WO2014096148A1 - Functionalized exendin-4 derivatives - Google Patents

Functionalized exendin-4 derivatives Download PDF

Info

Publication number
WO2014096148A1
WO2014096148A1 PCT/EP2013/077310 EP2013077310W WO2014096148A1 WO 2014096148 A1 WO2014096148 A1 WO 2014096148A1 EP 2013077310 W EP2013077310 W EP 2013077310W WO 2014096148 A1 WO2014096148 A1 WO 2014096148A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxy
butyryl
amino acid
ethoxy
acid residue
Prior art date
Application number
PCT/EP2013/077310
Other languages
French (fr)
Inventor
Torsten Haack
Michael Wagner
Bernd Henkel
Siegfried Stengelin
Andreas Evers
Martin Lorenz
Katrin Lorenz
Original Assignee
Sanofi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015548552A priority Critical patent/JP6391589B2/en
Priority to ES13810958.2T priority patent/ES2688367T3/en
Application filed by Sanofi filed Critical Sanofi
Priority to MX2015008099A priority patent/MX360317B/en
Priority to SG11201504215PA priority patent/SG11201504215PA/en
Priority to EA201591174A priority patent/EA031428B1/en
Priority to EP13810958.2A priority patent/EP2934567B9/en
Priority to CN201380066471.6A priority patent/CN104870009B/en
Priority to DK13810958.2T priority patent/DK2934567T3/en
Priority to KR1020157018591A priority patent/KR20150099548A/en
Priority to UAA201507199A priority patent/UA116553C2/en
Priority to BR112015014800A priority patent/BR112015014800A2/en
Priority to LTEP13810958.2T priority patent/LT2934567T/en
Priority to SI201331127T priority patent/SI2934567T1/en
Priority to EP18164271.1A priority patent/EP3400957A1/en
Priority to RS20180942A priority patent/RS57531B1/en
Priority to PL13810958T priority patent/PL2934567T3/en
Priority to AU2013366690A priority patent/AU2013366690B2/en
Priority to MA38276A priority patent/MA38276B1/en
Priority to CA2895755A priority patent/CA2895755A1/en
Publication of WO2014096148A1 publication Critical patent/WO2014096148A1/en
Priority to ZA2015/03914A priority patent/ZA201503914B/en
Priority to IL239101A priority patent/IL239101A0/en
Priority to PH12015501291A priority patent/PH12015501291A1/en
Priority to TNP2015000283A priority patent/TN2015000283A1/en
Priority to CR20150358A priority patent/CR20150358A/en
Priority to HK15112144.3A priority patent/HK1211233A1/en
Priority to HRP20181300TT priority patent/HRP20181300T1/en
Priority to CY20181100833T priority patent/CY1121153T1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/605Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/2264Obesity-gene products, e.g. leptin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/26Glucagons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to exendin-4 peptide analogues which activate the glucagon-like peptide 1 (GLP-1 ) and the glucose-dependent insulinotropic polypeptide (GIP) receptor and optionally the glucagon receptor (GCG) and their medical use, for example in the treatment of disorders of the metabolic syndrome, including diabetes and obesity, as well as reduction of excess food intake.
  • GLP-1 glucagon-like peptide 1
  • GIP glucose-dependent insulinotropic polypeptide
  • GCG glucagon receptor
  • Exendin-4 is a 39 amino acid peptide which is produced by the salivary glands of the Gila monster (Heloderma suspectum) (Eng J. et al., J. Biol. Chem., 267:7402-05,1992). Exendin-4 is an activator of the glucagon-like peptide-1 (GLP-1 ) receptor, whereas it shows only very low activation of the GIP receptor and does not activate the glucagon receptor (see Table 1 ).
  • GLP-1 glucagon-like peptide-1
  • Table 1 Potencies of exendin-4 at human GLP-1 , GIP and Glucagon receptors (indicated in pM) at increasing concentrations and measuring the formed cAMP as described in Methods.
  • Exendin-4 shares many of the glucoregulatory actions observed with GLP-1 .
  • Clinical and non-clinical studies have shown that exendin-4 has several beneficial antidiabetic properties including a glucose dependent enhancement in insulin synthesis and secretion, glucose dependent suppression of glucagon secretion, slowing down gastric emptying, reduction of food intake and body weight, and an increase in beta-cell mass and markers of beta cell function (Gentilella R et al., Diabetes Obes Metab., 1 1 :544-56, 2009; Norris SL et al., Diabet Med., 26:837-46, 2009; Bunck MC et al., Diabetes Care., 34:2041 -7, 201 1 ).
  • exendin-4 is more resistant to cleavage by dipeptidyl peptidase-4 (DPP4) resulting in a longer half-life and duration of action in vivo (Eng J., Diabetes, 45 (Suppl 2):152A (abstract 554), 1996; Deacon CF, Horm Metab Res, 36: 761 -5, 2004).
  • DPP4 dipeptidyl peptidase-4
  • Exendin-4 was also shown to be much more stable towards degradation by neutral endopeptidase (NEP), when compared to GLP-1 , glucagon or oxyntomodulin (Druce MR et al., Endocrinology, 150(4), 1712-1721 , 2009).
  • NEP neutral endopeptidase
  • exendin-4 is chemically labile due to methionine oxidation in position 14 (Hargrove DM et al., Regul. Pept., 141 : 1 13-9, 2007) as well as deamidation and isomerization of asparagine in position 28 (WO 2004/035623).
  • exendin-4 is shown as SEQ ID NO: 1 : HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2
  • GLP-1 (7-36)-amide is shown as SEQ ID NO: 2: HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR-NH2
  • Liraglutide is a marketed chemically modified GLP-1 analogue in which, among other modifications, a fatty acid is linked to a lysine in position 20 leading to a prolonged duration of action (Drucker DJ et al, Nature Drug Disc. Rev. 9, 267-268, 2010; Buse, JB et al., Lancet, 374:39-47, 2009).
  • Liraglutide is shown as SEQ ID NO: 3: HAEGTFTSDVSSYLEGQAAK((S)-4-Carboxy-4-hexadecanoylamino-butyryl- )EFIAWLVRGRG-OH
  • GIP glucose-dependent insulinotropic polypeptide
  • GIP and GLP-1 are the two gut enteroendocrine cell-derived hormones accounting for the incretin effect, which accounts for over 70% of the insulin response to an oral glucose challenge (Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132: 2131-2157).
  • GIP's amino acid sequence is shown as SEQ ID NO: 4:
  • Glucagon is a 29-amino acid peptide which is released into the bloodstream when circulating glucose is low. Glucagon's amino acid sequence is shown in SEQ ID NO: 5:
  • hypoglycemia when blood glucose levels drop below normal, glucagon signals the liver to break down glycogen and release glucose, causing an increase of blood glucose levels to reach a normal level. Hypoglycemia is a common side effect of insulin treated patients with hyperglycemia (elevated blood glucose levels) due to diabetes. Thus, glucagon's most predominant role in glucose regulation is to counteract insulin action and maintain blood glucose levels.
  • GLP-1 receptor agonists such as GLP-1 , liraglutide and exendin-4
  • FPG and PPG fasting and postprandial glucose
  • GLP-1 and GIP receptors dual activation of the GLP-1 and GIP receptors, e.g. by combining the actions of GLP-1 and GIP in one preparation, leads to a therapeutic principle with significantly better reduction of blood glucose levels, increased insulin secretion and reduced body weight in mice with T2DM and obesity compared to the marketed GLP-1 agonist liraglutide (e.g. VA Gault et al., Clin Sci (Lond), 121 , 107-1 17, 201 1 ).
  • Native GLP-1 and GIP were proven in humans following co-infusion to interact in an additive manner with a significantly increased insulinotropic effect compared to GLP- 1 alone (MA Nauck et al., J. Clin. Endocrinol. Metab., 76, 912-917, 1993).
  • Compounds of this invention are exendin-4 derivatives, which show agonistic activity at the GLP-1 and the GIP receptor and optionally the glucagon receptor and which have - among others - preferably the following modifications: Tyr at position 1 and lie at position 12.
  • Table 2 Potencies of exendin-4 and GLP-1 peptide analogues at GLP-1 and GIP receptors (indicated in pM) at increasing concentrations and measuring the formed cAMP as described in Methods.
  • Peptides which bind and activate both the GIP and the GLP-1 receptor and optionally the glucagon receptor, and improve glycaemic control, suppress body weight gain and reduce food intake are described in patent applications WO 201 1/1 19657 A1 , WO 2012/138941 A1 , WO 2010/01 1439 A2, WO 2010/148089 A1 , WO 201 1/094337 A1 , WO 2012/0881 16 A2, the contents of which are herein incorporated by reference. These applications disclose that mixed agonists of the GLP-1 receptor, the GIP receptor and optionally the glucagon receptor can be designed as analogues of the native GIP or glucagon sequences.
  • Exendin-4 peptide analogues comprising leucine in position 10 and glutamine in position 13.
  • Krstenansky et al. show the importance of residues 10 to 13 of glucagon for its receptor interactions and activation of adenylate cyclase.
  • residues Tyr10 and Tyr13 are replaced by leucine in position 10 and glutamine, a non-aromatic polar amino acid, in position 13.
  • exendin-4 derivatives with potentially improved biophysical properties as solubility or aggregation behavior in solution.
  • the non-conservative replacement of an aromatic amino acid with a polar amino acid in position 13 of an exendin-4 analogue surprisingly leads to peptides with high activity on the GIP receptor and optionally on the glucagon receptor.
  • compounds of this invention are exendin-4 derivatives with fatty acid acylated residues in position 14.
  • This fatty acid functionalization in position 14 results in an improved pharmacokinetic profile.
  • the fatty acid functionalization in position 14 also leads to peptides with a significantly higher GIPR activity, for example those shown in Example 9, Table 8.
  • exendin-4 analogues which potently activate the GLP-1 and the GIP receptor and optionally the glucagon receptor.
  • exendin- 4 analogues - among other substitutions - methionine at position 14 is replaced by an amino acid carrying an -NH 2 group in the side-chain, which is further substituted with a lipophilic side-chain (e.g. a fatty acid optionally combined with a linker).
  • the invention provides a peptidic compound having the formula (I)
  • X3 represents an amino acid residue selected from Gin, Glu and His
  • X12 represents an amino acid residue selected from lie and Lys
  • X14 represents an amino acid residue having a side chain with an -NH 2 group, wherein the -NH 2 side chain group is functional ized by -C(O)-R 5 , -C(O)O-R 5 , -C(O)NH-R 5 , -S(O) 2 -R 5 or R 5 , preferably by -C(O)-R 5 , wherein R 5 may be a moiety comprising up to 50 or up to 100 carbon atoms and optionally heteroatoms selected from halogen, N, O, S and/or P,
  • X15 represents an amino acid residue selected from Asp and Glu
  • X16 represents an amino acid residue selected from Ser, Lys, Glu and Gin
  • X17 represents an amino acid residue selected from Arg, Lys, lie, Glu, Gin, Leu, Aib, Tyr and Ala,
  • X18 represents an amino acid residue selected from Ala, Arg, Lys, Aib, Leu and Tyr,
  • X19 represents an amino acid residue selected from Ala, Val, Gin and Aib,
  • X20 represents an amino acid residue selected from Gin, Aib, Phe, Leu, Lys, His, Arg, Pip, (S)MeLys, (R)MeLys, (S)MeOrn and (R)MeOrn, X21 represents an amino acid residue selected from Asp, Glu, Leu and Tyr,
  • X28 represents an amino acid residue selected from Asn, Ala, Arg, Lys, Aib and Ser,
  • X29 represents an amino acid residue selected from Gly, Thr, Aib, D- Ala and Ala
  • X40 is absent or represents an amino acid residue having a side chain with an -NH 2 group, wherein the -NH 2 side chain group is optionally functionalized by -C(O)-R 5 , -C(O)O-R 5 , -C(O)NH-R 5 , -S(O) 2 -R 5 or R 5 , preferably by -C(O)-R 5 , wherein R 5 may be a moiety comprising up to 50 or up to 100 carbon atoms and optionally heteroatoms selected from halogen, N, O, S and/or P,
  • R represents NH 2
  • R 2 represents OH or NH 2 . or a salt or solvate thereof.
  • the compounds of the invention are GLP-1 and GIP receptor agonists and optionally glucagon receptor agonists as determined by the observation that they are capable of stimulating intracellular cAMP formation.
  • In vitro potency determination in cellular assays of agonists is quantified by determining the concentrations that cause 50% activation of maximal response (EC50) as described in Methods.
  • the invention therefore provides a peptidic compound having the formula (I):
  • X3 represents an amino acid residue selected from Gin, Glu and His
  • X12 represents an amino acid residue selected from lie and Lys
  • X14 represents an amino acid residue having a side chain with an -NH 2 group, wherein the -NH 2 side chain group is functional ized by -C(O)-R 5 , -C(O)O-R 5 , -C(O)NH-R 5 , -S(O) 2 -R 5 or R 5 , preferably by -C(O)-R 5 , wherein R 5 is a moiety comprising up to 50 or up to 100 carbon atoms and optionally heteroatoms selected from halogen, N, O, S and/or P,
  • X15 represents an amino acid residue selected from Asp and Glu
  • X16 represents an amino acid residue selected from Ser, Lys, Glu and Gin
  • X17 represents an amino acid residue selected from Arg, Lys, lie, Glu, Gin, Leu, Aib, Tyr and Ala,
  • X18 represents an amino acid residue selected from Ala, Arg, Lys, Aib, Leu and Tyr,
  • X19 represents an amino acid residue selected from Ala, Val, Gin and Aib,
  • X20 represents an amino acid residue selected from Gin, Aib, Phe, Leu, Lys, His, Arg, Pip, (S)MeLys, (R)MeLys, (S)MeOrn and (R)MeOrn, X21 represents an amino acid residue selected from Asp, Glu, Leu and Tyr,
  • X28 represents an amino acid residue selected from Asn, Ala, Arg, Lys, Aib and Ser,
  • X29 represents an amino acid residue selected from Gly, Thr, Aib, D- Ala and Ala,
  • X40 is absent or represents an amino acid residue having a side chain with an -NH 2 group, wherein the -NH 2 side chain group is optionally functionalized by -C(O)-R 5 , -C(O)O-R 5 , -C(O)NH-R 5 , -S(O) 2 -R 5 or R 5 , preferably by -C(O)-R 5 , wherein R 5 may be a moiety comprising up to 50 or up to 100 carbon atoms and optionally heteroatoms selected from halogen, N, O, S and/or P, R 1 represents NH 2 ,
  • R 2 represents OH or NH 2 . or a salt or solvate thereof, wherein the peptidic compound has a relative activity of at least 0.04%, preferably at least 0.08%, more preferably at least 0.2% compared to that of natural GIP at the GIP receptor.
  • the peptidic compound particularly with a lysine at position 14 which is further substituted with a lipophilic residue, exhibits a relative activity of at least 0.07%, preferably at least 0.1 %, more preferably at least 0.14%, more preferably at least 0.35% and even more preferably at least 0.4% compared to that of GLP-1 (7-36) at the GLP-1 receptor.
  • the peptidic compound particularly with a lysine at position 14 which is further substituted with a lipophilic residue, exhibits a relative activity of at least 0.1 %, preferably at least 0.2%, more preferably at least 0.3%, more preferably at least 0.4% and even more preferably at least 0.5% compared to that of natural glucagon at the glucagon receptor.
  • activity as used herein preferably refers to the capability of a compound to activate the human GLP-1 receptor, the human GIP receptor and optionally the human glucagon receptor. More preferably the term “activity” as used herein refers to the capability of a compound to stimulate intracellular cAMP formation.
  • relative activity is understood to refer to the capability of a compound to activate a receptor in a certain ratio as compared to another receptor agonist or as compared to another receptor.
  • the activation of the receptors by the agonists is determined as described herein, e.g. as described in the examples.
  • the compounds of the invention have an EC 50 for hGLP-1 receptor of 500 pM or less, preferably of 200 pM or less; more preferably of 150 pM or less, more preferably of 100 pM or less, more preferably of 90 pM or less, more preferably of 80 pM or less, more preferably of 70 pM or less, more preferably of 60 pM or less, more preferably of 50 pM or less, more preferably of 40 pM or less, more preferably of 30 pM or less, and more preferably of 20 pM or less.
  • the compounds of the invention have an EC 50 for hGIP receptor of 500 pM or less, preferably of 200 pM or less; more preferably of 150 pM or less, more preferably of 100 pM or less, more preferably of 90 pM or less, more preferably of 80 pM or less, more preferably of 70 pM or less, more preferably of 60 pM or less, more preferably of 50 pM or less, more preferably of 40 pM or less, more preferably of 30 pM or less, and more preferably of 20 pM or less.
  • the compounds of the invention have optionally an EC 5 o for hGlucagon receptor of 500 pM or less, preferably of 200 pM or less; more preferably of 150 pM or less, more preferably of 100 pM or less, more preferably of 90 pM or less, more preferably of 80 pM or less, more preferably of 70 pM or less, more preferably of 60 pM or less, more preferably of 50 pM or less, more preferably of 40 pM or less, more preferably of 30 pM or less, and more preferably of 20 pM or less.
  • an EC 5 o for hGlucagon receptor of 500 pM or less, preferably of 200 pM or less; more preferably of 150 pM or less, more preferably of 100 pM or less, more preferably of 90 pM or less, more preferably of 80 pM or less, more preferably of 70 pM or less, more preferably of 60 pM or less, more preferably of 50
  • the compounds of the invention have an EC 5 o for hGLP-1 receptor of 500 pM or less, preferably of 200 pM or less; more preferably of 150 pM or less, more preferably of 100 pM or less, more preferably of 90 pM or less, more preferably of 80 pM or less, more preferably of 70 pM or less, more preferably of 60 pM or less, more preferably of 50 pM or less, more preferably of 40 pM or less, more preferably of 30 pM or less, and more preferably of 20 pM or less, and/or an EC 5 o for hGIP receptor of 500 pM or less, preferably of 200 pM or less; more preferably of 150 pM or less, more preferably of 100 pM or less, more preferably of 90 pM or less, more preferably of 80 pM or less, more preferably of 70 pM or less, more preferably of 60 pM or less, more preferably
  • the EC 50 for both receptors is 500 pM or less, more preferably 200 pM or less, more preferably 150 pM or less, more preferably 100 pM or less, more preferably 90 pM or less, more preferably 80 pM or less, more preferably 70 pM or less, more preferably 60 pM or less, more preferably 50 pM or less, more preferably 40 pM or less, more preferably 30 pM or less, more preferably 20 pM or less.
  • the EC 50 for all three receptors is 500 pM or less, more preferably 200 pM or less, more preferably 150 pM or less, more preferably 100 pM or less, more preferably 90 pM or less, more preferably 80 pM or less, more preferably 70 pM or less, more preferably 60 pM or less, more preferably 50 pM or less, more preferably 40 pM or less, more preferably 30 pM or less, more preferably 20 pM or less.
  • the EC50 for hGLP-1 receptor, hGIP receptor and hGlucagon receptor may be determined as described in the Methods herein and as used to generate the results described in Example 9.
  • the compounds of the invention have the ability to reduce the intestinal passage, to increase the gastric content and/or to reduce the food intake of a patient. These activities of the compounds of the invention can be assessed in animal models known to the skilled person and also described herein in the Methods. The results of such experiments are described in Examples 1 1 and 12.
  • Preferred compounds of the invention may increase the gastric content of mice, preferably of female NMRI-mice, if administered as a single dose, preferably subcutaneous dose, of 0.02 mg/kg body weight by at least 25%, more preferably by at least 30%, more preferably by at least 40%, more preferably by at least 50%, more preferably by at least 60%, more preferably by at least 70%, more preferably by at least 80%.
  • this result is measured 1 h after administration of the respective compound and 30 mins after administration of a bolus, and/or reduces intestinal passage of mice, preferably of female NMRI-mice, if administered as a single dose, preferably subcutaneous dose, of 0.02 mg/kg body weight at least by 45%; more preferably by at least 50%, more preferably by at least 55%, more preferably by at least 60%, and more preferably at least 65%; and/or reduces food intake of mice, preferably of female NMRI-mice, over a period of 22 h, if administered as a single dose, preferably subcutaneous dose of 0.01 mg/kg body weight by at least 10%, more preferably 15%, and more preferably 20%.
  • the compounds of the invention have the ability to reduce blood glucose level, and/or to reduce HbA1 c levels of a patient. These activities of the compounds of the invention can be assessed in animal models known to the skilled person and also described herein in the Methods. The results of such experiments are described in Examples 13, 14, 16 and 17.
  • Preferred compounds of the invention may reduce blood glucose level of mice, preferably in female leptin-receptor deficient diabetic db/db mice over a period of 24 h, if administered as a single dose, preferably subcutaneous dose, of 0.01 mg/kg body weight by at least 4 mmol/L; more preferably by at least 6 mmol/L, more preferably by at least 8 mmol/L.
  • the compounds of the invention lead to a reduction by at least 7 mmol/L; more preferably by at least 9 mmol/L, more preferably by at least 1 1 mmol/L.
  • the compounds of the invention preferably reduce the increase of HbA1 c levels of mice over a period of 4 weeks, if administered at a daily dose of 0.01 mg/kg to about the ignition value.
  • the compounds of the invention also have the ability to reduce body weight of a patient.
  • compounds of the invention preferably have a high solubility at acidic and/or physiological pH values, e.g., at pH 4.5 and/or at pH 7.4 at 25°C, in another embodiment at least 0.5 mg/ml and in a particular embodiment at least 1 .0 mg/ml.
  • compounds of the invention preferably have a high stability when stored in solution.
  • Preferred assay conditions for determining the stability is storage for 7 days at 25°C in solution at pH 4.5 or pH 7.4.
  • the remaining amount of peptide is determined by chromatographic analyses as described in Methods and Examples.
  • the remaining peptide amount is at least 80%, more preferably at least 85%, even more preferably at least 90% and even more preferably at least 95%.
  • the compounds of the present invention comprise a peptide moiety Z (formula II) which is a linear sequence of 39-40 amino carboxylic acids, particularly a-amino carboxylic acids linked by peptide, i.e. carboxamide, bonds.
  • position X14 represents an amino acid residue with a functionalized -NH 2 side chain group, such as functionalized Lys, Orn, Dab, or Dap, more preferably functionalized Lys and X40 is absent or represents Lys.
  • a functionalized -NH 2 side chain group such as functionalized Lys, Orn, Dab, or Dap, more preferably functionalized Lys and X40 is absent or represents Lys.
  • An amino acid residue with an -NH 2 side chain group may be functionalized in that at least one H atom of the -NH 2 side chain group is replaced by -C(O)-R 5 , -C(O)O-R 5 , -C(O)NH-R5, -S(0)2-R5 or R 5 , preferably by -C(O)-R 5 , wherein R 5 is a moiety comprising up to 50 or up to 100 carbon atoms and optionally heteroatoms selected from halogen, N, O, S and/or P.
  • R 5 may comprise a lipophilic moiety, e.g.
  • R 5 particularly comprises an acyclic linear or branched (C 4 -C 3 o) saturated or unsaturated hydrocarbon group, and/or a cyclic saturated, unsaturated or aromatic group, particularly a mono-, bi-, or tricyclic group comprising 4 to 14 carbon atoms and 0, 1 , or 2 heteroatoms selected from N, O, and S, e.g. cyclohexyl, phenyl, biphenyl, chromanyl, phenanthrenyl or naphthyl, wherein the acyclic or cyclic group may be unsubstituted or substituted e.g. by halogen, -OH and/or CO 2 H.
  • R 5 may comprise a lipophilic moiety, e.g. an acyclic linear or branched (C12-C22) saturated or unsaturated hydrocarbon group.
  • the lipophilic moiety may be attached to the -NH 2 side chain group by a linker in all stereoisomeric forms, e.g. a linker comprising one or more, e.g. 2, 3 or 4, amino acid linker groups such as ⁇ -aminobutyric acid (GABA), ⁇ - aminohexanoic acid ( ⁇ -Ahx), ⁇ -Glu and/or ⁇ -Ala.
  • GABA ⁇ -aminobutyric acid
  • ⁇ -Ahx ⁇ - aminohexanoic acid
  • ⁇ -Glu ⁇ -Glu and/or ⁇ -Ala.
  • the lipophilic moiety is attached to the -NH 2 side chain group by a linker.
  • the lipophilic moiety is directly attached to the -NH 2 side chain group.
  • amino acid linker groups are ( ⁇ -Ala)-!- 4, (Y-GI U)I-4, (£-Ahx) -4 , or (GABA) -4 .
  • Preferred amino acid linker groups are ⁇ -Ala, Y-Glu, B-Ala-B-Ala and ⁇ -Glu-Y-Glu.
  • -C(O)-R 5 groups are listed in the following Table 3, which are selected from the group consisting of (S)-4-Carboxy-4- hexadecanoylamino-butyryl-, (S)-4-Carboxy-4-octadecanoylamino-butyryl-, 4-Hexadecanoylamino-butyryl-, 4- ⁇ 3-[(R)-2,5,7,8-tetramethyl-2-((4R,8R)- 4,8,12-trimethyl-tridecyl)-chroman-6-yloxycarbonyl]-propionylamino ⁇ -butyryl-, 4-octadecanoylamino-butyryl-, 4-((Z)-octadec-9-enoylamino)-butyryl-, 6- [(4,4-Diphenyl-cyclohexyloxy)-hydroxy-phosphoryloxy]-hexanoyl-, Hexa-
  • stereoisomers particularly enantiomers of these groups, either S- or R-enantiomers.
  • R in Table 3 is intended to mean the attachment site of -C(O)-R 5 at the peptide back bone, i.e. particularly the ⁇ -amino group of Lys.
  • the invention relates to peptidic compounds of Formula (I) as defined above, wherein X14 represents an amino acid residue selected from Lys, Orn, Dab and Dap, wherein the -NH 2 side chain group is functionalized by -C(O)-R 5 , X40 represents an amino acid residue selected from Lys, Orn, Dab and Dap, wherein the -NH 2 side chain group can be functionalized by -C(O)-R 5 , and R 5 is a lipophilic moiety selected from an acyclic linear or branched (C 4 -C 3 o) saturated or unsaturated hydrocarbon group, and/or a cyclic saturated, unsaturated or aromatic group, wherein the lipophilic moiety may be attached to the -NH 2 side chain group by a linker selected from ( -Ala)i -4 , (Y-GI U)I -4 , (£-Ahx) 1-4 , or (GABA) 1-4 in all stereoisomeric forms
  • X14 represents an amino acid residue with a functionalized -NH 2 side chain group, such as functionalized Lys, Orn, Dab or Dap, wherein at least one H atom of the -NH 2 side chain group is replaced by -C(O)-R 5 , which is selected from the group consisting of the substituents according to Table 3 above.
  • a functionalized -NH 2 side chain group such as functionalized Lys, Orn, Dab or Dap
  • X14 represents an amino acid residue selected from Lys, Orn, Dab and Dap, wherein the -NH 2 side chain group is functionalized by -C(O)-R 5
  • X40 represents an amino acid residue selected from Lys, Orn, Dab and Dap, wherein the -NH 2 side chain group can be functionalized by - C(O)-R 5
  • -C(O)-R 5 is selected from the group consisting of the substituents according to Table 3 above.
  • position X14 and/or X40 in formula (II) represents Lysine (Lys).
  • Lys at position 14 and optionally at position 40 is functionalized, e.g. with a group -C(O)R 5 as described above.
  • X40 is absent and X14 is Lys functionalized with -C(O)-R 5 , -C(O)O-R 5 , -C(O)NH-R5, -S(O)2-R 5 or R 5 , preferably by -C(O)-R 5 , wherein R 5 is as defined above.
  • X14 is Lys functionalized with C(O)-R 5 , wherein R 5 is selected from the group consisting of (S)-4-carboxy-4-hexadecanoylamino-butyryl ( ⁇ - ⁇ 53), (S)-4- carboxy-4-octadecanoylamino-butyryl ( ⁇ - ⁇ 70), 4-hexadecanoylamino- butyryl (GABA-x53), 4- ⁇ 3-[( ⁇ )-2,5,7,8- ⁇ 3 ⁇ -2-((4 ⁇ ,8 ⁇ )-4,8,12- trimethyl-tridecyl)-chroman-6-yloxycarbonyl]-propionylamino ⁇ -butyryl- (GABA-x60), 4-octadecanoylamino-butyryl (GABA-x70), 4-((Z)-octadec-9- enoylamino)-butyryl (GABA-x74), 6-[(4,4-Dipheny
  • X14 is Lys functionalized with C(O)-R 5 , wherein R 5 is selected from the group consisting of (S)-4-carboxy-4-hexadecanoylamino- butyryl (yE-x53), (S)-4-carboxy-4-octadecanoylamino-butyryl (yE-x70), (S)-4- Carboxy-4-((S)-4-carboxy-4-octadecanoylamino-butyrylamino)-butyryl (yE- ⁇ - ⁇ 70), 4-octadecanoylamino-butyryl (GABA-x70), (S)-4-Carboxy-4- henicosanoylamino-butyryl (yE-x76), and 3-(3-Octadecanoylamino- propionylamino)-propionyl ( -Ala- -Ala-x70).
  • R 5 is selected from the group consist
  • a further embodiment relates to a group of compounds, wherein
  • R 1 is NH 2 ,
  • R 2 is NH 2 or
  • R 1 and R 2 are NH 2 .
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents an amino acid residue selected from Gin, Glu and His
  • X12 represents an amino acid residue selected from lie and Lys
  • X14 represents an amino acid residue having a side chain with an -NH 2 group, wherein the -NH 2 side chain group is functionalized by - C(O)- R 5 , wherein R 5 is as described above,
  • X15 represents an amino acid residue selected from Asp and Glu
  • X16 represents an amino acid residue selected from Ser, Lys, Glu and Gin
  • X17 represents an amino acid residue selected from Arg, Lys, Glu, lie, Gin, Leu, Aib, Tyr and Ala,
  • X18 represents an amino acid residue selected from Ala, Arg, Aib, Leu, Lys and Tyr,
  • X19 represents an amino acid residue selected from Ala, Gin, Val and Aib,
  • X20 represents an amino acid residue selected from Gin, Aib, Phe, Arg, Leu, Lys and His,
  • X21 represents an amino acid residue selected from Asp, Glu, Tyr, and Leu
  • X28 represents an amino acid residue selected from Asn, Ala, Aib, Arg and Lys
  • X29 represents an amino acid residue selected from Gly, Thr, Aib, D- Ala and Ala,
  • X40 is either absent or represents Lys.
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents an amino acid residue selected from Gin, Glu and His
  • X12 represents an amino acid residue selected from lie and Lys
  • X14 represents an amino acid residue having a side chain with an -NH 2 group, wherein the -NH 2 side chain group is functionalized by - C(O)- R 5 , wherein R 5 is as described above,
  • X15 represents an amino acid residue selected from Asp and Glu
  • X16 represents an amino acid residue selected from Ser, Lys, Glu and Gin
  • X17 represents an amino acid residue selected from Arg, Lys, Glu, Gin, Leu, Aib, Tyr and Ala,
  • X18 represents an amino acid residue selected from Ala, Arg, Aib, Leu and Tyr,
  • X19 represents an amino acid residue selected from Ala, Val and Aib,
  • X20 represents an amino acid residue selected from Gin, Aib, Phe,
  • X21 represents an amino acid residue selected from Asp, Glu and Leu,
  • X28 represents an amino acid residue selected from Asn, Ala, Aib and
  • X29 represents an amino acid residue selected from Gly, Thr, Aib, D- Ala and Ala,
  • X40 is either absent or represents Lys.
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents an amino acid residue selected from Gin, Glu and His
  • X12 represents lie
  • X14 represents an amino acid residue having a side chain with an -NH 2 group, wherein the -NH 2 side chain group is functional ized by - C(O)- R 5 , wherein R 5 is as described above,
  • X15 represents an amino acid residue selected from Asp and Glu
  • X16 represents an amino acid residue selected from Ser, Lys, Glu and Gin
  • X17 represents an amino acid residue selected from Arg, Lys, Glu, Gin, Leu, Aib, Tyr and Ala,
  • X18 represents an amino acid residue selected from Ala and Arg
  • X19 represents an amino acid residue selected from Ala and Val
  • X20 represents an amino acid residue selected from Gin, Aib, Lys, Pip, (S)MeLys, (R)MeLys and (S)MeOrn and His
  • X21 represents an amino acid residue selected from Asp, Glu and Leu
  • X28 represents an amino acid residue selected from Asn and Ala
  • X29 represents an amino acid residue selected from Gly, Thr and D- Ala
  • X40 is either absent or represents Lys.
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents an amino acid residue selected from Gin, Glu and His
  • X12 represents an amino acid residue selected from lie and Lys
  • X14 represents an amino acid residue having a side chain with an -NH 2 group, wherein the -NH 2 side chain group is functionalized by - C(O)- R 5 , wherein R 5 is as described above,
  • X15 represents an amino acid residue selected from Asp and Glu
  • X16 represents an amino acid residue selected from Ser, Lys, Glu and Gin
  • X17 represents an amino acid residue selected from Arg, Lys, Glu, Gin, Leu, Aib, Tyr and Ala,
  • X18 represents an amino acid residue selected from Ala and Arg
  • X19 represents an amino acid residue selected from Ala and Val
  • X20 represents an amino acid residue selected from Gin, Aib, Lys and His
  • X21 represents an amino acid residue selected from Asp, Glu and Leu
  • X28 represents an amino acid residue selected from Asn and Ala
  • X29 represents an amino acid residue selected from Gly, Thr and D- Ala
  • X40 is either absent or represents Lys.
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents an amino acid residue selected from Gin and Glu, X12 represents lie,
  • X14 represents Lys, wherein the -NH 2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl-, (S)-4-Carboxy-4-octadecanoylamino- butyryl-, (S)-4-Carboxy-4-((S)-4-carboxy-4-octadecanoylamino- butyrylamino)-butyryl-, 3-(3-Octadecanoylamino-propionylamino)- propionyl- and 4-octadecanoylamino-butyryl-, (S)-4-Carboxy-4- henicosanoylamino-butyryl-,
  • X15 represents an amino acid residue selected from Glu and Asp
  • X16 represents an amino acid residue selected from Ser and Lys
  • X17 represents Arg
  • X18 represents Ala
  • X19 represents Ala
  • X20 represents an amino acid residue selected from Gin and Aib
  • X21 represents an amino acid residue selected from Asp and Glu
  • X28 represents an amino acid residue selected from Asn and Ala
  • X29 represents an amino acid residue selected from Gly and Thr
  • X40 is absent.
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents Glu
  • X12 represents lie
  • X14 represents Lys
  • the -NH 2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl-, (S)-4-Carboxy-4-octadecanoylamino- butyryl-, (S)-4-Carboxy-4-((S)-4-carboxy-4-octadecanoylamino- butyrylamino)-butyryl-, 3-(3-Octadecanoylamino-propionylamino)- propionyl- and 4-octadecanoylamino-butyryl-, (S)-4-Carboxy-4- henicosanoylamino-butyryl-,
  • X15 represents an amino acid residue selected from Glu and Asp
  • X16 represents an amino acid residue selected from Ser and Lys
  • X17 represents Arg
  • X18 represents Ala
  • X19 represents Ala
  • X20 represents an amino acid residue selected from Gin and Aib
  • X21 represents an amino acid residue selected from Asp and Glu
  • X28 represents an amino acid residue selected from Asn and Ala
  • X29 represents an amino acid residue selected from Gly and Thr
  • X40 is absent.
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents Gin
  • X14 represents Lys, wherein the -NH 2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl-, (S)-4-Carboxy-4-octadecanoylamino- butyryl-, (S)-4-Carboxy-4-((S)-4-carboxy-4-octadecanoylamino- butyrylamino)-butyryl-, 3-(3-Octadecanoylamino-propionylamino)- propionyl- and 4-octadecanoylamino-butyryl-, (S)-4-Carboxy-4- henicosanoylamino-butyryl-,
  • X15 represents an amino acid residue selected from Glu and Asp
  • X16 represents an amino acid residue selected from Ser and Lys
  • X17 represents Arg
  • X18 represents Ala
  • X19 represents Ala
  • X20 represents an amino acid residue selected from Gin and Aib
  • X21 represents an amino acid residue selected from Asp and Glu
  • X28 represents an amino acid residue selected from Asn and Ala
  • X29 represents an amino acid residue selected from Gly and Thr
  • X40 is absent.
  • a further embodiment relates to a group of compounds, wherein
  • X14 represents Lys, wherein the -NH 2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl-, (S)-4-Carboxy-4-octadecanoylamino- butyryl-, 4-octadecanoylamino-butyryl-, Hexadecanoyl-, (S)-4-Carboxy- 4-henicosanoylamino-butyryl-, (S)-4-Carboxy-4-((S)-4-carboxy-4- octadecanoylamino-butyrylamino)-butyryl-, 3-(3-Octadecanoylamino- propionylamino)-propionyl-.
  • a further embodiment relates to a group of compounds, wherein
  • X14 represents Lys, wherein the -NH 2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- octadecanoylamino-butyryl-, 4-octadecanoylamino-butyryl-, (S)-4- Carboxy-4-henicosanoylamino-butyryl-, (S)-4-Carboxy-4-((S)-4- carboxy-4-octadecanoylamino-butyrylamino)-butyryl-, 3-(3- Octadecanoylamino-propionylamino)-propionyl-.
  • a further embodiment relates to a group of compounds, wherein
  • X14 represents Lys, wherein the -NH 2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl-, (S)-4-Carboxy-4-octadecanoylamino- butyryl-.
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents an amino acid residue selected from Gin and Glu, X12 represents lie,
  • X14 represents Lys, wherein the -NH 2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl- and (S)-4-Carboxy-4-octadecanoylamino- butyryl-,
  • X15 represents an amino acid residue selected from Glu and Asp
  • X16 represents an amino acid residue selected from Ser and Lys
  • X17 represents Arg
  • X18 represents Ala
  • X19 represents Ala
  • X20 represents an amino acid residue selected from Gin and Aib
  • X21 represents an amino acid residue selected from Asp and Glu
  • X28 represents an amino acid residue selected from Asn and Ala
  • X29 represents an amino acid residue selected from Gly and Thr
  • X40 is absent.
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents an amino acid residue selected from Gin, His and Glu, X12 represents lie,
  • X14 represents Lys, wherein the -NH 2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl- and (S)-4-Carboxy-4-octadecanoylamino- butyryl-,
  • X15 represents Glu
  • X16 represents an amino acid residue selected from Glu and Lys
  • X17 represents Glu
  • X18 represents Ala
  • X20 represents Arg
  • X21 represents Leu
  • X28 represents an amino acid residue selected from Asn, Aib and Ala,
  • X29 represents an amino acid residue selected from Gly and Thr, X40 is absent.
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents Glu
  • X14 represents Lys, wherein the -NH 2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl- and (S)-4-Carboxy-4-octadecanoylamino- butyryl-,
  • X15 represents Glu
  • X16 represents an amino acid residue selected from Glu and Lys
  • X17 represents Glu
  • X18 represents Ala
  • X20 represents Arg
  • X21 represents Leu
  • X28 represents an amino acid residue selected from Asn, Aib and Ala
  • X29 represents Gly
  • X40 is absent.
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents an amino acid residue selected from Gin, His and Glu
  • X12 represents an amino acid residue selected from lie and Lys
  • X14 represents Lys, wherein the -NH 2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl- and (S)-4-Carboxy-4-octadecanoylamino- butyryl-,
  • X15 represents an amino acid residue selected from Glu and Asp
  • X16 represents Glu
  • X17 represents an amino acid residue selected from Arg and Gin
  • X18 represents an amino acid residue selected from Ala and Arg
  • X19 represents Ala
  • X20 represents an amino acid residue selected from Pip, (S)MeLys, (R)MeLys and (S)MeOrn,
  • X21 represents Glu
  • X28 represents an amino acid residue selected from Asn, Ser and Ala
  • X29 represents an amino acid residue selected from Gly and Thr
  • X40 is absent.
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents an amino acid residue selected from Gin, His and Glu
  • X12 represents an amino acid residue selected from lie and Lys
  • X14 represents Lys, wherein the -NH 2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl-, hexadecanoyl- and (S)-4-Carboxy-4- octadecanoylamino-butyryl-,
  • X15 represents an amino acid residue selected from Glu and Asp
  • X16 represents an amino acid residue selected from Ser, Lys, Glu and Gin
  • X17 represents an amino acid residue selected from Arg, Leu, Aib, Tyr, Glu, Ala and Lys,
  • X18 represents an amino acid residue selected from Ala, Aib, Leu and Tyr,
  • X19 represents an amino acid residue selected from Ala, Val and Aib
  • X20 represents Aib
  • X21 represents an amino acid residue selected from Glu, Leu and Tyr
  • X28 represents an amino acid residue selected from Asn, Arg and Ala
  • X29 represents an amino acid residue selected from Gly, Ala, D-Ala and Thr
  • X40 is either absent or represents Lys.
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents an amino acid residue selected from Gin, His and Glu
  • X12 represents an amino acid residue selected from lie and Lys
  • X14 represents Lys, wherein the -NH 2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl- and (S)-4-Carboxy-4-octadecanoylamino- butyryl-,
  • X15 represents an amino acid residue selected from Glu and Asp
  • X16 represents an amino acid residue selected from Ser, Lys and Glu
  • X17 represents an amino acid residue selected from Arg, Lys, lie, Glu and Gin
  • X18 represents an amino acid residue selected from Ala, Arg and Lys
  • X19 represents an amino acid residue selected from Ala, Val and Gin
  • X20 represents an amino acid residue selected from Gin, Phe, Leu, Lys, His and Arg
  • X21 represents an amino acid residue selected from Glu, Asp and Leu
  • X28 represents an amino acid residue selected from Asn, Arg, Lys and Ala
  • X29 represents an amino acid residue selected from Gly, Aib and Thr, X40 is either absent or represents Lys.
  • a further embodiment relates to a group of compounds, wherein
  • X12 represents lie.
  • a further embodiment relates to a group of compounds, wherein
  • X19 represents Ala.
  • a further embodiment relates to a group of compounds, wherein
  • X16 represents Glu
  • X20 represents an amino acid residue selected from Pip, (S)MeLys, (R)MeLys and (S)MeOrn.
  • a further embodiment relates to a group of compounds, wherein
  • X28 represents Ala
  • X29 represents Gly.
  • a further embodiment relates to a group of compounds, wherein
  • X28 represents Asn
  • X29 represents Thr.
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents an amino acid residue selected from Gin and Glu, X12 represents lie,
  • X14 represents Lys, wherein the -NH 2 side chain group is functionalized by -C(O)-R 5 , wherein R 5 is selected from (S)-4-Carboxy- 4-hexadecanoylamino-butyryl- ( ⁇ - ⁇ 53), (S)-4-Carboxy-4- octadecanoylamino-butyryl- ( ⁇ - ⁇ 70), (S)-4-Carboxy-4-((S)-4-carboxy- 4-octadecanoylamino-butyrylamino)-butyryl- ( ⁇ - ⁇ - ⁇ 70), 3-(3- Octadecanoylamino-propionylamino)-propionyl- ( ⁇ - ⁇ - ⁇ 70), 4- octadecanoylamino-butyryl- (GABA-x70), and (S)-4-Carboxy-4- henicosanoylamino-butyryl- ( ⁇ - ⁇ 76),
  • X15 represents an amino acid residue selected from Asp and Glu
  • X16 represents an amino acid residue selected from Ser and Lys
  • X17 represents Arg
  • X18 represents Ala
  • X19 represents Ala
  • X20 represents an amino acid residue selected from Gin and Aib
  • X21 represents an amino acid residue selected from Asp and Glu
  • X28 represents an amino acid residue selected from Asn and Ala
  • X29 represents an amino acid residue selected from Gly and Thr
  • X40 is absent.
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents an amino acid residue selected from Gin and Glu
  • X12 represents lie
  • X14 represents Lys
  • the -NH 2 side chain group is functionalized by - C(O)-R 5 , wherein R 5 is (S)-4-Carboxy-4- hexadecanoylamino-butyryl- ( ⁇ - ⁇ 53)
  • X15 represents an amino acid residue selected from Asp and Glu
  • X16 represents an amino acid residue selected from Ser and Lys
  • X17 represents Arg
  • X18 represents Ala
  • X19 represents Ala
  • X20 represents an amino acid residue selected from Gin and Aib
  • X21 represents an amino acid residue selected from Asp and Glu
  • X28 represents an amino acid residue selected from Asn and Ala
  • X29 represents an amino acid residue selected from Gly and Thr
  • X40 is absent.
  • a further embodiment relates to a group of compounds, wherein
  • X3 represents Glu
  • X14 represents Lys, wherein the -NH 2 side chain group is functionalized by - C(O)-R 5 , wherein R 5 is selected from (S)-4-Carboxy- 4-octadecanoylamino-butyryl- ( ⁇ - ⁇ 70), (S)-4-Carboxy-4-((S)-4- carboxy-4-octadecanoylamino-butyrylamino)-butyryl- ( ⁇ - ⁇ - ⁇ 70), 3-(3-
  • Octadecanoylamino-propionylamino)-propionyl- ( ⁇ - ⁇ - ⁇ 70), 4- octadecanoylamino-butyryl- (GABA-x70), and (S)-4-Carboxy-4- henicosanoylamino-butyryl- ( ⁇ - ⁇ 76),
  • X15 represents Glu
  • X16 represents an amino acid residue selected from Ser and Lys
  • X17 represents Arg
  • X18 represents Ala
  • X19 represents Ala
  • X20 represents an amino acid residue selected from Gin and Aib,
  • X21 represents Glu
  • X28 represents an amino acid residue selected from Asn and Ala
  • X29 represents an amino acid residue selected from Gly and Thr
  • X40 is absent.
  • peptidic compounds of formula (I) are the compounds of SEQ ID NO: 8-39 as well as salts and solvates thereof.
  • peptidic compounds of formula (I) are the compounds of SEQ ID NO: 8-10 and 12-38 as well as salts and solvates thereof.
  • Specific examples of peptidic compounds of formula (I) are the compounds of SEQ ID NO: 8-13 and 39 as well as salts and solvates thereof.
  • peptidic compounds of formula (I) are the compounds of SEQ ID NO: 8-10 and 12-13 as well as salts and solvates thereof.
  • peptidic compounds of formula (I) are the compounds of SEQ ID NO: 14-21 as well as salts and solvates thereof.
  • peptidic compounds of formula (I) are the compounds of SEQ ID NO: 22-38 as well as salts and solvates thereof.
  • the invention further provides a nucleic acid (which may be DNA or RNA) encoding said compound, an expression vector comprising such a nucleic acid, and a host cell containing such a nucleic acid or expression vector.
  • a nucleic acid which may be DNA or RNA
  • the present invention provides a composition comprising a compound of the invention in admixture with a carrier.
  • the composition is a pharmaceutically acceptable composition and the carrier is a pharmaceutically acceptable carrier.
  • the compound of the invention may be in the form of a salt, e.g. a pharmaceutically acceptable salt or a solvate, e.g. a hydrate.
  • the present invention provides a composition for use in a method of medical treatment, particularly in human medicine.
  • the nucleic acid or the expression vector may be used as therapeutic agents, e.g. in gene therapy.
  • the compounds of formula (I) are suitable for therapeutic application without an additionally therapeutically effective agent. In other embodiments, however, the compounds are used together with at least one additional therapeutically active agent, as described in "combination therapy”.
  • the compounds of formula (I) are particularly suitable for the treatment or prevention of diseases or disorders caused by, associated with and/or accompanied by disturbances in carbohydrate and/or lipid metabolism, e.g. for the treatment or prevention of hyperglycemia, type 2 diabetes, impaired glucose tolerance, type 1 diabetes, obesity and metabolic syndrome. Further, the compounds of the invention are particularly suitable for the treatment or prevention of degenerative diseases, particularly neurodegenerative diseases.
  • the compounds described find use, inter alia, in preventing weight gain or promoting weight loss.
  • preventing is meant inhibiting or reducing when compared to the absence of treatment, and is not necessarily meant to imply complete cessation of a disorder.
  • the compounds of the invention may cause a decrease in food intake and/or increase in energy expenditure, resulting in the observed effect on body weight.
  • the compounds of the invention may have a beneficial effect on circulating cholesterol levels, being capable of improving lipid levels, particularly LDL, as well as HDL levels (e.g. increasing HDL/LDL ratio).
  • the compounds of the invention can be used for direct or indirect therapy of any condition caused or characterised by excess body weight, such as the treatment and/or prevention of obesity, morbid obesity, obesity linked inflammation, obesity linked gallbladder disease, obesity induced sleep apnea. They may also be used for treatment and prevention of the metabolic syndrome, diabetes, hypertension, atherogenic dyslipidemia, atherosclerosis, arteriosclerosis, coronary heart disease, or stroke. Their effects in these conditions may be as a result of or associated with their effect on body weight, or may be independent thereof.
  • Preferred medical uses include delaying or preventing disease progression in type 2 diabetes, treating metabolic syndrome, treating obesity or preventing overweight, for decreasing food intake, increase energy expenditure, reducing body weight, delaying the progression from impaired glucose tolerance (IGT) to type 2 diabetes; delaying the progression from type 2 diabetes to insulin-requiring diabetes; regulating appetite; inducing satiety; preventing weight regain after successful weight loss; treating a disease or state related to overweight or obesity; treating bulimia; treating binge eating; treating atherosclerosis, hypertension, type 2 diabetes, IGT, dyslipidemia, coronary heart disease, hepatic steatosis, treatment of beta- blocker poisoning, use for inhibition of the motility of the gastrointestinal tract, useful in connection with investigations of the gastrointestinal tract using techniques such as X-ray, CT- and NMR-scanning.
  • IGT impaired glucose tolerance
  • Further preferred medical uses include treatment or prevention of degenerative disorders, particularly neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, ataxia, e.g spinocerebellar ataxia, Kennedy disease, myotonic dystrophy, Lewy body dementia, multi-systemic atrophy, amyotrophic lateral sclerosis, primary lateral sclerosis, spinal muscular atrophy, prion-associated diseases, e.g.
  • neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, ataxia, e.g spinocerebellar ataxia, Kennedy disease, myotonic dystrophy, Lewy body dementia, multi-systemic atrophy, amyotrophic lateral sclerosis, primary lateral sclerosis, spinal muscular atrophy, prion-associated diseases, e.g.
  • Creutzfeldt-Jacob disease multiple sclerosis, telangiectasia, Batten disease, corticobasal degeneration, subacute combined degeneration of spinal cord, Tabes dorsalis, Tay-Sachs disease, toxic encephalopathy, infantile Refsum disease, Refsum disease, neuroacanthocytosis, Niemann-Pick disease, Lyme disease, Machado-Joseph disease, Sandhoff disease, Shy-Drager syndrome, wobbly hedgehog syndrome, proteopathy, cerebral ⁇ -amyloid angiopathy, retinal ganglion cell degeneration in glaucoma, synucleinopathies, tauopathies, frontotemporal lobar degeneration (FTLD), dementia, cadasil syndrome, hereditary cerebral hemorrhage with amyloidosis, Alexander disease, seipinopathies, familial amyloidotic neuropathy, senile systemic amyloidosis, serpinopathies, AL (light chain) amyloido
  • Further medical uses include treatment of bone related disorders, such as osteoporosis or osteoarthritis, etc., where increased bone formation and decreased bone resorption might be beneficial.
  • amino acid sequences of the present invention contain the conventional one letter and three letter codes for naturally occuring amino acids, as well as generally accepted three letter codes for other amino acids, such as Aib (a-aminoisobutyric acid), Orn (ornithin), Dab (2,4-diamino butyric acid), Dap (2,3-diamino propionic acid), NIe (norleucine), GABA ( ⁇ -aminobutyric acid) or Ahx ( ⁇ -aminohexanoic acid).
  • Aib a-aminoisobutyric acid
  • Orn ornithin
  • Dab 2,4-diamino butyric acid
  • Dap 2,3-diamino propionic acid
  • NIe nodeucine
  • GABA ⁇ -aminobutyric acid
  • Ahx ⁇ -aminohexanoic acid
  • the term “humannative exendin-4" refers to native exendin-4 having the sequence HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2 (SEQ ID NO: 1 ).
  • the invention provides peptidic compounds as defined above.
  • the peptidic compounds of the present invention comprise a linear backbone of amino carboxylic acids linked by peptide, i.e. carboxamide bonds.
  • the amino carboxylic acids are a-amino carboxylic acids and more preferably L-a-amino carboxylic acids, unless indicated otherwise.
  • the peptidic compounds preferably comprise a backbone sequence of 39-40 amino carboxylic acids.
  • the peptidic compounds of the present invention may have unmodified side- chains, but carry at least one modification at one of the side chains. For the avoidance of doubt, in the definitions provided herein, it is generally intended that the sequence of the peptidic moiety (II) differs from native exendin-4 at least at one of those positions which are stated to allow variation.
  • Amino acids within the peptide moiety (II) can be considered to be numbered consecutively from 0 to 40 in the conventional N-terminal to C- terminal direction.
  • Reference to a ..position" within peptidic moiety (II) should be constructed accordingly, as should reference to positions within native exendin-4 and other molecules, e.g., in exendin-4, His is at position 1 , Gly at position 2, Met at position 14, ... and Ser at position 39.
  • the amino acid residues at position 14 and optionally at position 40, having a side chain with an - NH 2 group, e.g. Lys, Orn, Dab or Dap are conjugated to a functional group, e.g. acyl groups.
  • one or more selected amino acids of the peptides in the present invention may carry a covalent attachment at their side chains.
  • those attachments may be lipophilic. These lipophilic side chain attachments have the potential to reduce in vivo clearance of the peptides thus increasing their in vivo half- lives.
  • the lipophilic attachment may consist of a lipophilic moiety which can be a branched or unbranched, aliphatic or unsaturated acyclic moiety and/or a cyclic moiety selected from one or several aliphatic or unsaturated homocycles or heterocycles, aromatic condensed or non-condensed homocycles or heterocycles, ether linkages, unsaturated bonds and substituents, e.g. hydroxy and/or carboxy groups.
  • the lipophilic moiety may be attached to the peptide either by alkylation, reductive amination or by an amide bond, a carbamate or a sulfonamide bond in case of amino acids carrying an amino group at their side chain.
  • Nonlimiting examples of lipophilic moieties that can be attached to amino acid side chains include fatty acids, e.g. C 8 -3o fatty acids such as palmitic acid, myristic acid, stearic acid and oleic acid, and/or cyclic groups as described above or derivatives thereof.
  • fatty acids e.g. C 8 -3o fatty acids such as palmitic acid, myristic acid, stearic acid and oleic acid, and/or cyclic groups as described above or derivatives thereof.
  • linkers between the amino acid of the peptide and the lipophilic attachment.
  • linkers are ⁇ - alanine, ⁇ -glutamic acid, a-glutamic acid, ⁇ -aminobutyric acid and/or ⁇ - aminohexanoic acid or dipeptides, such as -Ala- -Ala (also abbreviated A- ⁇ herein) and/or ⁇ -Glu-y-Glu (also abbreviated ⁇ - ⁇ herein) in all their stereo-isomer forms (S and R enantiomers).
  • a side chain attachment is palmitic acid which is covalently linked to the a-amino group of glutamic acid forming an amide bond.
  • the ⁇ -carboxy group of this substituted glutamic acid can form an amide bond with the side chain amino group of a lysine within the peptide.
  • the present invention provides a composition comprising a compound of the invention as described herein, or a salt or solvate thereof, in admixture with a carrier.
  • the invention also provides the use of a compound of the present invention for use as a medicament, particularly for the treatment of a condition as described below.
  • the invention also provides a composition wherein the composition is a pharmaceutically acceptable composition, and the carrier is a pharmaceutically acceptable carrier.
  • Peptide synthesis The skilled person is aware of a variety of different methods to prepare the peptides that are described in this invention. These methods include but are not limited to synthetic approaches and recombinant gene expression. Thus, one way of preparing these peptides is the synthesis in solution or on a solid support and subsequent isolation and purification. A different way of preparing the peptides is gene expression in a host cell in which a DNA sequence encoding the peptide has been introduced. Alternatively, the gene expression can be achieved without utilizing a cell system. The methods described above may also be combined in any way.
  • a preferred way to prepare the peptides of the present invention is solid phase synthesis on a suitable resin.
  • Solid phase peptide synthesis is a well established methodology (see for example: Stewart and Young, Solid Phase Peptide Synthesis, Pierce Chemical Co., Rockford, III., 1984; E. Atherton and R. C. Sheppard, Solid Phase Peptide Synthesis. A Practical Approach, Oxford-IRL Press, New York, 1989).
  • Solid phase synthesis is initiated by attaching an N-terminally protected amino acid with its carboxy terminus to an inert solid support carrying a cleavable linker.
  • This solid support can be any polymer that allows coupling of the initial amino acid, e.g.
  • the polymer support must be stable under the conditions used to deprotect the a-amino group during the peptide synthesis.
  • the a-amino protecting group of this amino acid is removed.
  • the remaining protected amino acids are then coupled one after the other in the order represented by the peptide sequence using appropriate amide coupling reagents, for example BOP, HBTU, HATU or DIC ( ⁇ , ⁇ '-diisopropylcarbodiimide) / HOBt (1 -hydroxybenzotriazol), wherein BOP, HBTU and HATU are used with tertiary amine bases.
  • the liberated N-terminus can be functionalized with groups other than amino acids, for example carboxylic acids, etc.
  • reactive side-chain groups of the amino acids are protected with suitable blocking groups.
  • protecting groups are removed after the desired peptides have been assembled. They are removed concomitantly with the cleavage of the desired product from the resin under the same conditions.
  • Protecting groups and the procedures to introduce protecting groups can be found in Protective Groups in Organic Synthesis, 3d ed., Greene, T. W. and Wuts, P. G. M., Wiley & Sons (New York: 1999).
  • a lysine may be protected with an ivDde ([1 - (4,4-dimethyl-2,6-dioxocyclohex-1 -ylidene)-3-methylbutyl) protecting group (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603) which is labile to a very nucleophilic base, for example 4% hydrazine in DMF (dimethyl formamide).
  • ivDde [1 - (4,4-dimethyl-2,6-dioxocyclohex-1 -ylidene)-3-methylbutyl
  • the ivDde group can be selectively removed using 4% hydrazine in DMF and the corresponding free amino group can then be further modified, e.g. by acylation.
  • the lysine can alternatively be coupled to a protected amino acid and the amino group of this amino acid can then be deprotected resulting in another free amino group which can be acylated or attached to further amino acids.
  • peptide is cleaved from the resin. This can be achieved by using King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266).
  • the raw material can then be purified by chromatography, e.g. preparative RP-HPLC, if necessary. Potency
  • the term “potency” or “in vitro potency” is a measure for the ability of a compound to activate the receptors for GLP-1 , GIP or glucagon in a cell-based assay. Numerically, it is expressed as the "EC 5 o value", which is the effective concentration of a compound that induces a half maximal increase of response (e.g. formation of intracellular cAMP) in a dose- response experiment.
  • the compounds of the invention are agonists for the receptors for GLP-1 and for GIP as well as optionally the glucagon receptor (e.g. "dual or trigonal agonists").
  • Such peptides that are GIP/GLP-1 co-agonists, or GIP/GLP- 1/glucagon tri-agonists may provide therapeutic benefit to address a clinical need for targeting the metabolic syndrome by allowing simultaneous treatment of diabetes and obesity.
  • Metabolic syndrome is a combination of medical disorders that, when occurring together, increase the risk of developing type 2 diabetes, as well as atherosclerotic vascular disease, e.g. heart disease and stroke. Defining medical parameters for the metabolic syndrome include diabetes mellitus, impaired glucose tolerance, raised fasting glucose, insulin resistance, urinary albumin secretion, central obesity, hypertension, elevated triglycerides, elevated LDL cholesterol and reduced HDL cholesterol.
  • Obesity is a medical condition in which excess body fat has accumulated to the extent that it may have an adverse effect on health and life expectancy and due to its increasing prevalence in adults and children it has become one of the leading preventable causes of death in modern world. It increases the likelihood of various other diseases, including heart disease, type 2 diabetes, obstructive sleep apnea, certain types of cancer, as well as osteoarthritis, and it is most commonly caused by a combination of excess food intake, reduced energy expenditure, as well as genetic susceptibility. Diabetes mellitus, often simply called diabetes, is a group of metabolic diseases in which a person has high blood sugar levels, either because the body does not produce enough insulin, or because cells do not respond to the insulin that is produced.
  • diabetes The most common types of diabetes are: (1 ) type 1 diabetes, where the body fails to produce insulin; (2) type 2 diabetes, where the body fails to use insulin properly, combined with an increase in insulin deficiency over time, and (3) gestational diabetes, where women develop diabetes due to their pregnancy. All forms of diabetes increase the risk of long-term complications, which typically develop after many years. Most of these long-term complications are based on damage to blood vessels and can be divided into the two categories "macrovascular" disease, arising from atherosclerosis of larger blood vessels and "microvascular” disease, arising from damage of small blood vessels. Examples for macrovascular disease conditions are ischemic heart disease, myocardial infarction, stroke and peripheral vascular disease. Examples for microvascular diseases are diabetic retinopathy, diabetic nephropathy, as well as diabetic neuropathy.
  • the receptors for GLP-1 and GIP as well as glucagon are members of the family of 7-transmembrane-spanning, heterotrimeric G-protein coupled receptors. They are structurally related to each other and share not only a significant level of sequence identity, but have also similar mechanisms of ligand recognition and intracellular signaling pathways.
  • GLP-1 , GIP and glucagon share regions of high sequence identity/similarity.
  • GLP-1 and glucagon are produced from a common precursor, preproglucagon, which is differentially processed in a tissue-specific manner to yield e.g. GLP-1 in intestinal endocrine cells and glucagon in alpha cells of pancreatic islets.
  • GIP is derived from a larger proGIP prohormone precursor and is synthesized and released from K-cells located in the small intestine.
  • the peptidic incretin hormones GLP-1 and GIP are secreted by intestinal endocrine cells in response to food and account for up to 70% of meal- stimulated insulin secretion.
  • targeting of the GLP-1 receptor with suitable agonists offers an attractive approach for treatment of metabolic disorders, including diabetes.
  • the receptor for GLP-1 is distributed widely, being found mainly in pancreatic islets, brain, heart, kidney and the gastrointestinal tract. In the pancreas, GLP-1 acts in a strictly glucose-dependent manner by increasing secretion of insulin from beta cells.
  • GIP GLP-1 receptors
  • the receptor for GIP is broadly expressed in peripheral tissues including pancreatic islets, adipose tissue, stomach, small intestine, heart, bone, lung, kidney, testis, adrenal cortex, pituitary, endothelial cells, trachea, spleen, thymus, thyroid and brain. Consistent with its biological function as incretin hormone, the pancreatic ⁇ -cell express the highest levels of the receptor for GIP in humans. There is some clinical evidence that the GIP-receptor mediated signaling could be impaired in patients with T2DM but GIP-action is shown to be reversible and could be restored with improvement of the diabetic status. Of note, the stimulation of insulin secretion by both incretin hormones, GIP and GLP-1 is strictly glucosed-dependent ensuring a fail-safe mechanism associated with at low risk for hypoglycemia.
  • GLP-1 and GIP have been shown to promote glucose sensitivity, neogenesis, proliferation, transcription of proinsulin and hypertrophy, as well as antiapoptosis.
  • a peptide with dual agonistic activity for the GLP-1 and the GIP receptor could be anticipated to have additive or synergistic anti-diabetic benefit.
  • Other relevant effects of GLP-1 beyond the pancreas include delayed gastric emptying, increased satiety, decreased food intake, reduction of body weight, as well as neuroprotective and cardioprotective effects. In patients with type 2 diabetes, such extrapancreatic effects could be particularly important considering the high rates of comorbidities like obesity and cardiovascular disease.
  • Further GIP actions in peripheral tissues beyond the pancreas comprise increased bone formation and decreased bone resorption as well as neuroprotective effects which might be beneficial for the treatment of osteoporosis and cognitive defects like Alzheimer's disease.
  • Glucagon is a 29 amino acid peptide hormone that is produced by pancreatic alpha cells and released into the bloodstream when circulating glucose is low.
  • An important physiological role of glucagon is to stimulate glucose output in the liver, which is a process providing the major counterregulatory mechanism for insulin in maintaining glucose homeostasis in vivo.
  • Glucagon receptors are however also expressed in extra-hepatic tissues such as kidney, heart, adipocytes, lymphoblasts, brain, retina, adrenal gland and gastrointestinal tract, suggesting a broader physiological role beyond glucose homeostasis. Accordingly, recent studies have reported that glucagon has therapeutically positive effects on energy management, including stimulation of energy expenditure and thermogenesis, accompanied by reduction of food intake and body weight loss. Altogether, stimulation of glucagon receptors might be useful in the treatment of obesity and the metabolic syndrome.
  • Oxyntomodulin is a peptide hormone consisting of glucagon with an eight amino acids encompassing C-terminal extension. Like GLP-1 and glucagon, it is preformed in preproglucagon and cleaved and secreted in a tissue- specific manner by endocrinal cells of the small bowel. Oxyntomodulin is known to stimulate both, the receptors for GLP-1 and glucagon and is therefore the prototype of a dual agonist.
  • GLP-1 and GIP are known for their anti-diabetic effects
  • GLP-1 and glucagon are both known for their food intake-suppressing effects
  • glucagon is also a mediator of additional energy expenditure
  • the compounds of the invention may be used for treatment of glucose intolerance, insulin resistance, pre-diabetes, increased fasting glucose, type 2 diabetes, hypertension, dyslipidemia, arteriosclerosis, coronary heart disease, peripheral artery disease, stroke or any combination of these individual disease components.
  • they may be used for control of appetite, feeding and calory intake, increase of energy expenditure, prevention of weight gain, promotion of weight loss, reduction of excess body weight and altogether treatment of obesity, including morbid obesity.
  • Further disease states and health conditions which could be treated with the compounds of the invention are obesity-linked inflammation, obesity-linked gallbladder disease and obesity-induced sleep apnea. Although all these conditions could be associated directly or indirectly with obesity, the effects of the compounds of the invention may be mediated in whole or in part via an effect on body weight, or independent thereof.
  • exendin-4 has beneficial physicochemical properties, such as solubility and stability in solution and under physiological conditions (including enzymatic stability towards degradation by enzymes, such as DPP-4 or NEP), which results in a longer duration of action in vivo. Therefore, exendin-4 might serve as good starting scaffold to obtain exendin-4 analogues with dual or even triple pharmacologies, e.g., GLP-1/GIP and optionally in addition glucagon agonism.
  • exendin-4 has been shown to be chemically labile due to methionine oxdiation in position 14 as well as deamidation and isomerization of asparagine in position 28. Therefore, stability might be further improved by substitution of methionine at position 14 and the avoidance of sequences that are known to be prone to degradation via aspartimide formation, especially Asp-Gly or Asn-Gly at positions 28 and 29.
  • composition indicates a mixture containing ingredients that are compatible when mixed and which may be administered.
  • a pharmaceutical composition may include one or more medicinal drugs. Additionally, the pharmaceutical composition may include carriers, buffers, acidifying agents, alkalizing agents, solvents, adjuvants, tonicity adjusters, emollients, expanders, preservatives, physical and chemical stabilizers e.g. surfactants, antioxidants and other components, whether these are considered active or inactive ingredients.
  • Guidance for the skilled in preparing pharmaceutical compositions may be found, for example, in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins and in R.C.Rowe et al (Ed), Handbook of Pharmaceutical Excipients, PhP, May 2013 update.
  • exendin-4 peptide derivatives of the present invention, or salts thereof, are administered in conjunction with an acceptable pharmaceutical carrier, diluent, or excipient as part of a pharmaceutical composition.
  • a "pharmaceutically acceptable carrier” is a carrier which is physiologically acceptable (e.g. physiologically acceptable pH) while retaining the therapeutic properties of the substance with which it is administered.
  • Standard acceptable pharmaceutical carriers and their formulations are known to one skilled in the art and described, for example, in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins and in R.C.Rowe et al (Ed), Handbook of Pharmaceutical excipients, PhP, May 2013 update.
  • One exemplary pharmaceutically acceptable carrier is physiological saline solution.
  • carriers are selected from the group of buffers (e.g. citrate/citric acid), acidifying agents (e.g. hydrochloric acid), alkalizing agents (e.g. sodium hydroxide), preservatives (e.g. phenol), co-solvents (e.g. polyethylene glycol 400), tonicity adjusters (e.g. mannitol), stabilizers (e.g. surfactant, antioxidants, amino acids).
  • buffers e.g. citrate/citric acid
  • acidifying agents e.g. hydrochloric acid
  • alkalizing agents e.g. sodium hydroxide
  • preservatives e.g. phenol
  • co-solvents e.g. polyethylene glycol 400
  • tonicity adjusters e.g. mannitol
  • stabilizers e.g. surfactant, antioxidants, amino acids
  • Concentrations used are in a range that is physiologically acceptable.
  • Acceptable pharmaceutical carriers or diluents include those used in formulations suitable for oral, rectal, nasal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, and transdermal) administration.
  • the compounds of the present invention will typically be administered parenterally.
  • pharmaceutically acceptable salt means salts of the compounds of the invention which are safe and effective for use in mammals.
  • Pharmaceutically acceptable salts may include, but are not limited to, acid addition salts and basic salts. Examples of acid addition salts include chloride, sulfate, hydrogen sulfate, (hydrogen) phosphate, acetate, citrate, tosylate or mesylate salts. Examples of basic salts include salts with inorganic cations, e.g.
  • alkaline or alkaline earth metal salts such as sodium, potassium, magnesium or calcium salts and salts with organic cations such as amine salts.
  • organic cations such as amine salts.
  • solvate means complexes of the compounds of the invention or salts thereof with solvent molecules, e.g. organic solvent molecules and/or water.
  • the exendin-4 derivative in monomeric or oligomeric form.
  • terapéuticaally effective amount of a compound refers to a nontoxic but sufficient amount of the compound to provide the desired effect.
  • the amount of a compound of the formula I necessary to achieve the desired biological effect depends on a number of factors, for example the specific compound chosen, the intended use, the mode of administration and the clinical condition of the patient.
  • An appropriate "effective" amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation
  • the "therapeutically effective amount” of a compound of the formula (I) is about 0.01 to 50 mg/dose, preferably 0.1 to 10 mg/dose.
  • compositions of the invention are those suitable for parenteral (for example subcutaneous, intramuscular, intradermal or intravenous), oral, rectal, topical and peroral (for example sublingual) administration, although the most suitable mode of administration depends in each individual case on the nature and severity of the condition to be treated and on the nature of the compound of formula I used in each case.
  • Suitable pharmaceutical compositions may be in the form of separate units, for example capsules, tablets and powders in vials or ampoules, each of which contains a defined amount of the compound; as powders or granules; as solution or suspension in an aqueous or nonaqueous liquid; or as an oil- in-water or water-in-oil emulsion. It may be provided in single or multiple dose injectable form, for example in the form of a pen.
  • the compositions may, as already mentioned, be prepared by any suitable pharmaceutical method which includes a step in which the active ingredient and the carrier (which may consist of one or more additional ingredients) are brought into contact.
  • the pharmaceutical composition may be provided together with a device for application, for example together with a syringe, an injection pen or an autoinjector.
  • a device for application for example together with a syringe, an injection pen or an autoinjector.
  • Such devices may be provided separate from a pharmaceutical composition or prefilled with the pharmaceutical composition.
  • the compounds of the present invention can be widely combined with other pharmacologically active compounds, such as all drugs mentioned in the Rote Liste 2012 and/or the Rote Liste 2013, e.g.
  • the active ingredient combinations can be used especially for a synergistic improvement in action. They can be applied either by separate administration of the active ingredients to the patient or in the form of combination products in which a plurality of active ingredients are present in one pharmaceutical preparation. When the active ingredients are administered by separate administration of the active ingredients, this can be done simultaneously or successively.
  • active substances which are suitable for such combinations include in particular those which for example potentiate the therapeutic effect of one or more active substances with respect to one of the indications mentioned and/or which allow the dosage of one or more active substances to be reduced.
  • Therapeutic agents which are suitable for combinations include, for example, antidiabetic agents such as: Insulin and Insulin derivatives, for example: Glargine / Lantus ® , 270 - 330U/ml_ of insulin glargine (EP 2387989 A ), 300U/ml_ of insulin glargine (EP 2387989 A), Glulisin / Apidra ® , Detemir / Levemir ® , Lispro / Humalog ® / Liprolog ® , Degludec / DegludecPlus, Aspart, basal insulin and analogues (e.g.LY-2605541 , LY2963016, NN1436), PEGylated insulin Lispro, Humulin ® , Linjeta, SuliXen ® , NN1045, Insulin plus Symlin, PE0139, fast-acting and short-acting insulins (e.g.
  • Linjeta PH20, NN1218, HinsBet
  • API- 002 hydrogel
  • oral, inhalable, transdermal and sublingual insulins e.g. Exubera ® , Nasulin ® , Afrezza, Tregopil, TPM 02, Capsulin, Oral-lyn ® , Cobalamin ® oral insulin, ORMD-0801 , NN1953, NN1954, NN1956, VIAtab, Oshadi oral insulin.
  • insulin derivatives which are bonded to albumin or another protein by a bifunctional linker.
  • GLP-1 , GLP-1 analogues and GLP-1 receptor agonists for example: Lixisenatide / AVE0010 / ZP10 / Lyxumia, Exenatide / Exendin-4 / Byetta / Bydureon / ITCA 650 / AC-2993, Liraglutide / Victoza, Semaglutide, Taspoglutide, Syncria / Albiglutide, Dulaglutide, rExendin-4, CJC-1 134-PC, PB-1023, TTP-054, Langlenatide / HM-1 1260C, CM-3, GLP-1 Eligen, ORMD-0901 , NN-9924, NN-9926, NN-9927, Nodexen, Viador-GLP-1 , CVX- 096, ZYOG-1 , ZYD-1 , GSK-2374697, DA-3091 , MAR-701 , MAR709, ZP- 2929, ZP-3022
  • DPP-4 inhibitors for example: Alogliptin / Nesina, Trajenta / Linagliptin / Bl- 1356 / Ondero / Trajenta / Tradjenta / Trayenta / Tradzenta, Saxagliptin / Onglyza, Sitagliptin / Januvia / Xelevia / Tesave / Janumet / Velmetia, Galvus / Vildagliptin, Anagliptin, Gemigliptin, Teneligliptin, Melogliptin, Trelagliptin, DA-1229, Omarigliptin / MK-3102, KM-223, Evogliptin, ARI- 2243, PBL-1427, Pinoxacin.
  • SGLT2 inhibitors for example: Invokana / Canaglifozin, Forxiga / Dapagliflozin, Remoglifozin, Sergliflozin, Empagliflozin, Ipragliflozin, Tofogliflozin, Luseogliflozin, LX-421 1 , Ertuglifozin / PF-04971729, RO- 4998452, EGT-0001442, KGA-3235 / DSP-3235, LIK066, SBM-TFC-039,
  • Biguanides e.g. Metformin, Buformin, Phenformin
  • Thiazolidinediones e.g. Pioglitazone, Rivoglitazone, Rosiglitazone, Troglitazone
  • dual PPAR agonists e.g. Aleglitazar, Muraglitazar, Tesaglitazar
  • Sulfonylureas e.g. Tolbutamide, Glibenclamide, Glimepiride/Amaryl, Glipizide
  • Meglitinides e.g. Nateglinide, Repaglinide, Mitiglinide
  • Alpha-glucosidase inhibitors e.g. Acarbose, Miglitol, Voglibose
  • Amylin and Amylin analogues e.g. Pramlintide, Symlin.
  • GPR1 19 agonists e.g. GSK-263A, PSN-821 , MBX-2982, APD-597, ZYG-19, DS-8500
  • GPR40 agonists e.g. Fasiglifam / TAK-875, TUG-424, P-1736, JTT-851 , GW9508.
  • Suitable combination partners are: Cycloset, inhibitors of 1 1 -beta-HSD (e.g. LY2523199, BMS770767, RG-4929, BMS816336, AZD-8329, HSD- 016, BI-135585), activators of glucokinase (e.g. TTP-399, AMG-151 , TAK- 329, GKM-001 ), inhibitors of DGAT (e.g. LCQ-908), inhibitors of protein tyrosinephosphatase 1 (e.g.
  • Trodusquemine inhibitors of glucose-6- phosphatase, inhibitors of fructose-1 ,6-bisphosphatase, inhibitors of glycogen phosphorylase, inhibitors of phosphoenol pyruvate carboxykinase, inhibitors of glycogen synthase kinase, inhibitors of pyruvate dehydrokinase, alpha2-antagonists, CCR-2 antagonists, SGLT-1 inhibitors (e.g. LX-2761 ).
  • One or more lipid lowering agents are also suitable as combination partners, such as for example: HMG-CoA-reductase inhibitors (e.g. Simvastatin, Atorvastatin), fibrates (e.g. Bezafibrate, Fenofibrate), nicotinic acid and the derivatives thereof (e.g. Niacin), PPAR-(alpha, gamma or alpha/gamma) agonists or modulators (e.g. Aleglitazar), PPAR-delta agonists, ACAT inhibitors (e.g. Avasimibe), cholesterol absorption inhibitors (e.g. Ezetimibe), Bile acid-binding substances (e.g. Cholestyramine), ileal bile acid transport inhibitors, MTP inhibitors, or modulators of PCSK9.
  • HMG-CoA-reductase inhibitors e.g. Simvastatin, Atorvastatin
  • fibrates e.g. Bezafib
  • HDL-raising compounds such as: CETP inhibitors (e.g. Torcetrapib, Anacetrapid, Dalcetrapid, Evacetrapid, JTT-302, DRL-17822, TA-8995) or ABC1 regulators.
  • CETP inhibitors e.g. Torcetrapib, Anacetrapid, Dalcetrapid, Evacetrapid, JTT-302, DRL-17822, TA-8995
  • ABC1 regulators e.g., ABC1 regulators.
  • Suitable combination partners are one or more active substances for the treatment of obesity, such as for example: Sibutramine, Tesofensine, Orlistat, antagonists of the cannabinoid-1 receptor, MCH-1 receptor antagonists, MC4 receptor agonists, NPY5 or NPY2 antagonists (e.g. Velneperit), beta-3-agonists, leptin or leptin mimetics, agonists of the 5HT2c receptor (e.g. Lorcaserin), or the combinations of bupropione/naltrexone, bupropione/zonisamide, bupropione/phentermine or pramlintide/metreleptin.
  • active substances for the treatment of obesity such as for example: Sibutramine, Tesofensine, Orlistat, antagonists of the cannabinoid-1 receptor, MCH-1 receptor antagonists, MC4 receptor agonists, NPY5 or NPY2 antagonists (e.g. Velneperit), beta-3-agonists,
  • gastrointestinal peptides such as Peptide YY 3-36 (PYY3-36) or analogues thereof, pancreatic polypeptide (PP) or analogues thereof.
  • Glucagon receptor agonists or antagonists GIP receptor agonists or antagonists, ghrelin antagonists or inverse agonists, Xenin and analogues thereof.
  • angiotensin II receptor antagonists e.g. telmisartan, candesartan, valsartan, losartan, eprosartan, irbesartan, olmesartan, tasosartan, azilsartan
  • ACE inhibitors e.g. telmisartan, candesartan, valsartan, losartan, eprosartan, irbesartan, olmesartan, tasosartan, azilsartan
  • ACE inhibitors e.g. telmisartan, candesartan, valsartan, losartan, eprosartan, irbesartan, olmesartan, tasosartan, azilsartan
  • ACE inhibitors e.g. telmisartan, candesartan, valsartan, losartan, eprosartan, irbe
  • this invention relates to the use of a compound according to the invention or a physiologically acceptable salt thereof combined with at least one of the active substances described above as a combination partner, for preparing a medicament which is suitable for the treatment or prevention of diseases or conditions which can be affected by binding to the receptors for GLP-1 and glucagon and by modulating their activity.
  • This is preferably a disease in the context of the metabolic syndrome, particularly one of the diseases or conditions listed above, most particularly diabetes or obesity or complications thereof.
  • this invention relates to a medicament which comprises a compound according to the invention or a physiologically acceptable salt of such a compound and at least one of the active substances described above as combination partners, optionally together with one or more inert carriers and/or diluents.
  • the compound according to the invention, or physiologically acceptable salt or solvate thereof, and the additional active substance to be combined therewith may both be present together in one formulation, for example a tablet or capsule, or separately in two identical or different formulations, for example as so-called kit-of-parts.
  • FIGURES Figure 1 Effect of s.c. administration of compound SEQ ID NO: 13 at 10 g/kg on gastric emptying and intestinal passage in female NMRI-mice. Data are mean+SEM.
  • Figure 2 Effect of s.c. administration of compound SEQ ID NO: 9 at 1 , 3 and 10 pg/kg on gastric emptying and intestinal passage in female NMRI-mice. Data are mean+SEM.
  • Figure 3a Effect of s.c. administration of compound SEQ ID NO: 12, SEQ ID NO: 13 and liraglutide at 100 pg/kg on 22-hours feed intake in female NMRI- mice. Data are mean+SEM.
  • Figure 3b Effect of s.c. administration of compound SEQ ID NO: 9 at 3 and 10 pg/kg on 22-hours feed intake in female NMRI-mice. Data are mean+SEM.
  • Figure 4. Effect of s.c. administration of compound SEQ ID NO: 9 at 10, 30 and 100 pg/kg on blood glucose after 6 days of treatment in female diet- induced obese C57BL/6NCrl mice (18 weeks on high-fat diet). Data are mean ⁇ SEM.
  • Figure 5. Effect of s.c. administration of compound SEQ ID NO: 9 at 10, 30 and 100 pg/kg on body weight in female diet-induced obese (DIO) C57BL/6NCrl mice (18 weeks on high-fat diet). Data are mean ⁇ SEM.
  • Figure 6 Effect of s.c. administration of compound SEQ ID NO: 9 at 10, 30 and 100 pg/kg on body weight in female diet-induced obese (DIO) C57BL/6NCrl mice calculated as relative change from baseline. Data are mean ⁇ SEM..
  • Figure 7. Effect of s.c. administration of compound SEQ ID NO: 9 at 10, 30 and 100 pg/kg on body fat content in female diet-induced obese (DIO) C57BL/6NCrl mice. Data are mean ⁇ SEM.
  • Figure 8. Effect of acute s.c. administration of compounds SEQ ID NO: 13, SEQ ID NO: 12, SEQ ID NO: 10 and SEQ ID NO: 9 at 100 pg/kg on 24h profile of blood glucose of diabetic db/db mice. Data are mean ⁇ SEM.
  • Figure 9 Effect of once-daily s.c. administration of compound SEQ ID NO: 9 at 10, 30 and 100 pg/kg on blood glucose of diabetic db/db mice after 4- weeks chronic treatment. Data are mean ⁇ SEM.
  • Figure 10. Effect of once-daily s.c. administration of compound SEQ ID NO: 9 at 10, 30 and 10O g/kg on HbA1 c of diabetic db/db mice at start and at the end 4-weeks chronic treatment. Data are mean ⁇ SEM.
  • Figure 11 Effect of s.c. administration of compound SEQ ID NO: 9 and SEQ ID NO: 21 at 10 pg/kg on body weight in female diet-induced obese (DIO) C57BL/6NCrl mice following 3-weeks chronic treatment once daily. Data are mean ⁇ SEM.
  • Figure 12 Effect of s.c. administration of compound SEQ ID NO: 9 and SEQ ID NO: 21 10 pg/kg on body weight in female diet-induced obese (DIO) C57BL/6NCrl mice following 3-weeks chronic treatment once daily. Changes in body weight were calculated as relative change from baseline. Data are mean ⁇ SEM.
  • Figure 13 Effect of 3 weeks of treatment with SEQ ID NO: 16 at 3 and 10 g/kg, s.c. and SEQ ID NO: 21 at 10 pg/kg, s.c. on non-fasted glucose in diabetic dbdb-mice, represented as change from baseline (0 mmol/l, day -7). Data are mean+SEM.
  • Figure 14 Effect of 3 weeks of treatment with SEQ ID NO: 16 at 3 and 10 g/kg, s.c. and SEQ ID NO: 21 at 10 pg/kg, s.c. on non-fasted glucose in diabetic dbdb-mice, represented as change from baseline (0 mmol
  • Figure 16 Effect of 3 weeks of treatment with SEQ ID NO: 16 at 3 and 10 pg/kg, s.c. and SEQ ID NO: 21 at 10 pg/kg, s.c. on oral glucose tolerance in diabetic dbdb-mice, represented as area under the glucose curve (Glucose- AUC). Data are mean+SEM.
  • Figure 17 Effect of treatment with SEQ ID NO: 21 at 3 pg/kg, s.c. on glucose lowering in non-fasted female diabetic dbdb-mice, represented as change from baseline. Data are mean+SEM.
  • Figure 18 Effect of treatment with SEQ ID NO: 14 at 3 pg/kg, s.c. on glucose lowering in non-fasted female diabetic dbdb-mice, represented as change from baseline. Data are mean+SEM.
  • Rink-Amide resins (4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)- phenoxyacetamido-norleucylaminomethyl resin, Merck Biosciences; 4-[(2,4- Dimethoxyphenyl)(Fmoc-amino)methyl]phenoxy acetamido methyl resin, Agilent Technologies) were used for the synthesis of peptide amides with loadings in the range of 0.3-0.4 mmol/g.
  • Fmoc protected natural amino acids were purchased from Protein Technologies Inc., Senn Chemicals, Merck Biosciences, Novabiochem, Iris Biotech or Bachem. The following standard amino acids were used throughout the syntheses: Fmoc-L-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc-L- Asn(Trt)-OH, Fmoc-L-Asp(OtBu)-OH, Fmoc-L-Cys(Trt)-OH, Fmoc-L-Gln(Trt)- OH, Fmoc-L-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-L-His(Trt)-OH, Fmoc-L-lle- OH, Fmoc-L-Leu-OH, Fmoc-L-Lys(Boc)-OH, Fmoc-L-Met-OH, Fmoc-L
  • the solid phase peptide syntheses were performed for example on a Prelude Peptide Synthesizer (Protein Technologies Inc) or similar automated synthesizer using standard Fmoc chemistry and HBTU/DIPEA activation. DMF was used as the solvent. Deprotection: 20% piperidine/DMF for 2 x 2.5 min. Washes: 7 x DMF. Coupling: 2:5:10 200 mM AA / 500 mM HBTU / 2M DIPEA in DMF 2 x for 20 min. Washes: 5 x DMF.
  • Fmoc-L-Lys(ivDde)-OH or Fmoc-L-Lys(Mmt)-OH was used in the corresponding position.
  • the ivDde group was removed according to a modified literature procedure (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF.
  • the Mmt group was removed by repeated treatment with 1 % TFA in dichloromethane.
  • the following acylations were carried out by treating the resin with the N-hydroxy succinimide esters of the desired acid or using coupling reagents like HBTU/DIPEA or HOBt/DIC.
  • a Waters LCT Premier Time-of-Flight instrument was used as mass analyser equipped with an electrospray in the positive ion mode.
  • Method B detection at 210 - 225 nm, optionally coupled to a mass analyser Waters LCT Premier, electrospray positive ion mode
  • Method E detection at 210 - 225 nm, optionally coupled to a mass analyser Waters LCT Premier, electrospray positive ion mode
  • the crude peptides were purified either on an Akta Purifier System or on a Jasco semiprep HPLC System. Preparative RP-C18-HPLC columns of different sizes and with different flow rates were used depending on the amount of crude peptide to be purified. Acetonitrile + 0.05 to 0.1 % TFA (B) and water + 0.05 to 0.1 % TFA (A) were employed as eluents. Alternatively, a buffer system consisting of acetonitrile and water with minor amounts of acetic acid was used. Product-containing fractions were collected and lyophilized to obtain the purified product, typically as TFA or acetate salt.
  • the target concentration was 1 .0 mg/mL pure compound. Therefore, solutions from solid samples were prepared in different buffer systems with a concentration of 1 .0 mg/mL compound based on the previously determined content. HPLC-UV was performed after 2 h of gentle agitation from the supernatant, which was obtained by 20 min of centrifugation at 4000 rpm.
  • solubility was then determined by comparison with the UV peak areas obtained with a stock solution of the peptide at a concentration of 2 mg/mL in pure water or a variable amount of acetonitrile (optical control that all of the compound was dissolved). This analysis also served as starting point (tO) for the stability testing.
  • tO starting point
  • % remaining peptide [(peak area peptide t7) x 100]/peak area peptide to.
  • the amount of soluble degradation products was calculated from the comparison of the sum of the peak areas from all observed impurities reduced by the sum of peak areas observed at to (i.e. to determine the amount of newly formed peptide-related species). This value was given in percentual relation to the initial amount of peptide at to, following the equation:
  • % soluble degradation products ⁇ [(peak area sum of impurities t7) - (peak area sum of impurities t0)] x 100 ⁇ /peak area peptide to
  • % precipitate 100-([% remaining peptide] + [% soluble degradation products])
  • This precipitate includes non-soluble degradation products, polymers and/or fibrils, which have been removed from analysis by centrifugation.
  • the chemical stability is expressed as "% remaining peptide”.
  • Agonism of compounds for the receptors was determined by functional assays measuring cAMP response of HEK-293 cell lines stably expressing human GIP, GLP-1 or glucagon receptor.
  • cAMP content of cells was determined using a kit from Cisbio Corp. (cat. no. 62AM4PEC) based on HTRF (Homogenous Time Resolved Fluorescence). For preparation, cells were split into T175 culture flasks and grown overnight to near confluency in medium (DMEM / 10% FBS). Medium was then removed and cells washed with PBS lacking calcium and magnesium, followed by proteinase treatment with accutase (Sigma-Aldrich cat. no. A6964).
  • Detached cells were washed and resuspended in assay buffer (1 x HBSS; 20 mM HEPES, 0.1 % BSA, 2 mM IBMX) and cellular density determined. They were then diluted to 400000 cells/ml and 25 ⁇ -aliquots dispensed into the wells of 96-well plates. For measurement, 25 ⁇ of test compound in assay buffer was added to the wells, followed by incubation for 30 minutes at room temperature. After addition of HTRF reagents diluted in lysis buffer (kit components), the plates were incubated for 1 hr, followed by measurement of the fluorescence ratio at 665 / 620 nm. In vitro potency of agonists was quantified by determining the concentrations that caused 50% activation of maximal response (EC50).
  • Bioanalytical screening method for quantification of exendin-4 derivatives in mice and pigs Mice were dosed 1 mg/kg subcutaneously (s.c). The mice were sacrified and blood samples were collected after 0.25, 0.5, 1 , 2, 4, 8, 16 and 24 hours post application. Plasma samples were analyzed after protein precipitation via liquid chromatography mass spectrometry (LC/MS). PK parameters and half-life were calculated using WinonLin Version 5.2.1 (non-compartment model).
  • mice Female Gottinger minipigs were dosed 0.1 mg/kg subcutaneously (s.c). Blood samples were collected after 0.25, 0.5, 1 , 2, 4, 8, 24, 32, 48, 56 and 72 hours post application. Plasma samples were analyzed after protein precipitation via liquid chromatography mass spectrometry (LC/MS). PK parameters and half-life were calculated using WinonLin Version 5.2.1 (non- compartment model).
  • mice Female NMRI-mice of a body weight between 20 and 30 g were used. Mice were adapted to housing conditions for at least one week.
  • mice were overnight fasted, while water remained available all the time. On the study day, mice were weighed, single-caged and allowed access to 500 mg of feed for 30 min, while water was removed. At the end of the 30 min feeding period, remaining feed was removed and weighed. Then, the test compound / reference compound or its vehicle in the control group was administered subcutaneously. 60 min later, to allow the compound to reach relevant plasma exposure, a coloured, non-caloric bolus was instilled via gavage into the stomach. After another 30 min, the animals were sacrificed and the stomach and the small intestine prepared. The filled stomach was weighed, emptied, carefully cleaned and dried and reweighed.
  • the stomach content calculated as weight of filled subtracted by the weight of emptied stomach, indicated the degree of gastric emptying.
  • the small intestine was straightened without force and measured in length. Then the distance from the gastric beginning of the gut to the tip of the farthest travelled intestinal content bolus was measured. The intestinal passage was given as ratio in percent of the latter distance and the total length of the small intestine.
  • mice Female NMRI-mice of a body weight between 20 and 30 g were used. Mice were adapted to housing conditions for at least one week and for at least one day single-caged in the assessment equipment, when basal data were recorded simultaneously. On the study day, test product was administered subcutaneously close to the lights-off phase (12 h lights off) and assessment of feed consumption was directly started afterwards. Assessment included continued monitoring over 22 hours, while data are processed as mean over every 30 min. Repetition of this procedure over several days was possible. Restriction of assessment to 22 hours was for practical reasons to allow for reweighing of animals, refilling of feed and water and drug administration between procedures. Results could be assessed as cumulated data over 22 hours or differentiated to 30 min intervals. Comparable data can be obtained for both female and male mice.
  • mice were subcutaneously (s.c.) injected with vehicle solution and weighed for 3 days to acclimate them to the procedures.
  • Acute effect on blood glucose in fed DIO mice initial blood samples were taken just before first administration (s.c.) of vehicle (phosphate buffer solution) or the exendin-4 derivatives at doses of 10, 30 and 100 pg/kg (dissolved in phosphate buffer), respectively. The volume of administration was 5 mL/kg. The animals had access to water and their corresponding diet during the experiment, food consumption was determined at all time points of blood sampling.
  • mice were subcutaneously (s.c.) injected with vehicle solution and weighed for 3 days to acclimate them to the procedures.
  • Subchronic effect on body weight all animals were treated once daily s.c. late afternoon, at the end of the light phase (LD 12:12) with either vehicle or exendin-4 derivatives at the abovementioned doses for 3 weeks. Body weight was recorded daily.
  • mice Female BKS.Cg-m +/+ Leprdb/J (db/db) and BKS.Cg-m +/+ Leprdb/+ (lean control) mice were obtained from Charles River Laboratories, Germany, at an age of 9 - 10 weeks. The animals were housed in groups in a specific pathogen-free barrier facility on a 12-h light/dark cycle with free access to water and rodent-standard chow.
  • HbA1 c is a glycosylated form of haemoglobin whose level reflects the average level of glucose to which the erythrocyte has been exposed during its lifetime.
  • HbA1 c is a relevant biomarker for the average blood glucose level during the preceding 4 weeks (erythrocyte life span in mouse ⁇ 47 days).
  • mice Female diabetic dbdb-mice of mean non-fasted glucose value of 20-22 mmol/l and a body weight of 42 g +/- 0.6 g (SEM) were used. Mice were individually marked and were adapted to housing conditions for at least one week.
  • Example 1 The invention is further illustrated by the following examples.
  • Example 1 Example 1 :
  • the solid phase synthesis was carried out on Rink-resin with a loading of 0.38 mmol/g, 75-150 ⁇ from the company Agilent Technologies.
  • the Fmoc- synthesis strategy was applied with HBTU/DIPEA-activation.
  • position 1 Boc-Tyr(tBu)-OH and in position 14 Fmoc-Lys(ivDde)-OH was used in the solid phase synthesis protocol.
  • the ivDde-group was cleaved from the peptide on resin according to literature (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603).
  • Fmoc-Glu-OtBu was coupled to the liberated amino-group employing the coupling reagents HBTU/DIPEA followed by Fmoc-deprotection with 20% piperidine in DMF. Finally heneicosanyl chloride was coupled to the amino-group of Glu in dichloromethane with DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266).
  • the crude product was purified via preparative HPLC on a Waters column (XBridge, BEH130, Prep C18 5 ⁇ ) using an acetonitrile/water gradient (both buffers with 0.05% TFA).
  • the purified peptide was analysed by LCMS (Method C). Deconvolution of the mass signals found under the peak with retention time 31 .67 min revealed the peptide mass 4647.40 which is in line with the expected value of 4647.35.
  • the solid phase synthesis was carried out on Novabiochem Rink-Amide resin (4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido- norleucylaminonnethyl resin), 100-200 mesh, loading of 0.34 mmol/g.
  • the Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 1 Boc-Tyr(tBu)-OH and in position 14 Fmoc-Lys(ivDde)-OH was used in the solid phase synthesis protocol.
  • the ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S.R.
  • the solid phase synthesis was carried out on Rink-resin with a loading of 0.38 mmol/g, 75-150 ⁇ from the company Agilent Technologies.
  • the Fmoc- synthesis strategy was applied with HBTU/DIPEA-activation.
  • position 1 Boc-Tyr(tBu)-OH and in position 14 Fmoc-Lys(ivDde)-OH was used in the solid phase synthesis protocol.
  • the ivDde-group was cleaved from the peptide on resin according to literature (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603).
  • Fmoc-y-amino butyric acid was coupled to the liberated amino-group employing the coupling reagents HBTU/DIPEA followed by Fmoc-deprotection with 20% piperidine in DMF. Finally stearic acid was coupled using HBTU/DIPEA.
  • the peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266).
  • the crude product was purified via preparative HPLC on a Waters column (XBridge, BEH130, Prep C18 5 ⁇ ) using an acetonitrile/water gradient (both buffers with 0.05% TFA).
  • the purified peptide was analysed by LCMS (Method C). Deconvolution of the mass signals found under the peak with retention time 29.59 min revealed the peptide mass 4561 .4 which is in line with the expected value of 4561 .26.
  • the solid phase synthesis was carried out on Rink-resin with a loading of 0.38 mmol/g, 75-150 ⁇ from the company Agilent Technologies.
  • the Fmoc- synthesis strategy was applied with HBTU/DIPEA-activation.
  • position 1 Boc-Tyr(tBu)-OH and in position 14 Fmoc-Lys(ivDde)-OH was used in the solid phase synthesis protocol.
  • the ivDde-group was cleaved from the peptide on resin according to literature (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603).
  • Fmoc- -Ala-OH was coupled to the liberated amino-group employing the coupling reagents HBTU/DIPEA followed by Fmoc-deprotection with 20% piperidine in DMF.
  • Fmoc- ⁇ - Ala-OH was coupled followed by Fmoc-deprotection and the final coupling of stearic acid using HBTU/DIPEA.
  • the peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266).
  • the crude product was purified via preparative HPLC on a Waters column (XBridge, BEH130, Prep C18 5 ⁇ ) using an acetonitrile/water gradient (both buffers with 0.05% TFA).
  • the purified peptide was analysed by LCMS (Method C). Deconvolution of the mass signals found under the peak with retention time 28.97 min revealed the peptide mass 4618.6 which is in line with the expected value of 4618.32.
  • the solid phase synthesis was carried out on Novabiochem Rink-Amide resin (4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido- norleucylaminomethyl resin), 100-200 mesh, loading of 0.34 mmol/g.
  • the Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 1 Boc-Tyr(tBu)-OH and in position 14 Fmoc-Lys(ivDde)-OH was used in the solid phase synthesis protocol.
  • the ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S.R.
  • the solid phase synthesis was carried out on Novabiochem Rink-Amide resin (4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido- norleucylaminomethyl resin), 100-200 mesh, loading of 0.34 mmol/g.
  • the Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 1 Boc-Tyr(tBu)-OH and in position 14 Fmoc-Lys(ivDde)-OH was used in the solid phase synthesis protocol.
  • the ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S.R.
  • Example 8 Chemical stability and solubility Solubility and chemical stability of peptidic compounds were assessed as described in Methods. The results are given in Table 6.
  • Potencies of peptidic compounds at the GLP-1 , GIP and glucagon receptors were determined by exposing cells expressing human glucagon receptor (hGLUC R), human GIP (hGIP R) and human GLP-1 receptor (hGLP-1 R) to the listed compounds at increasing concentrations and measuring the formed cAMP as described in Methods.
  • inventive exendin-4 derivatives comprising a functionalized amino acid in position 14 has been tested versus corresponding compounds having in this position 14 a 'non-functionalized' amino acid.
  • the reference pair compounds and the corresponding EC50 values at GLP-1 and GIP receptors (indicated in pM) are given in Table 8.
  • the inventive exendin-4 derivatives show a superior activity in comparison to the compounds with a 'non-functionalized' amino acid in position 14.
  • Example 1 1 Effect of SEQ ID NO: 9 and SEQ ID NO: 13 on gastric emptying and intestinal passage in female NMRI-mice
  • Female NMRI-mice weighing on average 25 - 30 g, received 1 , 3 and 10 pg/kg of SEQ ID NO: 9, or 10 pg/kg of SEQ ID NO: 13 or phosphate buffered saline (vehicle control) subcutaneously, 60 min prior to the administration of the coloured bolus. 30 min later, the assessment of stomach contents and intestinal passage was done (Fig. 1 and 2). In these studies, SEQ ID NO: 9 reduced intestinal passage by 49, 62 and 64 % (p ⁇ 0.0001 ) and increased remaining gastric contents by 32, 79 and 1 1 1 % (p ⁇ 0.0001 ), respectively.
  • SEQ ID NO: 13 reduced intestinal passage by 60 % (p ⁇ 0.0001 ) and increased remaining gastric contents by 40 % (p ⁇ 0.0001 ), respectively. (p ⁇ 0.0001 versus vehicle control, 1 -W-ANOVA, followed by Dunnett's post-hoc test).
  • Diet-induced obese female C57BL/6NCrl mice were administered daily in the afternoon, at the end of the light phase (12 h lights on) with 10, 30 and 100 g/kg of SEQ ID NO: 9 or phosphate buffered solution (vehicle control on standard or high-fat diet) subcutaneously. On day 6 of treatment and at predefined time points, more blood samples were taken to measure blood glucose and generate the blood glucose profile over 24 h.
  • mice Female obese C57BL/6NCrl mice were treated for 4 weeks once daily subcutaneously in the afternoon, at the end of the light phase (12 h lights on) with 10, 30 or 100 pg/kg SEQ ID NO: 9 or vehicle. Body weight was recorded daily, and body fat content was determined before the start of treatment and after 4 weeks of treatment.
  • Example 14 Acute and subchronic effects of SEQ ID NO: 13, SEQ ID NO: 12, SEQ ID NO: 10 and SEQ ID NO: 9 after subcutaneous treatment on blood glucose and HbA1 c in female leptin-receptor deficient diabetic db/db mice (method 3)
  • mice After blood sampling to determine the blood glucose baseline level, fed diabetic female db/db mice were administered 100 pg/kg of of SEQ ID NO: 13, SEQ ID NO: 12, SEQ ID NO: 10 and SEQ ID NO: 9 or phosphate buffered solution (vehicle-treated db/db control) subcutaneously in the morning, at the beginning of the light phase (12 h lights on). At predefined time points, more blood samples were taken to measure blood glucose and generate the blood glucose profile over 24 h.
  • mice Female diabetic mice were treated for 4 weeks once daily subcutaneously with 10, 30 or 100 pg/kg SEQ ID NO: 9 or vehicle in the morning, at the beginning of the light phase (12 h lights on). Blood glucose and HbA1 c were determined before start of treatment and at the end of the study after 4 weeks of treatment. A strong and dose-dependent decrease in blood glucose, superior to liraglutide in the medium and highest dose could be observed (Fig. 9). Before treatment started, no significant differences in blood glucose levels could be detected between db/db groups, only the lean control animals had significant lower glucose levels. During the 4 weeks of treatment, glucose levels increased in the vehicle-treated db/db control group, indicating a worsening of the diabetic situation. All SEQ ID NO: 9- treated animals displayed a significant lower blood glucose level than the db control mice at the end of the study.
  • HbA1 c Corresponding to blood glucose, at start of the study, no significant differences in HbA1 c levels could be detected between db/db groups, only the lean control animals had significant lower levels.
  • HbA1 c increased in the vehicle-treated db/db control group, corresponding to the increasing blood glucose levels.
  • Animals treated with SEQ ID NO: 9 displayed a lower HbA1 c level than the db/db control mice at the end of the study in all three doses (Fig. 10).
  • Example 15 Subchronic effects of SEQ ID NO: 9 and SEQ ID NO: 21 after subcutaneous treatment on body weight in female diet-induced obese (DIO) C57BL/6NCrl mice (14 weeks of prefeeding with high-fat diet, method 2)
  • mice Female obese C57BL/6NCrl mice were treated for 3 weeks once daily subcutaneously in the late afternoon, prior the end of the light phase (12 h lights on) with 10 pg/kg SEQ ID NO: 9 and SEQ ID NO: 21 or vehicle. Body weight was recorded daily.
  • Example 16 Effects of 4 weeks of treatment with SEQ ID NO: 16, and SEQ ID NO: 21 on glucose, HbA1 c and oral glucose tolerance in female diabetic dbdb-mice (method 4)
  • Female dbdb-mice received 3 and 10 pg/kg of SEQ ID NO: 16 and 10 pg/kg of SEQ ID NO: 21 or phosphate buffered saline (vehicle control) once daily, subcutaneously over four weeks.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Endocrinology (AREA)
  • Diabetes (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Obesity (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Genetics & Genomics (AREA)
  • Toxicology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Emergency Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Psychiatry (AREA)
  • Dermatology (AREA)
  • Vascular Medicine (AREA)
  • Addiction (AREA)
  • Urology & Nephrology (AREA)

Abstract

The present invention relates to exendin-4 derivatives and their medical use, for example in the treatment of disorders of the metabolic syndrome, including diabetes and obesity, as well as reduction of excess food intake.

Description

Functionalized Exendin-4 Derivatives Description
FIELD OF THE INVENTION
The present invention relates to exendin-4 peptide analogues which activate the glucagon-like peptide 1 (GLP-1 ) and the glucose-dependent insulinotropic polypeptide (GIP) receptor and optionally the glucagon receptor (GCG) and their medical use, for example in the treatment of disorders of the metabolic syndrome, including diabetes and obesity, as well as reduction of excess food intake.
BACKGROUND OF THE INVENTION
Exendin-4 is a 39 amino acid peptide which is produced by the salivary glands of the Gila monster (Heloderma suspectum) (Eng J. et al., J. Biol. Chem., 267:7402-05,1992). Exendin-4 is an activator of the glucagon-like peptide-1 (GLP-1 ) receptor, whereas it shows only very low activation of the GIP receptor and does not activate the glucagon receptor (see Table 1 ).
Table 1 : Potencies of exendin-4 at human GLP-1 , GIP and Glucagon receptors (indicated in pM) at increasing concentrations and measuring the formed cAMP as described in Methods.
Figure imgf000002_0001
Exendin-4 shares many of the glucoregulatory actions observed with GLP-1 . Clinical and non-clinical studies have shown that exendin-4 has several beneficial antidiabetic properties including a glucose dependent enhancement in insulin synthesis and secretion, glucose dependent suppression of glucagon secretion, slowing down gastric emptying, reduction of food intake and body weight, and an increase in beta-cell mass and markers of beta cell function (Gentilella R et al., Diabetes Obes Metab., 1 1 :544-56, 2009; Norris SL et al., Diabet Med., 26:837-46, 2009; Bunck MC et al., Diabetes Care., 34:2041 -7, 201 1 ).
These effects are beneficial not only for diabetics but also for patients suffering from obesity. Patients with obesity have a higher risk of getting diabetes, hypertension, hyperlipidemia, cardiovascular and musculoskeletal diseases.
Relative to GLP-1 and GIP, exendin-4 is more resistant to cleavage by dipeptidyl peptidase-4 (DPP4) resulting in a longer half-life and duration of action in vivo (Eng J., Diabetes, 45 (Suppl 2):152A (abstract 554), 1996; Deacon CF, Horm Metab Res, 36: 761 -5, 2004).
Exendin-4 was also shown to be much more stable towards degradation by neutral endopeptidase (NEP), when compared to GLP-1 , glucagon or oxyntomodulin (Druce MR et al., Endocrinology, 150(4), 1712-1721 , 2009).
Nevertheless, exendin-4 is chemically labile due to methionine oxidation in position 14 (Hargrove DM et al., Regul. Pept., 141 : 1 13-9, 2007) as well as deamidation and isomerization of asparagine in position 28 (WO 2004/035623).
The amino acid sequence of exendin-4 is shown as SEQ ID NO: 1 : HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2
The amino acid sequence of GLP-1 (7-36)-amide is shown as SEQ ID NO: 2: HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR-NH2
Liraglutide is a marketed chemically modified GLP-1 analogue in which, among other modifications, a fatty acid is linked to a lysine in position 20 leading to a prolonged duration of action (Drucker DJ et al, Nature Drug Disc. Rev. 9, 267-268, 2010; Buse, JB et al., Lancet, 374:39-47, 2009).
The amino acid sequence of Liraglutide is shown as SEQ ID NO: 3: HAEGTFTSDVSSYLEGQAAK((S)-4-Carboxy-4-hexadecanoylamino-butyryl- )EFIAWLVRGRG-OH
GIP (glucose-dependent insulinotropic polypeptide) is a 42 amino acid peptide that is released from intestinal K-cells following food intake. GIP and GLP-1 are the two gut enteroendocrine cell-derived hormones accounting for the incretin effect, which accounts for over 70% of the insulin response to an oral glucose challenge (Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007; 132: 2131-2157). GIP's amino acid sequence is shown as SEQ ID NO: 4:
YAEGTFISDYSIAMDKIHQQDFVNWLLAQKGKKNDWKHNITQ-OH
Glucagon is a 29-amino acid peptide which is released into the bloodstream when circulating glucose is low. Glucagon's amino acid sequence is shown in SEQ ID NO: 5:
HSQGTFTSDYSKYLDSRRAQDFVQWLMNT-OH During hypoglycemia, when blood glucose levels drop below normal, glucagon signals the liver to break down glycogen and release glucose, causing an increase of blood glucose levels to reach a normal level. Hypoglycemia is a common side effect of insulin treated patients with hyperglycemia (elevated blood glucose levels) due to diabetes. Thus, glucagon's most predominant role in glucose regulation is to counteract insulin action and maintain blood glucose levels.
Hoist (Hoist, J. J. Physiol. Rev. 2007, 87, 1409) and Meier (Meier, J. J. Nat. Rev. Endocrinol. 2012, 8, 728) describe that GLP-1 receptor agonists, such as GLP-1 , liraglutide and exendin-4, improve glycemic control in patients with T2DM by reducing fasting and postprandial glucose (FPG and PPG). Peptides which bind and activate the GLP-1 receptor are described in patent applications WO1998008871 , WO2008081418 and WO2008023050, the contents of which are herein incorporated by reference.
It has been described that dual activation of the GLP-1 and GIP receptors, e.g. by combining the actions of GLP-1 and GIP in one preparation, leads to a therapeutic principle with significantly better reduction of blood glucose levels, increased insulin secretion and reduced body weight in mice with T2DM and obesity compared to the marketed GLP-1 agonist liraglutide (e.g. VA Gault et al., Clin Sci (Lond), 121 , 107-1 17, 201 1 ). Native GLP-1 and GIP were proven in humans following co-infusion to interact in an additive manner with a significantly increased insulinotropic effect compared to GLP- 1 alone (MA Nauck et al., J. Clin. Endocrinol. Metab., 76, 912-917, 1993).
Designing hybrid molecules which combine agonism on the GLP-1 receptor, the GIP receptor and the glucagon receptor offers the therapeutic potential to achieve significantly better reduction of blood glucose levels, increased insulin secretion and an even more pronounced significant effect on body weight reduction compared to the marketed GLP-1 agonist liraglutide (e.g. VA Gault et al., Clin Sci (Lond), 121 , 107-1 17, 201 1 ).
Compounds of this invention are exendin-4 derivatives, which show agonistic activity at the GLP-1 and the GIP receptor and optionally the glucagon receptor and which have - among others - preferably the following modifications: Tyr at position 1 and lie at position 12.
Surprisingly, it was found that the modification of the selective GLP-1 R agonist Exendin-4 by Tyr in position 1 and lie in position 12 results in a peptide with high dual activity at the GLP-1 and GIP receptors. This observation is surprising, since the same modification in other GLP-1 agonists, such as GLP-1 itself, does not result in high activity at the GIP receptor, as shown in Table 2.
Table 2: Potencies of exendin-4 and GLP-1 peptide analogues at GLP-1 and GIP receptors (indicated in pM) at increasing concentrations and measuring the formed cAMP as described in Methods.
Figure imgf000006_0001
Peptides which bind and activate both the GIP and the GLP-1 receptor and optionally the glucagon receptor, and improve glycaemic control, suppress body weight gain and reduce food intake are described in patent applications WO 201 1/1 19657 A1 , WO 2012/138941 A1 , WO 2010/01 1439 A2, WO 2010/148089 A1 , WO 201 1/094337 A1 , WO 2012/0881 16 A2, the contents of which are herein incorporated by reference. These applications disclose that mixed agonists of the GLP-1 receptor, the GIP receptor and optionally the glucagon receptor can be designed as analogues of the native GIP or glucagon sequences. Compounds of this invention are exendin-4 peptide analogues comprising leucine in position 10 and glutamine in position 13. Krstenansky et al. (Biochemistry, 25, 3833-3839, 1986) show the importance of residues 10 to 13 of glucagon for its receptor interactions and activation of adenylate cyclase. In the exendin-4 peptide analogues of this invention, several of the underlying residues are different from said of glucagon. In particular, residues Tyr10 and Tyr13, are replaced by leucine in position 10 and glutamine, a non-aromatic polar amino acid, in position 13. This replacement, especially in combination with isoleucine in position 23 and glutamate in position 24 leads to exendin-4 derivatives with potentially improved biophysical properties as solubility or aggregation behavior in solution. The non-conservative replacement of an aromatic amino acid with a polar amino acid in position 13 of an exendin-4 analogue surprisingly leads to peptides with high activity on the GIP receptor and optionally on the glucagon receptor.
Furthermore, compounds of this invention are exendin-4 derivatives with fatty acid acylated residues in position 14. This fatty acid functionalization in position 14 results in an improved pharmacokinetic profile. Surprisingly, the fatty acid functionalization in position 14 also leads to peptides with a significantly higher GIPR activity, for example those shown in Example 9, Table 8.
BRIEF SUMMARY OF THE INVENTION
Provided herein are exendin-4 analogues which potently activate the GLP-1 and the GIP receptor and optionally the glucagon receptor. In these exendin- 4 analogues - among other substitutions - methionine at position 14 is replaced by an amino acid carrying an -NH2 group in the side-chain, which is further substituted with a lipophilic side-chain (e.g. a fatty acid optionally combined with a linker).
The invention provides a peptidic compound having the formula (I)
R1 - Z - R2 (I) wherein Z is a peptide moiety having the formula (II)
Tyr-Aib-X3-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-X12-Gln-X14-X15-X16- X17-X18-X19-X20-X21 -Phe-lle-Glu-Trp-Leu-Lys-X28-X29-Gly-Pro-Ser- Ser-Gly-Ala-Pro-Pro-Pro-Ser-X40 (II)
X3 represents an amino acid residue selected from Gin, Glu and His, X12 represents an amino acid residue selected from lie and Lys, X14 represents an amino acid residue having a side chain with an -NH2 group, wherein the -NH2 side chain group is functional ized by -C(O)-R5, -C(O)O-R5, -C(O)NH-R5, -S(O)2-R5 or R5, preferably by -C(O)-R5, wherein R5 may be a moiety comprising up to 50 or up to 100 carbon atoms and optionally heteroatoms selected from halogen, N, O, S and/or P,
X15 represents an amino acid residue selected from Asp and Glu, X16 represents an amino acid residue selected from Ser, Lys, Glu and Gin,
X17 represents an amino acid residue selected from Arg, Lys, lie, Glu, Gin, Leu, Aib, Tyr and Ala,
X18 represents an amino acid residue selected from Ala, Arg, Lys, Aib, Leu and Tyr,
X19 represents an amino acid residue selected from Ala, Val, Gin and Aib,
X20 represents an amino acid residue selected from Gin, Aib, Phe, Leu, Lys, His, Arg, Pip, (S)MeLys, (R)MeLys, (S)MeOrn and (R)MeOrn, X21 represents an amino acid residue selected from Asp, Glu, Leu and Tyr,
X28 represents an amino acid residue selected from Asn, Ala, Arg, Lys, Aib and Ser,
X29 represents an amino acid residue selected from Gly, Thr, Aib, D- Ala and Ala, X40 is absent or represents an amino acid residue having a side chain with an -NH2 group, wherein the -NH2 side chain group is optionally functionalized by -C(O)-R5, -C(O)O-R5, -C(O)NH-R5, -S(O)2-R5 or R5, preferably by -C(O)-R5, wherein R5 may be a moiety comprising up to 50 or up to 100 carbon atoms and optionally heteroatoms selected from halogen, N, O, S and/or P,
R represents NH2,
R2 represents OH or NH2. or a salt or solvate thereof.
The compounds of the invention are GLP-1 and GIP receptor agonists and optionally glucagon receptor agonists as determined by the observation that they are capable of stimulating intracellular cAMP formation. In vitro potency determination in cellular assays of agonists is quantified by determining the concentrations that cause 50% activation of maximal response (EC50) as described in Methods. In certain embodiments, the invention therefore provides a peptidic compound having the formula (I):
R1 - Z - R2 (I) wherein Z is a peptide moiety having the formula (II)
Tyr-Aib-X3-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-X12-Gln-X14-X15-X16- X17-X18-X19-X20-X21 -Phe-lle-Glu-Trp-Leu-Lys-X28-X29-Gly-Pro-Ser- Ser-Gly-Ala-Pro-Pro-Pro-Ser-X40 (II)
X3 represents an amino acid residue selected from Gin, Glu and His, X12 represents an amino acid residue selected from lie and Lys, X14 represents an amino acid residue having a side chain with an -NH2 group, wherein the -NH2 side chain group is functional ized by -C(O)-R5, -C(O)O-R5, -C(O)NH-R5, -S(O)2-R5 or R5, preferably by -C(O)-R5, wherein R5 is a moiety comprising up to 50 or up to 100 carbon atoms and optionally heteroatoms selected from halogen, N, O, S and/or P, X15 represents an amino acid residue selected from Asp and Glu, X16 represents an amino acid residue selected from Ser, Lys, Glu and Gin,
X17 represents an amino acid residue selected from Arg, Lys, lie, Glu, Gin, Leu, Aib, Tyr and Ala,
X18 represents an amino acid residue selected from Ala, Arg, Lys, Aib, Leu and Tyr,
X19 represents an amino acid residue selected from Ala, Val, Gin and Aib,
X20 represents an amino acid residue selected from Gin, Aib, Phe, Leu, Lys, His, Arg, Pip, (S)MeLys, (R)MeLys, (S)MeOrn and (R)MeOrn, X21 represents an amino acid residue selected from Asp, Glu, Leu and Tyr,
X28 represents an amino acid residue selected from Asn, Ala, Arg, Lys, Aib and Ser,
X29 represents an amino acid residue selected from Gly, Thr, Aib, D- Ala and Ala,
X40 is absent or represents an amino acid residue having a side chain with an -NH2 group, wherein the -NH2 side chain group is optionally functionalized by -C(O)-R5, -C(O)O-R5, -C(O)NH-R5, -S(O)2-R5 or R5, preferably by -C(O)-R5, wherein R5 may be a moiety comprising up to 50 or up to 100 carbon atoms and optionally heteroatoms selected from halogen, N, O, S and/or P, R1 represents NH2,
R2 represents OH or NH2. or a salt or solvate thereof, wherein the peptidic compound has a relative activity of at least 0.04%, preferably at least 0.08%, more preferably at least 0.2% compared to that of natural GIP at the GIP receptor.
In addition, the peptidic compound, particularly with a lysine at position 14 which is further substituted with a lipophilic residue, exhibits a relative activity of at least 0.07%, preferably at least 0.1 %, more preferably at least 0.14%, more preferably at least 0.35% and even more preferably at least 0.4% compared to that of GLP-1 (7-36) at the GLP-1 receptor.
In addition, the peptidic compound, particularly with a lysine at position 14 which is further substituted with a lipophilic residue, exhibits a relative activity of at least 0.04% (i.e. EC50 < 000 pM), more preferably 0.08% (i.e. ECso < 500 pM) and even more preferably 0.2% (i.e. EC50 < 200 pM) compared to that of natural GIP at the GIP receptor (EC5o = 0.4 pM).
Optionally, in some embodiments, the peptidic compound, particularly with a lysine at position 14 which is further substituted with a lipophilic residue, exhibits a relative activity of at least 0.1 %, preferably at least 0.2%, more preferably at least 0.3%, more preferably at least 0.4% and even more preferably at least 0.5% compared to that of natural glucagon at the glucagon receptor. The term "activity" as used herein preferably refers to the capability of a compound to activate the human GLP-1 receptor, the human GIP receptor and optionally the human glucagon receptor. More preferably the term "activity" as used herein refers to the capability of a compound to stimulate intracellular cAMP formation. The term "relative activity" as used herein is understood to refer to the capability of a compound to activate a receptor in a certain ratio as compared to another receptor agonist or as compared to another receptor. The activation of the receptors by the agonists (e.g. by measuring the cAMP level) is determined as described herein, e.g. as described in the examples.
According to one embodiment, the compounds of the invention have an EC50 for hGLP-1 receptor of 500 pM or less, preferably of 200 pM or less; more preferably of 150 pM or less, more preferably of 100 pM or less, more preferably of 90 pM or less, more preferably of 80 pM or less, more preferably of 70 pM or less, more preferably of 60 pM or less, more preferably of 50 pM or less, more preferably of 40 pM or less, more preferably of 30 pM or less, and more preferably of 20 pM or less.
According to one embodiment, the compounds of the invention have an EC50 for hGIP receptor of 500 pM or less, preferably of 200 pM or less; more preferably of 150 pM or less, more preferably of 100 pM or less, more preferably of 90 pM or less, more preferably of 80 pM or less, more preferably of 70 pM or less, more preferably of 60 pM or less, more preferably of 50 pM or less, more preferably of 40 pM or less, more preferably of 30 pM or less, and more preferably of 20 pM or less. According to another embodiment, the compounds of the invention have optionally an EC5o for hGlucagon receptor of 500 pM or less, preferably of 200 pM or less; more preferably of 150 pM or less, more preferably of 100 pM or less, more preferably of 90 pM or less, more preferably of 80 pM or less, more preferably of 70 pM or less, more preferably of 60 pM or less, more preferably of 50 pM or less, more preferably of 40 pM or less, more preferably of 30 pM or less, and more preferably of 20 pM or less.
According to another embodiment, the compounds of the invention have an EC5o for hGLP-1 receptor of 500 pM or less, preferably of 200 pM or less; more preferably of 150 pM or less, more preferably of 100 pM or less, more preferably of 90 pM or less, more preferably of 80 pM or less, more preferably of 70 pM or less, more preferably of 60 pM or less, more preferably of 50 pM or less, more preferably of 40 pM or less, more preferably of 30 pM or less, and more preferably of 20 pM or less, and/or an EC5o for hGIP receptor of 500 pM or less, preferably of 200 pM or less; more preferably of 150 pM or less, more preferably of 100 pM or less, more preferably of 90 pM or less, more preferably of 80 pM or less, more preferably of 70 pM or less, more preferably of 60 pM or less, more preferably of 50 pM or less, more preferably of 40 pM or less, more preferably of 30 pM or less, and more preferably of 20 pM or less, and/or optionally an EC5o for hGlucagon receptor of 500 pM or less, preferably of 200 pM or less; more preferably of 150 pM or less, more preferably of 100 pM or less, more preferably of 90 pM or less, more preferably of 80 pM or less, more preferably of 70 pM or less, more preferably of 60 pM or less, more preferably of 50 pM or less, more preferably of 40 pM or less, more preferably of 30 pM or less, and more preferably of 20 pM or less.
In still another embodiment, the EC50 for both receptors, i.e. for the hGLP-1 receptor and for the hGIP receptor, is 500 pM or less, more preferably 200 pM or less, more preferably 150 pM or less, more preferably 100 pM or less, more preferably 90 pM or less, more preferably 80 pM or less, more preferably 70 pM or less, more preferably 60 pM or less, more preferably 50 pM or less, more preferably 40 pM or less, more preferably 30 pM or less, more preferably 20 pM or less.
In still another embodiment, the EC50 for all three receptors, i.e. for the hGLP-1 receptor, for the hGIP receptor and for the hGlucagon receptor, is 500 pM or less, more preferably 200 pM or less, more preferably 150 pM or less, more preferably 100 pM or less, more preferably 90 pM or less, more preferably 80 pM or less, more preferably 70 pM or less, more preferably 60 pM or less, more preferably 50 pM or less, more preferably 40 pM or less, more preferably 30 pM or less, more preferably 20 pM or less.
The EC50 for hGLP-1 receptor, hGIP receptor and hGlucagon receptor may be determined as described in the Methods herein and as used to generate the results described in Example 9.
The compounds of the invention have the ability to reduce the intestinal passage, to increase the gastric content and/or to reduce the food intake of a patient. These activities of the compounds of the invention can be assessed in animal models known to the skilled person and also described herein in the Methods. The results of such experiments are described in Examples 1 1 and 12. Preferred compounds of the invention may increase the gastric content of mice, preferably of female NMRI-mice, if administered as a single dose, preferably subcutaneous dose, of 0.02 mg/kg body weight by at least 25%, more preferably by at least 30%, more preferably by at least 40%, more preferably by at least 50%, more preferably by at least 60%, more preferably by at least 70%, more preferably by at least 80%.
Preferably, this result is measured 1 h after administration of the respective compound and 30 mins after administration of a bolus, and/or reduces intestinal passage of mice, preferably of female NMRI-mice, if administered as a single dose, preferably subcutaneous dose, of 0.02 mg/kg body weight at least by 45%; more preferably by at least 50%, more preferably by at least 55%, more preferably by at least 60%, and more preferably at least 65%; and/or reduces food intake of mice, preferably of female NMRI-mice, over a period of 22 h, if administered as a single dose, preferably subcutaneous dose of 0.01 mg/kg body weight by at least 10%, more preferably 15%, and more preferably 20%.
The compounds of the invention have the ability to reduce blood glucose level, and/or to reduce HbA1 c levels of a patient. These activities of the compounds of the invention can be assessed in animal models known to the skilled person and also described herein in the Methods. The results of such experiments are described in Examples 13, 14, 16 and 17. Preferred compounds of the invention may reduce blood glucose level of mice, preferably in female leptin-receptor deficient diabetic db/db mice over a period of 24 h, if administered as a single dose, preferably subcutaneous dose, of 0.01 mg/kg body weight by at least 4 mmol/L; more preferably by at least 6 mmol/L, more preferably by at least 8 mmol/L. If the dose is increased to 0.1 mg/kg body weight a more pronounced reduction of blood glucose levels can be observed in mice over a period of 24 h, if administered as a single dose, preferably subcutaneous dose. Preferably the compounds of the invention lead to a reduction by at least 7 mmol/L; more preferably by at least 9 mmol/L, more preferably by at least 1 1 mmol/L. The compounds of the invention preferably reduce the increase of HbA1 c levels of mice over a period of 4 weeks, if administered at a daily dose of 0.01 mg/kg to about the ignition value. The compounds of the invention also have the ability to reduce body weight of a patient. These activities of the compounds of the invention can be assessed in animal models known to the skilled person and also described herein in the Methods and in Examples 13 and 15. Surprisingly, it was found that peptidic compounds of the formula (I), particularly those with a lysine (or close analogues) at position 14 which is further substituted with a lipophilic residue, showed very potent GLP-1 and GIP receptor activation; additionally in combination with amino acids like Gin in position 3 also very potent glucagon receptor activation can be provided.
It is described in the literature (Murage EN et al., Bioorg. Med. Chem. 16 (2008), 10106-101 12), that a GLP-1 analogue with an acetylated Lysine at Pos.14 showed significantly reduced potency compared to natural GLP-1 . Furthermore, oxidation (in vitro or in vivo) of methionine, present in the core structure of exendin-4, is not possible anymore for peptidic compounds of the formula (I). Further, compounds of the invention preferably have a high solubility at acidic and/or physiological pH values, e.g., at pH 4.5 and/or at pH 7.4 at 25°C, in another embodiment at least 0.5 mg/ml and in a particular embodiment at least 1 .0 mg/ml.
Furthermore, according to one embodiment, compounds of the invention preferably have a high stability when stored in solution. Preferred assay conditions for determining the stability is storage for 7 days at 25°C in solution at pH 4.5 or pH 7.4. The remaining amount of peptide is determined by chromatographic analyses as described in Methods and Examples. Preferably, after 7 days at 25°C in solution at pH 4.5 or pH 7.4, the remaining peptide amount is at least 80%, more preferably at least 85%, even more preferably at least 90% and even more preferably at least 95%.
Preferably, the compounds of the present invention comprise a peptide moiety Z (formula II) which is a linear sequence of 39-40 amino carboxylic acids, particularly a-amino carboxylic acids linked by peptide, i.e. carboxamide, bonds.
In one embodiment position X14 represents an amino acid residue with a functionalized -NH2 side chain group, such as functionalized Lys, Orn, Dab, or Dap, more preferably functionalized Lys and X40 is absent or represents Lys.
An amino acid residue with an -NH2 side chain group, e.g. Lys, Orn, Dab or Dap, may be functionalized in that at least one H atom of the -NH2 side chain group is replaced by -C(O)-R5, -C(O)O-R5, -C(O)NH-R5, -S(0)2-R5 or R5, preferably by -C(O)-R5, wherein R5 is a moiety comprising up to 50 or up to 100 carbon atoms and optionally heteroatoms selected from halogen, N, O, S and/or P. In certain embodiments, R5 may comprise a lipophilic moiety, e.g. an acyclic linear or branched saturated hydrocarbon group, wherein R5 particularly comprises an acyclic linear or branched (C4-C3o) saturated or unsaturated hydrocarbon group, and/or a cyclic saturated, unsaturated or aromatic group, particularly a mono-, bi-, or tricyclic group comprising 4 to 14 carbon atoms and 0, 1 , or 2 heteroatoms selected from N, O, and S, e.g. cyclohexyl, phenyl, biphenyl, chromanyl, phenanthrenyl or naphthyl, wherein the acyclic or cyclic group may be unsubstituted or substituted e.g. by halogen, -OH and/or CO2H.
More preferred groups R5 may comprise a lipophilic moiety, e.g. an acyclic linear or branched (C12-C22) saturated or unsaturated hydrocarbon group. The lipophilic moiety may be attached to the -NH2 side chain group by a linker in all stereoisomeric forms, e.g. a linker comprising one or more, e.g. 2, 3 or 4, amino acid linker groups such as γ-aminobutyric acid (GABA), ε- aminohexanoic acid (ε-Ahx), γ-Glu and/or β-Ala. In one embodiment the lipophilic moiety is attached to the -NH2 side chain group by a linker. In another embodiment the lipophilic moiety is directly attached to the -NH2 side chain group. Specific examples of amino acid linker groups are (β-Ala)-!- 4, (Y-GI U)I-4, (£-Ahx) -4, or (GABA) -4. Preferred amino acid linker groups are β-Ala, Y-Glu, B-Ala-B-Ala and γ-Glu-Y-Glu.
Specific preferred examples for -C(O)-R5 groups are listed in the following Table 3, which are selected from the group consisting of (S)-4-Carboxy-4- hexadecanoylamino-butyryl-, (S)-4-Carboxy-4-octadecanoylamino-butyryl-, 4-Hexadecanoylamino-butyryl-, 4-{3-[(R)-2,5,7,8-tetramethyl-2-((4R,8R)- 4,8,12-trimethyl-tridecyl)-chroman-6-yloxycarbonyl]-propionylamino}-butyryl-, 4-octadecanoylamino-butyryl-, 4-((Z)-octadec-9-enoylamino)-butyryl-, 6- [(4,4-Diphenyl-cyclohexyloxy)-hydroxy-phosphoryloxy]-hexanoyl-, Hexa- decanoyl-, (S)-4-Carboxy-4-(15-carboxy-pentadecanoylamino)-butyryl-, (S)- 4-Carboxy-4-{3-[3-((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoyl- amino)-propionylamino]-propionylamino}-butyryl-, (S)-4-Carboxy-4-{3-[(R)- 2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyl-tndecyl)-chroman-6-yloxy- carbonyl]-propionylamino}-butyryl-, (S)-4-Carboxy-4-((9Z,12Z)-octadeca- 9,12-dienoylamino)-butyryl-, (S)-4-Carboxy-4-[6-((2S,3R,4S,5R)-5-carboxy- 2,3,4,5-tetrahydroxy-pentanoylannino)-hexanoylannino]-butyryl-, (S)-4- Carboxy-4-((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoylannino)- butyryl-, (S)-4-Carboxy-4-tetradecanoylamino-butyryl-, (S)-4-(1 1 - Benzyloxycarbonyl-undecanoylamino)-4-carboxy-butyryl-, (S)-4-Carboxy-4- [1 1 -((2S,3R,4R,5R)-2, 3,4,5, 6-pentahydroxy-hexylcarbamoyl)-undecanoyl- amino]-butyryl-, (S)-4-Carboxy-4-((Z)-octadec-9-enoylamino)-butyryl-, (S)-4- Carboxy-4-(4-dodecyloxy-benzoylamino)-butyryl-, (S)-4-Carboxy-4-henicosa- noylamino-butyryl-, (S)-4-Carboxy-4-docosanoylamino-butyryl-, (S)-4- Carboxy-4-((Z)-nonadec-10-enoylamino)-butyryl-, (S)-4-Carboxy-4-(4- decyloxy-benzoylamino)-butyryl-, (S)-4-Carboxy-4-[(4'-octyloxy-biphenyl-4- carbonyl)-amino]-butyryl-, (S)-4-Carboxy-4-(12-phenyl-dodecanoylamino)- butyryl-, (S)-4-Carboxy-4-icosanoylamino-butyryl-, (S)-4-Carboxy-4-((S)-4- carboxy-4-hexadecanoylamino-butyrylannino)-butyryl-, (S)-4-Carboxy-4-((S)- 4-carboxy-4-octadecanoylamino-butyrylannino)-butyryl-, 3-(3-Octadecanoyl- amino-propionylamino)-propionyl-, 3-(3-Hexadecanoyl-amino-propionyl- amino)-propionyl-, 3-Hexadecanoylamino-propionyl-, (S)-4-Carboxy-4-[(R)-4- ((3R,5S,7R,8R,9R,10S,12S,13R,14R,17R)-3,7,12-trihydroxy-8,10,13- trimethyl-hexadecahydro-cyclopenta[a]-phenanthren-17-yl)-pentanoylamino]- butyryl-, (S)-4-Carboxy-4-[(R)-4-((3R,5R,8R,9S,10S,13R,14S,17R)-3- hydroxy-10,13-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl)- pentanoylamino]-butyryl-, (S)-4-Carboxy-4-((9S,10R)-9,10,16-trihydroxy- hexadecanoylamino)-butyryl-, Tetradecanoyl-, 1 1 -Carboxy-undecanoyl-, 1 1 - Benzyloxycarbonyl-undecanoyl-, (S)-4-Carboxy-4-((S)-4-carboxy-4-tetra- decanoylamino-butyrylannino)-butyryl-, 6-[Hydroxy-(naphthalene-2-yloxy)- phosphoryloxy]-hexanoyl-, 6-[Hydroxy-(5-phenyl-pentyloxy)-phosphoryloxy]- hexanoyl-, 4-(Naphthalene-2-sulfonylamino)-4-oxo-butyryl-, 4-(Biphenyl-4- sulfonylamino)-4-oxo-butyryl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[2-(2-{2-[2- (2-{2-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylannino]- ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylannino]-butyrylannino}- butyryl-, (S)-4-Carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxy- heptadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}- ethoxy)-acetylamino]-butyryl-, (S)-4-Carboxy-2-{(S)-4-carboxy-2-[2-(2-{2-[2- (2-{2-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylannino]- ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]-butyrylamino}- butyryl-, (S)-4-Carboxy-2-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxy- hepta-decanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}- ethoxy)-acetylamino]-butyryl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[2-(2-{2- [(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylannino]-ethoxy}- ethoxy)-acetylamino]-butyrylannino}-butyryl-, (S)-4-Carboxy-4-[2-(2-{2-[(S)-4- carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylannino]-ethoxy}-ethoxy)- acetylamino]-butyryl-, (S)-4-Carboxy-2-{(S)-4-carboxy-2-[2-(2-{2-[(S)-4- carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylannino]-ethoxy}-ethoxy)- acetylamino]-butyrylannino}-butyryl-, (S)-4-Carboxy-2-[2-(2-{2-[(S)-4-carboxy- 4-(17-carboxy-heptadecanoylamino)-butyrylannino]-ethoxy}-ethoxy)- acetylamino]-butyryl-, 2-(2-{2-[2-(2-{2-[(S)-4-Carboxy-4-(17-carboxy-hepta- decanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)- acetyl-, 2-(2-{2-[(S)-4-Carboxy-4-(17-carboxy-heptadecanoylamino)-butyryl- amino]-ethoxy}-ethoxy)-acetyl, (S)-4-Carboxy-4-((S)-4-carboxy-4-{(S)-4- carboxy-4-[(S)-4-carboxy-4-(19-carboxy-nonadecanoylamino)-butyrylannino]- butyrylamino}-butyrylamino)-butyryl, 2-(2-{2-[2-(2-{2-[(S)-4-Carboxy-4-(16- 1 H-tetrazol-5-yl-hexadecanoylamino)-butyrylannino]-ethoxy}-ethoxy)- acetylamino]-ethoxy}-ethoxy)-acetyl-, 2-(2-{2-[2-(2-{2-[(S)-4-Carboxy-4-(16- carboxy-hexadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]- ethoxy}-ethoxy)-acetyl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[(S)-4-carboxy-4- (17-carboxy-heptadecanoylamino)-butyrylamino]-butyrylamino}-butyryl-, (S)- 4-Carboxy-4-((S)-4-carboxy-4-{2-[2-(2-{2-[2-(2-{(S)-4-carboxy-4-[10-(4- carboxy-phenoxy)-decanoylamino]-butyrylannino}-ethoxy)-ethoxy]- acetylamino}-ethoxy)-ethoxy]-acetylannino}-butyryl-, (S)-4-Carboxy-4-{(S)-4- carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(7-carboxy-heptanoylamino)- butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]- butyrylaminoj-butyryl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[2-(2-{2-[2-(2-{2- [(S)-4-carboxy-4-(1 1 -carboxy-undecanoylamino)-butyrylannino]-ethoxy}- ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]-butyrylamino}-butyryl-,
(S)-4-Carboxy-4-{(S)-4-carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(13- carboxy-tridecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]- ethoxy}-ethoxy)-acetylamino]-butyrylannino}-butyryl-, (S)-4-Carboxy-4-{(S)-4- carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(15-carboxy-pentadecanoyl- amino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)- acetylamino]-butyrylannino}-butyryl-, and (S)-4-Carboxy-4-{(S)-4-carboxy-4-
[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(19-carboxy-nonadecanoylamino)- butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]- butyrylamino}-butyryl-.
Further preferred are stereoisomers, particularly enantiomers of these groups, either S- or R-enantiomers. The term "R" in Table 3 is intended to mean the attachment site of -C(O)-R5 at the peptide back bone, i.e. particularly the ε-amino group of Lys.
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0001
ĭ33
Figure imgf000034_0001
ln some embodiments, the invention relates to peptidic compounds of Formula (I) as defined above, wherein X14 represents an amino acid residue selected from Lys, Orn, Dab and Dap, wherein the -NH2 side chain group is functionalized by -C(O)-R5, X40 represents an amino acid residue selected from Lys, Orn, Dab and Dap, wherein the -NH2 side chain group can be functionalized by -C(O)-R5, and R5 is a lipophilic moiety selected from an acyclic linear or branched (C4-C3o) saturated or unsaturated hydrocarbon group, and/or a cyclic saturated, unsaturated or aromatic group, wherein the lipophilic moiety may be attached to the -NH2 side chain group by a linker selected from ( -Ala)i-4, (Y-GI U)I-4, (£-Ahx)1-4, or (GABA)1-4 in all stereoisomeric forms.
In certain embodiments, X14 represents an amino acid residue with a functionalized -NH2 side chain group, such as functionalized Lys, Orn, Dab or Dap, wherein at least one H atom of the -NH2 side chain group is replaced by -C(O)-R5, which is selected from the group consisting of the substituents according to Table 3 above.
In some embodiments, X14 represents an amino acid residue selected from Lys, Orn, Dab and Dap, wherein the -NH2 side chain group is functionalized by -C(O)-R5, X40 represents an amino acid residue selected from Lys, Orn, Dab and Dap, wherein the -NH2 side chain group can be functionalized by - C(O)-R5, and -C(O)-R5 is selected from the group consisting of the substituents according to Table 3 above.
In some embodiments of the invention, position X14 and/or X40 in formula (II) represents Lysine (Lys). According to some embodiments, Lys at position 14 and optionally at position 40 is functionalized, e.g. with a group -C(O)R5 as described above. In other embodiments, X40 is absent and X14 is Lys functionalized with -C(O)-R5, -C(O)O-R5, -C(O)NH-R5, -S(O)2-R5 or R5, preferably by -C(O)-R5, wherein R5 is as defined above. In particular, X14 is Lys functionalized with C(O)-R5, wherein R5 is selected from the group consisting of (S)-4-carboxy-4-hexadecanoylamino-butyryl (γΕ-χ53), (S)-4- carboxy-4-octadecanoylamino-butyryl (γΕ-χ70), 4-hexadecanoylamino- butyryl (GABA-x53), 4-{3-[(Ρ)-2,5,7,8-ίθίΓ3ηηθίήγΙ-2-((4Ρ,8Ρ)-4,8,12- trimethyl-tridecyl)-chroman-6-yloxycarbonyl]-propionylamino}-butyryl- (GABA-x60), 4-octadecanoylamino-butyryl (GABA-x70), 4-((Z)-octadec-9- enoylamino)-butyryl (GABA-x74), 6-[(4,4-Diphenyl-cyclohexyloxy)-hydroxy- phosphoryloxy]-hexanoyl (Phosphol ), Hexadecanoyl (x53), (S)-4-Carboxy-4- (15-carboxy-pentadecanoylamino)-butyryl (x52), (S)-4-Carboxy-4-{3-[3- ((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoylannino)- propionylamino]-propionylannino}-butyryl (γΕ-χ59), (S)-4-Carboxy-4-{3-[(R)- 2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyl-tndecyl)-chroman-6- yloxycarbonyl]-propionylamino}-butyryl (γΕ-χ60), (S)-4-Carboxy-4-((9Z,12Z)- octadeca-9,12-dienoylamino)-butyryl (γΕ-χ61 ), (S)-4-Carboxy-4-[6- ((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoylannino)- hexanoylamino]-butyryl (γΕ-χ64), (S)-4-Carboxy-4-((2S,3R,4S,5R)-5- carboxy-2,3,4,5-tetrahydroxy-pentanoylannino)-butyryl (γΕ-χ65), (S)-4- carboxy-4-tetradecanoylamino-butyryl (γΕ-χ69), (S)-4-(1 1 -
Benzyloxycarbonyl-undecanoylamino)-4-carboxy-butyryl (γΕ-χ72), (S)-4- carboxy-4-[1 1 -((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxy-hexylcarbamoyl)- undecanoylamino]-butyryl (γΕ-χ73), (S)-4-Carboxy-4-((Z)-octadec-9- enoylamino)-butyryl (γΕ-χ74), (S)-4-Carboxy-4-(4-dodecyloxy- benzoylamino)-butyryl (γΕ-χ75), (S)-4-Carboxy-4-henicosanoylamino-butyryl (γΕ-χ76), (S)-4-Carboxy-4-docosanoylamino-butyryl (γΕ-χ77), (S)-4- Carboxy-4-((Z)-nonadec-10-enoylamino)-butyryl (γΕ-χ79), (S)-4-Carboxy-4- (4-decyloxy-benzoylamino)-butyryl (γΕ-χ80), (S)-4-Carboxy-4-[(4'-octyloxy- biphenyl-4-carbonyl)-amino]-butyryl (γΕ-χ81 ), (S)-4-Carboxy-4-(12-phenyl- dodecanoylamino)-butyryl (γΕ-χ82), (S)-4-Carboxy-4-icosanoylamino-butyryl (γΕ-χ95), (S)-4-Carboxy-4-((S)-4-carboxy-4-hexadecanoylamino- butyrylamino)-butyryl (γΕ-γΕ-χ53), (S)-4-Carboxy-4-((S)-4-carboxy-4- octadecanoylamino-butyrylannino)-butyryl (γΕ-γΕ-χ70), and 3-(3- Octadecanoylamino-propionylannino)-propionyl ( -Ala- -Ala-x70). In some embodiments, X14 is Lys functionalized with C(O)-R5, wherein R5 is selected from the group consisting of (S)-4-carboxy-4-hexadecanoylamino- butyryl (yE-x53), (S)-4-carboxy-4-octadecanoylamino-butyryl (yE-x70), (S)-4- Carboxy-4-((S)-4-carboxy-4-octadecanoylamino-butyrylamino)-butyryl (yE- γΕ-χ70), 4-octadecanoylamino-butyryl (GABA-x70), (S)-4-Carboxy-4- henicosanoylamino-butyryl (yE-x76), and 3-(3-Octadecanoylamino- propionylamino)-propionyl ( -Ala- -Ala-x70).
A further embodiment relates to a group of compounds, wherein
R1 is NH2,
R2 is NH2 or
R1 and R2 are NH2.
A further embodiment relates to a group of compounds, wherein
X3 represents an amino acid residue selected from Gin, Glu and His, X12 represents an amino acid residue selected from lie and Lys, X14 represents an amino acid residue having a side chain with an -NH2 group, wherein the -NH2 side chain group is functionalized by - C(O)- R5, wherein R5 is as described above,
X15 represents an amino acid residue selected from Asp and Glu, X16 represents an amino acid residue selected from Ser, Lys, Glu and Gin,
X17 represents an amino acid residue selected from Arg, Lys, Glu, lie, Gin, Leu, Aib, Tyr and Ala,
X18 represents an amino acid residue selected from Ala, Arg, Aib, Leu, Lys and Tyr,
X19 represents an amino acid residue selected from Ala, Gin, Val and Aib,
X20 represents an amino acid residue selected from Gin, Aib, Phe, Arg, Leu, Lys and His,
X21 represents an amino acid residue selected from Asp, Glu, Tyr, and Leu, X28 represents an amino acid residue selected from Asn, Ala, Aib, Arg and Lys,
X29 represents an amino acid residue selected from Gly, Thr, Aib, D- Ala and Ala,
X40 is either absent or represents Lys.
A further embodiment relates to a group of compounds, wherein
X3 represents an amino acid residue selected from Gin, Glu and His, X12 represents an amino acid residue selected from lie and Lys, X14 represents an amino acid residue having a side chain with an -NH2 group, wherein the -NH2 side chain group is functionalized by - C(O)- R5, wherein R5 is as described above,
X15 represents an amino acid residue selected from Asp and Glu, X16 represents an amino acid residue selected from Ser, Lys, Glu and Gin,
X17 represents an amino acid residue selected from Arg, Lys, Glu, Gin, Leu, Aib, Tyr and Ala,
X18 represents an amino acid residue selected from Ala, Arg, Aib, Leu and Tyr,
X19 represents an amino acid residue selected from Ala, Val and Aib,
X20 represents an amino acid residue selected from Gin, Aib, Phe,
Leu, Lys, His, Pip, (S)MeLys, (R)MeLys and (S)MeOrn,
X21 represents an amino acid residue selected from Asp, Glu and Leu,
X28 represents an amino acid residue selected from Asn, Ala, Aib and
Ser,
X29 represents an amino acid residue selected from Gly, Thr, Aib, D- Ala and Ala,
X40 is either absent or represents Lys.
A further embodiment relates to a group of compounds, wherein
X3 represents an amino acid residue selected from Gin, Glu and His, X12 represents lie, X14 represents an amino acid residue having a side chain with an -NH2 group, wherein the -NH2 side chain group is functional ized by - C(O)- R5, wherein R5 is as described above,
X15 represents an amino acid residue selected from Asp and Glu, X16 represents an amino acid residue selected from Ser, Lys, Glu and Gin,
X17 represents an amino acid residue selected from Arg, Lys, Glu, Gin, Leu, Aib, Tyr and Ala,
X18 represents an amino acid residue selected from Ala and Arg, X19 represents an amino acid residue selected from Ala and Val, X20 represents an amino acid residue selected from Gin, Aib, Lys, Pip, (S)MeLys, (R)MeLys and (S)MeOrn and His,
X21 represents an amino acid residue selected from Asp, Glu and Leu, X28 represents an amino acid residue selected from Asn and Ala, X29 represents an amino acid residue selected from Gly, Thr and D- Ala,
X40 is either absent or represents Lys.
A further embodiment relates to a group of compounds, wherein
X3 represents an amino acid residue selected from Gin, Glu and His, X12 represents an amino acid residue selected from lie and Lys, X14 represents an amino acid residue having a side chain with an -NH2 group, wherein the -NH2 side chain group is functionalized by - C(O)- R5, wherein R5 is as described above,
X15 represents an amino acid residue selected from Asp and Glu, X16 represents an amino acid residue selected from Ser, Lys, Glu and Gin,
X17 represents an amino acid residue selected from Arg, Lys, Glu, Gin, Leu, Aib, Tyr and Ala,
X18 represents an amino acid residue selected from Ala and Arg, X19 represents an amino acid residue selected from Ala and Val, X20 represents an amino acid residue selected from Gin, Aib, Lys and His,
X21 represents an amino acid residue selected from Asp, Glu and Leu, X28 represents an amino acid residue selected from Asn and Ala, X29 represents an amino acid residue selected from Gly, Thr and D- Ala,
X40 is either absent or represents Lys.
A further embodiment relates to a group of compounds, wherein
X3 represents an amino acid residue selected from Gin and Glu, X12 represents lie,
X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl-, (S)-4-Carboxy-4-octadecanoylamino- butyryl-, (S)-4-Carboxy-4-((S)-4-carboxy-4-octadecanoylamino- butyrylamino)-butyryl-, 3-(3-Octadecanoylamino-propionylamino)- propionyl- and 4-octadecanoylamino-butyryl-, (S)-4-Carboxy-4- henicosanoylamino-butyryl-,
X15 represents an amino acid residue selected from Glu and Asp, X16 represents an amino acid residue selected from Ser and Lys, X17 represents Arg,
X18 represents Ala,
X19 represents Ala,
X20 represents an amino acid residue selected from Gin and Aib, X21 represents an amino acid residue selected from Asp and Glu, X28 represents an amino acid residue selected from Asn and Ala, X29 represents an amino acid residue selected from Gly and Thr, X40 is absent.
A further embodiment relates to a group of compounds, wherein
X3 represents Glu,
X12 represents lie, X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl-, (S)-4-Carboxy-4-octadecanoylamino- butyryl-, (S)-4-Carboxy-4-((S)-4-carboxy-4-octadecanoylamino- butyrylamino)-butyryl-, 3-(3-Octadecanoylamino-propionylamino)- propionyl- and 4-octadecanoylamino-butyryl-, (S)-4-Carboxy-4- henicosanoylamino-butyryl-,
X15 represents an amino acid residue selected from Glu and Asp, X16 represents an amino acid residue selected from Ser and Lys, X17 represents Arg,
X18 represents Ala,
X19 represents Ala,
X20 represents an amino acid residue selected from Gin and Aib, X21 represents an amino acid residue selected from Asp and Glu, X28 represents an amino acid residue selected from Asn and Ala, X29 represents an amino acid residue selected from Gly and Thr, X40 is absent.
A further embodiment relates to a group of compounds, wherein
X3 represents Gin,
X12 represents lie,
X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl-, (S)-4-Carboxy-4-octadecanoylamino- butyryl-, (S)-4-Carboxy-4-((S)-4-carboxy-4-octadecanoylamino- butyrylamino)-butyryl-, 3-(3-Octadecanoylamino-propionylamino)- propionyl- and 4-octadecanoylamino-butyryl-, (S)-4-Carboxy-4- henicosanoylamino-butyryl-,
X15 represents an amino acid residue selected from Glu and Asp, X16 represents an amino acid residue selected from Ser and Lys,
X17 represents Arg,
X18 represents Ala, X19 represents Ala,
X20 represents an amino acid residue selected from Gin and Aib, X21 represents an amino acid residue selected from Asp and Glu, X28 represents an amino acid residue selected from Asn and Ala, X29 represents an amino acid residue selected from Gly and Thr, X40 is absent.
A further embodiment relates to a group of compounds, wherein
X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl-, (S)-4-Carboxy-4-octadecanoylamino- butyryl-, 4-octadecanoylamino-butyryl-, Hexadecanoyl-, (S)-4-Carboxy- 4-henicosanoylamino-butyryl-, (S)-4-Carboxy-4-((S)-4-carboxy-4- octadecanoylamino-butyrylamino)-butyryl-, 3-(3-Octadecanoylamino- propionylamino)-propionyl-.
A further embodiment relates to a group of compounds, wherein
X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- octadecanoylamino-butyryl-, 4-octadecanoylamino-butyryl-, (S)-4- Carboxy-4-henicosanoylamino-butyryl-, (S)-4-Carboxy-4-((S)-4- carboxy-4-octadecanoylamino-butyrylamino)-butyryl-, 3-(3- Octadecanoylamino-propionylamino)-propionyl-.
A further embodiment relates to a group of compounds, wherein
X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl-, (S)-4-Carboxy-4-octadecanoylamino- butyryl-.
A further embodiment relates to a group of compounds, wherein
X3 represents an amino acid residue selected from Gin and Glu, X12 represents lie,
X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl- and (S)-4-Carboxy-4-octadecanoylamino- butyryl-,
X15 represents an amino acid residue selected from Glu and Asp, X16 represents an amino acid residue selected from Ser and Lys, X17 represents Arg,
X18 represents Ala,
X19 represents Ala,
X20 represents an amino acid residue selected from Gin and Aib, X21 represents an amino acid residue selected from Asp and Glu, X28 represents an amino acid residue selected from Asn and Ala, X29 represents an amino acid residue selected from Gly and Thr, X40 is absent.
A further embodiment relates to a group of compounds, wherein
X3 represents an amino acid residue selected from Gin, His and Glu, X12 represents lie,
X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl- and (S)-4-Carboxy-4-octadecanoylamino- butyryl-,
X15 represents Glu,
X16 represents an amino acid residue selected from Glu and Lys,
X17 represents Glu,
X18 represents Ala,
X19 represents Val,
X20 represents Arg,
X21 represents Leu,
X28 represents an amino acid residue selected from Asn, Aib and Ala,
X29 represents an amino acid residue selected from Gly and Thr, X40 is absent.
A further embodiment relates to a group of compounds, wherein
X3 represents Glu,
X12 represents lie,
X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl- and (S)-4-Carboxy-4-octadecanoylamino- butyryl-,
X15 represents Glu,
X16 represents an amino acid residue selected from Glu and Lys,
X17 represents Glu,
X18 represents Ala,
X19 represents Val,
X20 represents Arg,
X21 represents Leu,
X28 represents an amino acid residue selected from Asn, Aib and Ala, X29 represents Gly,
X40 is absent.
A further embodiment relates to a group of compounds, wherein
X3 represents an amino acid residue selected from Gin, His and Glu, X12 represents an amino acid residue selected from lie and Lys, X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl- and (S)-4-Carboxy-4-octadecanoylamino- butyryl-,
X15 represents an amino acid residue selected from Glu and Asp, X16 represents Glu,
X17 represents an amino acid residue selected from Arg and Gin,
X18 represents an amino acid residue selected from Ala and Arg, X19 represents Ala, X20 represents an amino acid residue selected from Pip, (S)MeLys, (R)MeLys and (S)MeOrn,
X21 represents Glu,
X28 represents an amino acid residue selected from Asn, Ser and Ala, X29 represents an amino acid residue selected from Gly and Thr,
X40 is absent.
A further embodiment relates to a group of compounds, wherein
X3 represents an amino acid residue selected from Gin, His and Glu, X12 represents an amino acid residue selected from lie and Lys, X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl-, hexadecanoyl- and (S)-4-Carboxy-4- octadecanoylamino-butyryl-,
X15 represents an amino acid residue selected from Glu and Asp, X16 represents an amino acid residue selected from Ser, Lys, Glu and Gin,
X17 represents an amino acid residue selected from Arg, Leu, Aib, Tyr, Glu, Ala and Lys,
X18 represents an amino acid residue selected from Ala, Aib, Leu and Tyr,
X19 represents an amino acid residue selected from Ala, Val and Aib, X20 represents Aib,
X21 represents an amino acid residue selected from Glu, Leu and Tyr, X28 represents an amino acid residue selected from Asn, Arg and Ala, X29 represents an amino acid residue selected from Gly, Ala, D-Ala and Thr,
X40 is either absent or represents Lys.
A further embodiment relates to a group of compounds, wherein
X3 represents an amino acid residue selected from Gin, His and Glu, X12 represents an amino acid residue selected from lie and Lys, X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4- hexadecanoylamino-butyryl- and (S)-4-Carboxy-4-octadecanoylamino- butyryl-,
X15 represents an amino acid residue selected from Glu and Asp, X16 represents an amino acid residue selected from Ser, Lys and Glu, X17 represents an amino acid residue selected from Arg, Lys, lie, Glu and Gin,
X18 represents an amino acid residue selected from Ala, Arg and Lys, X19 represents an amino acid residue selected from Ala, Val and Gin, X20 represents an amino acid residue selected from Gin, Phe, Leu, Lys, His and Arg,
X21 represents an amino acid residue selected from Glu, Asp and Leu, X28 represents an amino acid residue selected from Asn, Arg, Lys and Ala,
X29 represents an amino acid residue selected from Gly, Aib and Thr, X40 is either absent or represents Lys.
A further embodiment relates to a group of compounds, wherein
X12 represents lie.
A further embodiment relates to a group of compounds, wherein
X19 represents Ala.
A further embodiment relates to a group of compounds, wherein
X16 represents Glu,
X20 represents an amino acid residue selected from Pip, (S)MeLys, (R)MeLys and (S)MeOrn.
A further embodiment relates to a group of compounds, wherein
X28 represents Ala,
X29 represents Gly. A further embodiment relates to a group of compounds, wherein
X28 represents Asn,
X29 represents Thr.
A further embodiment relates to a group of compounds, wherein
X3 represents an amino acid residue selected from Gin and Glu, X12 represents lie,
X14 represents Lys, wherein the -NH2 side chain group is functionalized by -C(O)-R5, wherein R5 is selected from (S)-4-Carboxy- 4-hexadecanoylamino-butyryl- (γΕ-χ53), (S)-4-Carboxy-4- octadecanoylamino-butyryl- (γΕ-χ70), (S)-4-Carboxy-4-((S)-4-carboxy- 4-octadecanoylamino-butyrylamino)-butyryl- (γΕ-γΕ-χ70), 3-(3- Octadecanoylamino-propionylamino)-propionyl- (βΑ-βΑ-χ70), 4- octadecanoylamino-butyryl- (GABA-x70), and (S)-4-Carboxy-4- henicosanoylamino-butyryl- (γΕ-χ76),
X15 represents an amino acid residue selected from Asp and Glu, X16 represents an amino acid residue selected from Ser and Lys, X17 represents Arg,
X18 represents Ala,
X19 represents Ala,
X20 represents an amino acid residue selected from Gin and Aib, X21 represents an amino acid residue selected from Asp and Glu, X28 represents an amino acid residue selected from Asn and Ala, X29 represents an amino acid residue selected from Gly and Thr, X40 is absent.
A further embodiment relates to a group of compounds, wherein
X3 represents an amino acid residue selected from Gin and Glu, X12 represents lie, X14 represents Lys, wherein the -NH2 side chain group is functionalized by - C(O)-R5, wherein R5 is (S)-4-Carboxy-4- hexadecanoylamino-butyryl- (γΕ-χ53),
X15 represents an amino acid residue selected from Asp and Glu, X16 represents an amino acid residue selected from Ser and Lys,
X17 represents Arg,
X18 represents Ala,
X19 represents Ala,
X20 represents an amino acid residue selected from Gin and Aib, X21 represents an amino acid residue selected from Asp and Glu,
X28 represents an amino acid residue selected from Asn and Ala, X29 represents an amino acid residue selected from Gly and Thr, X40 is absent. A further embodiment relates to a group of compounds, wherein
X3 represents Glu,
X12 represents lie,
X14 represents Lys, wherein the -NH2 side chain group is functionalized by - C(O)-R5, wherein R5 is selected from (S)-4-Carboxy- 4-octadecanoylamino-butyryl- (γΕ-χ70), (S)-4-Carboxy-4-((S)-4- carboxy-4-octadecanoylamino-butyrylamino)-butyryl- (γΕ-γΕ-χ70), 3-(3-
Octadecanoylamino-propionylamino)-propionyl- (βΑ-βΑ-χ70), 4- octadecanoylamino-butyryl- (GABA-x70), and (S)-4-Carboxy-4- henicosanoylamino-butyryl- (γΕ-χ76),
X15 represents Glu,
X16 represents an amino acid residue selected from Ser and Lys,
X17 represents Arg,
X18 represents Ala,
X19 represents Ala,
X20 represents an amino acid residue selected from Gin and Aib,
X21 represents Glu,
X28 represents an amino acid residue selected from Asn and Ala, X29 represents an amino acid residue selected from Gly and Thr, X40 is absent.
Specific examples of peptidic compounds of formula (I) are the compounds of SEQ ID NO: 8-39 as well as salts and solvates thereof.
Specific examples of peptidic compounds of formula (I) are the compounds of SEQ ID NO: 8-10 and 12-38 as well as salts and solvates thereof. Specific examples of peptidic compounds of formula (I) are the compounds of SEQ ID NO: 8-13 and 39 as well as salts and solvates thereof.
Specific examples of peptidic compounds of formula (I) are the compounds of SEQ ID NO: 8-10 and 12-13 as well as salts and solvates thereof.
Specific examples of peptidic compounds of formula (I) are the compounds of SEQ ID NO: 14-21 as well as salts and solvates thereof.
Specific examples of peptidic compounds of formula (I) are the compounds of SEQ ID NO: 22-38 as well as salts and solvates thereof.
In certain embodiments, i.e. when the compound of formula (I) comprises genetically encoded amino acid residues, the invention further provides a nucleic acid (which may be DNA or RNA) encoding said compound, an expression vector comprising such a nucleic acid, and a host cell containing such a nucleic acid or expression vector.
In a further aspect, the present invention provides a composition comprising a compound of the invention in admixture with a carrier. In preferred embodiments, the composition is a pharmaceutically acceptable composition and the carrier is a pharmaceutically acceptable carrier. The compound of the invention may be in the form of a salt, e.g. a pharmaceutically acceptable salt or a solvate, e.g. a hydrate. In still a further aspect, the present invention provides a composition for use in a method of medical treatment, particularly in human medicine. In certain embodiments, the nucleic acid or the expression vector may be used as therapeutic agents, e.g. in gene therapy.
The compounds of formula (I) are suitable for therapeutic application without an additionally therapeutically effective agent. In other embodiments, however, the compounds are used together with at least one additional therapeutically active agent, as described in "combination therapy".
The compounds of formula (I) are particularly suitable for the treatment or prevention of diseases or disorders caused by, associated with and/or accompanied by disturbances in carbohydrate and/or lipid metabolism, e.g. for the treatment or prevention of hyperglycemia, type 2 diabetes, impaired glucose tolerance, type 1 diabetes, obesity and metabolic syndrome. Further, the compounds of the invention are particularly suitable for the treatment or prevention of degenerative diseases, particularly neurodegenerative diseases.
The compounds described find use, inter alia, in preventing weight gain or promoting weight loss. By "preventing" is meant inhibiting or reducing when compared to the absence of treatment, and is not necessarily meant to imply complete cessation of a disorder.
The compounds of the invention may cause a decrease in food intake and/or increase in energy expenditure, resulting in the observed effect on body weight.
Independently of their effect on body weight, the compounds of the invention may have a beneficial effect on circulating cholesterol levels, being capable of improving lipid levels, particularly LDL, as well as HDL levels (e.g. increasing HDL/LDL ratio).
Thus, the compounds of the invention can be used for direct or indirect therapy of any condition caused or characterised by excess body weight, such as the treatment and/or prevention of obesity, morbid obesity, obesity linked inflammation, obesity linked gallbladder disease, obesity induced sleep apnea. They may also be used for treatment and prevention of the metabolic syndrome, diabetes, hypertension, atherogenic dyslipidemia, atherosclerosis, arteriosclerosis, coronary heart disease, or stroke. Their effects in these conditions may be as a result of or associated with their effect on body weight, or may be independent thereof.
Preferred medical uses include delaying or preventing disease progression in type 2 diabetes, treating metabolic syndrome, treating obesity or preventing overweight, for decreasing food intake, increase energy expenditure, reducing body weight, delaying the progression from impaired glucose tolerance (IGT) to type 2 diabetes; delaying the progression from type 2 diabetes to insulin-requiring diabetes; regulating appetite; inducing satiety; preventing weight regain after successful weight loss; treating a disease or state related to overweight or obesity; treating bulimia; treating binge eating; treating atherosclerosis, hypertension, type 2 diabetes, IGT, dyslipidemia, coronary heart disease, hepatic steatosis, treatment of beta- blocker poisoning, use for inhibition of the motility of the gastrointestinal tract, useful in connection with investigations of the gastrointestinal tract using techniques such as X-ray, CT- and NMR-scanning.
Further preferred medical uses include treatment or prevention of degenerative disorders, particularly neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, ataxia, e.g spinocerebellar ataxia, Kennedy disease, myotonic dystrophy, Lewy body dementia, multi-systemic atrophy, amyotrophic lateral sclerosis, primary lateral sclerosis, spinal muscular atrophy, prion-associated diseases, e.g. Creutzfeldt-Jacob disease, multiple sclerosis, telangiectasia, Batten disease, corticobasal degeneration, subacute combined degeneration of spinal cord, Tabes dorsalis, Tay-Sachs disease, toxic encephalopathy, infantile Refsum disease, Refsum disease, neuroacanthocytosis, Niemann-Pick disease, Lyme disease, Machado-Joseph disease, Sandhoff disease, Shy-Drager syndrome, wobbly hedgehog syndrome, proteopathy, cerebral β-amyloid angiopathy, retinal ganglion cell degeneration in glaucoma, synucleinopathies, tauopathies, frontotemporal lobar degeneration (FTLD), dementia, cadasil syndrome, hereditary cerebral hemorrhage with amyloidosis, Alexander disease, seipinopathies, familial amyloidotic neuropathy, senile systemic amyloidosis, serpinopathies, AL (light chain) amyloidosis (primary systemic amyloidosis), AH (heavy chain) amyloidosis, AA (secondary) amyloidosis, aortic medial amyloidosis, ApoAI amyloidosis, ApoAII amyloidosis, ApoAIV amyloidosis, familial amyloidosis of the Finnish type (FAF), Lysozyme amyloidosis, Fibrinogen amyloidosis, Dialysis amyloidosis, Inclusion body myositis/myopathy, Cataracts, Retinitis pigmentosa with rhodopsin mutations, medullary thyroid carcinoma, cardiac atrial amyloidosis, pituitary prolactinoma, Hereditary lattice corneal dystrophy, Cutaneous lichen amyloidosis, Mallory bodies, corneal lactoferrin amyloidosis, pulmonary alveolar proteinosis, odontogenic (Pindborg) tumor amyloid, cystic fibrosis, sickle cell disease or critical illness myopathy (CIM).
Further medical uses include treatment of bone related disorders, such as osteoporosis or osteoarthritis, etc., where increased bone formation and decreased bone resorption might be beneficial.
DETAILED DESCRIPTION OF THE INVENTION
Definitions
The amino acid sequences of the present invention contain the conventional one letter and three letter codes for naturally occuring amino acids, as well as generally accepted three letter codes for other amino acids, such as Aib (a-aminoisobutyric acid), Orn (ornithin), Dab (2,4-diamino butyric acid), Dap (2,3-diamino propionic acid), NIe (norleucine), GABA (γ-aminobutyric acid) or Ahx (ε-aminohexanoic acid).
Furthermore, the following codes were used for the amino acids shown in Table 4:
Table 4:
structure name code
Figure imgf000054_0001
(S)MeLys (S)-a-met yl-lysine (S)MeLys
H .N o N H
(R)MeLys (R)-a-met yl-lysine (R)MeLys
Figure imgf000054_0002
(S)MeOrn (S)-a-met yl-ornithin (S) eOrn
NH,
Pip 4-amino-piperidine-4-carboxylic acid Pip
The term„native exendin-4" refers to native exendin-4 having the sequence HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS-NH2 (SEQ ID NO: 1 ).
The invention provides peptidic compounds as defined above.
The peptidic compounds of the present invention comprise a linear backbone of amino carboxylic acids linked by peptide, i.e. carboxamide bonds. Preferably, the amino carboxylic acids are a-amino carboxylic acids and more preferably L-a-amino carboxylic acids, unless indicated otherwise. The peptidic compounds preferably comprise a backbone sequence of 39-40 amino carboxylic acids. The peptidic compounds of the present invention may have unmodified side- chains, but carry at least one modification at one of the side chains. For the avoidance of doubt, in the definitions provided herein, it is generally intended that the sequence of the peptidic moiety (II) differs from native exendin-4 at least at one of those positions which are stated to allow variation. Amino acids within the peptide moiety (II) can be considered to be numbered consecutively from 0 to 40 in the conventional N-terminal to C- terminal direction. Reference to a ..position" within peptidic moiety (II) should be constructed accordingly, as should reference to positions within native exendin-4 and other molecules, e.g., in exendin-4, His is at position 1 , Gly at position 2, Met at position 14, ... and Ser at position 39. The amino acid residues at position 14 and optionally at position 40, having a side chain with an - NH2 group, e.g. Lys, Orn, Dab or Dap are conjugated to a functional group, e.g. acyl groups. Thus, one or more selected amino acids of the peptides in the present invention may carry a covalent attachment at their side chains. In some cases those attachments may be lipophilic. These lipophilic side chain attachments have the potential to reduce in vivo clearance of the peptides thus increasing their in vivo half- lives.
The lipophilic attachment may consist of a lipophilic moiety which can be a branched or unbranched, aliphatic or unsaturated acyclic moiety and/or a cyclic moiety selected from one or several aliphatic or unsaturated homocycles or heterocycles, aromatic condensed or non-condensed homocycles or heterocycles, ether linkages, unsaturated bonds and substituents, e.g. hydroxy and/or carboxy groups. The lipophilic moiety may be attached to the peptide either by alkylation, reductive amination or by an amide bond, a carbamate or a sulfonamide bond in case of amino acids carrying an amino group at their side chain. Nonlimiting examples of lipophilic moieties that can be attached to amino acid side chains include fatty acids, e.g. C8-3o fatty acids such as palmitic acid, myristic acid, stearic acid and oleic acid, and/or cyclic groups as described above or derivatives thereof.
There might be one or several linkers between the amino acid of the peptide and the lipophilic attachment. Nonlimiting examples of those linkers are β- alanine, γ-glutamic acid, a-glutamic acid, γ-aminobutyric acid and/or ε- aminohexanoic acid or dipeptides, such as -Ala- -Ala (also abbreviated A- βΑ herein) and/or γ-Glu-y-Glu (also abbreviated γΕ-γΕ herein) in all their stereo-isomer forms (S and R enantiomers).
Thus, one nonlimiting example of a side chain attachment is palmitic acid which is covalently linked to the a-amino group of glutamic acid forming an amide bond. The γ-carboxy group of this substituted glutamic acid can form an amide bond with the side chain amino group of a lysine within the peptide. In a further aspect, the present invention provides a composition comprising a compound of the invention as described herein, or a salt or solvate thereof, in admixture with a carrier.
The invention also provides the use of a compound of the present invention for use as a medicament, particularly for the treatment of a condition as described below.
The invention also provides a composition wherein the composition is a pharmaceutically acceptable composition, and the carrier is a pharmaceutically acceptable carrier.
Peptide synthesis The skilled person is aware of a variety of different methods to prepare the peptides that are described in this invention. These methods include but are not limited to synthetic approaches and recombinant gene expression. Thus, one way of preparing these peptides is the synthesis in solution or on a solid support and subsequent isolation and purification. A different way of preparing the peptides is gene expression in a host cell in which a DNA sequence encoding the peptide has been introduced. Alternatively, the gene expression can be achieved without utilizing a cell system. The methods described above may also be combined in any way.
A preferred way to prepare the peptides of the present invention is solid phase synthesis on a suitable resin. Solid phase peptide synthesis is a well established methodology (see for example: Stewart and Young, Solid Phase Peptide Synthesis, Pierce Chemical Co., Rockford, III., 1984; E. Atherton and R. C. Sheppard, Solid Phase Peptide Synthesis. A Practical Approach, Oxford-IRL Press, New York, 1989). Solid phase synthesis is initiated by attaching an N-terminally protected amino acid with its carboxy terminus to an inert solid support carrying a cleavable linker. This solid support can be any polymer that allows coupling of the initial amino acid, e.g. a trityl resin, a chlorotrityl resin, a Wang resin or a Rink resin in which the linkage of the carboxy group (or carboxamide for Rink resin) to the resin is sensitive to acid (when Fmoc strategy is used). The polymer support must be stable under the conditions used to deprotect the a-amino group during the peptide synthesis.
After the first amino acid has been coupled to the solid support, the a-amino protecting group of this amino acid is removed. The remaining protected amino acids are then coupled one after the other in the order represented by the peptide sequence using appropriate amide coupling reagents, for example BOP, HBTU, HATU or DIC (Ν,Ν'-diisopropylcarbodiimide) / HOBt (1 -hydroxybenzotriazol), wherein BOP, HBTU and HATU are used with tertiary amine bases. Alternatively, the liberated N-terminus can be functionalized with groups other than amino acids, for example carboxylic acids, etc. Usually, reactive side-chain groups of the amino acids are protected with suitable blocking groups. These protecting groups are removed after the desired peptides have been assembled. They are removed concomitantly with the cleavage of the desired product from the resin under the same conditions. Protecting groups and the procedures to introduce protecting groups can be found in Protective Groups in Organic Synthesis, 3d ed., Greene, T. W. and Wuts, P. G. M., Wiley & Sons (New York: 1999).
In some cases it might be desirable to have side-chain protecting groups that can selectively be removed while other side-chain protecting groups remain intact. In this case the liberated functionality can be selectively functionalized. For example, a lysine may be protected with an ivDde ([1 - (4,4-dimethyl-2,6-dioxocyclohex-1 -ylidene)-3-methylbutyl) protecting group (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603) which is labile to a very nucleophilic base, for example 4% hydrazine in DMF (dimethyl formamide). Thus, if the N-terminal amino group and all side-chain functionalities are protected with acid labile protecting groups, the ivDde group can be selectively removed using 4% hydrazine in DMF and the corresponding free amino group can then be further modified, e.g. by acylation. The lysine can alternatively be coupled to a protected amino acid and the amino group of this amino acid can then be deprotected resulting in another free amino group which can be acylated or attached to further amino acids.
Finally the peptide is cleaved from the resin. This can be achieved by using King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The raw material can then be purified by chromatography, e.g. preparative RP-HPLC, if necessary. Potency
As used herein, the term "potency" or "in vitro potency" is a measure for the ability of a compound to activate the receptors for GLP-1 , GIP or glucagon in a cell-based assay. Numerically, it is expressed as the "EC5o value", which is the effective concentration of a compound that induces a half maximal increase of response (e.g. formation of intracellular cAMP) in a dose- response experiment.
Therapeutic uses
The compounds of the invention are agonists for the receptors for GLP-1 and for GIP as well as optionally the glucagon receptor (e.g. "dual or trigonal agonists"). Such peptides that are GIP/GLP-1 co-agonists, or GIP/GLP- 1/glucagon tri-agonists may provide therapeutic benefit to address a clinical need for targeting the metabolic syndrome by allowing simultaneous treatment of diabetes and obesity. Metabolic syndrome is a combination of medical disorders that, when occurring together, increase the risk of developing type 2 diabetes, as well as atherosclerotic vascular disease, e.g. heart disease and stroke. Defining medical parameters for the metabolic syndrome include diabetes mellitus, impaired glucose tolerance, raised fasting glucose, insulin resistance, urinary albumin secretion, central obesity, hypertension, elevated triglycerides, elevated LDL cholesterol and reduced HDL cholesterol.
Obesity is a medical condition in which excess body fat has accumulated to the extent that it may have an adverse effect on health and life expectancy and due to its increasing prevalence in adults and children it has become one of the leading preventable causes of death in modern world. It increases the likelihood of various other diseases, including heart disease, type 2 diabetes, obstructive sleep apnea, certain types of cancer, as well as osteoarthritis, and it is most commonly caused by a combination of excess food intake, reduced energy expenditure, as well as genetic susceptibility. Diabetes mellitus, often simply called diabetes, is a group of metabolic diseases in which a person has high blood sugar levels, either because the body does not produce enough insulin, or because cells do not respond to the insulin that is produced. The most common types of diabetes are: (1 ) type 1 diabetes, where the body fails to produce insulin; (2) type 2 diabetes, where the body fails to use insulin properly, combined with an increase in insulin deficiency over time, and (3) gestational diabetes, where women develop diabetes due to their pregnancy. All forms of diabetes increase the risk of long-term complications, which typically develop after many years. Most of these long-term complications are based on damage to blood vessels and can be divided into the two categories "macrovascular" disease, arising from atherosclerosis of larger blood vessels and "microvascular" disease, arising from damage of small blood vessels. Examples for macrovascular disease conditions are ischemic heart disease, myocardial infarction, stroke and peripheral vascular disease. Examples for microvascular diseases are diabetic retinopathy, diabetic nephropathy, as well as diabetic neuropathy.
The receptors for GLP-1 and GIP as well as glucagon are members of the family of 7-transmembrane-spanning, heterotrimeric G-protein coupled receptors. They are structurally related to each other and share not only a significant level of sequence identity, but have also similar mechanisms of ligand recognition and intracellular signaling pathways.
Similarly, the peptides GLP-1 , GIP and glucagon share regions of high sequence identity/similarity. GLP-1 and glucagon are produced from a common precursor, preproglucagon, which is differentially processed in a tissue-specific manner to yield e.g. GLP-1 in intestinal endocrine cells and glucagon in alpha cells of pancreatic islets. GIP is derived from a larger proGIP prohormone precursor and is synthesized and released from K-cells located in the small intestine.
The peptidic incretin hormones GLP-1 and GIP are secreted by intestinal endocrine cells in response to food and account for up to 70% of meal- stimulated insulin secretion. Evidence suggests that GLP-1 secretion is reduced in subjects with impaired glucose tolerance or type 2 diabetes, whereas responsiveness to GLP-1 is still preserved in these patients. Thus, targeting of the GLP-1 receptor with suitable agonists offers an attractive approach for treatment of metabolic disorders, including diabetes. The receptor for GLP-1 is distributed widely, being found mainly in pancreatic islets, brain, heart, kidney and the gastrointestinal tract. In the pancreas, GLP-1 acts in a strictly glucose-dependent manner by increasing secretion of insulin from beta cells. This glucose-dependency shows that activation of GLP-1 receptors is unlikely to cause hypoglycemia. Also the receptor for GIP is broadly expressed in peripheral tissues including pancreatic islets, adipose tissue, stomach, small intestine, heart, bone, lung, kidney, testis, adrenal cortex, pituitary, endothelial cells, trachea, spleen, thymus, thyroid and brain. Consistent with its biological function as incretin hormone, the pancreatic β-cell express the highest levels of the receptor for GIP in humans. There is some clinical evidence that the GIP-receptor mediated signaling could be impaired in patients with T2DM but GIP-action is shown to be reversible and could be restored with improvement of the diabetic status. Of note, the stimulation of insulin secretion by both incretin hormones, GIP and GLP-1 is strictly glucosed-dependent ensuring a fail-safe mechanism associated with at low risk for hypoglycemia.
At the beta cell level, GLP-1 and GIP have been shown to promote glucose sensitivity, neogenesis, proliferation, transcription of proinsulin and hypertrophy, as well as antiapoptosis. A peptide with dual agonistic activity for the GLP-1 and the GIP receptor could be anticipated to have additive or synergistic anti-diabetic benefit. Other relevant effects of GLP-1 beyond the pancreas include delayed gastric emptying, increased satiety, decreased food intake, reduction of body weight, as well as neuroprotective and cardioprotective effects. In patients with type 2 diabetes, such extrapancreatic effects could be particularly important considering the high rates of comorbidities like obesity and cardiovascular disease. Further GIP actions in peripheral tissues beyond the pancreas comprise increased bone formation and decreased bone resorption as well as neuroprotective effects which might be beneficial for the treatment of osteoporosis and cognitive defects like Alzheimer's disease.
Glucagon is a 29 amino acid peptide hormone that is produced by pancreatic alpha cells and released into the bloodstream when circulating glucose is low. An important physiological role of glucagon is to stimulate glucose output in the liver, which is a process providing the major counterregulatory mechanism for insulin in maintaining glucose homeostasis in vivo.
Glucagon receptors are however also expressed in extra-hepatic tissues such as kidney, heart, adipocytes, lymphoblasts, brain, retina, adrenal gland and gastrointestinal tract, suggesting a broader physiological role beyond glucose homeostasis. Accordingly, recent studies have reported that glucagon has therapeutically positive effects on energy management, including stimulation of energy expenditure and thermogenesis, accompanied by reduction of food intake and body weight loss. Altogether, stimulation of glucagon receptors might be useful in the treatment of obesity and the metabolic syndrome.
Oxyntomodulin is a peptide hormone consisting of glucagon with an eight amino acids encompassing C-terminal extension. Like GLP-1 and glucagon, it is preformed in preproglucagon and cleaved and secreted in a tissue- specific manner by endocrinal cells of the small bowel. Oxyntomodulin is known to stimulate both, the receptors for GLP-1 and glucagon and is therefore the prototype of a dual agonist.
As GLP-1 and GIP are known for their anti-diabetic effects, GLP-1 and glucagon are both known for their food intake-suppressing effects and glucagon is also a mediator of additional energy expenditure, it is conceivable that a combination of the activities of the two or three hormones in one molecule can yield a powerful medication for treatment of the metabolic syndrome and in particular its components diabetes and obesity. Accordingly, the compounds of the invention may be used for treatment of glucose intolerance, insulin resistance, pre-diabetes, increased fasting glucose, type 2 diabetes, hypertension, dyslipidemia, arteriosclerosis, coronary heart disease, peripheral artery disease, stroke or any combination of these individual disease components.
In addition, they may be used for control of appetite, feeding and calory intake, increase of energy expenditure, prevention of weight gain, promotion of weight loss, reduction of excess body weight and altogether treatment of obesity, including morbid obesity.
Further disease states and health conditions which could be treated with the compounds of the invention are obesity-linked inflammation, obesity-linked gallbladder disease and obesity-induced sleep apnea. Although all these conditions could be associated directly or indirectly with obesity, the effects of the compounds of the invention may be mediated in whole or in part via an effect on body weight, or independent thereof.
Further, diseases to be treated are osteoporosis and neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease, or other degenerative diseases as described above. Compared to GLP-1 , glucagon and oxyntomodulin, exendin-4 has beneficial physicochemical properties, such as solubility and stability in solution and under physiological conditions (including enzymatic stability towards degradation by enzymes, such as DPP-4 or NEP), which results in a longer duration of action in vivo. Therefore, exendin-4 might serve as good starting scaffold to obtain exendin-4 analogues with dual or even triple pharmacologies, e.g., GLP-1/GIP and optionally in addition glucagon agonism. Nevertheless, also exendin-4 has been shown to be chemically labile due to methionine oxdiation in position 14 as well as deamidation and isomerization of asparagine in position 28. Therefore, stability might be further improved by substitution of methionine at position 14 and the avoidance of sequences that are known to be prone to degradation via aspartimide formation, especially Asp-Gly or Asn-Gly at positions 28 and 29.
Pharmaceutical compositions
The term "pharmaceutical composition" indicates a mixture containing ingredients that are compatible when mixed and which may be administered. A pharmaceutical composition may include one or more medicinal drugs. Additionally, the pharmaceutical composition may include carriers, buffers, acidifying agents, alkalizing agents, solvents, adjuvants, tonicity adjusters, emollients, expanders, preservatives, physical and chemical stabilizers e.g. surfactants, antioxidants and other components, whether these are considered active or inactive ingredients. Guidance for the skilled in preparing pharmaceutical compositions may be found, for example, in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins and in R.C.Rowe et al (Ed), Handbook of Pharmaceutical Excipients, PhP, May 2013 update.
The exendin-4 peptide derivatives of the present invention, or salts thereof, are administered in conjunction with an acceptable pharmaceutical carrier, diluent, or excipient as part of a pharmaceutical composition. A "pharmaceutically acceptable carrier" is a carrier which is physiologically acceptable (e.g. physiologically acceptable pH) while retaining the therapeutic properties of the substance with which it is administered. Standard acceptable pharmaceutical carriers and their formulations are known to one skilled in the art and described, for example, in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins and in R.C.Rowe et al (Ed), Handbook of Pharmaceutical excipients, PhP, May 2013 update. One exemplary pharmaceutically acceptable carrier is physiological saline solution.
In one embodiment carriers are selected from the group of buffers (e.g. citrate/citric acid), acidifying agents (e.g. hydrochloric acid), alkalizing agents (e.g. sodium hydroxide), preservatives (e.g. phenol), co-solvents (e.g. polyethylene glycol 400), tonicity adjusters (e.g. mannitol), stabilizers (e.g. surfactant, antioxidants, amino acids).
Concentrations used are in a range that is physiologically acceptable.
Acceptable pharmaceutical carriers or diluents include those used in formulations suitable for oral, rectal, nasal or parenteral (including subcutaneous, intramuscular, intravenous, intradermal, and transdermal) administration. The compounds of the present invention will typically be administered parenterally. The term "pharmaceutically acceptable salt" means salts of the compounds of the invention which are safe and effective for use in mammals. Pharmaceutically acceptable salts may include, but are not limited to, acid addition salts and basic salts. Examples of acid addition salts include chloride, sulfate, hydrogen sulfate, (hydrogen) phosphate, acetate, citrate, tosylate or mesylate salts. Examples of basic salts include salts with inorganic cations, e.g. alkaline or alkaline earth metal salts such as sodium, potassium, magnesium or calcium salts and salts with organic cations such as amine salts. Further examples of pharmaceutically acceptable salts are described in Remington: The Science and Practice of Pharmacy, (20th ed.) ed. A. R. Gennaro A. R., 2000, Lippencott Williams & Wilkins or in Handbook of Pharmaceutical Salts, Properties, Selection and Use, e.d. P. H. Stahl, C. G. Wermuth, 2002, jointly published by Verlag Helvetica Chimica Acta, Zurich, Switzerland, and Wiley-VCH, Weinheim, Germany. The term "solvate" means complexes of the compounds of the invention or salts thereof with solvent molecules, e.g. organic solvent molecules and/or water.
In the pharmaceutical composition, the exendin-4 derivative can be in monomeric or oligomeric form.
The term "therapeutically effective amount" of a compound refers to a nontoxic but sufficient amount of the compound to provide the desired effect. The amount of a compound of the formula I necessary to achieve the desired biological effect depends on a number of factors, for example the specific compound chosen, the intended use, the mode of administration and the clinical condition of the patient. An appropriate "effective" amount in any individual case may be determined by one of ordinary skill in the art using routine experimentation For example the "therapeutically effective amount" of a compound of the formula (I) is about 0.01 to 50 mg/dose, preferably 0.1 to 10 mg/dose.
Pharmaceutical compositions of the invention are those suitable for parenteral (for example subcutaneous, intramuscular, intradermal or intravenous), oral, rectal, topical and peroral (for example sublingual) administration, although the most suitable mode of administration depends in each individual case on the nature and severity of the condition to be treated and on the nature of the compound of formula I used in each case.
Suitable pharmaceutical compositions may be in the form of separate units, for example capsules, tablets and powders in vials or ampoules, each of which contains a defined amount of the compound; as powders or granules; as solution or suspension in an aqueous or nonaqueous liquid; or as an oil- in-water or water-in-oil emulsion. It may be provided in single or multiple dose injectable form, for example in the form of a pen. The compositions may, as already mentioned, be prepared by any suitable pharmaceutical method which includes a step in which the active ingredient and the carrier (which may consist of one or more additional ingredients) are brought into contact.
In certain embodiments the pharmaceutical composition may be provided together with a device for application, for example together with a syringe, an injection pen or an autoinjector. Such devices may be provided separate from a pharmaceutical composition or prefilled with the pharmaceutical composition.
Combination therapy
The compounds of the present invention, dual agonists for the GLP-1 and GIP receptors or trigonal agonists for the GLP-1 , GIP and glucagon receptors, can be widely combined with other pharmacologically active compounds, such as all drugs mentioned in the Rote Liste 2012 and/or the Rote Liste 2013, e.g. with all antidiabetics mentioned in the Rote Liste 2012, chapter 12, and/or the Rote Liste 2013, chapter 12, all weight-reducing agents or appetite suppressants mentioned in the Rote Liste 2012, chapter 1 , and/or the Rote Liste 2013, chapter 1 , all lipid-lowering agents mentioned in the Rote Liste 2012, chapter 58, and/or the Rote Liste 2013, chapter 58, all antihypertensives and nephroprotectives, mentioned in the Rote Liste 2012 and/or the Rote Liste 2013, or all diuretics mentioned in the Rote Liste 2012, chapter 36, and/or the Rote Liste 2013, chapter 36.
The active ingredient combinations can be used especially for a synergistic improvement in action. They can be applied either by separate administration of the active ingredients to the patient or in the form of combination products in which a plurality of active ingredients are present in one pharmaceutical preparation. When the active ingredients are administered by separate administration of the active ingredients, this can be done simultaneously or successively.
Most of the active ingredients mentioned hereinafter are disclosed in the USP Dictionary of USAN and International Drug Names, US Pharmacopeia, Rockville 201 1 .
Other active substances which are suitable for such combinations include in particular those which for example potentiate the therapeutic effect of one or more active substances with respect to one of the indications mentioned and/or which allow the dosage of one or more active substances to be reduced.
Therapeutic agents which are suitable for combinations include, for example, antidiabetic agents such as: Insulin and Insulin derivatives, for example: Glargine / Lantus® , 270 - 330U/ml_ of insulin glargine (EP 2387989 A ), 300U/ml_ of insulin glargine (EP 2387989 A), Glulisin / Apidra®, Detemir / Levemir®, Lispro / Humalog® / Liprolog®, Degludec / DegludecPlus, Aspart, basal insulin and analogues (e.g.LY-2605541 , LY2963016, NN1436), PEGylated insulin Lispro, Humulin®, Linjeta, SuliXen®, NN1045, Insulin plus Symlin, PE0139, fast-acting and short-acting insulins (e.g. Linjeta, PH20, NN1218, HinsBet), (APC- 002)hydrogel, oral, inhalable, transdermal and sublingual insulins (e.g. Exubera®, Nasulin®, Afrezza, Tregopil, TPM 02, Capsulin, Oral-lyn®, Cobalamin® oral insulin, ORMD-0801 , NN1953, NN1954, NN1956, VIAtab, Oshadi oral insulin). Additionally included are also those insulin derivatives which are bonded to albumin or another protein by a bifunctional linker.
GLP-1 , GLP-1 analogues and GLP-1 receptor agonists, for example: Lixisenatide / AVE0010 / ZP10 / Lyxumia, Exenatide / Exendin-4 / Byetta / Bydureon / ITCA 650 / AC-2993, Liraglutide / Victoza, Semaglutide, Taspoglutide, Syncria / Albiglutide, Dulaglutide, rExendin-4, CJC-1 134-PC, PB-1023, TTP-054, Langlenatide / HM-1 1260C, CM-3, GLP-1 Eligen, ORMD-0901 , NN-9924, NN-9926, NN-9927, Nodexen, Viador-GLP-1 , CVX- 096, ZYOG-1 , ZYD-1 , GSK-2374697, DA-3091 , MAR-701 , MAR709, ZP- 2929, ZP-3022, TT-401 , BHM-034. MOD-6030, CAM-2036, DA-15864, ARI- 2651 , ARI-2255, Exenatide-XTEN and Glucagon-Xten.
DPP-4 inhibitors, for example: Alogliptin / Nesina, Trajenta / Linagliptin / Bl- 1356 / Ondero / Trajenta / Tradjenta / Trayenta / Tradzenta, Saxagliptin / Onglyza, Sitagliptin / Januvia / Xelevia / Tesave / Janumet / Velmetia, Galvus / Vildagliptin, Anagliptin, Gemigliptin, Teneligliptin, Melogliptin, Trelagliptin, DA-1229, Omarigliptin / MK-3102, KM-223, Evogliptin, ARI- 2243, PBL-1427, Pinoxacin.
SGLT2 inhibitors, for example: Invokana / Canaglifozin, Forxiga / Dapagliflozin, Remoglifozin, Sergliflozin, Empagliflozin, Ipragliflozin, Tofogliflozin, Luseogliflozin, LX-421 1 , Ertuglifozin / PF-04971729, RO- 4998452, EGT-0001442, KGA-3235 / DSP-3235, LIK066, SBM-TFC-039,
Biguanides (e.g. Metformin, Buformin, Phenformin), Thiazolidinediones (e.g. Pioglitazone, Rivoglitazone, Rosiglitazone, Troglitazone), dual PPAR agonists (e.g. Aleglitazar, Muraglitazar, Tesaglitazar), Sulfonylureas (e.g. Tolbutamide, Glibenclamide, Glimepiride/Amaryl, Glipizide), Meglitinides (e.g. Nateglinide, Repaglinide, Mitiglinide), Alpha-glucosidase inhibitors (e.g. Acarbose, Miglitol, Voglibose), Amylin and Amylin analogues (e.g. Pramlintide, Symlin).
GPR1 19 agonists (e.g. GSK-263A, PSN-821 , MBX-2982, APD-597, ZYG-19, DS-8500), GPR40 agonists (e.g. Fasiglifam / TAK-875, TUG-424, P-1736, JTT-851 , GW9508).
Other suitable combination partners are: Cycloset, inhibitors of 1 1 -beta-HSD (e.g. LY2523199, BMS770767, RG-4929, BMS816336, AZD-8329, HSD- 016, BI-135585), activators of glucokinase (e.g. TTP-399, AMG-151 , TAK- 329, GKM-001 ), inhibitors of DGAT (e.g. LCQ-908), inhibitors of protein tyrosinephosphatase 1 (e.g. Trodusquemine), inhibitors of glucose-6- phosphatase, inhibitors of fructose-1 ,6-bisphosphatase, inhibitors of glycogen phosphorylase, inhibitors of phosphoenol pyruvate carboxykinase, inhibitors of glycogen synthase kinase, inhibitors of pyruvate dehydrokinase, alpha2-antagonists, CCR-2 antagonists, SGLT-1 inhibitors (e.g. LX-2761 ).
One or more lipid lowering agents are also suitable as combination partners, such as for example: HMG-CoA-reductase inhibitors (e.g. Simvastatin, Atorvastatin), fibrates (e.g. Bezafibrate, Fenofibrate), nicotinic acid and the derivatives thereof (e.g. Niacin), PPAR-(alpha, gamma or alpha/gamma) agonists or modulators (e.g. Aleglitazar), PPAR-delta agonists, ACAT inhibitors (e.g. Avasimibe), cholesterol absorption inhibitors (e.g. Ezetimibe), Bile acid-binding substances (e.g. Cholestyramine), ileal bile acid transport inhibitors, MTP inhibitors, or modulators of PCSK9.
HDL-raising compounds such as: CETP inhibitors (e.g. Torcetrapib, Anacetrapid, Dalcetrapid, Evacetrapid, JTT-302, DRL-17822, TA-8995) or ABC1 regulators.
Other suitable combination partners are one or more active substances for the treatment of obesity, such as for example: Sibutramine, Tesofensine, Orlistat, antagonists of the cannabinoid-1 receptor, MCH-1 receptor antagonists, MC4 receptor agonists, NPY5 or NPY2 antagonists (e.g. Velneperit), beta-3-agonists, leptin or leptin mimetics, agonists of the 5HT2c receptor (e.g. Lorcaserin), or the combinations of bupropione/naltrexone, bupropione/zonisamide, bupropione/phentermine or pramlintide/metreleptin.
Other suitable combination partners are:
Further gastrointestinal peptides such as Peptide YY 3-36 (PYY3-36) or analogues thereof, pancreatic polypeptide (PP) or analogues thereof.
Glucagon receptor agonists or antagonists, GIP receptor agonists or antagonists, ghrelin antagonists or inverse agonists, Xenin and analogues thereof.
Moreover, combinations with drugs for influencing high blood pressure, chronic heart failure or atherosclerosis, such as e.g.: Angiotensin II receptor antagonists (e.g. telmisartan, candesartan, valsartan, losartan, eprosartan, irbesartan, olmesartan, tasosartan, azilsartan), ACE inhibitors, ECE inhibitors, diuretics, beta-blockers, calcium antagonists, centrally acting hypertensives, antagonists of the alpha-2-adrenergic receptor, inhibitors of neutral endopeptidase, thrombocyte aggregation inhibitors and others or combinations thereof are suitable. In another aspect, this invention relates to the use of a compound according to the invention or a physiologically acceptable salt thereof combined with at least one of the active substances described above as a combination partner, for preparing a medicament which is suitable for the treatment or prevention of diseases or conditions which can be affected by binding to the receptors for GLP-1 and glucagon and by modulating their activity. This is preferably a disease in the context of the metabolic syndrome, particularly one of the diseases or conditions listed above, most particularly diabetes or obesity or complications thereof.
The use of the compounds according to the invention, or a physiologically acceptable salt thereof, in combination with one or more active substances may take place simultaneously, separately or sequentially.
The use of the compound according to the invention, or a physiologically acceptable salt thereof, in combination with another active substance may take place simultaneously or at staggered times, but particularly within a short space of time. If they are administered simultaneously, the two active substances are given to the patient together; if they are used at staggered times, the two active substances are given to the patient within a period of less than or equal to 12 hours, but particularly less than or equal to 6 hours. Consequently, in another aspect, this invention relates to a medicament which comprises a compound according to the invention or a physiologically acceptable salt of such a compound and at least one of the active substances described above as combination partners, optionally together with one or more inert carriers and/or diluents.
The compound according to the invention, or physiologically acceptable salt or solvate thereof, and the additional active substance to be combined therewith may both be present together in one formulation, for example a tablet or capsule, or separately in two identical or different formulations, for example as so-called kit-of-parts.
LEGENDS TO THE FIGURES Figure 1. Effect of s.c. administration of compound SEQ ID NO: 13 at 10 g/kg on gastric emptying and intestinal passage in female NMRI-mice. Data are mean+SEM.
a) Gastric emptying b) Small intestinal passage relative to small intestinal length
Figure 2. Effect of s.c. administration of compound SEQ ID NO: 9 at 1 , 3 and 10 pg/kg on gastric emptying and intestinal passage in female NMRI-mice. Data are mean+SEM.
a) Gastric emptying
b) Small intestinal passage relative to small intestinal length
Figure 3a. Effect of s.c. administration of compound SEQ ID NO: 12, SEQ ID NO: 13 and liraglutide at 100 pg/kg on 22-hours feed intake in female NMRI- mice. Data are mean+SEM.
Figure 3b. Effect of s.c. administration of compound SEQ ID NO: 9 at 3 and 10 pg/kg on 22-hours feed intake in female NMRI-mice. Data are mean+SEM. Figure 4. Effect of s.c. administration of compound SEQ ID NO: 9 at 10, 30 and 100 pg/kg on blood glucose after 6 days of treatment in female diet- induced obese C57BL/6NCrl mice (18 weeks on high-fat diet). Data are mean±SEM. Figure 5. Effect of s.c. administration of compound SEQ ID NO: 9 at 10, 30 and 100 pg/kg on body weight in female diet-induced obese (DIO) C57BL/6NCrl mice (18 weeks on high-fat diet). Data are mean±SEM.
Figure 6. Effect of s.c. administration of compound SEQ ID NO: 9 at 10, 30 and 100 pg/kg on body weight in female diet-induced obese (DIO) C57BL/6NCrl mice calculated as relative change from baseline. Data are mean ± SEM..
Figure 7. Effect of s.c. administration of compound SEQ ID NO: 9 at 10, 30 and 100 pg/kg on body fat content in female diet-induced obese (DIO) C57BL/6NCrl mice. Data are mean±SEM. Figure 8. Effect of acute s.c. administration of compounds SEQ ID NO: 13, SEQ ID NO: 12, SEQ ID NO: 10 and SEQ ID NO: 9 at 100 pg/kg on 24h profile of blood glucose of diabetic db/db mice. Data are mean±SEM.
Figure 9. Effect of once-daily s.c. administration of compound SEQ ID NO: 9 at 10, 30 and 100 pg/kg on blood glucose of diabetic db/db mice after 4- weeks chronic treatment. Data are mean±SEM. Figure 10. Effect of once-daily s.c. administration of compound SEQ ID NO: 9 at 10, 30 and 10O g/kg on HbA1 c of diabetic db/db mice at start and at the end 4-weeks chronic treatment. Data are mean±SEM.
Figure 11. Effect of s.c. administration of compound SEQ ID NO: 9 and SEQ ID NO: 21 at 10 pg/kg on body weight in female diet-induced obese (DIO) C57BL/6NCrl mice following 3-weeks chronic treatment once daily. Data are mean ± SEM.
Figure 12. Effect of s.c. administration of compound SEQ ID NO: 9 and SEQ ID NO: 21 10 pg/kg on body weight in female diet-induced obese (DIO) C57BL/6NCrl mice following 3-weeks chronic treatment once daily. Changes in body weight were calculated as relative change from baseline. Data are mean ± SEM. Figure 13. Effect of 3 weeks of treatment with SEQ ID NO: 16 at 3 and 10 g/kg, s.c. and SEQ ID NO: 21 at 10 pg/kg, s.c. on non-fasted glucose in diabetic dbdb-mice, represented as change from baseline (0 mmol/l, day -7). Data are mean+SEM. Figure 14. Effect of 3 weeks of treatment with SEQ ID NO: 16 at 3 and 10 pg/kg, s.c. and SEQ ID NO: 21 at 10 pg/kg, s.c. on HbA1 c in diabetic dbdb- mice, represented as change from baseline (0 %, day -7). Data are mean+SEM.
Figure 15. Effect of 3 weeks of treatment with SEQ ID NO: 16 at 3 and 10 pg/kg, s.c. and SEQ ID NO: 21 at 10 pg/kg, s.c. on oral glucose tolerance in diabetic dbdb-mice, represented as change from baseline (t = 0 min, 0 mmol/l, immediately before glucose administration). Data are mean+SEM.
Figure 16. Effect of 3 weeks of treatment with SEQ ID NO: 16 at 3 and 10 pg/kg, s.c. and SEQ ID NO: 21 at 10 pg/kg, s.c. on oral glucose tolerance in diabetic dbdb-mice, represented as area under the glucose curve (Glucose- AUC). Data are mean+SEM.
Figure 17. Effect of treatment with SEQ ID NO: 21 at 3 pg/kg, s.c. on glucose lowering in non-fasted female diabetic dbdb-mice, represented as change from baseline. Data are mean+SEM.
Figure 18. Effect of treatment with SEQ ID NO: 14 at 3 pg/kg, s.c. on glucose lowering in non-fasted female diabetic dbdb-mice, represented as change from baseline. Data are mean+SEM.
METHODS
Abbreviations employed are as follows: AA amino acid
cAMP cyclic adenosine monophosphate
Boc tert-butyloxycarbonyl
BOP (benzotriazol-1 -yloxy)tris(dimethylamino)phosphonium hexafluorophosphate
BSA bovine serum albumin
tBu tertiary butyl
Dde 1 -(4,4-dimethyl-2,6-dioxocyclohexylidene)-ethyl ivDde 1 -(4,4-dimethyl-2,6-dioxocyclohexylidene)3-methyl-butyl
DIC N,N'-diisopropylcarbodiimide
DIPEA N,N-diisopropylethylamine
DMEM Dulbecco's modified Eagle's medium
DMF dimethyl formamide
EDT ethanedithiol
FA formic acid
FBS fetal bovine serum
Fmoc fluorenylmethyloxycarbonyl
HATU 0-(7-azabenzotriazol-1 -yl)-/V,/V,/V^/V'-tetramethyluronium hexafluorophosphate
HBSS Hanks' Balanced Salt Solution
HBTU 2-(1 H-benzotriazol-1 -yl)-1 ,1 ,3,3-tetramethyl-uronium hexafluorophosphate
HEPES 2-[4-(2-hydroxyethyl)piperazin-1 -yl]ethanesulfonic acid
HOBt 1 -hydroxybenzotriazole
HOSu N-hydroxysuccinimide
HPLC High Performance Liquid Chromatography
HTRF Homogenous Time Resolved Fluorescence
IBMX 3-isobutyl-1 -methylxanthine LC/MS Liquid Chromatography/Mass Spectrometry
Palm palmitoyl
PBS phosphate buffered saline
PEG polyethylene glycole
PK pharmacokinetic
RP-HPLC reversed-phase high performance liquid chromatography
Stea stearyl
TFA trifluoroacetic acid
Trt trityl
UV ultraviolet
General synthesis of peptidic compounds Materials:
Different Rink-Amide resins (4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)- phenoxyacetamido-norleucylaminomethyl resin, Merck Biosciences; 4-[(2,4- Dimethoxyphenyl)(Fmoc-amino)methyl]phenoxy acetamido methyl resin, Agilent Technologies) were used for the synthesis of peptide amides with loadings in the range of 0.3-0.4 mmol/g.
Fmoc protected natural amino acids were purchased from Protein Technologies Inc., Senn Chemicals, Merck Biosciences, Novabiochem, Iris Biotech or Bachem. The following standard amino acids were used throughout the syntheses: Fmoc-L-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc-L- Asn(Trt)-OH, Fmoc-L-Asp(OtBu)-OH, Fmoc-L-Cys(Trt)-OH, Fmoc-L-Gln(Trt)- OH, Fmoc-L-Glu(OtBu)-OH, Fmoc-Gly-OH, Fmoc-L-His(Trt)-OH, Fmoc-L-lle- OH, Fmoc-L-Leu-OH, Fmoc-L-Lys(Boc)-OH, Fmoc-L-Met-OH, Fmoc-L-Phe- OH, Fmoc-L-Pro-OH, Fmoc-L-Ser(tBu)-OH, Fmoc-L-Thr(tBu)-OH, Fmoc-L- Trp(Boc)-OH, Fmoc-L-Tyr(tBu)-OH, Fmoc-L-Val-OH. In addition, the following special amino acids were purchased from the same suppliers as above: Fmoc-L-Lys(ivDde)-OH, Fmoc-L-Lys(Mmt)-OH, Fmoc- Aib-OH, Fmoc-D-Ser(tBu)-OH, Fmoc-D-Ala-OH, Boc-L-Tyr(tBu)-OH, Boc-L- His(Boc)-OH (available as toluene solvate) and Boc-L-His(Trt)-OH.
The solid phase peptide syntheses were performed for example on a Prelude Peptide Synthesizer (Protein Technologies Inc) or similar automated synthesizer using standard Fmoc chemistry and HBTU/DIPEA activation. DMF was used as the solvent. Deprotection: 20% piperidine/DMF for 2 x 2.5 min. Washes: 7 x DMF. Coupling: 2:5:10 200 mM AA / 500 mM HBTU / 2M DIPEA in DMF 2 x for 20 min. Washes: 5 x DMF.
In cases where a Lys-side-chain was modified, Fmoc-L-Lys(ivDde)-OH or Fmoc-L-Lys(Mmt)-OH was used in the corresponding position. After completion of the synthesis, the ivDde group was removed according to a modified literature procedure (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF. The Mmt group was removed by repeated treatment with 1 % TFA in dichloromethane. The following acylations were carried out by treating the resin with the N-hydroxy succinimide esters of the desired acid or using coupling reagents like HBTU/DIPEA or HOBt/DIC.
All the peptides that had been synthesized were cleaved from the resin with King's cleavage cocktail consisting of 82.5% TFA, 5% phenol, 5% water, 5% thioanisole, 2.5% EDT. The crude peptides were then precipitated in diethyl or diisopropyl ether, centrifuged, and lyophilized. Peptides were analyzed by analytical HPLC and checked by ESI mass spectrometry. Crude peptides were purified by a conventional preparative HPLC purification procedure. Analytical HPLC / UPLC
Method A: Analytical UPLC/MS was performed on a Waters UPLC system with a Waters UPLC HSS 1 .7 μηη C18 column (2.1 x 100 mm) at 40 °C with a gradient elution at a flow rate of 0.5 mL/min and monitored at 215 and 280 nm. The gradients were set up as 10% B to 90% B over 15 min and then 90% B for 1 min or as 15% B to 50% B over 12.5 min and then 50% B to 90% B over 3 min. Buffer A = 0.1 % formic acid in water and B = 0.1 % formic acid in acetonitrile. A Waters LCT Premier Time-of-Flight instrument was used as mass analyser equipped with an electrospray in the positive ion mode. Method B: detection at 210 - 225 nm, optionally coupled to a mass analyser Waters LCT Premier, electrospray positive ion mode
column: Waters ACQUITY UPLC® CSH™ C18 1 .7 pm (150 x 2.1 mm) at
50 °C
solvent: H2O+0.5%TFA : ACN+0.35%TFA (flow 0.5 ml/min)
gradient: 80:20 (0 min) to 80:20 (3 min) to 25:75 (23 min) to 2:98 (23.5 min) to 2:98 (30.5 min) to 80:20 (31 min) to 80:20 (37 min)
Method C: detection at 215 nm
column: Aeris Peptide, 3.6 μπτι, XB-C18 (250 x 4.6 mm) at 60 °C
solvent: H2O+0.1 %TFA : ACN+0.1 %TFA (flow 1 .5 ml/min)
gradient: 90:10 (0 min) to 90:10 (3 min) to 10:90 (43 min) to 10:90 (48 min) to 90:10 (49 min) to 90:10 (50 min)
Method D: detection at 214 nm
column: Waters X-Bridge C18 3.5 μηη 2.1 x 150 mm
solvent: H2O+0.5%TFA : ACN (flow 0.55 ml/min)
gradient: 90:10 (0 min) to 40:60 (5 min) to 1 :99 (15 min)
Method E: detection at 210 - 225 nm, optionally coupled to a mass analyser Waters LCT Premier, electrospray positive ion mode
column: Waters ACQUITY UPLC® BEH™ C18 1 .7 pm (150 x 2.1 mm) at
50 °C solvent: H2O+1 %FA : ACN+1 %FA (flow 0.9 ml/min)
gradient: 95:5 (0 min) to 95:5 (2min) to 35:65 (3 min) to 65:35 (23.5 min) to 5:95 (24 min) to 95:5 (26min) to 95:5 (30min)
General Preparative HPLC Purification Procedure:
The crude peptides were purified either on an Akta Purifier System or on a Jasco semiprep HPLC System. Preparative RP-C18-HPLC columns of different sizes and with different flow rates were used depending on the amount of crude peptide to be purified. Acetonitrile + 0.05 to 0.1 % TFA (B) and water + 0.05 to 0.1 % TFA (A) were employed as eluents. Alternatively, a buffer system consisting of acetonitrile and water with minor amounts of acetic acid was used. Product-containing fractions were collected and lyophilized to obtain the purified product, typically as TFA or acetate salt.
Solubility and Stability-Testing of exendin-4 derivatives
Prior to the testing of solubility and stability of a peptide batch, its content was determined. Therefore, two parameters were investigated, its purity (HPLC-UV) and the amount of salt load of the batch (ion chromatography).
For solubility testing, the target concentration was 1 .0 mg/mL pure compound. Therefore, solutions from solid samples were prepared in different buffer systems with a concentration of 1 .0 mg/mL compound based on the previously determined content. HPLC-UV was performed after 2 h of gentle agitation from the supernatant, which was obtained by 20 min of centrifugation at 4000 rpm.
The solubility was then determined by comparison with the UV peak areas obtained with a stock solution of the peptide at a concentration of 2 mg/mL in pure water or a variable amount of acetonitrile (optical control that all of the compound was dissolved). This analysis also served as starting point (tO) for the stability testing. For stability testing, an aliquot of the supernatant obtained for solubility was stored for 7 days at 25°C. After that time course, the sample was centrifuged for 20 min at 4000 rpm and the supernatant was analysed with HPLC-UV. For determination of the amount of the remaining peptide, the peak areas of the target compound at to and t7 were compared, resulting in "% remaining peptide", following the equation
% remaining peptide = [(peak area peptide t7) x 100]/peak area peptide to. The amount of soluble degradation products was calculated from the comparison of the sum of the peak areas from all observed impurities reduced by the sum of peak areas observed at to (i.e. to determine the amount of newly formed peptide-related species). This value was given in percentual relation to the initial amount of peptide at to, following the equation:
% soluble degradation products = {[(peak area sum of impurities t7) - (peak area sum of impurities t0)] x 100}/peak area peptide to
The potential difference from the sum of "% remaining peptide" and "% soluble degradation products" to 100% reflects the amount of peptide which did not remain soluble upon stress conditions following the equation
% precipitate = 100-([% remaining peptide] + [% soluble degradation products])
This precipitate includes non-soluble degradation products, polymers and/or fibrils, which have been removed from analysis by centrifugation.
The chemical stability is expressed as "% remaining peptide".
Anion Chromatography
Instrument: Dionex ICS-2000, pre/column: Ion Pac AG-18 2 x 50 mm (Dionex)/AS18 2 x 250 mm (Dionex), eluent: aqueous sodium hydroxide, flow: 0.38 mL/min, gradient: 0-6 min: 22 mM KOH, 6-12 min: 22-28 mM KOH, 12-15 min: 28-50 mM KOH, 15-20min: 22mM KOH, suppressor: ASRS 300 2 mm, detection: conductivity.
As HPLC/UPLC method method D or E has been used.
In vitro cellular assays for GIP receptor, GLP-1 receptor and glucagon receptor efficacy
Agonism of compounds for the receptors was determined by functional assays measuring cAMP response of HEK-293 cell lines stably expressing human GIP, GLP-1 or glucagon receptor. cAMP content of cells was determined using a kit from Cisbio Corp. (cat. no. 62AM4PEC) based on HTRF (Homogenous Time Resolved Fluorescence). For preparation, cells were split into T175 culture flasks and grown overnight to near confluency in medium (DMEM / 10% FBS). Medium was then removed and cells washed with PBS lacking calcium and magnesium, followed by proteinase treatment with accutase (Sigma-Aldrich cat. no. A6964). Detached cells were washed and resuspended in assay buffer (1 x HBSS; 20 mM HEPES, 0.1 % BSA, 2 mM IBMX) and cellular density determined. They were then diluted to 400000 cells/ml and 25 μΙ-aliquots dispensed into the wells of 96-well plates. For measurement, 25 μΙ of test compound in assay buffer was added to the wells, followed by incubation for 30 minutes at room temperature. After addition of HTRF reagents diluted in lysis buffer (kit components), the plates were incubated for 1 hr, followed by measurement of the fluorescence ratio at 665 / 620 nm. In vitro potency of agonists was quantified by determining the concentrations that caused 50% activation of maximal response (EC50).
Bioanalytical screening method for quantification of exendin-4 derivatives in mice and pigs Mice were dosed 1 mg/kg subcutaneously (s.c). The mice were sacrified and blood samples were collected after 0.25, 0.5, 1 , 2, 4, 8, 16 and 24 hours post application. Plasma samples were analyzed after protein precipitation via liquid chromatography mass spectrometry (LC/MS). PK parameters and half-life were calculated using WinonLin Version 5.2.1 (non-compartment model).
Female Gottinger minipigs were dosed 0.1 mg/kg subcutaneously (s.c). Blood samples were collected after 0.25, 0.5, 1 , 2, 4, 8, 24, 32, 48, 56 and 72 hours post application. Plasma samples were analyzed after protein precipitation via liquid chromatography mass spectrometry (LC/MS). PK parameters and half-life were calculated using WinonLin Version 5.2.1 (non- compartment model).
Gastric emptying and intestinal passage in mice
Female NMRI-mice of a body weight between 20 and 30 g were used. Mice were adapted to housing conditions for at least one week.
Mice were overnight fasted, while water remained available all the time. On the study day, mice were weighed, single-caged and allowed access to 500 mg of feed for 30 min, while water was removed. At the end of the 30 min feeding period, remaining feed was removed and weighed. Then, the test compound / reference compound or its vehicle in the control group was administered subcutaneously. 60 min later, to allow the compound to reach relevant plasma exposure, a coloured, non-caloric bolus was instilled via gavage into the stomach. After another 30 min, the animals were sacrificed and the stomach and the small intestine prepared. The filled stomach was weighed, emptied, carefully cleaned and dried and reweighed. The stomach content, calculated as weight of filled subtracted by the weight of emptied stomach, indicated the degree of gastric emptying. The small intestine was straightened without force and measured in length. Then the distance from the gastric beginning of the gut to the tip of the farthest travelled intestinal content bolus was measured. The intestinal passage was given as ratio in percent of the latter distance and the total length of the small intestine.
Comparable data can be obtained for both female and male mice.
Statistical analyses were performed with Everstat 6.0 by 1 -way-ANOVA, followed by Dunnett's as post-hoc test. Dunnett's Test was applied to compare versus vehicle control., Differences were considered statistically significant at the p < 0.05 level.
Automated assessment of feed intake in mice
Female NMRI-mice of a body weight between 20 and 30 g were used. Mice were adapted to housing conditions for at least one week and for at least one day single-caged in the assessment equipment, when basal data were recorded simultaneously. On the study day, test product was administered subcutaneously close to the lights-off phase (12 h lights off) and assessment of feed consumption was directly started afterwards. Assessment included continued monitoring over 22 hours, while data are processed as mean over every 30 min. Repetition of this procedure over several days was possible. Restriction of assessment to 22 hours was for practical reasons to allow for reweighing of animals, refilling of feed and water and drug administration between procedures. Results could be assessed as cumulated data over 22 hours or differentiated to 30 min intervals. Comparable data can be obtained for both female and male mice.
Statistical analyses were performed with Everstat 6.0 by two-way ANOVA on repeated measures and Dunnett's post-hoc analyses. Differences were considered statistically significant at the p < 0.05 level.
Acute and subchronic effects of exendin-4 derivatives after subcutaneous treatment on blood glucose and body weight in female diet-induced obese (DIO) C57BL/6NCrl mice
18 weeks on high-fat diet (method 1 ) Female C57BL/6NCrl mice were housed in groups in a specific pathogen- free barrier facility on a 12 h light/dark cycle with free access to water and high-fat diet. After 18 weeks on high-fat diet, mice were stratified to treatment groups (n = 8), so that each group had similar mean body weight. An aged-matched group with ad libitum access to standard chow was included as standard control group.
Before the experiment, mice were subcutaneously (s.c.) injected with vehicle solution and weighed for 3 days to acclimate them to the procedures. 1 ) Acute effect on blood glucose in fed DIO mice: initial blood samples were taken just before first administration (s.c.) of vehicle (phosphate buffer solution) or the exendin-4 derivatives at doses of 10, 30 and 100 pg/kg (dissolved in phosphate buffer), respectively. The volume of administration was 5 mL/kg. The animals had access to water and their corresponding diet during the experiment, food consumption was determined at all time points of blood sampling. Blood glucose levels were measured at t = 0.5 h, t = 1 h, t = 2 h, t = 4 h, t = 6 h, t = 8 h, and t = 24 h (method: d-glucose hexokinase, hemolysate, AU640 Beckman Coulter). Blood sampling was performed by tail incision without anaesthesia.
2) Subchronic effect on body weight: all animals were treated once daily s.c. in the afternoon, at the end of the light phase (12 h lights on) with either vehicle or exendin-4 derivatives at the abovementioned doses for 4 weeks. Body weight was recorded daily. On days 6 and 28, total fat mass was measured by nuclear magnetic resonance (NMR) using a Bruker minispec (Ettlingen, Germany).
14 weeks of prefeeding with high-fat diet (method 2)
Female C57BL/6NCrl mice were housed in groups in a specific pathogen- free barrier facility on a 12 h light/dark cycle with free access to water and high-fat diet. After 14 weeks on high-fat diet, mice were stratified to treatment groups (n = 8), so that each group had similar mean body weight. An aged-matched group with ad libitum access to standard chow and water was included as standard control group.
Before the experiment, mice were subcutaneously (s.c.) injected with vehicle solution and weighed for 3 days to acclimate them to the procedures.
Subchronic effect on body weight: all animals were treated once daily s.c. late afternoon, at the end of the light phase (LD 12:12) with either vehicle or exendin-4 derivatives at the abovementioned doses for 3 weeks. Body weight was recorded daily.
Statistical analyses were performed with Everstat 6.0 by repeated measures two-way ANOVA and Dunnett's post-hoc analyses (glucose profile) and 1 - way-ANOVA, followed by Dunnett's post-hoc test (body weight, body fat). Differences versus vehicle-treated DIO control mice were considered statistically significant at the p < 0.05 level.
Acute and subchronic effects of exendin-4 derivatives after subcutaneous treatment on blood glucose and HbA1c in female leptin- receptor deficient diabetic db/db mice (method 3)
Female BKS.Cg-m +/+ Leprdb/J (db/db) and BKS.Cg-m +/+ Leprdb/+ (lean control) mice were obtained from Charles River Laboratories, Germany, at an age of 9 - 10 weeks. The animals were housed in groups in a specific pathogen-free barrier facility on a 12-h light/dark cycle with free access to water and rodent-standard chow. After 1 week of acclimatization, blood samples were drawn from the tail without anaesthesia and blood glucose (method: d-glucose hexokinase, hemolysate, AU640 Beckman Coulter) and HbA1 c level (method: hemolysate, Cobas6000 c501 , Roche Diagnostics, Germany) were determined.
HbA1 c is a glycosylated form of haemoglobin whose level reflects the average level of glucose to which the erythrocyte has been exposed during its lifetime. In mice, HbA1 c is a relevant biomarker for the average blood glucose level during the preceding 4 weeks (erythrocyte life span in mouse ~ 47 days). Db/db mice were stratified to treatment groups (n = 8), so that each group had similar baseline blood glucose and HbA1 c levels.
1 ) Acute effect on blood glucose in fed db/db mice: initial blood samples were taken just before first administration (s.c.) of vehicle (phosphate buffer solution) or exendin-4 derivatives at doses of 3, 10, and 100 pg/kg (dissolved in phosphate buffer), respectively. The volume of administration was 5 mL/kg. The animals had access to water and chow during the experiment, food consumption was determined at all time points of blood sampling. Blood glucose levels were measured at t = 0.5 h, t = 1 h, t = 2 h, t = 4 h, t = 6 h, t = 8 h, and t = 24 h. Blood sampling was performed by tail incision without anaesthesia. Comparable data can be obtained for both female and male mice.
2) Subchronic effect on blood glucose and HbA1 c: all animals were treated once daily s.c. in the afternoon, at the end of the light phase (12 h lights on) with either vehicle or exendin-4 derivatives at the abovementioned doses for 4 weeks. At the end of the study, blood samples (tail, no anaesthesia) were analyzed for glucose and HbA1 c. Comparable data can be obtained for both female and male mice.
Statistical analyses were performed with Everstat 6.0 by repeated measures two-way ANOVA and Dunnett's post-hoc analyses. Differences versus vehicle-treated db/db control mice were considered statistically significant at the p < 0.05 level.
Effects of 4 weeks of treatment on glucose, HbA1c and oral glucose tolerance in female diabetic dbdb-mice (method 4) 8 week old, female diabetic dbdb-mice of mean non-fasted glucose value of 14.5 mmol/l and a body weight of 37-40 g were used. Mice were individually marked and were adapted to housing conditions for at least one week.
7 days prior to study start, baseline values for non-fasted glucose and HbA1 c were determined, 5 days prior to study start, mice were assigned to groups and cages (5 mice per cage, 10 per group) according to their HbA1 c values to ensure even distribution of lower and higher values between groups (stratification).
Mice were treated for 4 weeks, by once daily subcutaneous administration 3 hours prior to the dark phase (6 pm to 6 am). Blood samples from a tail tip incision were obtained for HbA1 c on study day 21 and oral glucose tolerance was assessed in the 4th week. Oral glucose tolerance test was done in the morning without prior extra compound administration to majorly assess the effect of chronic treatment and less of acute compound administration. Mice were fasted for 4 hours prior to oral glucose administration (2 g/kg, t = 0 min). Blood samples were drawn prior to glucose administration and at 15, 30, 60, 90, 120, and 180 min thereafter. Feed was returned after the last blood sampling. Results are represented as change from baseline, glucose in mmol/l and HbA1 c in %.
Statistical analyses are performed with Everstat Version 6.0 based on SAS by 1 -way-ANOVA, followed by Dunnett's post-hoc test against vehicle- control. Differences are considered statistically significant at the p < 0.05 level.
Glucose lowering in non-fasted female diabetic dbdb-mice
Female diabetic dbdb-mice of mean non-fasted glucose value of 20-22 mmol/l and a body weight of 42 g +/- 0.6 g (SEM) were used. Mice were individually marked and were adapted to housing conditions for at least one week.
3-5 days prior to study start mice were assigned to groups and cages (4 mice per cage, 8 per group) according to their non-fasted glucose values to ensure even distribution of lower and higher values between groups (stratification). On the study day, mice were weighed and dosed (t = 0). Immediately prior to compound administration feed was removed while water remained available, and a first blood sample at a tail incision was drawn (baseline). Further blood samples were drawn at the tail incision at 30, 60, 90, 120, 240, 360, and 480 min.
Statistical analyses are performed with Everstat Version 6.0 based on SAS by 2-way-ANOVA on repeated measures, followed by Dunnett's post-hoc test against vehicle-control. Differences are considered statistically significant at the p < 0.05 level.
EXAMPLES
The invention is further illustrated by the following examples. Example 1 :
Synthesis of SEQ ID NO: 20
The solid phase synthesis was carried out on Rink-resin with a loading of 0.38 mmol/g, 75-150 μιτι from the company Agilent Technologies. The Fmoc- synthesis strategy was applied with HBTU/DIPEA-activation. In position 1 Boc-Tyr(tBu)-OH and in position 14 Fmoc-Lys(ivDde)-OH was used in the solid phase synthesis protocol. The ivDde-group was cleaved from the peptide on resin according to literature (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603). Hereafter Fmoc-Glu-OtBu was coupled to the liberated amino-group employing the coupling reagents HBTU/DIPEA followed by Fmoc-deprotection with 20% piperidine in DMF. Finally heneicosanyl chloride was coupled to the amino-group of Glu in dichloromethane with DIPEA as base. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (XBridge, BEH130, Prep C18 5μΜ) using an acetonitrile/water gradient (both buffers with 0.05% TFA). The purified peptide was analysed by LCMS (Method C). Deconvolution of the mass signals found under the peak with retention time 31 .67 min revealed the peptide mass 4647.40 which is in line with the expected value of 4647.35.
Example 2:
Synthesis of SEQ ID NO: 16
The solid phase synthesis was carried out on Novabiochem Rink-Amide resin (4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido- norleucylaminonnethyl resin), 100-200 mesh, loading of 0.34 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 1 Boc-Tyr(tBu)-OH and in position 14 Fmoc-Lys(ivDde)-OH was used in the solid phase synthesis protocol. The ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF. Hereafter Fmoc-Glu-OtBu was coupled to the liberated amino-group employing the coupling reagents HBTU/DIPEA followed by Fmoc-deprotection with 20% piperidine in DMF. Again Fmoc-Glu-OtBu was coupled followed by Fmoc-deprotection and the final coupling of stearic acid using HBTU/DIPEA. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.05% TFA).The purified peptide was analysed by LCMS (Method C). Deconvolution of the mass signals found under the peak with retention time 28.45 min revealed the peptide mass 4733.6 which is in line with the expected value of 4734.4. Example 3:
Synthesis of SEQ ID NO: 17
The solid phase synthesis was carried out on Rink-resin with a loading of 0.38 mmol/g, 75-150 μιτι from the company Agilent Technologies. The Fmoc- synthesis strategy was applied with HBTU/DIPEA-activation. In position 1 Boc-Tyr(tBu)-OH and in position 14 Fmoc-Lys(ivDde)-OH was used in the solid phase synthesis protocol. The ivDde-group was cleaved from the peptide on resin according to literature (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603). Hereafter Fmoc-y-amino butyric acid was coupled to the liberated amino-group employing the coupling reagents HBTU/DIPEA followed by Fmoc-deprotection with 20% piperidine in DMF. Finally stearic acid was coupled using HBTU/DIPEA. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (XBridge, BEH130, Prep C18 5μΜ) using an acetonitrile/water gradient (both buffers with 0.05% TFA). The purified peptide was analysed by LCMS (Method C). Deconvolution of the mass signals found under the peak with retention time 29.59 min revealed the peptide mass 4561 .4 which is in line with the expected value of 4561 .26.
Example 4:
Synthesis of SEQ ID NO: 18
The solid phase synthesis was carried out on Rink-resin with a loading of 0.38 mmol/g, 75-150 μιτι from the company Agilent Technologies. The Fmoc- synthesis strategy was applied with HBTU/DIPEA-activation. In position 1 Boc-Tyr(tBu)-OH and in position 14 Fmoc-Lys(ivDde)-OH was used in the solid phase synthesis protocol. The ivDde-group was cleaved from the peptide on resin according to literature (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603). Hereafter Fmoc- -Ala-OH was coupled to the liberated amino-group employing the coupling reagents HBTU/DIPEA followed by Fmoc-deprotection with 20% piperidine in DMF. Again Fmoc-β- Ala-OH was coupled followed by Fmoc-deprotection and the final coupling of stearic acid using HBTU/DIPEA. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (XBridge, BEH130, Prep C18 5μΜ) using an acetonitrile/water gradient (both buffers with 0.05% TFA). The purified peptide was analysed by LCMS (Method C). Deconvolution of the mass signals found under the peak with retention time 28.97 min revealed the peptide mass 4618.6 which is in line with the expected value of 4618.32.
Example 5:
Synthesis of SEQ ID NO: 9 The solid phase synthesis was carried out on Novabiochem Rink-Amide resin (4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido- norleucylaminomethyl resin), 100-200 mesh, loading of 0.34 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 1 Boc-Tyr(tBu)-OH and in position 14 Fmoc-Lys(ivDde)-OH was used in the solid phase synthesis protocol. The ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF. Hereafter Palm-Glu(YOSu)-OtBu was coupled to the liberated amino-group. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.1 % TFA). The purified peptide was analysed by LCMS (Method B). Deconvolution of the mass signals found under the peak with retention time 12.7 min revealed the peptide mass 4577.3 which is in line with the expected value of 4577.22. Example 6:
Synthesis of SEQ ID NO: 36
The solid phase synthesis was carried out on Novabiochem Rink-Amide resin (4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido- norleucylaminomethyl resin), 100-200 mesh, loading of 0.34 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 1 Boc-Tyr(tBu)-OH and in position 14 Fmoc-Lys(ivDde)-OH was used in the solid phase synthesis protocol. The ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF. Hereafter Palm-Glu(YOSu)-OtBu was coupled to the liberated amino-group. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.05% TFA). The purified peptide was analysed by LCMS (Method B). Deconvolution of the mass signals found under the peak with retention time 12.53 min revealed the peptide mass 4489.57 which is in line with the expected value of 4490.13.
Example 7:
Synthesis of SEQ ID NO: 39
The solid phase synthesis was carried out on Novabiochem Rink-Amide resin (4-(2',4'-Dimethoxyphenyl-Fmoc-aminomethyl)-phenoxyacetamido- norleucylaminomethyl resin), 100-200 mesh, loading of 0.34 mmol/g. The Fmoc-synthesis strategy was applied with HBTU/DIPEA-activation. In position 1 Boc-Tyr(tBu)-OH and in position 14 Fmoc-Lys(ivDde)-OH was used in the solid phase synthesis protocol. The ivDde-group was cleaved from the peptide on resin according to a modified literature procedure (S.R. Chhabra et al., Tetrahedron Lett. 39, (1998), 1603), using 4% hydrazine hydrate in DMF. Hereafter Palm-Glu(YOSu)-OtBu was coupled to the liberated amino-group. The peptide was cleaved from the resin with King's cocktail (D. S. King, C. G. Fields, G. B. Fields, Int. J. Peptide Protein Res. 36, 1990, 255-266). The crude product was purified via preparative HPLC on a Waters column (Sunfire, Prep C18) using an acetonitrile/water gradient (both buffers with 0.05% TFA). The purified peptide was analysed by LCMS (Method B). Deconvolution of the mass signals found under the peak with retention time 13.5 min revealed the peptide mass 4491 .3 which is in line with the expected value of 4492.1 . In an analogous way, the following peptides SEQ ID NO: 8 - 41 were synthesized and characterized (Method A-E), see Table 5. Table 5: list of synthesized peptides and comparison of calculated vs. found molecular weight.
SEQ ID NO: calc. Mass found mass
8 4576.2 4575.6
9 4577.2 4577.3
10 4478.0 4477.5
1 1 4462.1 4462.5
12 4548.1 4547.7
13 4506.1 4505.3
14 4561 .2 4560.9
15 4605.3 4605.7
16 4734.4 4733.6
17 4561 .3 4561 .4
18 4618.3 4618.6
19 4648.3 4647.6
20 4647.4 4647.4
21 4520.1 4518.9
22 4464.0 4463.4
23 4565.1 4564.5
24 4522.1 4521 .4
25 4579.1 4578.7
26 4620.2 4619.6
27 4563.2 4562.4
28 4504.1 4504.5
29 4477.0 4477.2
30 4420.0 4419.2
31 4505.1 4505.1
32 4477.1 4476.5
33 4519.1 4518.0
34 4533.2 4532.1 35 4449.0 4448.4
36 4490.1 4489.6
37 4491 .1 4491 .0
38 4590.3 4590.2
39 4492.1 4491 .3
O 4094.5 4092.3
*41 4194.6 4194.0
-acylated comparison compound
Example 8: Chemical stability and solubility Solubility and chemical stability of peptidic compounds were assessed as described in Methods. The results are given in Table 6.
Table 6: Chemical stability and solubility
Figure imgf000096_0001
Example 9: In vitro data on GLP-1 , GIP and glucagon receptor
Potencies of peptidic compounds at the GLP-1 , GIP and glucagon receptors were determined by exposing cells expressing human glucagon receptor (hGLUC R), human GIP (hGIP R) and human GLP-1 receptor (hGLP-1 R) to the listed compounds at increasing concentrations and measuring the formed cAMP as described in Methods.
The results for Exendin-4 derivatives with activity at the human GIP (hGIP R), human GLP-1 receptor (hGLP-1 R) and human glucagon receptor (hGLUC R) are shown in Table 7.
Table 7. EC5o values of exendin-4 peptide analogues at GLP-1 , GIP and Glucagon receptors (indicated in pM)
SEQ ID NO: EC50 hGIP R EC50 hGLP-1 R EC50 hGLUC R
[pM] [pM] [pM]
8 9.8 5.3 18.3
9 5.7 3.6 7710.0
10 15.1 13.2 40000.0
11 3.2 11 .5 7220.0
12 8.9 12.7 1890.0
13 71 .0 7.3 31 .3
14 4.4 4.3 3760.0
15 8.2 8.1 5810.0
16 5.1 4.0 2890.0
17 9.6 8.7 9740.0
18 8.1 7.6 4950.0
19 13.8 4.0 707.5
20 24.5 23.2 3310.0
21 6.4 4.8 10100.0
22 16.6 32.0 11600.0
23 79.5 11 .8 19100.0
24 23.5 13.5 38900.0
25 73.6 9.5 20500.0
26 19.7 4.9 8510.0
27 6.7 4.0 6390.0 28 10.9 3.2 9.9
29 127.0 7.0 46.8
30 22.1 12.0 226.0
31 6.5 6.0 3080.0
32 7.1 8.4 82.6
33 9.1 6.4 12900.0
34 22.2 4.6 11600.0
35 7.3 6.9 39100.0
36 6.4 3.4 5785.0
37 21 .2 8.9 32.0
38 11 .2 6.7 11 .4
39 8.5 4.3 19300.0
Comparison Testing
A selection of inventive exendin-4 derivatives comprising a functionalized amino acid in position 14 has been tested versus corresponding compounds having in this position 14 a 'non-functionalized' amino acid. The reference pair compounds and the corresponding EC50 values at GLP-1 and GIP receptors (indicated in pM) are given in Table 8. As shown, the inventive exendin-4 derivatives show a superior activity in comparison to the compounds with a 'non-functionalized' amino acid in position 14.
Table 8. Comparison of exendin-4 derivatives comprising a non- functionalized amino acid in position 14 vs. exendin-4 derivatives comprising a functionalized amino acid in position 14. EC50 values at GLP-1 and GIP receptors are indicated in pM. (K=lysine, Nle=norleucine, L=leucine, γΕ- x53=(S)-4-Carboxy-4-hexadecanoylamino-butyryl-)
EC50 hGIP R EC50 hGLP-1 R residue in
SEQ ID NO:
[pM] [pM] position 14
32 7.1 8.4 Κ(γΕ-χ53)
40 858 3.2 L 9 5.7 3.6 Κ(γΕ-χ53)
41 449 11 .2 Nle
Example 10: Pharmacokinetic testing
Pharmacokinetic profiles were determined as described in Methods. Calculated T /2 and cmax values are shown in Table 9.
Table 9. Pharmacokinetic profiles of exendin-4 derivatives.
Figure imgf000099_0001
Example 1 1 : Effect of SEQ ID NO: 9 and SEQ ID NO: 13 on gastric emptying and intestinal passage in female NMRI-mice
Female NMRI-mice, weighing on average 25 - 30 g, received 1 , 3 and 10 pg/kg of SEQ ID NO: 9, or 10 pg/kg of SEQ ID NO: 13 or phosphate buffered saline (vehicle control) subcutaneously, 60 min prior to the administration of the coloured bolus. 30 min later, the assessment of stomach contents and intestinal passage was done (Fig. 1 and 2). In these studies, SEQ ID NO: 9 reduced intestinal passage by 49, 62 and 64 % (p<0.0001 ) and increased remaining gastric contents by 32, 79 and 1 1 1 % (p<0.0001 ), respectively. SEQ ID NO: 13 reduced intestinal passage by 60 % (p<0.0001 ) and increased remaining gastric contents by 40 % (p<0.0001 ), respectively. (p<0.0001 versus vehicle control, 1 -W-ANOVA, followed by Dunnett's post-hoc test).
Example 12:
Effect of SEQ ID NO: 12, SEQ ID NO: 13 and liraglutide on 22-hours food intake in female NMRI-mice
Fed female NMRI-mice, weighing on average 25-30 g, were administered 0.1 mg/kg of SEQ ID NO: 12, SEQ ID NO: 13, liraglutide or phosphate buffered saline (vehicle control) subcutaneously, directly prior to start of feeding monitoring. Lights-off phase (dark phase) started 4 hours later.
All tested compounds induced a pronounced reduction of feed intake, reaching after 22 hours for liraglutide 47% (p=0.006), for SEQ ID NO: 12 71 % (p<0.0001 ) and SEQ ID NO: 13 93% (p=0.0003, 2-W-ANOVA-RM on ranks, post hoc Dunnett's Test) at the end of the study, respectively (Fig. 3a).
Effect of SEQ ID NO: 9 on 22-hours food intake in female NMRI-mice
Fed female NMRI-mice, weighing on average 25-30 g, were administered 3 g/kg or 10 pg/kg of SEQ ID NO: 9 or phosphate buffered saline (vehicle control) subcutaneously, directly prior to start of feeding monitoring. Lights- off phase (dark phase) started 4 hours later.
SEQ ID NO: 9 induced a pronounced reduction of feed intake, reaching after 22 hours for 3 pg/kg 1 1 % (not significant, p=0.78), and for 10 pg/kg 62% (p= 0.0005, 2-W-ANOVA-RM on ranks, post hoc Dunnett's Test) at the end of the study, respectively (Fig. 3b).
Example 13:
Subchronic effects of SEQ ID NO: 9 after subcutaneous treatment on blood glucose and body weight in female diet-induced obese (DIO) C57BL/6NCrl mice (18 weeks on high-fat diet, method 1 )
1 ) Glucose profile
Diet-induced obese female C57BL/6NCrl mice were administered daily in the afternoon, at the end of the light phase (12 h lights on) with 10, 30 and 100 g/kg of SEQ ID NO: 9 or phosphate buffered solution (vehicle control on standard or high-fat diet) subcutaneously. On day 6 of treatment and at predefined time points, more blood samples were taken to measure blood glucose and generate the blood glucose profile over 24 h.
Already at the beginning of blood sampling on day 6 of treatment the basal blood glucose levels were dose-dependently decreased compared to DIO control mice (Fig. 4). 2) Body weight
Female obese C57BL/6NCrl mice were treated for 4 weeks once daily subcutaneously in the afternoon, at the end of the light phase (12 h lights on) with 10, 30 or 100 pg/kg SEQ ID NO: 9 or vehicle. Body weight was recorded daily, and body fat content was determined before the start of treatment and after 4 weeks of treatment.
Comparable data can be obtained for both female and male mice.
Treatment with SEQ ID NO: 9 reduced body weight, whereas in the high-fat diet control group maintained body weight (Fig. 5 and Table 10). Calculating the relative body weight change from baseline values revealed a dose- dependent decrease of body weight, varying between 13.3-16.4% at 10 pg/kg, 17.6-20.9% at 30 pg/kg and 21 .7-22.7% at 100 pg/kg (Fig. 6). These changes resulted from a decrease in body fat, as shown by the absolute changes in body fat content (Fig. 7 and Table 10).
Table 10. Weight change in DIO mice over a 4-week treatment period (mean ± SEM)
Figure imgf000102_0001
Example 14: Acute and subchronic effects of SEQ ID NO: 13, SEQ ID NO: 12, SEQ ID NO: 10 and SEQ ID NO: 9 after subcutaneous treatment on blood glucose and HbA1 c in female leptin-receptor deficient diabetic db/db mice (method 3)
1 ) Glucose profile
After blood sampling to determine the blood glucose baseline level, fed diabetic female db/db mice were administered 100 pg/kg of of SEQ ID NO: 13, SEQ ID NO: 12, SEQ ID NO: 10 and SEQ ID NO: 9 or phosphate buffered solution (vehicle-treated db/db control) subcutaneously in the morning, at the beginning of the light phase (12 h lights on). At predefined time points, more blood samples were taken to measure blood glucose and generate the blood glucose profile over 24 h.
Comparable data can be obtained for both female and male mice.
At the tested dose, of SEQ ID NO: 13, SEQ ID NO: 12, SEQ ID NO: 10 and SEQ ID NO: 9 demonstrated a significant decrease in blood glucose compared to db/db control mice, lasting longer than 24 h in the SEQ ID NO: 10 and SEQ ID NO: 9 dose group (Fig. 8). 2) Blood glucose & HbA1 c
Female diabetic mice were treated for 4 weeks once daily subcutaneously with 10, 30 or 100 pg/kg SEQ ID NO: 9 or vehicle in the morning, at the beginning of the light phase (12 h lights on). Blood glucose and HbA1 c were determined before start of treatment and at the end of the study after 4 weeks of treatment. A strong and dose-dependent decrease in blood glucose, superior to liraglutide in the medium and highest dose could be observed (Fig. 9). Before treatment started, no significant differences in blood glucose levels could be detected between db/db groups, only the lean control animals had significant lower glucose levels. During the 4 weeks of treatment, glucose levels increased in the vehicle-treated db/db control group, indicating a worsening of the diabetic situation. All SEQ ID NO: 9- treated animals displayed a significant lower blood glucose level than the db control mice at the end of the study.
Comparable data can be obtained for both female and male mice.
Corresponding to blood glucose, at start of the study, no significant differences in HbA1 c levels could be detected between db/db groups, only the lean control animals had significant lower levels. During the 4 weeks of treatment, HbA1 c increased in the vehicle-treated db/db control group, corresponding to the increasing blood glucose levels. Animals treated with SEQ ID NO: 9 displayed a lower HbA1 c level than the db/db control mice at the end of the study in all three doses (Fig. 10).
Example 15: Subchronic effects of SEQ ID NO: 9 and SEQ ID NO: 21 after subcutaneous treatment on body weight in female diet-induced obese (DIO) C57BL/6NCrl mice (14 weeks of prefeeding with high-fat diet, method 2)
Female obese C57BL/6NCrl mice were treated for 3 weeks once daily subcutaneously in the late afternoon, prior the end of the light phase (12 h lights on) with 10 pg/kg SEQ ID NO: 9 and SEQ ID NO: 21 or vehicle. Body weight was recorded daily.
Treatment with SEQ ID NO: 9 and SEQ ID NO: 21 reduced body weight, whereas the high-fat diet control group even gained body weight (Fig. 1 1 and Table 1 1 ). Calculating the relative body weight change from baseline values revealed a decrease of body weight up to 15.1 % at 10 pg/kg SEQ ID NO: 9 and 18.0% at 10 pg/kg SEQ ID NO: 21 (Fig. 12). Table 1 1 . Weight change in DIO mice over a 3-week treatment period (mean
± SEM)
Figure imgf000104_0001
Example 16: Effects of 4 weeks of treatment with SEQ ID NO: 16, and SEQ ID NO: 21 on glucose, HbA1 c and oral glucose tolerance in female diabetic dbdb-mice (method 4)
Female dbdb-mice, received 3 and 10 pg/kg of SEQ ID NO: 16 and 10 pg/kg of SEQ ID NO: 21 or phosphate buffered saline (vehicle control) once daily, subcutaneously over four weeks.
Both compounds reached a statistical significant reduction of non-fasted glucose compared to vehicle control at the 10 pg/kg dose (Fig. 13); p<0.05, 1 -way-ANOVA, followed by Dunnett's post-hoc test.
Furthermore, both compounds prevented an increase of HbA1 c in a statistical significant manner compared to vehicle control at the 10 pg/kg dose (Fig. 14); (p<0.05, 1 -way-ANOVA, followed by Dunnett's post-hoc test). Treatment with SEQ ID NO: 16, and SEQ ID NO: 21 lead to improved oral glucose tolerance (Fig. 15; represented as normalized to 0 mmol/l at 0 min), and reduction of AUC under the glucose curve reached statistical significance compared to vehicle control (Fig. 16); (p<0.05, 1 -way-ANOVA, followed by Dunnett's post-hoc test). Example 17: SEQ ID NO: 14 and SEQ ID NO: 21 on glucose lowering in non-fasted female diabetic dbdb-mice
Female dbdb-mice, received 3 pg/kg of SEQ ID NO: 14, SEQ ID NO: 21 or phosphate buffered saline (vehicle control) subcutaneously, at time 0 min. Both compounds immediately lowered glucose values (baseline at 20-22 mmol/l), with SEQ ID NO: 14 reaching the maximal effect of ~8 mmol/l (Fig. 18) and SEQ ID NO: 21 of 10 - 12 mmol/l glucose reduction (Fig. 17), respectively, at 240 min and keeping it to the end of observation at 480 min. Both compounds reached a statistical significant reduction of glucose compared to vehicle control from t = 60 min until end of observation (p<0.05, 2-way-ANOVA on repeated measures, followed by Dunnett's post-hoc test).
Table 12: Sequences
SEQ I D sequence
NO:
1 H-G-E-G-T-F-T-S-D-L-S-K-Q-M-E-E-E-A-V-R-L-F-l-E-W-L- K-N-G-G-P-S-S-G-A-P-P-P-S-NH2
2 H-A-E-G-T-F-T-S-D-V-S-S-Y-L-E-G-Q-A-A-K-E-F-l-A-W-L- V-K-G-R-NH2
3 H-A-E-G-T-F-T-S-D-V-S-S-Y-L-E-G-Q-A-A-K(YE-X53)-E-F-I- A-W-L-V-R-G-R-G
4 Y-A-E-G-T-F-l-S-D-Y-S-l-A-M-D-K-l-H-Q-Q-D-F-V-N-W-L-L- A-Q-K-G-K-K-N-D-W-K-H-N-l-T-Q
5 H-S-Q-G-T-F-T-S-D-Y-S-K-Y-L-D-S-R-R-A-Q-D-F-V-Q-W-L- M-N-T
6 Y-G-E-G-T-F-T-S-D-L-S-l-Q-M-E-E-E-A-V-R-L-F-l-E-W-L-K- N-G-G-P-S-S-G-A-P-P-P-S-NH2
7 Y-A-E-G-T-F-T-S-D-V-S-l-Y-L-E-G-Q-A-A-K-E-F-l-A-W-L-V- K-G-R-NH2
8 Y-Aib-Q-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-E-K-R-A-A-Aib-E- F-I-E-W-L-K-N-T-G-P-S-S-G-A-P-P-P-S-NH2
9 Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-E-K-R-A-A-Aib-E- F-I-E-W-L-K-N-T-G-P-S-S-G-A-P-P-P-S-NH2
10 Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-E-S-R-A-A-Q-D-F- I-E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
1 1 Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-D-K-R-A-A-Aib-D- F-I-E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
12 Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-D-K-R-A-A-Q-D-F- I-E-W-L-K-N-G-G-P-S-S-G-A-P-P-P-S-NH2
13 Y-Aib-Q-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-D-S-R-A-A-Q-D-F- I-E-W-L-K-N-G-G-P-S-S-G-A-P-P-P-S-NH2
14 Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x70)-E-K-R-A-A-Q-E-F-l- E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
15 Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x70)-E-K-R-A-A-Aib-E- F-I-E-W-L-K-N-T-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-YE-x70)-E-K-R-A-A-Aib- E-F-I-E-W-L-K-N-T-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(GABA-x70)-E-K-R-A-A-Aib- E-F-I-E-W-L-K-N-T-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K( A- A-x70)-E-K-R-A-A-Aib- E-F-I-E-W-L-K-N-T-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x70)-E-K-R-A-A-Q-E-F-l- E-W-L-K-N-T-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x76)-E-K-R-A-A-Aib-E- F-I-E-W-L-K-N-T-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x70)-E-S-R-A-A-Q-E-F-l- E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-D-S-R-A-A-Q-D-F- I-E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-E-S-R-A-A-Q-D-F- I-E-W-L-K-N-T-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-E-S-R-A-A-Aib-D- F-I-E-W-L-K-N-T-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-E-S-R-A-A-Q-E-F-l- E-W-L-K-N-T-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-E-K-R-A-A-Q-E-F-l- E-W-L-K-N-T-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-E-K-R-A-A-Aib-D- F-I-E-W-L-K-N-T-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-Q-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-D-K-R-A-A-Q-D-F- I-E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-Q-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-D-S-R-A-A-Q-E-F- I-E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-Q-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-D-S-R-A-A-Aib-D- F-I-E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-D-K-R-A-A-Q-D-F- I-E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-Q-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-E-S-R-A-A-Q-D-F- I-E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-E-K-R-A-A-Q-D-F- I-E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-E-K-R-A-A-Q-E-F-l- E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-E-S-R-A-A-Aib-E- F-I-E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-E-K-R-A-A-Aib-E- F-I-E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-Q-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-D-S-R-A-A-Q-D-F- I-E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-Q-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-D-K-R-A-A-Aib-E- F-I-E-W-L-K-N-T-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-l-Q-K(YE-x53)-E-S-R-A-A-Q-E-F-l- E-W-L-K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-Q-G-T-F-T-S-D-L-S-I-Q-L-E-S-R-A-A-Q-D-F-I-E-W-L- K-A-G-G-P-S-S-G-A-P-P-P-S-NH2
Y-Aib-E-G-T-F-T-S-D-L-S-I-Q-Nle-E-K-R-A-A-Aib-E-F-I-E-W- L-K-N-T-G-P-S-S-G-A-P-P-P-S-NH2

Claims

Claims
1 . A peptidic compound having the formula (I):
R1 - Z - R2 (I) wherein Z is a peptide moiety having the formula (II) Tyr-Aib-X3-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-X12-Gln-X14-X15-X16-X17- X18-X19-X20-X21 -Phe-lle-Glu-Trp-Leu-Lys-X28-X29-Gly-Pro-Ser-Ser-Gly-
Ala-Pro-Pro-Pro-Ser-X40 (II)
X3 represents an amino acid residue selected from Gin, Glu and His,
X12 represents an amino acid residue selected from lie and Lys,
X14 represents an amino acid residue having a side chain with an -NH2 group, wherein the -NH2 side chain group is functionalized by - C(O)-R5, wherein R5 may be a moiety comprising up to 50 or up to 100 carbon atoms and optionally heteroatoms selected from halogen, N, O, S and/or P,
X15 represents an amino acid residue selected from Asp and Glu,
X16 represents an amino acid residue selected from Ser, Lys, Glu and Gin, X17 represents an amino acid residue selected from Arg, Lys, Glu, Gin, Leu, Aib, Tyr and Ala,
X18 represents an amino acid residue selected from Ala and Arg,
X19 represents an amino acid residue selected from Ala and Val,
X20 represents an amino acid residue selected from Gin, Aib, Lys and His, X21 represents an amino acid residue selected from Asp, Glu and Leu, X28 represents an amino acid residue selected from Asn and Ala,
X29 represents an amino acid residue selected from Gly, Thr and D-Ala, X40 is either absent or represents Lys,
R1 represents NH2, R2 represents the C-terminal group of the peptidic compound and is selected from OH and NH2, or a salt or solvate thereof.
2. A compound of claim 1 , wherein
X14 represents an amino acid residue with a functionalized -NH2 side chain group, such as functionalized Lys, Orn, Dab or Dap, wherein at least one H atom of the -NH2 side chain group is replaced by -C(O)-R5, which is selected from
(S)-4-Carboxy-4-hexadecanoylamino-butyryl-, (S)-4-Carboxy-4- octadecanoylamino-butyryl-, 4-Hexadecanoylamino-butyryl-, 4-{3-[(R)- 2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyl-tridecyl)-chroman-6- yloxycarbonyl]-propionylamino}-butyryl-, 4-octadecanoylamino-butyryl-, 4- ((Z)-octadec-9-enoylamino)-butyryl-, 6-[(4,4-Diphenyl-cyclohexyloxy)- hydroxy-phosphoryloxy]-hexanoyl-, Hexadecanoyl-, (S)-4-Carboxy-4-(15- carboxy-pentadecanoylamino)-butyryl-, (S)-4-Carboxy-4-{3-[3- ((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoylamino)- propionylamino]-propionylamino}-butyryl, (S)-4-Carboxy-4-{3-[(R)-2,5,7,8- tetramethyl-2-((4R,8R)-4,8,12-trimethyl-tridecyl)-chroman-6-yloxycarbonyl]- propionylamino}-butyryl-, (S)-4-Carboxy-4-((9Z,12Z)-octadeca-9,12- dienoylamino)-butyryl-, (S)-4-Carboxy-4-[6-((2S,3R,4S,5R)-5-carboxy- 2,3,4,5-tetrahydroxy-pentanoylamino)-hexanoylamino]-butyryl-, (S)-4- Carboxy-4-((2S,3R,4S,5R)-5-carboxy-2,3,4,5-tetrahydroxy-pentanoylamino)- butyryl-, (S)-4-Carboxy-4-tetradecanoylamino-butyryl-, (S)-4-(1 1 - Benzyloxycarbonyl-undecanoylamino)-4-carboxy-butyryl-, (S)-4-Carboxy-4- [1 1 -((2S,3R,4R,5R)-2,3,4,5,6-pentahydroxy-hexylcarbamoyl)- undecanoylamino]-butyryl-, (S)-4-Carboxy-4-((Z)-octadec-9-enoylamino)- butyryl-, (S)-4-Carboxy-4-(4-dodecyloxy-benzoylamino)-butyryl-, (S)-4- Carboxy-4-henicosanoylamino-butyryl-, (S)-4-Carboxy-4-docosanoylamino- butyryl-, (S)-4-Carboxy-4-((Z)-nonadec-10-enoylamino)-butyryl-, (S)-4- Carboxy-4-(4-decyloxy-benzoylamino)-butyryl-, (S)-4-Carboxy-4-[(4'- octyloxy-biphenyl-4-carbonyl)-amino]-butyryl-, (S)-4-Carboxy-4-(12-phenyl- dodecanoylamino)-butyryl-, (S)-4-Carboxy-4-icosanoylamino-butyryl-, (S)-4- Carboxy-4-((S)-4-carboxy-4-hexadecanoylamino-butyrylannino)-butyryl-, (S)- 4-Carboxy-4-((S)-4-carboxy-4-octadecanoylamino-butyrylannino)-butyryl-, 3- (3-Octadecanoylamino-propionylannino)-propionyl-, 3-(3- Hexadecanoylamino-propionylannino)-propionyl-, 3-Hexadecanoylamino- propionyl-, (S)-4-Carboxy-4-[(R)-4- ((3R,5S,7R,8R,9R,10S,12S,13R,14R,17R)-3,7,12-trihydroxy-8,10,13- trimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl)-pentanoylamino]- butyryl-, (SH-Carboxy-^KRH-iiSR.SR.eR.QS.10S.13R.14S.17R)-3- hydroxy-10,13-dimethyl-hexadecahydro-cyclopenta[a]phenanthren-17-yl)- pentanoylamino]-butyryl-, (S)-4-Carboxy-4-((9S,10R)-9,10,16-trihydroxy- hexadecanoylamino)-butyryl-, tetradecanoyl-, 1 1 -Carboxy-undecanoyl-, 1 1 - Benzyloxycarbonyl-undecanoyl-, (S)-4-Carboxy-4-((S)-4-carboxy-4- tetradecanoylamino-butyrylannino)-butyryl-, 6-[Hydroxy-(naphthalen-2-yloxy)- phosphoryloxy]-hexanoyl-, 6-[Hydroxy-(5-phenyl-pentyloxy)-phosphoryloxy]- hexanoyl-, 4-(Naphthalene-2-sulfonylamino)-4-oxo-butyryl-, 4-(Biphenyl-4- sulfonylamino)-4-oxo-butyryl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[2-(2-{2-[2- (2-{2-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylannino]- ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]-butyrylamino}- butyryl-, (S)-4-Carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxy- heptadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}- ethoxy)-acetylamino]-butyryl-, (S)-4-Carboxy-2-{(S)-4-carboxy-2-[2-(2-{2-[2- (2-{2-[(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylannino]- ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]-butyrylamino}- butyryl-, (S)-4-Carboxy-2-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(17-carboxy- heptadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}- ethoxy)-acetylamino]-butyryl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[2-(2-{2- [(S)-4-carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylannino]-ethoxy}- ethoxy)-acetylamino]-butyrylamino}-butyryl-, (S)-4-Carboxy-4-[2-(2-{2-[(S)-4- carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylannino]-ethoxy}-ethoxy)- acetylamino]-butyryl-,(S)-4-Carboxy-2-{(S)-4-carboxy-2-[2-(2-{2-[(S)-4- carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylannino]-ethoxy}-ethoxy)- acetylamino]-butyrylamino}-butyryl-, (S)-4-Carboxy-2-[2-(2-{2-[(S)-4-carboxy- 4-(17-carboxy-heptadecanoylamino)-butyrylannino]-ethoxy}-ethoxy)- acetylamino]-butyryl-, 2-(2-{2-[2-(2-{2-[(S)-4-Carboxy-4-(17-carboxy- heptadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}- ethoxy)-acetyl-, 2-(2-{2-[(S)-4-Carboxy-4-(17-carboxy-heptadecanoylamino)- butyrylamino]-ethoxy}-ethoxy)-acetyl-, (S)-4-Carboxy-4-((S)-4-carboxy-4- {(S)-4-carboxy-4-[(S)-4-carboxy-4-(19-carboxy-nonadecanoylamino)- butyrylamino]-butyrylamino}-butyrylamino)-butyryl-, 2-(2-{2-[2-(2-{2-[(S)-4- Carboxy-4-(16-1 H-tetrazol-5-yl-hexadecanoylamino)-butyrylannino]-ethoxy}- ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetyl-, 2-(2-{2-[2-(2-{2-[(S)-4- Carboxy-4-(16-carboxy-hexadecanoylamino)-butyrylannino]-ethoxy}-ethoxy)- acetylamino]-ethoxy}-ethoxy)-acetyl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[(S)- 4-carboxy-4-(17-carboxy-heptadecanoylamino)-butyrylamino]-butyrylamino}- butyryl-, (S)-4-Carboxy-4-((S)-4-carboxy-4-{2-[2-(2-{2-[2-(2-{(S)-4-carboxy-4- [10-(4-carboxy-phenoxy)-decanoylamino]-butyrylannino}-ethoxy)-ethoxy]- acetylamino}-ethoxy)-ethoxy]-acetylannino}-butyryl-, (S)-4-Carboxy-4-{(S)-4- carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(7-carboxy-heptanoylamino)- butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylamino]- butyrylaminoj-butyryl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[2-(2-{2-[2-(2-{2- [(S)-4-carboxy-4-(1 1 -carboxy-undecanoylamino)-butyrylannino]-ethoxy}- ethoxy)-acetylamino]-ethoxy}-ethoxy)-acetylannino]-butyrylannino}-butyryl-, (S)-4-Carboxy-4-{(S)-4-carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(13- carboxy-tridecanoylamino)-butyrylannino]-ethoxy}-ethoxy)-acetylannino]- ethoxy}-ethoxy)-acetylamino]-butyrylannino}-butyryl-, (S)-4-Carboxy-4-{(S)-4- carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(15-carboxy- pentadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}- ethoxy)-acetylamino]-butyrylannino}-butyryl-, and (S)-4-Carboxy-4-{(S)-4- carboxy-4-[2-(2-{2-[2-(2-{2-[(S)-4-carboxy-4-(19-carboxy- nonadecanoylamino)-butyrylamino]-ethoxy}-ethoxy)-acetylamino]-ethoxy}- ethoxy)-acetylamino]-butyrylannino}-butyryl-,
X40 is absent or represents Lys.
3. A compound of any one of claims 1 - 2, wherein
X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4-hexadecanoylamino- butyryl-, (S)-4-Carboxy-4-octadecanoylamino-butyryl-, 4-octadecanoylamino- butyryl-, Hexadecanoyl-, (S)-4-Carboxy-4-henicosanoylamino-butyryl-, (S)-4- Carboxy-4-((S)-4-carboxy-4-octadecanoylamino-butyrylamino)-butyryl-, 3-(3- Octadecanoylamino-propionylamino)-propionyl-.
4. A compound according to any one of claims 1 -3,
wherein X14 is Lys functionalized with C(O)-R5, wherein R5 is selected from the group consisting of (S)-4-carboxy-4-hexadecanoylamino-butyryl (γΕ- x53), (S)-4-carboxy-4-octadecanoylamino-butyryl (γΕ-χ70), (S)-4-Carboxy-4- ((S)-4-carboxy-4-octadecanoylamino-butyrylamino)-butyryl (γΕ-γΕ-χ70), 4- octadecanoylamino-butyryl (GABA-x70), (S)-4-Carboxy-4- henicosanoylamino-butyryl (γΕ-χ76), and 3-(3-Octadecanoylamino- propionylamino)-propionyl ( -Ala- -Ala-x70).
5. A compound of any one of claims 1 - 4,
wherein R2 is NH2.
6. A compound according to any one of claims 1 -5,
wherein the peptidic compound has a relative activity of at least 0.04%, preferably at least 0.08%, more preferably at least 0.2% compared to that of natural GIP at the GIP receptor.
7. A compound according to any one of claims 1 -6, wherein the peptidic compound exhibits a relative activity of at least 0.07%, preferably at least 0.1 %, more preferably at least 0.14%, more preferably at least 0.35% and even more preferably at least 0.4% compared to that of
GLP-1 (7-36) at the GLP-1 receptor.
8. A compound according to any one of claims 6 or 7, wherein the peptidic compound further exhibits a relative activity of at least 0.1 %, preferably at least 0.2%, more preferably at least 0.3%, more preferably at least 0.4% and even more preferably at least 0.5% compared to that of natural glucagon at the glucagon receptor.
9. A compound of any one of claims 1 - 8,
wherein
X3 represents an amino acid residue selected from Gin and Glu,
X12 represents lie,
X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4-hexadecanoylamino- butyryl-, (S)-4-Carboxy-4-octadecanoylamino-butyryl-, (S)-4-Carboxy-4-((S)- 4-carboxy-4-octadecanoylamino-butyrylamino)-butyryl-, 3-(3- Octadecanoylamino-propionylamino)-propionyl- and 4-octadecanoylamino- butyryl-, (S)-4-Carboxy-4-henicosanoylamino-butyryl-,
X15 represents an amino acid residue selected from Glu and Asp,
X16 represents an amino acid residue selected from Ser and Lys,
X17 represents Arg,
X18 represents Ala,
X19 represents Ala,
X20 represents an amino acid residue selected from Gin and Aib,
X21 represents an amino acid residue selected from Asp and Glu,
X28 represents an amino acid residue selected from Asn and Ala,
X29 represents an amino acid residue selected from Gly and Thr,
X40 is absent.
10. A compound of any one of claims 1 - 9, wherein
X3 represents Glu,
X12 represents lie,
X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4-hexadecanoylamino- butyryl-, (S)-4-Carboxy-4-octadecanoylamino-butyryl-, (S)-4-Carboxy-4-((S)- 4-carboxy-4-octadecanoylamino-butyrylannino)-butyryl-, 3-(3- Octadecanoylamino-propionylannino)-propionyl- and 4-octadecanoylamino- butyryl-, (S)-4-Carboxy-4-henicosanoylamino-butyryl-,
X15 represents an amino acid residue selected from Glu and Asp,
X16 represents an amino acid residue selected from Ser and Lys,
X17 represents Arg,
X18 represents Ala,
X19 represents Ala,
X20 represents an amino acid residue selected from Gin and Aib,
X21 represents an amino acid residue selected from Asp and Glu,
X28 represents an amino acid residue selected from Asn and Ala,
X29 represents an amino acid residue selected from Gly and Thr,
X40 is absent.
1 1 . A compound of any one of claims 1 - 10, wherein
X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4-octadecanoylamino- butyryl-, 4-octadecanoylamino-butyryl-, (S)-4-Carboxy-4-henicosanoylamino- butyryl-, (S)-4-Carboxy-4-((S)-4-carboxy-4-octadecanoylamino- butyrylamino)-butyryl-, 3-(3-Octadecanoylamino-propionylamino)-propionyl-.
12. A compound of any one of claims 1 - 9,
wherein
X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4-hexadecanoylamino- butyryl-, (S)-4-Carboxy-4-octadecanoylamino-butyryl-.
13. A compound of any one of claims 1 - 9, 12,
wherein
X3 represents an amino acid residue selected from Gin and Glu,
X12 represents lie, X14 represents Lys, wherein the -NH2 side chain group is functionalized by one of the groups selected from (S)-4-Carboxy-4-hexadecanoylamino- butyryl- and (S)-4-Carboxy-4-octadecanoylamino-butyryl-,
X15 represents an amino acid residue selected from Glu and Asp,
X16 represents an amino acid residue selected from Ser and Lys,
X17 represents Arg,
X18 represents Ala,
X19 represents Ala,
X20 represents an amino acid residue selected from Gin and Aib,
X21 represents an amino acid residue selected from Asp and Glu,
X28 represents an amino acid residue selected from Asn and Ala,
X29 represents an amino acid residue selected from Gly and Thr,
X40 is absent.
14. A compound of any one of claims 1 - 13,
wherein X19 represents Ala.
15. A compound of any one of claims 1 - 14,
wherein
X28 represents Ala,
X29 represents Gly.
16. A compound of any one of claims 1 - 14,
wherein
X28 represents Asn,
X29 represents Thr.
17. A compound of any one of claims 1 - 9, wherein
X3 represents an amino acid residue selected from Gin and Glu,
X12 represents lie,
X14 represents Lys, wherein the -NH2 side chain group is functionalized by - C(O)-R5, wherein R5 is selected from (S)-4-Carboxy-4-hexadecanoylamino- butyryl- (γΕ-χ53), (S)-4-Carboxy-4-octadecanoylamino-butyryl- (γΕ-χ70), (S)- 4-Carboxy-4-((S)-4-carboxy-4-octadecanoylamino-butyrylannino)-butyryl- (γΕ-γΕ-χ70), 3-(3-Octadecanoylamino-propionylannino)-propionyl- (βΑ-βΑ- x70), 4-octadecanoylamino-butyryl- (GABA-x70), and (S)-4-Carboxy-4- henicosanoylamino-butyryl- (γΕ-χ76),
X15 represents an amino acid residue selected from Asp and Glu,
X16 represents an amino acid residue selected from Ser and Lys,
X17 represents Arg,
X18 represents Ala,
X19 represents Ala,
X20 represents an amino acid residue selected from Gin and Aib,
X21 represents an amino acid residue selected from Asp and Glu,
X28 represents an amino acid residue selected from Asn and Ala,
X29 represents an amino acid residue selected from Gly and Thr,
X40 is absent.
18. A compound of any one of claims 1 -9,12-17, wherein
X3 represents an amino acid residue selected from Gin and Glu,
X12 represents lie,
X14 represents Lys, wherein the -NH2 side chain group is functionalized by - C(O)-R5, wherein R5 is (S)-4-Carboxy-4-hexadecanoylamino-butyryl- (γΕ- x53),
X15 represents an amino acid residue selected from Asp and Glu,
X16 represents an amino acid residue selected from Ser and Lys,
X17 represents Arg,
X18 represents Ala,
X19 represents Ala,
X20 represents an amino acid residue selected from Gin and Aib,
X21 represents an amino acid residue selected from Asp and Glu,
X28 represents an amino acid residue selected from Asn and Ala,
X29 represents an amino acid residue selected from Gly and Thr,
X40 is absent.
19. A compound of any one of claims 1 -1 1 , 14-17, wherein
X3 represents Glu,
X12 represents lie,
X14 represents Lys, wherein the -NH2 side chain group is functionalized by - C(O)-R5, wherein R5 is selected from (S)-4-Carboxy-4-octadecanoylamino- butyryl- (γΕ-χ70), (S)-4-Carboxy-4-((S)-4-carboxy-4-octadecanoylamino- butyrylamino)-butyryl- (γΕ-γΕ-χ70), 3-(3-Octadecanoylamino- propionylamino)-propionyl- (βΑ-βΑ-χ70), 4-octadecanoylamino-butyryl- (GABA-x70), and (S)-4-Carboxy-4-henicosanoylamino-butyryl- (γΕ-χ76), X15 represents Glu,
X16 represents an amino acid residue selected from Ser and Lys,
X17 represents Arg,
X18 represents Ala,
X19 represents Ala,
X20 represents an amino acid residue selected from Gin and Aib,
X21 represents Glu,
X28 represents an amino acid residue selected from Asn and Ala,
X29 represents an amino acid residue selected from Gly and Thr,
X40 is absent.
20. The compound of any one of claims 1 -19, selected from the compounds of SEQ ID NO: 8-39 or a salt or solvate thereof.
21 . The compound of any one of claims 1 -19, selected from the compounds of SEQ ID NO: 8-10 and 12-38 or a salt or solvate thereof.
22. The compound of claim 20, selected from the compounds of SEQ ID NO: 8-13 and 39 or a salt or solvate thereof.
23. The compound of claim 21 , selected from the compounds of SEQ ID NO: 8-10 and 12-13 or a salt or solvate thereof.
24. The compound of claim 20, selected from the compounds of SEQ ID NO: 14-21 or a salt or solvate thereof.
25. The compound of claim 20, selected from the compounds of SEQ ID NO: 22-38 or a salt or solvate thereof.
26. The compound of any one of claims 1 -25 for use in medicine, particularly in human medicine.
27. The compound for use according to claim 26 which is present as an active agent in a pharmaceutical composition together with at least one pharmaceutically acceptable carrier.
28. The compound for use according to claim 26 or 27 together with at least one additional therapeutically active agent, wherein the additional therapeutically active agent is selected from the series of Insulin and Insulin derivatives, GLP-1 , GLP-1 analogues and GLP-1 receptor agonists, polymer bound GLP-1 and GLP-1 analogues, dual
GLP1 /glucagon agonists, PYY3-36 or analogues thereof, pancreatic polypeptide or analogues thereof, Glucagon receptor agonists, GIP receptor agonists or antagonists, ghrelin antagonists or inverse agonists, Xenin and analogues thereof, DDP-IV inhibitors, SGLT2 inhibitors, dual SGLT2 / SGLT1 inhibitors, Biguanides
Thiazolidinediones, dual PPAR agonists, Sulfonylureas, Meglitinides, alpha-glucosidase inhibitors, Amylin and Amylin analogues, GPR1 19 agonists, GPR40 agonists, GPR120 agonists, GPR142 agonists, systemic or low-absorbable TGR5 agonists, Cycloset, inhibitors of 1 1 - beta-HSD, activators of glucokinase, inhibitors of DGAT, inhibitors of protein tyrosinephosphatase 1 , inhibitors of glucose-6-phosphatase, inhibitors of fructose-1 ,6-bisphosphatase, inhibitors of glycogen phosphorylase, inhibitors of phosphoenol pyruvate carboxykinase, inhibitors of glycogen synthase kinase, inhibitors of pyruvate dehydrogenase kinase, alpha2-antagonists, CCR-2 antagonists, modulators of glucose transporter-4, Somatostatin receptor 3 agonists, HMG-CoA-reductase inhibitors, fibrates, nicotinic acid and the derivatives thereof, nicotinic acid receptor 1 agonists, PPAR- alpha, gamma or alpha/gamma) agonists or modulators, PPAR-delta agonists, ACAT inhibitors, cholesterol absorption inhibitors, bile acid- binding substances, IBAT inhibitors, MTP inhibitors, modulators of PCSK9, LDL receptor up-regulators by liver selective thyroid hormone receptor β agonists, HDL-raising compounds, lipid metabolism modulators, PLA2 inhibitors , ApoA-l enhancers, thyroid hormone receptor agonists, cholesterol synthesis inhibitors, omega-3 fatty acids and derivatives thereof, active substances for the treatment of obesity, such as Sibutramine, Tesofensine, Orlistat, CB-1 receptor antagonists, MCH-1 antagonists, MC4 receptor agonists and partial agonists, NPY5 or NPY2 antagonists, NPY4 agonists, beta-3- agonists, leptin or leptin mimetics, agonists of the 5HT2c receptor, or the combinations of bupropione/naltrexone (CONTRAVE), bupropione/zonisamide (EMPATIC), bupropione/phentermine or pramlintide/metreleptin, QNEXA (Phentermine+ topiramate), lipase inhibitors, angiogenesis inhibitors, H3 antagonists, AgRP inhibitors, triple monoamine uptake inhibitors (norepinephrine and acetylcholine), MetAP2 inhibitors, nasal formulation of the calcium channel blocker diltiazem, antisense against production of fibroblast growth factor receptor 4, prohibitin targeting peptide-1 , drugs for influencing high blood pressure, chronic heart failure or atherosclerosis, such as angiotensin II receptor antagonists, ACE inhibitors, ECE inhibitors, diuretics, beta-blockers, calcium antagonists, centrally acting hypertensives, antagonists of the alpha-
2-adrenergic receptor, inhibitors of neutral endopeptidase, thrombocyte aggregation inhibitors. The compound for use according to claim 26 or 27 together with at least one additional therapeutically active agent, wherein the additional therapeutically active agent particularly is a GLP-1 agonist and/or insulin or an insulin analogue and/or a gastrointestinal peptide.
The compound for use according to any one of claims 26-29 for the treatment or prevention of hyperglycemia, type 2 diabetes, impaired glucose tolerance, type 1 diabetes, obesity, metabolic syndrome and neurodegenerative disorders, particularly for delaying or preventing disease progression in type 2 diabetes, treating metabolic syndrome, treating obesity or preventing overweight, for decreasing food intake, increase energy expenditure, reducing body weight, delaying the progression from impaired glucose tolerance (IGT) to type 2 diabetes; delaying the progression from type 2 diabetes to insulin-requiring diabetes; regulating appetite; inducing satiety; preventing weight regain after successful weight loss; treating a disease or state related to overweight or obesity; treating bulimia; treating binge eating; treating atherosclerosis, hypertension, IGT, dyslipidemia, coronary heart disease, hepatic steatosis, treatment of beta-blocker poisoning, use for inhibition of the motility of the gastro-intestinal tract, useful in connection with investigations of the gastro-intestinal tract using techniques such as X-ray, CT- and NMR-scanning.
The compound for use according to any one of claims 26-30 for the treatment or prevention of hyperglycemia, type 2 diabetes, obesity.
PCT/EP2013/077310 2012-12-21 2013-12-19 Functionalized exendin-4 derivatives WO2014096148A1 (en)

Priority Applications (27)

Application Number Priority Date Filing Date Title
RS20180942A RS57531B1 (en) 2012-12-21 2013-12-19 Exendin-4 derivatives as dual glp1/gip- or trigonal glp1/gip/glucagon agonists
EP18164271.1A EP3400957A1 (en) 2012-12-21 2013-12-19 Functionalized exendin-4 derivatives
MX2015008099A MX360317B (en) 2012-12-21 2013-12-19 Functionalized exendin-4 derivatives.
ES13810958.2T ES2688367T3 (en) 2012-12-21 2013-12-19 Derivatives of exendin-4 as dual agonists of GLP1 / GIP or trigonal of GLP1 / GIP / glucagon
EA201591174A EA031428B1 (en) 2012-12-21 2013-12-19 Functionalized exendin-4 derivatives
EP13810958.2A EP2934567B9 (en) 2012-12-21 2013-12-19 Exendin-4 derivatives as dual glp1/gip- or trigonal glp1/gip/glucagon agonists
CN201380066471.6A CN104870009B (en) 2012-12-21 2013-12-19 Functionalized exendin-4 derivatives
DK13810958.2T DK2934567T3 (en) 2012-12-21 2013-12-19 EXENDIN-4 DERIVATIVES AS DOUBLE GLP1 / GIP OR TRIGONAL GLP1 / GIP / GLUCAGON AGONISTS
KR1020157018591A KR20150099548A (en) 2012-12-21 2013-12-19 Functionalized exendin-4 derivatives
UAA201507199A UA116553C2 (en) 2012-12-21 2013-12-19 Functionalized exendin-4 derivatives
PL13810958T PL2934567T3 (en) 2012-12-21 2013-12-19 Exendin-4 derivatives as dual glp1/gip- or trigonal glp1/gip/glucagon agonists
LTEP13810958.2T LT2934567T (en) 2012-12-21 2013-12-19 Exendin-4 derivatives as dual glp1/gip- or trigonal glp1/gip/glucagon agonists
SI201331127T SI2934567T1 (en) 2012-12-21 2013-12-19 Exendin-4 derivatives as dual glp1/gip- or trigonal glp1/gip/glucagon agonists
JP2015548552A JP6391589B2 (en) 2012-12-21 2013-12-19 Functionalized exendin-4 derivatives
SG11201504215PA SG11201504215PA (en) 2012-12-21 2013-12-19 Functionalized exendin-4 derivatives
BR112015014800A BR112015014800A2 (en) 2012-12-21 2013-12-19 functionalized exendin-4 derivatives
AU2013366690A AU2013366690B2 (en) 2012-12-21 2013-12-19 Functionalized exendin-4 derivatives
MA38276A MA38276B1 (en) 2012-12-21 2013-12-19 Derivatives of exendin 4 for use in the treatment of metabolic syndrome disorders, including diabetes and obesity, as well as the reduction of excessive dietary intake.
CA2895755A CA2895755A1 (en) 2012-12-21 2013-12-19 Functionalized exendin-4 derivatives
ZA2015/03914A ZA201503914B (en) 2012-12-21 2015-05-29 Functionalized exedin-4 derivatives
IL239101A IL239101A0 (en) 2012-12-21 2015-05-31 Functionalized exendin-4 derivatives
PH12015501291A PH12015501291A1 (en) 2012-12-21 2015-06-05 Functionalized exendin-4 derivatives
TNP2015000283A TN2015000283A1 (en) 2012-12-21 2015-06-18 FUNCTIONALIZED EXENDIN-4 DERIVATIVES
CR20150358A CR20150358A (en) 2012-12-21 2015-07-08 DERIVATIVES OF EXENDINA-4 FUCIONALIZADA
HK15112144.3A HK1211233A1 (en) 2012-12-21 2015-12-09 Functionalized exendin-4 derivatives -4
HRP20181300TT HRP20181300T1 (en) 2012-12-21 2018-08-09 Exendin-4 derivatives as dual glp1/gip/glucagon agonists
CY20181100833T CY1121153T1 (en) 2012-12-21 2018-08-09 EXENDINE DERIVATIVES-4 AS DOUBLE GLP1 / GIP- OR GLP1 / GIP / GLYCAGON TRIANGLE FIGHTERS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12306647.4 2012-12-21
EP12306647 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014096148A1 true WO2014096148A1 (en) 2014-06-26

Family

ID=47559233

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/EP2013/077313 WO2014096150A1 (en) 2012-12-21 2013-12-19 Dual glp1/gip or trigonal glp1/gip/glucagon agonists
PCT/EP2013/077310 WO2014096148A1 (en) 2012-12-21 2013-12-19 Functionalized exendin-4 derivatives
PCT/EP2013/077312 WO2014096149A1 (en) 2012-12-21 2013-12-19 Exendin-4 Derivatives
PCT/EP2013/077307 WO2014096145A1 (en) 2012-12-21 2013-12-19 Exendin-4 derivatives as dual glp1/gip or trigonal glp1/gip/glucagon agonists

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/077313 WO2014096150A1 (en) 2012-12-21 2013-12-19 Dual glp1/gip or trigonal glp1/gip/glucagon agonists

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/EP2013/077312 WO2014096149A1 (en) 2012-12-21 2013-12-19 Exendin-4 Derivatives
PCT/EP2013/077307 WO2014096145A1 (en) 2012-12-21 2013-12-19 Exendin-4 derivatives as dual glp1/gip or trigonal glp1/gip/glucagon agonists

Country Status (38)

Country Link
US (5) US20140206608A1 (en)
EP (5) EP2934569A1 (en)
JP (4) JP6391589B2 (en)
KR (4) KR20150096433A (en)
CN (4) CN104902920A (en)
AR (5) AR094181A1 (en)
AU (4) AU2013366691A1 (en)
BR (3) BR112015014800A2 (en)
CA (4) CA2894765A1 (en)
CL (2) CL2015001751A1 (en)
CR (1) CR20150358A (en)
CY (2) CY1120030T1 (en)
DK (2) DK2934568T3 (en)
DO (1) DOP2015000156A (en)
EA (1) EA031428B1 (en)
EC (1) ECSP15031141A (en)
ES (2) ES2653765T3 (en)
HK (4) HK1211231A1 (en)
HR (2) HRP20180092T1 (en)
HU (2) HUE035803T2 (en)
IL (4) IL238623A0 (en)
LT (2) LT2934567T (en)
MA (1) MA38276B1 (en)
MX (4) MX360317B (en)
PE (1) PE20151239A1 (en)
PH (1) PH12015501291A1 (en)
PL (2) PL2934567T3 (en)
PT (2) PT2934568T (en)
RS (1) RS57531B1 (en)
RU (3) RU2015129788A (en)
SG (5) SG11201503526UA (en)
SI (2) SI2934568T1 (en)
TN (1) TN2015000283A1 (en)
TW (4) TWI602828B (en)
UA (1) UA116553C2 (en)
UY (4) UY35234A (en)
WO (4) WO2014096150A1 (en)
ZA (1) ZA201503914B (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9474780B2 (en) 2015-01-09 2016-10-25 Eli Lilly And Company GIP and GLP-1 co-agonist compounds
CN107847565A (en) * 2015-05-28 2018-03-27 免疫新炉有限公司 The pharmaceutical composition for including glucagon-like peptide 1 receptor stimulating agent for Sarcopenia treatment
WO2018069295A1 (en) 2016-10-10 2018-04-19 Sanofi Method of preparing peptides comprising a lipophilically modified lysine side chain
WO2018100134A1 (en) 2016-12-02 2018-06-07 Sanofi New compounds as peptidic trigonal glp1/glucagon/gip receptor agonists
WO2018100135A1 (en) 2016-12-02 2018-06-07 Sanofi New compounds as peptidic glp1/glucagon/gip receptor agonists
WO2018153849A1 (en) 2017-02-21 2018-08-30 Sanofi Azetidine compounds as gpr119 modulators for the treatment of diabetes, obesity, dyslipidemia and related disorders
WO2018181864A1 (en) 2017-03-31 2018-10-04 Takeda Pharmaceutical Company Limited Gip receptor activating peptide
KR20180124816A (en) * 2018-11-13 2018-11-21 이뮤노포지 주식회사 Pharmaceutical composition for treating muscle atrophy comprising glucagon like-peptide-1, GLP-1 derived peptide, or GLP-1 degradation inhibitor
US10246433B2 (en) 2012-12-21 2019-04-02 Pfizer Inc. Aryl and heteroaryl fused lactams
WO2019229225A1 (en) 2018-05-30 2019-12-05 Sanofi Conjugates comprising an glp-1/glucagon/gip triple receptor agonist, a linker and hyaluronic acid
US10570121B2 (en) 2014-06-17 2020-02-25 Pfizer Inc. Substituted dihydroisoquinolinone compounds
WO2020125744A1 (en) 2018-12-21 2020-06-25 江苏恒瑞医药股份有限公司 Bispecific protein
US10792367B2 (en) 2016-12-02 2020-10-06 Sanofi Conjugates comprising an GLP-1/glucagon dual agonist, a linker and hyaluronic acid
US10806797B2 (en) 2015-06-05 2020-10-20 Sanofi Prodrugs comprising an GLP-1/glucagon dual agonist linker hyaluronic acid conjugate
US10993993B2 (en) 2015-05-28 2021-05-04 Immunoforge Co., Ltd. Pharmaceutical composition for treating muscle atrophy or sarcopenia including glucagon-like peptide (GLP-1) or GLP-1 receptor agonist
WO2021175974A1 (en) 2020-03-06 2021-09-10 Sanofi Peptides as selective gip receptor agonists
WO2021198229A1 (en) 2020-03-31 2021-10-07 Antaros Medical Ab Selective gip receptor agonists comprising a chelating moiety for imaging and therapy purposes
WO2022090447A1 (en) 2020-10-30 2022-05-05 Novo Nordisk A/S Glp-1, gip and glucagon receptor triple agonists
WO2023031455A1 (en) 2021-09-06 2023-03-09 Sanofi Sa New peptides as potent and selective gip receptor agonists

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9255154B2 (en) 2012-05-08 2016-02-09 Alderbio Holdings, Llc Anti-PCSK9 antibodies and use thereof
UA116217C2 (en) 2012-10-09 2018-02-26 Санофі Exendin-4 derivatives as dual glp1/glucagon agonists
WO2014100505A1 (en) 2012-12-21 2014-06-26 Alios Biopharma, Inc. Substituted nucleosides, nucleotides and analogs thereof
CN104902920A (en) 2012-12-21 2015-09-09 赛诺菲 Exendin-4 derivatives as dual GLP1/GIP or trigonal GLP1/GIP/glucagon agonists
PE20151770A1 (en) 2013-05-28 2015-12-11 Takeda Pharmaceutical PEPTIDIC COMPOUND
EP3066117B1 (en) * 2013-11-06 2019-01-02 Zealand Pharma A/S Glucagon-glp-1-gip triple agonist compounds
AU2014345569B2 (en) 2013-11-06 2020-08-13 Zealand Pharma A/S GIP-GLP-1 dual agonist compounds and methods
WO2015086729A1 (en) 2013-12-13 2015-06-18 Sanofi Dual glp-1/gip receptor agonists
EP3080149A1 (en) 2013-12-13 2016-10-19 Sanofi Dual glp-1/glucagon receptor agonists
WO2015086730A1 (en) 2013-12-13 2015-06-18 Sanofi Non-acylated exendin-4 peptide analogues
TW201609795A (en) 2013-12-13 2016-03-16 賽諾菲公司 EXENDIN-4 peptide analogues as dual GLP-1/GIP receptor agonists
TW201625669A (en) 2014-04-07 2016-07-16 賽諾菲公司 Peptidic dual GLP-1/glucagon receptor agonists derived from Exendin-4
TW201625670A (en) 2014-04-07 2016-07-16 賽諾菲公司 Dual GLP-1/glucagon receptor agonists derived from EXENDIN-4
TW201625668A (en) 2014-04-07 2016-07-16 賽諾菲公司 Exendin-4 derivatives as peptidic dual GLP-1/glucagon receptor agonists
US9932381B2 (en) 2014-06-18 2018-04-03 Sanofi Exendin-4 derivatives as selective glucagon receptor agonists
EP3985016A1 (en) 2014-10-29 2022-04-20 Zealand Pharma A/S Gip agonist compounds and methods
EA035527B1 (en) 2014-12-30 2020-06-30 Ханми Фарм. Ко., Лтд. Glucagon derivatives with improved stability
WO2016198624A1 (en) * 2015-06-12 2016-12-15 Sanofi Exendin-4 derivatives as trigonal glp-1/glucagon/gip receptor agonists
PE20240215A1 (en) 2015-06-30 2024-02-16 Hanmi Pharmaceutical Co Ltd GLUCAGON DERIVATIVE AND A COMPOSITION THAT INCLUDES A LONG-ACTING CONJUGATE THEREOF
AR105284A1 (en) 2015-07-10 2017-09-20 Sanofi Sa DERIVATIVES OF EXENDINA-4 AS SPECIFIC DUAL PEPTIDE AGONISTS OF GLP-1 / GLUCAGÓN RECEPTORS
TWI622596B (en) 2015-10-26 2018-05-01 美國禮來大藥廠 Glucagon receptor agonists
HUE053079T2 (en) 2015-12-14 2021-06-28 Antaros Medical Ab Selective glucagon receptor agonists comprising a chelating moiety for imaging purposes
PL3393496T3 (en) 2015-12-23 2024-04-22 The Johns Hopkins University Long-acting glp-1r agonist as a therapy of neurological and neurodegenerative conditions
CN113456802A (en) * 2015-12-29 2021-10-01 派格生物医药(苏州)股份有限公司 Compositions comprising a GLP-1 receptor agonist and a glucagon receptor agonist and uses thereof
KR20170080521A (en) * 2015-12-31 2017-07-10 한미약품 주식회사 Trigonal glucagon/GLP-1/GIP receptor agonist
KR20220150416A (en) * 2016-03-10 2022-11-10 메디뮨 리미티드 Glucagon and glp-1 co-agonists for the treatment of obesity
WO2017204219A1 (en) * 2016-05-24 2017-11-30 武田薬品工業株式会社 Peptide compound
IL263934B2 (en) 2016-06-29 2023-10-01 Hanmi Pharm Ind Co Ltd Glucagon derivative, conjugate thereof, composition comprising same and therapeutic use thereof
WO2018069442A1 (en) * 2016-10-12 2018-04-19 University Of Copenhagen Peptide dual agonists of gipr and glp2r
TW201918494A (en) * 2017-07-19 2019-05-16 丹麥商諾佛 儂迪克股份有限公司 Bifunctional compounds
TW201920240A (en) * 2017-08-09 2019-06-01 法商賽諾菲公司 GLP-1/glucagon receptor agonists in the treatment of fatty liver disease and steatohepatitis
CN109836488B (en) * 2017-11-24 2022-08-23 浙江道尔生物科技有限公司 Glucagon analogues for treating metabolic diseases
GB201720187D0 (en) 2017-12-04 2018-01-17 Imperial Innovations Ltd Novel Compounds
KR20200141469A (en) 2018-04-05 2020-12-18 썬 파마슈티칼 인더스트리스 리미티드 Novel GLP-1 analog
WO2019197466A1 (en) 2018-04-10 2019-10-17 Sanofi-Aventis Deutschland Gmbh Method for cleavage of solid phase-bound peptides from the solid phase
MX2020010715A (en) 2018-04-10 2021-01-08 Sanofi Aventis Deutschland Lixisenatide synthesis with capping.
TWI829687B (en) 2018-05-07 2024-01-21 丹麥商諾佛 儂迪克股份有限公司 Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid
WO2020130749A1 (en) * 2018-12-21 2020-06-25 한미약품 주식회사 Pharmaceutical composition comprising insulin and triple agonist having activity with respect to all of glucagon and glp-1 and gip receptor
AU2020206388B2 (en) * 2019-01-07 2022-12-01 Vitalixir (Beijing) Co., Ltd Novel polypeptide and therapeutic uses thereof
BR112021020071A2 (en) * 2019-04-11 2021-12-14 Jiangsu Hansoh Pharmaceutical Group Co Ltd Dual agonist compounds of the glp-1 and gip receptor and their use
WO2020214013A1 (en) * 2019-04-19 2020-10-22 한미약품 주식회사 Therapeutic use, for hyperlipideamia, of triple agonist having activity with respect to all of glucagon, glp-1, and gip receptors, or conjugate thereof
WO2020214012A1 (en) * 2019-04-19 2020-10-22 한미약품 주식회사 Preventive or therapeutic pharmaceutical composition for hyperlipidemia comprising triple agonist acting on all of glucagon, glp-1 and gip receptors, or conjugate thereof, and preventive or therapeutic method
GB201908424D0 (en) * 2019-06-12 2019-07-24 Imp College Innovations Ltd Novel compounds
MX2022001975A (en) 2019-08-16 2022-03-11 Applied Molecular Transport Inc Compositions, formulations, and interleukin production and purification.
CN111040022B (en) * 2019-12-23 2021-12-14 万新医药科技(苏州)有限公司 Triplex agonists directed to glucagon-like peptide-1 receptor, glucagon receptor, and pepstatin receptor
WO2021150673A1 (en) * 2020-01-23 2021-07-29 Eli Lilly And Company Gip/glp1 co-agonist compounds
AU2021203645B2 (en) * 2020-04-20 2024-06-27 Hanmi Pharm. Co., Ltd. Composition for prevention or treatment of hyperlipidemia comprising trigonal glucagon/GLP-1/GIP receptor agonist or conjugate thereof and method using the same
WO2021239082A1 (en) * 2020-05-29 2021-12-02 北京拓界生物医药科技有限公司 Dual-agonist compound for both glp-1 and gip receptors and application thereof
AU2021304762B2 (en) * 2020-07-06 2024-05-02 Vitalixir (Beijing) Co., Ltd Novel polypeptide and therapeutic use thereof
WO2022007809A1 (en) * 2020-07-06 2022-01-13 鸿绪生物医药科技(北京)有限公司 Novel polypeptide preparation and therapeutic use thereof
TWI801942B (en) 2020-07-22 2023-05-11 丹麥商諾佛 儂迪克股份有限公司 Co-agonists at glp-1 and gip receptors suitable for oral delivery
AU2021313377A1 (en) 2020-07-22 2023-02-02 Novo Nordisk A/S GLP-1 and GIP receptor co-agonists
BR112023002608A2 (en) * 2020-08-12 2023-05-09 Txp Pharma Ag EXENDIN-4 PEPTIDE ANALOGUE, E, METHOD FOR TREATMENT OF TYPE 2 DIABETES MELLITUS, OBESITY AND/OR SATIITY ENHANCEMENT
CN114617956B (en) * 2020-12-10 2023-10-03 江苏中新医药有限公司 High-efficiency hypoglycemic protein medicine
CN115124602B (en) * 2021-03-25 2024-01-26 博瑞生物医药(苏州)股份有限公司 Dual receptor agonists of GIP and GLP-1, pharmaceutical compositions and uses
KR20240013798A (en) * 2021-05-26 2024-01-30 더 유나이티드 바이오-테크놀로지 (헝친) 컴퍼니 리미티드 Multiple agents and their uses
WO2022268029A1 (en) * 2021-06-21 2022-12-29 广东东阳光药业有限公司 Triple agonist for glp-1, gcg and gip receptors
WO2023005841A1 (en) * 2021-07-30 2023-02-02 南京明德新药研发有限公司 Polypeptide compounds containing lactam bridges
MX2024006492A (en) * 2021-12-01 2024-06-19 Jiangsu Hengrui Pharmaceuticals Co Ltd Pharmaceutical composition of glp-1 and gip receptor dual agonist and use thereof.
TW202330584A (en) 2022-01-20 2023-08-01 丹麥商諾佛 儂迪克股份有限公司 Prodrugs and uses thereof
CN117603364A (en) * 2022-09-30 2024-02-27 广西医科大学附属肿瘤医院 GLP-1/glucon/Y 2 Receptor triple agonists and uses thereof
WO2024165571A2 (en) 2023-02-06 2024-08-15 E-Therapeutics Plc Inhibitors of expression and/or function
GB202302686D0 (en) * 2023-02-24 2023-04-12 Imperial College Innovations Ltd Novel compounds
CN118440155A (en) * 2024-07-11 2024-08-06 中国药科大学 Dual-agonism polypeptide compound and medical application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023050A1 (en) * 2006-08-25 2008-02-28 Novo Nordisk A/S Acylated exendin-4 compounds
WO2008081418A1 (en) * 2007-01-05 2008-07-10 Covx Technologies Ireland Limited Glucagon-like protein-1 receptor (glp-1r) agonist compounds
WO2011094337A1 (en) * 2010-01-27 2011-08-04 Indiana University Research And Technology Corporation Glucagon antagonist - gip agonist conjugates and compositions for the treatment of metabolic disorders and obesity
US20110237503A1 (en) * 2010-03-26 2011-09-29 Eli Lilly And Company Novel peptides and methods for their preparation and use

Family Cites Families (433)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284727B1 (en) 1993-04-07 2001-09-04 Scios, Inc. Prolonged delivery of peptides
NZ250844A (en) 1993-04-07 1996-03-26 Pfizer Treatment of non-insulin dependant diabetes with peptides; composition
US5424286A (en) 1993-05-24 1995-06-13 Eng; John Exendin-3 and exendin-4 polypeptides, and pharmaceutical compositions comprising same
US5641757A (en) 1994-12-21 1997-06-24 Ortho Pharmaceutical Corporation Stable 2-chloro-2'-deoxyadenosine formulations
ES2359031T3 (en) 1996-08-08 2011-05-17 Amylin Pharmaceuticals, Inc. PHARMACEUTICAL COMPOSITION THAT INCLUDES AN EXENDIN-4 PEPTIDE.
DE122009000079I2 (en) 1996-08-30 2011-06-16 Novo Nordisk As Novo Alle GLP-1 DERIVATIVES
US6458924B2 (en) 1996-08-30 2002-10-01 Novo Nordisk A/S Derivatives of GLP-1 analogs
JP4798814B2 (en) 1997-01-07 2011-10-19 アミリン・ファーマシューティカルズ,インコーポレイテッド Use of exendin and its agonists to reduce food intake
US6410511B2 (en) 1997-01-08 2002-06-25 Amylin Pharmaceuticals, Inc. Formulations for amylin agonist peptides
US7312196B2 (en) 1997-01-08 2007-12-25 Amylin Pharmaceuticals, Inc. Formulations for amylin agonist peptides
US6723530B1 (en) 1997-02-05 2004-04-20 Amylin Pharmaceuticals, Inc. Polynucleotides encoding proexendin, and methods and uses thereof
US7157555B1 (en) 1997-08-08 2007-01-02 Amylin Pharmaceuticals, Inc. Exendin agonist compounds
DK1019077T4 (en) 1997-08-08 2011-03-07 Amylin Pharmaceuticals Inc New exendin agonist compounds
US7223725B1 (en) 1997-11-14 2007-05-29 Amylin Pharmaceuticals, Inc. Exendin agonist compounds
US7220721B1 (en) 1997-11-14 2007-05-22 Amylin Pharmaceuticals, Inc. Exendin agonist peptides
ATE381939T1 (en) 1997-11-14 2008-01-15 Amylin Pharmaceuticals Inc NOVEL EXENDIN AGONISTS
DK1032587T4 (en) 1997-11-14 2013-04-08 Amylin Pharmaceuticals Llc New exendin agonist compounds
WO1999034822A1 (en) 1998-01-09 1999-07-15 Amylin Pharmaceuticals, Inc. Formulations for amylin agonist peptides
US6703359B1 (en) 1998-02-13 2004-03-09 Amylin Pharmaceuticals, Inc. Inotropic and diuretic effects of exendin and GLP-1
EP1056775B1 (en) 1998-02-27 2010-04-28 Novo Nordisk A/S Glp-1 derivatives of glp-1 and exendin with protracted profile of action
CA2321026A1 (en) 1998-03-09 1999-09-16 Zealand Pharmaceuticals A/S Pharmacologically active peptide conjugates having a reduced tendency towards enzymatic hydrolysis
WO1999047160A1 (en) 1998-03-13 1999-09-23 Novo Nordisk A/S Stabilized aqueous peptide solutions
US6998387B1 (en) 1998-03-19 2006-02-14 Amylin Pharmaceuticals, Inc. Human appetite control by glucagon-like peptide receptor binding compounds
TR200100079T2 (en) 1998-06-12 2001-06-21 Bionebraska, Inc. Glucagon-like peptide-1, which increases the ß-cell response to glucose
US7056734B1 (en) 1998-08-10 2006-06-06 The United States Of America As Represented By The Department Of Health And Human Services, Nih Differentiation of non-insulin producing cells into insulin producing cells by GLP-1 or exendin-4 and uses thereof
CA2343268A1 (en) 1998-09-17 2000-03-23 Eli Lilly And Company Protein formulations
US7259136B2 (en) 1999-04-30 2007-08-21 Amylin Pharmaceuticals, Inc. Compositions and methods for treating peripheral vascular disease
US6284725B1 (en) 1998-10-08 2001-09-04 Bionebraska, Inc. Metabolic intervention with GLP-1 to improve the function of ischemic and reperfused tissue
US6429197B1 (en) 1998-10-08 2002-08-06 Bionebraska, Inc. Metabolic intervention with GLP-1 or its biologically active analogues to improve the function of the ischemic and reperfused brain
CA2358107C (en) 1998-12-22 2011-08-23 Eli Lilly And Company Shelf-stable formulation of glucagon-like peptide-1
US7399489B2 (en) 1999-01-14 2008-07-15 Amylin Pharmaceuticals, Inc. Exendin analog formulations
WO2000041548A2 (en) 1999-01-14 2000-07-20 Amylin Pharmaceuticals, Inc. Methods for glucagon suppression
EP1140145B2 (en) 1999-01-14 2019-05-15 Amylin Pharmaceuticals, LLC Novel exendin agonist formulations and methods of administration thereof
US20030087820A1 (en) 1999-01-14 2003-05-08 Young Andrew A. Novel exendin agonist formulations and methods of administration thereof
US6451974B1 (en) 1999-03-17 2002-09-17 Novo Nordisk A/S Method of acylating peptides and novel acylating agents
CN1344248A (en) 1999-03-17 2002-04-10 诺沃挪第克公司 Method for acylating peptides and novel acylating agents
US6924264B1 (en) 1999-04-30 2005-08-02 Amylin Pharmaceuticals, Inc. Modified exendins and exendin agonists
EP1175443A1 (en) 1999-04-30 2002-01-30 Amylin Pharmaceuticals, Inc. Modified exendins and exendin agonists
US6887470B1 (en) 1999-09-10 2005-05-03 Conjuchem, Inc. Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components
ES2209885T3 (en) 1999-05-17 2004-07-01 Conjuchem, Inc. LONG-TERM INSULINOTROPIC PEPTIDES.
US6849714B1 (en) 1999-05-17 2005-02-01 Conjuchem, Inc. Protection of endogenous therapeutic peptides from peptidase activity through conjugation to blood components
US6514500B1 (en) 1999-10-15 2003-02-04 Conjuchem, Inc. Long lasting synthetic glucagon like peptide {GLP-!}
US6482799B1 (en) 1999-05-25 2002-11-19 The Regents Of The University Of California Self-preserving multipurpose ophthalmic solutions incorporating a polypeptide antimicrobial
US6506724B1 (en) 1999-06-01 2003-01-14 Amylin Pharmaceuticals, Inc. Use of exendins and agonists thereof for the treatment of gestational diabetes mellitus
US6344180B1 (en) 1999-06-15 2002-02-05 Bionebraska, Inc. GLP-1 as a diagnostic test to determine β-cell function and the presence of the condition of IGT and type II diabetes
US6528486B1 (en) 1999-07-12 2003-03-04 Zealand Pharma A/S Peptide agonists of GLP-1 activity
US6972319B1 (en) 1999-09-28 2005-12-06 Bayer Pharmaceuticals Corporation Pituitary adenylate cyclase activating peptide (PACAP)receptor 3 (R3) agonists and their pharmacological methods of use
GB9930882D0 (en) 1999-12-30 2000-02-23 Nps Allelix Corp GLP-2 formulations
CA2396157A1 (en) 2000-01-10 2001-07-19 Amylin Pharmaceuticals, Inc. Use of exendins and agonists thereof for modulation of triglyceride levels and treatment of dyslipidemia
AU2001252201A1 (en) 2000-03-14 2001-09-24 Amylin Pharmaceuticals, Inc. Effects of glucagon-like peptide-1 (7-36) on antro-pyloro-duodenal motility
CA2380423A1 (en) 2000-05-17 2001-11-22 Bionebraska, Inc. Peptide pharmaceutical formulations
KR100518046B1 (en) 2000-05-19 2005-10-04 아밀린 파마슈티칼스, 인크. Treatment of acute coronary syndrome with glp-1
WO2002016309A1 (en) 2000-08-18 2002-02-28 Emisphere Technologies, Inc. Compounds and compositions for delivering active agents
US7507714B2 (en) 2000-09-27 2009-03-24 Bayer Corporation Pituitary adenylate cyclase activating peptide (PACAP) receptor 3 (R3) agonists and their pharmacological methods of use
WO2002034285A2 (en) 2000-10-20 2002-05-02 Coolidge Thomas R Treatment of hibernating myocardium and diabetic cardiomyopathy with a glp-1 peptide
CZ306180B6 (en) 2000-12-07 2016-09-14 Eli Lilly And Company GLP-1 fusion proteins
WO2002047716A2 (en) 2000-12-13 2002-06-20 Eli Lilly And Company Chronic treatment regimen using glucagon-like insulinotropic peptides
GB2371227A (en) 2001-01-10 2002-07-24 Grandis Biotech Gmbh Crystallisation - resistant aqueous growth hormone formulations
US6573237B2 (en) 2001-03-16 2003-06-03 Eli Lilly And Company Protein formulations
CN1162446C (en) 2001-05-10 2004-08-18 上海华谊生物技术有限公司 Insulinotropic hormone secretion peptide derivative
AU2002308706A1 (en) 2001-06-01 2002-12-16 Eli Lilly And Company Glp-1 formulations with protracted time action
US20030119734A1 (en) 2001-06-28 2003-06-26 Flink James M. Stable formulation of modified GLP-1
ATE421091T1 (en) 2001-07-16 2009-01-15 Caprotec Bioanalytics Gmbh CAUGHT COMPOUNDS, THEIR COLLECTION AND METHODS FOR ANALYZING THE PROTEOME AND COMPLEX COMPOSITIONS
DE60228972D1 (en) 2001-07-31 2008-10-30 Us Gov Health & Human Serv GLP 1 EXENDIN 4 PEPTIDE ANALOG AND THEIR USES
WO2003020201A2 (en) 2001-08-28 2003-03-13 Eli Lilly And Company Pre-mixes of glp-1 and basal insulin
US7179788B2 (en) 2001-10-19 2007-02-20 Eli Lilly And Company Biphasic mixtures of GLP-1 and insulin
EP2261250B1 (en) 2001-12-21 2015-07-01 Human Genome Sciences, Inc. GCSF-Albumin fusion proteins
AU2002364587A1 (en) 2001-12-21 2003-07-30 Human Genome Sciences, Inc. Albumin fusion proteins
US7105489B2 (en) 2002-01-22 2006-09-12 Amylin Pharmaceuticals, Inc. Methods and compositions for treating polycystic ovary syndrome
NZ534125A (en) 2002-02-20 2006-11-30 Emisphere Tech Inc A formulation comprising a GLP-1 compound and a delivery agent
ATE402716T1 (en) 2002-02-27 2008-08-15 Immunex Corp STABILIZED TNFR-FC FORMULATION WITH ARGININE
ATE421088T1 (en) 2002-03-11 2009-01-15 Caprotec Bioanalytics Gmbh COMPOUNDS AND METHODS FOR ANALYZING THE PROTEOME
US7141240B2 (en) 2002-03-12 2006-11-28 Cedars-Sinai Medical Center Glucose-dependent insulin-secreting cells transfected with a nucleotide sequence encoding GLP-1
WO2003084563A1 (en) 2002-04-04 2003-10-16 Novo Nordisk A/S Glp-1 agonist and cardiovascular complications
MXPA04009929A (en) 2002-04-10 2006-03-10 Lilly Co Eli Treatment of gastroparesis.
US6861236B2 (en) 2002-05-24 2005-03-01 Applied Nanosystems B.V. Export and modification of (poly)peptides in the lantibiotic way
US20040037826A1 (en) 2002-06-14 2004-02-26 Michelsen Birgitte Koch Combined use of a modulator of CD3 and a GLP-1 compound
AU2003232172A1 (en) 2002-06-14 2003-12-31 Novo Nordisk A/S Combined use of a modulator of cd3 and a glp-1 compound
DE10227232A1 (en) 2002-06-18 2004-01-15 Aventis Pharma Deutschland Gmbh Sour insulin preparations with improved stability
WO2004005342A1 (en) 2002-07-04 2004-01-15 Zealand Pharma A/S Glp-1 and methods for treating diabetes
US20070065469A1 (en) 2002-07-09 2007-03-22 Michael Betz Liquid formulations with high concentration of human growth hormone (high) comprising glycine
CN1668332A (en) 2002-07-09 2005-09-14 桑多斯股份公司 Liquid formulations with a high concentration of human growth hormone (HGH) comprising glycine
US20040038865A1 (en) 2002-08-01 2004-02-26 Mannkind Corporation Cell transport compositions and uses thereof
US20080260838A1 (en) 2003-08-01 2008-10-23 Mannkind Corporation Glucagon-like peptide 1 (glp-1) pharmaceutical formulations
JP4828940B2 (en) 2002-08-01 2011-11-30 マンカインド コーポレイション Cell transport compositions and uses thereof
CA2496249C (en) 2002-08-21 2012-01-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg 8-[3-amino-piperidin-1-yl]-xanthines, the production thereof and the use of the same as medicaments
US7407955B2 (en) 2002-08-21 2008-08-05 Boehringer Ingelheim Pharma Gmbh & Co., Kg 8-[3-amino-piperidin-1-yl]-xanthines, the preparation thereof and their use as pharmaceutical compositions
PL377591A1 (en) 2002-10-02 2006-02-06 Zealand Pharma A/S Stabilized exendin-4 compounds
US6969702B2 (en) 2002-11-20 2005-11-29 Neuronova Ab Compounds and methods for increasing neurogenesis
EP1583541B1 (en) 2002-11-20 2011-01-12 NeuroNova AB Compounds and methods for increasing neurogenesis
US20050209142A1 (en) 2002-11-20 2005-09-22 Goran Bertilsson Compounds and methods for increasing neurogenesis
US7790681B2 (en) 2002-12-17 2010-09-07 Amylin Pharmaceuticals, Inc. Treatment of cardiac arrhythmias with GLP-1 receptor ligands
AU2003297356A1 (en) 2002-12-17 2004-07-14 Amylin Pharmaceuticals, Inc. Prevention and treatment of cardiac arrhythmias
US20040209803A1 (en) 2002-12-19 2004-10-21 Alain Baron Compositions for the treatment and prevention of nephropathy
GB0300571D0 (en) 2003-01-10 2003-02-12 Imp College Innovations Ltd Modification of feeding behaviour
WO2004089280A2 (en) 2003-04-08 2004-10-21 Yeda Research And Development Co. Ltd. Reversible pegylated drugs
WO2004089985A1 (en) 2003-04-11 2004-10-21 Novo Nordisk A/S Stable pharmaceutical compositions
ATE549028T1 (en) 2003-05-15 2012-03-15 Tufts College STABLE ANALOGUES OF GLP-1
US7947261B2 (en) 2003-05-23 2011-05-24 Nektar Therapeutics Conjugates formed from polymer derivatives having particular atom arrangements
MXPA05007628A (en) 2003-05-23 2005-10-19 Nektar Therapeutics Al Corp Polymer derivatives having particular atom arrangements.
EP1631308B1 (en) 2003-05-30 2013-07-31 Amylin Pharmaceuticals, LLC Novel methods and compositions for enhanced transmucosal delivery of peptides and proteins
CN1812808B (en) 2003-06-03 2012-07-04 诺沃挪第克公司 Stabilized pharmaceutical peptide compositions
CN102940879B (en) 2003-06-03 2017-06-06 诺沃挪第克公司 Stabilized pharmaceutical peptide compositions
CA2527743A1 (en) 2003-06-03 2004-12-09 Novo Nordisk A/S Stabilized pharmaceutical peptide compositions
WO2004105790A1 (en) 2003-06-03 2004-12-09 Novo Nordisk A/S Stabilized pharmaceutical peptide compositions
US8921311B2 (en) 2003-08-01 2014-12-30 Mannkind Corporation Method for treating hyperglycemia
PL2107069T3 (en) 2003-08-05 2013-06-28 Novo Nordisk As Novel insulin derivatives
CA2532340A1 (en) 2003-08-21 2005-03-03 Novo Nordisk A/S Separation of polypeptides comprising a racemized amino acid
US20060247167A1 (en) 2003-09-01 2006-11-02 Novo Nordisk A/S Stable formulations of peptides
JP5518282B2 (en) 2003-09-01 2014-06-11 ノヴォ ノルディスク アー/エス Stable peptide formulation
EP1667724A2 (en) 2003-09-19 2006-06-14 Novo Nordisk A/S Albumin-binding derivatives of therapeutic peptides
US20060287221A1 (en) 2003-11-13 2006-12-21 Novo Nordisk A/S Soluble pharmaceutical compositions for parenteral administration comprising a GLP-1 peptide and an insulin peptide of short time action for treatment of diabetes and bulimia
ATE525083T1 (en) 2003-11-13 2011-10-15 Novo Nordisk As PHARMACEUTICAL COMPOSITION COMPRISING AN INSULINOTROPIC GLP-1(7-37) ANALOG, ASP(B28) INSULIN, AND A SURFACE-ACTIVE COMPOUND
US20050106214A1 (en) 2003-11-14 2005-05-19 Guohua Chen Excipients in drug delivery vehicles
US20050281879A1 (en) 2003-11-14 2005-12-22 Guohua Chen Excipients in drug delivery vehicles
KR101243648B1 (en) 2003-11-20 2013-03-14 노보 노르디스크 에이/에스 Propylene glycol-containing peptide formulations which are optimal for production and for use in injection devices
CA2546843C (en) 2003-11-20 2015-01-06 Neuronova Ab Compounds and methods for increasing neurogenesis
CN102816228A (en) 2003-12-03 2012-12-12 诺和诺德公司 Single-chain insulin
JP2007513965A (en) 2003-12-10 2007-05-31 ネクター セラピューティクス アラバマ,コーポレイション Composition comprising two populations of polymer-active agent complex
US20050143303A1 (en) 2003-12-26 2005-06-30 Nastech Pharmaceutical Company Inc. Intranasal administration of glucose-regulating peptides
US20060210614A1 (en) 2003-12-26 2006-09-21 Nastech Pharmaceutical Company Inc. Method of treatment of a metabolic disease using intranasal administration of exendin peptide
CN1938334A (en) * 2004-01-30 2007-03-28 瓦拉塔药品公司 Combined use of a GLP-1 agonist and gastrin compounds
EP1789440A4 (en) 2004-02-11 2008-03-12 Amylin Pharmaceuticals Inc Pancreatic polypeptide family motifs and polypeptides comprising the same
CA2556226A1 (en) 2004-02-11 2006-08-10 Amylin Pharmaceuticals, Inc. Amylin family peptides and methods for making and using them
US8076288B2 (en) 2004-02-11 2011-12-13 Amylin Pharmaceuticals, Inc. Hybrid polypeptides having glucose lowering activity
WO2005077072A2 (en) 2004-02-11 2005-08-25 Amylin Pharmaceuticals, Inc. Hybrid polypeptides with selectable properties
US7399744B2 (en) 2004-03-04 2008-07-15 Amylin Pharmaceuticals, Inc. Methods for affecting body composition
US20060110423A1 (en) 2004-04-15 2006-05-25 Wright Steven G Polymer-based sustained release device
ATE531374T1 (en) 2004-04-15 2011-11-15 Alkermes Inc DELAYED RELEASE POLYMER BASED DEVICE
US7456254B2 (en) 2004-04-15 2008-11-25 Alkermes, Inc. Polymer-based sustained release device
US20090069226A1 (en) 2004-05-28 2009-03-12 Amylin Pharmaceuticals, Inc. Transmucosal delivery of peptides and proteins
WO2005117584A2 (en) 2004-05-28 2005-12-15 Amylin Pharmaceuticals, Inc Improved transmucosal delivery of peptides and proteins
JP2008501765A (en) 2004-06-11 2008-01-24 ノボ ノルディスク アクティーゼルスカブ Neutralization of drug-induced obesity using GLP-1 agonists
AU2005269753B2 (en) 2004-07-19 2011-08-18 Biocon Limited Insulin-oligomer conjugates, formulations and uses thereof
CA2569381A1 (en) 2004-07-21 2006-08-31 Ambrx, Inc. Biosynthetic polypeptides utilizing non-naturally encoded amino acids
WO2006017688A2 (en) 2004-08-03 2006-02-16 Biorexis Pharmaceutical Corporation Combination therapy using transferrin fusion proteins comprising glp-1
WO2006017888A1 (en) 2004-08-16 2006-02-23 Water Un Limited Apparatus and method for cooling of air
PL1789434T3 (en) 2004-08-31 2014-07-31 Novo Nordisk As Use of tris(hydroxymethyl) aminomethane for the stabilization of peptides, polypeptides and proteins
DE102004043153B4 (en) 2004-09-03 2013-11-21 Philipps-Universität Marburg Invention relating to GLP-1 and exendin
JP5060131B2 (en) 2004-09-07 2012-10-31 中外製薬株式会社 Method for producing water-soluble hyaluronic acid modified product
EP1791554A2 (en) 2004-09-17 2007-06-06 Novo Nordisk A/S Pharmaceutical compositions containing insulin and insulinotropic peptide
MX2007003968A (en) 2004-10-01 2008-03-04 Ramscor Inc Conveniently implantable sustained release drug compositions.
EP1799711B1 (en) 2004-10-07 2012-06-20 Novo Nordisk A/S Protracted exendin-4 compounds
US7595294B2 (en) 2004-10-08 2009-09-29 Transition Therapeutics, Inc. Vasoactive intestinal polypeptide pharmaceuticals
CA2582464A1 (en) 2004-10-13 2006-04-27 Sanjay Bhanot Antisense modulation of ptp1b expression
US7442682B2 (en) 2004-10-19 2008-10-28 Nitto Denko Corporation Transepithelial delivery of peptides with incretin hormone activities
CN112618700A (en) 2004-11-12 2021-04-09 诺和诺德公司 Stable formulations of insulinotropic peptides
JP5175103B2 (en) 2004-11-12 2013-04-03 ノヴォ ノルディスク アー/エス Stable peptide formulation
EP1814581B1 (en) 2004-11-12 2016-03-16 Novo Nordisk A/S Stable formulations of peptides comprising an acylated glp-1 analogue and a basal insuline
CN101128487B (en) 2004-12-02 2012-10-10 杜门蒂斯有限公司 Bispecific domain antibodies targeting serum albumin and GLP-1 or PYY
EP3000826A1 (en) 2004-12-13 2016-03-30 Amylin Pharmaceuticals, LLC Pancreatic polypeptide family motifs, polypeptides and methods comprising the same
WO2006069388A2 (en) 2004-12-21 2006-06-29 Nektar Therapeutics Al, Corporation Stabilized polymeric thiol reagents
EP2168982A1 (en) 2004-12-22 2010-03-31 Eli Lilly &amp; Company GLP-1 analog fusion protein formulations
AU2005323063B2 (en) 2004-12-24 2011-01-27 Amylin Pharmaceuticals, Llc Use of GLP-1 and agonists thereof to prevent cardiac myocyte apoptosis
US8716221B2 (en) 2005-01-14 2014-05-06 Wuxi Grandchamp Pharmaceutical Technology Co., Ltd. Modified exendins and uses thereof
JP4785206B2 (en) 2005-01-14 2011-10-05 ウクスィ・グランドチャンプ・ファーマシューティカル・テクノロジー・カンパニー・リミテッド Modified exendins and uses thereof
WO2006082588A2 (en) 2005-02-07 2006-08-10 Pharmalight Inc. Method and device for ophthalmic administration of active pharmaceutical ingredients
AU2006213607A1 (en) 2005-02-11 2006-08-17 Amylin Pharmaceuticals, Llc GIP analog and hybrid polypeptides with selectable properties
WO2007022123A2 (en) 2005-08-11 2007-02-22 Amylin Pharmaceuticals, Inc. Hybrid polypeptides with selectable properties
US8263545B2 (en) 2005-02-11 2012-09-11 Amylin Pharmaceuticals, Inc. GIP analog and hybrid polypeptides with selectable properties
WO2006097535A2 (en) 2005-03-18 2006-09-21 Novo Nordisk A/S Peptide agonists of the glucagon family with secretin like activity
US8946149B2 (en) 2005-04-11 2015-02-03 Amylin Pharmaceuticals, Llc Use of exendin and analogs thereof to delay or prevent cardiac remodeling
JP4979686B2 (en) 2005-04-24 2012-07-18 ノボ・ノルデイスク・エー/エス Injection device
JP5235661B2 (en) 2005-05-25 2013-07-10 ノボ・ノルデイスク・エー/エス Stabilized polypeptide preparation
AU2006249869A1 (en) 2005-05-26 2006-11-30 Bristol-Myers Squibb Company N-terminally modified GLP-1 receptor modulators
CN101217940B (en) 2005-06-06 2013-03-27 卡穆鲁斯公司 Glp-1 analogue formulations
PT1891105E (en) 2005-06-13 2012-06-27 Imp Innovations Ltd Oxyntomodulin analogues and their effects on feeding behaviour
GB0511986D0 (en) 2005-06-13 2005-07-20 Imp College Innovations Ltd Novel compounds and their effects on feeding behaviour
PT2279758E (en) 2005-06-16 2015-05-27 Nektar Therapeutics Conjugates having a degradable linkage and polymeric reagents useful in preparing such conjugates
CA2617064A1 (en) 2005-08-04 2007-02-15 Nektar Therapeutics Al, Corporation Conjugates of a g-csf moiety and a polymer
CN101277722A (en) 2005-08-06 2008-10-01 王庆华 Composition and method for prevention and treatment of type I diabetes
PT2347762T (en) 2005-08-19 2019-06-17 Amylin Pharmaceuticals Llc Exendin for treating diabetes and reducing body weight
HUE028623T2 (en) 2005-09-14 2016-12-28 Mannkind Corp Method of drug formulation based on increasing the affinity of active agents for crystalline microparticle surfaces
CA2622579C (en) 2005-09-20 2013-12-31 Novartis Ag Use of a dpp-iv inhibitor to reduce hypoglycemic events
WO2007047834A2 (en) 2005-10-18 2007-04-26 Biocon Limited Oral peptide conjugates for metabolic diseases
US7687608B2 (en) 2005-10-19 2010-03-30 Smartcells, Inc. Methods for reducing the mitogenicity of lectin compositions
ES2572952T3 (en) 2005-11-07 2016-06-03 Indiana University Research And Technology Corporation Glucagon analogs showing physiological solubility and stability
US8039432B2 (en) 2005-11-09 2011-10-18 Conjuchem, Llc Method of treatment of diabetes and/or obesity with reduced nausea side effect
WO2007064691A1 (en) 2005-12-02 2007-06-07 Nabil Habib Lab Treatment of cancer and other diseases
JP2009518315A (en) 2005-12-02 2009-05-07 エムディーアールエヌエー,インコーポレイテッド Pharmaceutical formulations for increasing epithelial permeability of glucose-regulating peptides
US20080318861A1 (en) 2005-12-08 2008-12-25 Nastech Pharmaceutical Company Inc. Mucosal Delivery of Stabilized Formulations of Exendin
US8293869B2 (en) 2005-12-16 2012-10-23 Nektar Therapeutics Polymer conjugates of GLP-1
US8841255B2 (en) 2005-12-20 2014-09-23 Duke University Therapeutic agents comprising fusions of vasoactive intestinal peptide and elastic peptides
EP1971355B1 (en) 2005-12-20 2020-03-11 Duke University Methods and compositions for delivering active agents with enhanced pharmacological properties
US20130172274A1 (en) 2005-12-20 2013-07-04 Duke University Methods and compositions for delivering active agents with enhanced pharmacological properties
EP1984009B1 (en) 2006-01-18 2012-10-24 Qps, Llc Pharmaceutical compositions with enhanced stability
JP2009525986A (en) 2006-02-03 2009-07-16 メディミューン,エルエルシー Protein preparation
US7704953B2 (en) 2006-02-17 2010-04-27 Mdrna, Inc. Phage displayed cell binding peptides
CN101432025B (en) 2006-03-21 2012-04-04 安米林药品公司 Peptide-peptidase inhibitor conjugates and methods of using same
BRPI0710651A2 (en) 2006-04-13 2011-08-23 Sod Conseils Rech Applic pharmaceutical compositions of hglp-1, expedina-4 and their analogues and their use
KR101438839B1 (en) 2006-04-14 2014-10-02 맨카인드 코포레이션 Glucagon-like peptide 1 (glp-1)pharmaceutical formulations
PE20080251A1 (en) 2006-05-04 2008-04-25 Boehringer Ingelheim Int USES OF DPP IV INHIBITORS
WO2007133778A2 (en) 2006-05-12 2007-11-22 Amylin Pharmaceuticals, Inc. Methods to restore glycemic control
WO2007139941A2 (en) 2006-05-26 2007-12-06 Amylin Pharmaceuticals, Inc. Composition and methods for treatment of congestive heart failure
US20100022457A1 (en) 2006-05-26 2010-01-28 Bristol-Myers Squibb Company Sustained release glp-1 receptor modulators
PT2038423E (en) 2006-06-21 2013-03-27 Biocon Ltd A method of producing biologically active polypeptide having insulinotropic activity
WO2008038147A2 (en) 2006-07-05 2008-04-03 Foamix Ltd. Foamable vehicle comprising dicarboxylic acid or dicarboxylic acid ester and pharmaceutical compositions thereof
KR101193722B1 (en) 2006-07-24 2013-01-11 바이오렉시스 파마슈티칼 코포레이션 Exendin fusion proteins
US7928186B2 (en) 2006-08-02 2011-04-19 Phoenix Pharmaceuticals, Inc. Cell permeable bioactive peptide conjugates
EP2046284A1 (en) 2006-08-04 2009-04-15 Nastech Pharmaceutical Company Inc. Compositions for intranasal delivery of human insulin and uses thereof
ES2422864T3 (en) 2006-08-09 2013-09-16 Intarcia Therapeutics, Inc Osmotic release systems and piston units
EP2057188B1 (en) 2006-08-17 2013-07-31 Amylin Pharmaceuticals, LLC Dpp-iv resistant gip hybrid polypeptides with selectable properties
US8497240B2 (en) 2006-08-17 2013-07-30 Amylin Pharmaceuticals, Llc DPP-IV resistant GIP hybrid polypeptides with selectable properties
CN101125207B (en) 2006-11-14 2012-09-05 上海华谊生物技术有限公司 Exendin or its analogs with polyethylene group and its preparation and application
JP2010512399A (en) 2006-12-12 2010-04-22 アミリン・ファーマシューティカルズ,インコーポレイテッド Pharmaceutical preparation and preparation method thereof
TWI428346B (en) 2006-12-13 2014-03-01 Imp Innovations Ltd Novel compounds and their effects on feeding behaviour
ES2628063T3 (en) 2007-01-05 2017-08-01 Indiana University Research And Technology Corporation Glucagon analogs showing greater solubility in physiological pH buffers
RU2432361C2 (en) 2007-01-05 2011-10-27 КовЭкс Текнолоджиз Айэлэнд Лимитед Glucagon-like protein-1 receptor (glp-1r) agonist compounds
CN101663317A (en) * 2007-01-05 2010-03-03 CovX科技爱尔兰有限公司 glucagon-like protein-1 receptor (glp-1r) agonist compounds
WO2008098212A2 (en) 2007-02-08 2008-08-14 Diobex, Inc. Extended release formulations of glucagon and other peptides and proteins
CA2677932A1 (en) 2007-02-15 2008-08-21 Indiana University Research And Technology Corporation Glucagon/glp-1 receptor co-agonists
US8420598B2 (en) 2007-04-20 2013-04-16 B & L Delipharm Corp. Mono modified exendin with polyethylene glycol or its derivatives and uses thereof
PT2157967E (en) 2007-04-23 2013-04-03 Intarcia Therapeutics Inc Suspension formulations of insulinotropic peptides and uses thereof
US8236760B2 (en) 2007-04-27 2012-08-07 Cedars-Sinsai Medical Center Use of GLP-1 receptor agonists for the treatment of short bowel syndrome
US7829664B2 (en) 2007-06-01 2010-11-09 Boehringer Ingelheim International Gmbh Modified nucleotide sequence encoding glucagon-like peptide-1 (GLP-1), nucleic acid construct comprising same for production of glucagon-like peptide-1 (GLP-1), human cells comprising said construct and insulin-producing constructs, and methods of use thereof
CA2689909C (en) 2007-06-08 2016-04-05 Ascendis Pharma As Long-acting polymeric prodrugs of exendin
US7994122B2 (en) 2007-06-15 2011-08-09 Zealand Pharma A/S Glucagon analogues
UA97673C2 (en) 2007-07-10 2012-03-12 Эли Лилли Энд Компани Glp-1-fc fusion protein formulation
EP3260129A1 (en) 2007-08-03 2017-12-27 Eli Lilly and Company An fgf-21 compound and a glp-1 compound for use in the treatment of obesity
CN101366692A (en) 2007-08-15 2009-02-18 江苏豪森药业股份有限公司 Stable Exenatide formulation
KR20100080519A (en) 2007-08-30 2010-07-08 큐어디엠 인코포레이티드 Compositions and methods of using proislet peptides and analogs thereof
US20100261637A1 (en) 2007-09-05 2010-10-14 Novo Nordisk A/S Peptides derivatized with a-b-c-d- and their therapeutical use
JP2010538069A (en) 2007-09-07 2010-12-09 イプセン ファルマ ソシエテ パール アクシオン サンプリフィエ Exendin-4 and analogs of exendin-3
US8785396B2 (en) 2007-10-24 2014-07-22 Mannkind Corporation Method and composition for treating migraines
BRPI0818874A2 (en) 2007-10-24 2015-05-05 Mannkind Corp Active Agents Release
WO2009055740A2 (en) 2007-10-24 2009-04-30 Mannkind Corporation Method of preventing adverse effects by glp-1
ES2509883T3 (en) 2007-10-30 2014-10-20 Indiana University Research And Technology Corporation Glucagon antagonists
JP5771005B2 (en) 2007-10-30 2015-08-26 インディアナ ユニバーシティー リサーチ アンド テクノロジー コーポレーションIndiana University Research And Technology Corporation Glucagon antagonist and compound showing GLP-1 agonist activity
PL2209800T3 (en) 2007-11-16 2013-12-31 Novo Nordisk As Stable pharmaceutical compositions comprising liraglutide and degludec
US8710002B2 (en) 2007-11-23 2014-04-29 Michael Rothkopf Methods of enhancing diabetes resolution
CN101444618B (en) 2007-11-26 2012-06-13 杭州九源基因工程有限公司 Pharmaceutical preparation containing exenatide
CA2708762A1 (en) 2007-12-11 2009-06-18 Conjuchem Biotechnologies Inc. Formulation of insulinotropic peptide conjugates
EP2229407B1 (en) 2008-01-09 2016-11-16 Sanofi-Aventis Deutschland GmbH Novel insulin derivatives having an extremely delayed time-action profile
US20110065633A1 (en) 2008-01-30 2011-03-17 Indiana University Research And Technology Corporation Ester-based peptide prodrugs
RU2010136023A (en) 2008-02-01 2012-03-10 Асцендис Фарма Ас (Dk) A MEDICINE CONTAINING A SELF-DIVISIBLE LINKER
JP5587795B2 (en) 2008-02-06 2014-09-10 バイオコン・リミテッド Fermentation medium and process thereof
WO2009114959A1 (en) 2008-03-20 2009-09-24 中国人民解放军军事医学科学院毒物药物研究所 Injectalble sustained-release pharmaceutical formulation and method for preparing it
AU2008354530B2 (en) 2008-04-07 2014-02-27 Indian Institute Of Science Compositions useful for the treatment of diabetes and other chronic disorder
KR20110007614A (en) 2008-05-07 2011-01-24 메리온 리서치 Ⅲ 리미티드 Compositions of gnrh related compounds and processes of preparation
US20110263496A1 (en) 2008-05-21 2011-10-27 Amylin Pharmaceuticals, Inc. Exendins to lower cholesterol and triglycerides
WO2009143014A1 (en) 2008-05-23 2009-11-26 Amylin Pharmaceuticals, Inc. Glp-1 receptor agonist bioassays
US8485180B2 (en) 2008-06-13 2013-07-16 Mannkind Corporation Dry powder drug delivery system
ES2570400T3 (en) 2008-06-13 2016-05-18 Mannkind Corp A dry powder inhaler and a drug delivery system
JP5604297B2 (en) 2008-06-17 2014-10-08 株式会社糖鎖工学研究所 Glycosylated GLP-1 peptide
CA2727161A1 (en) 2008-06-17 2009-12-23 Indiana University Research And Technology Corporation Glucagon analogs exhibiting enhanced solubility and stability physiological ph buffers
CL2009001425A1 (en) 2008-06-17 2010-04-30 Univ Indiana Res & Tech Corp Glucagon analogs with a large aromatic amino acid lacking an imidazole side chain that confers agonist activity at the gip receptor; pharmaceutical compositions; kit containing them and use to reduce weight gain, treat diabetes, or induce intestinal tract paralysis.
CL2009001424A1 (en) 2008-06-17 2010-04-30 Univ Indiana Res & Tech Corp Glucagon-like peptide; dimer comprising two of said peptides; pharmaceutical composition comprising it; and its use to treat diabetes or induce weight loss.
WO2009158704A2 (en) 2008-06-27 2009-12-30 Duke University Therapeutic agents comprising elastin-like peptides
EP2303247A4 (en) 2008-07-21 2012-08-01 Syneron Medical Ltd Transdermal system for extended delivery of incretins and incretin mimetic peptides
WO2010013012A2 (en) 2008-08-01 2010-02-04 Lund University Bioscience Ab Novel polypeptides and uses thereof
CN101670096B (en) 2008-09-11 2013-01-16 杭州九源基因工程有限公司 Medicinal preparation containing exenatide
HUE037449T2 (en) 2008-10-17 2018-08-28 Sanofi Aventis Deutschland Combination of an insulin and a glp-1 agonist
ES2620610T3 (en) 2008-12-10 2017-06-29 Glaxosmithkline Llc Albiglutide pharmaceutical compositions
WO2010070251A1 (en) 2008-12-15 2010-06-24 Zealand Pharma A/S Glucagon analogues
DK2370460T3 (en) 2008-12-15 2014-08-04 Zealand Pharma As GLUCAGON ANALOGS
JP5635531B2 (en) 2008-12-15 2014-12-03 ジーランド ファーマ アクティーゼルスカブ Glucagon analog
AU2008365559B2 (en) 2008-12-15 2016-02-25 Zealand Pharma A/S Glucagon analogues
AU2009327418A1 (en) 2008-12-19 2010-06-24 Indiana University Research And Technology Corporation Amide based glucagon superfamily peptide prodrugs
CN101538323B (en) 2009-01-13 2012-05-09 深圳翰宇药业股份有限公司 Method for purifying Exenatide
DE102009006602A1 (en) 2009-01-29 2010-08-05 Bayer Schering Pharma Aktiengesellschaft Alkylamino-substituted dicyanopyridines and their amino acid ester prodrugs
WO2010096052A1 (en) 2009-02-19 2010-08-26 Merck Sharp & Dohme Corp. Oxyntomodulin analogs
AU2010221254B2 (en) 2009-03-04 2014-04-03 Mannkind Corporation An improved dry powder drug delivery system
DK2403569T3 (en) 2009-03-05 2014-07-21 Sanofi Aventis Deutschland PHARMACEUTICAL DELIVERY DEVICE
US8642544B2 (en) 2009-04-01 2014-02-04 Amylin Pharmaceuticals, Llc N-terminus conformationally constrained GLP-1 receptor agonist compounds
WO2010118034A2 (en) 2009-04-06 2010-10-14 Board Of Regents, The University Of Texas System Cyclic peptide analogues for non-invasive imaging of pancreatic beta-cells
EP2423233B1 (en) 2009-04-22 2015-03-11 Alteogen, Inc In vivo half life increased fusion protein or peptide maintained by sustained in vivo release, and method for increasing in vivo half-life using same
CN101870728A (en) 2009-04-23 2010-10-27 派格生物医药(苏州)有限公司 Novel Exendin variant and conjugate thereof
CN101559041B (en) 2009-05-19 2014-01-15 中国科学院过程工程研究所 Polypeptide medicament sustained release microsphere or microcapsule preparation with uniform grain size and preparation method thereof
WO2010133676A1 (en) 2009-05-20 2010-11-25 Sanofi-Aventis Deutschland Gmbh A system comprising a drug delivery device and a cartridge provided with a bung and a method of identifying the cartridge
CN102438679B (en) 2009-05-20 2016-03-09 赛诺菲-安万特德国有限公司 For the stopper of drug delivery device Chinese medicine accommodation tube
EP2435061A4 (en) 2009-05-28 2013-03-27 Amylin Pharmaceuticals Inc Glp-1 receptor agonist compounds for sleep enhancement
EP2440235A1 (en) 2009-06-11 2012-04-18 Novo Nordisk A/S Glp-1 and fgf21 combinations for treatment of diabetes type 2
IN2012DN00377A (en) 2009-06-16 2015-08-21 Univ Indiana Res & Tech Corp
US9161988B2 (en) 2009-07-02 2015-10-20 Angiochem Inc. Multimeric peptide conjugates and uses thereof
ES2537287T3 (en) 2009-07-13 2015-06-05 Zealand Pharma A/S Acylated glucagon analogs
CN101601646B (en) 2009-07-22 2011-03-23 南京凯瑞尔纳米生物技术有限公司 Nasal cavity drop for treating diabetes and preparation method thereof
WO2011011675A1 (en) 2009-07-23 2011-01-27 Zelos Therapeutics, Inc. Pharmaceutically acceptable formulations/compositions for peptidyl drugs
SG178193A1 (en) 2009-07-31 2012-03-29 Sanofi Aventis Deutschland Prodrugs comprising an insulin linker conjugate
WO2011017835A1 (en) 2009-08-11 2011-02-17 Nanjing University Preparation method of protein or peptide nanoparticles for in vivo drug delivery by unfolding and refolding
CN101993485B (en) 2009-08-20 2013-04-17 重庆富进生物医药有限公司 Peptide analog homologous dimer capable of accelerating insulin secretion and application thereof
US20120148586A1 (en) 2009-08-27 2012-06-14 Joyce Ching Tsu Chou Glucagon-like protein-1 receptor (glp-1r) agonists for treating autoimmune disorders
MX2012003939A (en) 2009-09-30 2012-07-30 Glaxo Group Ltd Drug fusions and conjugates with extended half life.
US9610329B2 (en) 2009-10-22 2017-04-04 Albireo Pharma, Inc. Stabilized glucagon solutions
EP2490708B1 (en) 2009-10-22 2013-03-27 Biodel Inc. Stabilized glucagon solutions
US20110097386A1 (en) 2009-10-22 2011-04-28 Biodel, Inc. Stabilized glucagon solutions
US20120264684A1 (en) 2009-10-30 2012-10-18 Yasuhiro Kajihara Glycosylated Form of Antigenic GLP-1 Analogue
US8669380B2 (en) 2009-11-02 2014-03-11 Pfizer Inc. Dioxa-bicyclo[3.2.1]octane-2,3,4-triol derivatives
US20120294855A1 (en) 2009-11-03 2012-11-22 Eli Lilly & Company Glp-1 receptor agonist compounds for obstructive sleep apnea
WO2011058082A1 (en) 2009-11-13 2011-05-19 Sanofi-Aventis Deutschland Gmbh Pharmaceutical composition comprising a glp-1 agonist and methionine
AR080669A1 (en) 2009-11-13 2012-05-02 Sanofi Aventis Deutschland PHARMACEUTICAL COMPOSITION INCLUDING A GLP-1 AGONIST, AN INSULIN AND METIONIN
US8912335B2 (en) 2009-12-15 2014-12-16 Metabolic Solutions Development Company, Llc PPAR-sparing thiazolidinedione salts for the treatment of metabolic diseases
RU2012129971A (en) 2009-12-15 2014-01-27 МЕТАБОЛИК СОЛЮШНЗ ДЕВЕЛОПМЕНТ КОМПАНИ, ЭлЭлСи THIAZOLIDINDIONES NOT INTERACTING WITH PPAR AND COMBINATIONS FOR TREATING OBESITY AND METABOLISM DISORDERS
WO2011075514A1 (en) 2009-12-15 2011-06-23 Metabolic Solutions Development Company Ppar-sparing thiazolidinediones and combinations for the treatment of neurodegenerative diseases
CA2783264A1 (en) 2009-12-15 2011-07-14 Metabolic Solutions Development Company, Llc Ppar-sparing thiazolidinediones and combinations for the treatment of diabetes mellitus and other metabolic diseases
EP2512518A1 (en) 2009-12-16 2012-10-24 Novo Nordisk A/S Glp-1 receptor agonist compounds with a modified n-terminus
CN102933200B (en) 2009-12-18 2015-11-25 莱迪杜德制药公司 Comprise the single-phase gels compositions of phospholipid
US8703701B2 (en) 2009-12-18 2014-04-22 Indiana University Research And Technology Corporation Glucagon/GLP-1 receptor co-agonists
CN101798588B (en) * 2009-12-21 2015-09-09 上海仁会生物制药股份有限公司 GLP-1 receptor stimulant Determination of biological activity method
AR079344A1 (en) 2009-12-22 2012-01-18 Lilly Co Eli PEPTIDAL ANALOG OF OXINTOMODULIN, PHARMACEUTICAL COMPOSITION THAT UNDERSTANDS AND USES TO PREPARE A USEFUL MEDICINAL PRODUCT TO TREAT NON-INSULINED INDEPENDENT DIABETES AND / OR OBESITY
AR079345A1 (en) 2009-12-22 2012-01-18 Lilly Co Eli OXINTOMODULINE PEPTIDAL ANALOG
EA026384B1 (en) 2010-01-20 2017-04-28 Зилэнд Фарма А/С Treatment of cardiac conditions
SG183127A1 (en) 2010-02-01 2012-09-27 Sanofi Aventis Deutschland Cartridge holder, drug delivery device and method for securing a cartridge in a cartridge holder
WO2011109784A1 (en) 2010-03-05 2011-09-09 Conjuchem, Llc Formulation of insulinotropic peptide conjugates
WO2011119857A2 (en) 2010-03-24 2011-09-29 Shifamed, Llc Intravascular tissue disruption
RU2559320C2 (en) 2010-03-26 2015-08-10 Ново Нордиск А/С Novel glucagon analogues
MX2012013005A (en) 2010-05-13 2013-02-26 Univ Indiana Res & Tech Corp Glucagon superfamily peptides exhibiting g protein-coupled receptor activity.
US9127088B2 (en) 2010-05-13 2015-09-08 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting nuclear hormone receptor activity
AU2011202239C1 (en) 2010-05-19 2017-03-16 Sanofi Long-acting formulations of insulins
BR112012029280A2 (en) 2010-05-20 2016-11-29 Glaxo Group Ltd serum antialbumin immunoglobulin single variable domain variant, anti-sa immunoglobulin, multispecific ligand, fusion protein, composition, nucleic acid, vector, isolated host cell, and use of one variant, multispecific ligand or fusion protein
WO2011156407A2 (en) 2010-06-09 2011-12-15 Amylin Pharmaceuticals, Inc. Glp-1 receptor agonists to treat pancre-atitis
CN101891823B (en) 2010-06-11 2012-10-03 北京东方百泰生物科技有限公司 Exendin-4 and analog fusion protein thereof
US8636711B2 (en) 2010-06-14 2014-01-28 Legacy Emanuel Hospital & Health Center Stabilized glucagon solutions and uses therefor
MX359281B (en) 2010-06-21 2018-09-21 Mannkind Corp Dry powder drug delivery system and methods.
UY33462A (en) 2010-06-23 2012-01-31 Zealand Pharma As GLUCAGON ANALOGS
US9234023B2 (en) 2010-06-24 2016-01-12 Biousian Biosystems, Inc. Glucagon-like peptide-1 glycopeptides
CA2796894A1 (en) 2010-06-24 2011-12-29 Indiana University Research And Technology Corporation Amide based glucagon superfamily peptide prodrugs
WO2011163473A1 (en) 2010-06-25 2011-12-29 Indiana University Research And Technology Corporation Glucagon analogs exhibiting enhanced solubility and stability in physiological ph buffers
US20130137645A1 (en) 2010-07-19 2013-05-30 Mary S. Rosendahl Modified peptides and proteins
US20120046225A1 (en) 2010-07-19 2012-02-23 The Regents Of The University Of Colorado, A Body Corporate Stable glucagon formulations for the treatment of hypoglycemia
WO2012015975A2 (en) 2010-07-28 2012-02-02 Amylin Pharmaceuticals, Inc. Glp-1 receptor agonist compounds having stabilized regions
CN102397558B (en) 2010-09-09 2013-08-14 中国人民解放军军事医学科学院毒物药物研究所 Positioning pegylation modified compound of Exendin-4 analog and application thereof
EP2438930A1 (en) 2010-09-17 2012-04-11 Sanofi-Aventis Deutschland GmbH Prodrugs comprising an exendin linker conjugate
WO2012050923A2 (en) 2010-09-28 2012-04-19 Amylin Pharmaceuticals, Inc. Engineered polypeptides having enhanced duration of action
WO2012059764A1 (en) 2010-11-03 2012-05-10 Arecor Limited Novel composition comprising glucagon
MX340112B (en) 2010-11-09 2016-06-27 Mannkind Corp Composition comprising a serotonin receptor agonist and a diketopiperazine for treating migraines.
EP2460552A1 (en) 2010-12-06 2012-06-06 Sanofi-Aventis Deutschland GmbH Drug delivery device with locking arrangement for dose button
CN102552883B (en) 2010-12-09 2014-02-19 天津药物研究院 Polypeptide compound, pharmaceutical composition, its preparation method and application thereof
MX345501B (en) 2010-12-16 2017-02-02 Novo Nordisk As Solid compositions comprising a glp-1 agonist and a salt of n-(8-(2-hydroxybenzoyl)amino)caprylic acid.
BR112013015389A2 (en) 2010-12-22 2016-11-22 Univ Indiana Res & Tech Corp glucagon analog displaying gip receptor activity
EP2654767A4 (en) 2010-12-22 2014-05-21 Amylin Pharmaceuticals Inc Glp-1 receptor agonists for islet cell transplantation
CN102532301B (en) 2010-12-31 2014-09-03 上海医药工业研究院 Novel Exendin-4 analogues and preparation method thereof
US20120208755A1 (en) 2011-02-16 2012-08-16 Intarcia Therapeutics, Inc. Compositions, Devices and Methods of Use Thereof for the Treatment of Cancers
CN102100906A (en) 2011-02-18 2011-06-22 深圳翰宇药业股份有限公司 Medicinal preparation of exenatide and preparation method thereof
BR112013023062B1 (en) 2011-03-10 2022-01-18 Xeris Pharmaceuticals, Inc STABLE SOLUTION FOR PARENTERAL INJECTION AND MANUFACTURING METHOD OF IT
CN102718858B (en) 2011-03-29 2014-07-02 天津药物研究院 Glucagon-like peptide-1 (GLP-1) analogue monomer and dimer, preparation method therefor and application thereof
CN102718868A (en) 2011-03-30 2012-10-10 上海华谊生物技术有限公司 Fixed point mono-substituted pegylation of Exendin analogue and preparation method thereof
WO2012138941A1 (en) 2011-04-05 2012-10-11 Longevity Biotech, Inc. Compositions comprising glucagon analogs and methods of making and using the same
WO2012140647A2 (en) 2011-04-11 2012-10-18 Yeda Research And Development Co. Ltd Albumin binding probes and drug conjugates thereof
WO2012150503A2 (en) 2011-05-03 2012-11-08 Zealand Pharma A/S Glu-glp-1 dual agonist signaling-selective compounds
CN102766204B (en) 2011-05-05 2014-10-15 天津药物研究院 Glucagon-like peptide-1 mutant polypeptide, its preparation method and application thereof
CA3134906A1 (en) 2011-05-18 2012-11-22 Mederis Diabetes, Llc Improved peptide pharmaceuticals for insulin resistance
JP2014521594A (en) 2011-05-25 2014-08-28 アミリン・ファーマシューティカルズ,リミテッド・ライアビリティ・カンパニー Long duration dual hormone conjugate
UA113626C2 (en) 2011-06-02 2017-02-27 A COMPOSITION FOR THE TREATMENT OF DIABETES CONTAINING THE DURABLE INSULIN CON conjugate AND THE DUAL ACTION INSULINOTROPIC PIPIDE
ES2692187T3 (en) 2011-06-10 2018-11-30 Hanmi Science Co., Ltd. New oxintomodulin derivatives and pharmaceutical composition for the treatment of obesity comprising it
KR102002783B1 (en) 2011-06-10 2019-07-24 베이징 한미 파마슈티컬 컴퍼니 리미티드 Glucose dependent insulinotropic polypeptide analogs, pharmaceutical compositions and use thereof
KR101577734B1 (en) 2011-06-17 2015-12-29 한미사이언스 주식회사 A conjugate comprising oxyntomodulin and an immunoglobulin fragment, and use thereof
CN103974715A (en) 2011-06-17 2014-08-06 哈洛齐梅公司 Stable formulations of a hyaluronan-degrading enzyme
MX2013015168A (en) 2011-06-22 2014-03-31 Univ Indiana Res & Tech Corp Glucagon/glp-1 receptor co-agonists.
MX347703B (en) 2011-06-22 2017-05-09 Univ Indiana Res & Tech Corp Glucagon/glp-1 receptor co-agonists.
CN103906528A (en) 2011-06-24 2014-07-02 安米林药品有限责任公司 Methods of treating diabetes with sustained release formulations of GLP-1 receptor agonists
KR101357117B1 (en) 2011-06-28 2014-02-06 비앤엘델리팜 주식회사 PEGylated Exendin-4 analogues or its derivatives, preparation method thereof and pharmaceutical composition containing the same for preventing and treating a diabetes
WO2013004983A1 (en) 2011-07-04 2013-01-10 Imperial Innovations Limited Novel compounds and their effects on feeding behaviour
WO2013009545A1 (en) 2011-07-08 2013-01-17 Amylin Pharmaceuticals, Inc. Engineered polypeptides having enhanced duration of action with reduced immunogenicity
DK2741765T3 (en) 2011-08-10 2016-06-13 Adocia Injectable solution of at least one type of basal insulin
US20130084277A1 (en) 2011-08-24 2013-04-04 Phasebio Pharmaceuticals, Inc. Formulations of active agents for sustained release
CN103189389B (en) 2011-09-03 2017-08-11 深圳市健元医药科技有限公司 New analogs of GLP I and its production and use
CA2849673A1 (en) 2011-09-23 2013-03-28 Novo Nordisk A/S Novel glucagon analogues
MX359329B (en) 2011-10-28 2018-09-25 Sanofi Aventis Deutschland Treatment protocol of diabetes type 2.
CN102363633B (en) 2011-11-16 2013-11-20 天津拓飞生物科技有限公司 Glucagon like peptide-1 mutant polypeptide and preparation method, medicinal composition and use thereof
CA2847246A1 (en) 2011-11-17 2013-05-23 Indiana University Research And Technology Corporation Glucagon superfamily peptides exhibiting glucocorticoid receptor activity
KR101922752B1 (en) 2011-11-29 2018-11-27 주록스 피티와이 리미티드 Methods of preserving injectable pharmaceutical compositions comprising a cyclodextrin and a hydrophobic drug
JP2015501844A (en) 2011-12-16 2015-01-19 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. Modified nucleosides, nucleotides and nucleic acid compositions
JP6165168B2 (en) 2011-12-22 2017-07-19 ファイザー・インク Anti-diabetic compounds
PE20142113A1 (en) 2011-12-23 2014-12-03 Zealand Pharma As GLUCAGON ANALOGS
CN104159570A (en) 2011-12-29 2014-11-19 陈献 Stabilized glucagon nanoemulsions
BR112014016889A8 (en) 2012-01-09 2017-07-04 Adocia composition in the form of an aqueous injectable solution ph is comprised between 6.0 and 8.0 and unit dose formulation with ph comprised between 7 and 7.8
WO2013148966A1 (en) 2012-03-28 2013-10-03 Amylin Pharmaceuticals, Llc Transmucosal delivery of engineered polypeptides
WO2013148871A1 (en) 2012-03-28 2013-10-03 Amylin Pharmaceuticals, Llc Engineered polypeptides
EP2833923A4 (en) 2012-04-02 2016-02-24 Moderna Therapeutics Inc Modified polynucleotides for the production of proteins
AU2013243949A1 (en) 2012-04-02 2014-10-30 Moderna Therapeutics, Inc. Modified polynucleotides for the production of biologics and proteins associated with human disease
CN102649947A (en) 2012-04-20 2012-08-29 无锡和邦生物科技有限公司 Cell strain for measuring bioactivity of GLP-1 and functional analogue thereof and application of cell strain
US20150111246A1 (en) 2012-04-24 2015-04-23 Astrazeneca Pharmaceuticals Lp Site-specific enzymatic modification of exendins and analogs thereof
US20130289241A1 (en) 2012-04-26 2013-10-31 Shanghai Ambiopharm, Inc. Method for preparing exenatide
US8901484B2 (en) 2012-04-27 2014-12-02 Sanofi-Aventis Deutschland Gmbh Quantification of impurities for release testing of peptide products
WO2013182217A1 (en) 2012-04-27 2013-12-12 Sanofi-Aventis Deutschland Gmbh Quantification of impurities for release testing of peptide products
EA028929B1 (en) 2012-05-03 2018-01-31 Зилэнд Фарма А/С Glucagon-like-peptide-2 (glp-2) analogues
EP2844669B1 (en) * 2012-05-03 2018-08-01 Zealand Pharma A/S Gip-glp-1 dual agonist compounds and methods
EP2664374A1 (en) 2012-05-15 2013-11-20 F. Hoffmann-La Roche AG Lysin-glutamic acid dipeptide derivatives
CN103421094A (en) 2012-05-24 2013-12-04 上海医药工业研究院 Polypeptide compound with EPO-like activity
US20150174209A1 (en) 2012-05-25 2015-06-25 Amylin Pharmaceuticals. Llc Insulin-pramlintide compositions and methods for making and using them
EA201590011A1 (en) 2012-06-14 2015-05-29 Санофи PEPTIDE ANALOGUES EXENDIN-4
PL2864350T3 (en) 2012-06-21 2019-01-31 Indiana University Research And Technology Corporation Analogs of glucagon exhibiting gip receptor activity
KR20150023013A (en) 2012-06-21 2015-03-04 인디애나 유니버시티 리서치 앤드 테크놀로지 코퍼레이션 Glucagon analogs exhibiting gip receptor activity
WO2014012069A2 (en) 2012-07-12 2014-01-16 Mannkind Corporation Dry powder drug delivery systems and methods
AU2013295035B2 (en) 2012-07-23 2017-08-03 Zealand Pharma A/S Glucagon analogues
KR101968344B1 (en) 2012-07-25 2019-04-12 한미약품 주식회사 A composition for treating hyperlipidemia comprising oxyntomodulin analog
AR094821A1 (en) 2012-07-25 2015-09-02 Hanmi Pharm Ind Co Ltd LIQUID FORMULATION OF AN INSULINOTROPIC PEPTIDE CONJUGATE OF PROLONGED ACTION
AR092862A1 (en) 2012-07-25 2015-05-06 Hanmi Pharm Ind Co Ltd LIQUID FORMULATION OF PROLONGED ACTION INSULIN AND AN INSULINOTROPIC PEPTIDE AND PREPARATION METHOD
EP2931300A1 (en) 2012-08-14 2015-10-21 Wockhardt Limited Pharmaceutical microparticulate compositions of polypeptides
WO2014027253A1 (en) 2012-08-14 2014-02-20 Wockhardt Limited Pharmaceutical microparticulate compositions of polypeptides
CN102816244A (en) 2012-08-23 2012-12-12 无锡和邦生物科技有限公司 Fusion protein of exendin-4 peptide and human serum albumin (HSA) and preparation method thereof
CN102827270A (en) 2012-09-13 2012-12-19 无锡和邦生物科技有限公司 Pegylated exenatide ramification and use thereof
TWI608013B (en) 2012-09-17 2017-12-11 西蘭製藥公司 Glucagon analogues
EP2895506A1 (en) 2012-09-17 2015-07-22 Imperial Innovations Limited Peptide analogues of glucagon and glp1
WO2014049610A2 (en) 2012-09-26 2014-04-03 Cadila Healthcare Limited Peptides as gip, glp-1 and glucagon receptors triple-agonist
UA116217C2 (en) 2012-10-09 2018-02-26 Санофі Exendin-4 derivatives as dual glp1/glucagon agonists
KR101993393B1 (en) 2012-11-06 2019-10-01 한미약품 주식회사 A composition for treating diabetes or diabesity comprising oxyntomodulin analog
WO2014073842A1 (en) 2012-11-06 2014-05-15 Hanmi Pharm. Co., Ltd. Liquid formulation of protein conjugate comprising the oxyntomodulin and an immunoglobulin fragment
EP3653649A1 (en) 2012-11-20 2020-05-20 Mederis Diabetes, LLC Improved peptide pharmaceuticals for insulin resistance
TWI674270B (en) 2012-12-11 2019-10-11 英商梅迪繆思有限公司 Glucagon and glp-1 co-agonists for the treatment of obesity
CN104902920A (en) 2012-12-21 2015-09-09 赛诺菲 Exendin-4 derivatives as dual GLP1/GIP or trigonal GLP1/GIP/glucagon agonists
CN103908657A (en) 2012-12-31 2014-07-09 复旦大学附属华山医院 Use of glucagons-like peptide-1 analogue in preparation of ophthalmic disease drug
EP3238734A1 (en) 2013-03-14 2017-11-01 Medimmune Limited Pegylated glucagon and glp-1 co-agonists for the treatment of obesity
RU2678134C2 (en) 2013-03-14 2019-01-23 Индиана Юниверсити Рисерч Энд Текнолоджи Корпорейшн Insulin-incretin conjugates
EP2986314A4 (en) 2013-03-15 2016-04-13 Univ Indiana Res & Tech Corp Prodrugs with prolonged action
MX362275B (en) 2013-04-18 2019-01-10 Novo Nordisk As Stable, protracted glp-1/glucagon receptor co-agonists for medical use.
JP2014227368A (en) 2013-05-21 2014-12-08 国立大学法人帯広畜産大学 Glucagon analog for treating diabetes mellitus and hyperglycemia condition
CN103304660B (en) 2013-07-12 2016-08-10 上海昂博生物技术有限公司 A kind of synthetic method of Arg34Lys26-(N-EPSILON-(N-ALPHA-Palmitoyl-L-GAMMA-glutamyl))-GLP-1[7-37]
CN103405753B (en) 2013-08-13 2016-05-11 上海仁会生物制药股份有限公司 Stable insulin secretion accelerating peptide liquid drugs injection pharmaceutical composition
RS57632B1 (en) 2013-10-17 2018-11-30 Zealand Pharma As Acylated glucagon analogues
US9988429B2 (en) 2013-10-17 2018-06-05 Zealand Pharma A/S Glucagon analogues
EP3066117B1 (en) 2013-11-06 2019-01-02 Zealand Pharma A/S Glucagon-glp-1-gip triple agonist compounds
TW201609795A (en) 2013-12-13 2016-03-16 賽諾菲公司 EXENDIN-4 peptide analogues as dual GLP-1/GIP receptor agonists
WO2015086729A1 (en) 2013-12-13 2015-06-18 Sanofi Dual glp-1/gip receptor agonists
WO2015086730A1 (en) 2013-12-13 2015-06-18 Sanofi Non-acylated exendin-4 peptide analogues
TW201609800A (en) 2013-12-13 2016-03-16 賽諾菲公司 EXENDIN-4 peptide analogues as dual GLP-1/glucagon receptor agonists
EP3080149A1 (en) 2013-12-13 2016-10-19 Sanofi Dual glp-1/glucagon receptor agonists
TW201609798A (en) 2013-12-13 2016-03-16 賽諾菲公司 EXENDIN-4 peptide analogues
CN103665148B (en) 2013-12-17 2016-05-11 中国药科大学 A kind of Polypeptide-k of Orally-administrable and method for making thereof and purposes
CN103980358B (en) 2014-01-03 2016-08-31 杭州阿诺生物医药科技股份有限公司 A kind of method preparing Arg34Lys26-(N-EPSILON-(N-ALPHA-Palmitoyl-L-GAMMA-glutamyl))-GLP-1[7-37]
AU2015205624A1 (en) 2014-01-09 2016-07-14 Sanofi Stabilized pharmaceutical formulations of insulin analogues and/or insulin derivatives
SG11201604708VA (en) 2014-01-09 2016-07-28 Sanofi Sa Stabilized glycerol free pharmaceutical formulations of insulin analogues and/or insulin derivatives
GB201404002D0 (en) 2014-03-06 2014-04-23 Imp Innovations Ltd Novel compounds
TW201625670A (en) 2014-04-07 2016-07-16 賽諾菲公司 Dual GLP-1/glucagon receptor agonists derived from EXENDIN-4
TW201625669A (en) 2014-04-07 2016-07-16 賽諾菲公司 Peptidic dual GLP-1/glucagon receptor agonists derived from Exendin-4
TW201625668A (en) 2014-04-07 2016-07-16 賽諾菲公司 Exendin-4 derivatives as peptidic dual GLP-1/glucagon receptor agonists
US9932381B2 (en) 2014-06-18 2018-04-03 Sanofi Exendin-4 derivatives as selective glucagon receptor agonists
CN104926934B (en) 2014-09-23 2016-11-09 蒋先兴 Oxyntomodulin analogs
EP3204408B1 (en) 2014-10-10 2020-05-06 Novo Nordisk A/S Stable glp-1 based glp-1/glucagon receptor co-agonists
EP3209682B1 (en) 2014-10-24 2020-12-30 Merck Sharp & Dohme Corp. Co-agonists of the glucagon and glp-1 receptors
WO2016198604A1 (en) 2015-06-12 2016-12-15 Sanofi Exendin-4 derivatives as dual glp-1 /glucagon receptor agonists
WO2016198624A1 (en) 2015-06-12 2016-12-15 Sanofi Exendin-4 derivatives as trigonal glp-1/glucagon/gip receptor agonists
AR105284A1 (en) 2015-07-10 2017-09-20 Sanofi Sa DERIVATIVES OF EXENDINA-4 AS SPECIFIC DUAL PEPTIDE AGONISTS OF GLP-1 / GLUCAGÓN RECEPTORS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023050A1 (en) * 2006-08-25 2008-02-28 Novo Nordisk A/S Acylated exendin-4 compounds
WO2008081418A1 (en) * 2007-01-05 2008-07-10 Covx Technologies Ireland Limited Glucagon-like protein-1 receptor (glp-1r) agonist compounds
WO2011094337A1 (en) * 2010-01-27 2011-08-04 Indiana University Research And Technology Corporation Glucagon antagonist - gip agonist conjugates and compositions for the treatment of metabolic disorders and obesity
US20110237503A1 (en) * 2010-03-26 2011-09-29 Eli Lilly And Company Novel peptides and methods for their preparation and use

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10246433B2 (en) 2012-12-21 2019-04-02 Pfizer Inc. Aryl and heteroaryl fused lactams
US10570121B2 (en) 2014-06-17 2020-02-25 Pfizer Inc. Substituted dihydroisoquinolinone compounds
US9474780B2 (en) 2015-01-09 2016-10-25 Eli Lilly And Company GIP and GLP-1 co-agonist compounds
CN107847565A (en) * 2015-05-28 2018-03-27 免疫新炉有限公司 The pharmaceutical composition for including glucagon-like peptide 1 receptor stimulating agent for Sarcopenia treatment
EP4272823A3 (en) * 2015-05-28 2024-01-10 Immunoforge Co., Ltd. Pharmaceutical composition for treating sarcopenia comprising glucagon-like peptide-1 receptor agonist
CN107847565B (en) * 2015-05-28 2022-07-15 免疫新炉有限公司 Pharmaceutical compositions comprising glucagon-like peptide-1 receptor agonists for the treatment of sarcopenia
US10993993B2 (en) 2015-05-28 2021-05-04 Immunoforge Co., Ltd. Pharmaceutical composition for treating muscle atrophy or sarcopenia including glucagon-like peptide (GLP-1) or GLP-1 receptor agonist
US10751392B2 (en) 2015-05-28 2020-08-25 Immunoforge Co., Ltd. Pharmaceutical composition for treating sarcopenia including glucagon-like peptide-1 receptor agonist
EP3305316A4 (en) * 2015-05-28 2019-01-09 Immunoforge Co., Ltd. Pharmaceutical composition for treating sarcopenia comprising glucagon-like peptide-1 receptor agonist
US10806797B2 (en) 2015-06-05 2020-10-20 Sanofi Prodrugs comprising an GLP-1/glucagon dual agonist linker hyaluronic acid conjugate
US11021512B2 (en) 2016-10-10 2021-06-01 Sanofi Method of preparing peptides comprising a lipophilically modified lysine side chain
WO2018069295A1 (en) 2016-10-10 2018-04-19 Sanofi Method of preparing peptides comprising a lipophilically modified lysine side chain
US11141489B2 (en) 2016-12-02 2021-10-12 Sanofi Conjugates comprising an GLP-1/Glucagon dual agonist, a linker and hyaluronic acid
US10538567B2 (en) 2016-12-02 2020-01-21 Sanofi Compounds as peptidic trigonal GLP1/glucagon/GIP receptor agonists
WO2018100134A1 (en) 2016-12-02 2018-06-07 Sanofi New compounds as peptidic trigonal glp1/glucagon/gip receptor agonists
US10792367B2 (en) 2016-12-02 2020-10-06 Sanofi Conjugates comprising an GLP-1/glucagon dual agonist, a linker and hyaluronic acid
WO2018100135A1 (en) 2016-12-02 2018-06-07 Sanofi New compounds as peptidic glp1/glucagon/gip receptor agonists
US10392366B2 (en) 2017-02-21 2019-08-27 Sanofi Azetidine compounds as GPR119 modulators for the treatment of diabetes, obesity, dyslipidemia and related disorders
WO2018153849A1 (en) 2017-02-21 2018-08-30 Sanofi Azetidine compounds as gpr119 modulators for the treatment of diabetes, obesity, dyslipidemia and related disorders
US10435445B2 (en) 2017-03-31 2019-10-08 Takeda Pharmaceutical Company Limited Peptide compound
WO2018181864A1 (en) 2017-03-31 2018-10-04 Takeda Pharmaceutical Company Limited Gip receptor activating peptide
US11174301B2 (en) 2017-03-31 2021-11-16 Takeda Pharmaceutical Company Limited Peptide compound
WO2019229225A1 (en) 2018-05-30 2019-12-05 Sanofi Conjugates comprising an glp-1/glucagon/gip triple receptor agonist, a linker and hyaluronic acid
KR102119188B1 (en) 2018-11-13 2020-06-08 이뮤노포지 주식회사 Pharmaceutical composition for treating muscle atrophy comprising glucagon like-peptide-1, GLP-1 derived peptide, or GLP-1 degradation inhibitor
KR20180124816A (en) * 2018-11-13 2018-11-21 이뮤노포지 주식회사 Pharmaceutical composition for treating muscle atrophy comprising glucagon like-peptide-1, GLP-1 derived peptide, or GLP-1 degradation inhibitor
WO2020125744A1 (en) 2018-12-21 2020-06-25 江苏恒瑞医药股份有限公司 Bispecific protein
WO2021175974A1 (en) 2020-03-06 2021-09-10 Sanofi Peptides as selective gip receptor agonists
WO2021198229A1 (en) 2020-03-31 2021-10-07 Antaros Medical Ab Selective gip receptor agonists comprising a chelating moiety for imaging and therapy purposes
WO2022090447A1 (en) 2020-10-30 2022-05-05 Novo Nordisk A/S Glp-1, gip and glucagon receptor triple agonists
WO2023031455A1 (en) 2021-09-06 2023-03-09 Sanofi Sa New peptides as potent and selective gip receptor agonists

Also Published As

Publication number Publication date
RS57531B1 (en) 2018-10-31
PH12015501291B1 (en) 2015-08-24
JP2016506401A (en) 2016-03-03
PH12015501291A1 (en) 2015-08-24
RU2015129696A (en) 2017-01-27
CY1121153T1 (en) 2020-05-29
EP2934566A1 (en) 2015-10-28
EA031428B1 (en) 2018-12-28
HK1211233A1 (en) 2016-05-20
AR094180A1 (en) 2015-07-15
SI2934568T1 (en) 2018-03-30
JP6391589B2 (en) 2018-09-19
CN104870009B (en) 2021-05-18
AU2013366692B2 (en) 2017-11-23
CN104902918A (en) 2015-09-09
EP2934566B1 (en) 2017-06-21
AR094178A1 (en) 2015-07-15
BR112015014800A2 (en) 2017-10-10
LT2934568T (en) 2018-02-12
EP3400957A1 (en) 2018-11-14
US10253079B2 (en) 2019-04-09
MA38276B1 (en) 2018-03-30
MX360317B (en) 2018-10-29
AU2013366690B2 (en) 2018-02-08
CN104902920A (en) 2015-09-09
PE20151239A1 (en) 2015-09-08
BR112015014510A2 (en) 2017-11-21
HUE035803T2 (en) 2018-05-28
JP6408998B2 (en) 2018-10-17
WO2014096149A1 (en) 2014-06-26
CA2894765A1 (en) 2014-06-26
AR099912A1 (en) 2016-08-31
CN104870009A (en) 2015-08-26
CN104902919A (en) 2015-09-09
HK1213483A1 (en) 2016-07-08
MX2015008114A (en) 2015-11-06
KR20150096398A (en) 2015-08-24
WO2014096145A1 (en) 2014-06-26
UY35233A (en) 2014-07-31
US9670261B2 (en) 2017-06-06
PL2934567T3 (en) 2018-10-31
AR094181A1 (en) 2015-07-15
AU2013366690A1 (en) 2015-07-09
MX2015008077A (en) 2015-10-30
AR105816A2 (en) 2017-11-15
EP2934569A1 (en) 2015-10-28
US20140206608A1 (en) 2014-07-24
CY1120030T1 (en) 2018-12-12
SG11201503526UA (en) 2015-06-29
AU2013366692A1 (en) 2015-07-09
AU2013366691A1 (en) 2015-07-09
HK1211232A1 (en) 2016-05-20
HUE038748T2 (en) 2018-11-28
KR20150099548A (en) 2015-08-31
PL2934568T3 (en) 2018-03-30
CA2895755A1 (en) 2014-06-26
CA2895875A1 (en) 2014-06-26
UY35232A (en) 2014-07-31
MX2015008099A (en) 2016-04-25
CN104902919B (en) 2018-11-20
US20140213513A1 (en) 2014-07-31
HRP20180092T1 (en) 2018-02-23
ECSP15031141A (en) 2015-11-30
MA38276A1 (en) 2017-06-30
US20140221281A1 (en) 2014-08-07
EP2934568B1 (en) 2017-10-18
PT2934567T (en) 2018-10-01
KR20150096433A (en) 2015-08-24
CL2016002182A1 (en) 2018-01-12
TN2015000283A1 (en) 2016-10-03
UY35231A (en) 2014-07-31
RU2015129788A (en) 2017-01-30
US20140206609A1 (en) 2014-07-24
IL238692A0 (en) 2015-06-30
LT2934567T (en) 2018-09-10
UA116553C2 (en) 2018-04-10
AU2013360721A1 (en) 2015-07-09
TWI600663B (en) 2017-10-01
US20170216406A1 (en) 2017-08-03
WO2014096150A1 (en) 2014-06-26
MX2015008079A (en) 2015-10-30
HK1211231A1 (en) 2016-05-20
IL238650A0 (en) 2015-06-30
MX362190B (en) 2019-01-08
TW201429985A (en) 2014-08-01
DK2934568T3 (en) 2018-01-22
EP2934567B1 (en) 2018-05-09
ZA201503914B (en) 2016-12-21
RU2015129815A (en) 2017-01-27
DK2934567T3 (en) 2018-08-13
TWI602828B (en) 2017-10-21
HRP20181300T1 (en) 2018-10-05
RU2652783C2 (en) 2018-05-03
IL239101A0 (en) 2015-07-30
ES2688367T3 (en) 2018-11-02
JP2016503771A (en) 2016-02-08
TW201441251A (en) 2014-11-01
BR112015013809A2 (en) 2017-11-14
SG11201503576XA (en) 2015-06-29
JP2016503770A (en) 2016-02-08
DOP2015000156A (en) 2015-08-31
TW201443080A (en) 2014-11-16
EA201591174A1 (en) 2016-03-31
PT2934568T (en) 2018-01-04
CA2895156A1 (en) 2014-06-26
CL2015001751A1 (en) 2015-09-21
US9745360B2 (en) 2017-08-29
KR20150096684A (en) 2015-08-25
EP2934568A1 (en) 2015-10-28
SI2934567T1 (en) 2018-10-30
SG11201504215PA (en) 2015-06-29
TW201441252A (en) 2014-11-01
ES2653765T3 (en) 2018-02-08
IL238623A0 (en) 2015-06-30
SG10201705097PA (en) 2017-07-28
EP2934567A1 (en) 2015-10-28
SG11201503524PA (en) 2015-06-29
JP2016503772A (en) 2016-02-08
CR20150358A (en) 2015-09-16
EP2934567B9 (en) 2018-08-22
UY35234A (en) 2014-07-31

Similar Documents

Publication Publication Date Title
US10253079B2 (en) Functionalized Exendin-4 derivatives
EP3080154B1 (en) Dual glp-1/gip receptor agonists
US20150164996A1 (en) Non-acylated exendin-4 peptide analogues
EP3080150A1 (en) Exendin-4 peptide analogues as dual glp-1/gip receptor agonists
AU2015243610A1 (en) Exendin-4 derivatives as peptidic dual GLP-1 / glucagon receptor agonists
EP2906595A1 (en) Exendin-4 derivatives as dual glp1/glucagon agonists
AU2015243611A1 (en) Dual GLP-1 / glucagon receptor agonists derived from exendin-4
OA17436A (en) Functionalized exendin-4 derivatives.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13810958

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 239101

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 12015501291

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2015548552

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2895755

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 001035-2015

Country of ref document: PE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/008099

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015014800

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: CR2015-000358

Country of ref document: CR

ENP Entry into the national phase

Ref document number: 2013366690

Country of ref document: AU

Date of ref document: 20131219

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157018591

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15159535

Country of ref document: CO

WWE Wipo information: entry into national phase

Ref document number: IDP00201504453

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 38276

Country of ref document: MA

WWE Wipo information: entry into national phase

Ref document number: 2013810958

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201591174

Country of ref document: EA

Ref document number: A201507199

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 112015014800

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150619