WO2014094474A1 - 一种上行共享资源池资源分配方法和基站 - Google Patents

一种上行共享资源池资源分配方法和基站 Download PDF

Info

Publication number
WO2014094474A1
WO2014094474A1 PCT/CN2013/083840 CN2013083840W WO2014094474A1 WO 2014094474 A1 WO2014094474 A1 WO 2014094474A1 CN 2013083840 W CN2013083840 W CN 2013083840W WO 2014094474 A1 WO2014094474 A1 WO 2014094474A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduled
allocated
allocationflag
rbs
scheduling
Prior art date
Application number
PCT/CN2013/083840
Other languages
English (en)
French (fr)
Inventor
孙继忠
闫金凤
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014094474A1 publication Critical patent/WO2014094474A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to an uplink shared resource pool resource allocation method and a base station. Background technique
  • LTE Long Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the Type2 TDD frame structure supports 7 different ratios of up and down time ratios (ie, ratios 0 to 6), which can be set according to the characteristics of the system traffic.
  • the maximum uplink traffic of the cell depends on the proportion of the ratio of the time.
  • the maximum number of uplink subframes of the ratio 1 to ratio 6 is 5.
  • the downlink control information format 0 Downlink Control Information Format 0, DCI 0
  • the sub-frame which reserves the bandwidth occupied by the physical uplink shared channel (PUSCH)
  • the uplink subframe is less than or equal to the downlink subframe (including the special subframe S), and only one downlink subframe is scheduled.
  • Uplink subframe In order to ensure that the uplink traffic of the cell is maximized, the frequency domain resources of each uplink subframe need to be allocated reasonably.
  • the remaining bandwidth resources of the uplink subframe need to be utilized reasonably, regardless of whether the cell has a single user equipment (User Equipment, UE) or multiple UEs.
  • the bandwidth resource is the maximum remaining bandwidth resource reserved for the PUSCH by the uplink subframe (excluding physical uplink control channel (PUCCH) resources and physical random access)
  • the resource bandwidth remaining after the occupied bandwidth (PhysicalRandom Access Channel, PRACH) resource, Msg3 scheduling, retransmission processing, and single-issue UCI, is equivalent to the resource bitmap that utilizes the upstream bandwidth reasonably.
  • a radio frame of the ratio 0 includes 6 uplink subframes and 4 downlink subframes (including the special subframe S), that is, the DSUUU DSUUU, as shown in FIG. D indicates a downlink subframe (Downlink subframe), S indicates a special subframe (Special subframe), and U indicates an uplink subframe (Uplink subframe). If the number of uplink subframes is greater than the number of downlink subframes (including special subframes), one downlink subframe (including the special subframe S) and two uplink subframes (including only the maximum remaining bandwidth resources occupied by the PUSCH) are generated.
  • the ratio is an uplink sub-frame frequency domain allocation grant, and the ratio is more complicated than 0.
  • the minimum remaining bandwidth resources of the two uplink sub-frames are simply accumulated. Uplink resource allocation, but this method can not reasonably utilizing two uplink subframes system bandwidth can not be made to maximize the upstream traffic cells.
  • the main purpose of the embodiments of the present invention is to provide an uplink shared resource pool resource allocation method and a base station, which can reasonably utilize the bandwidth resources of two uplink subframe systems to be scheduled, so as to maximize the uplink traffic of the cell.
  • the embodiment of the invention provides a method for allocating an uplink shared resource pool resource, which is applied to a base station.
  • the method includes:
  • the first resource allocation, the second resource allocation, and the final resource block (RB) number are sequentially determined, and the number of RBs allocated for each UE to be scheduled is obtained;
  • DCI0 downlink control information format 0
  • the virtual shared resource pool is determined according to the remaining bandwidth resources of the to-be-scheduled uplink subframe of each to-be-scheduled UE at the uplink grant time, which is:
  • the remaining bandwidth resources ucFirstRbNum of the first uplink subframe to be scheduled and the remaining bandwidth resources ucSecondRbNum of the second uplink subframe are respectively counted at the authorization time;
  • ucFirstRbNum and ucSecondRbNum are compared opening force multiplied by the percentage factor obtained VirtualResourcePoolRbNum, wherein the percentage factor of two ⁇ 1-- ⁇ , in the range [ ", 1];
  • a max (ucFirstRbNum, uc S econdRbNum) / (ucFirstRbNum + ucSecondRbNum); through the system Test the determined value in the range [", 1].
  • the determining the resource allocation pre-scheduling identifier according to the scheduling situation of the UE in the two uplink subframes to be scheduled is:
  • the UE When the UE does not have retransmission scheduling and uplink control information (UCI) scheduling in the first uplink subframe, and when there is retransmission scheduling, UCI scheduling, etc. in the second uplink subframe, determining that the AllocationFlag is 1, indicating that the resource is in advance In the first uplink subframe allocation;
  • UCI uplink control information
  • the new data indication (NDI) of the two uplink subframe hybrid automatic repeat request (HARQ) processes is the same. Determining that the AllocationFlag is 3, indicating that the resource is allocated in advance in the common resource bitmap of the first and second uplink subframes, and the NDI is the same;
  • the UE determines that the AllocationFlag is 4, indicating that the resources are in advance.
  • the first and second uplink subframes are allocated simultaneously and the NDIs are not the same.
  • the first resource allocation is performed according to the determined virtual shared resource pool and the resource allocation pre-scheduling identifier, which is:
  • the UE in the UE queue is sequentially scheduled to be scheduled
  • the transport block size TBSize and the modulation and coding strategy (MCS) of the current UE to be scheduled are obtained, and the first pre-allocated RB number RbFirstAllcom is obtained according to TBSize and MCS. ;
  • the capability level of the UE and the buffer status report (BSR) of the UE are taken small, and the transport block size MaxTB FiretSec of the UE supporting the maximum scheduling in one uplink subframe is obtained .
  • Nd according to the MaxTB FiretSewmd and the MCS of the UE, the UE is scheduled to be the largest in one uplink subframe.
  • the BSR of the UE and the capability level of the double UE are taken as small, and the size of the transport block MaxTB Thkd that the UE supports in the two uplink subframes is supported, and the UE is obtained according to the MaxTB Thkd and the MCS of the UE.
  • PHR power headroom report
  • determining that the number of RBs finally allocated in the first time is a value of five values of ucFirstRbNum, VirtualResourcePoolRbNum, RbFirstAllcom, ⁇ ( ⁇ ), and ⁇ 2 ;
  • determining that the number of RBs finally allocated in the first time is a value of five values of ucSecoiidRbNum, VirtualResourcePoolRbNum, RbFirstAllcom, ⁇ ( ⁇ ), and ⁇ 2 ;
  • determining that the number of RBs finally allocated in the first time is a value of four values of RbFirstAllcom, VirtualResourcePoolRbNum, Rb BRS4UE (MaxTB), and M2;
  • the performing the second resource allocation is:
  • R y _ First When R y _ First is greater than 0, and the historical traffic of the UE is greater than or equal to the equivalent maximum bit rate (MBR), the second pre-allocated RB number is calculated according to the allocation scheme of the background configuration of the system based on the updated VirtualResourcePoolRbNum.
  • RbSecondAllcom When AllocationFlag is 1, the number of RBs finally allocated for the second time is determined.
  • Nd is a small value of five values of RbSecondAllcom, Rb BRswA MaxTB , M2, updated ucFirstRbNum and updated VirtualResourcePoolRbNum;
  • the final number of RBs is determined as:
  • Rb All cationMaxNmu — First Rb is determined by the MCS of the household UE, determining the winterest ⁇ 0 ⁇ ; when AllocationFlag is 1 2 3 or 4 JL Tb> " z " r " is less than or equal to Ml, determine the best ⁇ 0 RB 3 ⁇ 4.
  • the PHR process is entered, and the number of RBs allocated to the UE to be scheduled, Rb Mw a mn U, is the number of RBs corresponding to the power limitation, and is determined to be Scheduling the MCS corresponding to the number of RBs allocated by the UE;
  • An embodiment of the present invention provides a base station, where the base station includes:
  • a virtual shared resource pool determining unit configured to determine a virtual shared resource pool according to remaining bandwidth resources of the to-be-scheduled uplink subframe of each to-be-scheduled UE at an uplink grant time
  • a resource allocation pre-scheduling identifier determining unit configured to determine a resource allocation pre-scheduling identifier AllocationFlag according to a scheduling situation of the UE in which two uplink subframes to be scheduled are scheduled;
  • the RB number determining unit is configured to perform the first resource allocation, the second resource allocation, and the final RB number determination according to the determined VirtualResourcePoolRbNum and AllocationFlag, and obtain the number of RBs allocated for each UE to be scheduled;
  • the downlink control information format generating unit is configured to obtain, according to the number of RBs allocated for each UE to be scheduled, an RB resource bitmap allocated for each UE to be scheduled, to generate DCI0, where the DCI0 indicates that the UE is in the scheduled uplink subframe. Perform uplink service transmission.
  • the virtual shared resource pool determining unit is configured to separately calculate the remaining bandwidth resource ucFirstRbNum and the second uplink subframe of the first uplink subframe to be scheduled according to the TDD frame 0 configuration. Remaining bandwidth resource ucSecondRbNum;
  • the resource allocation pre-scheduling identifier determining unit is configured to: when the UE does not have a retransmission scheduling, a UCI scheduling in the first uplink subframe, and a retransmission scheduling in the second uplink subframe,
  • the AllocationFlag is 1, indicating that the resource is allocated in advance in the first uplink subframe;
  • the AllocationFlag is determined to be 2, indicating that the resource is in the second uplink.
  • the UE When the UE has no retransmission scheduling, UCI scheduling, and the like in the first uplink subframe and the second uplink subframe, and the NDIs of the two uplink subframe HARQ processes are the same, it is determined that the AllocationFlag is 3, indicating that the resources are in advance.
  • the first and second uplink subframe common resource bitmaps are simultaneously allocated and the NDI is the same;
  • the UE determines that the AllocationFlag is 4, indicating that the resources are in advance.
  • the first and second uplink subframes are allocated simultaneously, and the NDIs are not the same.
  • the RB number determining unit is configured to obtain the TBSize and MCS of the currently scheduled UE when the historical traffic of the UE is greater than or equal to the equivalent GBR, and obtain the first pre-allocated RB number RbFirstAllcom according to the TBSize and the MCS. ;
  • MaxTB FiretSec is obtained by taking the UE's capability level and the UE's BSR to a small value .
  • Nd according to MaxTB FiretSewmd and MCS, obtain the maximum number of RBs that the UE schedules in one uplink subframe.
  • the UE obtains the maximum scheduled RB $t Rb BR 4 (2 in two uplink subframes simultaneously).
  • UE (MaxTB);
  • MocationMaxNmu _Fi rst is a small value of five values of ucFirstRbNum, VirtualResourcePoolRbNum, RbFirstAllcom, ⁇ ( ⁇ ), and ⁇ 2 ;
  • the AllocationFlag of the UE is 2
  • the number of RBs finally allocated in the first time is determined.
  • determining that the number of RBs finally allocated in the first time is a value of four values of RbFirstAllcom, VirtualResourcePoolRbNum, Rb BRS4UE (MaxTB), and M2;
  • the RB number determining unit is specifically configured to be greater than 0, and the historical traffic of the UE is greater than or equal to the equivalent MBR, and the second time is calculated according to the allocation scheme of the system background configuration on the basis of the updated VirtualResourcePoolRbNum.
  • the RB number determining unit is specifically configured to determine the final allocation according to the sum of the data and the MCS of the UE.
  • the PHR process is entered, and the number of RBs allocated to the UE to be scheduled, Rb Mw a mn U, is the number of RBs corresponding to the power limitation, and is determined to be Scheduling the MCS corresponding to the number of RBs allocated by the UE;
  • the technical solution of the embodiment of the present invention includes: according to each to-be-scheduled UE at the uplink authorization time The remaining bandwidth resources of the frame, determine the virtual shared resource pool VirtualResourcePoolRbNum; Determining a resource allocation pre-scheduling identifier AllocationFlag according to a scheduling situation of the UE to be scheduled in two uplink subframes;
  • the first resource allocation, the second resource allocation, and the final resource block (RB) number are sequentially determined, and the number of RBs allocated for each UE to be scheduled is obtained;
  • the RB resource bitmap allocated for each UE to be scheduled is obtained according to the number of RBs allocated to each UE to be scheduled, and DCI0 is generated.
  • the DCI0 indicates that the UE performs uplink service transmission on the scheduled uplink subframe. Therefore, it is ensured that the frequency domain resources are maximized when the uplink subframe is authorized in the ratio 0, so that all uplink system time-frequency bandwidths are allocated more reasonably, so that the uplink traffic is maximized.
  • 1 is a schematic structural diagram of a radio frame
  • FIG. 2 is a flowchart of an implementation of a first embodiment of an uplink shared resource pool resource allocation method according to the present invention
  • FIG. 3 is a schematic structural diagram of an embodiment of a base station according to the present invention.
  • FIG. 4 is a flowchart of an implementation of a second embodiment of a method for allocating an uplink shared resource pool resource according to the present invention.
  • the first embodiment of the method for allocating an uplink shared resource pool resource according to the present invention is applied to a base station. As shown in FIG. 2, the method includes the following steps:
  • Step 201 Each of the to-be-scheduled user equipments (UEs) determines a virtual shared resource pool VirtualResourcePoolRbNum according to the remaining resources of the uplink subframe to be scheduled according to the uplink grant time;
  • UEs to-be-scheduled user equipments
  • Step 202 Determine, according to a scheduling situation of the two uplink subframes to be scheduled by the UE, a resource allocation pre-scheduling identifier AllocationFlag.
  • Step 203 Perform first resource allocation, second resource allocation, and final resource block (RB) number determination according to the determined VirtualResourcePoolRbNum and AllocationFlag, and obtain the number of RBs allocated for each UE to be scheduled.
  • Step 204 According to the number of RBs allocated to each UE to be scheduled, obtain an RB resource bitmap allocated for each UE to be scheduled, and generate DCI0, where the DCI0 indicates that the UE performs uplink service transmission on the scheduled uplink subframe.
  • the step 201 may be: according to the subframe structure of the time division duplex (TDD) ratio 0, respectively, the remaining bandwidth resources ucFirstRbNum of the first uplink subframe to be scheduled and the remaining bandwidth of the second uplink subframe are scheduled to be scheduled at the authorization time.
  • the step 202 may be: when the UE does not have retransmission scheduling and uplink control information (UCI) scheduling in the first uplink subframe, and there is retransmission scheduling, UCI scheduling, etc. in the second uplink subframe. Determining that the AllocationFlag is 1, indicating that the resource is allocated in advance in the first uplink subframe;
  • UCI uplink control information
  • the AllocationFlag is determined to be 2, indicating that the resource is in the second uplink.
  • the new data indication (NDI) of the two uplink subframe hybrid automatic repeat request (HARQ) processes is the same. Determining that the AllocationFlag is 3, indicating that the resource is allocated in advance in the common resource bitmap of the first and second uplink subframes, and the NDI is the same;
  • the UE does not have retransmission scheduling in the first uplink subframe and the second uplink subframe, UCI
  • the AllocationFlag is 4, indicating that the resources are allocated in the first and second uplink subframes in advance and the NDIs are different.
  • the performing the first resource allocation in the step 203 may be: when the UE queue to be scheduled is not empty, sequentially acquiring the UE in the UE queue to be scheduled;
  • Guaranteed Bit Rate Guaranteed Bit Rate
  • GBR transport block
  • TBSize Transport Block
  • MCS Modulation and Coding Scheme
  • the capability level of the UE and the Buffer Status Report (BSR) of the UE are taken small, and the transport block size MaxTB FiretSec of the UE that supports the maximum scheduling in one uplink subframe is obtained .
  • Nd according to the MaxTB FiretSewmd and the MCS of the UE, obtain the maximum number of RBs ⁇ McaTB of the UE in one uplink subframe;
  • the UE Taking the BSR of the UE and the capability level of the double UE to be small, the UE transmits the maximum supported transmission block size MaxTB Thkd in the two uplink subframes, and obtains the UE according to the MaxTBxhird and the MCS of the UE. Maximum number of RBs for uplink subframe transmission
  • M1 and M2 of the currently scheduled UE where M1 is the maximum TBSize sent by the UE when the power headroom report (PHR) is 0, and M2 is the maximum TBSize that can be demodulated correctly in the current channel;
  • the UE resource allocation pre-scheduling identifier AllocationFlag 2
  • it is determined that the number of RBs finally allocated in the first time is ucSecoiidRbNum Small values of five values of VirtualResourcePoolRbNum, RbFirstAllcom, (she x7B ) and M 2;
  • the number of RBs finally allocated in the first time is a value of four values of RbFirStAllCOlll VirtualResourcePoolRbNum Rb BRs ⁇ u E) ( M ax B) and twice M 2 ;
  • VirtualResourcePoolRbNum, Rb B Rs 4U A MaxTB and M2 take the smaller of the four values; update the uc FirstRbNum ucSecondRbNum and
  • performing the second resource allocation in the step 203 may be:
  • the second pre-calculation is calculated according to the allocation scheme of the system background configuration on the updated VirtualResourcePoolRbNum.
  • the second finally allocated RB number W "ws is twice the value of RbSecondAllcom Rb BRS4(2*u E ) ( MaxTB ) M2 and the updated VirtualResourcePoolRbNum value Take a small value;
  • the final RB number determination in the step 203 may be:
  • the PHR process determines that the number of RBs allocated to the UE to be scheduled is power limited.
  • the base station includes: a virtual shared resource pool determining unit 301, configured to schedule, according to each band, a remaining subframe to be scheduled by the UE at an uplink grant time Bandwidth resource, determine the virtual shared resource pool VirtualResourcePoolRbNum;
  • the resource allocation pre-scheduling identifier determining unit 302 is configured to determine a resource allocation pre-scheduling identifier AllocationFlag according to a scheduling situation of the UE in which two uplink subframes to be scheduled are scheduled;
  • the RB number determining unit 303 is configured to perform the first resource allocation, the second resource allocation, and the final RB number determination according to the determined VirtualResourcePoolRbNum and AllocationFlag, and obtain the number of RBs allocated for each UE to be scheduled;
  • the downlink control information format generating unit 304 is configured to allocate according to each UE to be scheduled.
  • the number of RBs is obtained by the RB resource bitmap allocated to each UE to be scheduled, and the DCI0 is generated, and the DCI0 indicates that the UE performs uplink service transmission on the scheduled uplink subframe.
  • the virtual shared resource pool determining unit 301 is configured to calculate the remaining bandwidth resource ucFirstRbNum and the second uplink of the first uplink subframe to be scheduled at the authorized time according to the subframe structure of the TDD ratio 0.
  • the resource allocation pre-scheduling identifier determining unit 302 is configured to: when the UE does not have retransmission scheduling, UCI scheduling in the first uplink subframe, and retransmission scheduling, UCI scheduling, etc. in the second uplink subframe, Determining that the AllocationFlag is 1, indicating that the resource is allocated in advance in the first uplink subframe;
  • the UE When the UE has the retransmission scheduling and the UCI scheduling in the first uplink subframe, and the second uplink subframe does not have the retransmission scheduling and the UCI scheduling, determining that the AllocationFlag is 2, indicating that the resource is in advance Allocated in the second uplink subframe;
  • the UE When the UE has no retransmission scheduling, UCI scheduling, and the like in the first uplink subframe and the second uplink subframe, and the NDIs of the two uplink subframe HARQ processes are the same, it is determined that the AllocationFlag is 3, indicating that the resources are in advance.
  • the first and second uplink subframe common resource bitmaps are simultaneously allocated and the NDI is the same;
  • the UE determines that the AllocationFlag is 4, indicating that the resources are in advance.
  • the first and second uplink subframes are allocated simultaneously and the NDIs are not the same.
  • the RB number determining unit 303 is configured to: when the queue to be scheduled UE is not empty, sequentially take the UE in the UE queue to be scheduled;
  • the TBSize and the MCS of the currently scheduled UE are obtained, and the first pre-allocated RB number RbFirstAllcom is obtained according to the TBSize and the MCS; and the UE's capability level and the BSR of the UE are obtained.
  • the UE supports the maximum size of the transport block MaxTB FiretSec in an uplink subframe. Nd , according to the MaxTB FiretSewmd and the MCS of the UE, obtain the maximum number of RBs ⁇ McaTB of the UE in one uplink subframe;
  • the UE transmits the maximum size of the transport block MaxTB Thkd that supports the maximum scheduling in the two uplink subframes, and obtains the UE according to the MaxTB Thkd and the MCS of the UE.
  • Obtaining the maximum number of scheduled RBs in the two uplink subframes, and acquiring the M1 and M2 of the current UE to be scheduled, where M1 is the maximum TBSize sent by the UE when PHR 0, and M2 is capable of demodulating correctly under the current channel of the UE.
  • Maximum TBSize when the UE resource allocation pre-scheduling identifier AllocationFlag is 1, it is determined that the number of RBs finally allocated in the first time is ucFirstRbNum
  • VirtualResourcePoolRbNum RbFirstAllcom, (she x7B ) and M 2 take the smaller of the five values;
  • AllocationFlag 2
  • it is determined that the number of RBs finally allocated in the first time is ucSecoiidRbNum
  • the RB number determining unit 303 is specifically configured to: when greater than 0, and the historical traffic of the UE is greater than or equal to the equivalent MBR, calculate the second time according to the allocation scheme of the system background configuration on the basis of the updated VirtualResourcePoolRbNum Pre-allocated RB number RbSecondAllcom;
  • the UE resource allocation pre-scheduling identifier AllocationFlag is 1, it is determined that the second final allocated RB t RbMocationMaxN is RbSecondAllcom, and the Rb BRs M2 updated ucFirstRbNum and the updated VirtualResourcePoolRbNum take a small value;
  • the number of RBs finally allocated in the second time is determined to be - RbSecondAllcom R U MaxTB [2 updated ucSecondRbNum and updated VirtualResourcePoolRbNum five values Take a small value;
  • the RB number determining unit 303 is specifically configured to determine the final allocation according to the sum of ⁇ and the MCS of the UE.
  • the PHR process is entered, and the number of RBs allocated for the UE to be scheduled, Rb Mwai N, is the number of RBs corresponding to the power limitation, and is determined as the to-be-scheduled UE.
  • the MCS corresponding to the number of allocated RBs
  • the number of RBs allocated for the UE to be scheduled is determined ⁇ The number of RBs used for the power limited pair, and is determined as the MCS corresponding to the number of RBs allocated to the UE to be scheduled.
  • the virtual shared resource pool determining unit 301, the resource allocation pre-scheduling identifier determining unit 302, the RB number determining unit 303, and the downlink control information format generating unit 304 may be configured by a central processing unit (CPU, Central Processing Unit) in the base station. ), Digital Signal Processor (DSP) or Programmable Logic Array (FPGA, Field -
  • DSP Digital Signal Processor
  • FPGA Programmable Logic Array
  • Step 401 According to the subframe structure of the TDD ratio 0, respectively, the remaining bandwidth resources ucFirstRbNum of the first uplink subframe and the remaining bandwidth resources of the second uplink subframe ucSecondRbNum are scheduled to be scheduled at the authorization time;
  • the remaining bandwidth resource refers to a PUSCH bandwidth resource other than the occupied bandwidth of the PUCCH resource, the PRACH resource, the Msg3 scheduling, the retransmission process, and the single-transmission UCI.
  • Step 402 Obtain a virtual resource sharing pool, VirtualResourcePoolRbNum, according to ucFirstRbNum and ucSecondRbNum;
  • the VirtualResourcePoolRbNum is calculated according to the formula (1),
  • VirtualResourcePoolRbNum ( ucFirstRbNum + ucSecondRbNum ) * Percentfactor
  • 9U and 2U, 2U and 3U, 4U and 7U, 7U and 8U respectively form a virtual shared resource pool.
  • 9U and 2U are combined, 9U is the first uplink subframe, and 2U is the second.
  • Upstream subframes other combinations are similar.
  • Implementation Method 1 Current wireless at the time of authorization 5D of the frame gives 2U authorization for the current radio frame and 2U authorization for the next radio frame, 6S for the current radio frame, 2U and 3U authorization for the next radio frame, 0D for the current radio frame, 4U and 7U authorization for the current radio frame, current wireless 1S of the frame is authorized for the 7U and 8U of the current radio frame; or, Embodiment 2: 5D/6S of the current radio frame is given to the 9U of the current radio frame and the 2U grant of the next radio frame, 6S of the current radio frame at the authorization time 2U and 3U authorization for the next radio frame, 0D/1S for the current radio frame, 4U and 7U authorization for the current radio frame, 1S for the current radio frame, and 7U and 8U for the current radio frame;
  • the virtual shared resource pool is allocated as a basis for the UE resources.
  • the uplink bandwidth allocation is too large, so that the UE with the lower priority is not allocated resources, and the uplink bandwidth resources allocated by the single UE or multiple UEs are prevented from being too small. Waste, more reasonable allocation of uplink system resources to the UE, improve cell uplink system traffic.
  • Step 403 Determine, according to a scheduling situation of the two uplink subframes to be scheduled by the UE, a resource allocation pre-scheduling identifier resource allocation pre-scheduling identifier AllocationFlag;
  • the AllocationFlag is assigned a value of 1, indicating that the resource is in advance.
  • the AllocationFlag is assigned a value of 2, indicating that the resource is in advance in the second Uplink subframe allocation
  • the UE does not have retransmission scheduling, UCI scheduling, etc. in the first uplink subframe and the second uplink subframe, and the new data of the Hybrid Automatic Repeat Request (HARQ) process is mixed in the two uplink subframes.
  • the indication (New Data indication, NDI) is the same
  • the AllocationFlag is assigned a value of 3, indicating that the resource is allocated in advance in the common resource bitmap of the first and second uplink subframes, and the NDI is the same;
  • the AllocationFlag is assigned a value of 4, indicating that the resources are allocated in the first and second uplink subframes in advance and the NDIs are different.
  • two DCI0s can be sent to the uplink subframe by the same downlink subframe, or the uplink subframe can only be allocated by the PRACH resource and the Msg3 scheduling, so no resource allocation pre-scheduling identifier is needed.
  • the role of the AllocationFlag is similar to that of the UL index.
  • the UL index value is determined after the final resource allocation is successful, and the AllocationFlag is a subframe index that identifies the uplink subframe in which the UE is allocated resources.
  • Step 404 When the UE queue to be scheduled is not empty, and the UE (Buffer Status Reporting,
  • BSR equivalent GB R>0 BSR equivalent GBR is the sum of logical channel BSRs with GBR and PBR in the logical channel group that are not 0, according to the determined virtual shared resource pool and resource allocation pre-scheduling identifier , the number of RBs for the first final allocation of the first resource allocation
  • the UE in the queue of the UE is scheduled to be scheduled.
  • the TBSize and the MCS of the currently scheduled UE are obtained, and the TBSize and the MCS are obtained according to the TBSize and the MCS.
  • the pre-assigned RB number RbFirstAllcom; the UE's capability level and the UE's BSR are taken small to obtain the maximum size of the transport block MaxTB FiretSec that the UE supports in one uplink subframe. Nd , according to MaxTB FiretSec .
  • the nd and the MCS obtain the maximum number of RBs Rb BRS4UE Ma X TB of the UE in one uplink subframe; Taking the BSR of the UE and the capability level of the double UE to be small, the size of the transport block MaxTB Thkd of the UE supporting the maximum supported scheduling in the two uplink subframes is obtained according to The MCS obtains the maximum number of RBs that the UE is scheduled in an uplink subframe.
  • VirtualResourcePoolRbNum RbFirstAllcom, Rb BRswA MaxTB and M2 take the smaller of the five values;
  • VirtualResourcePoolRbNum RbFirstAllcom, Rb BRswA MaxTB and M2 take the smaller of the five values;
  • the number of RBs finally allocated in the first time is a value of four values of RbFirStAllCOlll, VirtualResourcePoolRbNum, RB BE (MaxTB), and M2 .
  • Step 405 according to the resource allocation pre-adjustment identifier, updated
  • the second final allocated RB $l is the updated UCFirStRbNlim, and the updated
  • VirtualResourcePoolRbNum RbSecondAllcom, U MaxTB , and M2 take the smaller of the five values;
  • the second final allocated RB is the updated UCSeCOlldRbNUm, and the updated
  • Step 406 According to the resource allocation pre-scheduling identifier, the number of RBs finally allocated in the first time
  • an MCS step 407 corresponding to the number of RBs allocated for the power-constrained UE, and determining the number of RBs allocated to the UE to be scheduled, according to the determined RB $t RbA w allocated for the UE to be scheduled.
  • the RB resource bitmap obtains the uplink subframe grant information, and sends the uplink subframe grant information to the corresponding UE.
  • Step 408 The UE demodulates the corresponding DCI0 from the received uplink subframe grant information, and indicates, in DCI0, which uplink subframes the uplink traffic transmission is performed by the UE.
  • the present invention makes the UE more rationally utilize the uplink system bandwidth resource of the ratio 0 through the virtual shared resource pool, and the pre-scheduling identifier is more effective for guiding the UE to improve the resource allocation efficiency, and finally the cell uplink traffic is optimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种上行共享资源池资源分配方法和基站,其中,所述方法包括:根据每个待调度用户设备(UE)在上行授权时刻的待调度上行子帧的剩余带宽资源,确定虚拟共享资源池 Virtual Resource Pool Rb Num;根据 UE在待调度两个上行子帧的调度情况,确定资源分配预调度标识 Allocation Flag;根据确定的 Virtual Resource Pool Rb Num和 Allocation Flag,依次进行第一次资源分配、第二次资源分配和最终的资源块(RB)数确定,得到为每个待调度 UE分配的 RB数;根据为每个待调度 UE分配的 RB数,得到为每个待调度 UE分配的 RB资源位图,生成下行控制信息格式0 (DCI0),所述 DCI0指示 UE在所调度的上行子帧上进行上行业务传输。

Description

一种上行共享资源池资源分配方法和基站 技术领域
本发明涉及移动通信领域, 尤其涉及一种上行共享资源池资源分配方 法和基站。 背景技术
在第三代合作伙伴计划 (3rd Generation Partner Project, 3GPP )长期演 进( Long Term Evolution, LTE ) 的频分复用系统中, LTE的空中接口以正 交频分复用 ( Orthogonal Frequency Division Multiplexing, OFDM )技术为 基础, 采用 15kHz的子载波宽度, 通过不同的子载波数目 (通常为 72至 1200个) 实现可变的系统带宽( 1.4至 20MHz )。 LTE支持两种帧结构, 类 型 1 ( Type 1 ) 和 Type2,其中 Typel 用于频分双工 (Frequency Division Duplexing, FDD ), Type2用于时分双工( Time Division Duplexing, TDD )。 Type2 TDD帧结构支持 7种不同的上下时间比例配比(即配比 0 ~ 6 ), 可才艮 据系统业务量的特性进行设置。 小区最大上行流量取决于不同时间比例配 比, 配比 1到配比 6的上行子帧数最大为 5,授权调度信息下行控制信息格 式 0 ( Downlink Control Information format 0, DCI 0 )仅调度一个上行子帧 (该子帧预留物理上行共享信道( Physical Uplink Shared CHannel, PUSCH ) 占用的带宽), 上行子帧少于或等于下行子帧(包括特殊子帧 S ), 一个下行 子帧只调度一个上行子帧。 为了保证小区上行流量最大化, 需要合理分配 每一个上行子帧的频域资源, 不论小区存在单用户设备( User Equipment, UE )还是多 UE都需要最大合理利用上行子帧剩余带宽资源, 该剩余带宽 资源为该上行子帧为 PUSCH预留的最大剩余带宽资源(除去物理上行链路 控制信道 ( Physical Uplink Control CHannel, PUCCH )资源以及物理随机接 入信道(PhysicalRandom Access Channel, PRACH ) 资源、 Msg3调度、 重 传处理、单发 UCI等占用的带宽后所剩余的带宽资源), 等价于合理利用上 行带宽的资源位图。
然而, 与配比 1 ~ 6不同的是, 配比 0的一个无线帧包括 6个上行子帧 和 4个下行子帧(包括特殊子帧 S ), 即 DSUUU DSUUU, 如图 1所示, 其 中 D 表示下行子帧 (Downlink subframe ) , S 表示特殊子帧 (Special subframe ), U表示上行子帧 ( Uplink subframe )。 上行子帧多于下行子帧数 (包括特殊子帧), 会出现一个下行子帧 (包括特殊子帧 S ) 同时调度两个 上行子帧(仅仅包括 PUSCH占用的最大剩余带宽资源)的情况, 最终通过 DCI0中的上行授权标识( UL index ) ( UL index =10指示资源分配最终在第 一上行子帧(按照 3GPP TS 36.213协议规定), UL index =01指示资源分配 最终在第二个上行子帧 (按照 3GPP TS 36.213协议规定), UL index =11指 示资源分配最终同时在第一个和第二个上行子帧公共资源位图(按照 3GPP TS 36.213协议规定 )指示 UE实现时域(第一个上行子帧和第二个上行子 帧)和频域(上行子帧系统带宽)结合, 由于 UL index取值不同, 导致所 述 UE预分配的资源在不同的上行子帧上,相对于其他配比为一个上行子帧 频域分配授权, 配比 0 更复杂。 目前, 通过将两个上行子帧最大剩余带宽 资源简单累加的方式分配上行资源, 但是这种方法不能合理利用两个上行 子帧系统带宽资源, 无法使小区上行流量最大化。 发明内容
有鉴于此, 本发明实施例的主要目的在于提供一种上行共享资源池资 源分配方法和基站, 能够合理利用待调度两个上行子帧系统带宽资源, 使 小区上行流量最大化。
为达到上述目的, 本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种上行共享资源池资源分配方法, 应用于基站, 所述方法包括:
根据每个待调度用户设备(UE )在上行授权时刻的待调度上行子帧的 剩余带宽资源, 确定虚拟共享资源池 VirtualResourcePoolRbNum;
根据 UE在待调度两个上行子帧的调度情况,确定资源分配预调度标识 AllocationFlag;
才艮据确定的 VirtualResourcePoolRbNum和 AllocationFlag, 依次进行第 一次资源分配、 第二次资源分配和最终的资源块(RB )数确定, 得到为每 个待调度 UE分配的 RB数;
根据为每个待调度 UE分配的 RB数, 得到为每个待调度 UE分配的 RB资源位图, 生成下行控制信息格式 0 ( DCI0 ), 所述 DCI0指示 UE在所 调度的上行子帧上进行上行业务传输。
较佳地,所述根据每个待调度 UE在上行授权时刻的待调度上行子帧的 剩余带宽资源, 确定虚拟共享资源池, 为:
根据时分双工 (TDD ) 配比 0的子帧结构, 分别统计授权时刻待调度 第一个上行子帧的剩余带宽资源 ucFirstRbNum和第二个上行子帧的剩余带 宽资源 ucSecondRbNum; 将 ucFirstRbNum和 ucSecondRbNum相力口再乘以 百分比因子得到 VirtualResourcePoolRbNum,其中,百分比因子二^1-^^ , 取值范围 [ " , 1 ]; a =max(ucFirstRbNum, uc S econdRbNum)/( ucFirstRbNum + ucSecondRbNum); 为通过系统测试确定的值, 取值范围为 [", 1]。
较佳地,所述根据 UE在待调度两个上行子帧的调度情况,确定资源分 配预调度标识, 为:
当 UE在第一个上行子帧不存在重传调度、上行控制信息(UCI )调度, 在第二个上行子帧存在重传调度、 UCI调度等时, 确定所述 AllocationFlag 为 1, 表示资源预先在第一个上行子帧分配;
当 UE在第一个上行子帧存在重传调度、 UCI调度,在第二个上行子帧 不存重传调度、 UCI调度时, 确定所述 AllocationFlag为 2, 表示资源预先 在第二个上行子帧分配;
当 UE在第一个上行子帧和第二个上行子帧 UE均没有重传调度、 UCI 调度等, 且两个上行子帧混合自动重传请求(HARQ ) 进程的新数据指示 ( NDI )相同, 确定所述 AllocationFlag为 3, 表示资源预先在第一个和第 二个上行子帧公共资源位图同时分配且 NDI相同;
如果 UE在第一个上行子帧和第二个上行子帧均没有重传调度、 UCI 调度,且两个上行子帧 HARQ进程的 NDI不相同时,确定所述 AllocationFlag 为 4, 表示资源预先在第一个和第二个上行子帧同时分配且 NDI不相同。
较佳地, 所述根据确定的虚拟共享资源池和资源分配预调度标识, 进 行第一次资源分配, 为:
当待调度 UE队列不为空时, 依次取待调度 UE队列中 UE;
当 UE的历史流量大于等于等效保证比特速率(GBR )时, 获得当前待 调度 UE的传输块大小 TBSize和调制与编码策略( MCS ), 根据 TBSize和 MCS得到第一次预分配的 RB数 RbFirstAllcom;
将 UE 的能力等级和 UE 的緩冲区状态上报(BSR )取小, 得到所述 UE 在一个上行子帧最大支持调度的传输块大小 MaxTBFiretSecnd, 根据 MaxTBFiretSewmd和所述 UE的 MCS得到所述 UE在一个上行子帧最大调度的
RB $t RbBRS4UE (MaxTB);
将 UE的 BSR和两倍 UE的能力等级取小,得到所述 UE在两个上行子 帧最大支持调度的传输块的大小 MaxTBThkd,根据 MaxTBThkd和所述 UE的 MCS 得到所述 UE 同时在两个上行子帧传输最大调度的 RB 数 获取当前待调度 UE的 Ml和 M2, 其中, Ml为功率余量上报(PHR ) 为 0时所述 UE发送的最大 TBSize, M2为所述 UE当前信道下能够解调正 确的最大 TBSize;
当所述 UE的 AllocationFlag为 1 时, 确定第一次最终分配的 RB数 为 ucFirstRbNum 、 VirtualResourcePoolRbNum 、 RbFirstAllcom, ^^ (ΜαχΤΒ)和 Μ2五个值中取小的值;
当所述 UE的 AllocationFlag为 2时, 确定第一次最终分配的 RB数 为 ucSecoiidRbNum 、 VirtualResourcePoolRbNum 、 RbFirstAllcom, ^^ (ΜαχΤΒ)和 Μ2五个值中取小的值;
当所述 UE的 AllocationFlag为 3 时, 确定第一次最终分配的 RB数 为 RbFirstAllcom 、 VirtualResourcePoolRbNum 、
Figure imgf000007_0001
和两倍 M2四个值中取小的值;
当所述 UE的 AllocationFlag为 4时, 确定第一次最终分配的 RB数 为 RbFirstAllcom 、 VirtualResourcePoolRbNum 、 RbBRS4UE (MaxTB) 和 M2四个值中取小的值;
才艮据 , 更新 ucFirstRbNum、 ucSecondRbNum 和 VirtualResourcePoolRbNunio
较佳地, 所述进行第二次资源分配, 为:
R y _First大于 0, 且 UE的历史流量大于等于等效最大比特速 率 (MBR ) 时, 在更新后的 VirtualResourcePoolRbNum基础上根据系统后 台配置的分配方案, 计算得到第二次预分配的 RB数 RbSecondAllcom; 当 AllocationFlag为 1时,确定第二次最终分配的 RB数 龍 。 nd 为 RbSecondAllcom, RbBRswAMaxTB 、 M2、 更新后的 ucFirstRbNum和更新 后的 VirtualResourcePoolRbNum五个值中取小的值;
当 AllocationFlag为 2时,确定第二次最终分配的 RB数 Rb' 为 RbSecondAllcom、 (她 、 M2、 更新后的 ucSecondRbNum和 更新后的 VirtualResourcePoolRbNum五个值中取小的值;
当 AllocationFlag为 3时,确定第二次最终分配的 数 RbM a
为 RbSecondAllcom MaxTB 、 两倍 M2 和更新后 的 VirtualResourcePoolRbNum四个值中小的值;
当 AllocationFlag为 4时,确定第二次最终分配的 数 RbM a
为 RbSecondAllcom RbBRs (ΜαχΤβ)和吏新后的 VirtualResourcePoolRbNum 三个值中取小的值;
才艮据 , 更新 ucFirstRbNum ucSecondRbNum 和 VirtualResourcePoolRbNunio
较佳地, 所述最终的 RB数确定, 为:
^S)^ Rb All cationMaxNmuFirst Rb 以 戶斤 UE的 MCS,确 定最冬^酉己 0々 ; 当 AllocationFlag 为 1 2 3或 4 JL Tb>"z " r "小于等于 Ml时, 确定最 ^酉己 0 RB ¾. 为
和;
当 AllocationFlag 为 1 2或者 4 JL Tb>"z " r "大于 Ml时, 进入 PHR流程, 确定为待调度 UE分配的 RB数 RbMwamnU为功率受限对应的 RB数, 并且确定为待调度 UE分配的 RB数对应的 MCS;
当 AllocationFlag 为 3 , 且 τϊ>·"ζ "。∞«。^。Μ« 大 于 Ml , 且
Ceil( /2) M 1时,确定为待调度 UE分配的 RB数 ^
f^ 当 AllocationFlag 为 3 , 且 Tbsize iocati0" amm 大 于 Ml , 且 Ceil( /2) > M 1时,确定为待调度 UE分配的 数 为功率受限对应的 RB数,并且确定为待调度 UE分配的 RB数对应的 MCS。
本发明实施例提供了一种基站, 所述基站包括:
虚拟共享资源池确定单元,用于根据每个待调度 UE在上行授权时刻的 待调度上行子帧 的剩余带宽资源 , 确 定虚拟共享资源池
VirtualResourcePoolRbNum;
资源分配预调度标识确定单元,配置为根据 UE在待调度两个上行子帧 的调度情况, 确定资源分配预调度标识 AllocationFlag;
RB 数确定单元, 配置为才艮据确定的 VirtualResourcePoolRbNum 和 AllocationFlag,依次进行第一次资源分配、第二次资源分配和最终的 RB数 确定, 得到为每个待调度 UE分配的 RB数;
下行控制信息格式生成单元, 配置为根据为每个待调度 UE分配的 RB 数, 得到为每个待调度 UE分配的 RB资源位图, 生成 DCI0, 所述 DCI0 指示 UE在所调度的上行子帧上进行上行业务传输。
较佳地, 所述虚拟共享资源池确定单元, 具体配置为根据 TDD配比 0 的子帧结构, 分别统计授权时刻待调度第一个上行子帧的剩余带宽资源 ucFirstRbNum和第二个上行子帧的剩余带宽资源 ucSecondRbNum;
将 ucFirstRbNum 和 ucSecondRbNum 相加再乘以百分比因子得到
VirtualResourcePoolRbNum ,其中,百分比因子 = "(1 - + ,取值范围! , 1 ]; a =max(ucFirstRbNum , ucSecondRbNum)/( ucFirstRbNum + ucSecondRbNum); 为通过系统测试确定的值, 取值范围为! , 1]。
较佳地,所述资源分配预调度标识确定单元,具体配置为当 UE在第一 个上行子帧不存在重传调度、 UCI调度, 在第二个上行子帧存在重传调度、
UCI调度等时, 确定所述 AllocationFlag为 1, 表示资源预先在第一个上行 子帧分配; 当 UE在第一个上行子帧存在重传调度、 UCI调度,在第二个上行子帧 不存重传调度、 UCI调度时, 确定所述 AllocationFlag为 2, 表示资源预先 在第二个上行子帧分配;
当 UE在第一个上行子帧和第二个上行子帧 UE均没有重传调度、 UCI 调度等,且两个上行子帧 HARQ进程的 NDI相同,确定所述 AllocationFlag 为 3, 表示资源预先在第一个和第二个上行子帧公共资源位图同时分配且 NDI相同;
如果 UE在第一个上行子帧和第二个上行子帧均没有重传调度、 UCI 调度,且两个上行子帧 HARQ进程的 NDI不相同时,确定所述 AllocationFlag 为 4, 表示资源预先在第一个和第二个上行子帧同时分配, 且 NDI不相同。
较佳地, 所述 RB数确定单元, 具体配置为当 UE的历史流量大于等于 等效 GBR时,获得当前待调度 UE的 TBSize和 MCS,根据 TBSize和 MCS 得到第一次预分配的 RB数 RbFirstAllcom;
将 UE 的能力等级和所述 UE 的 BSR取小得到 MaxTBFiretSecnd,根据 MaxTBFiretSewmd和 MCS 得到所述 UE在一个上行子帧最大调度的 RB数
RbBRS4UE (MaxTB);
将 UE 的 BSR 和两倍 UE 的能力等级取小得到 MaxTBThkd, 根据 MaxTBThkd和所述 UE的 MCS得到所述 UE同时在两个上行子帧传输最大 调度的 RB $t RbBR 4(2,UE)(MaxTB) ;
获取当前待调度 UE的 Ml和 M2, 其中, Ml为 PHR=0时所述 UE发 送的最大 TBSize, M2为所述 UE当前信道下能够解调正确的最大 TBSize; 当所述 UE 的 AllocationFlag为 1 时, 确定第一次最终分配的 RB数 MocationMaxNmu _First 为 ucFirstRbNum 、 VirtualResourcePoolRbNum 、 RbFirstAllcom, ^^ (ΜαχΤΒ)和 Μ2五个值中取小的值;
当所述 UE 的 AllocationFlag为 2时, 确定第一次最终分配的 RB数 为 ucSecoiidRbNum 、 VirtualResourcePoolRbNum 、 RbFirstAllcom, ^^ (ΜαχΤΒ)和 M2五个值中取小的值;
当所述 UE的 AllocationFlag为 3 时, 确定第一次最终分配的 RB数 为 RbFirstAllcom 、 VirtualResourcePoolRbNum 、
Figure imgf000011_0001
和两倍 M2四个值中取小的值;
当所述 UE的 AllocationFlag为 4时, 确定第一次最终分配的 RB数 为 RbFirstAllcom 、 VirtualResourcePoolRbNum 、 RbBRS4UE (MaxTB) 和 M2四个值中取小的值;
才艮据 , 更新 ucFirstRbNum、 ucSecondRbNum 和 VirtualResourcePoolRbNunio
较佳地, 所述 RB数确定单元, 具体配置为当 大于 0, 且 UE 的 历 史流量大于等于等效 MBR 时 , 在更新后 的 VirtualResourcePoolRbNum基础上根据系统后台配置的分配方案,计算得到 第二次预分配的 RB数 RbSecondAllcom;
当 AllocationFlag为 1时,确定第二次最终分配的 RB数
为 RbSecondAllcom, RbBRswAMaxTB M2、 更新后的 ucFirstRbNum和更新 后的 VirtualResourcePoolRbNum五个值中取小的值;
当 AllocationFlag为 2时,确定第二次最终分配的 数
为 RbSecondAllcom, RbBRswAMaxTB M2、 更新后的 ucSecondRbNum更 新后的 VirtualResourcePoolRbNum五个值中取小的值;
当 AllocationFlag为 3时,确定第二次最终分配的 数
为 RbSecondAllcom 、 MaxTB 、 两 倍 M2 和 更新后 的 VirtualResourcePoolRbNum 四个值中取小的值; 当 AllocationFlag为 4时,确定第二次最终分配的 数 RbM a 为 RbSecondAllcom RbBRs (ΜαχΤβ)和吏新后的 VirtualResourcePoolRbNum 三个值中取小的值;
才艮据 , 更新 ucFirstRbNum ucSecondRbNum 和 VirtualResourcePoolRbNunio
较佳地, 所述 RB 数确定单元, 具体配置为才艮据 和 之和、 以及所述 UE 的 MCS, 确定最终分配的
Ybsize AUocationTotalN 当 AllocationFlag 为 1 2 3或 4 JL Tb>"z " r "小于等于 Ml时, 确定最 ^^酉己 0 RB ¾. 为
和;
当 AllocationFlag 为 1 2或者 4 JL Tb>"z " r "大于 Ml时, 进入 PHR流程, 确定为待调度 UE分配的 RB数 RbMwamnU为功率受限对应的 RB数, 并且确定为待调度 UE分配的 RB数对应的 MCS;
当 AllocationFlag 为 3 , 且 Tb r " 大 于 Ml , 且
Ceil( /2) M 1时,确定为待调度 UE分配的 RB数
当 AllocationFlag 为 3 , 且 Tb r " 大 于 Ml , 且
Ceil( /2) > M 1时,确定为待调度 UE分配的 RB数
为功率受限对应的 RB数,并且确定为待调度 UE分配的 RB数对应的 MCS 由上可知,本发明实施例的技术方案包括:根据每个待调度 UE在上行 授权时刻的待调度上行子帧的剩余带宽资源, 确定虚拟共享资源池 VirtualResourcePoolRbNum; 根据 UE在待调度两个上行子帧的调度情况,确定资源分配预调度标识 AllocationFlag;
才艮据确定的 VirtualResourcePoolRbNum和 AllocationFlag, 依次进行第 一次资源分配、 第二次资源分配和最终的资源块(RB )数确定, 得到为每 个待调度 UE分配的 RB数;
根据为每个待调度 UE分配的 RB数, 得到为每个待调度 UE分配的 RB资源位图, 生成 DCI0, 所述 DCI0指示 UE在所调度的上行子帧上进行 上行业务传输。 由此, 可以保证配比 0下授权上行子帧时频域资源最大化, 从而更大限度合理分配所有上行系统时频带宽, 使得上行流量最大化。 附图说明
图 1为一个无线帧的结构示意图;
图 2 为本发明上行共享资源池资源分配方法的第一实施例的实现流程 图;
图 3为本发明基站的实施例的结构示意图;
图 4为本发明上行共享资源池资源分配方法的第二实施例的实现流程 图。 具体实施方式 本发明提供的一种上行共享资源池资源分配方法的第一实施例, 应用 于基站, 如图 2所示, 包括以下步骤:
步骤 201、 每个待调度用户设备(UE )在上行授权时刻根据的待调度 上 行 子 帧 的 剩 余 带 宽 资 源 , 确 定 虚 拟 共 享 资 源 池 VirtualResourcePoolRbNum;
步骤 202、 根据 UE在待调度两个上行子帧的调度情况, 确定资源分配 预调度标识 AllocationFlag; 步骤 203、 根据确定的 VirtualResourcePoolRbNum和 AllocationFlag, 依次进行第一次资源分配、 第二次资源分配和最终的资源块(RB )数确定, 得到为每个待调度 UE分配的 RB数;
步骤 204、根据为每个待调度 UE分配的 RB数,得到为每个待调度 UE 分配的 RB资源位图,生成 DCI0,所述 DCI0指示 UE在所调度的上行子帧 上进行上行业务传输。
优选的, 步骤 201可以为: 根据时分双工(TDD )配比 0的子帧结构, 分别统计授权时刻待调度第一个上行子帧的剩余带宽资源 ucFirstRbNum和 第二个上行子帧的剩余带宽资源 ucSecondRbNum;
将 ucFirstRbNum和 ucSecondRbNum相加再乘以百分比因子得到虚拟 共享资源池, 其中, 百分比因子 = (1- ) + , 取值范围 [ « ,1]; a =max(ucFirstRbNum , ucSecondRbNum)/( ucFirstRbNum + ucSecondRbNum); 为通过系统测试确定的值, 取值范围为! , 1]。
优选的, 步骤 202可以为: 当 UE在第一个上行子帧不存在重传调度、 上行控制信息(Uplink Control Information, UCI )调度, 在第二个上行子帧 存在重传调度、 UCI调度等时, 确定所述 AllocationFlag为 1, 表示资源预 先在第一个上行子帧分配;
当 UE在第一个上行子帧存在重传调度、 UCI调度,在第二个上行子帧 不存重传调度、 UCI调度时, 确定所述 AllocationFlag为 2, 表示资源预先 在第二个上行子帧分配;
当 UE在第一个上行子帧和第二个上行子帧 UE均没有重传调度、 UCI 调度等, 且两个上行子帧混合自动重传请求(HARQ ) 进程的新数据指示 ( NDI )相同, 确定所述 AllocationFlag为 3, 表示资源预先在第一个和第 二个上行子帧公共资源位图同时分配且 NDI相同;
如果 UE在第一个上行子帧和第二个上行子帧均没有重传调度、 UCI 调度,且两个上行子帧 HARQ进程的 NDI不相同时,确定所述 AllocationFlag 为 4, 表示资源预先在第一个和第二个上行子帧同时分配且 NDI不相同。
优选地, 所述步骤 203中的进行第一次资源分配可以为: 当待调度 UE 队列不为空时, 依次取待调度 UE队列中 UE;
当 UE的历史流量大于等于等效保证比特速率 ( Guaranteed Bit Rate
GBR ) 时, 获得当前待调度 UE的传输块(Transport Block ) 大小 TBSize 和调制与编码策略 ( Modulation and Coding Scheme, MCS ), 根据 TBSize 和 MCS得到第一次预分配的 RB数 RbFirstAllcom;
将 UE的能力等级和 UE的緩冲区状态上报( Buffer Status Report, BSR ) 取小, 得到所述 UE 在一个上行子帧最大支持调度的传输块大小 MaxTBFiretSecnd,根据 MaxTBFiretSewmd和所述 UE的 MCS得到所述 UE在一个 上行子帧最大调度的 RB数瓧 McaTB ;
将 UE的 BSR和两倍 UE的能力等级取小得到所述 UE同时在二个上行 子帧传输最大支持调度的传输块大小 MaxTBThkd, 根据 MaxTBxhird和所述 UE 的 MCS 得到所述 UE 同时在两个上行子帧传输最大调度的 RB 数
Rb
获取当前待调度 UE的 Ml和 M2, 其中, Ml为功率余量上报 ( Power Headroom Report, PHR )为 0时所述 UE发送的最大 TBSize, M2为当前信 道下能够解调正确的最大 TBSize;
当所述 UE资源分配预调度标识 AllocationFlag为 1时, 确定第一次最 终 分 配 的 RB 数 为 ucFirstRbNum
VirtualResourcePoolRbNum RbFirstAllcom, (她 x7B)和 M2五个值 中取小的值;
当所述 UE资源分配预调度标识 AllocationFlag为 2时, 确定第一次最 终 分 配 的 RB 数 为 ucSecoiidRbNum VirtualResourcePoolRbNum, RbFirstAllcom、 (她 x7B)和 M2五个值中 取小的值;
当所述 UE资源分配预调度标识 AllocationFlag为 3时, 确定第一次最 终 分 配 的 RB 数 为 RbFirStAllCOlll VirtualResourcePoolRbNum RbBRs^uE) (Max B) 和两倍 M2四个值中取小的 值;
当所述 UE资源分配预调度标识 AllocationFlag为 4时, 确定第一次最 终 分 配 的 RB 数 为 RbFirStAllCOlll
VirtualResourcePoolRbNum , Rb BRs4UAMaxTB 和 M2四个值中取小的值; 才艮据 , 更新 ucFirstRbNum ucSecondRbNum 和
VirtualResourcePoolRbNunio
优选地, 所述步骤 203中的进行第二次资源分配可以为:
R y _First大于 o, 且 UE的历史流量大于等于等效最大比特速 率 ( Maximum Bit Rate, MBR )时, 在更新后的 VirtualResourcePoolRbNum 基础上根据系统后台配置的分配方案, 计算得到第二次预分配的 RB 数 RbSecondAllcom;
当所述 UE资源分配预调度标识 AllocationFlag为 1时, 确定第二次最 终分配的 RB数 "- 为 RbSecondAllcom, RU MaxTB、、M1、 更新后的 ucFirstRbNum和更新后的 VirtualResourcePoolRbNum五个值中取 小的值;
当所述 UE资源分配预调度标识 AllocationFlag为 2时, 确定第二次最 终分配的 RB数 "- 为 RbSecondAllcom, RU MaxTB、、M1、 更新后的 ucSecondRbNum和更新后的 VirtualResourcePoolRbNum五个值 中取小的值; 当所述 UE资源分配预调度标识 AllocationFlag为 3时, 确定第二次最 终分配的 RB数 W " w s 为 RbSecondAllcom RbBRS4(2*uE) (MaxTB) 两倍 M2、 更新后的 VirtualResourcePoolRbNum四个值中取小的值;
当所述 UE资源分配预调度标识 AllocationFlag为 4时, 确定第二次最 终分配的 RB数 - '«^为 RbSecondAllcom ( ^)和更 新后的 VirtualResourcePoolRbNum三个值中取小的值;
才艮据 _s , 更新 ucFirstRbNum ucSecondRbNum 和 VirtualResourcePoolRbNunio
优选地, 所述步骤 203中的最终的 RB数确定可以为:
^ lk , 以 J ^所 i^ UE的 MCS, 确 定最终分酉己 ; 当 AllocationFlag 为 1 2 3或 4, 且 Tb 小于等于 Ml时, 确定最终分酉己 0 RB 为
和;
当 AllocationFlag 为 1 2或者 4, 且丁 大于!^^时, 进入
PHR流程, 确定为待调度 UE分配的 RB数 为功率受限对应的
RB数, 并且确定为待调度 UE分配的 RB数对应的 MCS;
当 AllocationFlag 为 3 , 且 Tb>"Zi^"。c。"。"7¾' " 大 于 Ml , 且
Ceil( Μ 1时,确定为待调度 UE分配的 RB数 ^
当 AllocationFlag 为 3 , 且 Tb""z "。《∞。"r " 大 于 Ml , 且
CQi 12) > M l时,确定为待调度 UE分配的 RB数
为功率受限对用的 RB数,并且确定为待调度 UE分配的 RB数对应的 MCS 本发明提供的一种基站的实施例, 如图 3所示, 所述基站包括: 虚拟共享资源池确定单元 301, 配置为根据每个带调度 UE在上行授权 时刻的待调度上行子帧的剩余带宽资源, 确定虚拟共享资源池 VirtualResourcePoolRbNum;
资源分配预调度标识确定单元 302, 配置为根据 UE在待调度两个上行 子帧的调度情况, 确定资源分配预调度标识 AllocationFlag;
RB数确定单元 303, 配置为根据确定的 VirtualResourcePoolRbNum和 AllocationFlag,依次进行第一次资源分配、第二次资源分配和最终的 RB数 确定, 得到为每个待调度 UE分配的 RB数;
下行控制信息格式生成单元 304, 配置为根据为每个待调度 UE分配的
RB数,得到为每个待调度 UE分配的 RB资源位图,生成 DCI0,所述 DCI0 指示 UE在所调度的上行子帧上进行上行业务传输。
优选地, 所述虚拟共享资源池确定单元 301, 具体配置为才艮据 TDD配 比 0 的子帧结构, 分别统计授权时刻待调度第一个上行子帧的剩余带宽资 源 ucFirstRbNum和第二个上行子帧的剩余带宽资源 ucSecondRbNum;
将 ucFirstRbNum和 ucSecondRbNum相加再乘以百分比因子得到虚拟 共享资源池 VirtualResourcePoolRbNum, 其中, 百分比因子= «(1 - ) + , 取 值范围 [ " ,1]; a =max(ucFirstRbNum, ucSecondRbNum)/( ucFirstRbNum + ucSecondRbNum); 为通过系统测试确定的值, 取值范围为! , 1]。
优选地, 所述资源分配预调度标识确定单元 302, 具体配置为当 UE在 第一个上行子帧不存在重传调度、 UCI 调度, 在第二个上行子帧存在重传 调度、 UCI调度等时, 确定所述 AllocationFlag为 1, 表示资源预先在第一 个上行子帧分配;
当 UE在第一个上行子帧存在重传调度、 UCI调度,在第二个上行子帧 不存重传调度、 UCI调度时, 确定所述 AllocationFlag为 2, 表示资源预先 在第二个上行子帧分配;
当 UE在第一个上行子帧和第二个上行子帧 UE均没有重传调度、 UCI 调度等,且两个上行子帧 HARQ进程的 NDI相同,确定所述 AllocationFlag 为 3, 表示资源预先在第一个和第二个上行子帧公共资源位图同时分配且 NDI相同;
如果 UE在第一个上行子帧和第二个上行子帧均没有重传调度、 UCI 调度,且两个上行子帧 HARQ进程的 NDI不相同时,确定所述 AllocationFlag 为 4, 表示资源预先在第一个和第二个上行子帧同时分配且 NDI不相同。
优选地, 所述 RB数确定单元 303, 具体配置为当待调度 UE队列不为 空时, 依次取待调度 UE队列中 UE;
当 UE的历史流量大于等于等效 GBR时,获得当前待调度 UE的 TBSize 和 MCS, 根据 TBSize和 MCS得到第一次预分配的 RB数 RbFirstAllcom; 将 UE的能力等级和 UE的 BSR取小得到所述 UE在一个上行子帧最大 支持调度的传输块的大小 MaxTBFiretSecnd,根据 MaxTBFiretSewmd和所述 UE的 MCS得到所述 UE在一个上行子帧最大调度的 RB数瓧 McaTB ;
将 UE的 BSR和两倍 UE的能力等级取小得到所述 UE同时在二个上行 子帧传输最大支持调度的传输块的大小 MaxTBThkd,根据 MaxTBThkd和所述 UE 的 MCS 得到所述 UE 同时在两个上行子帧传输最大调度的 RB 数 获取当前待调度 UE的 Ml和 M2, 其中, Ml为 PHR=0时所述 UE发 送的最大 TBSize, M2为所述 UE当前信道下能够解调正确的最大 TBSize; 当所述 UE资源分配预调度标识 AllocationFlag为 1时, 确定第一次最 终 分 配 的 RB 数 为 ucFirstRbNum
VirtualResourcePoolRbNum RbFirstAllcom, (她 x7B)和 M2五个值 中取小的值; 当所述 UE资源分配预调度标识 AllocationFlag为 2时, 确定第一次最 终 分 配 的 RB 数 为 ucSecoiidRbNum
VirtualResourcePoolRbNum RbFirstAllcom, ( 和 M2五个值 中取小的值;
当所述 UE资源分配预调度标识 AllocationFlag为 3时, 确定第一次最 终 分 配 的 RB 数 为 RbFirStAllCOlll
VirtualResourcePoolRbNum RbBRSH2^E) (M^TB) 和两倍 M2四个值中取小的 值;
当所述 UE资源分配预调度标识 AllocationFlag为 4时, 确定第一次最 终 分 配 的 RB 数 为 RbFirStAllCOlll
VirtualResourcePoolRbNum, RBB E (MaxTB) 和 M2四个值中取小的值; 才艮据 , 更新 ucFirstRbNum ucSecondRbNum 和 VirtualResourcePoolRbNunio
优选地, 所述 RB数确定单元 303 , 具体配置为当 大于 0, 且 UE 的历 史流量大于等于等效 MBR 时, 在更新后的 VirtualResourcePoolRbNum基础上根据系统后台配置的分配方案,计算得到 第二次预分配的 RB数 RbSecondAllcom;
当所述 UE资源分配预调度标识 AllocationFlag为 1时, 确定第二次最 终分配的 RB tRbMocationMaxN 为 RbSecondAllcom, RbBRs M2 更新后的 ucFirstRbNum和更新后的 VirtualResourcePoolRbNum五个值中取 小的值;
当所述 UE资源分配预调度标识 AllocationFlag为 2时, 确定第二次最 终分配的 RB数 " - 为 RbSecondAllcom RU MaxTB [2 更新后的 ucSecondRbNum和更新后的 VirtualResourcePoolRbNum五个值 中取小的值;
当所述 UE资源分配预调度标识 AllocationFlag为 3时, 确定第二次最 终分配的 RB RbAu 为 RbSecondAllcom (2*uE)(MaxTB) 两倍 M2和更新后的 VirtualResourcePoolRbNum四个值中取小的值;
当所述 UE资源分配预调度标识 AllocationFlag为 4时, 确定第二次最 终分配的 RB $ RbA"ocationMaxNmiSecond ^ RbSecondAllcom
新后的 VirtualResourcePoolRbNum 三个值中耳又小的值;
才艮据 _s , 更新 ucFirstRbNum ucSecoiidRbNum 和 VirtualResourcePoolRbNunio
优选地, 所述 RB数确定单元 303, 具体配置为根据 ^和 之和、 以及所述 UE 的 MCS, 确定最终分配的
Thsize 当 AllocationFlag 为 1 2 3或 4, 且11 ""小于等于 Ml时, 确定最终分酉己 0 RB ¾ 为
和;
当 AllocationFlag 为 1 2或者 4 JLTb>"z " r "大于 Ml时, 进入 PHR流程, 确定为待调度 UE分配的 RB数 RbMwaiN 为功率受限对应的 RB数, 并且确定为待调度 UE分配的 RB数对应的 MCS;
当 AllocationFlag 为 3 , 且 Tb""z "。∞«。《rtow"„ 大 于 Ml , 且 Ceil( /2) M 1时,确定为待调度 UE分配的 RB数 ^
uu
矛口 ^ ^t ' 当 AllocationFlag 为 3 , 且 大 于 Ml , 且
Ceil( /2) > M 1时,确定为待调度 UE分配的 RB数 ^ 为功率受限对用的 RB数,并且确定为待调度 UE分配的 RB数对应的 MCS。 在实际应用中, 上述虚拟共享资源池确定单元 301、 资源分配预调度标 识确定单元 302、 RB数确定单元 303、 下行控制信息格式生成单元 304可 以由基站中的中央处理器(CPU, Central Processing Unit ), 数字信号处理 器 (DSP, Digital Signal Processor ) 或可编程逻辑阵列 ( FPGA, Field -
Programmable Gate Array ) 实现。
下面结合图 4对本发明上行共享资源池资源分配方法的第二实施例进 行介绍。
步骤 401、 根据 TDD配比 0的子帧结构, 分别统计授权时刻待调度第 一个上行子帧的剩余带宽资源 ucFirstRbNum和第二个上行子帧的剩余带宽 資源 ucSecondRbNum;
这里, 所述剩余带宽资源是指除 PUCCH 资源、 PRACH 资源、 Msg3 调度、 重传处理、 单发 UCI等占用的带宽之外的 PUSCH带宽资源。
步骤 402、 根据 ucFirstRbNum和 ucSecondRbNum, 获得虚拟资源共享 池 VirtualResourcePoolRbNum;
具体的, 根据公式 ( 1 )计算得到 VirtualResourcePoolRbNum,
VirtualResourcePoolRbNum = ( ucFirstRbNum + ucSecondRbNum ) * Percentfactor
( 1 )
其中, 百分比因子 Percentfactor= α(\ - β) + β , 为通过系统测试确定的 值 , 的 取 值 范 围 为 [ « , 1] , 为 定 值 , a =max(ucFirstRbNum ,ucSecondRbNum)/( ucFirstRbNum + ucSecondRbNum), Percentfactor取值范围 [ « , 1 ];
例如在一个无线帧中, 9U和 2U、 2U和 3U、 4U和 7U、 7U和 8U分 别组成虚拟共享资源池, 其中 9U和 2U组合时, 9U为第一个上行子帧, 2U为第二个上行子帧, 其他组合类似。 实施方法一: 在授权时刻当前无线 帧的 5D给当前无线帧的 9U和下一个无线帧的 2U授权、 当前无线帧的 6S 给下一个无线帧的 2U和 3U授权、 当前无线帧的 0D给当前无线帧 4U和 7U授权、 当前无线帧的 1S给当前无线帧的 7U和 8U授权; 或者, 实施方 法二:在授权时刻当前无线帧的 5D/6S给给当前无线帧的 9U和下一个无线 帧的 2U授权、 当前无线帧的 6S给下一个无线帧的 2U和 3U授权、 当前无 线帧的 0D/1S给当前无线帧的 4U和 7U授权、 当前无线帧的 1S给当前无 线帧 7U和 8U授权;
将虚拟共享资源池作为 UE资源分配一个依据,可以避免上行带宽分配 过大导致优先级低的 UE分配不到资源,也可以避免上行带宽分配过小导致 单 UE或者多 UE分配的上行带宽资源的浪费, 更合理为 UE分配上行系统 资源, 提高小区上行系统流量。
步骤 403、 根据 UE在待调度两个上行子帧的调度情况, 确定资源分配 预调度标识资源分配预调度标识 AllocationFlag;
具体的, 如果 UE在第一个上行子帧不存在重传调度、 UCI调度等, 在 第二个上行子帧存在重传调度、 UCI调度等时, 将所述 AllocationFlag赋值 为 1, 表示资源预先在第一个上行子帧分配;
如果 UE在第一个上行子帧存在重传调度、 UCI调度等,在第二个上行 子帧不存重传调度、 UCI调度等时, 将所述 AllocationFlag赋值为 2, 表示 资源预先在第二个上行子帧分配;
如果 UE在第一个上行子帧和第二个上行子帧 UE均没有重传调度、 UCI 调度等, 且两个上行子帧混合自动重传请求 ( Hybrid Automatic Repeat Request, HARQ )进程的新数据指示 ( New Data indication, NDI )相同时, 将所述 AllocationFlag赋值为 3, 表示资源预先在第一个和第二个上行子帧 公共资源位图同时分配且 NDI相同;
如果 UE在第一个上行子帧和第二个上行子帧均没有重传调度、 UCI 调度等,且两个上行子帧 HARQ进程的 NDI不相同时,将所述 AllocationFlag 赋值为 4, 表示资源预先在第一个和第二个上行子帧同时分配且 NDI不相 同。 此时可以通过同一个下行子帧下发两个 DCI0为上行子帧授权, 或者通 由于 PRACH资源和 Msg3调度只能在其中一个上行子帧, 因此无需资 源分配预调度标识;
所述 AllocationFlag的作用与 UL index的作用类似, 但有所不同, UL index值为最终资源分配成功以后确定,而 AllocationFlag为预先标识 UE在 哪个上行子帧进行资源分配的子帧索引, 可以为最终确定 UL index指引方 向, 例如, AllocationFlag =1 的 UE 资源分配成功后的 UL index =10; AllocationFlag =2的 UE资源分配成功后的 UL index =01 ; AllocationFlag =3 的 UE资源分配成功后的 UL index—般为 10、 01或 11 ; AllocationFlag =4 的 UE资源分配成功后 UL index为 01或 10,这样可以缩减系统资源分配的 时间, 提升用户资源分配效率。
步骤 404、当待调度 UE队列不为空,且 UE的( Buffer Status Reporting,
BSR ) BSR 等效 GBR>0 ( BSR 等效 GBR为逻辑信道组中具有 GBR及 PBR的 BSR 不为 0的逻辑信道 BSR之和) 时, 根据确定的虚拟共享资源池和资源分配 预调度标识, 进行第一次资源分配得到第一次最终分配的 RB 数
具体的, 当待调度 UE队列不为空时, 依次取待调度 UE队列中 UE, 当 UE的历史流量大于等于等效 GBR时,获得当前待调度 UE的 TBSize和 MCS, 根据 TBSize和 MCS得到第一次预分配的 RB数 RbFirstAllcom; 将 UE的能力等级和所述 UE的 BSR取小得到所述 UE在一个上行子帧 最大支持调度的传输块的大小 MaxTBFiretSecnd,根据 MaxTBFiretSecnd和 MCS 得到所述 UE在一个上行子帧最大调度的 RB数 RbBRS4UE MaXTB、; 将 UE的 BSR和两倍 UE的能力等级取小得到所述 UE同时在二个上行 子帧传输最大支持调度的传输块的大小 MaxTBThkd,根据
Figure imgf000025_0001
MCS 得到所述 UE在一个上行子帧最大调度的 RB数 RbB υΕ) ίαχΤΒ) ·
获取当前待调度 UE的 Ml和 Μ2, 其中, Ml为 PHR=0时所述 UE发 送的最大 TBSize, M2为当前信道下能够解调正确的最大 TBSize;
当所述 UE资源分配预调度标识 AllocationFlag为 1时, 确定第一次最 终 分 配 的 RB 数 为 ucFirstRbNum ,
VirtualResourcePoolRbNum RbFirstAllcom, RbBRswAMaxTB和 M2五个值中 取小的值;
当所述 UE资源分配预调度标识 AllocationFlag为 2时, 确定第一次最 终 分 配 的 RB 数 为 ucSecondRbNum ,
VirtualResourcePoolRbNum RbFirstAllcom, RbBRswAMaxTB和 M2五个值中 取小的值;
当所述 UE资源分配预调度标识 AllocationFlag为 3时, 确定第一次最 终 分 配 的 RB 数 为 RbFirStAllCOlll ,
VirtualResourcePoolRbNum , RbBRs^uE) (Max B) 和两倍 M2四个值中取小的 值;
当所述 UE资源分配预调度标识 AllocationFlag为 4时, 确定第一次最 终 分 配 的 RB 数 为 RbFirStAllCOlll , VirtualResourcePoolRbNum , RBB E (MaxTB) 和 M2四个值中取小的值。
才艮据 , 更新 ucFirstRbNum、 ucSecondRbNum 和
VirtualResourcePoolRbNunio
步 骤 405 、 根据 资 源 分 配预 调 度标 识 、 更新 后 的
VirtualResourcePoolRbNum, ucFirstRbNum和 ucSecondRbNum, 进行第二 Rb
次资源分配得到第二次最终分配的 RB数
具体的,当 Rb.wMaw—First大于 0,且 UE的历史流量大于等于等效 MBR 时, 在更新后的 VirtualResourcePoolRbNum基础上根据系统后台配置的分 配方案, 计算得到第二次预分配的 RB数 RbSecondAllcom;
当所述 UE资源分配预调度标识 AllocationFlag为 1时, 确定第二次最 终分配的 RB $l 为 更新后的 UCFirStRbNlim, 更新后的
VirtualResourcePoolRbNum RbSecondAllcom, U MaxTB、和 M2五个值 中取小的值;
当所述 UE资源分配预调度标识 AllocationFlag为 2时, 确定第二次最 终分配的 RB 为 更新后的 UCSeCOlldRbNUm, 更新后的
VirtualResourcePoolRbNum , RbSecondAllcom, U MaxTB和 M2五个值 中取小的值;
当所述 UE资源分配预调度标识 AllocationFlag为 3时, 确定第二次最 终分配的 RB数 RbAU - Seamd为更新后的 VirtualResourcePoolRbNum , RbSecondAllcom , 和两倍 M2 四个值中取小的值;
当所述 UE资源分配预调度标识 AllocationFlag为 4时, 确定第二次最 终分配的 RB数 RbAU - Seamd为更新后的 VirtualResourcePoolRbNum , RbSecondAllcom 和 娜 ^ '7^)三个值中取小的值。
根据 , 更新 ucFirstRbNum 、 ucSecoiidRbNum 和 VirtualResourcePoolRbNunio
步骤 406、 根据资源分配预调度标识、 第一次最终分配的 RB 数
Rb Moca o 和第二次最 分酉己 RB ,进亍最终 RB 数确定, 得到为每个待调度 UE分配的 RB数 ^ ― 膽 ; ^L 的, ^^^ -^t ^_^ ι ¾ 以 戶斤 :¾_ UE的
MCS, 确定最终分配的 CWT
当 AllocationFlag 为 1 2 3或 4, 且 Tb 于等于 Ml时, 确定为待调度 UE 分酉己 RB 数 为 和
_ ^^口 · 当 AllocationFlag 为 1 2或者 4 JL Tb>"z " r "大于 Ml时, 进入 PHR流程, 确定为待调度 UE分配的 RB数 RbMwamnU为功率受限对应的 RB数, 并且确定为待调度 UE分配的 RB数;
当 AllocationFlag 为 3 , 且 Tb r " 大 于 Ml , 且
Ceil( /2) M 1时,确定为待调度 UE分配的 RB数 ^
当 AllocationFlag 为 3 , 且 Tb r " 大 于 Ml , 且
Ceil( /2) > M 1时,确定为待调度 UE分配的 RB数
为功率受限对用的 RB数,并且确定为待调度 UE分配的 RB数对应的 MCS 步骤 407、根据确定的为待调度 UE分配的 RB $tRbAw , 生成为 每个待调度 UE分配的 RB资源位图, 得到上行子帧授权信息, 并将所述上 行子帧授权信息下发给对应的 UE
步骤 408 UE从收到的上行子帧授权信息中解调出相应的 DCI0,通过 DCI0指示所述 UE的在哪些上行子帧上进行上行业务传输。
综上,本发明通过虚拟共享资源池使得 UE更合理利用配比 0的上行系 统带宽资源,通过预调度标识更有针对指导 UE提升资源分配的效率,最终 使得小区上行流量达到最优。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围

Claims

权利要求书
1、 一种上行共享资源池资源分配方法, 应用于基站, 所述方法包括: 根据每个待调度用户设备(UE )在上行授权时刻的待调度上行子帧的 剩余带宽资源, 确定虚拟共享资源池 VirtualResourcePoolRbNum;
根据 UE在待调度两个上行子帧的调度情况,确定资源分配预调度标识 AllocationFlag;
才艮据确定的 VirtualResourcePoolRbNum和 AllocationFlag, 依次进行第 一次资源分配、 第二次资源分配和最终的资源块(RB )数确定, 得到为每 个待调度 UE分配的 RB数;
根据为每个待调度 UE分配的 RB数, 得到为每个待调度 UE分配的 RB资源位图, 生成下行控制信息格式 0 ( DCI0 ), 所述 DCI0指示 UE在所 调度的上行子帧上进行上行业务传输。
2、 根据权利要求 1所述的方法, 其中, 所述根据每个待调度 UE在上 行授权时刻的待调度上行子帧的剩余带宽资源, 确定虚拟共享资源池, 为: 根据时分双工 (TDD ) 配比 0的子帧结构, 分别统计授权时刻待调度 第一个上行子帧的剩余带宽资源 ucFirstRbNum和第二个上行子帧的剩余带 宽资源 ucSecondRbNum; 将 ucFirstRbNum和 ucSecondRbNum相力口再乘以 百分比因子得到 VirtualResourcePoolRbNum,其中,百分比因子二^^-^十 , 取值范围 [ " , 1 ]; a =max(ucFirstRbNum, uc S econdRbNum)/( ucFirstRbNum + ucSecondRbNum); 为通过系统测试确定的值, 取值范围为 [", 1]。
3、 根据权利要求 1所述的方法, 其中, 所述根据 UE在待调度两个上 行子帧的调度情况, 确定资源分配预调度标识, 为:
当 UE在第一个上行子帧不存在重传调度、上行控制信息(UCI )调度, 在第二个上行子帧存在重传调度、 UCI调度等时, 确定所述 AllocationFlag 为 1, 表示资源预先在第一个上行子帧分配;
当 UE在第一个上行子帧存在重传调度、 UCI调度,在第二个上行子帧 不存重传调度、 UCI调度时, 确定所述 AllocationFlag为 2, 表示资源预先 在第二个上行子帧分配;
当 UE在第一个上行子帧和第二个上行子帧 UE均没有重传调度、 UCI 调度等, 且两个上行子帧混合自动重传请求(HARQ ) 进程的新数据指示 ( NDI )相同, 确定所述 AllocationFlag为 3, 表示资源预先在第一个和第 二个上行子帧公共资源位图同时分配且 NDI相同;
如果 UE在第一个上行子帧和第二个上行子帧均没有重传调度、 UCI 调度,且两个上行子帧 HARQ进程的 NDI不相同时,确定所述 AllocationFlag 为 4, 表示资源预先在第一个和第二个上行子帧同时分配且 NDI不相同。
4、 根据权利要求 3所述的方法, 其中, 所述根据确定的虚拟共享资源 池和资源分配预调度标识, 进行第一次资源分配, 为:
当待调度 UE队列不为空时, 依次取待调度 UE队列中 UE;
当 UE的历史流量大于等于等效保证比特速率(GBR )时, 获得当前待 调度 UE的传输块大小 TBSize和调制与编码策略( MCS ), 根据 TBSize和 MCS得到第一次预分配的 RB数 RbFirstAllcom;
将 UE 的能力等级和 UE 的緩冲区状态上报(BSR )取小, 得到所述 UE 在一个上行子帧最大支持调度的传输块大小 MaxTBFiretSecnd, 根据 MaxTBFiretSewmd和所述 UE的 MCS得到所述 UE在一个上行子帧最大调度的
RB $t RbBRS4UE (MaxTB);
将 UE的 BSR和两倍 UE的能力等级取小,得到所述 UE在两个上行子 帧最大支持调度的传输块的大小 MaxTBThkd,根据 MaxTBThkd和所述 UE的 MCS 得到所述 UE 同时在两个上行子帧传输最大调度的 RB 数 获取当前待调度 UE的 Ml和 M2, 其中, Ml为功率余量上报(PHR ) 为 0时所述 UE发送的最大 TBSize, M2为所述 UE当前信道下能够解调正 确的最大 TBSize;
当所述 UE的 AllocationFlag为 1 时, 确定第一次最终分配的 RB数 为 ucFirstRbNum VirtualResourcePoolRbNum RbFirstAllcom, ^^ (ΜαχΤΒ)和 Μ2五个值中取小的值;
当所述 UE的 AllocationFlag为 2时, 确定第一次最终分配的 RB数 为 ucSecoiidRbNum VirtualResourcePoolRbNum RbFirstAllcom, ^^ (ΜαχΤΒ)和 Μ2五个值中取小的值;
当所述 UE的 AllocationFlag为 3 时, 确定第一次最终分配的 RB数 为 RbFirstAllcom VirtualResourcePoolRbNum RbBR 4(2,UE) (MaxTB) 和两倍 M2四个值中取小的值;
当所述 UE的 AllocationFlag为 4时, 确定第一次最终分配的 RB数 为 RbFirstAllcom VirtualResourcePoolRbNum RbBRS uE (MaxTB) 和 M2四个值中取小的值; 才艮据 , 更新 ucFirstRbNum ucSecondRbNum 和 VirtualResourcePoolRbNunio
5、根据权利要求 4所述的方法, 其中, 所述进行第二次资源分配, 为: 当 R y _First大于 o, 且 UE的历史流量大于等于等效最大比特速 率 (MBR ) 时, 在更新后的 VirtualResourcePoolRbNum基础上根据系统后 台配置的分配方案, 计算得到第二次预分配的 RB数 RbSecondAllcom; 当 AllocationFlag为 1时,确定第二次最终分配的 RB数 "
为 RbSecondAllcom, υ ΜΤΒ 、 Μ2、 更新后的 ucFirstRbNum和更新 后的 VirtualResourcePoolRbNum五个值中取小的值;
当 AllocationFlag为 2时,确定第二次最终分配的 RB数 Rb'
为 RbSecondAllcom RbBRswAMaxTB M2、 更新后的 ucSecondRbNum和 更新后的 VirtualResourcePoolRbNum五个值中取小的值;
当 AllocationFlag为 3时,确定第二次最终分配的 RB数
为 RbSecondAllcom MaxTB 、 两倍 M2 和更新后 的 VirtualResourcePoolRbNum四个值中小的值;
当 AllocationFlag为 4时,确定第二次最终分配的 数
为 RbSecondAllcom RbBRs (ΜαχΤβ)和吏新后的 VirtualResourcePoolRbNum 三个值中取小的值;
才艮据 , 更新 ucFirstRbNum ucSecondRbNum 和 VirtualResourcePoolRbNunio
6、 根据权利要求 5所述的方法, 其中, 所述最终的 RB数确定, 为:
^S)^ Rb All cationMaxNmuFirst Rb 以 戶斤 UE的 MCS,确 定最冬^酉己 0々 ;
当 AllocationFlag 为 1 2 3或 4 JL Tb>"z " r "小于等于 Ml时, 确定最 ^^酉己 0 RB ¾. 为
和;
当 AllocationFlag 为 1 2或者 4 JL Tb>"z " r "大于 Ml时, 进入 PHR流程, 确定为待调度 UE分配的 RB数 RbMwamnU为功率受限对应的 RB数, 并且确定为待调度 UE分配的 RB数对应的 MCS;
当 AllocationFlag 为 3 , 且 Tb r " 大 于 Ml , 且
Ceil( /2) < Ml时,确定为待调度 UE分酉己的 RB数 口 ^t * 当 AllocationFlag 为 3 , 且 Tb r " 大 于 Ml , 且
Ceil( /2) > M 1时,确定为待调度 UE分配的 数
为功率受限对应的 RB数,并且确定为待调度 UE分配的 RB数对应的 MCS
7、 一种基站, 所述基站包括:
虚拟共享资源池确定单元,配置为根据每个待调度 UE在上行授权时刻 的待调度上行子帧的剩余带宽资源, 确定虚拟共享资源池 VirtualResourcePoolRbNum;
资源分配预调度标识确定单元,配置为根据 UE在待调度两个上行子帧 的调度情况, 确定资源分配预调度标识 AllocationFlag;
RB 数确定单元, 配置为才艮据确定的 VirtualResourcePoolRbNum 和
AllocationFlag,依次进行第一次资源分配、第二次资源分配和最终的 RB数 确定, 得到为每个待调度 UE分配的 RB数;
下行控制信息格式生成单元, 配置为根据为每个待调度 UE分配的 RB 数, 得到为每个待调度 UE分配的 RB资源位图, 生成 DCI0, 所述 DCI0 指示 UE在所调度的上行子帧上进行上行业务传输。
8、根据权利要求 7所述的基站, 其中, 所述虚拟共享资源池确定单元, 配置为根据 TDD配比 0的子帧结构, 分别统计授权时刻待调度第一个上行 子帧的剩余带宽资源 ucFirstRbNum 和第二个上行子帧的剩余带宽资源 ucSecondRbNum;
将 ucFirstRbNum 和 ucSecondRbNum 相加再乘以百分比因子得到 VirtualResourcePoolRbNum ,其中,百分比因子 = "(1 - + ,取值范围! , 1 ]; a =max(ucFirstRbNum ucSecondRbNum)/( ucFirstRbNum + ucSecondRbNum); 为通过系统测试确定的值, 取值范围为! , 1]
9、 根据权利要求 7所述的基站, 其中, 所述资源分配预调度标识确定 单元, 配置为当 UE在第一个上行子帧不存在重传调度、 UCI调度, 在第二 个上行子帧存在重传调度、 UCI调度等时, 确定所述 AllocationFlag为 1, 表示资源预先在第一个上行子帧分配;
当 UE在第一个上行子帧存在重传调度、 UCI调度,在第二个上行子帧 不存重传调度、 UCI调度时, 确定所述 AllocationFlag为 2, 表示资源预先 在第二个上行子帧分配;
当 UE在第一个上行子帧和第二个上行子帧 UE均没有重传调度、 UCI 调度等,且两个上行子帧 HARQ进程的 NDI相同,确定所述 AllocationFlag 为 3, 表示资源预先在第一个和第二个上行子帧公共资源位图同时分配且 NDI相同;
如果 UE在第一个上行子帧和第二个上行子帧均没有重传调度、 UCI 调度,且两个上行子帧 HARQ进程的 NDI不相同时,确定所述 AllocationFlag 为 4, 表示资源预先在第一个和第二个上行子帧同时分配且 NDI不相同。
10、 根据权利要求 9所述的基站, 其中, 所述 RB数确定单元, 配置为 当 UE的历史流量大于等于等效 GBR时,获得当前待调度 UE的 TBSize和 MCS, 根据 TBSize和 MCS得到第一次预分配的 RB数 RbFirstAllcom; 将 UE 的能力等级和所述 UE 的 BSR取小得到 MaxTBFiretSecnd,根据 MaxTBFiretSeend和 MCS 得到所述 UE在一个上行子帧最大调度的 RB数
RbBRS4UE (MaxTB);
将 UE 的 BSR 和两倍 UE 的能力等级取小得到 MaxTBThkd, 根据 MaxTBThkd和所述 UE的 MCS得到所述 UE同时在两个上行子帧传输最大 调度的 RB $t RbBR 4(2,UE)(MaxTB) ;
获取当前待调度 UE的 Ml和 M2, 其中, Ml为 PHR=0时所述 UE发 送的最大 TBSize, M2为所述 UE当前信道下能够解调正确的最大 TBSize; 当所述 UE 的 AllocationFlag为 1 时, 确定第一次最终分配的 RB数 为 ucFirstRbNum VirtualResourcePoolRbNum RbFirstAllcom, ^^ (ΜαχΤΒ)和 M2五个值中取小的值;
当所述 UE 的 AllocationFlag为 2时, 确定第一次最终分配的 RB数 为 ucSecoiidRbNum VirtualResourcePoolRbNum RbFirstAllcom, ^^ (ΜαχΤΒ)和 Μ2五个值中取小的值;
当所述 UE的 AllocationFlag为 3 时, 确定第一次最终分配的 RB数 为 RbFirstAllcom VirtualResourcePoolRbNum RbBR 4(2,UE) (MaxTB) 和两倍 M2四个值中取小的值;
当所述 UE的 AllocationFlag为 4时, 确定第一次最终分配的 RB数 为 RbFirstAllcom VirtualResourcePoolRbNum (MaxTB) 和 M2四个值中取小的值;
才艮据 , 更新 ucFirstRbNum ucSecondRbNum 和 VirtualResourcePoolRbNunio
11、 根据权利要求 10所述的基站, 其中, 所述 RB数确定单元, 配置 为当 RbAw N 大于 0,且 UE的历史流量大于等于等效 MBR时,在更 新后的 VirtualResourcePoolRbNum基础上根据系统后台配置的分配方案, 计算得到第二次预分配的 RB数 RbSecondAllcom;
当 AllocationFlag为 1时,确定第二次最终分配的 RB数 "
为 RbSecondAllcom, RbBRswAMaxTB 、 M2、 更新后的 ucFirstRbNum和更新 后的 VirtualResourcePoolRbNum五个值中取小的值;
当 AllocationFlag为 2时,确定第二次最终分配的 数 RbM a ^ xNmu -Seco"d 为 RbSecondAllcom, RbBRswAMaxTB 、 M2、 更新后的 ucSecondRbNum更 新后的 VirtualResourcePoolRbNum五个值中取小的值; 当 AllocationFlag为 3时,确定第二次最终分配的 RB数
为 RbSecondAllcom MaxTB 、 两 倍 M2 和 更新后 的 VirtualResourcePoolRbNum 四个值中取小的值;
当 AllocationFlag为 4时,确定第二次最终分配的 数 RbM a
为 RbSecondAllcom RbBRs (ΜαχΤβ)和吏新后的 VirtualResourcePoolRbNum 三个值中取小的值;
才艮据 , 更新 ucFirstRbNum ucSecondRbNum 和 VirtualResourcePoolRbNunio
12、 根据权利要求 11所述的方法, 其中, 所述 RB数确定单元, 配置 为^ Rb 和 Rb AUocationMaxN Second: ^和、 以 ^所 j^_ UE的 MCS■> 确定 最冬 ^^酉己^ J Tbsize ;
当 AllocationFlag 为 1 2 3或 4 JL Tb>"z " r "小于等于 Ml时, 确定最 ^^酉己 0 RB ¾. 为
和;
当 AllocationFlag 为 1 2或者 4 JL Tb>"z " r "大于 Ml时, 进入 PHR流程, 确定为待调度 UE分配的 RB数 RbMwamnU为功率受限对应的 RB数, 并且确定为待调度 UE分配的 RB数对应的 MCS;
当 AllocationFlag 为 3 , 且 Tb r " 大 于 Ml , 且
Ceil( /2) M 1时,确定为待调度 UE分配的 RB数 ^
当 AllocationFlag 为 3 , 且 Tb r " 大 于 Ml , 且
Ceil( /2) > M 1时,确定为待调度 UE分配的 数 ^
PCT/CN2013/083840 2012-12-17 2013-09-18 一种上行共享资源池资源分配方法和基站 WO2014094474A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210548154.5 2012-12-17
CN201210548154.5A CN103874210B (zh) 2012-12-17 2012-12-17 一种上行共享资源池资源分配方法和基站

Publications (1)

Publication Number Publication Date
WO2014094474A1 true WO2014094474A1 (zh) 2014-06-26

Family

ID=50912245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083840 WO2014094474A1 (zh) 2012-12-17 2013-09-18 一种上行共享资源池资源分配方法和基站

Country Status (2)

Country Link
CN (1) CN103874210B (zh)
WO (1) WO2014094474A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107426822A (zh) * 2017-09-11 2017-12-01 西北工业大学 一种无线网络中免开销的资源再分配方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018000362A1 (zh) * 2016-06-30 2018-01-04 华为技术有限公司 一种资源调度方法及对应设备
CN106533982B (zh) * 2016-11-14 2019-05-21 西安电子科技大学 基于带宽借用的动态队列调度装置及方法
CA3056957C (en) 2017-03-21 2024-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for transmitting and receiving data in a wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101179361A (zh) * 2006-11-08 2008-05-14 中兴通讯股份有限公司 增强混合自动重传请求指示信道的分配方法
CN101606347A (zh) * 2007-04-11 2009-12-16 Lg电子株式会社 在tdd系统中发送调度信息的方法
EP2341678A1 (en) * 2010-01-05 2011-07-06 Panasonic Corporation Signaling of resource assignments in cross-carrier scheduling scenarios

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101148660B1 (ko) * 2006-11-01 2012-05-22 후지쯔 가부시끼가이샤 무선 통신 장치 및 무선 통신 방법
CN101494589B (zh) * 2008-01-22 2013-03-20 中兴通讯股份有限公司 一种传输资源的管理系统及方法
CN101286946B (zh) * 2008-05-30 2010-08-11 北京北方烽火科技有限公司 一种基于ofdm系统的服务流接入控制和带宽分配方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101179361A (zh) * 2006-11-08 2008-05-14 中兴通讯股份有限公司 增强混合自动重传请求指示信道的分配方法
CN101606347A (zh) * 2007-04-11 2009-12-16 Lg电子株式会社 在tdd系统中发送调度信息的方法
EP2341678A1 (en) * 2010-01-05 2011-07-06 Panasonic Corporation Signaling of resource assignments in cross-carrier scheduling scenarios

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107426822A (zh) * 2017-09-11 2017-12-01 西北工业大学 一种无线网络中免开销的资源再分配方法
CN107426822B (zh) * 2017-09-11 2021-04-02 西北工业大学 一种无线网络中免开销的资源再分配方法

Also Published As

Publication number Publication date
CN103874210B (zh) 2017-09-12
CN103874210A (zh) 2014-06-18

Similar Documents

Publication Publication Date Title
TWI748977B (zh) 基於lte的v2x通訊服務品質以及壅塞減輕
US20230189330A1 (en) Method for indicating the allocated resources for a harq message in a random access procedure for a low-complexity, narrowband terminal
JP6745919B2 (ja) V2x送信のための改良されたセミパーシステントリソース割当て挙動
RU2754679C2 (ru) Система, устройство и способ передачи данных
JP4843090B2 (ja) 移動局、基地局装置、通信制御方法及び移動通信システム
EP2654358B1 (en) Resource scheduling method, apparatus, and base station
JP6467719B2 (ja) 端末装置、集積回路、および、無線通信方法
WO2015131730A1 (zh) 一种实现数据处理的方法、基站及用户设备
EP2434820A1 (en) Method and apparatus for allocating control channel resources
JP6386046B2 (ja) 通信端末および方法
WO2015141832A1 (ja) 端末装置、集積回路、および、無線通信方法
WO2011082675A1 (zh) 调度请求的方法、装置及系统
WO2011026383A1 (zh) 一种物理层控制信道资源的分配方法和装置
KR20220037492A (ko) 무선 통신 시스템에서 사이드링크 송신을 위한 방법 및 장치
CN114641948A (zh) 用于harq码本建构的方法和设备
WO2013023550A1 (zh) 应答信息的发送、接收方法和设备
CN109586854A (zh) 数据传输方法及装置
JP5523627B2 (ja) 移動通信システムにおける基地局及びリソース割当方法
WO2014094474A1 (zh) 一种上行共享资源池资源分配方法和基站
WO2013107407A1 (zh) 一种传输子帧的确定方法、系统及设备
US20220263610A1 (en) Resource Allocation in Wireless Network
EP4387364A2 (en) Systems and methods for mac ce based inter-device coordination of sidelink transmissions
WO2024092784A1 (en) Method for resource allocation on shared spectrum and device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865449

Country of ref document: EP

Kind code of ref document: A1