WO2014094596A1 - 线卡、光模块及光网络设备 - Google Patents

线卡、光模块及光网络设备 Download PDF

Info

Publication number
WO2014094596A1
WO2014094596A1 PCT/CN2013/089664 CN2013089664W WO2014094596A1 WO 2014094596 A1 WO2014094596 A1 WO 2014094596A1 CN 2013089664 W CN2013089664 W CN 2013089664W WO 2014094596 A1 WO2014094596 A1 WO 2014094596A1
Authority
WO
WIPO (PCT)
Prior art keywords
interface
optical
mainboard
wavelength division
optical module
Prior art date
Application number
PCT/CN2013/089664
Other languages
English (en)
French (fr)
Inventor
徐之光
林华枫
周小平
刘德坤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13864306.9A priority Critical patent/EP2924484B1/en
Priority to EP18209103.3A priority patent/EP3521882B1/en
Publication of WO2014094596A1 publication Critical patent/WO2014094596A1/zh
Priority to US14/742,437 priority patent/US9838147B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4274Electrical aspects
    • G02B6/4278Electrical aspects related to pluggable or demountable opto-electronic or electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • Line card, optical module and optical network equipment This application claims priority to Chinese patent application filed on December 17, 2012 by the Chinese Patent Office, application number 201210547960.0, and the invention name is "line card, optical module and optical network equipment”. The entire contents of which are incorporated herein by reference.
  • the present invention relates to communications technologies, and in particular, to a line card, an optical module, and an optical network device. Background technique
  • the wavelength division multiplexing system includes the following key components: an optical transmitter that converts information to be transmitted into an optical signal; a receiver that converts the received optical signal into an electrical signal; wavelength division multiplexing And a demultiplexer that converges the multi-wavelength optical signals generated by the plurality of local transmitters onto the backbone fibers connected to the other nodes, and distributes the multi-wavelength optical signals from the other nodes on the backbone fibers to the plurality of receivers.
  • an optical transmitter and an optical receiver are packaged together, called an optical module.
  • the wavelength division multiplexing device generally consists of a chassis and a line card inserted into the chassis.
  • the wavelength division multiplexing and demultiplexing device is installed on one line card, and the optical module is mounted on another line card.
  • the optical module is connected to the wavelength division multiplexing and demultiplexer through the optical fiber between the line cards; in another prior art, the optical module is installed on the line card, and the wavelength division multiplexing and demultiplexing device is installed in the frame. In a module other than the optical module, the optical module is connected to the wavelength division multiplexing and demultiplexer.
  • the embodiments of the present invention provide a line card, an optical module, and an optical network device, which are used to improve the space usage efficiency of the optical network device, reduce the optical fiber connection line outside the optical network device, and further reduce the management difficulty.
  • a first aspect of the present invention provides a line card, including: a main board, a panel, an optical module, and a wavelength division multiplexing and demultiplexing device;
  • the optical module includes: at least one electrical interface and at least one optical interface;
  • the multiplexing and demultiplexing device includes: a first interface and a second interface;
  • the panel is disposed on an edge of the motherboard;
  • the electrical interface is electrically connected to the motherboard;
  • the optical interface is oriented in a direction from the edge of the main board to the inside of the main board and parallel to the main board, and the optical interface is connected to the first interface;
  • the wavelength division multiplexing and demultiplexing device is disposed on the main board, and the second interface is configured to be connected to the backbone optical fiber, where the trunk optical fiber is used to connect the transmitting end optical network device and the receiving end optical network device.
  • an optical module electrical interface and an optical interface socket are disposed on the main board, and an opening direction of the optical module electrical interface and the optical interface socket are both directed from the inside of the mainboard to the mainboard.
  • the first interface is directed from the edge of the main board to the inside of the main board, and is parallel to the main board a direction of the second interface facing from the inside of the main board to the edge of the main board and parallel to the main board, or
  • the first interface faces a direction from the edge of the main board to the inside of the main board and parallel to the main board
  • the second interface faces the inner side of the main board from the edge of the main board and is parallel to the main board. direction.
  • the panel is provided with an optical connector, and the optical connector includes a first end And the second end, the first end is connected to the second interface in a direction from the edge of the main board to the inside of the main board and parallel to the main board, and the second end faces from the inside of the main board A direction pointing to the edge of the motherboard and parallel to the motherboard for connecting to the trunk fiber.
  • the optical module and the wavelength division multiplexing and demultiplexing device Set at one end of the motherboard.
  • the orientation of the first interface is consistent with an orientation of the optical interface.
  • the second interface includes: a wavelength division multiplexing interface and a wave decomposition multiplexing interface, wherein the wavelength division multiplexing interface and the wave decomposition multiplexing interface are respectively associated with the main Dry fiber connection; or,
  • the second interface includes: a wavelength division multiplexing/demultiplexing interface, and the wavelength division multiplexing/demultiplexing interface is connected to the trunk optical fiber.
  • a second aspect of the present invention provides an optical module, where the optical module is disposed on a line card, and the optical module includes at least one electrical interface and at least one optical interface;
  • the electrical interface is electrically connected to a motherboard disposed on the line card;
  • the optical interface is oriented in a direction from the edge of the main board to the inside of the main board and parallel to the main board, and is connected to a first interface of a wavelength division multiplexing and demultiplexer disposed on the line card,
  • the second interface of the wavelength division multiplexing and demultiplexer is connected to a backbone optical fiber for connecting the transmitting optical network device and the receiving optical network device.
  • an orientation direction of the optical interface is consistent with an orientation direction of the electrical interface.
  • the optical interface is disposed at one end of the optical module, and the electrical interface is disposed at another end of the optical module; Or the optical interface and the electrical interface are disposed at the same end of the optical module.
  • the optical module includes two the electrical interfaces, and the electrical interface is disposed at Both sides of the optical interface.
  • a third aspect of the present invention provides an optical network device, including: at least one line card as described in any one of the foregoing first aspects, and a chassis, the at least one line The card is disposed inside the chassis.
  • the line card, the optical module, and the optical network device provided in this embodiment by using the line card provided in this embodiment, by setting the optical module and the wavelength division multiplexing and demultiplexing device on the same line card, and in the optical module
  • the optical interface is directed to the inner side of the main board and parallel to the main board, and the optical interface is connected to the first interface.
  • the optical fiber connected to the optical interface and the first interface is located on the inner side of the same line card main board to implement the optical module and the wavelength division.
  • the multiplexer and the demultiplexer improve the space usage efficiency of the optical network device and reduce the optical fiber connection line outside the optical network device by setting the optical fiber connection inside the optical network device, thereby reducing the management difficulty.
  • 1A and 1B are a front view and a plan view of a first embodiment of a line card provided by the present invention
  • 2A to 2H are a plan view and a side view of a second embodiment of the optical module provided by the present invention.
  • FIG. 3 is a schematic structural diagram of Embodiment 3 of an optical network device according to the present invention. detailed description
  • the line card in this embodiment includes: a main board 10, a panel 20, an optical module 11, and a wave.
  • the sub-multiplexer and demultiplexer 12, the panel 20 is disposed on the edge of the main board 10, and the optical module 11 includes: at least one electrical interface (not shown) and at least one optical interface 11 1 ; wavelength division multiplexing and demultiplexer 12 includes: a first interface 121 and a second interface 122.
  • the optical module 11 can be disposed on the panel 20 through a through hole in the panel 20.
  • the electrical interface is electrically connected to the main board 10, and the optical interface 11 1 faces the direction from the edge of the main board 10 to the inside of the main board 10 and parallel to the main board 10.
  • the optical interface 11 1 is connected to the first interface 121, and the wavelength division multiplexing and demultiplexer 12
  • the second interface 122 is configured to be connected to the backbone optical fiber, and the trunk optical fiber is used to connect the transmitting optical network device and the receiving optical network device.
  • the optical module 11 involved in the embodiment further includes various functional modules of the existing optical module 1 1 , for example, a photoelectric conversion module, etc., which are not enumerated here.
  • the optical module 11 is used for converting between an optical signal and an electrical signal, wherein the electrical interface is electrically connected to the main board 10, and is configured to receive an electrical signal to be sent, and pass through the photoelectric conversion module in the optical module 11.
  • the optical interface 11 1 can be connected to the wavelength division multiplexing and demultiplexer 12 .
  • the optical signal received from the optical interface 111 is converted into an electrical signal, which is output from the electrical interface to the electrical connector on the main board 10.
  • the wavelength division multiplexing and demultiplexer 12 is configured to connect the optical module 11 and the trunk optical fiber for connecting the optical interface 11 1
  • the optical fiber with the first interface 121 may be an optical fiber configured when the optical fiber on the wavelength division multiplexing and demultiplexer 12 is also connected.
  • the wavelength division multiplexing and demultiplexing device is installed on one line card, the optical module is installed on another line card, and the optical module and the wavelength division multiplexing and demultiplexing are performed by the optical fiber between the line cards.
  • the optical module is installed on the line card, the wavelength division multiplexing and demultiplexer is installed in a module outside the frame, and the optical module is connected to the wavelength division multiplexing and demultiplexer through the optical fiber.
  • the line card provided in this embodiment is disposed on the same line card by the optical module 11 and the wavelength division multiplexing and demultiplexing device 12, and the optical interface 11 1 in the optical module 11 is directed toward the main board from the edge of the main board 10
  • the optical interface 11 is connected to the first interface 121, and the optical interface 11 1 is connected to the optical fiber of the first interface 121 on the inner side of the same line card main board 10 to implement the optical module 1 1 .
  • the wavelength division multiplexing and demultiplexer 12 is connected to the optical fiber disposed inside the optical network device to improve the space utilization efficiency of the optical network device, reduce the optical fiber connection line outside the optical network device, and further reduce the management difficulty.
  • the optical module electrical interface and the optical interface socket can be disposed on the main board, and the optical module electrical interface and the optical interface socket open direction are oriented from the inside of the main board to the edge of the main board and parallel to the main board, and are used for connecting with the electrical interface and the optical interface. .
  • the relative position of the optical interface and the electrical interface socket may be determined according to the relative positions of the optical interface and the electrical interface of the optical module, and the lead on the other end of the optical interface socket may be used to connect the first interface, and one possible connection mode is an optical interface. After being connected to the socket of the optical interface, the optical interface of the optical module and the connection of the wavelength division multiplexing and the first interface of the demultiplexer can be implemented.
  • the first interface faces the direction from the edge of the main board to the inside of the main board and is parallel to the main board
  • the second interface faces the direction from the inside of the main board to the edge of the main board and parallel to the main board
  • the first interface faces the direction from the edge of the main board to the inside of the main board and is parallel to the main board
  • the second interface faces the direction from the edge of the main board to the inside of the main board and parallel to the main board.
  • the form of the wavelength division multiplexing and demultiplexer may include the first interface and the second interface shown in FIG. 1A in opposite directions, and the settings of the first interface and the second interface may be set as needed. Location and orientation.
  • an optical connector may be disposed on the panel of the line card, and the optical connector includes a first end and a second end The first end is connected to the second interface in a direction from the edge of the main board to the inside of the main board and parallel to the main board, and the second end is directed to the edge of the main board from the inside of the main board and parallel to the main board for connecting with the main fiber.
  • the optical connector on the panel may be configured to connect the second interface of the wavelength division multiplexing and demultiplexer with the trunk fiber, and the orientation of the first end and the second end of the optical connector may be according to a wavelength division multiplexing and demultiplexer
  • the orientation of the first interface and the second interface are set to meet different forms of wavelength division multiplexing and demultiplexer connections to the backbone fiber.
  • the optical module and the wavelength division multiplexing and demultiplexing device may be disposed at one end of the main board.
  • the optical module and the wavelength division multiplexing and demultiplexing device can be disposed at the end of the main board close to the machine rejection opening.
  • the length of the main fiber can be shortened. Facilitate equipment maintenance.
  • the orientation of the first interface may coincide with the orientation of the optical interface.
  • the optical module and the wavelength division multiplexing and demultiplexing device are disposed at one end of the mainframe near the opening of the chassis, and the orientation of the first interface is consistent with the orientation of the optical interface, and is used for connecting the first interface and the light.
  • the fiber of the interface is located inside the line card main board.
  • the optical module and the wavelength division multiplexing and demultiplexing device are disposed on the same line card, and the optical interface in the optical module faces the direction from the edge of the main board to the inside of the main board and is parallel to the main board.
  • the optical interface is connected to the first interface, and the optical fiber connected to the optical interface and the first interface is located on the inner side of the same line card main board, and the optical module and the wavelength division multiplexing and demultiplexer are connected through the optical fiber disposed inside the optical network device.
  • the second interface may include: a wavelength division multiplexing interface and a wave decomposition multiplexing interface, where the wavelength division multiplexing interface and the wave decomposition multiplexing interface are respectively connected to the backbone fiber; or
  • the second interface includes: a wavelength division multiplexing/demultiplexing interface, and a wavelength division multiplexing/demultiplexing interface and a backbone optical fiber connection.
  • a wavelength division multiplexer and a wave decomposition multiplexer are used in an architecture using a wavelength division multiplexing method in an optical transmission network, wherein the wavelength division multiplexer is used to multiplex optical signals in multiple optical modules.
  • the wave decomposition multiplexer is configured to route the optical signal receiving the autonomous optical fiber to different optical modules, and the second interface may include: a wavelength division multiplexing interface and a wave decomposition multiplexing interface, and a wavelength division multiplexing interface Wave decomposition The multiplexing interfaces are respectively connected to the backbone fibers.
  • Wavelength division multiplexing/demultiplexing is used in another architecture using wavelength division multiplexing in optical transmission networks, and wavelength division multiplexing/demultiplexing functions are used for wavelength division multiplexers and wave decomposition multiplexers.
  • the second interface includes: a wavelength division multiplexing/demultiplexing interface, and a wavelength division multiplexing/demultiplexing interface and a backbone optical fiber connection.
  • the optical module in the first embodiment of the optical module is provided on the line card, the optical module includes at least one electrical interface and at least one optical interface; the electrical interface is electrically connected to the motherboard disposed on the line card; and the optical interface faces the edge of the motherboard Pointing to the inside of the main board and parallel to the main board, and connecting with the first interface of the wavelength division multiplexing and demultiplexer provided on the line card, the second interface of the wavelength division multiplexing and demultiplexing device is used for connecting the transmitting end
  • the optical fiber device is connected to the backbone optical fiber of the receiving optical network device.
  • optical interface and the electrical interface of the optical module are respectively disposed at two ends of the optical module, and the orientation direction of the optical interface is opposite to the orientation of the electrical interface.
  • the optical module is installed on the line card through the optical interface and the electrical interface orientation of the optical module in the foregoing embodiment, and the optical interface and the electrical interface can be simultaneously connected.
  • the orientation of the optical interface in the optical module is the same as the orientation of the electrical interface, and the optical module is disposed on the online card, so that the optical interface of the optical module and the first interface disposed on the motherboard of the line card are After the connection, the optical interface and the electrical interface can be simultaneously connected, and the optical module and the wavelength division multiplexing and demultiplexing device are connected inside the optical network device, thereby improving the space utilization efficiency of the optical network device and reducing the optical fiber outside the optical network device. Connecting lines, which reduces management difficulty.
  • FIGS. 2A to 2H are top and side views of the second embodiment of the optical module provided by the present invention.
  • the optical interface 111 can be disposed at one end of the optical module 11
  • the electrical interface 112 can be disposed at the other end of the optical module 11 .
  • the vertical distance of the electrical interface 112 to the main board is less than or equal to the vertical distance of the optical interface 111 to the main board. That is, from the side view 2B, the electrical interface 112 and the optical interface 1 11 are respectively located at two ends of the optical module 11, and the electrical interface 112 is located below the optical interface 11 1 , the orientation direction of the optical interface 11 11 and the orientation direction of the electrical interface 112 . Consistent. As another feasible implementer As shown in FIG. 2C and FIG. 2D, the optical module 11 includes two electrical interfaces 112, and the electrical interface 112 is disposed on both sides of the optical interface 11.
  • the two electrical interfaces 1 12 and the optical interface 111 are respectively located at two ends of the optical module 11, and the two electrical interfaces 1 12 are located at two sides of the optical interface 11 1 , and the orientation of the optical interface 111 The direction coincides with the orientation direction of the electrical interface 112.
  • one of the above electrical interfaces 112 can be disposed on one side of the optical interface 1 11 .
  • the optical interface 111 and the electrical interface 1 12 are disposed at the same end of the optical module 11.
  • the vertical distance of the electrical interface 12 to the main board is less than or equal to the vertical distance of the optical interface 11 1 to the main board. That is, from the side view 2F, the optical interface 11 1 and the electrical interface 1 12 are disposed at the same end of the optical module 1 1 , and the electrical interface 1 12 is directly under the optical interface 1 11 , and the orientation and electrical interface of the optical interface 111 .
  • the orientation directions of 112 are the same.
  • the optical module 11 includes an electrical interface 112, and the electrical interface 12 is disposed at one side of the optical interface 11. That is, from the top view 2G and the side view 2H, the optical interface 111 and the electrical interface 12 are disposed at the same end of the optical module 11.
  • the electrical interface 112 is located at one side of the optical interface 11 1 , and the electrical interface 112 and the optical interface 11 11 are opposite.
  • the distance between the optical module 11 and the direction of the orientation of the electrical interface 112 is the same. It can be understood that the above electrical interfaces 112 can be two and disposed on both sides of the optical interface 1 11 .
  • the optical module 11 is provided in the optical module of the present embodiment.
  • the optical module 11 and the electrical interface 11 are respectively disposed at the two ends of the optical module 11 or at the same end of the optical module 11.
  • the optical interface 1 11 of the optical module is connected to the first interface disposed on the main board of the line card, the optical interface 1 11 and the electrical interface 1 12 can be simultaneously connected, and the optical module and the wavelength division multiplexing can be implemented.
  • the connection between the demultiplexer and the optical network device improves the space utilization efficiency of the optical network device, reduces the optical fiber connection line outside the optical network device, and further reduces the management difficulty.
  • the optical network device of this embodiment includes at least one line card 100 and a chassis 200 in any of the foregoing embodiments, at least A line card 100 is disposed inside the chassis 200.
  • the frame 200 may be in the shape of a rectangular parallelepiped or a cube. One surface of the frame 200 may be provided with an opening. At least one line card 100 is inserted into the frame 200 from the opening of the frame 200. After the line card 100 is inserted into the frame 200, the panel of the line card 100 is located.
  • the open side of the frame 200, as shown in FIG. 3, the optical module 11, the wavelength division multiplexing and demultiplexer 12, the wavelength division multiplexing and demultiplexer in the above embodiment are respectively disposed on the main board of one line card 100.
  • the wavelength division multiplexing and demultiplexer 12 includes a wavelength division multiplexer and a wave decomposition multiplexer, and the wavelength division multiplexer and the wave decomposition multiplexer are respectively provided with a second interface 122 for connecting the trunk fibers; and the other line card 100 is respectively provided with the above
  • the second interface 122 for connecting the trunk fiber is disposed on the wavelength division multiplexing/demultiplexing device, and is configured to connect the optical interface of the optical module 11 with the first interface of the wavelength division multiplexing and demultiplexer 12.
  • the fiber optic cable is located inside the line card and inside the optical network device.
  • the optical network device provided in this embodiment is used to connect the optical interface of the optical module 11 and the first of the wavelength division multiplexing and demultiplexer 12 through the line card 100 in any one of the above embodiments.
  • the fiber optic cable of the interface is located on the inner side of the same line card main board and inside the optical network device.
  • the optical module and the wavelength division multiplexing and demultiplexer are connected through the optical fiber disposed inside the optical network device to improve the space utilization efficiency of the optical network device. Reduce the fiber connection line outside the optical network equipment, thus reducing management difficulty.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本发明实施例提供一种线卡、光模块及光网络设备,其中,线卡包括:主板、面板、光模块和波分复用和解复用器;光模块包括:至少一个电接口和至少一个光接口;波分复用和解复用器包括:第一接口和第二接口;面板设置在主板边沿上;电接口,与主板电连接;光接口朝向从主板边沿指向主板内部、且与主板平行的方向,光接口与第一接口连接;波分复用和解复用器设置于主板上,第二接口用于与主干光纤连接,主干光纤用于连接发送端光网络设备和接收端光网络设备。本发明实施例的技术方案可以提高光网络设备的空间使用效率,减少光网络设备外部的光纤连接线,降低管理难度。

Description

线卡、 光模块及光网络设备 本申请要求于 2012 年 12 月 17 日提交中国专利局、 申请号为 201210547960.0、 发明名称为"线卡、 光模块及光网络设备"的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明实施例涉及通信技术, 尤其涉及一种线卡、 光模块及光网络设备。 背景技术
在当前的光传输网络中, 波分复用系统包括以下几个关键器件: 光发射机, 将要传输的信息转换为光信号; 接收机, 将接收的光信号转换为电信号; 波分 复用和解复用器, 将本地多个发射机产生的多波长光信号汇聚到连接其它节点 的主干光纤上, 同时将主干光纤上来自其它节点的多波长光信号分配到多个接 收机。 通常情况下, 一个光发射机和一个光接收机会封装到一起, 称为光模块。
波分复用设备一般由机框和插入机框内的线卡组成, 一种现有技术中, 波 分复用和解复用器安装在一个线卡上, 光模块安装在另一个线卡上, 通过线卡 之间的光纤将光模块和波分复用和解复用器连接起来; 另一种现有技术中, 光 模块安装在线卡上, 波分复用和解复用器安装在机框之外的某个模块内, 通过 光纤将光模块和波分复用和解复用器连接起来。
在实现本发明实施例的过程中, 发明人发现现有技术存在光网络设备空间 使用效率低, 同时线卡之间, 以及线卡和外部模块之间光纤连接复杂, 管理难 度较高的问题。 发明内容
本发明实施例提供一种线卡、 光模块及光网络设备, 用以提高光网络设备 的空间使用效率, 减少光网络设备外部的光纤连接线, 进而降低管理难度。
本发明第一方面, 提供一种线卡, 包括: 主板、 面板、 光模块和波分复用 和解复用器; 所述光模块包括: 至少一个电接口和至少一个光接口; 所述波分 复用和解复用器包括: 第一接口和第二接口;
所述面板设置在所述主板边沿上; 所述电接口, 与所述主板电连接;
所述光接口朝向从所述主板边沿指向所述主板内部、 且与所述主板平行的 方向, 所述光接口与所述第一接口连接;
所述波分复用和解复用器设置于所述主板上, 所述第二接口用于与主干光 纤连接, 所述主干光纤用于连接发送端光网络设备和接收端光网络设备。
在第一方面的第一种可能的实现方式中, 所述主板上设置光模块电接口和 光接口插座, 所述光模块电接口和光接口插座的开口方向均朝向从所述主板内 部指向所述主板边沿、 且与所述主板平行的方向, 用于与所述电接口和所述光 接口连接。
结合第一方面或第一方面的第一种可能的实现方式, 在第二种可能的实现 方式中, 所述第一接口朝向从所述主板边沿指向所述主板内部、 且与所述主板 平行的方向, 所述第二接口朝向从所述主板内部指向所述主板边沿、 且与所述 主板平行的方向, 或者,
所述第一接口朝向从所述主板边沿指向所述主板内部、 且与所述主板平行 的方向, 所述第二接口朝向从所述主板边沿指向所述主板内部、 且与所述主板 平行的方向。
结合第一方面或第一方面的第一种、 第二种可能的实现方式, 在第三种可 能的实现方式中, 所述面板上设置有光连接器, 所述光连接器包括第一端和第 二端, 所述第一端朝向从所述主板边沿指向所述主板内部、 且与所述主板平行 的方向, 与所述第二接口连接, 所述第二端朝向从所述主板内部指向所述主板 边沿、 且与所述主板平行的方向, 用于与所述主干光纤连接。
结合第一方面或第一方面的第一种、 第二种、 第三种可能的实现方式, 在 第四种可能的实现方式中, 所述光模块和所述波分复用和解复用器设置在所述 主板的一端。
根据第一方面的第四种可能的实现方式, 在第五种可能的实现方式中, 所 述第一接口的朝向与所述光接口的朝向一致。
结合第一方面或第一方面的第一种、 第二种、 第三种、 第四种、 第五种可 能的实现方式, 在第六种可能的实现方式中, 所述第二接口包括: 波分复用接 口和波分解复用接口, 所述波分复用接口和所述波分解复用接口分别与所述主 干光纤连接; 或者,
所述第二接口包括: 波分复用 /解复用接口, 所述波分复用 /解复用接口与所 述主干光纤连接。
本发明第二方面, 提供一种光模块, 所述光模块设置在线卡上, 所述光模 块包括至少一个电接口和至少一个光接口;
所述电接口, 与所述线卡上设置的主板电连接;
所述光接口朝向从所述主板边沿指向所述主板内部、 且与所述主板平行的 方向, 且与所述线卡上设置的波分复用和解复用器的第一接口连接, 所述波分 复用和解复用器的第二接口与用于连接发送端光网络设备和接收端光网络设备 的主干光纤连接。
在第二方面的第一种可能的实现方式中, 所述光接口的朝向方向与所述电 接口的朝向方向一致。
根据第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所 述光接口设置在所述光模块的一端, 所述电接口设置在所述光模块的另一端; 或者, 所述光接口和所述电接口设置在所述光模块的同一端。
根据第一方面或第一方面的第一种、 第二种可能的实现方式, 在第三种可 能的实现方式中, 所述光模块包括两个所述电接口, 所述电接口设置在所述光 接口的两侧。
本发明第三方面, 提供一种光网络设备, 其特征在于, 包括: 至少一个如 上述第一方面中任一种可能的实现方式中所述的线卡, 和机框, 所述至少一个 线卡设置在所述机框内部。
本实施例提供的线卡、 光模块及光网络设备, 通过本实施例提供的线卡, 通过将光模块和波分复用和解复用器设置在同一个线卡上, 并且光模块中的光 接口朝向从主板边沿指向主板内部、 且与主板平行的方向, 光接口与第一接口 连接, 用于连接光接口与第一接口的光纤位于同一线卡主板的内侧, 实现光模 块和波分复用和解复用器通过设置在光网络设备内部的光纤连接, 提高光网络 设备的空间使用效率, 减少光网络设备外部的光纤连接线, 进而降低管理难度。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描 述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出 创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1A和 1B为本发明提供的线卡实施例一的主视图和俯视图;
图 2A〜2H为本发明提供的光模块实施例二的俯视图和侧视图;
图 3为本发明提供的光网络设备实施例三的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中 的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
图 1A和 1 B为本发明提供的线卡实施例一的主视图和俯视图, 如图 1A和 1 B 所示, 本实施例中的线卡包括: 主板 10、 面板 20、 光模块 11和波分复用和解复 用器 12, 面板 20设置在主板 10边沿上, 光模块 11包括: 至少一个电接口 (图中 未示出)和至少一个光接口 11 1 ; 波分复用和解复用器 12包括: 第一接口 121和 第二接口 122, 光模块 1 1可以通过面板 20上的通孔设置于面板 20上。
电接口与主板 10电连接, 光接口 11 1朝向从主板 10边沿指向主板 10内部、 且与主板 10平行的方向, 光接口 11 1与第一接口 121连接, 波分复用和解复用器 12设置于主板 10上,第二接口 122用于与主干光纤连接,主干光纤用于连接发送 端光网络设备和接收端光网络设备。
需要说明的是, 本实施例中涉及的光模块 11 , 其中还包括现有的光模块 1 1 中所具有的各种功能模块, 例如: 光电转换模块等, 在此不一一列举。 具体来 说, 光模块 1 1用于光信号和电信号之间的转换, 其中, 电接口与主板 10电连接, 用于接收待发送的电信号, 经过光模块 1 1中的光电转换模块的电光转换后从光 接口 1 11输出, 光接口 11 1可以和波分复用和解复用器 12连接。 另一方面, 从光 接口 111接收到的光信号被转换为电信号, 从电接口输出到主板 10上的电连接 器。
波分复用和解复用器 12用于连接光模块 1 1和主干光纤,用于连接光接口 11 1 与第一接口 121的光纤可以是波分复用和解复用器 12上自带的光纤也可以连接 时配置的光纤。
现有光网络设备中将波分复用和解复用器安装在一个线卡上, 光模块安装 在另一个线卡上, 通过线卡之间的光纤将光模块和波分复用和解复用器连接起 来; 或者, 将光模块安装在线卡上, 波分复用和解复用器安装在机框之外的某 个模块内, 通过光纤将光模块和波分复用和解复用器连接起来, 光网络设备的 外部存在多根光纤连接线, 导致光网络设备的空间使用效率低, 管理复杂, 易 引发故障。
本实施例提供的线卡, 通过将光模块 1 1和波分复用和解复用器 12设置在同 一个线卡上, 并且光模块 1 1中的光接口 11 1朝向从主板 10边沿指向主板 10内部、 且与主板 10平行的方向, 光接口 11 1与第一接口 121连接, 用于连接光接口 11 1 与第一接口 121的光纤位于同一线卡主板 10的内侧,实现光模块 1 1和波分复用和 解复用器 12通过设置在光网络设备内部的光纤连接, 提高光网络设备的空间使 用效率, 减少光网络设备外部的光纤连接线, 进而降低管理难度。
可选地, 主板上可以设置光模块电接口和光接口插座, 光模块电接口和光 接口插座的开口方向均朝向从主板内部指向主板边沿、 且与主板平行的方向, 用于与电接口和光接口连接。
光接口和电接口插座的相对位置可以根据光模块上光接口和电接口的相对 位置确定, 光接口插座的另一端上的引线可以用于连接第一接口, 一种可能的 连接方式是光接口和上述光接口的插座连接后, 可以实现光模块的光接口和波 分复用和解复用器的第一接口的连接。
可选地, 第一接口朝向从主板边沿指向主板内部、 且与主板平行的方向, 第二接口朝向从主板内部指向主板边沿、 且与主板平行的方向, 或者,
第一接口朝向从主板边沿指向主板内部、 且与主板平行的方向, 第二接口 朝向从主板边沿指向主板内部、 且与主板平行的方向。
具体来说, 波分复用和解复用器的形态可以包括如图 1 A中所示的第一接口 和第二接口朝向相反的形态, 还可以根据需要设置第一接口和第二接口的设置 位置和朝向。
进一步地, 线卡的面板上可以设置光连接器, 光连接器包括第一端和第二 端, 第一端朝向从主板边沿指向主板内部、 且与主板平行的方向, 与第二接口 连接, 第二端朝向从主板内部指向主板边沿、 且与主板平行的方向, 用于与主 干光纤连接。
面板上光连接器的设置可以用于连接波分复用和解复用器的第二接口与主 干光纤, 光连接器的第一端和第二端的朝向可以根据波分复用和解复用器的第 一接口和第二接口的朝向设置, 满足不同形态的波分复用和解复用器与主干光 纤的连接。
可选地, 光模块和波分复用和解复用器可以设置在主板的一端。
具体来说, 根据线卡在机拒中的安装位置, 可以将光模块和波分复用和解 复用器设置在主板的靠近机拒开口一端, 在实际应用中, 可以缩短主干光纤的 长度, 便于设备维护。
在上述实施例的基础上, 第一接口的朝向可以与光接口的朝向一致。
可以理解的是, 将光模块和波分复用和解复用器均设置在主板的靠近机框 开口一端, 并使第一接口的朝向与光接口的朝向一致, 实现用于连接第一接口 和光接口的光纤位于线卡主板的内侧。
本实施例提供的线卡, 通过将光模块和波分复用和解复用器设置在同一个 线卡上, 并且光模块中的光接口朝向从主板边沿指向主板内部、 且与主板平行 的方向, 光接口与第一接口连接, 用于连接光接口与第一接口的光纤位于同一 线卡主板的内侧, 实现光模块和波分复用和解复用器通过设置在光网络设备内 部的光纤连接, 提高光网络设备的空间使用效率, 减少光网络设备外部的光纤 连接线, 进而降低管理难度。
在上述实施例的基础上, 第二接口可以包括: 波分复用接口和波分解复用 接口, 波分复用接口和波分解复用接口分别与主干光纤连接; 或者,
第二接口包括: 波分复用 /解复用接口, 波分复用 /解复用接口与主干光纤连 接。
具体来说, 光传输网络中采用波分复用方式的一种架构中使用波分复用器 和波分解复用器, 其中波分复用器用于将多个光模块中的光信号复用到主干光 纤上, 波分解复用器用于将接收自主干光纤的光信号路由到不同的光模块中, 第二接口可以包括: 波分复用接口和波分解复用接口, 波分复用接口和波分解 复用接口分别与主干光纤连接。
光传输网络中采用波分复用方式的另一种架构中使用波分复用 /解复用器, 波分复用 /解复用器将波分复用器和波分解复用器的功能集成于一体,该构架中, 第二接口包括: 波分复用 /解复用接口, 波分复用 /解复用接口与主干光纤连接。
本发明提供的光模块实施例一中的光模块设置在线卡上, 光模块包括至少 一个电接口和至少一个光接口; 电接口, 与线卡上设置的主板电连接; 光接口 朝向从主板边沿指向主板内部、 且与主板平行的方向, 且与线卡上设置的波分 复用和解复用器的第一接口连接, 波分复用和解复用器的第二接口与用于连接 发送端光网络设备和接收端光网络设备的主干光纤连接。
现有技术中光模块中的光接口和电接口分别设置于光模块的两端, 光接口 的朝向方向与电接口的朝向方向相反。
通过上述实施例的光模块中光接口和电接口朝向的设置, 将光模块安装在 线卡上, 可以实现光接口和电接口的同时连接。
可以理解的是, 若线卡上设置有电接口和光接口插座, 则可以在安装光模 块时, 使得光模块的电接口和光接口分别与电接口和光接口插座连接, 实现光 接口和电接口的同时连接, 通过光接口插座的另一端上的引线连接第一接口。
本实施例提供的光模块, 光模块中的光接口的朝向方向与电接口的朝向方 向一致, 将光模块设置在线卡上, 使光模块的光接口与设置于线卡主板上的第 一接口连接后, 可以实现光接口和电接口的同时连接, 以及光模块和波分复用 和解复用器在光网络设备内部的连接, 提高光网络设备的空间使用效率, 减少 光网络设备外部的光纤连接线, 进而降低管理难度。
下面列举出本发明提供的光模块的几种可能的实施方式, 以进一步说明本 发明提供的光模块的结构, 图 2 A~2 H为本发明提供的光模块实施例二的俯视图 和侧视图,如图 2A~2D所示,光接口 111可以设置在光模块 1 1的一端,电接口 112 可以设置在光模块 11的另一端。
作为一种可行的实施方式, 如图 2A和图 2B所示, 电接口 112到主板的垂直 距离小于或等于光接口 111到主板的垂直距离。 即, 从侧视图 2B来看, 电接口 112和光接口 1 11分别位于光模块 11的两端, 电接口 112位于光接口 11 1的下方, 光接口 1 11的朝向方向与电接口 112的朝向方向一致。 作为另一种可行的实施方 式, 如图 2C和图 2D所示, 光模块 11包括两个电接口 112, 电接口 112设置在光 接口 1 11的两侧。 即, 从俯视图 2C和侧视图 2D来看, 两个电接口 1 12和光接口 111分别位于光模块 11的两端, 两个电接口 1 12位于光接口 11 1的两侧, 光接口 111的朝向方向与电接口 112的朝向方向一致。
可以理解的是, 上述电接口 112可以为一个, 设置在光接口 1 11的一侧。 如图 2E~2H所示, 光接口 111和电接口 1 12设置在光模块 11的同一端。
作为一种可行的实施方式, 如图 2E和图 2F所示, 电接口 1 12到主板的垂直 距离小于或等于光接口 11 1到主板的垂直距离。即,从侧视图 2F来看,光接口 11 1 和电接口 1 12设置在光模块 1 1的同一端, 电接口 1 12位于光接口 1 11的正下方, 光接口 111的朝向方向与电接口 112的朝向方向一致。
作为另一种可行的实施方式, 如图 2G和图 2H所示, 光模块 1 1包括一电接口 112, 电接口 1 12设置在光接口 1 11的一侧。 即, 从俯视图 2G和侧视图 2H来看, 光接口 111和电接口 1 12设置在光模块 1 1的同一端, 电接口 112位于光接口 11 1 的一侧, 电接口 112和光接口 1 11相对于光模块 11一端距离相等, 光接口 11 1的 朝向方向与电接口 1 12的朝向方向一致。 可以理解的是, 上述电接口 112可以为 两个, 设置在光接口 1 11的两侧
本实施例提供的线卡中的光模块, 通过将光接口 11 1和电接口 1 12分别设置 于光模块 1 1的两端或设置于光模块 11的同一端, 朝向一致, 将光模块 11设置在 线卡上, 使光模块的光接口 1 11与设置于线卡主板上的第一接口连接后, 可以实 现光接口 1 11和电接口 1 12的同时连接, 以及光模块和波分复用和解复用器在光 网络设备内部的连接, 提高光网络设备的空间使用效率, 减少光网络设备外部 的光纤连接线, 进而降低管理难度。
图 3为本发明提供的光网络设备实施例三的结构示意图, 如图 3所示, 本实 施例的光网络设备, 包括至少一个上述任一实施例中的线卡 100和机框 200, 至 少一个线卡 100设置在机框 200内部。
机框 200可以呈长方体或立方体结构, 其上的一个面可以设置开口, 至少一 个线卡 100从机框 200的开口插入机框 200内部, 线卡 100插入机框 200后线卡 100的面板位于机框 200开口的一面, 如图 3所示, 一个线卡 100的主板上分别设 置有上述实施例中的光模块 11、 波分复用和解复用器 12, 波分复用和解复用器 12包括波分复用器和波分解复用器, 波分复用器和波分解复用器上分别设置有 用于连接主干光纤的第二接口 122; 另一线卡 100的主板上分别设置有上述实施 例中的光模块 11和波分复用和解复用器 12, 波分复用和解复用器 12可以是将波 分复用和波分解复用功能集成一体的波分复用 /解复用器, 波分复用 /解复用器上 设置有用于连接主干光纤的第二接口 122,用于连接光模块 1 1的光接口与波分复 用和解复用器 12的第一接口的光纤连接线则位于线卡的内侧、 光网络设备的内 部。
本实施例提供的光网络设备,通过安装在机框 200中的上述任一实施例中的 线卡 100 ,用于连接光模块 11的光接口与波分复用和解复用器 12的第一接口的光 纤连接线位于同一线卡主板的内侧、 光网络设备的内部, 实现光模块和波分复 用和解复用器通过设置在光网络设备内部的光纤连接, 提高光网络设备的空间 使用效率, 减少光网络设备外部的光纤连接线, 进而降低管理难度。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者 对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并不使相 应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权利 要求 书
1、 一种线卡, 其特征在于, 包括: 主板、 面板、 光模块和波分复用和解复 用器; 所述光模块包括: 至少一个电接口和至少一个光接口; 所述波分复用和 解复用器包括: 第一接口和第二接口;
所述面板设置在所述主板边沿上;
所述电接口, 与所述主板电连接;
所述光接口朝向从所述主板边沿指向所述主板内部、 且与所述主板平行的 方向, 所述光接口与所述第一接口连接;
所述波分复用和解复用器设置于所述主板上, 所述第二接口用于与主干光 纤连接, 所述主干光纤用于连接发送端光网络设备和接收端光网络设备。
2、 根据权利要求 1所述的线卡, 其特征在于, 所述主板上设置光模块电接 口和光接口插座, 所述光模块电接口和光接口插座的开口方向均朝向从所述主 板内部指向所述主板边沿、 且与所述主板平行的方向, 用于与所述电接口和所 述光接口连接。
3、 根据权利要求 1或 2所述的线卡, 其特征在于, 所述第一接口朝向从所述 主板边沿指向所述主板内部、 且与所述主板平行的方向, 所述第二接口朝向从 所述主板内部指向所述主板边沿、 且与所述主板平行的方向, 或者,
所述第一接口朝向从所述主板边沿指向所述主板内部、 且与所述主板平行 的方向, 所述第二接口朝向从所述主板边沿指向所述主板内部、 且与所述主板 平行的方向。
4、 根据权利要求 1 -3任一项所述的线卡, 其特征在于, 所述面板上设置有 光连接器, 所述光连接器包括第一端和第二端, 所述第一端朝向从所述主板边 沿指向所述主板内部、 且与所述主板平行的方向, 与所述第二接口连接, 所述 第二端朝向从所述主板内部指向所述主板边沿、 且与所述主板平行的方向, 用 于与所述主干光纤连接。
5、 根据权利要求 1 -4任一项所述的线卡, 其特征在于, 所述光模块和所述 波分复用和解复用器设置在所述主板的一端。
6、 根据权利要求 5所述的线卡, 其特征在于, 所述第一接口的朝向与所述 光接口的朝向一致。
7、 根据权利要求 1 -6任一项所述的线卡, 其特征在于, 所述第二接口包括: 波分复用接口和波分解复用接口, 所述波分复用接口和所述波分解复用接口分 别与所述主干光纤连接; 或者,
所述第二接口包括: 波分复用 /解复用接口, 所述波分复用 /解复用接口与所 述主干光纤连接。
8、 一种光模块, 其特征在于, 所述光模块设置在线卡上, 所述光模块包括 至少一个电接口和至少一个光接口;
所述电接口, 与所述线卡上设置的主板电连接;
所述光接口朝向从所述主板边沿指向所述主板内部、 且与所述主板平行的 方向, 且与所述线卡上设置的波分复用和解复用器的第一接口连接, 所述波分 复用和解复用器的第二接口与用于连接发送端光网络设备和接收端光网络设备 的主干光纤连接。
9、 根据权利要求 8所述的光模块, 其特征在于, 所述光接口的朝向方向与 所述电接口的朝向方向一致。
10、 根据权利要求 9所述的光模块, 其特征在于, 所述光接口设置在所述光 模块的一端, 所述电接口设置在所述光模块的另一端; 或者, 所述光接口和所 述电接口设置在所述光模块的同一端。
1 1、 根据权利要求 8~10任一项所述的光模块, 其特征在于, 所述光模块包 括两个所述电接口, 所述电接口设置在所述光接口的两侧。
12、 一种光网络设备, 其特征在于, 包括: 至少一个如权利要求 1至 7任一 项所述的线卡, 和机框, 所述至少一个线卡设置在所述机框内部。
PCT/CN2013/089664 2012-12-17 2013-12-17 线卡、光模块及光网络设备 WO2014094596A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13864306.9A EP2924484B1 (en) 2012-12-17 2013-12-17 Line card, optical module and optical network device
EP18209103.3A EP3521882B1 (en) 2012-12-17 2013-12-17 Line card and optical network device
US14/742,437 US9838147B2 (en) 2012-12-17 2015-06-17 Line card, optical module, and optical network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210547960.0A CN103023568B (zh) 2012-12-17 2012-12-17 线卡、光模块及光网络设备
CN201210547960.0 2012-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/742,437 Continuation US9838147B2 (en) 2012-12-17 2015-06-17 Line card, optical module, and optical network device

Publications (1)

Publication Number Publication Date
WO2014094596A1 true WO2014094596A1 (zh) 2014-06-26

Family

ID=47971742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089664 WO2014094596A1 (zh) 2012-12-17 2013-12-17 线卡、光模块及光网络设备

Country Status (4)

Country Link
US (1) US9838147B2 (zh)
EP (2) EP3521882B1 (zh)
CN (1) CN103023568B (zh)
WO (1) WO2014094596A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023568B (zh) 2012-12-17 2017-09-19 华为技术有限公司 线卡、光模块及光网络设备
JP6522757B2 (ja) 2014-11-21 2019-05-29 華為技術有限公司Huawei Technologies Co.,Ltd. 変調およびコーディング順位を決定するための方法、装置、およびデバイス
EP3145137A1 (en) * 2015-09-15 2017-03-22 Alcatel Lucent Method for operating a line switching component, line switching component, line card, and network node thereof
JP7276465B2 (ja) * 2019-08-29 2023-05-18 日本電気株式会社 バックドア検査装置、バックドア検査方法、及びプログラム
US11215773B1 (en) * 2020-06-14 2022-01-04 Mellanox Technologies Denmark Aps Pluggable laser module with improved safety

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6796716B1 (en) * 2002-07-01 2004-09-28 Nortel Networks, Ltd. Network device containing an optical module having optical and electrical connections facing one direction
CN102687049A (zh) * 2009-10-29 2012-09-19 住友电气工业株式会社 可插式光收发器及其制造方法
CN102811099A (zh) * 2011-06-02 2012-12-05 住友电气工业株式会社 光收发器
CN103023568A (zh) * 2012-12-17 2013-04-03 华为技术有限公司 线卡、光模块及光网络设备
CN202978946U (zh) * 2012-12-17 2013-06-05 华为技术有限公司 线卡、光模块及光网络设备

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4597631A (en) * 1982-12-02 1986-07-01 The United States Of America As Represented By The Secretary Of The Navy Printed circuit card hybrid
KR100195868B1 (ko) * 1996-12-09 1999-06-15 윤종용 확장시스템과의 결합전 전원차단기능을 갖는 컴퓨터 및 컴퓨터시스템
US5917696A (en) * 1997-09-16 1999-06-29 Enlight Corporation Structure for connecting seat of PC mainboard and interface cards and for computer housing
TW347105U (en) * 1997-09-19 1998-12-01 Mitac Int Corp Integrated-type computer
GB2334396B (en) * 1998-04-02 2000-02-02 Bookham Technology Ltd Connecting a plurality of circuit boards
AU2002334906A1 (en) * 2001-10-09 2003-04-22 Infinera Corporation Transmitter photonic integrated circuits (txpic) and optical transport networks employing txpics
WO2003103187A1 (en) * 2002-06-04 2003-12-11 Celion Networks, Inc. Flexible, dense line card architecture
US6769812B1 (en) * 2002-07-01 2004-08-03 Nortel Networks, Ltd Method and apparatus for forming an optical module with optical and electrical connections facing one direction
US20050047795A1 (en) * 2003-08-28 2005-03-03 Windover Lisa A. Optical interconnect system and method of communications over an optical backplane
US7646981B2 (en) * 2004-03-01 2010-01-12 Adc Telecommunications, Inc. WDM systems and methods
US7805084B2 (en) * 2004-05-20 2010-09-28 Finisar Corporation Dual stage modular optical devices
US20060291857A1 (en) * 2005-01-21 2006-12-28 Andrew Mackenzie Method and apparatus for testing optical network equipment
WO2006106973A1 (ja) * 2005-03-31 2006-10-12 Nec Corporation 光通信方法、光通信装置、及び光通信システム
CN2792101Y (zh) * 2005-06-30 2006-06-28 杭州华为三康技术有限公司 一种电子设备机箱
US7941053B2 (en) * 2006-10-19 2011-05-10 Emcore Corporation Optical transceiver for 40 gigabit/second transmission
US7633933B2 (en) * 2007-01-29 2009-12-15 Ciena Corporation Systems and methods for a hierarchical layer one and layer two cross-connect in a transport and aggregation platform
US7794157B2 (en) * 2007-07-11 2010-09-14 Emcore Corporation Wireless tuning and reconfiguration of network units including optoelectronic components
US7918611B2 (en) * 2007-07-11 2011-04-05 Emcore Corporation Reconfiguration and protocol adaptation of optoelectronic modules and network components
US9095045B2 (en) * 2007-07-19 2015-07-28 Centurylink Intellectual Property Llc Protective telecommunications enclosure systems and methods
EP2260591A4 (en) * 2008-02-22 2013-10-23 Vello Systems Inc SPECTRALLY EFFICIENT PARALLEL OPTICAL WDM CHANNELS FOR METROPOLITAN AND LONG DISTANCE METROPOLITAN OPTICAL NETWORKS
US8155520B1 (en) * 2008-04-16 2012-04-10 Cyan, Inc. Multi-fabric shelf for a transport network
US8167505B2 (en) * 2008-09-18 2012-05-01 Sumitomo Electric Industries, Ltd. Pluggable system between optical transceiver and host system
US8200094B1 (en) * 2009-04-11 2012-06-12 Applied Micro Circuits Corporation System and method for free space optical connector alignment
US8135281B2 (en) * 2009-04-11 2012-03-13 Applied Micro Circuits Corporation Free space optical connector
WO2011052802A2 (en) * 2009-10-29 2011-05-05 Sumitomo Electric Industries, Ltd. Pluggable optical transceiver and method for manufacturing the same
US9052477B2 (en) * 2009-10-29 2015-06-09 Sumitomo Electric Industries, Ltd. Optical transceiver with inner fiber set within tray securing thermal path from electronic device to housing
CN102985860A (zh) * 2010-05-19 2013-03-20 惠普发展公司,有限责任合伙企业 光学互连结构和光学交换机
JP5740954B2 (ja) * 2010-12-09 2015-07-01 日本電気株式会社 光トランシーバ
US8442401B2 (en) * 2011-02-08 2013-05-14 Telefonaktiebolaget L M Ericsson (Publ) Method and device for fiber access physical layer unbundling using multiple uplink cards
US8684612B2 (en) * 2011-07-01 2014-04-01 Intel Corporation Optical frame attached with alignment features microfabricated in die
EP2737349A4 (en) * 2011-07-29 2015-01-07 Hewlett Packard Development Co CONNECTORS FOR OPTICAL FIBERS
WO2013165344A1 (en) * 2012-04-30 2013-11-07 Hewlett-Packard Development Company, L.P. Transceiver module
US9577791B2 (en) * 2012-12-05 2017-02-21 Intel Corporation Notification by network element of packet drops
US8831433B2 (en) * 2012-12-07 2014-09-09 Applied Optoelectronics, Inc. Temperature controlled multi-channel transmitter optical subassembly and optical transceiver module including same
US9020356B2 (en) * 2013-02-07 2015-04-28 Verizon Patent And Licensing Inc. Polarization multiplexed short distance connection
US9039303B2 (en) * 2013-05-14 2015-05-26 Applied Optoelectronics, Inc. Compact multi-channel optical transceiver module
JP6277660B2 (ja) * 2013-10-16 2018-02-14 住友電気工業株式会社 全二重光トランシーバ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6796716B1 (en) * 2002-07-01 2004-09-28 Nortel Networks, Ltd. Network device containing an optical module having optical and electrical connections facing one direction
CN102687049A (zh) * 2009-10-29 2012-09-19 住友电气工业株式会社 可插式光收发器及其制造方法
CN102811099A (zh) * 2011-06-02 2012-12-05 住友电气工业株式会社 光收发器
CN103023568A (zh) * 2012-12-17 2013-04-03 华为技术有限公司 线卡、光模块及光网络设备
CN202978946U (zh) * 2012-12-17 2013-06-05 华为技术有限公司 线卡、光模块及光网络设备

Also Published As

Publication number Publication date
EP2924484B1 (en) 2019-02-06
CN103023568A (zh) 2013-04-03
EP3521882A1 (en) 2019-08-07
EP2924484A1 (en) 2015-09-30
EP3521882B1 (en) 2023-08-30
US9838147B2 (en) 2017-12-05
CN103023568B (zh) 2017-09-19
US20150288477A1 (en) 2015-10-08
EP2924484A4 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2014094596A1 (zh) 线卡、光模块及光网络设备
WO2017118388A1 (zh) 一种光背板子架装置
US9800341B2 (en) Method and apparatus for providing network interface using optical network terminal (“ONT”) plug
CN203788292U (zh) 光收发一体模块结构、无源光网络系统、光传输系统
US20150326955A1 (en) Optical signal routing
US8606112B2 (en) Pluggable module with bi-directional host-module optical interface
JP4460070B1 (ja) 加入者宅側光回線終端装置
US20150050022A1 (en) Method and Apparatus for Providing Optical Networking Using a Pluggable High-speed Interface
US10809471B2 (en) Integrated passive optical tap and optical signal termination
JP2012227861A (ja) 伝送装置の管理システム
CN206686327U (zh) 一种gpon网络传输线路光功率补偿装置
EP4158801A1 (en) Polarization-diversity optical power supply
KR101985752B1 (ko) 수동광통신망 기반 비디오 중첩 플러거블형 광네트워크 장치
WO2016150285A1 (zh) 光传输装置、设备和光传输装置的设计方法
CN107431552B (zh) 光模块及网络设备
JP4680073B2 (ja) Ponシステム
CN216411656U (zh) 一种光模块
US10219053B2 (en) Fiber-to-coax conversion unit and method of using same
JP7459943B2 (ja) 光ネットワークシステム、光ネットワークシステムの動作方法、及び光回線終端装置
JP2007295507A (ja) 光伝送システム及び光中継装置
CN202978946U (zh) 线卡、光模块及光网络设备
JP2004191883A (ja) 光情報コンセント
WO2014012273A1 (zh) 应用pof联网的局域网及其光交换机和光转换器
CN215420306U (zh) 一种光模块
CN103974150B (zh) 一种光同轴单元及光电混合系统中的信号传输方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013864306

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201504239

Country of ref document: ID