体の前方を撮像する。この前方カメラ33は、車室内のフロントウィンドウ上部に設けられた例えばCCDの広角カメラからなり、撮像した車体前方の画像データをコントローラ20に入力する。
The lateral acceleration sensor 32 detects the lateral acceleration of the vehicle. The lateral acceleration sensor 9 detects, for example, the displacement of the movable electrode relative to the fixed electrode as a change in capacitance, and converts it into a voltage signal proportional to the lateral acceleration and inputs it to the controller 6. The controller 6 determines the lateral acceleration from the input voltage signal.
In addition, although the controller 20 inputs each detection signal directly from sensors, it is not limited to this. The controller 20 is connected to another control unit, and receives various data via an in-vehicle communication network (in-vehicle LAN) such as CSMA / CA multiplex communication (CAN: Controller Area Network) or Flex Ray. May be.
The front camera 33 images the front of the vehicle body. The front camera 33 is composed of, for example, a CCD wide-angle camera provided in the upper part of the front window in the vehicle interior, and inputs imaged image data in front of the vehicle body to the controller 20.
 ナビゲーションシステム17は、自車両の現在位置と、その現在位置における道路情報を認識する。このナビゲーションシステム17は、GPS受信機を有し、四つ以上のGPS衛星から到着する電波の時間差に基づいて自車両の位置(緯度、経度、高度)と進行方向とを認識する。そして、DVD‐ROMドライブやハードディスクドライブに記憶された道路種別、道路線形、車線幅員、車両の通行方向等を含めた道路情報を参照し、自車両の現在位置における道路情報を認識しコントローラ20に入力する。なお、安全運転支援システム(DSSS:Driving Safety Support Systems)として、双方向無線通信(DSRC:Dedicated Short Range Communication)を利用し、各種データをインフラストラクチャから受信してもよい。 The navigation system 17 recognizes the current position of the host vehicle and road information at the current position. This navigation system 17 has a GPS receiver, and recognizes the position (latitude, longitude, altitude) of the host vehicle and the traveling direction based on the time difference between radio waves arriving from four or more GPS satellites. Then, the road information including the road type, road alignment, lane width, vehicle traffic direction, etc. stored in the DVD-ROM drive or hard disk drive is referred to, and the road information at the current position of the host vehicle is recognized. input. In addition, as a safe driving support system (DSSS: Driving Safety Support Systems), two-way wireless communication (DSRC: Dedicated Short Range Communication) may be used to receive various data from the infrastructure.
 図2は、コントローラ20の概略構成である。
 コントローラ20は、図2に示すように、転舵側モータ9を駆動制御する転舵側モータ制御部21と、操作側モータ8を駆動制御する操作側モータ制御部22と、を備える。
 転舵側モータ制御部21は、操舵角θsに対する転舵角θwの舵角比R(=θs/θw)を決定してから、転舵側モータ9を駆動することで転舵角θwを制御する。
 舵角比Rは、例えば下記の要領で決定する。
 例えば、図3のマップを参照し、車速Vに応じて舵角比Rを算出する。
 図3は、車速Vに応じた舵角比Rの算出に用いるマップである。
 このマップによれば、車速Vが低いほど舵角比Rが小さくなる。したがって、据え切り時や低速走行時には、小さな操舵角θsで大きな転舵角θwが得られるので、運転者の操作負担が軽減される。一方、高速走行時には、操舵角θsの変化に対する転舵角θwの変化が抑制されるので、過敏な車両挙動が抑制され、走行安定性が確保される。
FIG. 2 is a schematic configuration of the controller 20.
As shown in FIG. 2, the controller 20 includes a steered side motor control unit 21 that drives and controls the steered side motor 9, and an operation side motor control unit 22 that drives and controls the operation side motor 8.
The steered side motor control unit 21 controls the steered angle θw by driving the steered side motor 9 after determining the steered angle ratio R (= θs / θw) of the steered angle θw with respect to the steered angle θs. To do.
The steering angle ratio R is determined, for example, in the following manner.
For example, the steering angle ratio R is calculated according to the vehicle speed V with reference to the map of FIG.
FIG. 3 is a map used to calculate the steering angle ratio R according to the vehicle speed V.
According to this map, the steering angle ratio R decreases as the vehicle speed V decreases. Therefore, at the time of stationary driving or low speed traveling, a large turning angle θw can be obtained with a small steering angle θs, so that the operation burden on the driver is reduced. On the other hand, during high speed traveling, the change in the steering angle θw with respect to the change in the steering angle θs is suppressed, so that sensitive vehicle behavior is suppressed and traveling stability is ensured.
 また、図4のマップを参照し、操舵角θsに応じて舵角比Rを算出してもよい。
 図4は、操舵角θsに応じた舵角比Rの算出に用いるマップである。
 このマップによれば、操舵角θsが小さいほど舵角比Rが大きくなる。したがって、操舵角θsを切り増しするほど、大きな転舵角θwが得られるので、運転者の操作負担が軽減される。一方、略直進走行しているときのようなシーンでは、操舵角θsの変化に対する転舵角θwの変化が抑制されるので、過敏な車両が抑制され、走行安定性が確保される。
 なお、車速V及び操舵角θsの双方に応じて舵角比Rを決定してもよい。すなわち、車速Vに応じた舵角比Rv、及び操舵角θsに応じた舵角比Rsを個別に算出し、これらの平均を算出したり、夫々に重み付けをしてから加算したりする等して、最終的な舵角比Rを決定すればよい。
 上記のように、舵角比Rを決定してから、操舵角θs及び舵角比Rに応じて、目標転舵角θwを算出し、この目標転舵角θwに転舵角θwが一致するように、例えばロバストモデルマッチング手法などを用いて転舵側モータ9を駆動制御する。
Further, the steering angle ratio R may be calculated according to the steering angle θs with reference to the map of FIG.
FIG. 4 is a map used for calculating the steering angle ratio R according to the steering angle θs.
According to this map, the steering angle ratio R increases as the steering angle θs decreases. Therefore, as the steering angle θs is further increased, a larger turning angle θw is obtained, so that the operation burden on the driver is reduced. On the other hand, in a scene such as when traveling substantially straight, the change in the turning angle θw with respect to the change in the steering angle θs is suppressed, so that a sensitive vehicle is suppressed and traveling stability is ensured.
The steering angle ratio R may be determined according to both the vehicle speed V and the steering angle θs. That is, the steering angle ratio Rv corresponding to the vehicle speed V and the steering angle ratio Rs corresponding to the steering angle θs are individually calculated, and an average of these is calculated or added after weighting each. Thus, the final steering angle ratio R may be determined.
As described above, after determining the steering angle ratio R, the target turning angle θw * is calculated according to the steering angle θs and the steering angle ratio R, and the turning angle θw is included in the target turning angle θw *. For example, the driving of the steered side motor 9 is controlled using a robust model matching method or the like.
 図5は、操作側モータ制御部22を示すブロック図である。
 操作側モータ制御部22は、操舵反力設定部23と、アシストトルク設定部24と、加算部25と、駆動制御部26と、を備える。
 操舵反力設定部23は、運転者のステアリング操作に対する操舵反力TRを設定する。また、アシストトルク設定部24は、自車進路に沿って旋回走行するためのアシストトルクTAを設定する。また、加算部25は、操舵反力TRとアシストトルクTAとを加算して最終的な駆動トルクTD設定する。また、駆動制御部26は、駆動トルクTDに応じて操作側モータ8を駆動制御する。
FIG. 5 is a block diagram showing the operation side motor control unit 22.
The operation side motor control unit 22 includes a steering reaction force setting unit 23, an assist torque setting unit 24, an addition unit 25, and a drive control unit 26.
The steering reaction force setting unit 23 sets a steering reaction force TR for the driver's steering operation. Further, the assist torque setting unit 24 sets an assist torque TA for turning along the own vehicle path. The adding unit 25 adds the steering reaction force TR and the assist torque TA to set the final drive torque TD. Further, the drive control unit 26 drives and controls the operation side motor 8 according to the drive torque TD.
 次に、操舵反力設定部23で実行する操舵反力設定処理について説明する。
 図6は、操舵反力設定処理を示すフローチャートである。
 先ずステップS101では、操舵角θsを時間微分して操舵速度dθsを算出する。
 続くステップS102では、下記(1)に示すように、操舵角θsにゲインKaを乗じて角度項トルクTRaを算出する。
  TRa=Ka×θs                           ………(1)
 続くステップS103では、下記(2)式に示すように、操舵速度dθsにゲインKsを乗じて速度項トルクTRsを算出する。
  TRs=Ks×dθs                  ………(2)
 続くステップS104では、下記(3)式に示すように、角度トルクTRaと速度項トルクTRsとを加算して操舵反力Trを算出する。
  TR=TRa+TRs                  ………(3)
Next, a steering reaction force setting process executed by the steering reaction force setting unit 23 will be described.
FIG. 6 is a flowchart showing the steering reaction force setting process.
First, in step S101, the steering speed dθs is calculated by differentiating the steering angle θs with respect to time.
In the subsequent step S102, as shown in (1) below, the angular term torque TRa is calculated by multiplying the steering angle θs by the gain Ka.
TRa = Ka × θs (1)
In the subsequent step S103, the speed term torque TRs is calculated by multiplying the steering speed dθs by the gain Ks as shown in the following equation (2).
TRs = Ks × dθs (2)
In the subsequent step S104, the steering reaction force Tr is calculated by adding the angular torque TRa and the speed term torque TRs as shown in the following equation (3).
TR = TRa + TRs (3)
 続くステップS105では、例えば車速V、ヨーレートγ、及び横加速度Ygに基づいて路面摩擦係数μを算出する。また、各輪の制駆動力とスリップ率との関係に従い、路面摩擦係数μを推定してもよいし、路面摩擦係数μをインフラストラクチャから入手可能であれば、それを用いればよい。
 続くステップS106では、車速V、操舵角θs、及び路面摩擦係数μに基づいて操舵反力の上限値TLを算出する。
 続くステップS107では、操舵反力TRと上限値TLとのうち、小さい方の値を最終的な操舵反力TRとして算出してから所定のメインプログラムに復帰する。
 上記が操舵反力設定処理である。
In the following step S105, the road surface friction coefficient μ is calculated based on the vehicle speed V, the yaw rate γ, and the lateral acceleration Yg, for example. Further, the road surface friction coefficient μ may be estimated according to the relationship between the braking / driving force of each wheel and the slip ratio, and if the road surface friction coefficient μ is available from the infrastructure, it may be used.
In subsequent step S106, an upper limit value TL of the steering reaction force is calculated based on the vehicle speed V, the steering angle θs, and the road surface friction coefficient μ.
In the subsequent step S107, the smaller one of the steering reaction force TR and the upper limit value TL is calculated as the final steering reaction force TR, and then the process returns to a predetermined main program.
The above is the steering reaction force setting process.
 次に、アシストトルク設定部24で実行するアシストトルク設定処理について説明する。
 図7は、第1実施形態のアシストトルク設定処理を示すフローチャートである。
 先ずステップS111では、アシストトルクTAを制御する際の、操舵トルクTsに対する第一閾値Te1及びTt1を設定する。第一閾値Te1は、アシストトルクTAが早過ぎると判断するための閾値であり、例えば±1Nm程度とする。第一閾値Tt1は、アシストトルクTAが遅過ぎると判断するための閾値であり、例えば±1Nm程度とする。これら第一閾値Te1及びTt1は、同じの値でなくともよい。
Next, an assist torque setting process executed by the assist torque setting unit 24 will be described.
FIG. 7 is a flowchart showing the assist torque setting process of the first embodiment.
First, in step S111, first threshold values Te1 and Tt1 for the steering torque Ts when the assist torque TA is controlled are set. The first threshold Te1 is a threshold for determining that the assist torque TA is too early, and is set to about ± 1 Nm, for example. The first threshold value Tt1 is a threshold value for determining that the assist torque TA is too slow, and is set to about ± 1 Nm, for example. These first threshold values Te1 and Tt1 may not be the same value.
 ここで、第一閾値Te1及びTt1の設定に関するアシストトルクTAと操舵トルクTsとの関係について説明する。
 図8は、操舵角θsと操舵トルクTsとの関係を示すグラフである。
 操舵角θsと操舵トルクTsとの関係は、操舵角θsを横軸とし、操舵トルクTsを縦軸とする座標で表し、右旋回を正の値とし、左旋回を負の値としている。
 先ず、アシストトルクTAを付与しないコンベンショナルなステアリング機構で、ステアリング操作を行った場合の操舵角θsと操舵トルクTsとの関係を特性線Lnで示す。特性線Lnによれば、操舵トルクTsを0から正方向に増加させると、操舵角θsが0(初期操舵角)から正方向に増加し、操舵トルクTsを負方向に減少させると、操舵角θsが0から負方向に減少する。なお、操舵角θsの絶対値を増加させるとき、そのステアリング操作の初期に比較的大きな操舵トルクTsを要する。
Here, the relationship between the assist torque TA and the steering torque Ts regarding the setting of the first thresholds Te1 and Tt1 will be described.
FIG. 8 is a graph showing the relationship between the steering angle θs and the steering torque Ts.
The relationship between the steering angle θs and the steering torque Ts is expressed by coordinates with the steering angle θs as the horizontal axis and the steering torque Ts as the vertical axis, with the right turn being a positive value and the left turn being a negative value.
First, the characteristic line Ln shows the relationship between the steering angle θs and the steering torque Ts when a steering operation is performed with a conventional steering mechanism that does not apply the assist torque TA. According to the characteristic line Ln, when the steering torque Ts is increased in the positive direction from 0, the steering angle θs is increased in the positive direction from 0 (initial steering angle), and when the steering torque Ts is decreased in the negative direction, the steering angle is increased. θs decreases from 0 in the negative direction. When the absolute value of the steering angle θs is increased, a relatively large steering torque Ts is required at the initial stage of the steering operation.
 次に、アシストトルクTAを付与した状態の操舵角θsと操舵トルクTsとの関係を特性線Laで示す。ここでは、右方向のカーブに沿って走行するシーンを例に説明する。先ずカーブに沿って走行するための操舵角θsを必要操舵角とし、この必要操舵角を得るための操舵トルクTsを必要トルクとし、この必要トルク分をアシストトルクTAとする。このアシストトルクTAにより、運転者の操舵トルクTsが0でも必要操舵角が達成される。
 このアシストトルクTAを付与した状態の操舵角θsと操舵トルクTsとの関係を特性線Laで示す。この特性線Laは、特性線Lnを横軸に沿って必要操舵角分だけ正方向に平行移動させたものとなる。この特性線Laによれば、操舵トルクTsを0から正方向に増加させると、操舵角θsが必要操舵角から正方向に増加し、操舵トルクTsを0から負方向に減少させると、操舵角θsが必要操舵角から負方向に減少する。
Next, the relationship between the steering angle θs and the steering torque Ts when the assist torque TA is applied is indicated by a characteristic line La. Here, a scene that runs along a curve in the right direction will be described as an example. First, a steering angle θs for traveling along a curve is set as a required steering angle, a steering torque Ts for obtaining the required steering angle is set as a required torque, and this required torque is set as an assist torque TA. With this assist torque TA, the required steering angle is achieved even when the steering torque Ts of the driver is zero.
A relationship between the steering angle θs and the steering torque Ts in a state where the assist torque TA is applied is indicated by a characteristic line La. This characteristic line La is obtained by translating the characteristic line Ln in the positive direction along the horizontal axis by the required steering angle. According to this characteristic line La, when the steering torque Ts is increased from 0 to the positive direction, the steering angle θs is increased from the required steering angle to the positive direction, and when the steering torque Ts is decreased from 0 to the negative direction, the steering angle is increased. θs decreases in the negative direction from the required steering angle.
 次に、直進走行からカーブ走行に移行する際に、予め定めた前方位置の道路曲率ρに応じたアシストトルクTAを付与し、操舵角θsが0から必要操舵角まで増加するときの操舵トルクTsに着目する。ここでは、運転者はステアリングホイール1を把持しているものとする。
 先ず、正方向のアシストトルクTAの制御と、運転者のステアリング操作とが略同時に(同期して)なされる場合の操舵角θsと操舵トルクTsとの関係を特性線Lsで示す。この特性線Lsでは、運転者が操舵角θsの正方向への増加を望んで自らステアリング操作を行うが、それと略同時にアシストトルクTAが制御されるので、操舵トルクTsは略0となり、そのまま操舵角θsが正方向へと増加し必要操舵角が達成される。このように、旋回方向のアシストトルクTAの制御が運転者のステアリング操作と略同時になされる場合、操舵トルクTsは略0となる。
Next, when shifting from straight traveling to curve traveling, an assist torque TA corresponding to a predetermined road curvature ρ is applied to the steering torque Ts when the steering angle θs increases from 0 to the required steering angle. Pay attention to. Here, it is assumed that the driver is holding the steering wheel 1.
First, the characteristic line Ls shows the relationship between the steering angle θs and the steering torque Ts when the control of the assist torque TA in the positive direction and the steering operation of the driver are performed substantially simultaneously (synchronously). In this characteristic line Ls, the driver performs the steering operation himself in hope of increasing the steering angle θs in the positive direction. However, since the assist torque TA is controlled almost simultaneously with the steering angle Ts, the steering torque Ts becomes substantially 0, and the steering is performed as it is. The angle θs increases in the positive direction and the required steering angle is achieved. Thus, when the assist torque TA in the turning direction is controlled substantially simultaneously with the driver's steering operation, the steering torque Ts becomes substantially zero.
 一方、正方向のアシストトルクTAの制御に対して、運転者が早過ぎると感じる場合の操舵角θsと操舵トルクTsとの関係を特性線Leで示す。この特性線Leでは、先ず正方向のアシストトルクTAが付与され始めると、運転者はまだ操舵角θsの正方向への増加を望んでいないので、正方向のアシストトルクTAに抗して保舵するため、操舵トルクTsの向きは負方向に発生する。しかし、さらに車両が前進すると、運転者が操舵角θsの正方向への増加を望むようになるため、今度は負方向の操舵トルクTsを緩め、アシストトルクTAに従う(任せる)ようになる。したがって、負方向の操舵トルクTsは特性線Laに沿って正方向に増加するようになり、やがて0となり、このとき必要操舵角が達成される。
 このように、旋回方向へのアシストトルクTAの制御が早過ぎると運転者が感じている場合、操舵トルクTsの向きは旋回方向と逆になる。したがって、本実施形態では、操舵トルクTsの向きが旋回方向と逆であり、且つ操舵トルクTsの絶対値が第一閾値Te1以上であるときには、アシストトルクTAの制御に対して、運転者が早過ぎると感じていると判断する。
On the other hand, the relationship between the steering angle θs and the steering torque Ts when the driver feels too early for the control of the assist torque TA in the positive direction is indicated by a characteristic line Le. In this characteristic line Le, when the assist torque TA in the positive direction starts to be applied, the driver does not yet want to increase the steering angle θs in the positive direction, so the steering is held against the assist torque TA in the positive direction. Therefore, the direction of the steering torque Ts is generated in the negative direction. However, when the vehicle further moves forward, the driver wants to increase the steering angle θs in the positive direction, so this time, the steering torque Ts in the negative direction is relaxed and the assist torque TA is followed (or left). Accordingly, the steering torque Ts in the negative direction increases in the positive direction along the characteristic line La and eventually becomes 0, and at this time, the necessary steering angle is achieved.
Thus, when the driver feels that the assist torque TA is controlled too early in the turning direction, the direction of the steering torque Ts is opposite to the turning direction. Therefore, in this embodiment, when the direction of the steering torque Ts is opposite to the turning direction and the absolute value of the steering torque Ts is equal to or greater than the first threshold value Te1, the driver is quicker than the control of the assist torque TA. Judge that you feel too much.
 逆に、正方向のアシストトルクTAの制御に対して、運転者が遅過ぎると感じる場合の操舵角θsと操舵トルクTsとの関係を特性線Ltで示す。この特性線Ltでは、アシストトルクTAよりも先に運転者が操舵角θsの正方向への増加を望むので、運転者が自ら正方向へ操舵トルクTsを増加させる。このとき、操舵トルクTsは特性線Lnに沿って正方向に増加する。しかし、さらに車両が前進すると、正方向のアシストトルクTAが付与され始めるので、今度は正方向の操舵トルクTsを緩め、アシストトルクTAに従う(任せる)ようになる。なお、正方向に操舵トルクTsを増加させていた状態から、さらに正方向のアシストトルクTAが付与されることで、操舵角θsが必要操舵角を上回ってオーバーシュートする傾向がある。したがって、切り過ぎた分だけ操舵角θsを戻す修正操舵を行うため、正方向の操舵トルクTsは特性線Laに沿って減少するようになり、やがて0となり、このとき必要操舵角が達成される。 Conversely, the relationship between the steering angle θs and the steering torque Ts when the driver feels that the driver is too slow with respect to the control of the assist torque TA in the forward direction is indicated by a characteristic line Lt. In this characteristic line Lt, since the driver desires to increase the steering angle θs in the positive direction before the assist torque TA, the driver himself increases the steering torque Ts in the positive direction. At this time, the steering torque Ts increases in the positive direction along the characteristic line Ln. However, when the vehicle further moves forward, the positive assist torque TA starts to be applied, so that the positive steering torque Ts is relaxed and the assist torque TA is followed (or left). In addition, when the steering torque Ts is increased in the positive direction and the assist torque TA in the positive direction is further applied, the steering angle θs tends to overshoot beyond the necessary steering angle. Accordingly, since the correction steering is performed to return the steering angle θs by the excessive amount, the forward steering torque Ts decreases along the characteristic line La and eventually becomes 0, and the necessary steering angle is achieved at this time. .
 このように、旋回方向へのアシストトルクTAの制御が遅過ぎると運転者が感じている場合、操舵トルクTsの向きは旋回方向と同じになる。したがって、本実施形態では、操舵トルクTsの向きが旋回方向と同じであり、且つ操舵トルクTsの絶対値が第一閾値Tt1以上であるときには、アシストトルクTAの制御に対して、運転者が遅過ぎると感じていると判断する。
 上記が第一閾値Te1及びTt1の設定に関するアシストトルクTAと操舵トルクTsとの関係である。
 続くステップS112では、車速Vを読込む。
 続くステップS113では、車速Vに応じて閾値Te1及びTt1を調整する。
 ここでは、車速Vが高いほど閾値Te1及びTt1の絶対値を大きな値に調整し、車速Vが低いほど閾値Te1及びTt1の絶対値を小さな値に調整する。これは、走行している状態では、同じの操舵角θsを得るのに、車速Vが高いほど大きな操舵トルクTsを要するからである。
Thus, when the driver feels that the control of the assist torque TA in the turning direction is too slow, the direction of the steering torque Ts is the same as the turning direction. Therefore, in the present embodiment, when the direction of the steering torque Ts is the same as the turning direction and the absolute value of the steering torque Ts is equal to or greater than the first threshold value Tt1, the driver is delayed with respect to the control of the assist torque TA. Judge that you feel too much.
The above is the relationship between the assist torque TA and the steering torque Ts regarding the setting of the first thresholds Te1 and Tt1.
In subsequent step S112, the vehicle speed V is read.
In the subsequent step S113, the threshold values Te1 and Tt1 are adjusted according to the vehicle speed V.
Here, the absolute values of the thresholds Te1 and Tt1 are adjusted to a larger value as the vehicle speed V is higher, and the absolute values of the thresholds Te1 and Tt1 are adjusted to a smaller value as the vehicle speed V is lower. This is because in order to obtain the same steering angle θs while traveling, a larger steering torque Ts is required as the vehicle speed V is higher.
 図9は、車速Vに応じた操舵角θsと操舵トルクTsとの関係を示す図である。
 例えば、操舵角θsを3deg程度にする場合、車速Vが100km/h程度のときには操舵トルクTsは1.0Nm程度であるが、車速Vが120km/h程度のときには操舵トルクTsは1.3Nm程度となり、車速Vが60km/h程度のときには操舵トルクTsが0.7Nm程度となる。したがって、車速Vが高いほど閾値Te1及びTt1の絶対値を大きな値に調整し、車速Vが低いほど閾値Te1及びTt1の絶対値を小さな値に調整する。
FIG. 9 is a diagram showing the relationship between the steering angle θs and the steering torque Ts according to the vehicle speed V.
For example, when the steering angle θs is about 3 deg, the steering torque Ts is about 1.0 Nm when the vehicle speed V is about 100 km / h, but the steering torque Ts is about 1.3 Nm when the vehicle speed V is about 120 km / h. Thus, when the vehicle speed V is about 60 km / h, the steering torque Ts is about 0.7 Nm. Therefore, the absolute values of the threshold values Te1 and Tt1 are adjusted to larger values as the vehicle speed V is higher, and the absolute values of the threshold values Te1 and Tt1 are adjusted to smaller values as the vehicle speed V is lower.
 続くステップS114では、路面摩擦係数μを取得する。
 例えば、車速V、ヨーレートγ、及び横加速度Ygに基づいて路面摩擦係数μを算出する。また、各輪の制駆動力とスリップ率との関係に従い、路面摩擦係数μを推定してもよいし、路面摩擦係数μをインフラストラクチャから入手可能であれば、それを用いればよい。
 続くステップS115では、路面摩擦係数μに応じて閾値Te1及びTt1を調整する。
 ここでは、路面摩擦係数μが低いほど閾値Te1及びTt1の絶対値を小さな値に調整し、路面摩擦係数μが高いほど閾値Te1及びTt1の絶対値を大きな値に調整する。これは、同じの操舵角θsを得るのに、路面摩擦係数μが低いほど小さな操舵トルクTsで済むからである。
In the subsequent step S114, the road surface friction coefficient μ is acquired.
For example, the road surface friction coefficient μ is calculated based on the vehicle speed V, the yaw rate γ, and the lateral acceleration Yg. Further, the road surface friction coefficient μ may be estimated according to the relationship between the braking / driving force of each wheel and the slip ratio, and if the road surface friction coefficient μ is available from the infrastructure, it may be used.
In subsequent step S115, the threshold values Te1 and Tt1 are adjusted according to the road surface friction coefficient μ.
Here, the absolute values of the threshold values Te1 and Tt1 are adjusted to smaller values as the road surface friction coefficient μ is lower, and the absolute values of the threshold values Te1 and Tt1 are adjusted to larger values as the road surface friction coefficient μ is higher. This is because, in order to obtain the same steering angle θs, a smaller steering torque Ts is required as the road surface friction coefficient μ is lower.
 図10は、路面摩擦係数μに応じた操舵角θsと操舵トルクTsとの関係を示す図である。
 例えば、操舵角θsを3deg程度にする場合、例えば乾燥路等、路面摩擦係数μの高い通常の路面のときには操舵トルクTsは1.0Nm程度であるが、例えば降雨路、雪路、凍結路等、路面摩擦係数μの低い滑りやすい路面のときには操舵トルクTsは0.7Nm程度となる。したがって、路面摩擦係数μが低いほど閾値Te1及びTt1の絶対値を小さな値に調整し、路面摩擦係数μが高いほど閾値Te1及びTt1の絶対値を大きな値に調整する。
 続くステップS116では、前方位置Xの道路曲率ρを検出する。ここで、前方位置Xとは、自車両からの距離である。
 ここでは、前方カメラ33で撮像した画像データから算出したり、ナビゲーションシステム17で認識した自車両の現在位置と、その現在位置における道路情報とに基づいて取得したりする。
FIG. 10 is a diagram showing the relationship between the steering angle θs and the steering torque Ts according to the road surface friction coefficient μ.
For example, when the steering angle θs is set to about 3 degrees, the steering torque Ts is about 1.0 Nm on a normal road surface with a high road surface friction coefficient μ such as a dry road, for example, a rainy road, a snowy road, a frozen road, etc. When the road surface is a slippery road surface having a low friction coefficient μ, the steering torque Ts is about 0.7 Nm. Therefore, the absolute values of the threshold values Te1 and Tt1 are adjusted to smaller values as the road surface friction coefficient μ is lower, and the absolute values of the threshold values Te1 and Tt1 are adjusted to larger values as the road surface friction coefficient μ is higher.
In subsequent step S116, the road curvature ρ at the forward position X is detected. Here, the forward position X is a distance from the host vehicle.
Here, it is calculated from image data picked up by the front camera 33, or acquired based on the current position of the host vehicle recognized by the navigation system 17 and road information at the current position.
 続くステップS117では、前方位置Xの道路曲率ρに応じて、アシストトルクTAを設定する。
 ここでは、前方位置Xの道路曲率ρに応じた必要操舵角を算出し、例えば前述した特性線Lnに従い、必要操舵角を達成するのに必要となる必要トルクを算出し、この必要トルク分をアシストトルクTAとして設定する。
 続くステップS118では、アシストトルクTAを加算部25へと出力する。これにより、駆動制御部26は、操舵反力TR及びアシストトルクTAとを加算した最終的な駆動トルクTDに応じて操作側モータ8を駆動制御する。
 続くステップS119では、操舵トルクTsを読込む。
 続くステップS120では、操舵トルクTs及び道路曲率ρの符号を判定し、操舵トルクTsの向きと道路曲率ρの向きとが逆方向であるか否かを判定する。ここで、操舵トルクTsと道路曲率ρとが逆方向であるときには、運転者のステアリング操作よりもアシストトルクTAの付与がタイミングが早いと判断してステップS121に移行する。一方、操舵トルクTsと道路曲率ρとが同じ方向であるときには、運転者のステアリング操作よりもアシストトルクTAの付与がタイミングが遅いと判断してステップS123に移行する。
In the subsequent step S117, the assist torque TA is set according to the road curvature ρ at the forward position X.
Here, the required steering angle corresponding to the road curvature ρ of the forward position X is calculated, for example, the required torque required to achieve the required steering angle is calculated according to the above-described characteristic line Ln, and this required torque amount is calculated. Set as assist torque TA.
In the subsequent step S118, the assist torque TA is output to the adding unit 25. As a result, the drive control unit 26 drives and controls the operation side motor 8 according to the final drive torque TD obtained by adding the steering reaction force TR and the assist torque TA.
In the subsequent step S119, the steering torque Ts is read.
In the subsequent step S120, the signs of the steering torque Ts and the road curvature ρ are determined, and it is determined whether or not the direction of the steering torque Ts and the direction of the road curvature ρ are opposite. Here, when the steering torque Ts and the road curvature ρ are in the opposite directions, it is determined that the application of the assist torque TA is earlier than the driver's steering operation, and the process proceeds to step S121. On the other hand, when the steering torque Ts and the road curvature ρ are in the same direction, it is determined that the application of the assist torque TA is later than the steering operation by the driver, and the process proceeds to step S123.
 ステップS121では、操舵トルクTsの絶対値が、前述した第一閾値Te1の絶対値以上であるか否かを判定する。ここで、判定結果が『|Ts|≧|Te1|』であるときには、アシストトルクTAを付与するタイミングに対して、運転者が早過ぎると感じていると判断してステップS122に移行する。一方、判定結果が『|Ts|<|Te1|』であるときには、アシストトルクTAを付与するタイミングに対して、運転者が早過ぎるとは感じていないと判断して、そのまま所定のメインプログラムに復帰する。
 ステップS122では、アシストトルクTAを付与するタイミングを遅らせるため、道路曲率ρを読込む前方位置Xを手前に補正する。すなわち、下記に示すように、前方位置Xから予め定めた距離ΔXだけ手前に近づけた位置(X-ΔX)を、新たな前方位置Xに補正してから所定のメインプログラムに復帰する。次回以降の演算では、補正した前方位置Xの道路曲率ρを読込む。なお、前方位置Xの急変を避けるために、前方位置Xに対して、単位時間当たりに予め定めた許容量ずつ変更する。
  X ← X-ΔX
In step S121, it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold Te1. Here, when the determination result is “| Ts | ≧ | Te1 |”, it is determined that the driver feels too early with respect to the timing of applying the assist torque TA, and the process proceeds to step S122. On the other hand, when the determination result is “| Ts | <| Te1 |”, it is determined that the driver does not feel that it is too early with respect to the timing of applying the assist torque TA, and the predetermined main program is directly executed. Return.
In step S122, in order to delay the timing for applying the assist torque TA, the front position X at which the road curvature ρ is read is corrected to the front. That is, as shown below, a position (X−ΔX) that is closer to the front by a predetermined distance ΔX from the front position X is corrected to a new front position X and then returned to a predetermined main program. In the subsequent calculation, the corrected road curvature ρ at the forward position X is read. In order to avoid a sudden change in the forward position X, the forward position X is changed by a predetermined allowable amount per unit time.
X ← X-ΔX
 ステップS123では、操舵トルクTsの絶対値が、前述した第一閾値Tt1の絶対値以上であるか否かを判定する。ここで、判定結果が『|Ts|≧|Tt1|』であるときには、アシストトルクTAを付与するタイミングに対して、運転者が遅過ぎると感じていると判断してステップS124に移行する。一方、判定結果が『|Ts|<|Tt1|』であるときには、アシストトルクTAを付与するタイミングに対して、運転者が遅過ぎるとは感じていないと判断して、そのまま所定のメインプログラムに復帰する。
 ステップS124では、アシストトルクTAを付与するタイミングを早めるため、道路曲率ρを読込む前方位置Xを遠方に補正する。すなわち、前方位置Xから予め定めた距離ΔXだけ遠方に遠ざけた位置(X+ΔX)を、新たな前方位置Xに補正してから所定のメインプログラムに復帰する。次回以降の演算では、補正した前方位置Xの道路曲率ρを読込む。なお、前方位置Xの急変を避けるために、前方位置Xに対して、単位時間当たりに予め定めた許容量ずつ変更する。
  X ← X+ΔX
 上記がアシストトルク設定処理である。
In step S123, it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold value Tt1 described above. Here, when the determination result is “| Ts | ≧ | Tt1 |”, it is determined that the driver feels too late with respect to the timing of applying the assist torque TA, and the process proceeds to step S124. On the other hand, when the determination result is “| Ts | <| Tt1 |”, it is determined that the driver does not feel that it is too late with respect to the timing of applying the assist torque TA, and the predetermined main program is directly executed. Return.
In step S124, the forward position X at which the road curvature ρ is read is corrected far away in order to advance the timing for applying the assist torque TA. That is, a position (X + ΔX) that is far away from the front position X by a predetermined distance ΔX is corrected to a new front position X and then returned to a predetermined main program. In the subsequent calculation, the corrected road curvature ρ at the forward position X is read. In order to avoid a sudden change in the forward position X, the forward position X is changed by a predetermined allowable amount per unit time.
X ← X + ΔX
The above is the assist torque setting process.
 《作用》
 次に、第1実施形態の作用について説明する。
 本実施形態は、直進走行からカーブ走行に移行するシーンを想定したものである。
 先ず、予め定めた前方位置Xの道路曲率ρを読込み(ステップS116)、その道路曲率ρに応じたアシストトルクTAを設定する(ステップS117)。アシストトルクTAは、道路曲率ρに従った必要操舵角を得るための必要トルクに相当するので、このアシストトルクTAを出力することで(ステップS118)、運転者の操舵トルクTsを略0としながらも必要操舵角を実現することができる。すなわち、ステアリングホイール1に手を添えているだけの状態で、自車進路に沿って旋回走行できるので、操作負担を軽減することができる。
<Action>
Next, the operation of the first embodiment will be described.
The present embodiment assumes a scene where the vehicle travels from straight traveling to curve traveling.
First, a road curvature ρ at a predetermined forward position X is read (step S116), and an assist torque TA corresponding to the road curvature ρ is set (step S117). Since the assist torque TA corresponds to the necessary torque for obtaining the necessary steering angle according to the road curvature ρ, by outputting the assist torque TA (step S118), the driver's steering torque Ts is made substantially zero. Can also achieve the required steering angle. That is, it is possible to reduce the operation burden since the vehicle can turn along the own vehicle path while only putting a hand on the steering wheel 1.
 しかしながら、道路曲率ρに応じてアシストトルクTAを付与する場合、そのアシストトルクTAを付与するタイミングと運転者の感覚とがずれていると、運転者に違和感を与えてしまう。そこで、本実施形態では、道路曲率ρに応じてアシストトルクTAを付与する際のタイミングを最適化を図っている。すなわち、アシストトルクTAを付与するタイミングに対して、運転者が早過ぎると感じる場合、また遅過ぎると感じる場合に、夫々、アシストトルクTAのタイミングを調整している。 However, when the assist torque TA is applied according to the road curvature ρ, the driver feels uncomfortable if the timing of applying the assist torque TA deviates from the driver's feeling. Therefore, in this embodiment, the timing for applying the assist torque TA according to the road curvature ρ is optimized. That is, the timing of the assist torque TA is adjusted when the driver feels too early or too late with respect to the timing of applying the assist torque TA.
 先ず、アシストトルクTAの付与に対して、運転者が早過ぎると感じる場合について説明する。
 図11は、運転者が早過ぎると感じる場合のアシストトルクTA及び操舵トルクTsを示すタイムチャートである。
 先ず正方向のアシストトルクTAが付与され始めると、運転者はまだ操舵角θsの正方向への増加を望んでいないので、正方向のアシストトルクTAに抗して保舵するため、操舵トルクTsの向きは負方向に発生する。すなわち、操舵トルクTsの向きが旋回方向と逆となる(ステップS120の判定が“Yes”)。そして、負方向の操舵トルクTsが第一閾値Te1以下となるときに、つまり操舵トルクTsの絶対値が第一閾値Te1の絶対値以上となるときに(ステップS121の判定が“Yes”)、アシストトルクTAの付与に対して、運転者が早過ぎると感じていると判断する。
First, a case where the driver feels that it is too early for the application of the assist torque TA will be described.
FIG. 11 is a time chart showing the assist torque TA and the steering torque Ts when the driver feels too early.
First, when the assist torque TA in the positive direction starts to be applied, the driver does not yet want to increase the steering angle θs in the positive direction, so that the steering torque Ts is maintained in order to keep the steering against the positive assist torque TA. The direction of is generated in the negative direction. That is, the direction of the steering torque Ts is opposite to the turning direction (the determination in step S120 is “Yes”). When the steering torque Ts in the negative direction is equal to or smaller than the first threshold Te1, that is, when the absolute value of the steering torque Ts is equal to or larger than the absolute value of the first threshold Te1 (determination in step S121 is “Yes”). It is determined that the driver feels that the assist torque TA is applied too early.
 この場合には、アシストトルクTAを付与するタイミングを遅らせるため、道路曲率ρを読込む前方位置Xを、ΔXだけ手前に近づけた位置(X-ΔX)に補正し(ステップS122)、次回以降の演算では、補正した後の前方位置Xにおける道路曲率ρを読込む。これにより、アシストトルクTAが減少してゆくので、それに抗する操舵トルクTsも減少する。そして、補正した後の前方位置Xと運転者の注視する前方位置とが略一致する、つまりアシストトルクTAのタイミングと運転者の感覚とが略一致すると、操舵トルクTsが略0となる。その後は、道路曲率ρに応じてアシストトルクTAが増減しても、そのタイミングが運転者の感覚と略一致している限り、操舵トルクTsは略0の状態を維持する。 In this case, in order to delay the timing for applying the assist torque TA, the forward position X for reading the road curvature ρ is corrected to a position (X−ΔX) closer to the front by ΔX (step S122). In the calculation, the road curvature ρ at the forward position X after correction is read. As a result, the assist torque TA decreases, and the steering torque Ts against the assist torque TA also decreases. When the corrected forward position X and the forward position of the driver's gaze substantially coincide, that is, when the timing of the assist torque TA substantially coincides with the driver's feeling, the steering torque Ts becomes substantially zero. Thereafter, even if the assist torque TA increases or decreases according to the road curvature ρ, the steering torque Ts remains substantially zero as long as the timing substantially matches the driver's feeling.
 このように、アシストトルクTAに対して、運転者が早過ぎると感じる場合には、道路曲率ρを読込む前方位置Xを手前に補正してゆくことで、アシストトルクTAを付与する際のタイミングを遅らせて最適化することができる。これにより、アシストトルクTAの付与が運転者のステアリング操作と略同時になされるようになるので、ステアリングホイール1に手を添えているだけのような状態で、自車進路に沿って旋回走行できる。したがって、操作負担を軽減でき、操作フィーリングも向上する。
 なお、前方位置XをΔXだけ手前に近づけても、依然として操舵トルクTsの絶対値が第一閾値Te1の絶対値以上であるときには、さらに前方位置XをΔXだけ手前に近づける。すなわち、操舵トルクTsの絶対値が第一閾値Te1の絶対値以上となる度に、ΔXずつ手前に補正してゆく。したがって、操舵トルクTsの絶対値が第一閾値Te1の絶対値未満となるまで、前方位置Xの調整が継続して行われるので、アシストトルクTAを付与する際のタイミングを最適化することができる。
In this way, when the driver feels that the assist torque TA is too early, the timing when the assist torque TA is applied by correcting the forward position X for reading the road curvature ρ to the front. Can be delayed and optimized. As a result, the assist torque TA is applied almost simultaneously with the driver's steering operation, so that the vehicle can turn along the vehicle's own course while the hand is touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved.
Even if the forward position X is brought closer to the front by ΔX, when the absolute value of the steering torque Ts is still equal to or larger than the absolute value of the first threshold Te1, the front position X is further brought closer to the front by ΔX. That is, every time the absolute value of the steering torque Ts becomes equal to or greater than the absolute value of the first threshold value Te1, it is corrected forward by ΔX. Therefore, since the adjustment of the front position X is continuously performed until the absolute value of the steering torque Ts becomes less than the absolute value of the first threshold Te1, the timing when the assist torque TA is applied can be optimized. .
 次に、アシストトルクTAの付与に対して、運転者が遅過ぎると感じる場合について説明する。
 図12は、運転者が遅過ぎると感じる場合のアシストトルクTA及び操舵トルクTsを示すタイムチャートである。
 ここでは、アシストトルクTAよりも先に運転者が自ら正方向へ操舵トルクTsを増加させる。すなわち、操舵トルクTsの向きが旋回方向と同じとなる(ステップS120の判定が“No”)。そして、正方向の操舵トルクTsが第一閾値Tt1以上となるときに(ステップS123の判定が“Yes”)、アシストトルクTAの付与に対して、運転者が遅過ぎると感じていると判断する。
Next, a case where the driver feels that the assist torque TA is too late will be described.
FIG. 12 is a time chart showing the assist torque TA and the steering torque Ts when the driver feels too late.
Here, the driver himself increases the steering torque Ts in the positive direction before the assist torque TA. That is, the direction of the steering torque Ts is the same as the turning direction (determination in step S120 is “No”). Then, when the steering torque Ts in the positive direction becomes equal to or greater than the first threshold value Tt1 (determination in step S123 is “Yes”), it is determined that the driver feels too late with respect to the application of the assist torque TA. .
 この場合には、アシストトルクTAを付与するタイミングを早めるため、道路曲率ρを読込む前方位置Xを、ΔXだけ遠方に遠ざけた位置(X+ΔX)に補正し(ステップS124)、次回以降の演算では、補正した後の前方位置Xにおける道路曲率ρを読込む。これにより、アシストトルクTAが付与され始め増加するので、運転者はそのアシストトルクTAに従う(任せる)ようになり操舵トルクTsが減少する。そして、補正した後の前方位置Xと運転者の注視する前方位置とが略一致する、つまりアシストトルクTAのタイミングと運転者の感覚とが略一致すると、操舵トルクTsが略0となる。その後は、道路曲率ρに応じてアシストトルクTAが増減しても、そのタイミングが運転者の感覚と略一致している限り、操舵トルクTsは略0の状態を維持する。 In this case, in order to advance the timing of applying the assist torque TA, the front position X where the road curvature ρ is read is corrected to a position (X + ΔX) far away by ΔX (step S124). The road curvature ρ at the forward position X after correction is read. As a result, the assist torque TA starts to be applied and increases, so that the driver follows (trusts) the assist torque TA and the steering torque Ts decreases. When the corrected forward position X substantially coincides with the forward position of the driver's gaze, that is, when the assist torque TA timing substantially coincides with the driver's feeling, the steering torque Ts becomes substantially zero. Thereafter, even if the assist torque TA increases or decreases according to the road curvature ρ, the steering torque Ts remains substantially zero as long as the timing substantially matches the driver's feeling.
 このように、アシストトルクTAに対して、運転者が遅過ぎると感じる場合には、道路曲率ρを読込む前方位置Xを遠方に補正してゆくことで、アシストトルクTAを付与する際のタイミングを早めて最適化することができる。これにより、アシストトルクTAの付与が運転者のステアリング操作と略同時になされるようになるので、ステアリングホイール1に手を添えているだけのような状態で、自車進路に沿って旋回走行できる。したがって、操作負担を軽減でき、操作フィーリングも向上する。
 なお、前方位置XをΔXだけ遠方に遠ざけても、依然として操舵トルクTsの絶対値が第一閾値Tt1の絶対値以上であるときには、さらに前方位置XをΔXだけ遠方に遠ざける。すなわち、操舵トルクTsの絶対値が第一閾値Tt1の絶対値以上となる度に、ΔXずつ遠方に補正してゆく。したがって、操舵トルクTsの絶対値が第一閾値Tt1の絶対値未満となるまで、前方位置Xの調整が継続して行われるので、アシストトルクTAを付与する際のタイミングを最適化することができる。
As described above, when the driver feels that the assist torque TA is too late, the timing when the assist torque TA is applied by correcting the forward position X for reading the road curvature ρ in the distance. Can be optimized early. As a result, the assist torque TA is applied almost simultaneously with the driver's steering operation, so that the vehicle can turn along the vehicle's own course while the hand is touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved.
Even if the front position X is moved away by ΔX, when the absolute value of the steering torque Ts is still equal to or larger than the absolute value of the first threshold value Tt1, the front position X is further moved away by ΔX. That is, every time the absolute value of the steering torque Ts becomes equal to or larger than the absolute value of the first threshold value Tt1, the distance is corrected by ΔX in the distance. Therefore, since the adjustment of the front position X is continuously performed until the absolute value of the steering torque Ts becomes less than the absolute value of the first threshold value Tt1, the timing when the assist torque TA is applied can be optimized. .
 《応用例》
 本実施形態では、ステアリングバイワイヤに適用した構成について説明したが、これに限定されるものはなく、ステアリング機構にアシストトルクTAを付与できる構成であれば、他の如何なる構成に適用してもよい。例えば、電動パワーステアリング装置で本実施形態を適用してもよい。また、ステアリングバイワイヤの構成であっても、フェイルセーフでクラッチ10を接続したときに、操作側モータ8又は転舵側モータ9の少なくとも一方によって電動パワーステアリング制御を実行する場合でも適用することができる。
 本実施形態では、操舵反力TRとアシストトルクTAとを加算して最終的な駆動トルクTDを設定する構成について説明したが、これに限定されるものではない。操舵反力設定部23で設定した操舵反力TR、及びアシストトルク設定部24で設定したアシストトルクTAのうち、例えば運転者がスイッチ操作で何れか一方を選択できるような構成にしてもよい。これによれば、通常のステアリングバイワイヤ制御を実行するか、又はカーブに沿ってアシストトルクTAを付与するアシスト制御を実行するかを、運転者が任意に選ぶことができる。
《Application example》
In the present embodiment, the configuration applied to steering-by-wire has been described. However, the present invention is not limited to this, and may be applied to any other configuration as long as the assist torque TA can be applied to the steering mechanism. For example, the present embodiment may be applied to an electric power steering device. Further, even when the steering-by-wire configuration is used, the present invention can be applied even when electric power steering control is executed by at least one of the operation side motor 8 or the steered side motor 9 when the clutch 10 is connected in a fail-safe manner. .
In the present embodiment, the configuration in which the steering reaction force TR and the assist torque TA are added to set the final drive torque TD has been described, but the present invention is not limited to this. For example, the driver may select one of the steering reaction force TR set by the steering reaction force setting unit 23 and the assist torque TA set by the assist torque setting unit 24 by a switch operation. According to this, the driver can arbitrarily select whether to execute normal steering-by-wire control or to perform assist control that applies assist torque TA along the curve.
 本実施形態では、操舵トルクTsの向き及び大きさに応じて、前方位置Xを変更しているが、これに限定されるものではない。すなわち、操舵トルクTsの向き及び大きさに応じて、前方位置Xを変更した場合と等しくなるように、道路曲率ρ及びアシストトルクTAの何れか一方を直接変更するようにしてもよい。これによれば、操舵トルクTsの向き及び大きさに応じて、前方位置Xを変更する場合と同様の効果が得られる。
 以上、ステップS116の処理が「曲率検出部」に対応し、ステップS119が「トルク検出部」に対応し、ステップS117、S118、S120~S124の処理が「アシスト制御部」に対応する。また、ステップS112の処理が「車速検出部」に対応し、ステップS114の処理が「摩擦係数取得部」に対応する。
In the present embodiment, the front position X is changed according to the direction and magnitude of the steering torque Ts, but is not limited to this. That is, according to the direction and magnitude of the steering torque Ts, either the road curvature ρ or the assist torque TA may be directly changed so as to be the same as when the front position X is changed. According to this, the same effect as the case where the front position X is changed according to the direction and magnitude of the steering torque Ts can be obtained.
As described above, the processing in step S116 corresponds to the “curvature detection unit”, step S119 corresponds to the “torque detection unit”, and the processing in steps S117, S118, and S120 to S124 corresponds to the “assist control unit”. Further, the process of step S112 corresponds to the “vehicle speed detection unit”, and the process of step S114 corresponds to the “friction coefficient acquisition unit”.
 《効果》
 次に、第1実施形態における主要部の効果を記す。
 (1)本実施形態のステアリング制御装置では、自車進路前方の道路曲率ρを検出し、自車進路に沿って旋回走行するために、予め定めた前方位置Xの道路曲率ρに応じて、旋回方向のアシストトルクTAをステアリング機構に付与する。そして、旋回方向のアシストトルクTAをステアリング機構に付与する際に、操舵トルクTsの向き及び大きさに応じて、前方位置Xを変更する。
 このように、旋回方向のアシストトルクTAをステアリング機構に付与する際に、操舵トルクTsの向き及び大きさに応じて、道路曲率ρを読込む前方位置Xを変更するので、アシストトルクTAを付与する際のタイミングを最適化し、操作フィーリングを向上させることができる。
"effect"
Next, the effect of the main part in 1st Embodiment is described.
(1) In the steering control device of the present embodiment, in order to detect the road curvature ρ in front of the own vehicle path and turn along the own vehicle path, in accordance with the road curvature ρ of the predetermined forward position X, An assist torque TA in the turning direction is applied to the steering mechanism. When the assist torque TA in the turning direction is applied to the steering mechanism, the front position X is changed according to the direction and magnitude of the steering torque Ts.
As described above, when the assist torque TA in the turning direction is applied to the steering mechanism, the front position X from which the road curvature ρ is read is changed according to the direction and magnitude of the steering torque Ts, so the assist torque TA is applied. Timing can be optimized and operational feeling can be improved.
 (2)本実施形態のステアリング制御装置では、直進走行からカーブ走行に移行する場合、操舵トルクTsが旋回方向と逆であり、且つ操舵トルクTsの絶対値が予め定めた第一閾値Te1以上となったときには、前方位置Xを自車両に近い位置に変更する。
 このように、操舵トルクTsが旋回方向と逆であり、且つ操舵トルクTsの絶対値が第一閾値Te1以上であるときには、アシストトルクTAを付与するタイミングに対して、運転者が早過ぎると感じていると判断できる。したがって、前方位置Xを自車両に近い位置に変化させて、アシストトルクTAを付与するタイミングを遅らせることにより、アシストトルクTAを付与する際のタイミングを最適化し、操作フィーリングを向上させることができる。
(2) In the steering control device of the present embodiment, when shifting from straight traveling to curve traveling, the steering torque Ts is opposite to the turning direction, and the absolute value of the steering torque Ts is greater than or equal to a predetermined first threshold value Te1. When this happens, the front position X is changed to a position close to the host vehicle.
Thus, when the steering torque Ts is opposite to the turning direction and the absolute value of the steering torque Ts is equal to or greater than the first threshold value Te1, the driver feels that the driver is too early with respect to the timing for applying the assist torque TA. Can be judged. Therefore, by changing the front position X to a position close to the host vehicle and delaying the timing for applying the assist torque TA, the timing for applying the assist torque TA can be optimized and the operation feeling can be improved. .
 (3)本実施形態のステアリング制御装置では、直進走行からカーブ走行に移行する場合、操舵トルクTsが旋回方向と同じであり、且つ操舵トルクTsの絶対値が予め定めた第一閾値Tt1以上となったときには、前方位置Xを自車両から遠い位置に変更する。
 このように、操舵トルクTsが旋回方向と同じであり、且つ操舵トルクTsの絶対値が第一閾値Tt1以上であるときには、アシストトルクTAを付与するタイミングに対して、運転者が遅過ぎると感じていると判断できる。したがって、前方位置Xを自車両から遠い位置に変化させて、アシストトルクTAを付与するタイミングを早めることにより、アシストトルクTAを付与する際のタイミングを最適化し、操作フィーリングを向上させることができる。
(3) In the steering control device of the present embodiment, when shifting from straight traveling to curve traveling, the steering torque Ts is the same as the turning direction, and the absolute value of the steering torque Ts is greater than or equal to a predetermined first threshold value Tt1. When this happens, the front position X is changed to a position far from the host vehicle.
Thus, when the steering torque Ts is the same as the turning direction and the absolute value of the steering torque Ts is equal to or greater than the first threshold value Tt1, the driver feels that the driver is too late with respect to the timing for applying the assist torque TA. Can be judged. Therefore, by changing the front position X to a position far from the host vehicle and accelerating the timing for applying the assist torque TA, the timing for applying the assist torque TA can be optimized and the operation feeling can be improved. .
 (4)本実施形態のステアリング制御装置では、前方位置Xを、単位時間当たりに予め定めた許容量ずつ変更する。
 このように、前方位置Xを変更する際に、単位時間値に予め定めた許容量ずつ変更することで、前方位置Xの急変を抑制することができる。したがって、アシストトルクTAが急変することを抑制できるので、運転者に違和感を与えることがない。
 (5)本実施形態のステアリング制御装置では、前方位置Xを予め定めた距離ΔXだけ変更する。
 このように、前方位置Xを変更する際に、前方位置Xを予め定めた距離ΔXだけ変更するので、前方位置Xが不必要に変化してしまうことを抑制できる。すなわち、アシストトルクTAを付与するタイミングを遅らせるときに、前方位置Xを手前に近づけ過ぎたり、アシストトルクTAを付与するタイミングを早めるときに、前方位置Xを遠方に遠ざけ過ぎたりする過応答を抑制できる。
(4) In the steering control device of the present embodiment, the front position X is changed by a predetermined allowable amount per unit time.
Thus, when changing the front position X, a sudden change of the front position X can be suppressed by changing the unit time value by a predetermined allowable amount. Therefore, since the sudden change in the assist torque TA can be suppressed, the driver does not feel uncomfortable.
(5) In the steering control device of the present embodiment, the front position X is changed by a predetermined distance ΔX.
As described above, when the front position X is changed, the front position X is changed by the predetermined distance ΔX, so that the front position X can be prevented from being changed unnecessarily. That is, when the timing for applying the assist torque TA is delayed, the excessive response of the front position X being too close to the front or the front position X being too far away when the timing for applying the assist torque TA is advanced is suppressed. it can.
 (6)本実施形態のステアリング制御装置では、車速Vが高いほど、第一閾値Te1及びTt1を大きな値に設定する。
 このように、車速Vが高いほど第一閾値Te1及びTt1を大きな値に設定することで、走行シーンに最適な第一閾値Te1及びTt1を設定することができる。
 (7)本実施形態のステアリング制御装置では、路面摩擦係数μが低いほど、第一閾値Te1及びTt1を小さな値に設定する。
 このように、路面摩擦係数μが低いほど第一閾値Te1及びTt1を小さな値に設定することで、走行シーンに最適な第一閾値Te1及びTt1を設定することができる。
(6) In the steering control device of the present embodiment, the first threshold values Te1 and Tt1 are set to larger values as the vehicle speed V is higher.
As described above, the first threshold values Te1 and Tt1 that are optimal for the traveling scene can be set by setting the first threshold values Te1 and Tt1 to larger values as the vehicle speed V increases.
(7) In the steering control device of the present embodiment, the first threshold values Te1 and Tt1 are set to smaller values as the road surface friction coefficient μ is lower.
Thus, the first threshold values Te1 and Tt1 that are optimal for the traveling scene can be set by setting the first threshold values Te1 and Tt1 to smaller values as the road surface friction coefficient μ is lower.
 (8)本実施形態のステアリング制御装置では、自車進路前方の道路曲率ρを検出し、自車進路に沿って旋回走行するために、予め定めた前方位置Xの道路曲率ρに応じて、旋回方向のアシストトルクTAをステアリング機構に付与する。そして、旋回方向のアシストトルクTAをステアリング機構に付与する際に、操舵トルクTsの向き及び大きさに応じて、前方位置Xを変更した場合と等しくなるように、道路曲率ρ及びアシストトルクTAの一方を変更する。
 このように、旋回方向のアシストトルクTAをステアリング機構に付与する際に、操舵トルクTsの向き及び大きさに応じて、道路曲率ρ及びアシストトルクTAの一方を変更するので、アシストトルクTAを付与する際のタイミングを最適化し、操作フィーリングを向上させることができる。
(8) In the steering control device of the present embodiment, in order to detect the road curvature ρ in front of the own vehicle course and turn along the own vehicle course, in accordance with the road curvature ρ at the predetermined forward position X, An assist torque TA in the turning direction is applied to the steering mechanism. When the assist torque TA in the turning direction is applied to the steering mechanism, the road curvature ρ and the assist torque TA are set to be equal to the case where the front position X is changed according to the direction and magnitude of the steering torque Ts. Change one.
As described above, when the assist torque TA in the turning direction is applied to the steering mechanism, one of the road curvature ρ and the assist torque TA is changed according to the direction and magnitude of the steering torque Ts, so that the assist torque TA is applied. Timing can be optimized and operational feeling can be improved.
 (9)本実施形態のステアリング制御方法では、自車進路前方の道路曲率ρを検出し、自車進路に沿って旋回走行するために、予め定めた前方位置Xの道路曲率ρに応じて、旋回方向のアシストトルクTAをステアリング機構に付与する。そして、旋回方向のアシストトルクTAをステアリング機構に付与する際に、操舵トルクTsの向き及び大きさに応じて、前方位置Xを変更する。
 このように、旋回方向のアシストトルクTAをステアリング機構に付与する際に、操舵トルクTsの向き及び大きさに応じて、道路曲率ρを読込む前方位置Xを変更するので、アシストトルクTAを付与する際のタイミングを最適化し、操作フィーリングを向上させることができる。
(9) In the steering control method of the present embodiment, in order to detect the road curvature ρ in front of the own vehicle path and turn along the own vehicle path, according to the road curvature ρ at the predetermined forward position X, An assist torque TA in the turning direction is applied to the steering mechanism. When the assist torque TA in the turning direction is applied to the steering mechanism, the front position X is changed according to the direction and magnitude of the steering torque Ts.
As described above, when the assist torque TA in the turning direction is applied to the steering mechanism, the front position X from which the road curvature ρ is read is changed according to the direction and magnitude of the steering torque Ts, so the assist torque TA is applied. Timing can be optimized and operational feeling can be improved.
《第2実施形態》
 《構成》
 本実施形態は、直進走行からカーブ走行へ移行する際、操舵トルクTsが旋回方向と逆であり、且つ操舵トルクTsの絶対値が第一閾値Te1以上となったときに、その時点のアシストトルクTAを予め定めた時間Δtだけ維持してから、前方位置Xを自車両に近い位置に変更するものである。
 装置構成は、前述した第1実施形態と同様である。
 次に、アシストトルク設定処理について説明する。
 図13は、第2実施形態のアシストトルク設定処理を示すフローチャートである。
 ここでは、前述した第1実施形態におけるステップS122の処理を、新たなステップS201の処理に変更しており、他のステップS111~S121、S123、S124の処理については、前述した第1実施形態と同様であるため、共通部分については詳細な説明を省略する。
<< Second Embodiment >>
"Constitution"
In this embodiment, when shifting from straight traveling to curve traveling, when the steering torque Ts is opposite to the turning direction and the absolute value of the steering torque Ts is equal to or greater than the first threshold Te1, the assist torque at that time After maintaining TA for a predetermined time Δt, the forward position X is changed to a position close to the host vehicle.
The apparatus configuration is the same as that of the first embodiment described above.
Next, the assist torque setting process will be described.
FIG. 13 is a flowchart illustrating assist torque setting processing according to the second embodiment.
Here, the process in step S122 in the first embodiment described above is changed to a process in new step S201, and the processes in other steps S111 to S121, S123, and S124 are the same as those in the first embodiment described above. Since it is the same, detailed description is omitted about a common part.
 ステップS201では、その時点のアシストトルクTAを予め定めた時間Δtだけ維持する。その後、アシストトルクTAを付与するタイミングを遅らせるため、道路曲率ρを読込む前方位置Xを手前に補正する。すなわち、下記に示すように、前方位置Xから予め定めた距離ΔXだけ手前に近づけた位置(X-ΔX)を、新たな前方位置Xに補正してから所定のメインプログラムに復帰する。次回以降の演算では、補正した前方位置Xの道路曲率ρを読込む。なお、前方位置Xの急変を避けるために、前方位置Xに対して、単位時間当たりに予め定めた許容量ずつ変更する。
  X ← X-ΔX
 上記が第2実施形態のアシストトルク設定処理である。
In step S201, the assist torque TA at that time is maintained for a predetermined time Δt. Thereafter, in order to delay the timing of applying the assist torque TA, the front position X at which the road curvature ρ is read is corrected to the front. That is, as shown below, a position (X−ΔX) that is closer to the front by a predetermined distance ΔX from the front position X is corrected to a new front position X and then returned to a predetermined main program. In the subsequent calculation, the corrected road curvature ρ at the forward position X is read. In order to avoid a sudden change in the forward position X, the forward position X is changed by a predetermined allowable amount per unit time.
X ← X-ΔX
The above is the assist torque setting process of the second embodiment.
 《作用》
 次に、第2実施形態の作用について説明する。
 図14は、第2実施形態で運転者が早過ぎると感じる場合のアシストトルクTA及び操舵トルクTsを示すタイムチャートである。
 先ず正方向のアシストトルクTAが付与され始めると、運転者はまだ操舵角θsの正方向への増加を望んでいないので、正方向のアシストトルクTAに抗して保舵するため、操舵トルクTsの向きは負方向に発生する。すなわち、操舵トルクTsの向きが旋回方向と逆となる(ステップS120の判定が“Yes”)。そして、負方向の操舵トルクTsが第一閾値Te1以下となるときに、つまり操舵トルクTsの絶対値が第一閾値Te1の絶対値以上となるときに(ステップS121の判定が“Yes”)、アシストトルクTAの付与に対して、運転者が早過ぎると感じていると判断する。
<Action>
Next, the operation of the second embodiment will be described.
FIG. 14 is a time chart showing the assist torque TA and the steering torque Ts when the driver feels too early in the second embodiment.
First, when the assist torque TA in the positive direction starts to be applied, the driver does not yet want to increase the steering angle θs in the positive direction, so that the steering torque Ts is maintained in order to keep the steering against the positive assist torque TA. The direction of is generated in the negative direction. That is, the direction of the steering torque Ts is opposite to the turning direction (the determination in step S120 is “Yes”). When the steering torque Ts in the negative direction is equal to or smaller than the first threshold Te1, that is, when the absolute value of the steering torque Ts is equal to or larger than the absolute value of the first threshold Te1 (determination in step S121 is “Yes”). It is determined that the driver feels that the assist torque TA is applied too early.
 この場合には、先ずその時点のアシストトルクTAをΔtの間だけ維持する。その後、アシストトルクTAを付与するタイミングを遅らせるため、道路曲率ρを読込む前方位置Xを、ΔXだけ手前に近づけた位置(X-ΔX)に補正し(ステップS201)、次回以降の演算では、補正した後の前方位置Xにおける道路曲率ρを読込む。これにより、少なくともアシストトルクTAの増加が抑制されるので、それに抗する操舵トルクTsの増加も抑制できる。しかも、アシストトルクTAが固定されるので、Δtの前後でのアシストトルクTAの増減が抑制され、操作フィーリングへの影響も少なくなる。そして、Δtが経過した後、アシストトルクTAが減少してゆくので、それに抗する操舵トルクTsも減少する。そして、補正した後の前方位置Xと運転者の注視する前方位置とが略一致する、つまりアシストトルクTAのタイミングと運転者の感覚とが略一致すると、操舵トルクTsが略0となる。その後は、道路曲率ρに応じてアシストトルクTAが増減しても、そのタイミングが運転者の感覚と略一致している限り、操舵トルクTsは略0の状態を維持する。 In this case, the assist torque TA at that time is first maintained for Δt. Thereafter, in order to delay the timing of applying the assist torque TA, the forward position X at which the road curvature ρ is read is corrected to a position closer to the front by ΔX (X−ΔX) (step S201). The road curvature ρ at the forward position X after correction is read. As a result, at least the increase in the assist torque TA is suppressed, so that the increase in the steering torque Ts against the increase can also be suppressed. Moreover, since the assist torque TA is fixed, the increase / decrease in the assist torque TA before and after Δt is suppressed, and the influence on the operation feeling is reduced. Then, after Δt has elapsed, the assist torque TA decreases, so the steering torque Ts against it also decreases. When the corrected forward position X substantially coincides with the forward position of the driver's gaze, that is, when the assist torque TA timing substantially coincides with the driver's feeling, the steering torque Ts becomes substantially zero. Thereafter, even if the assist torque TA increases or decreases according to the road curvature ρ, the steering torque Ts remains substantially zero as long as the timing substantially matches the driver's feeling.
 このように、アシストトルクTAに対して、運転者が早過ぎると感じる場合には、先ずその時点のアシストトルクTAを一定の時間Δtだけ維持し、それから道路曲率ρを読込む前方位置Xを手前に補正してゆくことで、アシストトルクTAの変動を抑制しながら、それを付与する際のタイミングを遅らせて最適化することができる。これにより、アシストトルクTAの付与が運転者のステアリング操作と略同時になされるようになるので、ステアリングホイール1に手を添えているだけのような状態で、自車進路に沿って旋回走行できる。したがって、操作負担を軽減でき、操作フィーリングも向上する。 As described above, when the driver feels that the assist torque TA is too early, the assist torque TA at that time is first maintained for a certain time Δt, and then the forward position X from which the road curvature ρ is read is set in front. By making corrections to the above, it is possible to optimize by delaying the timing when applying the assist torque TA while suppressing the variation of the assist torque TA. As a result, the assist torque TA is applied almost simultaneously with the driver's steering operation, so that the vehicle can turn along the vehicle's own course while the hand is touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved.
 なお、前方位置XをΔXだけ手前に近づけても、依然として操舵トルクTsの絶対値が第一閾値Te1の絶対値以上であるときには、さらに前方位置XをΔXだけ手前に近づける。すなわち、操舵トルクTsの絶対値が第一閾値Te1の絶対値以上となる度に、ΔXずつ手前に補正してゆく。したがって、操舵トルクTsの絶対値が第一閾値Te1の絶対値未満となるまで、前方位置Xの調整が継続して行われるので、アシストトルクTAを付与する際のタイミングを最適化することができる。
 その他、前述した第1実施形態と共通する部分については、同様の作用効果が得られるものとし、詳細な説明は省略する。
 以上、ステップS117、S118、S120、S121、S201、S123、S124の処理が「アシスト制御部」に対応する。
Even if the forward position X is brought closer to the front by ΔX, when the absolute value of the steering torque Ts is still equal to or larger than the absolute value of the first threshold Te1, the front position X is further brought closer to the front by ΔX. That is, every time the absolute value of the steering torque Ts becomes equal to or greater than the absolute value of the first threshold value Te1, it is corrected forward by ΔX. Therefore, since the adjustment of the front position X is continuously performed until the absolute value of the steering torque Ts becomes less than the absolute value of the first threshold Te1, the timing when the assist torque TA is applied can be optimized. .
Other parts common to the first embodiment described above are assumed to have the same operational effects and will not be described in detail.
As described above, the processes in steps S117, S118, S120, S121, S201, S123, and S124 correspond to the “assist control unit”.
 《効果》
 次に、第2実施形態における主要部の効果を記す。
 (1)本実施形態のステアリング制御装置では、前方位置Xを自車両に近い位置に変更する場合、操舵トルクTsの絶対値が第一閾値Te1以上となった時点のアシストトルクTAを予め定めた時間Δtだけ維持してから、前方位置Xを自車両に近い位置に変更する。
 このように、操舵トルクTsの絶対値が第一閾値Te1以上となった時点のアシストトルクTAを予め定めた時間Δtだけ維持し、それから前方位置Xを手前に補正してゆくことで、アシストトルクTAの増減を抑制しながら、それを付与するタイミングを遅らせて最適化し、操作フィーリングを向上させることができる。
"effect"
Next, the effect of the main part in 2nd Embodiment is described.
(1) In the steering control device of the present embodiment, when the forward position X is changed to a position close to the host vehicle, the assist torque TA at the time when the absolute value of the steering torque Ts becomes equal to or greater than the first threshold Te1 is determined in advance. After maintaining the time Δt, the front position X is changed to a position close to the host vehicle.
In this way, the assist torque TA at the time when the absolute value of the steering torque Ts becomes equal to or greater than the first threshold Te1 is maintained for a predetermined time Δt, and then the front position X is corrected forward, thereby assist torque. While suppressing increase / decrease of TA, the timing which gives it can be delayed and optimized, and operation feeling can be improved.
《第3実施形態》
 《構成》
 本実施形態は、直進走行からカーブ走行へ移行する際、操舵トルクTsの絶対値が、第一閾値Te1及びTt1の絶対値よりも小さな範囲で予め定めた第二閾値Te2及びTt2の絶対値未満となった時点で、前方位置Xを固定にするものである。
 装置構成は、前述した第1実施形態と同様である。
 次に、アシストトルク設定処理について説明する。
 図15は、第3実施形態のアシストトルク設定処理を示すフローチャートである。
 ここでは、前述した第1実施形態におけるステップS121~S124の処理を、新たなステップS301~S312の処理に変更しており、他のステップS111~S120の処理については、前述した第1実施形態と同様であるため、共通部分については詳細な説明を省略する。
<< Third Embodiment >>
"Constitution"
In the present embodiment, when shifting from straight traveling to curve traveling, the absolute value of the steering torque Ts is smaller than the absolute values of the second thresholds Te2 and Tt2, which are predetermined in a range smaller than the absolute values of the first thresholds Te1 and Tt1. At this point, the forward position X is fixed.
The apparatus configuration is the same as that of the first embodiment described above.
Next, the assist torque setting process will be described.
FIG. 15 is a flowchart illustrating assist torque setting processing according to the third embodiment.
Here, the processing in steps S121 to S124 in the first embodiment described above is changed to the processing in new steps S301 to S312. The processing in other steps S111 to S120 is the same as that in the first embodiment described above. Since it is the same, detailed description is omitted about a common part.
 ステップS301では、操舵トルクTsの絶対値が、第一閾値Te1の絶対値以上であるか否かを判定する。ここで、判定結果が『|Ts|≧|Te1|』であるときには、アシストトルクTAを付与するタイミングに対して、運転者が早過ぎると感じていると判断してステップS302に移行する。一方、判定結果が『|Ts|<|Te1|』であるときには、アシストトルクTAを付与するタイミングに対して、運転者が早過ぎるとは感じていないと簡易的に判断してステップS304に移行する。
 ステップS302では、アシストトルクTAを付与するタイミングを遅らせるため、道路曲率ρを読込む前方位置Xを、徐々に手前になるように減少補正する。ここでは、前方位置Xの急変を避けるために、単位時間当たりに予め定めた許容量ずつ変化させて、新たな前方位置Xとしてから所定のメインプログラムに復帰する。
In step S301, it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold Te1. Here, when the determination result is “| Ts | ≧ | Te1 |”, it is determined that the driver feels too early with respect to the timing of applying the assist torque TA, and the process proceeds to step S302. On the other hand, when the determination result is “| Ts | <| Te1 |”, it is simply determined that the driver does not feel that it is too early with respect to the timing of applying the assist torque TA, and the process proceeds to step S304. To do.
In step S302, in order to delay the timing at which the assist torque TA is applied, the forward position X at which the road curvature ρ is read is corrected so as to be gradually closer to the front. Here, in order to avoid a sudden change in the forward position X, the amount is changed by a predetermined allowable amount per unit time, and after returning to the predetermined main program, a new forward position X is set.
 続くステップS303では、補正フラグをfr=1にセットしてから所定のメインプログラムに復帰する。補正フラグfcは、前方位置Xに対して補正を実行したか否かを表すフラグであり、fc=0にリセットされているときには、前方位置Xに対して補正を実行していないことを表し、fc=1にセットされているときには、前方位置Xに対して補正を実行したことを表す。なお、初期状態ではfc=0にリセットされている。
 ステップS304では、補正フラグfcが1にセットされているか否かを判定する。判定結果が『fc=0』であるときには、前方位置Xに対する補正は実行されておらず、したがってアシストトルクTAに対して運転者が早過ぎるとは感じていないと判断して、そのまま所定のメインプログラムに復帰する。一方、判定結果が『fc=1』であるときには、前方位置Xに対する補正が既に実行されており、先刻までアシストトルクTAに対して運転者が早過ぎると感じていたことを意味するため、ステップS305に移行する。
In the subsequent step S303, the correction flag is set to fr = 1, and then the process returns to a predetermined main program. The correction flag fc is a flag indicating whether or not the correction is performed on the front position X. When the correction flag fc is reset to fc = 0, it indicates that the correction is not performed on the front position X. When fc = 1 is set, this indicates that correction has been performed for the forward position X. Note that fc = 0 is reset in the initial state.
In step S304, it is determined whether or not the correction flag fc is set to 1. When the determination result is “fc = 0”, it is determined that the correction for the forward position X has not been performed, and therefore the driver does not feel that the assist torque TA is too early, and the predetermined main Return to the program. On the other hand, when the determination result is “fc = 1”, it means that the correction for the forward position X has already been performed, and the driver felt that the driver torque was too early for the assist torque TA until the last time. The process proceeds to S305.
 ステップS305では、操舵トルクTsの絶対値が、第一閾値Te1の絶対値よりも小さな範囲で予め定めた第二閾値Te2以上であるか否かを判定する。第二閾値Te2は、その値でアシストトルクTAの調整をやめてもハンチングを起こさないような値であり、例えば±0.6Nm程度である。ここで、判定結果が『|Ts|≧|Te2|』であるときには、アシストトルクTAを付与するタイミングに対して、依然として運転者が早過ぎると感じている可能性があると判断して前述したステップS302に移行する。一方、判定結果が『|Ts|<|Te2|』であるときには、アシストトルクTAを付与するタイミングに対して、もはや運転者が早過ぎるとは感じていないと判断してステップS306に移行する。
 ステップS306では、補正フラグをfr=0にリセットしてから所定のメインプログラムに復帰する。
In step S305, it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to a predetermined second threshold Te2 within a range smaller than the absolute value of the first threshold Te1. The second threshold value Te2 is a value that does not cause hunting even when the adjustment of the assist torque TA is stopped at that value, and is, for example, about ± 0.6 Nm. Here, when the determination result is “| Ts | ≧ | Te2 |”, it is determined that there is a possibility that the driver still feels too early with respect to the timing of applying the assist torque TA. The process proceeds to step S302. On the other hand, when the determination result is “| Ts | <| Te2 |”, it is determined that the driver no longer feels too early with respect to the timing of applying the assist torque TA, and the process proceeds to step S306.
In step S306, the correction flag is reset to fr = 0, and then the process returns to the predetermined main program.
 ステップS307では、操舵トルクTsの絶対値が、第一閾値Tt1の絶対値以上であるか否かを判定する。ここで、判定結果が『|Ts|≧|Tt1|』であるときには、アシストトルクTAを付与するタイミングに対して、運転者が遅過ぎると感じていると判断してステップS308に移行する。一方、判定結果が『|Ts|<|Tt1|』であるときには、アシストトルクTAを付与するタイミングに対して、運転者が遅過ぎるとは感じていないと簡易的に判断してステップS310に移行する。
 ステップS308では、アシストトルクTAを付与するタイミングを遅らせるため、道路曲率ρを読込む前方位置Xを、徐々に遠方になるように増加補正する。ここでは、前方位置Xの急変を避けるために、単位時間当たりに予め定めた許容量ずつ変化させて、新たな前方位置Xとしてから所定のメインプログラムに復帰する。
In step S307, it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold value Tt1. Here, when the determination result is “| Ts | ≧ | Tt1 |”, it is determined that the driver feels too late with respect to the timing of applying the assist torque TA, and the process proceeds to step S308. On the other hand, when the determination result is “| Ts | <| Tt1 |”, it is simply determined that the driver does not feel that it is too late with respect to the timing of applying the assist torque TA, and the process proceeds to step S310. To do.
In step S308, in order to delay the timing at which the assist torque TA is applied, the forward position X at which the road curvature ρ is read is increased and corrected so as to gradually move away. Here, in order to avoid a sudden change in the forward position X, the amount is changed by a predetermined allowable amount per unit time, and after returning to the predetermined main program, a new forward position X is set.
 続くステップS309では、補正フラグをfr=1にセットしてから所定のメインプログラムに復帰する。補正フラグfcは、前方位置Xに対して補正を実行したか否かを表すフラグであり、fc=0にリセットされているときには、前方位置Xに対して補正を実行していないことを表し、fc=1にセットされているときには、前方位置Xに対して補正を実行したことを表す。なお、初期状態ではfc=0にリセットされている。
 ステップS310では、補正フラグfcが1にセットされているか否かを判定する。判定結果が『fc=0』であるときには、前方位置Xに対する補正は実行されておらず、したがってアシストトルクTAに対して運転者が遅過ぎるとは感じていないと判断して、そのまま所定のメインプログラムに復帰する。一方、判定結果が『fc=1』であるときには、前方位置Xに対する補正が既に実行されており、先刻までアシストトルクTAに対して運転者が遅過ぎると感じていたことを意味するため、ステップS311に移行する。
In the subsequent step S309, the correction flag is set to fr = 1, and then the process returns to a predetermined main program. The correction flag fc is a flag indicating whether or not the correction is performed on the front position X. When the correction flag fc is reset to fc = 0, it indicates that the correction is not performed on the front position X. When fc = 1 is set, this indicates that correction has been performed for the forward position X. Note that fc = 0 is reset in the initial state.
In step S310, it is determined whether or not the correction flag fc is set to 1. When the determination result is “fc = 0”, it is determined that the correction for the forward position X has not been performed, and therefore the driver does not feel that the assist torque TA is too late, and the predetermined main Return to the program. On the other hand, when the determination result is “fc = 1”, it means that the correction for the forward position X has already been performed, and the driver felt that the driver torque was too late for the assist torque TA until the last time. The process proceeds to S311.
 ステップS311では、操舵トルクTsの絶対値が、第一閾値Tt1の絶対値よりも小さな範囲で予め定めた第二閾値Tt2以上であるか否かを判定する。第二閾値Tt2は、その値でアシストトルクTAの調整をやめてもハンチングを起こさないような値であり、例えば±0.6Nm程度である。ここで、判定結果が『|Ts|≧|Tt2|』であるときには、アシストトルクTAを付与するタイミングに対して、依然として運転者が遅過ぎると感じている可能性があると判断して前述したステップS308に移行する。一方、判定結果が『|Ts|<|Tt2|』であるときには、アシストトルクTAを付与するタイミングに対して、もはや運転者が遅過ぎるとは感じていないと判断してステップS312に移行する。
 ステップS312では、補正フラグをfr=0にリセットしてから所定のメインプログラムに復帰する。
 上記が第3実施形態のアシストトルク設定処理である。
In step S311, it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to a predetermined second threshold value Tt2 within a range smaller than the absolute value of the first threshold value Tt1. The second threshold value Tt2 is a value that does not cause hunting even if adjustment of the assist torque TA is stopped at that value, and is, for example, about ± 0.6 Nm. Here, when the determination result is “| Ts | ≧ | Tt2 |”, it is determined that the driver may still feel that it is still too late with respect to the timing of applying the assist torque TA. The process proceeds to step S308. On the other hand, when the determination result is “| Ts | <| Tt2 |”, it is determined that the driver no longer feels too late with respect to the timing of applying the assist torque TA, and the process proceeds to step S312.
In step S312, the correction flag is reset to fr = 0, and then the process returns to a predetermined main program.
The above is the assist torque setting process of the third embodiment.
 《作用》
 次に、第3実施形態の作用について説明する。
 先ず、アシストトルクTAの付与に対して、運転者が早過ぎると感じる場合について説明する。
 図16は、第3実施形態で運転者が早過ぎると感じる場合のアシストトルクTA及び操舵トルクTsを示すタイムチャートである。
 先ず正方向のアシストトルクTAが付与され始めると、運転者はまだ操舵角θsの正方向への増加を望んでいないので、正方向のアシストトルクTAに抗して保舵するため、操舵トルクTsの向きは負方向に発生する。すなわち、操舵トルクTsの向きが旋回方向と逆となる(ステップS120の判定が“Yes”)。そして、負方向の操舵トルクTsが第一閾値Te1以下となるときに、つまり操舵トルクTsの絶対値が第一閾値Te1の絶対値以上となるときに(ステップS301の判定が“Yes”)、アシストトルクTAの付与に対して、運転者が早過ぎると感じていると判断する。
<Action>
Next, the operation of the third embodiment will be described.
First, a case where the driver feels that it is too early for the application of the assist torque TA will be described.
FIG. 16 is a time chart showing the assist torque TA and the steering torque Ts when the driver feels too early in the third embodiment.
First, when the assist torque TA in the positive direction starts to be applied, the driver does not yet want to increase the steering angle θs in the positive direction, so that the steering torque Ts is maintained in order to keep the steering against the positive assist torque TA. The direction of is generated in the negative direction. That is, the direction of the steering torque Ts is opposite to the turning direction (the determination in step S120 is “Yes”). When the steering torque Ts in the negative direction is equal to or smaller than the first threshold Te1, that is, when the absolute value of the steering torque Ts is equal to or larger than the absolute value of the first threshold Te1 (determination in Step S301 is “Yes”). It is determined that the driver feels that the assist torque TA is applied too early.
 この場合には、アシストトルクTAを付与するタイミングを遅らせるため、道路曲率ρを読込む前方位置Xを、徐々に手前に近づけるように減少補正する(ステップS302)。これにより、アシストトルクTAが減少してゆくので、それに抗する操舵トルクTsも減少する。このとき、操舵トルクTsの絶対値が、単に第一閾値Te1未満となるだけで、前方位置Xの減少補正をやめてしまうと、ハンチングを起こす可能性がある。そこで、本実施形態では、操舵トルクTsの絶対値が第二閾値Te2未満となるまで、前方位置Xの減少補正を実行する。そして、減少補正した後の前方位置Xと運転者の注視する前方位置とが略一致する、つまりアシストトルクTAのタイミングと運転者の感覚とが略一致すると、操舵トルクTsが略0となる。その後は、道路曲率ρに応じてアシストトルクTAが増減しても、そのタイミングが運転者の感覚と略一致している限り、操舵トルクTsは略0の状態を維持する。 In this case, in order to delay the timing of applying the assist torque TA, the forward position X for reading the road curvature ρ is corrected to decrease so as to gradually approach the front (step S302). As a result, the assist torque TA decreases, and the steering torque Ts against the assist torque TA also decreases. At this time, if the absolute value of the steering torque Ts is merely less than the first threshold Te1 and the correction for reducing the forward position X is stopped, hunting may occur. Therefore, in the present embodiment, the reduction correction of the forward position X is executed until the absolute value of the steering torque Ts becomes less than the second threshold value Te2. Then, the steering torque Ts becomes substantially zero when the forward position X after the decrease correction substantially coincides with the forward position at which the driver gazes, that is, when the timing of the assist torque TA and the driver's feeling substantially coincide. Thereafter, even if the assist torque TA increases or decreases according to the road curvature ρ, the steering torque Ts remains substantially zero as long as the timing substantially matches the driver's feeling.
 このように、アシストトルクTAに対して、運転者が早過ぎると感じる場合には、道路曲率ρを読込む前方位置Xを手前に補正してゆくことで、アシストトルクTAを付与する際のタイミングを遅らせて最適化することができる。これにより、アシストトルクTAの付与が運転者のステアリング操作と略同時になされるようになるので、ステアリングホイール1に手を添えているだけのような状態で、自車進路に沿って旋回走行できる。したがって、操作負担を軽減でき、操作フィーリングも向上する。
 また、操舵トルクTsの絶対値が第二閾値Te2の絶対値未満となるまで、前方位置Xを徐々に手前に補正してゆく。これにより、ハンチングを抑制しながら、アシストトルクTAを付与する際のタイミングを最適化することができる。
In this way, when the driver feels that the assist torque TA is too early, the timing when the assist torque TA is applied by correcting the forward position X for reading the road curvature ρ to the front. Can be delayed and optimized. As a result, the assist torque TA is applied almost simultaneously with the driver's steering operation, so that the vehicle can turn along the vehicle's own course while the hand is touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved.
Further, the front position X is gradually corrected toward the front until the absolute value of the steering torque Ts becomes less than the absolute value of the second threshold value Te2. Thereby, the timing at the time of providing the assist torque TA can be optimized while suppressing hunting.
 次に、アシストトルクTAの付与に対して、運転者が遅過ぎると感じる場合について説明する。
 図17は、第3実施形態で運転者が遅過ぎると感じる場合のアシストトルクTA及び操舵トルクTsを示すタイムチャートである。
 ここでは、アシストトルクTAよりも先に運転者が自ら正方向へ操舵トルクTsを増加させる。すなわち、操舵トルクTsの向きが旋回方向と同じとなる(ステップS120の判定が“No”)。そして、正方向の操舵トルクTsが第一閾値Tt1以上となるときに(ステップS307の判定が“Yes”)、アシストトルクTAの付与に対して、運転者が遅過ぎると感じていると判断する。
Next, a case where the driver feels that the assist torque TA is too late will be described.
FIG. 17 is a time chart showing the assist torque TA and the steering torque Ts when the driver feels too late in the third embodiment.
Here, the driver himself increases the steering torque Ts in the positive direction before the assist torque TA. That is, the direction of the steering torque Ts is the same as the turning direction (determination in step S120 is “No”). Then, when the steering torque Ts in the positive direction becomes equal to or greater than the first threshold value Tt1 (the determination in step S307 is “Yes”), it is determined that the driver feels too late with respect to the application of the assist torque TA. .
 この場合には、アシストトルクTAを付与するタイミングを早めるため、道路曲率ρを読込む前方位置Xを、徐々に遠方に遠ざけるように増加補正する(ステップS308)。これにより、アシストトルクTAが付与され始め増加するので、運転者はそのアシストトルクTAに従う(任せる)ようになり操舵トルクTsが減少する。このとき、操舵トルクTsの絶対値が、単に第一閾値Tt1未満となるだけで、前方位置Xの増加補正をやめてしまうと、ハンチングを起こす可能性がある。そこで、本実施形態では、操舵トルクTsの絶対値が第二閾値Tt2未満となるまで、前方位置Xの増加補正を実行する。そして、補正した後の前方位置Xと運転者の注視する前方位置とが略一致する、つまりアシストトルクTAのタイミングと運転者の感覚とが略一致すると、操舵トルクTsが略0となる。その後は、道路曲率ρに応じてアシストトルクTAが増減しても、そのタイミングが運転者の感覚と略一致している限り、操舵トルクTsは略0の状態を維持する。 In this case, in order to advance the timing of applying the assist torque TA, the forward position X at which the road curvature ρ is read is increased and corrected so as to gradually move away (step S308). As a result, the assist torque TA starts to be applied and increases, so that the driver follows (trusts) the assist torque TA and the steering torque Ts decreases. At this time, if the absolute value of the steering torque Ts is merely less than the first threshold value Tt1 and the increase correction of the front position X is stopped, hunting may occur. Therefore, in this embodiment, the increase correction of the forward position X is executed until the absolute value of the steering torque Ts becomes less than the second threshold value Tt2. When the corrected forward position X substantially coincides with the forward position of the driver's gaze, that is, when the assist torque TA timing substantially coincides with the driver's feeling, the steering torque Ts becomes substantially zero. Thereafter, even if the assist torque TA increases or decreases according to the road curvature ρ, the steering torque Ts remains substantially zero as long as the timing substantially matches the driver's feeling.
 このように、アシストトルクTAに対して、運転者が遅過ぎると感じる場合には、道路曲率ρを読込む前方位置Xを遠方に補正してゆくことで、アシストトルクTAを付与する際のタイミングを早めて最適化することができる。これにより、アシストトルクTAの付与が運転者のステアリング操作と略同時になされるようになるので、ステアリングホイール1に手を添えているだけのような状態で、自車進路に沿って旋回走行できる。したがって、操作負担を軽減でき、操作フィーリングも向上する。
 また、操舵トルクTsの絶対値が第二閾値Tt2の絶対値未満となるまで、前方位置Xを徐々に手前に補正してゆく。これにより、ハンチングを抑制しながら、アシストトルクTAを付与する際のタイミングを最適化することができる。
 その他、前述した第1実施形態と共通する部分については、同様の作用効果が得られるものとし、詳細な説明は省略する。
 以上、ステップS117、S118、S120、S301~S312の処理が「アシスト制御部」に対応する。
As described above, when the driver feels that the assist torque TA is too late, the timing when the assist torque TA is applied by correcting the forward position X for reading the road curvature ρ in the distance. Can be optimized early. As a result, the assist torque TA is applied almost simultaneously with the driver's steering operation, so that the vehicle can turn along the vehicle's own course while the hand is touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved.
Further, the forward position X is gradually corrected toward the front until the absolute value of the steering torque Ts becomes less than the absolute value of the second threshold value Tt2. Thereby, the timing at the time of providing the assist torque TA can be optimized while suppressing hunting.
Other parts common to the first embodiment described above are assumed to have the same operational effects and will not be described in detail.
As described above, the processes in steps S117, S118, S120, and S301 to S312 correspond to the “assist control unit”.
 《効果》
 次に、第3実施形態における主要部の効果を記す。
 (1)本実施形態のステアリング制御装置では、操舵トルクTsの絶対値が、第一閾値Te1及びTt1よりも小さな範囲で予め定めた第二閾値Te2及びTt2未満となった時点で、前方位置Xを固定にする。
 このように、操舵トルクTsの絶対値が第二閾値Te2及びTt2の絶対値未満となるまで、前方位置Xを徐々に手前に補正してゆくことで、ハンチングを抑制しながら、アシストトルクTAを付与する際のタイミングを最適化することができる。
"effect"
Next, the effect of the main part in 3rd Embodiment is described.
(1) In the steering control device of the present embodiment, when the absolute value of the steering torque Ts becomes less than the predetermined second threshold values Te2 and Tt2 in a range smaller than the first threshold values Te1 and Tt1, the forward position X Is fixed.
Thus, the assist torque TA is reduced while suppressing the hunting by gradually correcting the front position X until the absolute value of the steering torque Ts becomes less than the absolute values of the second threshold values Te2 and Tt2. The timing at the time of grant can be optimized.
《第4実施形態》
 《構成》
 本実施形態は、直進走行からカーブ走行へ移行する際、操舵トルクTsが旋回方向と逆であり、且つ操舵トルクTsの絶対値が第一閾値Te1以上となったときには、操舵トルクTsの絶対値が第一閾値Te1よりも小さい範囲で予め定めた第二閾値Te2の絶対値未満となるまで、操舵トルクTsの絶対値が第一閾値Te1の絶対値以上となった時点のアシストトルクTAを維持するものである。
 装置構成は、前述した第1実施形態と同様である。
 次に、アシストトルク設定処理について説明する。
 図18は、第4実施形態のアシストトルク設定処理を示すフローチャートである。
 ここでは、前述した第3実施形態におけるステップS302の処理を、新たなステップS401の処理に変更しており、他のステップS111~S120、S301、S303~S312の処理については、前述した第3実施形態と同様であるため、共通部分については詳細な説明を省略する。
 ステップS401では、それ以降は、操舵トルクTsの絶対値が第一閾値Te1以上となった時点のアシストトルクTAを維持する。
 上記が第4実施形態のアシストトルク設定処理である。
<< 4th Embodiment >>
"Constitution"
In this embodiment, when shifting from straight traveling to curve traveling, when the steering torque Ts is opposite to the turning direction and the absolute value of the steering torque Ts is equal to or greater than the first threshold Te1, the absolute value of the steering torque Ts. The assist torque TA when the absolute value of the steering torque Ts becomes equal to or greater than the absolute value of the first threshold value Te1 is maintained until the absolute value of the steering torque Ts becomes equal to or greater than the absolute value of the first threshold value Te1 in a range smaller than the first threshold value Te1. To do.
The apparatus configuration is the same as that of the first embodiment described above.
Next, the assist torque setting process will be described.
FIG. 18 is a flowchart illustrating assist torque setting processing according to the fourth embodiment.
Here, the process in step S302 in the third embodiment described above is changed to a process in new step S401, and the processes in other steps S111 to S120, S301, and S303 to S312 are described in the third embodiment described above. Since the configuration is the same as that of the embodiment, detailed description of common portions is omitted.
In step S401, thereafter, the assist torque TA at the time when the absolute value of the steering torque Ts becomes equal to or greater than the first threshold Te1 is maintained.
The above is the assist torque setting process of the fourth embodiment.
 《作用》
 次に、第4実施形態の作用について説明する。
 図19は、第4実施形態で運転者が早過ぎると感じる場合のアシストトルクTA及び操舵トルクTsを示すタイムチャートである。
 先ず正方向のアシストトルクTAが付与され始めると、運転者はまだ操舵角θsの正方向への増加を望んでいないので、正方向のアシストトルクTAに抗して保舵するため、操舵トルクTsの向きは負方向に発生する。すなわち、操舵トルクTsの向きが旋回方向と逆となる(ステップS120の判定が“Yes”)。そして、負方向の操舵トルクTsが第一閾値Te1以下となるときに、つまり操舵トルクTsの絶対値が第一閾値Te1の絶対値以上となるときに(ステップS301の判定が“Yes”)、アシストトルクTAの付与に対して、運転者が早過ぎると感じていると判断する。
<Action>
Next, the operation of the fourth embodiment will be described.
FIG. 19 is a time chart showing the assist torque TA and the steering torque Ts when the driver feels too early in the fourth embodiment.
First, when the assist torque TA in the positive direction starts to be applied, the driver does not yet want to increase the steering angle θs in the positive direction, so that the steering torque Ts is maintained in order to keep the steering against the positive assist torque TA. The direction of is generated in the negative direction. That is, the direction of the steering torque Ts is opposite to the turning direction (the determination in step S120 is “Yes”). When the steering torque Ts in the negative direction is equal to or smaller than the first threshold Te1, that is, when the absolute value of the steering torque Ts is equal to or larger than the absolute value of the first threshold Te1 (determination in Step S301 is “Yes”). It is determined that the driver feels that the assist torque TA is applied too early.
 この場合には、その時点のアシストトルクTAを維持する。これにより、少なくともアシストトルクTAの増加が抑制されるので、それに抗する操舵トルクTsの増加も抑制できる。しかも、アシストトルクTAが固定されるので、Δtの前後でのアシストトルクTAの増減が抑制され、操作フィーリングへの影響も少なくなる。このアシストトルクTAは、操舵トルクTsの絶対値が第二閾値Te2未満となるまで維持される。
 そして、車両が前進し、現在維持しているアシストトルクTAに合った地点まで到達するときに、アシストトルクTAのタイミングと運転者の感覚とが略一致することになり、操舵トルクTsが略0となる。その後は、操舵トルクTsの絶対値が第二閾値Te2未満となった時点の前方位置Xを用いる。そして、アシストトルクTAが増減しても、そのタイミングが運転者の感覚と略一致している限り、操舵トルクTsは略0の状態に維持される。
In this case, the assist torque TA at that time is maintained. As a result, at least the increase in the assist torque TA is suppressed, so that the increase in the steering torque Ts can be suppressed. Moreover, since the assist torque TA is fixed, the increase / decrease in the assist torque TA before and after Δt is suppressed, and the influence on the operation feeling is reduced. The assist torque TA is maintained until the absolute value of the steering torque Ts becomes less than the second threshold value Te2.
When the vehicle moves forward and reaches a point that matches the currently maintained assist torque TA, the timing of the assist torque TA substantially matches the driver's feeling, and the steering torque Ts is substantially zero. It becomes. Thereafter, the forward position X at the time when the absolute value of the steering torque Ts becomes less than the second threshold Te2 is used. Even if the assist torque TA increases or decreases, the steering torque Ts is maintained in a substantially zero state as long as the timing substantially matches the driver's feeling.
 このように、アシストトルクTAに対して、運転者が早過ぎると感じる場合には、その時点のアシストトルクTAを維持することで、アシストトルクTAの変動を抑制しながらアシストトルクTAを付与する際のタイミングを遅らせて最適化することができる。これにより、アシストトルクTAの付与が運転者のステアリング操作と略同時になされるようになるので、ステアリングホイール1に手を添えているだけのような状態で、自車進路に沿って旋回走行できる。したがって、操作負担を軽減でき、操作フィーリングも向上する。
 また、操舵トルクTsの絶対値が第二閾値Te2の絶対値未満となるまで、前方位置Xを徐々に手前に補正してゆく。これにより、ハンチングを抑制しながら、アシストトルクTAを付与する際のタイミングを最適化することができる。
 その他、前述した第3実施形態と共通する部分については、同様の作用効果が得られるものとし、詳細な説明は省略する。
 以上、ステップS117、S118、S120、S301、S401、S303~S312の処理が「アシスト制御部」に対応する。
As described above, when the driver feels that the assist torque TA is too early, by maintaining the assist torque TA at that time, the assist torque TA is applied while suppressing the variation of the assist torque TA. Can be optimized by delaying the timing. As a result, the assist torque TA is applied almost simultaneously with the driver's steering operation, so that the vehicle can turn along the vehicle's own course while the hand is touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved.
Further, the front position X is gradually corrected toward the front until the absolute value of the steering torque Ts becomes less than the absolute value of the second threshold value Te2. Thereby, the timing at the time of providing the assist torque TA can be optimized while suppressing hunting.
Other parts common to the above-described third embodiment are assumed to have the same operational effects and will not be described in detail.
As described above, the processes in steps S117, S118, S120, S301, S401, and S303 to S312 correspond to the “assist control unit”.
 《効果》
 次に、第4実施形態における主要部の効果を記す。
 (1)本実施形態のステアリング制御装置では、前方位置Xを自車両に近い位置に変更する場合、操舵トルクTsの絶対値が第一閾値Te1以上となった時点のアシストトルクTAを維持する。
 このように、操舵トルクTsの絶対値が第一閾値Te1以上となった時点のアシストトルクTAを維持することで、アシストトルクTAの増減を抑制しながら、それを付与するタイミングを遅らせて最適化し、操作フィーリングを向上させることができる。
"effect"
Next, the effect of the principal part in 4th Embodiment is described.
(1) In the steering control device of the present embodiment, when the forward position X is changed to a position close to the host vehicle, the assist torque TA at the time when the absolute value of the steering torque Ts becomes equal to or greater than the first threshold Te1 is maintained.
In this way, by maintaining the assist torque TA at the time when the absolute value of the steering torque Ts becomes equal to or greater than the first threshold Te1, the timing of applying the torque is optimized while suppressing increase / decrease in the assist torque TA. , The operational feeling can be improved.
《第5実施形態》
 《構成》
 本実施形態は、カーブ走行から直進走行に移行する場合を示すものである。
 装置構成は、前述した第1実施形態と同様である。
 次に、アシストトルク設定処理について説明する。
 図20は、第5実施形態のアシストトルク設定処理を示すフローチャートである。
 ここでは、前述した第1実施形態におけるステップS120~S124の処理を、新たなステップS501~S505の処理に変更しており、他のステップS111~S119の処理については、前述した第1実施形態と同様であるため、共通部分については詳細な説明を省略する。
 ステップS501では、操舵トルクTs及び道路曲率ρの符号を判定し、操舵トルクTsの向きと道路曲率ρの向きとが同じ方向であるか否かを判定する。ここで、操舵トルクTsと道路曲率ρとが同じ方向であるときには、運転者のステアリング操作よりもアシストトルクTAの付与がタイミングが早いと判断してステップS502に移行する。一方、操舵トルクTsと道路曲率ρとが逆方向であるときには、運転者のステアリング操作よりもアシストトルクTAの付与がタイミングが遅いと判断してステップS504に移行する。
<< 5th Embodiment >>
"Constitution"
The present embodiment shows a case where the vehicle travels from curve traveling to straight traveling.
The apparatus configuration is the same as that of the first embodiment described above.
Next, the assist torque setting process will be described.
FIG. 20 is a flowchart illustrating assist torque setting processing according to the fifth embodiment.
Here, the processing in steps S120 to S124 in the first embodiment described above is changed to new processing in steps S501 to S505, and the processing in other steps S111 to S119 is the same as that in the first embodiment described above. Since it is the same, detailed description is omitted about a common part.
In step S501, the signs of the steering torque Ts and the road curvature ρ are determined, and it is determined whether the direction of the steering torque Ts and the direction of the road curvature ρ are the same direction. Here, when the steering torque Ts and the road curvature ρ are in the same direction, it is determined that the application of the assist torque TA is earlier than the driver's steering operation, and the process proceeds to step S502. On the other hand, when the steering torque Ts and the road curvature ρ are in the opposite directions, it is determined that the application of the assist torque TA is later than the steering operation by the driver, and the process proceeds to step S504.
 ステップS502では、操舵トルクTsの絶対値が、前述した第一閾値Te1の絶対値以上であるか否かを判定する。ここで、判定結果が『|Ts|≧|Te1|』であるときには、アシストトルクTAを付与するタイミングに対して、運転者が早過ぎると感じていると判断してステップS503に移行する。一方、判定結果が『|Ts|<|Te1|』であるときには、アシストトルクTAを付与するタイミングに対して、運転者が早過ぎるとは感じていないと判断して、そのまま所定のメインプログラムに復帰する。
 ステップS503では、アシストトルクTAを付与するタイミングを遅らせるため、道路曲率ρを読込む前方位置Xを手前に補正する。すなわち、下記に示すように、前方位置Xから予め定めた距離ΔXだけ手前に近づけた位置(X-ΔX)を、新たな前方位置Xに補正してから所定のメインプログラムに復帰する。次回以降の演算では、補正した前方位置Xの道路曲率ρを読込む。なお、前方位置Xの急変を避けるために、前方位置Xに対して、単位時間当たりに予め定めた許容量ずつ変更する。
  X ← X-ΔX
In step S502, it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold Te1. Here, when the determination result is “| Ts | ≧ | Te1 |”, it is determined that the driver feels too early with respect to the timing of applying the assist torque TA, and the process proceeds to step S503. On the other hand, when the determination result is “| Ts | <| Te1 |”, it is determined that the driver does not feel that it is too early with respect to the timing of applying the assist torque TA, and the predetermined main program is directly executed. Return.
In step S503, in order to delay the timing for applying the assist torque TA, the front position X at which the road curvature ρ is read is corrected to the front. That is, as shown below, a position (X−ΔX) that is closer to the front by a predetermined distance ΔX from the front position X is corrected to a new front position X and then returned to a predetermined main program. In the subsequent calculation, the corrected road curvature ρ at the forward position X is read. In order to avoid a sudden change in the forward position X, the forward position X is changed by a predetermined allowable amount per unit time.
X ← X-ΔX
 ステップS504では、操舵トルクTsの絶対値が、前述した第一閾値Tt1の絶対値以上であるか否かを判定する。ここで、判定結果が『|Ts|≧|Tt1|』であるときには、アシストトルクTAを付与するタイミングに対して、運転者が遅過ぎると感じていると判断してステップS505に移行する。一方、判定結果が『|Ts|<|Tt1|』であるときには、アシストトルクTAを付与するタイミングに対して、運転者が遅過ぎるとは感じていないと判断して、そのまま所定のメインプログラムに復帰する。
 ステップS505では、アシストトルクTAを付与するタイミングを早めるため、道路曲率ρを読込む前方位置Xを遠方に補正する。すなわち、前方位置Xから予め定めた距離ΔXだけ遠方に遠ざけた位置(X+ΔX)を、新たな前方位置Xに補正してから所定のメインプログラムに復帰する。次回以降の演算では、補正した前方位置Xの道路曲率ρを読込む。なお、前方位置Xの急変を避けるために、前方位置Xに対して、単位時間当たりに予め定めた許容量ずつ変更する。
  X ← X+ΔX
 上記が第5実施形態のアシストトルク設定処理である。
In step S504, it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold value Tt1 described above. Here, when the determination result is “| Ts | ≧ | Tt1 |”, it is determined that the driver feels too late with respect to the timing of applying the assist torque TA, and the process proceeds to step S505. On the other hand, when the determination result is “| Ts | <| Tt1 |”, it is determined that the driver does not feel that it is too late with respect to the timing of applying the assist torque TA, and the predetermined main program is directly executed. Return.
In step S505, the forward position X at which the road curvature ρ is read is corrected far away in order to advance the timing for applying the assist torque TA. That is, a position (X + ΔX) that is far away from the front position X by a predetermined distance ΔX is corrected to a new front position X and then returned to a predetermined main program. In the subsequent calculation, the corrected road curvature ρ at the forward position X is read. In order to avoid a sudden change in the forward position X, the forward position X is changed by a predetermined allowable amount per unit time.
X ← X + ΔX
The above is the assist torque setting process of the fifth embodiment.
 《作用》
 次に、第5実施形態の作用について説明する。
 本実施形態は、カーブ走行から直進走行に復帰するシーンを想定したものである。
 ここで、第一閾値Te1及びTt1の設定に関するアシストトルクTAと操舵トルクTsとの関係について説明する。
 図21は、第5実施形態における操舵角θsと操舵トルクTsとの関係を示すグラフである。
 操舵角θsと操舵トルクTsとの関係は、操舵角θsを横軸とし、操舵トルクTsを縦軸とする座標で表し、右旋回を正の値とし、左旋回を負の値としている。
 ここでは、ステアリングホイール1を切った状態が初期操舵角となり、操舵角θs=0が必要操舵角となる。
 先ず、正方向のアシストトルクTAの付与と、運転者のステアリング操作とが略同時になされる場合の操舵角θsと操舵トルクTsとの関係を特性線Lsで示す。この特性線Lsでは、運転者が操舵角θsの減少を望んで自らステアリング操作を行うが、それと略同時にアシストトルクTAが抜けてゆくので、操舵トルクTsは略0となり、そのまま操舵角θsが減少し必要操舵角が達成される。このように、アシストトルクTAの減少が運転者のステアリング操作と略同時になされる場合、操舵トルクTsは略0となる。
<Action>
Next, the operation of the fifth embodiment will be described.
The present embodiment assumes a scene in which the vehicle returns from curve traveling to straight traveling.
Here, the relationship between the assist torque TA and the steering torque Ts regarding the setting of the first thresholds Te1 and Tt1 will be described.
FIG. 21 is a graph showing the relationship between the steering angle θs and the steering torque Ts in the fifth embodiment.
The relationship between the steering angle θs and the steering torque Ts is expressed by coordinates with the steering angle θs as the horizontal axis and the steering torque Ts as the vertical axis, with the right turn being a positive value and the left turn being a negative value.
Here, the state in which the steering wheel 1 is turned off is the initial steering angle, and the steering angle θs = 0 is the required steering angle.
First, the characteristic line Ls shows the relationship between the steering angle θs and the steering torque Ts when the positive assist torque TA is applied and the driver's steering operation is performed substantially simultaneously. In this characteristic line Ls, the driver performs the steering operation by himself in hopes of decreasing the steering angle θs, but the assist torque TA is released almost simultaneously with it, so the steering torque Ts becomes substantially 0 and the steering angle θs decreases as it is. The required steering angle is achieved. Thus, when the decrease in the assist torque TA is made substantially simultaneously with the driver's steering operation, the steering torque Ts becomes substantially zero.
 一方、アシストトルクTAの減少に対して、運転者が早過ぎると感じる場合の操舵角θsと操舵トルクTsとの関係を特性線Leで示す。この特性線Leでは、先ず正方向のアシストトルクTAが減少し始めると、運転者はまだ操舵角θsの減少を望んでいないので、アシストトルクTAの減少に抗して保舵するため、操舵トルクTsの向きは正方向に発生する。しかし、さらに車両が前進すると、運転者が操舵角θsの減少を望むようになるため、今度は操舵トルクTsを緩め、アシストトルクTAの減少に従う(任せる)ようになる。したがって、正方向の操舵トルクTsは特性線Lnに沿って減少するようになり、やがて0となり、このとき必要操舵角が達成される。
 このように、アシストトルクTAの減少が早過ぎると運転者が感じている場合、操舵トルクTsの向きは旋回方向と同じになる。したがって、本実施形態では、操舵トルクTsの向きが旋回方向と同じであり(ステップS501の判定が“Yes”)、且つ操舵トルクTsの絶対値が第一閾値Te1以上であるときには(ステップS502の判定が“Yes”)、アシストトルクTAの減少に対して、運転者が早過ぎると感じていると判断する。
On the other hand, the relationship between the steering angle θs and the steering torque Ts when the driver feels too early with respect to the decrease in the assist torque TA is indicated by a characteristic line Le. In this characteristic line Le, when the assist torque TA in the positive direction starts to decrease, the driver does not yet want to decrease the steering angle θs. Therefore, the steering torque is maintained to resist the decrease in the assist torque TA. The direction of Ts occurs in the positive direction. However, when the vehicle further moves forward, the driver wants to decrease the steering angle θs, so this time, the steering torque Ts is relaxed and the assist torque TA is decreased (subjected). Accordingly, the steering torque Ts in the positive direction decreases along the characteristic line Ln and eventually becomes 0, and at this time, the necessary steering angle is achieved.
As described above, when the driver feels that the assist torque TA decreases too quickly, the direction of the steering torque Ts is the same as the turning direction. Therefore, in the present embodiment, when the direction of the steering torque Ts is the same as the turning direction (the determination in step S501 is “Yes”), and the absolute value of the steering torque Ts is greater than or equal to the first threshold Te1 (in step S502) If the determination is “Yes”), it is determined that the driver feels that the assist torque TA is decreased too early.
 この場合には、アシストトルクTAを減少するタイミングを遅らせるため、道路曲率ρを読込む前方位置Xを、ΔXだけ手前に近づけた位置(X-ΔX)に補正し(ステップS503)、次回以降の演算では、補正した後の前方位置Xにおける道路曲率ρを読込む。これにより、アシストトルクTAの減少が抑制されるので、それに抗する操舵トルクTsも減少する。そして、補正した後の前方位置Xと運転者の注視する前方位置とが略一致する、つまりアシストトルクTAの減少タイミングと運転者の感覚とが略一致すると、操舵トルクTsが略0となる。その後は、道路曲率ρに応じてアシストトルクTAが増減しても、そのタイミングが運転者の感覚と略一致している限り、操舵トルクTsは略0の状態を維持する。 In this case, in order to delay the timing of decreasing the assist torque TA, the front position X for reading the road curvature ρ is corrected to a position (X−ΔX) that is closer to the front by ΔX (step S503), In the calculation, the road curvature ρ at the forward position X after correction is read. Thereby, since the reduction | decrease of assist torque TA is suppressed, the steering torque Ts resisting it also reduces. When the corrected forward position X substantially coincides with the forward position of the driver's gazing, that is, when the decrease timing of the assist torque TA substantially coincides with the driver's feeling, the steering torque Ts becomes substantially zero. Thereafter, even if the assist torque TA increases or decreases according to the road curvature ρ, the steering torque Ts remains substantially zero as long as the timing substantially matches the driver's feeling.
 このように、アシストトルクTAの減少に対して、運転者が早過ぎると感じる場合には、道路曲率ρを読込む前方位置Xを手前に補正してゆくことで、アシストトルクTAを減少する際のタイミングを遅らせて最適化することができる。これにより、アシストトルクTAの減少が運転者のステアリング操作と略同時になされるようになるので、ステアリングホイール1に手を添えているだけのような状態で、自車進路に沿って旋回走行できる。したがって、操作負担を軽減でき、操作フィーリングも向上する。
 なお、前方位置XをΔXだけ手前に近づけても、依然として操舵トルクTsの絶対値が第一閾値Te1の絶対値以上であるときには、さらに前方位置XをΔXだけ手前に近づける。すなわち、操舵トルクTsの絶対値が第一閾値Te1の絶対値以上となる度に、ΔXずつ手前に補正してゆく。したがって、操舵トルクTsの絶対値が第一閾値Te1の絶対値未満となるまで、前方位置Xの調整が継続して行われるので、アシストトルクTAの減少タイミングを最適化することができる。
As described above, when the driver feels that the assist torque TA is decreased too early, when the assist torque TA is decreased by correcting the front position X at which the road curvature ρ is read to the front, the driver torque TA is decreased. Can be optimized by delaying the timing. As a result, the assist torque TA is decreased substantially simultaneously with the driver's steering operation, so that the vehicle can turn along the own vehicle path with the hand just touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved.
Even if the forward position X is brought closer to the front by ΔX, when the absolute value of the steering torque Ts is still equal to or larger than the absolute value of the first threshold Te1, the front position X is further brought closer to the front by ΔX. That is, every time the absolute value of the steering torque Ts becomes equal to or greater than the absolute value of the first threshold value Te1, it is corrected forward by ΔX. Therefore, since the adjustment of the front position X is continuously performed until the absolute value of the steering torque Ts becomes less than the absolute value of the first threshold Te1, it is possible to optimize the decrease timing of the assist torque TA.
 次に、アシストトルクTAの減少に対して、運転者が遅過ぎると感じる場合の操舵角θsと操舵トルクTsとの関係を特性線Ltで示す。この特性線Ltでは、アシストトルクTAよりも先に運転者が操舵角θsの減少を望むので、運転者が自ら負方向へ操舵トルクTsを減少させる。このとき、操舵トルクTsは特性線Laに沿って負方向に減少する。しかし、さらに車両が前進すると、アシストトルクTAが減少し始めるので、今度は負方向の操舵トルクTsを緩め、アシストトルクTAの減少に従う(任せる)ようになる。こうして、負方向の操舵トルクTsは増加するように、やがて0となり、このとき必要操舵角が達成される。
 このように、アシストトルクTAの減少が遅過ぎると運転者が感じている場合、操舵トルクTsの向きは旋回方向と逆になる。したがって、本実施形態では、操舵トルクTsの向きが旋回方向と逆であり(ステップS501の判定が“No”)、且つ操舵トルクTsの絶対値が第一閾値Tt1以上であるときには(ステップS504の判定が“Yes”)、アシストトルクTAの減少に対して、運転者が遅過ぎると感じていると判断する。
Next, the relationship between the steering angle θs and the steering torque Ts when the driver feels that the assist torque TA is too slow is indicated by a characteristic line Lt. In this characteristic line Lt, the driver desires to decrease the steering angle θs prior to the assist torque TA, so the driver himself decreases the steering torque Ts in the negative direction. At this time, the steering torque Ts decreases in the negative direction along the characteristic line La. However, as the vehicle further moves forward, the assist torque TA starts to decrease, so this time, the steering torque Ts in the negative direction is relaxed and the decrease in the assist torque TA is followed (or left). Thus, the steering torque Ts in the negative direction eventually becomes 0 so as to increase, and at this time, the necessary steering angle is achieved.
Thus, when the driver feels that the decrease in the assist torque TA is too slow, the direction of the steering torque Ts is opposite to the turning direction. Therefore, in the present embodiment, when the direction of the steering torque Ts is opposite to the turning direction (the determination in step S501 is “No”) and the absolute value of the steering torque Ts is equal to or greater than the first threshold value Tt1 (in step S504). If the determination is “Yes”), it is determined that the driver feels that the assist torque TA is decreased too late.
 この場合には、アシストトルクTAを減少するタイミングを早めるため、道路曲率ρを読込む前方位置Xを、ΔXだけ遠方に遠ざけた位置(X+ΔX)に補正し(ステップS505)、次回以降の演算では、補正した後の前方位置Xにおける道路曲率ρを読込む。これにより、アシストトルクTAが減少し始めるので、運転者はそのアシストトルクTAの減少に従う(任せる)ようになり操舵トルクTsが減少する。そして、補正した後の前方位置Xと運転者の注視する前方位置とが略一致する、つまりアシストトルクTAの減少タイミングと運転者の感覚とが略一致すると、操舵トルクTsが略0となる。その後は、道路曲率ρに応じてアシストトルクTAが増減しても、そのタイミングが運転者の感覚と略一致している限り、操舵トルクTsは略0の状態を維持する。 In this case, in order to speed up the timing of decreasing the assist torque TA, the forward position X at which the road curvature ρ is read is corrected to a position (X + ΔX) farther away by ΔX (step S505). The road curvature ρ at the forward position X after correction is read. As a result, the assist torque TA starts to decrease, so that the driver follows (trusts) the decrease in the assist torque TA, and the steering torque Ts decreases. When the corrected forward position X substantially coincides with the forward position of the driver's gazing, that is, when the decrease timing of the assist torque TA substantially coincides with the driver's feeling, the steering torque Ts becomes substantially zero. Thereafter, even if the assist torque TA increases or decreases according to the road curvature ρ, the steering torque Ts remains substantially zero as long as the timing substantially matches the driver's feeling.
 このように、アシストトルクTAの減少に対して、運転者が遅過ぎると感じる場合には、道路曲率ρを読込む前方位置Xを遠方に補正してゆくことで、アシストトルクTAの減少タイミングを早めて最適化することができる。これにより、アシストトルクTAの減少が運転者のステアリング操作と略同時になされるようになるので、ステアリングホイール1に手を添えているだけのような状態で、自車進路に沿って旋回走行できる。したがって、操作負担を軽減でき、操作フィーリングも向上する。 As described above, when the driver feels that the assist torque TA is decreased too slowly, the forward position X for reading the road curvature ρ is corrected to a far distance so that the decrease timing of the assist torque TA is adjusted. It can be optimized early. As a result, the assist torque TA is decreased substantially simultaneously with the driver's steering operation, so that the vehicle can turn along the own vehicle path with the hand just touching the steering wheel 1. Therefore, the operation burden can be reduced and the operation feeling can be improved.
 なお、前方位置XをΔXだけ遠方に遠ざけても、依然として操舵トルクTsの絶対値が第一閾値Tt1の絶対値以上であるときには、さらに前方位置XをΔXだけ遠方に遠ざける。すなわち、操舵トルクTsの絶対値が第一閾値Tt1の絶対値以上となる度に、ΔXずつ遠方に補正してゆく。したがって、操舵トルクTsの絶対値が第一閾値Tt1の絶対値未満となるまで、前方位置Xの調整が継続して行われるので、アシストトルクTAを付与する際のタイミングを最適化することができる。
 その他、前述した第1実施形態と共通する部分については、同様の作用効果が得られるものとし、詳細な説明は省略する。
 以上、ステップS117、S118、S501~S505の処理が「アシスト制御部」に対応する。
Even if the front position X is moved away by ΔX, when the absolute value of the steering torque Ts is still equal to or larger than the absolute value of the first threshold value Tt1, the front position X is further moved away by ΔX. That is, every time the absolute value of the steering torque Ts becomes equal to or larger than the absolute value of the first threshold value Tt1, the distance is corrected by ΔX in the distance. Therefore, since the adjustment of the front position X is continuously performed until the absolute value of the steering torque Ts becomes less than the absolute value of the first threshold value Tt1, the timing when the assist torque TA is applied can be optimized. .
Other parts common to the first embodiment described above are assumed to have the same operational effects and will not be described in detail.
The processes in steps S117, S118, and S501 to S505 correspond to the “assist control unit”.
 《効果》
 次に、第5実施形態における主要部の効果を記す。
 (1)本実施形態のステアリング制御装置では、カーブ走行から直進走行に移行する場合、操舵トルクTsが旋回方向と同じであり、且つ操舵トルクTsの絶対値が予め定めた第一閾値Te1以上となったときには、前方位置Xを自車両に近い位置に変更する。
 このように、操舵トルクTsが旋回方向と同じであり、且つ操舵トルクTsの絶対値が第一閾値Te1以上であるときには、アシストトルクTAの減少タイミングに対して、運転者が早過ぎると感じていると判断できる。したがって、前方位置Xを自車両に近い位置に変化させて、アシストトルクTAを減少させるタイミングを遅らせることにより、アシストトルクTAの減少タイミングを最適化し、操作フィーリングを向上させることができる。
"effect"
Next, the effect of the principal part in 5th Embodiment is described.
(1) In the steering control device of the present embodiment, when the vehicle travels from the curve traveling to the straight traveling, the steering torque Ts is the same as the turning direction, and the absolute value of the steering torque Ts is equal to or greater than a predetermined first threshold Te1. When this happens, the front position X is changed to a position close to the host vehicle.
Thus, when the steering torque Ts is the same as the turning direction and the absolute value of the steering torque Ts is equal to or greater than the first threshold value Te1, the driver feels that the driver torque is too early with respect to the decrease timing of the assist torque TA. Can be judged. Therefore, by changing the forward position X to a position close to the host vehicle and delaying the timing for decreasing the assist torque TA, the timing for decreasing the assist torque TA can be optimized and the operation feeling can be improved.
 (2)本実施形態のステアリング制御装置では、カーブ走行から直進走行に移行する場合、操舵トルクTsが旋回方向と逆であり、且つ操舵トルクTsの絶対値が予め定めた第一閾値Tt1以上となったときには、前方位置Xを自車両から遠い位置に変更する。
 このように、操舵トルクTsが旋回方向と逆であり、且つ操舵トルクTsの絶対値が第一閾値Tt1以上であるときには、アシストトルクTAの減少させるタイミングに対して、運転者が遅過ぎると感じていると判断できる。したがって、前方位置Xを自車両から遠い位置に変化させて、アシストトルクTAを減少させるタイミングを早めることにより、アシストトルクTAの減少タイミングを最適化し、操作フィーリングを向上させることができる。
(2) In the steering control device of the present embodiment, when the vehicle travels from the curve traveling to the straight traveling, the steering torque Ts is opposite to the turning direction, and the absolute value of the steering torque Ts is equal to or greater than a predetermined first threshold value Tt1. When this happens, the front position X is changed to a position far from the host vehicle.
As described above, when the steering torque Ts is opposite to the turning direction and the absolute value of the steering torque Ts is equal to or greater than the first threshold value Tt1, the driver feels that the driver is too late with respect to the timing of decreasing the assist torque TA. Can be judged. Therefore, by changing the front position X to a position far from the host vehicle and accelerating the timing at which the assist torque TA is decreased, the timing at which the assist torque TA is decreased can be optimized and the operation feeling can be improved.
《第6実施形態》
 《構成》
 本実施形態は、カーブ走行から直進走行に移行する際、操舵トルクTsが旋回方向と同じであり、且つ操舵トルクTsの絶対値が第一閾値Te1以上となったときに、その時点のアシストトルクTAを予め定めた時間Δtだけ維持してから、前方位置Xを自車両に近い位置に変更するものである。
 装置構成は、前述した第1実施形態と同様である。
 次に、アシストトルク設定処理について説明する。
 図22は、第6実施形態のアシストトルク設定処理を示すフローチャートである。
 ここでは、前述した第5実施形態におけるステップS503の処理を、新たなステップS601の処理に変更しており、他のステップS111~S119、S501、S502、S504、S505の処理については、前述した第5実施形態と同様であるため、共通部分については詳細な説明を省略する。
<< 6th Embodiment >>
"Constitution"
In the present embodiment, when the vehicle travels from the curve travel to the straight travel, when the steering torque Ts is the same as the turning direction and the absolute value of the steering torque Ts is equal to or greater than the first threshold Te1, the assist torque at that time After maintaining TA for a predetermined time Δt, the forward position X is changed to a position close to the host vehicle.
The apparatus configuration is the same as that of the first embodiment described above.
Next, the assist torque setting process will be described.
FIG. 22 is a flowchart illustrating assist torque setting processing according to the sixth embodiment.
Here, the process in step S503 in the fifth embodiment described above is changed to a process in new step S601. The processes in other steps S111 to S119, S501, S502, S504, and S505 are described above. Since it is the same as that of 5 embodiment, detailed description is abbreviate | omitted about a common part.
 ステップS601では、その時点のアシストトルクTAを予め定めた時間Δtだけ維持する。その後、アシストトルクTAを減少するタイミングを遅らせるため、道路曲率ρを読込む前方位置Xを手前に補正する。すなわち、下記に示すように、前方位置Xから予め定めた距離ΔXだけ手前に近づけた位置(X-ΔX)を、新たな前方位置Xに補正してから所定のメインプログラムに復帰する。次回以降の演算では、補正した前方位置Xの道路曲率ρを読込む。なお、前方位置Xの急変を避けるために、前方位置Xに対して、単位時間当たりに予め定めた許容量ずつ変更する。
  X ← X-ΔX
 上記が第6実施形態のアシストトルク設定処理である。
In step S601, the assist torque TA at that time is maintained for a predetermined time Δt. Thereafter, in order to delay the timing of decreasing the assist torque TA, the front position X at which the road curvature ρ is read is corrected to the front. That is, as shown below, a position (X−ΔX) that is closer to the front by a predetermined distance ΔX from the front position X is corrected to a new front position X and then returned to a predetermined main program. In the subsequent calculation, the corrected road curvature ρ at the forward position X is read. In order to avoid a sudden change in the forward position X, the forward position X is changed by a predetermined allowable amount per unit time.
X ← X-ΔX
The above is the assist torque setting process of the sixth embodiment.
 第6実施形態では、前述した第2実施形態と同様に、操舵トルクTsの絶対値が第一閾値Te1以上となった時点のアシストトルクTAを予め定めた時間Δtだけ維持し、それから前方位置Xを手前に補正してゆくことで、アシストトルクTAの増減を抑制しながら、それを減少させるタイミングを遅らせて最適化し、操作フィーリングを向上させることができる。
 その他、前述した第5実施形態と共通する部分については、同様の作用効果が得られるものとし、詳細な説明は省略する。
In the sixth embodiment, as in the second embodiment described above, the assist torque TA at the time when the absolute value of the steering torque Ts becomes equal to or greater than the first threshold Te1 is maintained for a predetermined time Δt, and then the front position X By correcting the shift toward the front, it is possible to optimize by delaying the timing to decrease the assist torque TA while suppressing increase / decrease in the assist torque TA, thereby improving the operational feeling.
Other parts common to the fifth embodiment described above are assumed to have the same operational effects, and detailed description thereof is omitted.
《第7実施形態》
 《構成》
 本実施形態は、カーブ走行から直進走行に移行する際、操舵トルクTsの絶対値が、第一閾値Te1及びTt1の絶対値よりも小さな範囲で予め定めた第二閾値Te2及びTt2の絶対値未満となった時点で、前方位置Xを固定にするものである。
 装置構成は、前述した第1実施形態と同様である。
 次に、アシストトルク設定処理について説明する。
 図23は、第7実施形態のアシストトルク設定処理を示すフローチャートである。
 ここでは、前述した第5実施形態におけるステップS502~S505の処理を、新たなステップS701~S712の処理に変更しており、他のステップS111~S119、S501の処理については、前述した第5実施形態と同様であるため、共通部分については詳細な説明を省略する。
<< 7th Embodiment >>
"Constitution"
In the present embodiment, when the vehicle travels from the curve travel to the straight travel, the absolute value of the steering torque Ts is less than the absolute values of the second thresholds Te2 and Tt2, which are set in advance in a range smaller than the absolute values of the first thresholds Te1 and Tt1 At this point, the forward position X is fixed.
The apparatus configuration is the same as that of the first embodiment described above.
Next, the assist torque setting process will be described.
FIG. 23 is a flowchart illustrating assist torque setting processing according to the seventh embodiment.
Here, the processes in steps S502 to S505 in the fifth embodiment described above are changed to the processes in new steps S701 to S712, and the processes in other steps S111 to S119 and S501 are described in the fifth embodiment described above. Since the configuration is the same as that of the embodiment, detailed description of common portions is omitted.
 ステップS701では、操舵トルクTsの絶対値が、第一閾値Te1の絶対値以上であるか否かを判定する。ここで、判定結果が『|Ts|≧|Te1|』であるときには、アシストトルクTAを減少させるタイミングに対して、運転者が早過ぎると感じていると判断してステップS702に移行する。一方、判定結果が『|Ts|<|Te1|』であるときには、アシストトルクTAを減少させるタイミングに対して、運転者が早過ぎるとは感じていないと簡易的に判断してステップS704に移行する。
 ステップS702では、アシストトルクTAを減少させるタイミングを遅らせるため、道路曲率ρを読込む前方位置Xを、徐々に手前になるように減少補正する。ここでは、前方位置Xの急変を避けるために、単位時間当たりに予め定めた許容量ずつ変化させて、新たな前方位置Xとしてから所定のメインプログラムに復帰する。
In step S701, it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold Te1. Here, when the determination result is “| Ts | ≧ | Te1 |”, it is determined that the driver feels too early with respect to the timing of decreasing the assist torque TA, and the process proceeds to step S702. On the other hand, when the determination result is “| Ts | <| Te1 |”, it is simply determined that the driver does not feel that it is too early with respect to the timing to decrease the assist torque TA, and the process proceeds to step S704. To do.
In step S702, in order to delay the timing at which the assist torque TA is decreased, the forward position X at which the road curvature ρ is read is corrected so as to be gradually closer to the front. Here, in order to avoid a sudden change in the forward position X, the amount is changed by a predetermined allowable amount per unit time, and after returning to the predetermined main program, a new forward position X is set.
 続くステップS703では、補正フラグをfr=1にセットしてから所定のメインプログラムに復帰する。補正フラグfcは、前方位置Xに対して補正を実行したか否かを表すフラグであり、fc=0にリセットされているときには、前方位置Xに対して補正を実行していないことを表し、fc=1にセットされているときには、前方位置Xに対して補正を実行したことを表す。なお、初期状態ではfc=0にリセットされている。
 ステップS704では、補正フラグfcが1にセットされているか否かを判定する。判定結果が『fc=0』であるときには、前方位置Xに対する補正は実行されておらず、したがってアシストトルクTAに対して運転者が早過ぎるとは感じていないと判断して、そのまま所定のメインプログラムに復帰する。一方、判定結果が『fc=1』であるときには、前方位置Xに対する補正が既に実行されており、先刻までアシストトルクTAに対して運転者が早過ぎると感じていたことを意味するため、ステップS705に移行する。
In the subsequent step S703, the correction flag is set to fr = 1, and then the process returns to a predetermined main program. The correction flag fc is a flag indicating whether or not the correction is performed on the front position X. When the correction flag fc is reset to fc = 0, it indicates that the correction is not performed on the front position X. When fc = 1 is set, this indicates that correction has been performed for the forward position X. Note that fc = 0 is reset in the initial state.
In step S704, it is determined whether or not the correction flag fc is set to 1. When the determination result is “fc = 0”, it is determined that the correction for the forward position X has not been performed, and therefore the driver does not feel that the assist torque TA is too early, and the predetermined main Return to the program. On the other hand, when the determination result is “fc = 1”, it means that the correction for the forward position X has already been performed, and the driver felt that the driver torque was too early for the assist torque TA until the last time. The process proceeds to S705.
 ステップS705では、操舵トルクTsの絶対値が、第一閾値Te1の絶対値よりも小さな範囲で予め定めた第二閾値Te2以上であるか否かを判定する。第二閾値Te2は、その値でアシストトルクTAの調整をやめてもハンチングを起こさないような値であり、例えば±0.6Nm程度である。ここで、判定結果が『|Ts|≧|Te2|』であるときには、アシストトルクTAを減少させるタイミングに対して、依然として運転者が早過ぎると感じている可能性があると判断して前述したステップS702に移行する。一方、判定結果が『|Ts|<|Te2|』であるときには、アシストトルクTAを減少させるタイミングに対して、もはや運転者が早過ぎるとは感じていないと判断してステップS706に移行する。 In step S705, it is determined whether or not the absolute value of the steering torque Ts is equal to or greater than a predetermined second threshold Te2 within a range smaller than the absolute value of the first threshold Te1. The second threshold value Te2 is a value that does not cause hunting even when the adjustment of the assist torque TA is stopped at that value, and is, for example, about ± 0.6 Nm. Here, when the determination result is “| Ts | ≧ | Te2 |”, it is determined that there is a possibility that the driver still feels too early with respect to the timing at which the assist torque TA is decreased. The process proceeds to step S702. On the other hand, when the determination result is “| Ts | <| Te2 |”, it is determined that the driver no longer feels too early with respect to the timing for decreasing the assist torque TA, and the process proceeds to step S706.
 ステップS706では、補正フラグをfr=0にリセットしてから所定のメインプログラムに復帰する。
 ステップS707では、操舵トルクTsの絶対値が、第一閾値Tt1の絶対値以上であるか否かを判定する。ここで、判定結果が『|Ts|≧|Tt1|』であるときには、アシストトルクTAを減少させるタイミングに対して、運転者が遅過ぎると感じていると判断してステップS708に移行する。一方、判定結果が『|Ts|<|Tt1|』であるときには、アシストトルクTAを減少させるタイミングに対して、運転者が遅過ぎるとは感じていないと簡易的に判断してステップS710に移行する。
In step S706, the correction flag is reset to fr = 0, and then the process returns to a predetermined main program.
In step S707, it is determined whether or not the absolute value of the steering torque Ts is greater than or equal to the absolute value of the first threshold value Tt1. Here, when the determination result is “| Ts | ≧ | Tt1 |”, it is determined that the driver feels too late with respect to the timing of decreasing the assist torque TA, and the process proceeds to step S708. On the other hand, when the determination result is “| Ts | <| Tt1 |”, it is simply determined that the driver does not feel that it is too late with respect to the timing at which the assist torque TA is decreased, and the process proceeds to step S710. To do.
 ステップS708では、アシストトルクTAを減少させるタイミングを遅らせるため、道路曲率ρを読込む前方位置Xを、徐々に遠方になるように増加補正する。ここでは、前方位置Xの急変を避けるために、単位時間当たりに予め定めた許容量ずつ変化させて、新たな前方位置Xとしてから所定のメインプログラムに復帰する。
 続くステップS709では、補正フラグをfr=1にセットしてから所定のメインプログラムに復帰する。補正フラグfcは、前方位置Xに対して補正を実行したか否かを表すフラグであり、fc=0にリセットされているときには、前方位置Xに対して補正を実行していないことを表し、fc=1にセットされているときには、前方位置Xに対して補正を実行したことを表す。なお、初期状態ではfc=0にリセットされている。
In step S708, in order to delay the timing at which the assist torque TA is decreased, the forward position X at which the road curvature ρ is read is corrected to increase gradually so that it is farther away. Here, in order to avoid a sudden change in the forward position X, the amount is changed by a predetermined allowable amount per unit time, and after returning to the predetermined main program, a new forward position X is set.
In the subsequent step S709, the correction flag is set to fr = 1, and then the process returns to the predetermined main program. The correction flag fc is a flag indicating whether or not the correction is performed on the front position X. When the correction flag fc is reset to fc = 0, it indicates that the correction is not performed on the front position X. When fc = 1 is set, this indicates that correction has been performed for the forward position X. Note that fc = 0 is reset in the initial state.
 ステップS710では、補正フラグfcが1にセットされているか否かを判定する。判定結果が『fc=0』であるときには、前方位置Xに対する補正は実行されておらず、したがってアシストトルクTAに対して運転者が遅過ぎるとは感じていないと判断して、そのまま所定のメインプログラムに復帰する。一方、判定結果が『fc=1』であるときには、前方位置Xに対する補正が既に実行されており、先刻までアシストトルクTAに対して運転者が遅過ぎると感じていたことを意味するため、ステップS711に移行する。 In step S710, it is determined whether the correction flag fc is set to 1. When the determination result is “fc = 0”, it is determined that the correction for the forward position X has not been performed, and therefore the driver does not feel that the assist torque TA is too late, and the predetermined main Return to the program. On the other hand, when the determination result is “fc = 1”, it means that the correction for the forward position X has already been performed, and the driver felt that the driver torque was too late for the assist torque TA until the last time. The process proceeds to S711.
 ステップS711では、操舵トルクTsの絶対値が、第一閾値Tt1の絶対値よりも小さな範囲で予め定めた第二閾値Tt2以上であるか否かを判定する。第二閾値Tt2は、その値でアシストトルクTAの調整をやめてもハンチングを起こさないような値であり、例えば±0.6Nm程度である。ここで、判定結果が『|Ts|≧|Tt2|』であるときには、アシストトルクTAを減少させるタイミングに対して、依然として運転者が遅過ぎると感じている可能性があると判断して前述したステップS708に移行する。一方、判定結果が『|Ts|<|Tt2|』であるときには、アシストトルクTAを減少させるタイミングに対して、もはや運転者が遅過ぎるとは感じていないと判断してステップS712に移行する。 In step S711, it is determined whether or not the absolute value of the steering torque Ts is equal to or greater than a second threshold value Tt2 that is predetermined within a range smaller than the absolute value of the first threshold value Tt1. The second threshold value Tt2 is a value that does not cause hunting even if adjustment of the assist torque TA is stopped at that value, and is, for example, about ± 0.6 Nm. Here, when the determination result is “| Ts | ≧ | Tt2 |”, it is determined that there is a possibility that the driver still feels too late with respect to the timing at which the assist torque TA is decreased. The process proceeds to step S708. On the other hand, when the determination result is “| Ts | <| Tt2 |”, it is determined that the driver no longer feels too late with respect to the timing of decreasing the assist torque TA, and the process proceeds to step S712.
 ステップS712では、補正フラグをfr=0にリセットしてから所定のメインプログラムに復帰する。
 上記が第7実施形態のアシストトルク設定処理である。
 第7実施形態では、前述した第3実施形態と同様に、操舵トルクTsの絶対値が第二閾値Te2及びTt2の絶対値未満となるまで、前方位置Xを徐々に手前に補正してゆくことで、ハンチングを抑制しながら、アシストトルクTAを減少させる際のタイミングを最適化することができる。
 その他、前述した第5実施形態と共通する部分については、同様の作用効果が得られるものとし、詳細な説明は省略する。
In step S712, the correction flag is reset to fr = 0, and then the process returns to the predetermined main program.
The above is the assist torque setting process of the seventh embodiment.
In the seventh embodiment, as in the third embodiment described above, the forward position X is gradually corrected toward the front until the absolute value of the steering torque Ts becomes less than the absolute values of the second threshold values Te2 and Tt2. Thus, it is possible to optimize the timing for reducing the assist torque TA while suppressing hunting.
Other parts common to the fifth embodiment described above are assumed to have the same operational effects, and detailed description thereof is omitted.
《第8実施形態》
 《構成》
 本実施形態は、カーブ走行から直進走行に移行する際、操舵トルクTsが旋回方向と同じであり、且つ操舵トルクTsの絶対値が第一閾値Te1以上となったときには、操舵トルクTsの絶対値が第一閾値Te1よりも小さい範囲で予め定めた第二閾値Te2の絶対値未満となるまで、操舵トルクTsの絶対値が第一閾値Te1の絶対値以上となった時点のアシストトルクTAを維持するものである。
 装置構成は、前述した第1実施形態と同様である。
<< Eighth Embodiment >>
"Constitution"
In this embodiment, when the vehicle travels from the curve travel to the straight travel, when the steering torque Ts is the same as the turning direction and the absolute value of the steering torque Ts is equal to or greater than the first threshold Te1, the absolute value of the steering torque Ts. The assist torque TA when the absolute value of the steering torque Ts becomes equal to or greater than the absolute value of the first threshold value Te1 is maintained until the absolute value of the steering torque Ts becomes equal to or greater than the absolute value of the first threshold value Te1 in a range smaller than the first threshold value Te1. To do.
The apparatus configuration is the same as that of the first embodiment described above.
 次に、アシストトルク設定処理について説明する。
 図24は、第8実施形態のアシストトルク設定処理を示すフローチャートである。
 ここでは、前述した第7実施形態におけるステップS702の処理を、新たなステップS801の処理に変更しており、他のステップS111~S119、S501、S701、S703~S712の処理については、前述した第7実施形態と同様であるため、共通部分については詳細な説明を省略する。
 ステップS801では、それ以降は、操舵トルクTsの絶対値が第一閾値Te1以上となった時点のアシストトルクTAを維持する。
 上記が第8実施形態のアシストトルク設定処理である。
Next, the assist torque setting process will be described.
FIG. 24 is a flowchart illustrating assist torque setting processing according to the eighth embodiment.
Here, the process of step S702 in the seventh embodiment described above is changed to a new process of step S801, and the processes of other steps S111 to S119, S501, S701, and S703 to S712 are described above. Since it is the same as that of 7 embodiment, detailed description is abbreviate | omitted about a common part.
In step S801, thereafter, the assist torque TA at the time when the absolute value of the steering torque Ts becomes equal to or greater than the first threshold Te1 is maintained.
The above is the assist torque setting process of the eighth embodiment.
 第8実施形態では、前述した第4実施形態と同様に、操舵トルクTsの絶対値が第一閾値Te1以上となった時点のアシストトルクTAを維持することで、アシストトルクTAの増減を抑制しながら、それを減少させるタイミングを遅らせて最適化し、操作フィーリングを向上させることができる。
 その他、前述した第7実施形態と共通する部分については、同様の作用効果が得られるものとし、詳細な説明は省略する。
 以上、本願が優先権を主張する日本国特許出願P2012-276887(2012年12月19日出願)の全内容は、ここに引用例として包含される。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく実施形態の改変は、当業者にとって自明のことである。
In the eighth embodiment, similarly to the fourth embodiment described above, by maintaining the assist torque TA at the time when the absolute value of the steering torque Ts is equal to or greater than the first threshold Te1, the increase or decrease in the assist torque TA is suppressed. However, it is possible to improve the operation feeling by optimizing by delaying the timing to reduce it.
Other parts common to the above-described seventh embodiment can obtain the same operation effects, and detailed description thereof will be omitted.
The entire contents of the Japanese patent application P2012-276887 (filed on Dec. 19, 2012) to which the present application claims priority are incorporated herein by reference.
Although the present invention has been described with reference to a limited number of embodiments, the scope of rights is not limited thereto, and modifications of the embodiments based on the above disclosure will be apparent to those skilled in the art.
1     ステアリングホイール
2     ステアリングシャフト
3L、3R    転舵輪
4     ナックルアーム
5     タイロッド
6     ラックアンドピニヨン
7     ピニヨンシャフト
8     操作側モータ
9     転舵側モータ
10   クラッチ
11   操舵角センサ
12   転舵角センサ
13   ハブセンサ
14   車速センサ
15   ヨーレートセンサ
20   コントローラ
21   転舵側モータ制御部
22   操作側モータ制御部
23   操舵反力設定部
24   アシストトルク設定部
25   切替え部
26   駆動制御部
31   トルクセンサ
32   横加速度センサ
33   前方カメラ
34   ナビゲーションシステム
35   レーダ装置
DESCRIPTION OF SYMBOLS 1 Steering wheel 2 Steering shaft 3L, 3R Steering wheel 4 Knuckle arm 5 Tie rod 6 Rack and pinion 7 Pinion shaft 8 Operation side motor 9 Steering side motor 10 Clutch 11 Steering angle sensor 12 Steering angle sensor 13 Hub sensor 14 Vehicle speed sensor 15 Yaw rate Sensor 20 Controller 21 Steering side motor control unit 22 Operation side motor control unit 23 Steering reaction force setting unit 24 Assist torque setting unit 25 Switching unit 26 Drive control unit 31 Torque sensor 32 Lateral acceleration sensor 33 Front camera 34 Navigation system 35 Radar device

Claims (15)

  1.  自車進路前方の道路曲率を検出する曲率検出部と、
     自車進路に沿って旋回走行するために、前記曲率検出部で検出した道路曲率のうち、予め定めた前方位置の道路曲率に応じて、旋回方向のアシストトルクをステアリング機構に付与するアシスト制御部と、
     運転者の操舵トルクを検出するトルク検出部と、を備え、
     前記アシスト制御部は、
     旋回方向のアシストトルクを制御する際に、前記トルク検出部で検出した操舵トルクの向き及び大きさに応じて、前記前方位置を変更することを特徴とするステアリング制御装置。
    A curvature detection unit for detecting a road curvature ahead of the own vehicle path;
    An assist control unit that applies an assist torque in a turning direction to the steering mechanism according to a road curvature at a predetermined forward position among road curvatures detected by the curvature detection unit in order to make a turn along the own vehicle path. When,
    A torque detector for detecting the steering torque of the driver,
    The assist control unit
    A steering control device, wherein when controlling assist torque in a turning direction, the front position is changed according to the direction and magnitude of steering torque detected by the torque detector.
  2.  前記アシスト制御部は、
     直進走行からカーブ走行に移行する場合、前記トルク検出部で検出した操舵トルクの向きが旋回方向と逆であり、且つ操舵トルクの絶対値が予め定めた第一の閾値以上となったときには、前記前方位置を自車両に近い位置に変更することを特徴とする請求項1に記載のステアリング制御装置。
    The assist control unit
    When shifting from straight traveling to curve traveling, when the direction of the steering torque detected by the torque detector is opposite to the turning direction and the absolute value of the steering torque is equal to or greater than a predetermined first threshold, The steering control device according to claim 1, wherein the front position is changed to a position close to the host vehicle.
  3.  前記アシスト制御部は、
     直進走行からカーブ走行に移行する場合、前記トルク検出部で検出した操舵トルクの向きが旋回方向と同じであり、且つ操舵トルクの絶対値が予め定めた第一の閾値以上となったときには、前記前方位置を自車両から遠い位置に変更することを特徴とする請求項1又は2に記載のステアリング制御装置。
    The assist control unit
    When shifting from straight traveling to curve traveling, when the direction of the steering torque detected by the torque detection unit is the same as the turning direction and the absolute value of the steering torque is equal to or greater than a predetermined first threshold, The steering control device according to claim 1 or 2, wherein the front position is changed to a position far from the host vehicle.
  4.  前記アシスト制御部は、
     カーブ走行から直進走行に移行する場合、前記トルク検出部で検出した操舵トルクの向きが旋回方向と同じであり、且つ操舵トルクの絶対値が予め定めた第一の閾値以上となったときには、前記前方位置を自車両に近い位置に変更することを特徴とする請求項1~3の何れか一項に記載のステアリング制御装置。
    The assist control unit
    When transitioning from curve traveling to straight traveling, when the direction of the steering torque detected by the torque detection unit is the same as the turning direction and the absolute value of the steering torque is equal to or greater than a predetermined first threshold, The steering control device according to any one of claims 1 to 3, wherein the front position is changed to a position close to the host vehicle.
  5.  前記アシスト制御部は、
     カーブ走行から直進走行に移行する場合、前記トルク検出部で検出した操舵トルクの向きが旋回方向と逆であり、且つ操舵トルクの絶対値が予め定めた第一の閾値以上となったときには、前記前方位置を自車両から遠い位置に変更することを特徴とする請求項1~4の何れか一項に記載のステアリング制御装置。
    The assist control unit
    When transitioning from curve traveling to straight traveling, when the direction of the steering torque detected by the torque detector is opposite to the turning direction and the absolute value of the steering torque is equal to or greater than a predetermined first threshold, The steering control device according to any one of claims 1 to 4, wherein the front position is changed to a position far from the host vehicle.
  6.  前記アシスト制御部は、
     前記前方位置を、単位時間当たりに予め定めた許容量ずつ変更することを特徴とする請求項1~5の何れか一項に記載のステアリング制御装置。
    The assist control unit
    The steering control device according to any one of claims 1 to 5, wherein the front position is changed by a predetermined allowable amount per unit time.
  7.  前記アシスト制御部は、
     前記前方位置を予め定めた距離だけ変更することを特徴とする請求項6に記載のステアリング制御装置。
    The assist control unit
    The steering control device according to claim 6, wherein the front position is changed by a predetermined distance.
  8.  前記アシスト制御部は、
     前記前方位置を自車両に近い位置に変更する場合、前記トルク検出部で検出した操舵トルクの絶対値が前記第一の閾値以上となった時点の前記アシストトルクを予め定めた時間だけ維持してから、前記前方位置を自車両に近い位置に変更することを特徴とする請求項2~7の何れか一項に記載のステアリング制御装置。
    The assist control unit
    When the front position is changed to a position close to the host vehicle, the assist torque at the time when the absolute value of the steering torque detected by the torque detection unit becomes equal to or greater than the first threshold is maintained for a predetermined time. The steering control device according to any one of claims 2 to 7, wherein the forward position is changed to a position close to the host vehicle.
  9.  前記アシスト制御部は、
     前記トルク検出部で検出した操舵トルクの絶対値が、前記第一の閾値よりも小さな範囲で予め定めた第二の閾値未満となった時点で、前記前方位置を固定にすることを特徴とする請求項6~8の何れか一項に記載のステアリング制御装置。
    The assist control unit
    The front position is fixed when the absolute value of the steering torque detected by the torque detector becomes less than a predetermined second threshold within a range smaller than the first threshold. The steering control device according to any one of claims 6 to 8.
  10.  前記アシスト制御部は、
     直進走行からカーブ走行に移行する場合、前記トルク検出部で検出した操舵トルクの向きが旋回方向と逆であり、且つ操舵トルクの絶対値が予め定めた第一の閾値以上となったときには、前記操舵トルクが前記第一の閾値よりも小さな範囲で予め定めた第二の閾値未満となるまで、前記操舵トルクの絶対値が前記第一閾値以上となった時点の前記アシストトルクを維持することを特徴とする請求項1に記載のステアリング制御装置。
    The assist control unit
    When shifting from straight traveling to curve traveling, when the direction of the steering torque detected by the torque detector is opposite to the turning direction and the absolute value of the steering torque is equal to or greater than a predetermined first threshold, Maintaining the assist torque when the absolute value of the steering torque is equal to or greater than the first threshold until the steering torque is less than a predetermined second threshold within a range smaller than the first threshold. The steering control device according to claim 1, wherein
  11.  前記アシスト制御部は、
     カーブ走行から直進走行に移行する場合、前記トルク検出部で検出した操舵トルクの向きが旋回方向と同じであり、且つ操舵トルクの絶対値が予め定めた第一の閾値以上となったときには、前記操舵トルクが前記第一の閾値よりも小さな範囲で予め定めた第二の閾値未満となるまで、前記操舵トルクの絶対値が前記第一閾値以上となった時点の前記アシストトルクを維持することを特徴とする請求項1又は2に記載のステアリング制御装置。
    The assist control unit
    When transitioning from curve traveling to straight traveling, when the direction of the steering torque detected by the torque detection unit is the same as the turning direction and the absolute value of the steering torque is equal to or greater than a predetermined first threshold, Maintaining the assist torque when the absolute value of the steering torque becomes equal to or greater than the first threshold until the steering torque is less than a predetermined second threshold within a range smaller than the first threshold. The steering control device according to claim 1 or 2, characterized in that
  12.  車速を検出する車速検出部を備え、
     前記アシスト制御部は、
     前記車速検出部で検出した車速が高いほど、前記第一の閾値を大きな値に設定することを特徴とする請求項1~11の何れか一項に記載のステアリング制御装置。
    It has a vehicle speed detector that detects the vehicle speed,
    The assist control unit
    The steering control device according to any one of claims 1 to 11, wherein the first threshold value is set to a larger value as the vehicle speed detected by the vehicle speed detection unit is higher.
  13.  路面摩擦係数を取得する摩擦係数取得部を備え、
     前記アシスト制御部は、
     前記摩擦係数取得部で取得した路面摩擦係数が低いほど、前記第一の閾値を小さな値に設定することを特徴とする請求項1~12の何れか一項に記載のステアリング制御装置。
    A friction coefficient acquisition unit for acquiring a road surface friction coefficient is provided,
    The assist control unit
    The steering control device according to any one of claims 1 to 12, wherein the first threshold value is set to a smaller value as the road surface friction coefficient acquired by the friction coefficient acquisition unit is lower.
  14.  自車進路前方の道路曲率を検出する曲率検出部と、
     自車進路に沿って旋回走行するために、前記曲率検出部で検出した道路曲率のうち、予め定めた前方位置の道路曲率に応じて、旋回方向のアシストトルクをステアリング機構に付与するアシスト制御部と、
     運転者の操舵トルクを検出するトルク検出部と、を備え、
     前記アシスト制御部は、
     旋回方向のアシストトルクを制御する際に、前記トルク検出部で検出した操舵トルクの向き及び大きさに応じて、前記前方位置を変更した場合と等しくなるように、前記道路曲率及び前記アシストトルクの一方を変更することを特徴とするステアリング制御装置。
    A curvature detection unit for detecting a road curvature ahead of the own vehicle path;
    An assist control unit that applies an assist torque in a turning direction to the steering mechanism according to a road curvature at a predetermined forward position among road curvatures detected by the curvature detection unit in order to make a turn along the own vehicle path. When,
    A torque detector for detecting the steering torque of the driver,
    The assist control unit
    When controlling the assist torque in the turning direction, the road curvature and the assist torque are set to be the same as when the front position is changed according to the direction and magnitude of the steering torque detected by the torque detector. A steering control device characterized by changing one side.
  15.  自車進路前方の道路曲率を検出し、
     自車進路に沿って旋回走行するために、予め定めた前方位置の道路曲率に応じて、旋回方向のアシストトルクをステアリング機構に付与し、
     運転者の操舵トルクを検出し、
     旋回方向のアシストトルクを制御する際に、操舵トルクの向き及び大きさに応じて、前記前方位置を変更することを特徴とするステアリング制御方法。
    Detects the road curvature ahead of the vehicle
    In order to make a turn along the own vehicle path, an assist torque in the turning direction is applied to the steering mechanism in accordance with a road curvature at a predetermined forward position.
    Detects the steering torque of the driver,
    A steering control method, wherein when the assist torque in the turning direction is controlled, the front position is changed according to the direction and magnitude of the steering torque.
PCT/JP2013/006884 2012-12-19 2013-11-22 Steering control device and steering control method WO2014097541A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-276887 2012-12-19
JP2012276887 2012-12-19

Publications (1)

Publication Number Publication Date
WO2014097541A1 true WO2014097541A1 (en) 2014-06-26

Family

ID=50977907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006884 WO2014097541A1 (en) 2012-12-19 2013-11-22 Steering control device and steering control method

Country Status (1)

Country Link
WO (1) WO2014097541A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016147541A (en) * 2015-02-10 2016-08-18 本田技研工業株式会社 Travel support system and travel support method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781603A (en) * 1993-09-16 1995-03-28 Mitsubishi Motors Corp Automatic steering gear for vehicle
JPH10167100A (en) * 1996-12-09 1998-06-23 Toyota Motor Corp Vehicle steering control device
JP2003312505A (en) * 2002-04-18 2003-11-06 Mitsubishi Electric Corp Steering control device for vehicle
JP2004182058A (en) * 2002-12-03 2004-07-02 Toyoda Mach Works Ltd Steering control device
JP2008168784A (en) * 2007-01-11 2008-07-24 Fuji Heavy Ind Ltd Travel control device for vehicle
JP2009190464A (en) * 2008-02-12 2009-08-27 Toyota Motor Corp Lane keeping support system
JP2011168194A (en) * 2010-02-19 2011-09-01 Toyota Motor Corp Lane departure prevention assisting device
WO2012014707A1 (en) * 2010-07-30 2012-02-02 日立オートモティブシステムズ株式会社 Vehicle motion control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781603A (en) * 1993-09-16 1995-03-28 Mitsubishi Motors Corp Automatic steering gear for vehicle
JPH10167100A (en) * 1996-12-09 1998-06-23 Toyota Motor Corp Vehicle steering control device
JP2003312505A (en) * 2002-04-18 2003-11-06 Mitsubishi Electric Corp Steering control device for vehicle
JP2004182058A (en) * 2002-12-03 2004-07-02 Toyoda Mach Works Ltd Steering control device
JP2008168784A (en) * 2007-01-11 2008-07-24 Fuji Heavy Ind Ltd Travel control device for vehicle
JP2009190464A (en) * 2008-02-12 2009-08-27 Toyota Motor Corp Lane keeping support system
JP2011168194A (en) * 2010-02-19 2011-09-01 Toyota Motor Corp Lane departure prevention assisting device
WO2012014707A1 (en) * 2010-07-30 2012-02-02 日立オートモティブシステムズ株式会社 Vehicle motion control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016147541A (en) * 2015-02-10 2016-08-18 本田技研工業株式会社 Travel support system and travel support method
US10099689B2 (en) 2015-02-10 2018-10-16 Honda Motor Co., Ltd. Vehicle travel support system and vehicle travel support method

Similar Documents

Publication Publication Date Title
JP6055525B1 (en) Vehicle travel control device
US10589787B2 (en) Power steering apparatus control device and power steering apparatus
US9002579B2 (en) Steering assist device
US10336366B2 (en) Driving support apparatus for vehicle
US9193381B2 (en) Method and apparatus for affecting cornering performance of a motor vehicle, and a motor vehicle
US8457868B2 (en) Lane keeping assist device and lane keeping assist method
CN104742959B (en) The track of vehicle keeps control device
US8150581B2 (en) Driving assistance system and driving assistance method
US8489281B2 (en) Method for operating an automobile and an automobile with an environmental detection device
JP4918818B2 (en) Vehicle travel support device
EP4063237A1 (en) Vehicle steering control method, device and system
JP5853552B2 (en) Vehicle travel control device
WO2019240002A1 (en) Vehicle control device, vehicle control method, and vehicle control system
JP2019156327A (en) Vehicle lane deviation prevention controller
WO2014064805A1 (en) Vehicle travel support device
JP2018177152A (en) Steering support apparatus for vehicle, and steering support method
JP4696671B2 (en) Vehicle control device
JP5386873B2 (en) Vehicle steering apparatus and vehicle steering method
JPH11198844A (en) Steering effort controller
JP2006236238A (en) Lane traveling supporting device for vehicle
US20160009318A1 (en) Collision avoidance assistance device and collision avoidance assistance method
JP5380861B2 (en) Lane maintenance support device and lane maintenance support method
JP5380860B2 (en) Lane maintenance support device and lane maintenance support method
JP2007168588A (en) Steering device
WO2013136781A1 (en) Driving operation assisting device, driving operation assisting method, and holding state determination method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP