WO2014094716A1 - Halterungs- und positioniervorrichtung eines chirurgischen instruments und/oder eines endoskops für die minimal-invasive chirurgie sowie ein chirurgisches robotersystem - Google Patents

Halterungs- und positioniervorrichtung eines chirurgischen instruments und/oder eines endoskops für die minimal-invasive chirurgie sowie ein chirurgisches robotersystem Download PDF

Info

Publication number
WO2014094716A1
WO2014094716A1 PCT/DE2013/000803 DE2013000803W WO2014094716A1 WO 2014094716 A1 WO2014094716 A1 WO 2014094716A1 DE 2013000803 W DE2013000803 W DE 2013000803W WO 2014094716 A1 WO2014094716 A1 WO 2014094716A1
Authority
WO
WIPO (PCT)
Prior art keywords
instrument
surgical
surgical instrument
drive unit
positioning device
Prior art date
Application number
PCT/DE2013/000803
Other languages
English (en)
French (fr)
Inventor
Marcel Seeber
Andreas Karguth
Christian TROMMER
Original Assignee
avateramedical GmBH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by avateramedical GmBH filed Critical avateramedical GmBH
Priority to RU2015129335A priority Critical patent/RU2644281C2/ru
Priority to CN201380066505.1A priority patent/CN104869935B/zh
Priority to BR112015014298-2A priority patent/BR112015014298B1/pt
Priority to EP13828769.3A priority patent/EP2934361B1/de
Priority to JP2015548199A priority patent/JP6342418B2/ja
Priority to US14/653,212 priority patent/US9795454B2/en
Publication of WO2014094716A1 publication Critical patent/WO2014094716A1/de
Priority to HK15112847.3A priority patent/HK1211822A1/xx

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/007Arms the end effector rotating around a fixed point
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms

Definitions

  • the present invention relates to a holding and positioning device of a surgical instrument and a surgical robot system or telemanipulator for minimally invasive surgery and in particular laparoscopy.
  • Robotic systems or even telemanipulators for minimally invasive surgery replace the surgeons usually manually guided surgical instruments, such as surgical instruments, endoscope or camera, by a motorized positioning.
  • the surgical instruments to be used are guided via one or more trocars into the interior of a patient.
  • a trocar is an instrument by means of which the surgeon, in minimally invasive surgery, provides access to the body cavity of the patient (usually the abdominal cavity or the chest), the access being kept open by a tube, a so-called tube.
  • the movement mechanics and control logic support provided in the robotic system allows movement of the surgical instruments about a pivot point in two degrees of freedom (x, y) and translational movement of the surgical instruments along the instrument axis (z).
  • the pivot point is the invariant point of motion in 2 degrees of freedom (x, y). This pivotal point is ideally located at or near the puncture point of the trocar through the abdominal wall of the patient.
  • the control logic of a robot system must know the pivotal point, or the pivotal point must be defined by the structural design of the movement mechanics in order to limit movement of the surgical instrument so that the biomechanical loading of the tissue around the trocar is minimized.
  • Robotic systems known from the prior art are based on robot arms with an active movement of an operating instrument, which on the one hand has a require large space and wherein due to the typical embodiments by the movements of the robot arms collisions are difficult to avoid.
  • a minimally invasive surgical procedure at least two, usually three to four, surgical instruments such as grippers, scissors, needle holders, dissectors, and a camera or an endoscope are used, each of which is guided into the interior of the patient via a separate trocar become.
  • surgical instruments such as grippers, scissors, needle holders, dissectors, and a camera or an endoscope are used, each of which is guided into the interior of the patient via a separate trocar become.
  • a robotic arm is available for each surgical instrument used, which controls the positions of the robot arms and the active movement of the instrument.
  • the object of the present invention is therefore to provide a manipulator arm for positioning a surgical instrument and a robotic surgical system, which provides a high variability and requires only a small installation space and is smaller and lighter in its design and optionally the mechanical coupling allows the trocar with the manipulator or even without this mechanical coupling of the trocar with the manipulator arm.
  • Another object of the present invention is to provide a robotic system that provides a greater range of pre-positioning adjustment for a manipulator mounting device.
  • a robotic system that provides a greater range of pre-positioning adjustment for a manipulator mounting device.
  • a holding and positioning device of a surgical instrument and / or an endoscope for the minimally invasive surgeon comprising a first axis of rotation about which a holding element is rotatably arranged, wherein the first axis of rotation always intersects with the longitudinal axis of at least one surgical instrument and / or an endoscope in a pivotal point by a push drive is mounted on the holding element, which rotatably arranges an instrument drive unit about the pivotal point, and wherein a telescopic device is provided on the instrument drive unit, through which the surgical instrument and / or the
  • Endoscope along the longitudinal axis by means of a guide device in the body is so translationally movable that the longitudinal axis of the
  • Telescopic device is variably adjustable.
  • a robotic system with multiple robot arms, to which at least one surgical instrument and / or an endoscope for minimally invasive surgery can be arranged, at least two mounting and positioning devices are mounted on a substantially transversely to the support and positioning devices extending support carrier system, wherein the support carrier system is constructed of a respective coupling point for each mounting and positioning device, and wherein the coupling points are each fixed or connected by joints.
  • the terms robot system and telemanipulator can be used interchangeably.
  • the instrument drive unit is rotatably mounted on the telescope device by means of an instrument pivot point such that the telescopic longitudinal axis of the telescope device is variable relative to the longitudinal axis of the surgical instrument and / or the endoscope as a function of the thrust drive (5).
  • a further embodiment of the invention is designed such that the telescopic device has a plurality of telescopic elements, wherein the instrument pivot point is arranged on the telescopic element, which has the largest adjustment range.
  • the guide device has at least one instrument guide, in which the shaft of the surgical instrument and / or the endoscope extends.
  • a particular advantage is that the thrust drive is mounted on the telescope device by means of a thrust drive receiving point such that the rotational movement of the instrument carrier unit around the pivotal point results from the fact that a coupling device has a coupling pivot, which is firmly connected to the holding element.
  • the rotation of the instrument carrier unit with the instruments and / or an endoscope both around the pivotal point and about the coupling pivot enables the holding element to be arranged substantially constant with respect to the pivotal point.
  • the holding and positioning device is designed such that the instrument drive unit moves the surgical instrument and / or the endoscope in several degrees of freedom, wherein the control of the instrument drive unit by means of control and supply lines, which are passed through the holding element and the linear actuator , via a control unit by the surgeon.
  • the first axis of rotation is formed, in particular, by providing a drive unit which controls the surgical instrument and / or endoscope, wherein the drive unit can be attached to a robot arm, and wherein a pivot joint is provided between the drive unit and the holding element.
  • a further embodiment is designed such that a coupling element is attached to the holding element, which is rotatably connected at the pivotal point with an instrument guide at the distal end.
  • the present invention can be extended by guiding a plurality of surgical instruments through a single trocar into the interior of the body, wherein a separate instrument drive unit is provided for each surgical instrument, and in particular the surgical instruments are curved in the longitudinal direction.
  • the holding element by means of a Vorpositionier dressed in its initial position is adaptable, wherein the Vorpositionier dressed has one or more Vorpositionieriata which are each preset on at least one axis of rotation in position, in particular four Vorpositionier implant be preset with mutually in series variable positions, the Garrungsund Positioning device can be preset in a desired position.
  • the surgical robotic system according to the invention can be further developed by the fact that the support bracket system is connected by means of a coupling carrier connection with a substantially vertically extending main support means for support against a fixed bearing, which may be arranged to be movable or predetermined against a fixed or movable operating table.
  • the robotic surgical system has a central control unit, which communicates with each of the holding and positioning devices with the corresponding surgical and / or endoscopes and is coupled to a control unit for inputting commands in the form of control data of an operator which displays image data from one or more endoscopes by means of a visualization unit.
  • control unit and the operating unit are coupled to a movable operating table, wherein both the image data and the control data are processed in dependence on the predetermined positions of the holding and positioning device and the operating table.
  • Figure 1 a is a schematic view of the manipulator arm according to the invention for active positioning of a surgical instrument, which is connected via a pivotally mounted drive unit with a telescopic boom, including the coupling element between the guide means for performing a surgical instrument and the constructive device for implementing the second axis of rotation;
  • Figure 1 b is a schematic view of the manipulator arm according to the invention for the active positioning of a surgical instrument, which is connected via a pivotally mounted drive unit with a telescopic boom, including the coupling element between the guide means for performing a surgical instrument and the constructive device for implementing the second axis of rotation;
  • Figure 2a shows another schematic view of the manipulator arm according to the invention for the active positioning of a surgical instrument, which is connected via a pivotally mounted drive unit with a telescopic boom, including the coupling element between the guide means for performing a surgical instrument and the constructive device for the realization of the second axis of rotation, from which is the thrust movement for generating the rotational movement by means of coupling joint about the second axis of rotation is visible;
  • Figure 2b shows another schematic view of the manipulator arm according to the invention for the active positioning of a surgical instrument, which is connected via a pivotally mounted drive unit with a telescopic boom, including the coupling element between the guide means for performing a surgical instrument and the constructive device for the realization of the second axis of rotation, from which is the thrust movement for generating the rotational movement by means of coupling joint about the second axis of rotation is visible;
  • FIG. 3 a shows a schematic view of the manipulator arm according to the invention for the active positioning of a surgical instrument, which is connected via a pivotally mounted drive unit is connected to a telescopic boom, without the coupling element according to Figure 1 a;
  • Figure 3b is a schematic view of the manipulator arm according to the invention for the active positioning of a surgical instrument, which is connected via a pivotally mounted drive unit with a telescopic boom, without the coupling element according to Figure 13;
  • Figure 4 is a schematic view of the manipulator arm according to the invention for active positioning of a surgical instrument, without the coupling element of Figure 1, from which the thrust movement for generating the rotational movement by means of coupling joint about the second axis of rotation and the coupling of the instrument drive unit is visible;
  • Figure 5a is a plan view of the manipulator arm according to the invention for active positioning of a surgical instrument in the embodiment telescopic arm right;
  • Figure 5b is a plan view of the manipulator arm according to the invention for the active positioning of a surgical instrument in the embodiment telescopic arm left;
  • Figure 6 is a schematic view of the manipulator arm according to the invention for active positioning of a surgical instrument in the embodiments telescopic arm right and telescopic arm left for common use with a single-port trocar;
  • Figure 7 is a schematic view of the invention, flexibly adjustable support structure
  • FIG. 8 shows a schematic view of the pre-positioning device according to the invention.
  • FIG. 9 a schematic view of the flexibly adjustable support structure according to the invention with a connected pre-positioning device according to the invention to which a manipulator arm according to the invention is attached for the active positioning of a surgical instrument
  • Figure 10 is a schematic side view of a parent carrying system to which the flexibly adjustable carrier system according to the invention with a total of four connected Vorposition réelles worn according to the invention, on each of which a manipulator according to the invention for active positioning of a surgical instrument is attached;
  • Figure 1 1 is a schematic front view of the parent carrying system to which the flexibly adjustable carrier system according to the invention with a total of four connected pre-positioning according to the invention, to each of which a manipulator arm according to the invention for the active positioning of a surgical instrument is attached;
  • FIG. 12 is an overall schematic view of the use of the parent support system in a robotic surgical system for use in minimally invasive surgery, such as in a surgical robotic system. laparoscopy.
  • FIG. 13a shows a schematic view of the manipulator arm, on which an instrument guide device according to the invention is mounted on the telescopic boom.
  • FIG. 13b shows a further schematic view of the manipulator arm of FIG. 13a in a different angular position, to which an instrument guide device according to the invention is attached to the telescopic boom.
  • Figures 14a, 14b show schematically as a detail of the embodiment of Figure 13 a and 13 b with respect to the coupling of the guide device 90th
  • FIGS. 15 a, 15 b show a position of the surgical instrument 9 which is shifted relative to FIGS. 14 a and 14 b.
  • FIG 1 a, Figure 2a, Figure 1 b and Figure 2b show a manipulator according to the invention for the active positioning of a surgical instrument 9 including the coupling element 12 between the guide means 10 for performing a surgical instrument 9 and the structural device 4 for the realization of the second axis of rotation.
  • Laparoscopic surgery typically involves 4 surgical instruments, including 3 surgical instruments and 1 camera or endoscope controlled by the operator via the telemanipulator system.
  • According to the invention therefore, preferably 4 versions of a manipulator arm are present in the system.
  • embodiments with 1 to 3 or more than 4 manipulator arms according to the present invention may be provided, each manipulator arm having at least one mounting and positioning device according to the invention.
  • Each manipulator arm has the degree of freedom 3 for realizing pivotal movements of an instrument 9 coupled via an instrument drive unit 15 in the x and y directions and for a translatory movement in the z direction.
  • each manipulator arm consists of a first drive unit 1, which allows a rotational movement of at least ⁇ 120 ° about the pivot axis 3 starting from the zero point position via the rotary joint 2.
  • This rotational movement about the axis of rotation 3 leads to a tilting of the coupled constructive device consisting of the elements 4, 5, 6, 7, 8, 12 by an invariant point 13, the so-called pivotal point.
  • the holding element 4 carries a linear actuator 5, which realizes a second rotational movement about a second pivot point 6, orthogonal to the axis of rotation 3.
  • the coupling element 12 between the holding element 4 and the passage 10 for a surgical instrument 9 is connected to the Pivotal Vietnamese 13 with the implementation 10, that the rotation axis 3 passes through this Pivotal Vietnamese 13 and the implementation of 10 forcibly guided around the axis of rotation 3 performs the tilt.
  • the implementation 10 realizes the access through the abdominal wall 14 of a patient for a surgical instrument 9 via a linear actuator 5 is a force on a coupling guide 7 in the pivot point 55, which realizes a rotation of the coupling guide 7 about the pivot point 6 by at least ⁇ 60 °.
  • the bushing 10 serves as a guide device for the surgical instrument 9 and has a guide shaft 10s, which serves as an instrument guide of the instrument 9 and is preferably formed integrally with the bushing 10.
  • a telescopic boom 8 is arranged.
  • the telescopic boom 8 has an actuator 81.
  • the supply and control lines for the actuator 81 of the telescopic boom 8 are guided along the thrust drive 5 through the holding element 4 and the drive unit 1 therethrough.
  • the supply and control lines for the linear actuator 5 are guided through the holding element 4 and the drive unit 1 therethrough.
  • an instrument drive unit 15 is rotatably arranged, as shown in Fig. 2a and 2b can be seen.
  • the instrument drive unit 15 serves to realize the degree of freedom 4 of an instrument 9 coupled thereto.
  • an instrument drive unit 15 is equipped with corresponding actuators.
  • the supply and control lines for the actuators of the instrument drive unit 15 are guided through the telescopic boom 8, along the linear actuator 5 by the holding element 4 and the drive unit 1 therethrough.
  • a tilting of the coupling element 7 leads to a tilting movement of the attached telescopic boom 8 about the axis of rotation 6 and thus to a tilting of the instrument drive unit 15 and the coupled thereto surgical instrument 9.
  • the resulting position of the instrument longitudinal axis 1 1 corresponds to the axis between an instrument pivot point 56 of the instrument drive unit 15 on the telescopic boom 8 and the Pivotalddling 13.
  • the surgical instrument 9 is forcibly guided by means of the implementation 10 along the instrument longitudinal axis 1 1, the means of the drives 1 and 5 a pivotal tilting movement of the surgical instrument 9 is realized around the Pivotal Vietnamese 13 in mutually orthogonal axes.
  • a telescopic boom 8 is arranged such that the attached to the telescopic boom 8 by means of the instrument drive unit 15 surgical instrument 9 along the instrument longitudinal axis 1 1 through the implementation 10 and thus against the abdominal deck 14 can be moved.
  • the entire structural design can be realized extremely compact.
  • Surgical instruments 9 typically have a diameter of 5 to 10 mm and a length of 250 to 300 mm.
  • the inventive embodiment of the telescopic boom 8 is designed so that a surgical instrument 9 by preferably at least 250mm along its instrument longitudinal axis 1 1 relative to the passage 10 can be moved and that in the case of the maximum depth of immersion of the surgical instrument 9 in the implementation 10 of the telescopic boom 8 its Having minimal length, ie only slightly protrudes beyond the proximal end of the surgical instrument 9, and thus the risk of collision between different surgical instruments 9 and telescopic arms 8 is minimized by manipulator arms arranged side by side due to the Pivotal Gayen.
  • the entire structural design has a significantly reduced space requirement compared to the prior art.
  • the complete length 16 of a manipulator arm according to the invention measured from the drive unit 1 to the pivotal point 13 is preferably less than 500mm.
  • the embodiment with the coupling element 12 for positively guiding the Pivotalainss 13 on the implementation 10 allows the use of the manipulator arm according to the invention even with open, non-minimally invasive performed operations.
  • FIG 3a, Figure 3b and Figure 4 show a manipulator according to the invention for the active positioning of a surgical instrument 9 without mechanical coupling between the guide means 10 for performing a surgical instrument and the structural device 4 for the realization of the second axis of rotation.
  • the tilting movements generated by means of drive units 1 and 5 are not mechanically transmitted to the pivotal point 13 about the axes of rotation 3 and 6.
  • the passage 10 functions in this embodiment as a floating bearing within the abdominal wall 14 as is the case with manual laparoscopy with hand-held instruments.
  • the orientation of the instrument axis between the pivot point 56 of the instrument drive unit 15 and the pivot point of the guide means 10 results in the abdominal wall 14.
  • the pivot point 13 in or on the abdominal wall 14 arises from the resulting force between externally impressed moment and reset Holding moment of the abdominal wall. This is for the tissue of the abdominal wall, especially when using more than one instrument 9 in their own guide device 10, gentler, since no direct mechanically fixed coupled force, by the coupling element 12, on the guide device 10 and thus on the abdominal wall 14th occurs.
  • the telescopic boom 8 serves to displace the instrument 9 through the guide device 10 along the instrument axis.
  • the thrust movement is effected by the displacement of at least 2, preferably 3 telescopic elements 8u, 8v, 8w to each other by an actuator 81 and actuators 82, 83, preferably designed as a toothed belt.
  • the instrument 9 is supported by means of the instrument drive unit 15 in the instrument pivot 56 pivotally on the outermost telescopic element 8w.
  • the resulting instrument axis 1 1 of the instrument 9 is due to the force application point 55 of the thruster 5 on the telescopic boom 8 is not identical to the telescopic longitudinal axis 58. Due to the pivotal arrangement of Instrument drive unit 15 at the outermost telescopic boom 8w and thus the possible pivoting or compensating movement about the instrument pivot 56 must be neither the force application point 55 nor the pivot point 6 of the coupling element 7 on the instrument longitudinal axis 1 1. In particular, the pivotable arrangement of the instrument drive unit 15 about the instrument pivot 56 that the instrument longitudinal axis 1 1 and the telescopic longitudinal axis 58 are mutually variable, wherein the force application point 55 and the instrument pivot 56 are different and influence each other.
  • Figures 5a and 5b show a plan view of two different embodiments of the manipulator arm according to the invention for the active positioning of a surgical instrument.
  • the structural design can preferably be used in a "right-sided” or "left-sided” design.
  • the second drive unit 4 a can lie to the right of the axis of rotation 3 a - right-hand version - or the second drive unit 4 b can be located to the left of the axis of rotation 3 b - left-side design.
  • the generation of the rotation axis 3a, 3b orthogonal rotational movement takes place analogously by the drive unit 5a, 5b.
  • the movement of the surgical instrument 9a, 9b along its instrument longitudinal axis through the passage 10a, 10b takes place through the telescopic boom 8a, 8b.
  • the surgical instrument 9a, 9b itself is mechanically connected to the telescopic boom 8a, 8b by means of an instrument drive unit 15a, 15b.
  • FIG. 6 shows the use of two manipulator arms according to the invention for the active positioning of a surgical instrument in the embodiments "left-sided” and "right-sided” for common use with a single-port trocar 18 with the lead-throughs 18a, 18b, 18c.
  • curved instruments 17a, 17b are preferably used in combination with a left-hand manipulator arm 1b, 4b, 8b and a right-hand manipulator arm 1a, 4a, 8a with the advantage that the surgical instruments 17a, 17b are guided by a common trocar 18 - Which allows access through the abdominal wall 14 of the patient - and each separate bushings 18 a, 18 b of the common trocars 18 can be used.
  • the separate feedthroughs 18a, 18b and 18c of the common trocar 18 are movably tilted relative to the trocar 18 by an elastic material 60. Due to the possibility of using the manipulator arm according to the invention even without the mechanical coupling 12 between the holding element 4 on the manipulator arm and the pivotal point 13 (see FIG. 1a), the use of only one trocar 18 with at least two feedthroughs 18a, 18b is possible.
  • the use of a left-hand manipulator arm 1 b, 4 b, 8 b according to the invention and a right-hand manipulator arm 1 a, 4 a, 8 a according to the invention minimizes the danger of collision between the manipulator arms due to the pivotal tilting movements.
  • the present embodiment has the advantage of principle-based collision avoidance when merging or moving towards each other of the instrument tips in the body of the patient.
  • FIG. 7 shows the structural design of a flexible carrier system or support carrier system 19-26 for preferably up to 4 pre-positioning devices and manipulator arms.
  • the flexible support system can be supported via a coupling point 19 to a parent support system such that the flexible support system can be adjusted about the rotation axis 20 by at least ⁇ 90 ° in an optimal position.
  • the flexible carrier system consists of preferably 4 coupling points 22a..d for the adaptation of up to four Vorpositionier Roaden.
  • the outer coupling points 22a, 22d are connected by the joints 23, 24 with the coupling points 22b, 22c, which can be tilted by up to 30 ° relative to the axis 20.
  • FIG. 8 shows a pre-positioning device 29..38 according to the invention for adaptation to a flexible carrier system (FIG. 7) and for receiving a manipulator arm according to the invention (FIG. 1..4).
  • the Vorpositionier listening is attached by means of a coupling joint 29 to a coupling point (eg 22d) of the flexible support system and allows the rotation of a first Vorpositionieriatas 30 by preferably ⁇ 90 ° relative to the flexible support system, or the coupling point (eg 22d).
  • a second pre-positioning element 32 is arranged rotatable by a further ⁇ 90 ° via a further joint 31 in relation to the first pre-positioning element 30.
  • the axes of rotation of the coupling point 29 and the joint 31 are preferably arranged orthogonal to each other.
  • the second Vorpositionierelement 32 is connected via a further joint 33 with a third Vorpositionierelement 34 such that the third Vorpositionierelement 34 relative to the second Vorpositionierelement 32 is rotatably mounted ⁇ 90 °.
  • the third Vorpositionierelement 34 is connected to a fourth Vorpositionierelement 37 via a hinge 35.
  • the axis of rotation 36 is preferably in each case orthogonal to the axis of rotation of the joint 31 and 33 and allows rotational movements by ⁇ 90 °.
  • the fourth Vorpositionierelement 37 has a coupling point, which allows a rotational movement about the rotation axis 38, orthogonal to the axis of rotation 36.
  • the coupling of the manipulator arm according to the invention as shown in Figures 1, 2, 3, 4, 5a and 5b ..
  • FIG. 9 shows a preferred embodiment for the connection of the flexible mounting and support system 19-26 according to the invention with a pre-positioning device 29-38 according to the invention with, for example, a manipulator arm 1, 2, 3, 4, 8, 10, 15 coupled thereto
  • the manipulator arm is connected to the fourth pre-positioning element 37 of the pre-positioning device in the axis of rotation 38.
  • the structural design is designed such that either a left-side or right-side embodiment of the manipulator arm according to the invention can be connected to the axis of rotation 38 of the pre-positioning.
  • FIG. 10 and FIG. 11 show a constructional embodiment of the surgical robot system according to the invention and in particular of the higher-level carrying system 39-43 on which the flexibly adjustable carrier system 22a-22d according to the invention is coupled by means of the coupling point or coupling carrier connection 19.
  • the parent carrying system allows the optimal pre-positioning of the flexible carrier system 22a - 22d by a horizontal orientation of the preferably mobile executed Base support or fixed bearing 42 to the operating table 48 (see Figure 12) and a vertical orientation by the setting of an optimal angle between the assembly 39 and 40 by the adjustment 41.
  • the Vorpositionier coupled 29d invention. .38d attached and receives the manipulator arms according to the invention at the coupling point 38d.
  • the entire structural design is distinguished from the prior art by the fact that the robotic components are all concentrated in the manipulator arm and therefore claimed the entire structural design compared to the prior art significantly less space and in particular only has a height 43, for example 1447 mm ,
  • FIG. 12 shows a schematic overall view of the use of the higher-level carrying system 39... 42 in a robotic surgical system for use in minimally invasive surgery, such as, for example, laparoscopy.
  • the user can transmit control commands for the actuators of the manipulator arm according to the invention via a suitable data connection 45 to a control unit 46.
  • This is connected via a further data line 49 to the parent carrying system 39..42 and, equipped with a support arm or main support means 39, 40, a connected via the coupling point 19 flexible support system according to the patient position on the operating table 48 via a Coupling point 19 are prepositioned so that the flexible carrier system in conjunction with the Vorpositionier wisdomen allows optimal positioning of the manipulator arms.
  • the image signals via suitable data links 49, 45, 50 of a processing unit 51 are supplied, which prepares the image data for display and via a further data path 52 of a visualization unit 53 supplies.
  • the visualization unit 53 can display both 2D and 3D image data, for example separately, but also combined in a single image or a single image sequence.
  • the control of which image data is to be displayed as is done by the control unit 44 as desired by the operator or surgeon.
  • the control commands generated by the control unit 44 are transmitted to the processing unit 51 by means of the data path 50.
  • the device according to the invention is designed such that at the telescope device an Instrument Insertseinreichtung is mounted, through which the surgical instrument is guided in a plane transverse to the longitudinal extent, wherein the instrument guide means in particular has a guide opening for the variable positioning of the surgical instrument.
  • the additional instrument guiding device is attached to the telescopic device in which the shaft of the surgical instrument and / or endoscope extends.
  • This additional instrument guide device is rigidly connected to the telescope device.
  • the surgical instrument and / or endoscope is forcibly guided around the first axis of rotation when the manipulator arm rotates.
  • the positive guidance is only for movements of the manipulator arm about the first axis of rotation.
  • the additional instrument guide means allows free movement of the surgical instrument and / or endoscope such that there is a resultant instrument axis from the rotation of the instrument drive unit on the telescope means and the location of a first guide means (trocar) as the surgical instrument and / or telescope extends therethrough.
  • FIGS. 13a, 13b, 14a, 14b, 15a, 15b show a manipulator according to the invention for active positioning of a surgical instrument 9 without mechanical coupling between the guide means 10 for performing a surgical instrument 9 and the structural device 4 for implementing the second axis of rotation.
  • FIGS. 13 a and 13 b show an embodiment of the invention which essentially corresponds to that of FIGS. 3 a and 3 b with an instrument guide device 90.
  • the instrument guide device 90 is attached by means of a detachable fastening device 91, in particular in the form of a screw, forcibly guiding the surgical instrument 9 through or within the instrument guiding device 90 upon rotation of the manipulator arm about a first axis of rotation (rotation of the rotary joint 2).
  • the instrument guiding device 90 is structurally designed so that the surgical instrument 9, when the manipulator arm is tilted about a second axis of rotation 2 (rotation about the pivot point 6) within the instrument guide device 90 in a longitudinal opening 92 between the Limits 92a and 92b of the longitudinal opening 92 can move freely in one axis, so that a resulting alignment of the longitudinal axis of the surgical instrument 9 without forced guidance of the instrument pivot 56 and the guide device 10 results.
  • This solution has the advantage that upon rotation of a surgical instrument 9 about a first axis of rotation (rotation about pivot joint 2) the surgical instrument 9 is forcibly guided and the instrument guidance device 90 used for positive guidance on the surgical instrument 9 acting forces are received in the direction of the axis of rotation 6 without mechanically coupling or connecting the instrument lead-through 10 with the manipulator arm.
  • FIG. 13b illustrates the free pivotability of the instrument 9 in the instrument guide device 90 between the boundaries 92a and 92b of the guide opening.
  • Figures 14a, 14b show schematically as a detail of the embodiment of Figure 13 a and 13 b with the instrument guide device 90 which is attached to the telescopic boom 8u by means of a screw, not shown, in the fastening device 8f, 91, preferably designed as a detachable screw or plug connection , Furthermore, the elongated guide opening 92 is shown with its lateral boundaries 92a and 92b, between which the surgical instrument 9 can be moved.
  • Figures 15a, 15b also show diagrammatically the coupling of the instrument guiding device 90 to the telescopic arm 8u for further orientation of the surgical instrument 9 with respect to the longitudinal axis of the telescope 8u, whereby it can be seen that the surgical instrument 9 is movable in position within the instrument guiding device 90 ,
  • the embodiment of the invention according to FIGS. 13 to 15 with the instrument guiding device 90 has the particular advantage that there is no dependence on the mechanical load limit of the trocar or the instrument leadthrough 10. Furthermore, the Instrumenten Resultsseinreichtung 90 allows that sets by the still existing decoupling of the longitudinal axis of the surgical instrument 9 from the longitudinal axis of the telescopic boom 8, a resulting pivot point 13 at the point at which the biomechanical stresses on the abdominal wall by the tilting of the Instrument guide 10 are minimal.
  • the present invention thus relates on the one hand to a mounting and positioning device for a surgical instrument and / or an endoscope, wherein one or more such mounting and positioning devices according to the invention are mounted on a surgical robotic system respectively via coupling points, which coupling points in turn each are interconnected so that the required space of the surgical robotic system is advantageously very low.
  • the particularly compact design results, moreover, from the particularly easy and compact feasibility of the holding and positioning device according to the invention, which can furthermore also be retrofitted to an existing robot system.
  • the guide device for performing a surgical instrument via a coupling element with the structural device for generating the second axis of rotation is rigidly connected.
  • the rotational movement of the rotation axis 1 thus leads to a forced movement of the guide device for performing a surgical instrument about the invariant point in a direction x.
  • the guide means for performing a surgical instrument is not structurally rigidly connected to the structural device for generating the second axis of rotation.
  • the guide means for performing a surgical instrument acts as a floating bearing in the abdominal wall as usual in manual laparoscopy.
  • the surgical instrument is coupled via an instrument drive unit to the telescopic device, which comprises a rotary actuator, by means of which the shaft of the surgical instrument is rotatably varied relative to the starting position about the z-direction.
  • the instrument drive unit preferably has three instrument actuators, by means of which the active unit of the surgical instrument attached to the distal end can be divided into three other degrees of freedom is variable.
  • the instrument drive unit is rotatably arranged via a holding device at the proximal end of the telescope system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Robotics (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Endoscopes (AREA)

Abstract

Die Erfindung beschreibt eine Halterungs- und Positioniervorrichtung eines chirurgischen Instruments und/oder eines Endoskops für die minimal-invasive Chirurgie, insbesondere zur Verwendung innerhalb eines chirurgischen Robotersystems, umfassend eine erste Drehachse (3), um welche ein Halteelement (4) drehbar angeordnet ist, wobei sich die erste Drehachse (3) mit der Längsachse (11) zumindest eines chirurgischen Instruments (9; 17a, 17b) und/oder eines Endoskops (9; 17a, 17b) in einem Pivotalpunkt (13) stets dadurch schneidet, dass an dem Halteelement (4) ein Schubantrieb (5) angebracht ist, welcher eine Instrumentenantriebseinheit (15) um den Pivotalpunkt (13) drehbar anordnet, und wobei eine Teleskopeinrichtung (8) an der Instrumentenantriebseinheit (15) vorgesehen ist, durch welche das chirurgische Instrument (9; 17a, 17b) entlang dessen Längsachse (11) mittels einer Führungseinrichtung (10, 10s) in den Körper derart translatorisch bewegbar ist, dass die Längsachse (11) des chirurgischen Instruments (9; 17a, 17b) gegenüber der Teleskopeinrichtung (8) variabel einstellbar ist.

Description

Halterungs- und Positioniervorrichtung eines chirurgischen Instruments und/oder eines Endoskops für die minimal-invasive Chirurgie sowie ein chirurgisches Robotersystem
Die vorliegende Erfindung betrifft eine Halterungs- und Positionierungsvorrichtung eines chirurgischen Instruments und ein chirurgisches Robotersystem bzw. Telemanipulator für die minimal-invasive Chirurgie und insbesondere der Laparoskopie.
Robotersysteme oder auch Telemanipulatoren für die minimal-invasive Chirurgie, insbesondere für die laparoskopische Chirurgie, ersetzen die vom Chirurgen üblicherweise manuell geführten Operations-Instrumente, wie beispielsweise chirurgische Instrumente, Endoskop bzw. Kamera, durch eine motorische Positionierung. Die einzusetzenden Operations-Instrumente werden über einen bzw. mehrere Trokare in das Innere eines Patienten geführt. Als Trokar wird ein Instrument bezeichnet, mit dessen Hilfe der Chirurg in der minimal-invasiven Chirurgie ein Zugang zu der Körperhöhle des Patienten (üblicherweise des Bauchraumes oder des Brustraumes) schafft, wobei der Zugang durch ein Rohr, einen sog. Tubus, offengehalten wird. Die in dem Robotersystem vorgesehene Halterung einer Bewegungsmechanik und Steuerungslogik ermöglicht die Bewegung der Operations-Instrumente um einen Pivotalpunkt herum in 2 Freiheitsgraden (x, y) sowie eine translatorische Bewegung der Operations- Instrumente entlang der Instrumentenachse (z). Als Pivotalpunkt wird der invariante Punkt der Bewegung in 2 Freiheitsgraden (x, y) bezeichnet. Dieser Pivotalpunkt liegt idealerweise im oder in der Nähe des Durchstoßpunktes des Trokars durch die Bauchdecke des Patienten. Die Steuerungslogik eines Robotersystems muss den Pivotalpunkt kennen bzw. der Pivotalpunkt muss durch die konstruktive Ausführung der Bewegungsmechanik definiert sein, um eine Bewegung des Operations- Instrumentes so zu begrenzen, dass die biomechanische Belastung des Gewebes um den Trokar herum möglichst gering ist.
Aus dem Stand der Technik bekannte Robotersysteme basieren auf Roboterarmen mit einer aktiven Bewegung eines Operations-Instrumentes, welche einerseits einen großen Bauraum benötigen und wobei aufgrund der typischen Ausführungsformen durch die Bewegungsabläufe der Roboterarme Kollisionen kaum zu vermeiden sind.
Während eines minimal-invasiven chirurgischen Eingriffs werden mindestens zwei, in der Regel drei bis vier chirurgische Instrumente, wie Greifer, Schere, Nadelhalter, Sezierer, sowie eine Kamera bzw. ein Endoskop verwendet, die jeweils über einen gesonderten Trokar in das Körperinnere des Patienten geführt werden. Das bedeutet, dass für jedes eingesetzte Operations-Instrument ein Roboterarm vorhanden ist, der die Positionen der Roboterarme und die aktive Bewegung des Instruments steuert.
Nachteil der Lösungen aus dem Stand der Technik ist, dass aufgrund der raumeinnehmenden Konstruktion die Positionierbarkeit der Instrumente eingeschränkt ist und der Zugang zum Patienten für das OP-Personal, z.B. den assistierenden Arzt und die OP-Schwester, nur eingeschränkt möglich ist.
Ein weiterer Nachteil ist, dass der invariante Punkt bei bekannten Systemen durch eine mechanische Kopplung zwischen Trokar und Roboterarm immer zwingend gegeben ist.
Aufgabe der vorliegenden Erfindung ist es daher, einen Manipulatorarm zur Positionierung eines chirurgischen Instruments und ein chirurgisches Robotersystem bereitzustellen, die bzw. das eine hohe Variabilität vorsieht und nur einen geringen Bauraum benötigt bzw. kleiner und leichter in seiner Ausführung ist und dabei wahlweise die mechanische Kopplung des Trokars mit dem Manipulatorarm ermöglicht bzw. auch ohne diese mechanische Kopplung des Trokars mit dem Manipulatorarm auskommt.
Eine weitere Aufgabe der vorliegenden Erfindung ist es, ein Robotersystem bereitzustellen, das eine größeren Einstellbereich der Vorpositionierung für eine Halterungsvorrichtung eines Manipulatorarmes bietet. Bei Verwendung von zwei oder mehr Halterungsvorrichtungen für Manipulatorarme sind damit flexiblere Positionierungsmöglichkeiten relativ zueinander möglich.
Diese Aufgaben werden durch die vorliegende Erfindung gemäß den Merkmalen von Anspruch 1 durch eine Halterungs- und Positioniervorrichtung eines chirurgischen Instruments und/oder eines Endoskops für die minimal-invasive Chirurge, insbesondere zur Verwendung innerhalb eines chirurgischen Robotersystems, gelöst, welche eine erste Drehachse umfasst, um welche ein Halteelement drehbar angeordnet ist, wobei sich die erste Drehachse mit der Längsachse zumindest eines chirurgischen Instruments und/oder eines Endoskops in einem Pivotalpunkt stets dadurch schneidet, dass an dem Halteelement ein Schubantrieb angebracht ist, welcher eine Instrumentenantriebseinheit um den Pivotalpunkt drehbar anordnet, und wobei eine Teleskopeinrichtung an der Instrumentenantriebseinheit vorgesehen ist, durch welche das chirurgische Instrument und/oder das
Endoskop entlang dessen Längsachse mittels einer Führungseinrichtung in den Körper derart translatorisch bewegbar ist, dass die Längsachse des
chirurgischen Instruments und/oder des Endoskops gegenüber der
Teleskopeinrichtung variabel einstellbar ist.
Ferner werden die Aufgaben durch die vorliegende Erfindung gemäß den Merkmalen von Anspruch 1 1 durch ein chirurgisches Robotersystem mit mehreren Roboterarmen gelöst, an welchen zumindest ein chirurgisches Instrument und/oder ein Endoskop für die minimal-invasive Chirurgie anordenbar ist, zumindest zwei Halterungs- und Positioniervorrichtungen an einem im wesentlichen quer zu den Halterungs- und Positioniervorrichtungen verlaufenden Halterungsträgersystem angebracht sind, wobei das Halterungsträgersystem aus jeweils einer Koppelstelle für jede Halterungs- und Positioniervorrichtung aufgebaut ist, und wobei die Koppelstellen jeweils fest oder über Gelenke miteinander verbunden sind.
Weitere vorteilhafte Ausgestaltungen der Erfindung sowie des erfindungsgemäßen chirurgischen Robotersystems ergeben sich aus den Unteransprüchen analog zum Manipulatorarm zur aktiven Positionierung für ein chirurgisches Instrument. Dies ergibt sich insbesondere dadurch, dass der erfindungsgemäße Manipulatorarm zur aktiven Positionierung eines chirurgischen Instrumentes mit einem Robotersystem kombiniert bzw. nachgerüstet werden kann. Erfindungsgemäß können die Begriffe Robotersystem und Telemanipulator synonym verwendet werden. Es ist von Vorteil, wenn die Instrumentenantriebseinheit an der Teleskopeinrichtung mittels eines Instrumentendrehpunkts derart drehbar gelagert ist, dass die Teleskoplängsachse der Teleskopeinrichtung gegenüber der Längsachse des chirurgischen Instruments und/oder des Endoskops in Abhängigkeit des Schubantriebs (5) variabel ist.
Eine weitere Ausführungsform der Erfindung ist derart ausgebildet, dass die Teleskopeinrichtung mehrere Teleskopelemente aufweist, wobei der Instrumentendrehpunkt an dem Teleskopelement angeordnet ist, welches den größten Verstellbereich aufweist.
Gemäß einer bevorzugten Ausführungsform weist die Führungseinrichtung zumindest eine Instrumentenführung auf, in welcher sich der Schaft des chirurgischen Instruments und/oder des Endoskops hindurch erstreckt.
Ein besonderer Vorteil besteht darin, dass der Schubantrieb derart an der Teleskopeinrichtung mittels eines Schubantriebsaufnahmepunkt angebracht ist, dass sich die Drehbewegung der Instrumententrägereinheit um den Pivotalpunkt dadurch ergibt, dass eine Kopplungseinrichtung einen Kopplungsdrehpunkt aufweist, welcher mit dem Haltelement fest verbunden ist. Die Drehung der Instrumententrägereinheit mit den Instrumenten und/oder einem Endoskop sowohl um den Pivotalpunkt als auch um den Kopplungsdrehpunkt ermöglicht es, dass das Halteelement gegenüber dem Pivotalpunkt im wesentlichen konstant angeordnet ist.
Gemäß einer bevorzugten Ausführungsform ist die Halterungs- und Positioniervorrichtung derart ausgelegt, dass die Instrumentenantriebseinheit das chirurgische Instrument und/oder das Endoskop in mehreren Freiheitsgraden bewegt, wobei die Ansteuerung der Instrumentenantriebseinheit mittels Steuer- und Versorgungsleitungen, welche durch das Haltelement und den Schubantrieb hindurch geführt werden, über eine Steuereinheit durch den Operateur erfolgt.
Die erste Drehachse wird insbesondere dadurch gebildet, dass eine Antriebseinheit vorgesehen ist, welche das chirurgische Instrument und/oder Endoskop steuert, wobei die Antriebseinheit an einem Roboterarm anbringbar ist, und wobei ein Drehgelenk zwischen der Antriebseinheit und dem Halteelement vorgesehen ist. Eine weitere Ausführungsform ist derart ausgebildet, dass ein Koppelelement am Halteelement angebracht ist, welches am distalen Ende am Pivotalpunkt mit einer Instrumentenführung drehbar verbunden ist. Dadurch wird der Pivotalpunkt gegenüber dem Halteelement zusätzlich mechanisch vorgegeben, sodass eine zusätzliche Fixierung des Pivotalpunkts ermöglicht wird.
Des Weiteren kann die vorliegende Erfindung dadurch erweitert werden, dass mehrere chirurgische Instrumente durch einen einzigen Trokar hindurch in das Körperinnere geführt werden, wobei für jedes chirurgische Instrument eine separate Instrumentenantriebseinheit vorgesehen ist, und wobei insbesondere die chirurgischen Instrumente in Längsrichtung bogenförmig ausgebildet ist.
Wenn das Halteelement mittels einer Vorpositioniereinrichtung in seiner Ausgangslage anpassbar ist, wobei die Vorpositioniereinrichtung ein oder mehrere Vorpositionierelemente aufweist, welche jeweils über zumindest eine Drehachse in ihrer Position voreinstellbar sind, wobei insbesondere vier Vorpositionierelemente mit zueinander in Reihe variablen Positionen voreinstellbar sind, so kann die Halterungsund Positioniervorrichtung in einer gewünschten Position voreingestellt werden.
Das chirurgische Robotersystem gemäß der Erfindung kann ferner dadurch weitergebildet werden, dass das Halterungsträgersystem mittels einer Koppelträgerverbindung mit einer im wesentlichen vertikal verlaufenden Hauptträgereinrichtung zur Abstützung gegenüber einem Festlager verbunden ist, welches beweglich angeordnet sein kann oder gegenüber einem feststehenden oder verfahrbaren Operationstisch vorgegeben ist.
Gemäß einer weiteren Ausbildungsform der Erfindung weist das chirurgische Robotersystem eine zentrale Steuereinheit auf, welche mit jeder der Halterungs- und Positioniervorrichtungen mit den entsprechenden chirurgischen und/oder Endoskopen in Verbindung steht und mit einer Bedieneinheit zur Eingabe von Befehlen in Form von Steuerdaten eines Operateurs gekoppelt ist, welche mittels einer Visualisierungseinheit Bilddaten von einem oder mehrerer Endoskopen darstellt.
Darüber hinaus ist es von Vorteil, dass die Steuereinheit und die Bedieneinheit mit einem verfahrbaren Operationstisch gekoppelt sind, wobei sowohl die Bilddaten als auch die Steuerdaten in Abhängigkeit der vorgegebenen Positionen der Halterungsund Positioniervorrichtung sowie des Operationstisches verarbeitet werden. Die vorliegende Erfindung wird rein beispielhaft durch die beigefügten Figuren realisiert. Es zeigt:
Figur 1 a eine schematische Ansicht des erfindungsgemäßen Manipulatorarmes zur aktiven Positionierung eines chirurgischen Instruments, welches über eine schwenkbar gelagerte Antriebseinheit mit einem Teleskopausleger verbunden ist, inklusive des Koppelelementes zwischen der Führungseinrichtung zur Durchführung eines chirurgischen Instruments und der konstruktiven Vorrichtung zur Realisierung der zweiten Drehachse;
Figur 1 b eine schematische Ansicht des erfindungsgemäßen Manipulatorarmes zur aktiven Positionierung eines chirurgischen Instruments, welches über eine schwenkbar gelagerte Antriebseinheit mit einem Teleskopausleger verbunden ist, inklusive des Koppelelementes zwischen der Führungseinrichtung zur Durchführung eines chirurgischen Instruments und der konstruktiven Vorrichtung zur Realisierung der zweiten Drehachse;
Figur 2a eine weitere schematische Ansicht des erfindungsgemäßen Manipulatorarmes zur aktiven Positionierung eines chirurgischen Instruments, welches über eine schwenkbar gelagerte Antriebseinheit mit einem Teleskopausleger verbunden ist, inklusive des Koppelelementes zwischen der Führungseinrichtung zur Durchführung eines chirurgischen Instruments und der konstruktiven Vorrichtung zur Realisierung der zweiten Drehachse, aus welcher die Schubbewegung zur Erzeugung der Drehbewegung mittels Koppelgelenk um die zweite Drehachse ersichtlich wird;
Figur 2b eine weitere schematische Ansicht des erfindungsgemäßen Manipulatorarmes zur aktiven Positionierung eines chirurgischen Instruments, welches über eine schwenkbar gelagerte Antriebseinheit mit einem Teleskopausleger verbunden ist, inklusive des Koppelelementes zwischen der Führungseinrichtung zur Durchführung eines chirurgischen Instruments und der konstruktiven Vorrichtung zur Realisierung der zweiten Drehachse, aus welcher die Schubbewegung zur Erzeugung der Drehbewegung mittels Koppelgelenk um die zweite Drehachse ersichtlich wird;
Figur 3a eine schematische Ansicht des erfindungsgemäßen Manipulatorarmes zur aktiven Positionierung eines chirurgischen Instruments, welches über eine schwenkbar gelagerte Antriebseinheit mit einem Teleskopausleger verbunden ist, ohne das Koppelelement gemäß Figur 1 a;
Figur 3b eine schematische Ansicht des erfindungsgemäßen Manipulatorarmes zur aktiven Positionierung eines chirurgischen Instruments, welches über eine schwenkbar gelagerte Antriebseinheit mit einem Teleskopausleger verbunden ist, ohne das Koppelelement gemäß Figur 13;
Figur 4 eine schematische Ansicht des erfindungsgemäßen Manipulatorarmes zur aktiven Positionierung eines chirurgischen Instruments, ohne das Koppelelement gemäß Figur 1 , aus welcher die Schubbewegung zur Erzeugung der Drehbewegung mittels Koppelgelenk um die zweite Drehachse sowie die Ankopplung der Instrumentenantriebseinheit ersichtlich wird;
Figur 5a eine Draufsicht auf den erfindungsgemäßen Manipulatorarmes zur aktiven Positionierung eines chirurgischen Instruments in der Ausführungsform Teleskoparm rechts;
Figur 5b eine Draufsicht auf den erfindungsgemäßen Manipulatorarmes zur aktiven Positionierung eines chirurgischen Instruments in der Ausführungsform Teleskoparm links;
Figur 6 eine schematische Ansicht des erfindungsgemäßen Manipulatorarmes zur aktiven Positionierung eines chirurgischen Instruments in den Ausführungsformen Teleskoparm rechts und Teleskoparm links zur gemeinsamen Verwendung mit einem Single-Port-Trokar;
Figur 7 eine schematische Ansicht der erfindungsgemäßen, flexibel einstellbaren Trägerstruktur;
Figur 8 eine schematische Ansicht der erfindungsgemäßen Vorpositionierungseinrichtung;
Figur 9 eine schematische Ansicht der erfindungsgemäßen flexibel einstellbaren Trägerstruktur mit einer angeschlossenen erfindungsgemäßen Vorpositionierungseinrichtung an welcher ein erfindungsgemäßer Manipulatorarm zur aktiven Positionierung eines chirurgischen Instrumentes befestigt ist; Figur 10 eine schematische Seitenansicht eines übergeordneten Tragesystems an welcher das erfindungsgemäße flexibel einstellbare Trägersystem mit insgesamt vier angeschlossenen erfindungsgemäßen Vorpositionierungseinrichtung, an welcher jeweils ein erfindungsgemäßer Manipulatorarm zur aktiven Positionierung eines chirurgischen Instrumentes befestigt ist;
Figur 1 1 eine schematische Frontansicht des übergeordneten Tragesystems an welcher das erfindungsgemäße flexibel einstellbare Trägersystem mit insgesamt vier angeschlossenen erfindungsgemäßen Vorpositionierungseinrichtung, an welcher jeweils ein erfindungsgemäßer Manipulatorarm zur aktiven Positionierung eines chirurgischen Instrumentes befestigt ist;
Figur 12 eine schematische Gesamtansicht der Verwendung des übergeordneten Tragesystems in einem chirurgischen Robotersystem für den Einsatz in der minimal- invasiven Chirurgie, wie z.B. der Laparoskopie.
Figur 13a eine schematische Ansicht des Manipulatorarmes, an welchem eine erfindungsgemäße Instrumenten-Führungseinrichtung am Teleskopausleger angebracht ist.
Figur 13b eine weitere schematische Ansicht des Manipulatorarmes von Figur 13 a in einer anderen Winkelstellung, an welchem eine erfindungsgemäße Instrumenten- Führungseinrichtung am Teleskopausleger angebracht ist.
Figuren 14a, 14b zeigen schematisch als Ausschnitt die Ausführungsform von Figur 13 a und 13 b hinsichtlich der Ankopplung der Führungseinrichtung 90.
Figuren 15a, 15b zeigen eine gegenüber Figur 14a und 14b verschobene Position des chirurgischen Instrumentes 9.
Die vorliegende Erfindung wird nachfolgend beispielhaft im Detail unter Bezugnahme auf die Figuren beschrieben:
Figur 1 a, Figur 2a, Figur 1 b und Figur 2b zeigen einen erfindungsgemäßen Manipulatorarm zur aktiven Positionierung eines chirurgischen Instruments 9 inklusive des Koppelelementes 12 zwischen der Führungseinrichtung 10 zur Durchführung eines chirurgischen Instruments 9 und der konstruktiven Vorrichtung 4 zur Realisierung der zweiten Drehachse. Während eines minimal-invasiven, laparoskopischen Eingriffs kommen in der Regel 4 Operations-Instrumente zum Einsatz, hiervon 3 chirurgische Instrumente und 1 Kamera bzw. Endoskop, die über das Telemanipulatorsystem vom Operateur gesteuert werden. Erfindungsgemäß sind demnach vorzugsweise 4 Ausführungen eines Manipulatorarmes im System vorhanden. Es versteht sich jedoch, dass auch Ausführungsformen mit 1 bis 3 oder mehr als 4 Manipulatorarmen gemäß der vorliegenden Erfindung vorgesehen sein können, wobei jeder Manipulatorarm zumindest eine Halterungs- und Positioniervorrichtung gemäß der Erfindung aufweist. Jeder Manipulatorarm weist den Freiheitsgrad 3 auf zur Realisierung von Schwenkbewegungen eines über eine Instrumentenantriebseinheit 15 angekoppelten Instrumentes 9 in x- und y-Richtung sowie für eine translatorische Bewegung in z-Richtung. Dazu besteht jeder Manipulatorarm aus einer ersten Antriebseinheit 1 , die über das Drehgelenk 2 eine Drehbewegung von mindestens ±120° um die Drehachse 3 ausgehend von der Nullpunktlage ermöglicht. Diese Drehbewegung um die Drehachse 3 führt zu einer Verkippung der angekoppelten konstruktiven Vorrichtung bestehend aus den Elementen 4, 5, 6, 7, 8, 12 um einen invarianten Punkt 13, dem sogenannten Pivotalpunkt. Das Haltelement 4 trägt einen Schubantrieb 5, welcher eine zweite Drehbewegung um einen zweiten Drehpunkt 6, orthogonal zur Drehachse 3 realisiert. Das Koppelelement 12 zwischen dem Halteelement 4 und der Durchführung 10 für ein chirurgisches Instrument 9 ist am Pivotalpunkt 13 so mit der Durchführung 10 verbunden, dass die Drehachse 3 durch diesen Pivotalpunkt 13 geht und die Durchführung 10 zwangsgeführt um die Drehachse 3 die Verkippung ausführt. Die Durchführung 10 realisiert den Zugang durch die Bauchdecke 14 eines Patienten für ein chirurgisches Instrument 9. Über einen Schubantrieb 5 erfolgt eine Krafteinleitung auf eine Koppelführung 7 im Drehpunkt 55, welche eine Rotation der Koppelführung 7 um den Drehpunkt 6 um mindestens ±60° realisiert. Insbesondere dient die Durchführung 10 als Führungseinrichtung für das chirurgische Instrument 9 und weist einen Führungschsft 10s auf, der als Instrumentenführung des Instruments 9 dient und bevorzugt einstückig mit der Durchführung 10 ausgebildet ist.
An der Koppelführung 7 ist ein Teleskopausleger 8 angeordnet. Der Teleskopausleger 8 weist einen Stellantrieb 81 auf. Die Versorgungs- und Steuerleitungen für den Stellantrieb 81 des Teleskopauslegers 8 werden entlang des Schubantriebes 5 durch das Haltelement 4 und die Antriebseinheit 1 hindurch geführt. Die Versorgungs- und Steuerleitungen für den Schubantrieb 5 werden durch das Haltelement 4 und die Antriebseinheit 1 hindurch geführt. Am Teleskopausleger 8 ist einen Instrumentenantriebseinheit 15 drehbar angeordnet, wie aus Fig. 2a bzw. 2b ersichtlich ist. Die Instrumentenantriebseinheit 15 dient zur Realisierung des Freiheitsgrades 4 eines daran angekoppelten Instrumentes 9. Dazu ist eine Instrumentenantriebseinheit 15 mit entsprechenden Stellantrieben ausgestattet. Die Versorgungs- und Steuerleitungen für die Stellantriebe der Instrumentenantriebseinheit 15 werden über den Teleskopausleger 8, entlang des Schubantriebes 5 durch das Haltelement 4 und die Antriebseinheit 1 hindurch geführt.
Eine Verkippung des Koppelelementes 7 führt zu einer Kippbewegung des daran befestigten Teleskopauslegers 8 um die Drehachse 6 und damit zu einer Verkippung der Instrumentenantriebseinheit 15 und des daran gekoppelten chirurgischen Instrumentes 9. Dies führt zu einer Kippbewegung der Durchführung 10 in einer orthogonalen Achse zur Drehachse 3 um den Pivotalpunkt 13 (siehe Figur 2a). Die resultierende Lage der Instrumentenlängsachse 1 1 entspricht der Achse zwischen einem Instrumentendrehpunkt 56 der Instrumentenantriebseinheit 15 am Teleskopausleger 8 und dem Pivotalpunkt 13. Das chirurgische Instrument 9 wird mittels der Durchführung 10 entlang der Instrumentenlängsachse 1 1 derart zwangsgeführt, das mittels der Antriebe 1 und 5 eine pivotale Kippbewegung des chirurgischen Instrumentes 9 um den Pivotalpunkt 13 in orthogonal zueinander liegenden Achsen realisiert wird. An der Koppelführung 7 ist ein Teleskopausleger 8 derart angeordnet, dass das am Teleskopausleger 8 mittels der Instrumentenantriebseinheit 15 befestigte chirurgische Instrument 9 entlang der Instrumentenlängsachse 1 1 durch die Durchführung 10 und damit gegenüber der Bauchdeck 14 verschoben werden kann. Die gesamte konstruktive Ausführung kann äußerst kompakt realisiert werden. Chirurgische Instrumente 9 weisen typischerweise einen Durchmesser von 5 bis 10mm und eine Länge von 250 bis 300mm auf. Die erfindungsgemäße Ausführungsform des Teleskopauslegers 8 ist so gestaltet, das ein chirurgisches Instrument 9 um vorzugsweise mindestens 250mm entlang seiner Instrumentenlängsachse 1 1 gegenüber der Durchführung 10 verschoben werden kann und das im Falle der maximalen Eintauchtiefe des chirurgischen Instrumentes 9 in die Durchführung 10 der Teleskopausleger 8 seine minimalste Länge aufweist, d.h. nur unwesentlich über das proximale Ende des chirurgischen Instrumentes 9 hinausragt, und damit die Kollisionsgefahr zwischen verschiedenen chirurgischen Instrumenten 9 bzw. Teleskopauslegern 8 von nebeneinander angeordneten Manipulatorarmen aufgrund der auszuführenden Pivotalbewegungen minimiert wird. Die gesamte konstruktive Ausführung weist im Vergleich zum Stand der Technik einen deutlich minimierten Bauraumbedarf aus. Die komplette Baulänge 16 eines erfindungsgemäßen Manipulatorarmes gemessen von der Antriebseinheit 1 bis zum Pivotalpunkt 13 beträgt vorzugsweise weniger als 500mm. Die Ausführung mit dem Koppelelement 12 zur Zwangsführung des Pivotalpunktes 13 an der Durchführung 10 ermöglicht den Einsatz des erfindungsgemäßen Manipulatorarmes auch bei offenen, nicht-minimal-invasiv ausgeführten Operationen.
Figur 3a, Figur 3b und Figur 4 zeigen einen erfindungsgemäßen Manipulatorarm zur aktiven Positionierung eines chirurgischen Instruments 9 ohne mechanische Kopplung zwischen der Führungseinrichtung 10 zur Durchführung eines chirurgischen Instruments und der konstruktiven Vorrichtung 4 zur Realisierung der zweiten Drehachse. Gemäß dieser Ausführungsform werden die mittels Antriebseinheiten 1 und 5 erzeugten Kippbewegungen um die Drehachsen 3 und 6 nicht mechanisch auf den Pivotalpunkt 13 übertragen. Die Durchführung 10 fungiert in dieser Ausführungsform als Loslager innerhalb der Bauchdecke 14 wie es auch bei der manuellen Laparoskopie mit handgeführten Instrumenten der Fall ist. In dieser Ausführungsform resultiert die Orientierung der Instrumentenachse zwischen dem Drehpunkt 56 der Instrumentenantriebseinheit 15 und dem Drehpunkt der Führungseinrichtung 10 in der Bauchdecke 14. Der Pivotpunkt 13 in oder an der Bauchdecke 14 stellt sich aus der resultierenden Kraft zwischen von außen eingeprägten Moment und Rückstell- bzw. Haltemoment der Bauchdecke ein. Dies ist für das Gewebe der Bauchdecke, insbesondere bei der Verwendung von mehr als einem Instrumentes 9 in jeweils einer eigenen Führungseinrichtung 10, schonender, da keine direkte mechanisch fix gekoppelte Krafteinwirkung, durch das Koppelelement 12, auf die Führungseinrichtung 10 und damit auf die Bauchdecke 14 auftritt.
Der Teleskopausleger 8 dient zur Verschiebung des Instrumentes 9 durch die Führungseinrichtung 10 entlang der Instrumentenachse. Die Schubbewegung erfolgt durch das Verschieben von mindestens 2, vorzugsweise 3 Teleskopelementen 8u, 8v, 8w zueinander durch einen Stellantrieb 81 und Stellelementen 82, 83, vorzugsweise als Zahnriemen ausgeführt. Das Instrument 9 ist mittels der Instrumentenantriebseinheit 15 in dem Instrumentendrehpunkt 56 schwenkbar am äußersten Teleskopelement 8w gehaltert.
Die resultierende Instrumentenachse 1 1 des Instruments 9 ist aufgrund des Krafteinleitungspunktes 55 der Schubeinrichtung 5 am Teleskopausleger 8 nicht identisch mit der Teleskoplängsachse 58. Durch die schwenkbare Anordnung der Instrumentenantriebseinheit 15 am äußersten Teleskopausleger 8w und die damit mögliche Schwenk- bzw. Ausgleichsbewegung um den Instrumentendrehpunkt 56 müssen weder der Krafteinleitungspunkt 55 noch der Drehpunkt 6 des Koppelelementes 7 auf der Instrumentenlängsachse 1 1 liegen. Insbesondere ermöglicht die schwenkbare Anordnung der Instrumentenantriebseinheit 15 um den Instrumentendrehpunkt 56, dass die Instrumentenlängsachse 1 1 und die Teleskoplängsachse 58 zueinander variabel sind, wobei der Krafteinleitungspunkt 55 und der Instrumentendrehpunkt 56 unterschiedlich sind und sich gegenseitig beeinflussen.
Durch das Weglassen des Koppelelementes 12 ist die Führung von zwei chirurgischen Instrumenten 9 durch eine gemeinsame Durchführung 10 mittels zwei erfindungsgemäßer Manipulatorarme möglich und stellt gegenüber dem Stand der Technik eine wesentliche Verbesserung und erhöhte Flexibiltät dar.
Figur 5a und 5b zeigen eine Draufsicht auf zwei verschiedene Ausführungen des erfindungsgemäßen Manipulatorarmes zur aktiven Positionierung eines chirurgischen Instrumentes. Die konstruktive Ausführung kann vorzugsweise in einer „rechtsseitigen" oder„linksseitigen" Ausführung genutzt werden. Ausgehend von der ersten Antriebseinheit 1 a, 1 b mit dem Drehgelenk 2a, 2b kann die zweite Antriebseinheit 4a rechts von der Drehachse 3a liegen - rechtsseitige Ausführung - bzw. kann die zweite Antriebseinheit 4b links von der Drehachse 3b liegen - linksseitige Ausführung. Die Erzeugung der zur Drehachse 3a, 3b orthogonalen Drehbewegung erfolgt analog durch die Antriebseinheit 5a, 5b. Die Bewegung des chirurgischen Instrumentes 9a, 9b entlang seiner Instrumentenlängsachse durch die Durchführung 10a, 10b erfolgt durch den Teleskopausleger 8a, 8b. Das chirurgische Instrument 9a, 9b selbst ist mittels einer Instrumentenantriebseinheit 15a, 15b mit dem Teleskopausleger 8a, 8b mechanisch verbunden.
Figur 6 zeigt die Verwendung von zwei erfindungsgemäßen Manipulatorarmen zur aktiven Positionierung eines chirurgischen Instruments in den Ausführungsformen „linksseitig" und„rechtsseitig" zur gemeinsamen Verwendung mit einem Single-Port- Trokar 18 mit den Durchführungen 18a, 18b, 18c. Vorzugsweise kommen in dieser Konfiguration gekrümmte Instrumente 17a, 17b in Kombination mit einem linksseitigen Manipulatorarm 1 b, 4b, 8b und einem rechtsseitigen Manipulatorarm 1 a, 4a, 8a zum Einsatz mit dem Vorteil, das die chirurgischen Instrumente 17a, 17b durch einen gemeinsamen Trokar 18 - welcher den Zugang durch die Bauchdecke 14 des Patienten ermöglicht - und jeweils separaten Durchführungen 18a, 18b des gemeinsamen Trokars 18 genutzt werden können. Die separaten Durchführungen 18a, 18b und 18c des gemeinsamen Trokars 18 sind relativ zum Trokar 18 durch ein elastisches Material 60 beweglich kippbar gelagert. Durch die Möglichkeit den erfindungsgemäßen Manipulatorarm auch ohne die mechanische Kopplung 12 zwischen dem Halteelement 4 am Manipulatorarm und dem Pivotalpunkt 13 (siehe Figur 1 a) zu nutzen, ist die Verwendung von nur einem Trokar 18 mit mindestens zwei Durchführungen 18a, 18b möglich. Die Verwendung eines erfindungsgemäßen linksseitigen Manipulatorarmes 1 b, 4b, 8b und eines erfindungsgemäßen rechtsseitigen Manipulatorarmes 1 a, 4a, 8a kann die Kollisionsgefahr zwischen den Manipulatorarmen aufgrund der pivotalen Kippbewegungen minimiert werden.
Aufgrund der vorzugsweisen Verwendung von gekrümmten Instrumenten 17a und 17b in einem Single-Port-Trokar 18 führt eine Relativbewegung 62a, 62b der beiden Instrumente aufeinander zu, z.B. um im Operationsfeld Gewebe mittels einer Naht zusammenzufügen, zu einer Relativbewegung 61 a, 61 b der beiden außerhalb des Patienten liegenden Manipulatorarme voneinander weg. Damit kann keine Kollision zwischen den Maipulatorarmen stattfinden.
Aus dem Stand der Technik ist die Verwendung von gekreuzten Instrumenten bei der Single-Port-Operationstechnik bekannt. Im Gegensatz dazu weist die hier vorliegende Ausführung den Vorteil der Prinzip bedingten Kollisionsvermeidung beim Zusammenführen bzw. Aufeinanderzubewegen der Instrumentenspitzen im Körper des Patienten auf.
Figur 7 zeigt die konstruktive Ausführung eines flexiblen Trägersystems bzw. Halterungsträgersystem 19-26 für vorzugsweise bis zu 4 Vorpositioniereinrichtungen und Manipulatorarmen. Das flexible Trägersystem kann über eine Koppelstelle 19 an ein übergeordnetes Tragesystem derart gehaltert werden, das das flexible Trägersystem um die Drehachse 20 um mindestens ±90° in einer optimalen Position eingestellt werden kann. Das flexible Trägersystem besteht aus vorzugsweise 4 Koppelstellen 22a..d für die Adaption von bis zu vier Vorpositioniereinrichtungen. Die äußeren Koppelstellen 22a, 22d sind durch die Gelenke 23, 24 so mit den Koppelstellen 22b, 22c verbunden, das diese um bis zu 30° gegenüber der Achse 20 verkippt werden können. Die gesamte konstruktive Ausführung ist auf minimalen Bauraum 25, 26 von in etwa 415 mm bzw. 350 mm als beispielhafte Ausführungsform optimiert und kann vorzugsweise so ausgeführt werden, dass beispielsweise die Breite des flexiblen Trägersystems maximal 700mm betragen kann. Figur 8 zeigt eine erfindungsgemäße Vorpositioniereinrichtung 29..38 zur Adaption an ein flexibles Trägersystem (Figur 7) und zur Aufnahme eines erfindungsgemäßen Manipulatorarmes (Figur 1..4). Die Vorpositioniereinrichtung wird mittels eines Koppelgelenkes 29 an eine Koppelstelle (z.B. 22d) des flexiblen Trägersystems angebracht und ermöglicht die Verdrehung eines ersten Vorpositionierelementes 30 um vorzugsweise ±90° gegenüber dem flexiblen Trägersystem, bzw. der Koppelstelle (z.B. 22d). Ein zweites Vorpositionierelement 32 ist über ein weiteres Gelenk 31 gegenüber dem ersten Vorpositionierelement 30 um weitere ±90° drehbar angeordnet. Die Drehachsen der Koppelstelle 29 und des Gelenkes 31 sind vorzugsweise orthogonal zueinander angeordnet. Das zweite Vorpositionierelement 32 ist über ein weiteres Gelenk 33 mit einem dritten Vorpositionierelement 34 derart verbunden, dass das dritte Vorpositionierelement 34 gegenüber dem zweiten Vorpositionierelement 32 um ±90° drehbar gelagert ist. Das dritte Vorpositionierelement 34 ist mit einem vierten Vorpositionierelement 37 über ein Drehgelenk 35 verbunden. Die Drehachse 36 liegt dabei vorzugsweise jeweils orthogonal zur Drehachse des Gelenkes 31 und 33 und ermöglicht Drehbewegungen um ±90°. Das vierte Vorpositionierelement 37 besitzt eine Koppelstelle, welche eine Drehbewegung um die Drehachse 38, orthogonal zur Drehachse 36 ermöglicht. An der Drehachse 38 erfolgt die Ankopplung des erfindungsgemäßen Manipulatorarmes, wie in den Figuren 1 , 2, 3, 4, 5a und 5b gezeigt..
Figur 9 zeigt eine vorzugsweise Ausführungsform für die Verbindung des erfindungsgemäßen flexiblen Halterungs- und Trägersystems 19-26 mit einer erfindungsgemäßen Vorpositioniereinrichtung 29-38 mit beispielhaft einem daran angekoppelten erfindungsgemäßen Manipulatorarm 1 , 2, 3, 4, 8, 10, 15. Die Antriebseinheit 1 des Manipulatorarmes ist am vierten Vorpositionierelement 37 der Vorpositioniereinrichtung in der Drehachse 38 verbunden. Die konstruktive Ausführung ist derart gestaltet, das an der Drehachse 38 der Vorpositioniereinrichtung wahlweise eine linksseitige oder rechtsseitige Ausführung des erfindungsgemäßen Manipulatorarmes angeschlossen werden kann.
Figur 10 und Figur 1 1 zeigt eine konstruktive Ausführungsform des erfindungsgemäßen chirurgischen Robotersystems und insbesondere des übergeordneten Tragesystems 39 - 43 an welcher das erfindungsgemäße flexibel einstellbare Trägersystem 22a - 22d mittels der Koppelstelle bzw. Koppelträgerverbindung 19 angekoppelt ist. Das übergeordnete Tragesystem ermöglicht die optimale Vorpositionierung des flexiblen Trägersystems 22a - 22d durch eine horizontale Ausrichtung des vorzugsweise fahrbar ausgeführten Basisträgers bzw. Festlagers 42 zum OP-Tisch 48 (siehe Figur 12) und eine vertikale Ausrichtung durch die Einstellung eines optimalen Winkels zwischen der Baugruppe 39 und 40 durch das Einstellelement 41. Am erfindungsgemäßen flexiblen Trägersystem ist über die Koppelstelle 29d die erfindungsgemäße Vorpositioniereinrichtung 29d..38d befestigt und nimmt die erfindungsgemäßen Manipulatorarme an der Koppelstelle 38d auf. Die gesamte konstruktive Ausführung zeichnet sich gegenüber dem Stand der Technik dadurch aus, dass die robotischen Komponenten sämtlichst im Manipulatorarm konzentriert sind und daher die gesamte konstruktive Ausführung verglichen mit dem Stand der Technik deutlich weniger Bauraum beansprucht und insbesondere lediglich eine Höhe 43 von beispielsweise 1447 mm aufweist.
Figur 12 zeigt eine schematische Gesamtansicht der Verwendung des übergeordneten Tragesystems 39..42 in einem chirurgischen Robotersystem für den Einsatz in der minimal-invasiven Chirurgie, wie z.B. der Laparoskopie. Von einer Bedieneinheit 44 ausgehend kann der Anwender Steuerbefehle für die Aktorik des erfindungsgemäßen Manipulatorarmes über eine geeignete Datenverbindung 45 an eine Steuereinheit 46 übermitteln. Diese ist über eine weitere Datenleitung 49 mit dem übergeordneten Tragesystem 39..42 verbunden und, ausgestattet mit einem Tragarm bzw. Hauptträgereinrichtung 39, 40, kann ein über die Koppelstelle 19 angeschlossenes flexibles Trägersystem entsprechend der Patientenposition auf dem OP-Tisch 48 über eine die Koppelstelle 19 so vorpositioniert werden, dass das flexibles Trägersystem in Verbindung mit den Vorpositioniereinrichtungen eine optimale Positionierung der Manipulatorarme ermöglicht.
Bei Ausstattung eines erfindungsgemäßen Manipulatorarmes mit z.B. einer Endoskop-Kamera können die Bildsignale über geeignete Datenverbindungen 49, 45, 50 einer Verarbeitungseinheit 51 zugeführt werden, welche die Bilddaten zur Darstellung aufbereitet und über eine weitere Datenstrecke 52 einer Visualisierungseinheit 53 zuführt. Die Visualisierungseinheit 53 kann sowohl 2D- als auch 3D-Bilddaten darstellen, beispielsweise getrennt, jedoch auch kombiniert in einem einzigen Bild bzw. einer einzigen Bildabfolge. Die Steuerung, welche Bilddaten wie dargestellt werden sollen, erfolgt durch die Steuereinheit 44 je nach Wunsch des Operators bzw. Chirurgen. Die dazu von der Steuereinheit 44 erzeugten Steuerbefehle werden mittels der Datenstrecke 50 zur Verarbeitungseinheit 51 übertragen.
Gemäß einer weiteren Ausführungsform ist die erfindungsgemäße Vorrichtung derart ausgebildet, dass an der Teleskopeinrichtung eine Instrumentenführungseinreichtung angebracht ist, durch welche das chirurgische Instrument in einer Ebene quer zur Längserstreckung geführt wird, wobei die Instrumentenführungseinrichtung insbesondere eine Führungsöffnung zur variablen Positionierung des chirurgischen Instruments aufweist. Die zusätzliche Instrumentenführungseinrichtung ist an der Teleskopeinrichtung angebracht, in welcher sich der Schaft des chirurgischen Instrumentes und/oder Endoskops hindurch erstreckt. Diese zusätzliche Instrumentenführungseinrichtung ist starr mit der Teleskopeinrichtung verbunden. Durch diese zusätzliche Instrumentenführungseinrichtung wird das chirurgische Instrument und/oder Endoskop bei Drehung des Manipulatorarmes um die erste Drehachse zwangsgeführt. Durch die konstruktive Ausführung der zusätzlichen Instrumentenführungseinrichtung erfolgt die Zwangsführung nur für Bewegungen des Manipulatorarmes um die erste Drehachse. Bei Drehungen des Manipulatorarmes um die zweite Drehachse ermöglicht die zusätzliche Instrumentenführungseinrichtung eine freie Bewegung des chirurgischen Instrumentes und/oder Endoskops derart, das sich eine resultierende Instrumentenachse, aus der Drehung der Instrumentenantriebseinheit an der Teleskopeinrichtung und der Lage einer ersten Führungseinrichtung (Trokar), durch welchen sich das chirurgische Instrument und/oder Teleskop hindurch erstreckt, einstellt.
Die Figuren 13a, 13b, 14a, 14b, 15a, 15b zeigen einen erfindungsgemäßen Manipulatorarm zur aktiven Positionierung eines chirurgischen Instruments 9 ohne mechanische Kopplung zwischen der Führungseinrichtung 10 zur Durchführung eines chirurgischen Instruments 9 und der konstruktiven Vorrichtung 4 zur Realisierung der zweiten Drehachse. Die Figuren 13 a und 13 b zeigen eine Ausführungsform der Erfindung, welche im wesentlichen derjenigen der Figuren 3 a und 3 b mit einer Instrumentenführungseinrichtung 90 entspricht.
Am Teleskopausleger 8 ist die Instrumentenführungseinrichtung 90 mittels einer wiederlösbaren Befestigungsvorrichtung 91 insbesondere in Form einer Schraube derart angebracht, das bei Drehung des Manipulatorarmes um eine erste Drehachse (Drehung des Drehgelenkes 2) das chirurgische Instrument 9 durch bzw. innerhalb der Instrumentenführungseinrichtung 90 zwangsweise geführt wird. Die Instrumentenführungseinrichtung 90 ist konstruktiv so ausgeführt, dass das chirurgische Instrument 9 bei Verkippung des Manipulatorarmes um eine zweite Drehachse 2 (Drehung um den Drehpunkt 6) sich innerhalb der Instrumentenführungseinrichtung 90 in einer Längsöffnung 92 zwischen den Begrenzungen 92a und 92b der Längsöffnung 92 frei in einer Achse verschieben kann, so dass sich eine resultierende Ausrichtung der Längsachse des chirurgischen Instrumentes 9 ohne Zwangsführung aus dem Instrumentendrehpunkt 56 und der Führungseinrichtung 10 ergibt.
Diese Lösung hat den Vorteil, das bei Drehung eines chirurgischen Instrumentes 9 um eine erste Drehachse (Drehung um Drehgelenk 2) das chirurgischen Instrument 9 zwangsgeführt wird und die zur Zwangsführung verwendete Instrumentenführungseinrichtung 90 auf das chirurgische Instrument 9 einwirkende Kräfte in Richtung der Drehachse 6 aufgenommen werden, ohne die Instrumentendurchführung 10 mit dem Manipulatorarm mechanisch verkoppeln bzw. verbinden zu müssen.
Die Figur 13b verdeutlicht die freie Schwenkbarkeit des Instrumentes 9 in der Instrumentenführungseinrichtung 90 zwischen den Begrenzungen 92a und 92b der Führungsöffnung.
Die Figuren 14a, 14b zeigen schematisch als Ausschnitt die Ausführungsform von Figur 13 a und 13 b mit der Instrumentenführungseinrichtung 90, welche an den Teleskopausleger 8u mittels einer nicht gezeigten Schraube in der Befestigungsvorrichtung 8f , 91 befestigt ist, vorzugsweise als wiederlösbare Schraub- oder Steckverbindung ausgeführt. Des weiteren wird die längliche Führungsöffnung 92 mit ihren seitlichen Begrenzungen 92a und 92b dargestellt, zwischen denen das chirurgische Instrument 9 verschoben werden kann.
Figuren 15a, 15b zeigen schematisch ebenfalls die Ankopplung der Instrumentenführungseinrichtung 90 an den Teleskopausleger 8u für eine weitere Orientierung des chirurgischen Instrumentes 9 gegenüber der Längsachse des Teleskopes 8u, wodurch ersichtlich ist, dass das das chirurgischen Instrument 9 innerhalb der Instrumentenführungseinrichtung 90 in seiner Position bewegbar ist.
Die Ausführungsform der Erfindung gemäß der Figuren 13 bis 15 mit der Instrumentenführungseinrichtung 90 hat insbesondere den Vorteil, dass keine Abhängigkeit von der mechanischen Belastungsgrenze des Trokars bzw. der Instrumentendurchführung 10 besteht. Des Weiteren ermöglicht es die Instrumentenführungseinreichtung 90, dass sich durch die nach wie vor vorhandene Entkoppelung der Längsachse des chirurgischen Instruments 9 von der Längsachse des Teleskopauslegers 8 ein resultierender Pivotpunkt 13 an der Stelle einstellt, an welcher die biomechanische Belastungen für die Bauchdecke durch das Wegkippen der Instrumentenführung 10 minimal sind.
Die vorliegende Erfindung bezieht sich somit einerseits auf eine Halterungs- und Positioniervorrichtung für ein chirurgisches Instrument und/oder ein Endoskop, wobei eine oder mehrere derartige Halterungs- und Positioniervorrichtungen gemäß der Erfindung an einem chirurgischen Robotersystem jeweils über Koppelstellen angebracht sind, wobei diese Koppelstellen wiederum jeweils miteinander verbunden sind, sodass der benötigte Bauraum des chirurgischen Robotersystems in vorteilhafter Weise nur sehr gering ist. Die besonders kompakte Bauweise ergibt sich des Weiteren durch die besonders leichte und kompakte Ausführbarkeit der erfindungsgemäßten Halterungs- und Positioniervorrichtung, wobei diese des Weiteren auch an einem bestehenden Robotersystem nachgerüstet werden kann.
In einer bevorzugten Ausführungsform ist die Führungseinrichtung zur Durchführung eines chirurgischen Instruments über ein Koppelelement mit der konstruktiven Vorrichtung zur Erzeugung der zweiten Drehachse starr verbunden. Die Drehbewegung der Drehachse 1 führt damit zu einer Zwangsbewegung der Führungseinrichtung zur Durchführung eines chirurgischen Instruments um den invarianten Punkt in einer Richtung x.
In einer weiteren bevorzugten Ausführungsform ist die Führungseinrichtung zur Durchführung eines chirurgischen Instruments nicht mit der konstruktiven Vorrichtung zur Erzeugung der zweiten Drehachse konstruktiv starr verbunden. Damit fungiert die Führungseinrichtung zur Durchführung eines chirurgischen Instruments als Loslager in der Bauchdecke wie in der manuellen Laparoskopie üblich.
In einer ferner bevorzugten Ausführungsform ist an das chirurgische Instrument über eine Instrumentenantriebseinheit an die Teleskopvorrichtung gekoppelt, welche einen Rotationsaktuator umfasst, durch den der Schaft des chirurgischen Instruments gegenüber der Ausgangslage um die z-Richtung drehbar variiert wird. Bevorzugt weist die Instrumentenantriebseinheit drei Instrumentenaktuatoren auf, durch welche die am distalen Ende angebrachte Wirkeinheit des chirurgischen Instruments in drei weiteren Freiheitsgraden variierbar ist. Insbesondere bevorzugt ist die Instrumentenantriebseinheit über eine Halteeinrichtung drehbar an dem proximalen Ende des Teleskopsystems angeordnet.

Claims

Ansprüche
1. Halterungs- und Positioniervorrichtung eines chirurgischen Instruments und/oder eines Endoskops für die minimal-invasive Chirurgie, insbesondere zur Verwendung innerhalb eines chirurgischen Robotersystems, umfassend eine erste Drehachse (3), um welche ein Halteelement (4) drehbar angeordnet ist, wobei sich die erste Drehachse (3) mit der Längsachse (1 1 ) zumindest eines chirurgischen Instruments (9; 17a, 17b) und/oder eines Endoskops (9; 17a, 17b) in einem Pivotalpunkt (13) stets dadurch schneidet, dass an dem Halteelement (4) ein Schubantrieb (5) angebracht ist, welcher eine Instrumentenantriebseinheit (15) um den Pivotalpunkt (13) drehbar anordnet, und wobei eine Teleskopeinrichtung (8) an der Instrumentenantriebseinheit (15) vorgesehen ist, durch welche das chirurgische Instrument (9; 17a, 17b) und/oder das Endoskop (9; 17a, 17b) entlang dessen Längsachse (1 1 ) mittels einer Führungseinrichtung (10, 10s) in den Körper derart translatorisch bewegbar ist, dass die Längsachse (1 1 ) des chirurgischen Instruments (9; 17a, 17b) und/oder des Endoskops (9; 17a, 17b) gegenüber der Teleskopeinrichtung (8) variabel einstellbar ist.
2. Halterungs- und Positioniervorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Instrumentenantriebseinheit (15) an der Teleskopeinrichtung (8) mittels eines Instrumentendrehpunkts (56) derart drehbar gelagert ist, dass die Teleskoplängsachse (58) der Teleskopeinrichtung (8) gegenüber der Längsachse (1 1 ) des chirurgischen Instruments (9; 17a, 17b) und/oder des Endoskops (9; 17a, 17b) in Abhängigkeit des Schubantriebs (5) variabel ist.
3. Halterungs- und Positioniervorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Teleskopeinrichtung (8) mehrere Teleskopelemente (8u, 8v, 8w) aufweist, wobei der Instrumentendrehpunkt (56) an dem Teleskopelement (8w) angeordnet ist, welches die größte teleskopartige Verstellmöglichkeit aufweist.
4. Halterungs- und Positioniervorrichtung nach einem der vorhergehenden Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Führungseinrichtung (10, 10s) zumindest eine Instrumentenführung (10s) aufweist, in welcher sich der Schaft des chirurgischen Instruments (9; 17a, 17b) und/oder des Endoskops (9; 17a, 17b) hindurch erstreckt.
5. Halterungs- und Positioniervorrichtung nach einem der vorhergehenden Ansprüche 1 bis
4, dadurch gekennzeichnet, dass der Schubantrieb (5) derart an der Teleskopeinrichtung (8) mittels eines Schubantriebsaufnahmepunkt (55) angebracht ist, dass sich die Drehbewegung der Instrumentenantriebseinheit (15) um den Pivotalpunkt (13) dadurch ergibt, dass eine Kopplungseinrichtung (6, 7) einen Kopplungsdrehpunkt (6) aufweist, welcher mit dem Haltelement (4) fest verbunden ist.
6. Halterungs- und Positioniervorrichtung nach einem der vorhergehenden Ansprüche 1 bis
5, dadurch gekennzeichnet, dass die Instrumentenantriebseinheit (15) das chirurgische Instrument (9; 17a, 17b) und/oder das Endoskop (9; 17a, 17b) in mehreren Freiheitsgraden bewegt, wobei die Ansteuerung der Instrumentenantriebseinheit (15) mittels Steuer- und Versorgungsleitungen, welche durch das Haltelement (4) und den Schubantrieb (5) hindurch geführt werden, über eine Steuereinheit (44) durch den Operateur erfolgt.
7. Halterungs- und Positioniervorrichtung nach einem der vorhergehenden Ansprüche 1 bis
6, dadurch gekennzeichnet, dass die erste Drehachse (3) dadurch gebildet wird, dass eine Antriebseinheit (1 ) vorgesehen ist, die an einem Roboterarm anbringbar ist , wobei ein Drehgelenk (2) zwischen der Antriebseinheit (1 ) und dem Halteelement (4) vorgesehen ist.
8. Halterungs- und Positioniervorrichtung nach einem der vorhergehenden Ansprüche 1 bis
7, dadurch gekennzeichnet, dass ein Koppelelement (12) am Halteelement (4) angebracht ist, welches am distalen Ende am Pivotalpunkt (13) mit der Instrumentenführung (10s) drehbar verbunden ist.
9. Halterungs- und Positioniervorrichtung nach einem der vorhergehenden Ansprüche 1 bis
8, dadurch gekennzeichnet, dass mehrere chirurgische Instrumente (17a, 17b) durch einen einzigen Trokar (18) hindurch in das Körperinnere geführt werden, wobei für jedes chirurgische Instrument (17a, 17b) eine separate Instrumentenantriebseinheit (15a, 15b) vorgesehen ist, und wobei insbesondere die chirurgischen Instrumente (17a, 17b) in Längsrichtung bogenförmig ausgebildet ist.
10. Halterungs- und Positioniervorrichtung nach einem der vorhergehenden Ansprüche 1 bis
9, dadurch gekennzeichnet, dass das Halteelement (4) und/oder die Antriebseinheit (1 ) mittels einer Vorpositioniereinrichtung in seiner Ausgangslage anpassbar ist, wobei die Vorpositioniereinrichtung ein oder mehrere Vorpositionierelemente (30, 32, 34, 37) aufweist, welche jeweils über zumindest eine Drehachse in ihrer Position voreinstellbar sind, wobei insbesondere vier Vorpositionierelemente (30, 32, 34, 37) mit zueinander in Reihe variablen Positionen voreinstellbar sind.
1 1 . Halterungs- und Positioniervorrichtung nach zumindest einem der vorhergehenden Ansprüche 1 bis 10, dadurch gekennzeichnet, dass an der Teleskopeinrichtung (8) eine Instrumentenführungseinreichtung (90) angebracht ist, durch welche das chirurgische Instrument (9) in einer Ebene quer zur Längserstreckung geführt wird, wobei die Instrumentenführungseinrichtung (90) insbesondere eine Führungsöffnung (92) zur variablen Positionierung des chirurgischen Instruments (9) aufweist.
12. Chirurgisches Robotersystem mit mehreren Halterungs- und Positioniervorrichtungen gemäß einem der Ansprüche 1 bis 1 1 , wobei zumindest zwei Halterungs- und Positioniervorrichtungen an einem im wesentlichen quer zu den Halterungs- und Positioniervorrichtungen verlaufenden Halterungsträgersystem (19, 20, 21 , 22, 23, 24) angebracht sind, wobei das Halterungsträgersystem (19, 20, 21 , 22, 23, 24) aus jeweils einer Koppelstelle (22a-d) für jede Halterungs- und Positioniervorrichtung aufgebaut ist, und wobei die Koppelstellen (22a-d) jeweils fest oder über Gelenke (23, 24) miteinander verbunden sind.
13. Chirurgisches Robotersystem nach Anspruch 12, dadurch gekennzeichnet, dass das Halterungsträgersystem (19, 20, 21 , 22, 23, 24) mittels einer Koppelträgerverbindung (19) mit einer im wesentlichen vertikal verlaufenden Hauptträgereinrichtung (39, 40) zur AbStützung gegenüber einem Festlager (42) verbunden ist, welches beweglich angeordnet oder gegenüber einem feststehenden oder verfahrbaren Operationstisch (48) vorgegeben ist.
14. Chirurgisches Robotersystem nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass eine zentrale Steuereinheit (46) vorgesehen ist, welche mit jeder der Halterungs- und Positioniervorrichtungen mit den entsprechenden chirurgischen Instrumenten (9; 17a, 17b) und/oder Endoskopen (9; 17a, 17b) in Verbindung steht und mit einer Bedieneinheit (44) zur Eingabe von Befehlen in Form von Steuerdaten eines Operateurs gekoppelt ist, welche mittels einer Visualisierungseinheit (53) Bilddaten von einem oder mehrerer Endoskopen (9; 17a, 17b) darstellt.
15. Chirurgisches Robotersystem nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Steuereinheit (46) und die Bedieneinheit (44) mit einem verfahrbaren Operationstisch (48) gekoppelt sind, wobei sowohl die Bilddaten als auch die Steuerdaten in Abhängigkeit der vorgegebenen Positionen der Halterungs- und Positioniervorrichtung sowie des Operationstisches (48) verarbeitet werden.
PCT/DE2013/000803 2012-12-20 2013-12-12 Halterungs- und positioniervorrichtung eines chirurgischen instruments und/oder eines endoskops für die minimal-invasive chirurgie sowie ein chirurgisches robotersystem WO2014094716A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2015129335A RU2644281C2 (ru) 2012-12-20 2013-12-12 Эндоскоп для минимально-инвазивной хирургии, а также хирургическая роботизированная система
CN201380066505.1A CN104869935B (zh) 2012-12-20 2013-12-12 用于微创外科手术的外科手术器械和/或内窥镜的保持和定位装置以及外科手术机器人系统
BR112015014298-2A BR112015014298B1 (pt) 2012-12-20 2013-12-12 Dispositivo de retenção e posicionamento de um instrumento para cirurgia minimamente invasiva e sistema robótico cirúrgic
EP13828769.3A EP2934361B1 (de) 2012-12-20 2013-12-12 Halterungs- und positioniervorrichtung eines chirurgischen instruments für die minimal-invasive chirurgie sowie ein chirurgisches robotersystem
JP2015548199A JP6342418B2 (ja) 2012-12-20 2013-12-12 低侵襲外科手術のための外科手術用器具の保持及び位置決め装置及び/又は内視鏡及びロボット外科手術システム
US14/653,212 US9795454B2 (en) 2012-12-20 2013-12-12 Holding and positioning apparatus of a surgical instrument and/or an endoscope for minimally invasive surgery and a robotic surgical system
HK15112847.3A HK1211822A1 (en) 2012-12-20 2015-12-30 Retaining and positioning device of a surgical instrument and or an endoscope for minimally invasive surgery and surgical robot system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102012025099.1 2012-12-20
DE102012025099 2012-12-20
DE102013004459.6A DE102013004459A1 (de) 2012-12-20 2013-03-14 Halterungs- und Positioniervorrichtung eines chirurgischen Instruments und/oder eines Endoskops für die minimal-invasive Chirurgie sowie ein chirurgisches Robotersystem
DE102013004459.6 2013-03-14

Publications (1)

Publication Number Publication Date
WO2014094716A1 true WO2014094716A1 (de) 2014-06-26

Family

ID=50878754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2013/000803 WO2014094716A1 (de) 2012-12-20 2013-12-12 Halterungs- und positioniervorrichtung eines chirurgischen instruments und/oder eines endoskops für die minimal-invasive chirurgie sowie ein chirurgisches robotersystem

Country Status (9)

Country Link
US (2) US20150005784A2 (de)
EP (1) EP2934361B1 (de)
JP (1) JP6342418B2 (de)
CN (1) CN104869935B (de)
BR (1) BR112015014298B1 (de)
DE (1) DE102013004459A1 (de)
HK (1) HK1211822A1 (de)
RU (1) RU2644281C2 (de)
WO (1) WO2014094716A1 (de)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104887325A (zh) * 2015-06-17 2015-09-09 冯晶晶 吊顶式镜头支架
DE102016111737A1 (de) 2016-06-27 2017-12-28 avateramedical GmBH Instrumententrägervorrichtung für einen Manipulator eines robotischen Operationssystems
US10092359B2 (en) 2010-10-11 2018-10-09 Ecole Polytechnique Federale De Lausanne Mechanical manipulator for surgical instruments
US10265129B2 (en) 2014-02-03 2019-04-23 Distalmotion Sa Mechanical teleoperated device comprising an interchangeable distal instrument
US10325072B2 (en) 2011-07-27 2019-06-18 Ecole Polytechnique Federale De Lausanne (Epfl) Mechanical teleoperated device for remote manipulation
US10357320B2 (en) 2014-08-27 2019-07-23 Distalmotion Sa Surgical system for microsurgical techniques
US10363055B2 (en) 2015-04-09 2019-07-30 Distalmotion Sa Articulated hand-held instrument
US10413374B2 (en) 2018-02-07 2019-09-17 Distalmotion Sa Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy
US10548680B2 (en) 2014-12-19 2020-02-04 Distalmotion Sa Articulated handle for mechanical telemanipulator
US10568709B2 (en) 2015-04-09 2020-02-25 Distalmotion Sa Mechanical teleoperated device for remote manipulation
US10646294B2 (en) 2014-12-19 2020-05-12 Distalmotion Sa Reusable surgical instrument for minimally invasive procedures
US10786272B2 (en) 2015-08-28 2020-09-29 Distalmotion Sa Surgical instrument with increased actuation force
US10864049B2 (en) 2014-12-19 2020-12-15 Distalmotion Sa Docking system for mechanical telemanipulator
US10864052B2 (en) 2014-12-19 2020-12-15 Distalmotion Sa Surgical instrument with articulated end-effector
US11039820B2 (en) 2014-12-19 2021-06-22 Distalmotion Sa Sterile interface for articulated surgical instruments
US11058503B2 (en) 2017-05-11 2021-07-13 Distalmotion Sa Translational instrument interface for surgical robot and surgical robot systems comprising the same
US11844585B1 (en) 2023-02-10 2023-12-19 Distalmotion Sa Surgical robotics systems and devices having a sterile restart, and methods thereof
US12114945B2 (en) 2021-09-13 2024-10-15 Distalmotion Sa Instruments for surgical robotic system and interfaces for the same

Families Citing this family (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8219178B2 (en) 2007-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US10653497B2 (en) 2006-02-16 2020-05-19 Globus Medical, Inc. Surgical tool systems and methods
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
EP2554136B1 (de) 2010-03-31 2021-08-11 IUCF-HYU (Industry-University Cooperation Foundation Hanyang University) Gestànge für eine roboter
WO2012131660A1 (en) 2011-04-01 2012-10-04 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system for spinal and other surgeries
KR102186510B1 (ko) * 2012-06-01 2020-12-03 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 하드웨어 제한형 원격 중심 로봇 매니퓰레이터용 여유 축 및 자유도
US11974822B2 (en) 2012-06-21 2024-05-07 Globus Medical Inc. Method for a surveillance marker in robotic-assisted surgery
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US10350013B2 (en) 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
JP2015528713A (ja) 2012-06-21 2015-10-01 グローバス メディカル インコーポレイティッド 手術ロボットプラットフォーム
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US12004905B2 (en) 2012-06-21 2024-06-11 Globus Medical, Inc. Medical imaging systems using robotic actuators and related methods
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
TWI511700B (zh) * 2013-11-19 2015-12-11 Univ Nat Taiwan Science Tech 手術扶持裝置
WO2015107099A1 (en) 2014-01-15 2015-07-23 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
WO2015121311A1 (en) 2014-02-11 2015-08-20 KB Medical SA Sterile handle for controlling a robotic surgical system from a sterile field
WO2015162256A1 (en) 2014-04-24 2015-10-29 KB Medical SA Surgical instrument holder for use with a robotic surgical system
CN107072673A (zh) 2014-07-14 2017-08-18 Kb医疗公司 用于在骨组织中制备孔的防滑手术器械
DE102014012124A1 (de) * 2014-08-14 2016-02-18 Kuka Roboter Gmbh Positionierung eines Roboters
EP3180168B1 (de) 2014-08-14 2021-05-26 KUKA Deutschland GmbH Positionierung eines roboters
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
WO2016131903A1 (en) 2015-02-18 2016-08-25 KB Medical SA Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique
WO2016164824A1 (en) 2015-04-09 2016-10-13 Auris Surgical Robotics, Inc. Surgical system with configurable rail-mounted mechanical arms
WO2016183054A1 (en) 2015-05-11 2016-11-17 Covidien Lp Coupling instrument drive unit and robotic surgical instrument
US9636184B2 (en) 2015-05-15 2017-05-02 Auris Surgical Robotics, Inc. Swivel bed for a surgical robotics system
JP6771494B2 (ja) 2015-06-19 2020-10-21 コヴィディエン リミテッド パートナーシップ 双方向連結部を備えたロボット外科用機器の制御法
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
US10646298B2 (en) 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
US10687905B2 (en) 2015-08-31 2020-06-23 KB Medical SA Robotic surgical systems and methods
US10034716B2 (en) 2015-09-14 2018-07-31 Globus Medical, Inc. Surgical robotic systems and methods thereof
PL3146930T3 (pl) * 2015-09-22 2018-10-31 Fundacja Rozwoju Kardiochirurgii Im. Prof. Zbigniewa Religi Zespół ramion narzędziowych robota chirurgicznego
US9771092B2 (en) 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
CN105250025B (zh) * 2015-11-25 2017-06-13 吉林大学 一种辅助微创手术中夹持内窥镜的末端执行器
USD864388S1 (en) * 2015-12-21 2019-10-22 avateramedical GmBH Instrument unit
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
EP3241518B1 (de) 2016-04-11 2024-10-23 Globus Medical, Inc Systeme für chirurgische werkzeuge
WO2018020018A1 (en) * 2016-07-28 2018-02-01 Thys Tom Instrument holder
EP3528736A4 (de) * 2016-10-18 2020-06-17 Intuitive Surgical Operations Inc. Systeme und verfahren zur computerunterstützten telebetriebenen chirurgie
CN106371374A (zh) * 2016-11-07 2017-02-01 福州幻科机电科技有限公司 一种微创内窥镜四自由度定位机的智能控制电路系统
WO2018089514A1 (en) * 2016-11-08 2018-05-17 Digital Aerolus, Inc. Real time effective mass and moment of inertia measurement
EP3360502A3 (de) 2017-01-18 2018-10-31 KB Medical SA Robotische navigation von robotischen chirurgischen systemen
US11071594B2 (en) 2017-03-16 2021-07-27 KB Medical SA Robotic navigation of robotic surgical systems
DE102017109891A1 (de) * 2017-05-09 2018-11-15 Aesculap Ag Chirurgisches Instrument mit verbesserter Schließcharakteristik
CN107028579B (zh) * 2017-05-25 2019-04-23 杭州妙手机器人有限公司 腹腔镜设备的绕点移动机构
DE102017113274A1 (de) * 2017-06-16 2018-12-20 avateramedical GmBH Kameraobjektiv für ein Endoskop und Endoskop
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
DE102017118126A1 (de) 2017-08-09 2019-02-14 avateramedical GmBH Robotisches Operationssystem
CN107320178B (zh) * 2017-08-11 2023-10-27 宁波华科润生物科技有限公司 一种医学辅助操作装置
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US10898252B2 (en) 2017-11-09 2021-01-26 Globus Medical, Inc. Surgical robotic systems for bending surgical rods, and related methods and devices
US11357548B2 (en) 2017-11-09 2022-06-14 Globus Medical, Inc. Robotic rod benders and related mechanical and motor housings
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
EP3716880A4 (de) 2017-11-29 2021-12-22 Covidien LP Chirurgische robotersysteme, instrumentenantriebsanordnungen und antriebsanordnungen
CN108210076B (zh) * 2018-01-02 2019-02-19 谭晓莉 一种腹腔镜手术中使用的手术器械定位组件
WO2019143459A1 (en) 2018-01-17 2019-07-25 Auris Health, Inc. Surgical platform with adjustable arm supports
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
CN111166485B (zh) * 2018-11-13 2024-04-30 重庆金山医疗机器人有限公司 手术辅助机器人器械长杆端部固定结构、器械及固定方法
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
JP6870010B2 (ja) * 2019-01-21 2021-05-12 株式会社メディカロイド 手術システムおよび支持装置
CN109528304B (zh) * 2019-01-22 2023-10-20 绵阳美科电子设备有限责任公司 操控内窥镜的装置及其应用方法
CN109662779B (zh) * 2019-01-25 2021-06-18 李汉忠 一种经尿道电切镜手术机器人系统
EP3890645A4 (de) 2019-02-22 2022-09-07 Auris Health, Inc. Chirurgische plattform mit motorisierten armen für verstellbare armstützen
CN113613612B (zh) 2019-03-08 2022-08-02 奥瑞斯健康公司 用于医疗系统和应用的倾斜机构
US11918313B2 (en) 2019-03-15 2024-03-05 Globus Medical Inc. Active end effectors for surgical robots
US20200297357A1 (en) 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
CN110123250A (zh) * 2019-06-28 2019-08-16 陈龙 一种口腔科专用口腔科检查装置
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
CN110403697B (zh) * 2019-08-30 2024-08-30 山东威高手术机器人有限公司 竖直伸缩关节以及具有竖直伸缩关节的微创手术机器人
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
US11992373B2 (en) 2019-12-10 2024-05-28 Globus Medical, Inc Augmented reality headset with varied opacity for navigated robotic surgery
US12064189B2 (en) 2019-12-13 2024-08-20 Globus Medical, Inc. Navigated instrument for use in robotic guided surgery
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
CN116327120A (zh) * 2020-05-30 2023-06-27 深圳硅基传感科技有限公司 具有可移动的机械臂的植入装置
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US12070276B2 (en) 2020-06-09 2024-08-27 Globus Medical Inc. Surgical object tracking in visible light via fiducial seeding and synthetic image registration
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
US12076091B2 (en) 2020-10-27 2024-09-03 Globus Medical, Inc. Robotic navigational system
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
USD1022197S1 (en) 2020-11-19 2024-04-09 Auris Health, Inc. Endoscope
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
US12070286B2 (en) 2021-01-08 2024-08-27 Globus Medical, Inc System and method for ligament balancing with robotic assistance
EP4308010A1 (de) * 2021-03-18 2024-01-24 Virtuoso Surgical, Inc System zur durchführung minimal invasiver chirurgie
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
US11918304B2 (en) 2021-12-20 2024-03-05 Globus Medical, Inc Flat panel registration fixture and method of using same
US12103480B2 (en) 2022-03-18 2024-10-01 Globus Medical Inc. Omni-wheel cable pusher
DE102022106602B4 (de) 2022-03-21 2024-08-22 Karl Storz Se & Co. Kg Medizinische Kinematik mit virtuellem Drehpunkt, medizinischer Roboter sowie Verwendung einer medizinischen Kinematik und eines medizinischen Roboters
US12048493B2 (en) 2022-03-31 2024-07-30 Globus Medical, Inc. Camera tracking system identifying phantom markers during computer assisted surgery navigation
CN115778511B (zh) * 2023-02-03 2023-04-07 深圳市亿康医疗技术有限公司 一种胸腔镜手术定位装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070137371A1 (en) * 2005-12-20 2007-06-21 Devengenzo Roman L Telescoping insertion axis of a robotic surgical system
US20110071473A1 (en) * 2009-09-23 2011-03-24 Intuitive Surgical, Inc. Surgical port feature
EP2332484A2 (de) * 2005-05-19 2011-06-15 Intuitive Surgical Operations, Inc. Softwarecenter und Robotersysteme mit hoher Konfigurierbarkeit für chirurgische und andere Verwendungen
WO2012044869A2 (en) * 2010-09-30 2012-04-05 Carefusion 2200, Inc. Detachable handle mechanism for use in instrument positioning

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7963913B2 (en) * 1996-12-12 2011-06-21 Intuitive Surgical Operations, Inc. Instrument interface of a robotic surgical system
US6451027B1 (en) * 1998-12-16 2002-09-17 Intuitive Surgical, Inc. Devices and methods for moving an image capture device in telesurgical systems
US7892243B2 (en) * 2001-01-16 2011-02-22 Microdexterity Systems, Inc. Surgical manipulator
US8852208B2 (en) * 2010-05-14 2014-10-07 Intuitive Surgical Operations, Inc. Surgical system instrument mounting
US9610131B2 (en) * 2008-11-05 2017-04-04 The Johns Hopkins University Rotating needle driver and apparatuses and methods related thereto
FR2943907B1 (fr) * 2009-04-03 2012-08-03 Univ Pierre Et Marie Curie Paris 6 Instrument chirurgical.
US20110071541A1 (en) 2009-09-23 2011-03-24 Intuitive Surgical, Inc. Curved cannula
RU122326U1 (ru) * 2012-01-18 2012-11-27 Олег Владимирович Галимов Роботическая система для проведения эндовидеохирургических операций

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2332484A2 (de) * 2005-05-19 2011-06-15 Intuitive Surgical Operations, Inc. Softwarecenter und Robotersysteme mit hoher Konfigurierbarkeit für chirurgische und andere Verwendungen
US20070137371A1 (en) * 2005-12-20 2007-06-21 Devengenzo Roman L Telescoping insertion axis of a robotic surgical system
US20110071473A1 (en) * 2009-09-23 2011-03-24 Intuitive Surgical, Inc. Surgical port feature
WO2012044869A2 (en) * 2010-09-30 2012-04-05 Carefusion 2200, Inc. Detachable handle mechanism for use in instrument positioning

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10092359B2 (en) 2010-10-11 2018-10-09 Ecole Polytechnique Federale De Lausanne Mechanical manipulator for surgical instruments
US11076922B2 (en) 2010-10-11 2021-08-03 Ecole Polytechnique Federale De Lausanne (Epfl) Mechanical manipulator for surgical instruments
US10510447B2 (en) 2011-07-27 2019-12-17 Ecole Polytechnique Federale De Lausanne (Epfl) Surgical teleoperated device for remote manipulation
US10325072B2 (en) 2011-07-27 2019-06-18 Ecole Polytechnique Federale De Lausanne (Epfl) Mechanical teleoperated device for remote manipulation
US11200980B2 (en) 2011-07-27 2021-12-14 Ecole Polytechnique Federale De Lausanne (Epfl) Surgical teleoperated device for remote manipulation
US10265129B2 (en) 2014-02-03 2019-04-23 Distalmotion Sa Mechanical teleoperated device comprising an interchangeable distal instrument
US10357320B2 (en) 2014-08-27 2019-07-23 Distalmotion Sa Surgical system for microsurgical techniques
US11478315B2 (en) 2014-12-19 2022-10-25 Distalmotion Sa Reusable surgical instrument for minimally invasive procedures
US11571195B2 (en) 2014-12-19 2023-02-07 Distalmotion Sa Sterile interface for articulated surgical instruments
US10864049B2 (en) 2014-12-19 2020-12-15 Distalmotion Sa Docking system for mechanical telemanipulator
US10548680B2 (en) 2014-12-19 2020-02-04 Distalmotion Sa Articulated handle for mechanical telemanipulator
US11039820B2 (en) 2014-12-19 2021-06-22 Distalmotion Sa Sterile interface for articulated surgical instruments
US10646294B2 (en) 2014-12-19 2020-05-12 Distalmotion Sa Reusable surgical instrument for minimally invasive procedures
US10864052B2 (en) 2014-12-19 2020-12-15 Distalmotion Sa Surgical instrument with articulated end-effector
US10363055B2 (en) 2015-04-09 2019-07-30 Distalmotion Sa Articulated hand-held instrument
US10568709B2 (en) 2015-04-09 2020-02-25 Distalmotion Sa Mechanical teleoperated device for remote manipulation
CN104887325A (zh) * 2015-06-17 2015-09-09 冯晶晶 吊顶式镜头支架
US11337716B2 (en) 2015-08-28 2022-05-24 Distalmotion Sa Surgical instrument with increased actuation force
US11944337B2 (en) 2015-08-28 2024-04-02 Distalmotion Sa Surgical instrument with increased actuation force
US10786272B2 (en) 2015-08-28 2020-09-29 Distalmotion Sa Surgical instrument with increased actuation force
DE102016111737A1 (de) 2016-06-27 2017-12-28 avateramedical GmBH Instrumententrägervorrichtung für einen Manipulator eines robotischen Operationssystems
US11452571B2 (en) 2016-06-27 2022-09-27 avateramedical GmBH Instrument support device for a manipulator of a robotic surgical system
WO2018001742A1 (de) 2016-06-27 2018-01-04 avateramedical GmBH Instrumententrägervorrichtung für einen manipulator eines robotischen operationssystems
US11058503B2 (en) 2017-05-11 2021-07-13 Distalmotion Sa Translational instrument interface for surgical robot and surgical robot systems comprising the same
US11510745B2 (en) 2018-02-07 2022-11-29 Distalmotion Sa Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy
US10413374B2 (en) 2018-02-07 2019-09-17 Distalmotion Sa Surgical robot systems comprising robotic telemanipulators and integrated laparoscopy
US12114945B2 (en) 2021-09-13 2024-10-15 Distalmotion Sa Instruments for surgical robotic system and interfaces for the same
US11844585B1 (en) 2023-02-10 2023-12-19 Distalmotion Sa Surgical robotics systems and devices having a sterile restart, and methods thereof
US12082899B2 (en) 2023-02-10 2024-09-10 Distalmotion Sa Surgical robotics systems and devices having a sterile restart, and methods thereof
US12089908B2 (en) 2023-02-10 2024-09-17 Distalmotion Sa Surgical robotics systems and devices having a sterile restart, and methods thereof

Also Published As

Publication number Publication date
CN104869935B (zh) 2017-11-28
US20160184030A1 (en) 2016-06-30
RU2644281C2 (ru) 2018-02-08
US9795454B2 (en) 2017-10-24
CN104869935A (zh) 2015-08-26
BR112015014298B1 (pt) 2021-06-22
JP2016503678A (ja) 2016-02-08
EP2934361A1 (de) 2015-10-28
EP2934361B1 (de) 2018-09-26
BR112015014298A2 (pt) 2017-07-11
US20140180309A1 (en) 2014-06-26
HK1211822A1 (en) 2016-06-03
JP6342418B2 (ja) 2018-06-13
DE102013004459A1 (de) 2014-06-26
RU2015129335A (ru) 2017-01-24
US20150005784A2 (en) 2015-01-01
BR112015014298A8 (pt) 2019-10-08

Similar Documents

Publication Publication Date Title
EP2934361B1 (de) Halterungs- und positioniervorrichtung eines chirurgischen instruments für die minimal-invasive chirurgie sowie ein chirurgisches robotersystem
EP2934362B1 (de) Aktive positioniereinrichtung eines chirurgischen instruments und ein diese umfassendes chirurgisches robotersystem
EP3474767B1 (de) Instrumententrägervorrichtung für einen manipulator eines robotischen operationssystems
EP1330203B1 (de) Vorrichtung zum halten und positionieren eines endoskopischen instruments
DE69417229T2 (de) Chirurgiegerät
DE69310085T2 (de) Ferngesteuerter um einen Zentralpunkt bewegbaren Roboter für Chirugie
DE19609034C2 (de) Vorrichtung zur Führung chirurgischer Instrumente für die endoskopische Chirurgie
WO2010040685A1 (de) Halterungs- und führungseinrichtung für ein endoskopisches instrument
DE102013211698B4 (de) Endoabdominales Kamerasystem
DE102016105907A1 (de) Chirurgisches Roboter-Instrumenten-System
DE102019128277B4 (de) Passive Haltevorrichtung, modulares chirurgisches System und Verfahren zum Handhaben eines Trokars
DE102019201277A1 (de) Vorrichtung zur Führung eines medizinischen flexiblen Schafts
EP3247299B1 (de) Vorrichtung zum halten und bewegen eines laparoskops während einer operation
EP3443926A1 (de) Robotisches operationssystem
DE102010044106A1 (de) Instrumentensystem
DE4324254C1 (de) Chirurgisches Instrument für endoskopische Operationen
DE102018104714A1 (de) Telemanipulatorsystem und Verfahren zum Betreiben eines Telemanipulatorsystems
DE102012018533B4 (de) Manipulator für die minimalinvasive Chirurgie
DE10141225B4 (de) Endoskopführungssystem
DE102013222005B4 (de) Manipulator für minimalinvasive Chirurgie
DE102006055166A1 (de) Röntgenvorrichtung mit einem Röntgenstrahler und einem Röntgendetektor
DE102016116278A1 (de) Aufhängung für ein Mikroskop
DE102020130493B4 (de) Haltevorrichtung, medizinisches System und Verfahren zur Positionierung eines medizinischen Instruments
DE10305693B4 (de) Vorrichtung zum Positionieren und/oder Bewegen eines chirurgischen Instrumentes
DE102010023345B4 (de) Medizinisches Biplan-Röntgensystem und Verfahren zur Ansteuerung des Biplan-Röntgensystems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828769

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14653212

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015548199

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015014298

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2013828769

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015129335

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015014298

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150617