WO2014094460A1 - 频谱干扰检测装置及方法 - Google Patents

频谱干扰检测装置及方法 Download PDF

Info

Publication number
WO2014094460A1
WO2014094460A1 PCT/CN2013/083151 CN2013083151W WO2014094460A1 WO 2014094460 A1 WO2014094460 A1 WO 2014094460A1 CN 2013083151 W CN2013083151 W CN 2013083151W WO 2014094460 A1 WO2014094460 A1 WO 2014094460A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference signal
signal
radio frequency
processing unit
interference
Prior art date
Application number
PCT/CN2013/083151
Other languages
English (en)
French (fr)
Inventor
郭晓昱
穆学禄
易大川
赵志勇
崔亦军
余学德
肖光国
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US14/653,347 priority Critical patent/US9325437B2/en
Priority to EP13865370.4A priority patent/EP2922224B1/en
Publication of WO2014094460A1 publication Critical patent/WO2014094460A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0825Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with main and with auxiliary or diversity antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0834Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection based on external parameters, e.g. subscriber speed or location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems

Definitions

  • the present invention relates to the field of mobile communications, and in particular to a spectrum interference detecting apparatus and method. Background technique
  • FIG. 1 is a schematic diagram of an interference signal detecting apparatus used by a conventional base station in the prior art
  • FIG. 2 is a flowchart of detecting interference signal of a conventional base station in the prior art, as shown in FIG. 1 and FIG. 2, in the prior art, applicable to
  • the detection method of the interference signal of the conventional wireless base station is as follows:
  • the existing base station receiving channel is used for receiving analysis, and the interference signal in the receiving frequency band or a certain part of the interference signal in the receiving frequency band is received, and passes through the duplexer 109, the low noise amplifier 110 and the RF channel processing unit 111, and enters the mixed After the frequency converter, it is processed by an analog-to-digital converter (ADC) 113 through the intermediate frequency filter and the intermediate frequency processing unit 112.
  • ADC analog-to-digital converter
  • Information such as a shaping filter coefficient, a bandwidth, and a center frequency point corresponding to a plurality of different interference signals are stored in the base station in advance.
  • the above method for detecting an interference signal applicable to a conventional wireless base station is characterized by: 1.
  • the receiving antenna of the base station and the normal receiving channel are directly used. 2.
  • the above method can only detect the interference signal in the receiving frequency band of the base station or some part of the interference signal in the frequency band, and the interference signal outside the receiving frequency band cannot receive the detection. 3.
  • the above method is to store different shaping filters and the like in the base station in advance when the surrounding interference signals are known, and no solution is mentioned for some unknown surrounding interference signals. Summary of the invention
  • the embodiment of the invention provides a spectrum interference detecting apparatus and method, which solves the problem that the unknown interference signal around the wireless broadband base station cannot be detected and analyzed in the prior art.
  • An embodiment of the present invention provides a spectrum interference detecting apparatus, including: a receiving antenna configured to receive a spatial signal; a normal signal processing unit configured to filter and low noise amplify a normal signal received by the receiving antenna, and process the processed signal The normal signal is sent to the RF channel processing unit; the interference signal processing unit is configured to preprocess the interference signal received by the receiving antenna and send it to the RF channel processing unit; and the RF channel processing unit is configured to perform the received normal signal.
  • Radio frequency processing, and performing radio frequency processing on the pre-processed interference signal in the idle time slot is configured to perform radio frequency sampling on the normal signal after the radio frequency processing according to the input sampling clock, and perform the idle time slot pair
  • the radio frequency processed interference signal is subjected to radio frequency sampling, and the radio frequency sampled interference signal is sent to the interference signal detecting unit;
  • the interference signal detecting unit is configured to perform digital domain fast Fourier transform on the radio frequency sampled interference signal, and perform frequency band Identify, and A communication system that acquires interference signals.
  • the receiving antenna is: a receiving antenna of the base station connected to the normal signal processing unit and the interference signal processing unit, or the receiving antenna includes: an auxiliary detecting antenna connected to the interference signal processing unit, and a connection with the normal signal processing unit.
  • the receiving antenna of the base station itself.
  • the normal signal processing unit specifically includes: a duplex filter configured to perform duplex filtering on the normal signal; and a low noise amplifier configured to perform normal filtering on the duplex signal Low noise amplification, and the normal signal after low noise amplification is sent to the RF channel processing unit.
  • the interference signal processing unit specifically includes: a wideband coupler configured to couple the interference signal; an envelope detector configured to detect the coupled interference signal to obtain an amplitude of the interference signal; the comparator configured to The amplitude of the interference signal is compared with a preset amplitude threshold. If the amplitude of the interference signal is greater than the amplitude threshold, the interference signal is passed through the limiter by the control switch.
  • the interference signal is controlled by the control switch.
  • the limiter is configured to limit the incoming interference signal, and send the limited interference signal to the RF channel processing unit.
  • the interference signal detecting unit specifically includes: a frequency band identification module configured to perform digital domain fast Fourier transform on the radio frequency sampled interference signal, and perform frequency band identification of the interference signal according to the position and bandwidth of the interference signal in the frequency domain.
  • the communication system identification module is configured to perform the digital domain fast Fourier transform on the interference signal after the frequency band identification module, and sequentially pass the interference signal in the time domain to the digital filter of various standards, according to the digital filter of various standards.
  • the maximum amplitude information determines the communication format of the interfering signal.
  • the interference signal detecting unit further includes: a cell information identifying module configured to demodulate the interference signal in the time domain to zero frequency, and adopt a fixed signal sequence specific to the standard signal corresponding to the communication system of the interference signal at the baseband, and The interference signal performs a correlation operation to obtain related cell information of the interference signal.
  • a cell information identifying module configured to demodulate the interference signal in the time domain to zero frequency, and adopt a fixed signal sequence specific to the standard signal corresponding to the communication system of the interference signal at the baseband, and The interference signal performs a correlation operation to obtain related cell information of the interference signal.
  • the embodiment of the present invention further provides a spectrum interference detecting method, including: the normal signal processing unit filters and low-noise the normal signal received by the receiving antenna, and sends the processed normal signal to the RF channel processing unit;
  • the signal processing unit preprocesses the interference signal received by the receiving antenna and sends it to the RF channel processing unit;
  • the RF channel processing unit performs radio frequency processing on the received normal signal, and performs pre-processed interference signal in the idle time slot.
  • the radio frequency sampling unit performs radio frequency sampling on the normal signal after the radio frequency processing according to the input sampling clock, and performs the radio frequency processing interference signal in the idle time slot.
  • the RF sampling is performed, and the interference signal after the RF sampling is sent to the interference signal detecting unit; the interference signal detecting unit performs a digital domain fast Fourier transform on the interference signal after the RF sampling, performs frequency band identification, and acquires a communication system of the interference signal.
  • the receiving antenna is: a receiving antenna of the base station connected to the normal signal processing unit and the interference signal processing unit, or the receiving antenna includes: an auxiliary detecting antenna connected to the interference signal processing unit, and a connection with the normal signal processing unit.
  • the receiving antenna of the base station itself.
  • the normal signal processing unit filters and low-noise the normal signal received by the receiving antenna, and sends the processed normal signal to the RF channel processing unit, specifically: the duplex filter in the normal signal processing unit is normal.
  • the signal is duplex filtered; the low noise amplifier in the normal signal processing unit performs low noise amplification on the normal signal after duplex filtering, and transmits the normal signal after low noise amplification to the RF channel processing unit.
  • the interference signal processing unit pre-processes the interference signal received by the receiving antenna and sends the signal to the RF channel processing unit, specifically: the broadband coupler in the interference signal processing unit couples the interference signal; and the interference signal processing unit
  • the envelope detector detects the coupled interference signal to obtain the amplitude of the interference signal; the comparator in the interference signal processing unit compares the amplitude of the interference signal with a preset amplitude threshold, and if the amplitude of the interference signal is greater than the amplitude threshold, The interference signal is passed through the limiter through the control switch.
  • the interference signal is directly transmitted into the RF channel processing unit through the control switch; the limiter in the interference signal processing unit performs the inflow interference signal. Limiting, and sending the clipped interference signal to the RF channel processing unit.
  • the interference signal detecting unit performs digital domain fast Fourier transform on the radio frequency sampled interference signal, performs frequency band identification, and acquires an interference signal communication system, specifically: the frequency band identification module in the interference signal detecting unit samples the radio frequency The interference signal is subjected to digital domain fast Fourier transform, and the frequency band identification of the interference signal is performed according to the position and bandwidth of the interference signal in the frequency domain; the communication system identification module in the interference signal detection unit is in the frequency band identification module to the interference signal After the digital domain fast Fourier transform, the interference signal in the time domain is sequentially passed through various digital filters, and the communication system of the interference signal is determined according to the maximum amplitude information in the digital filters of various standards.
  • the method further includes: the cell information identifying module in the interference signal detecting unit demodulating the interference signal in the time domain to zero frequency, and adopting a fixed signal sequence specific to the standard signal corresponding to the communication system of the interference signal in the baseband, Correlate the interference signal to obtain the relevant cell information of the interference signal.
  • the detecting antenna or the base station receiving antenna and multiplexing the existing receiving channel By using the detecting antenna or the base station receiving antenna and multiplexing the existing receiving channel to design the detecting device, more unknown wireless interference signals can be simultaneously received and analyzed, and the normal operation of the base transceiver portion is not affected. Moreover, the cost is saved.
  • the technical solution of the embodiment of the present invention can detect the frequency, the amplitude, the standard, and the cell of the interference signal, so that the wireless broadband base station can better perform frequency planning and the like.
  • FIG. 1 is a schematic diagram of an interference signal detecting apparatus used by a conventional base station in the prior art
  • FIG. 2 is a flowchart of detecting interference signal of a conventional base station in the prior art
  • FIG. 3 is a schematic structural diagram of a spectrum interference detecting apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of Embodiment 1 of a spectrum interference detecting apparatus according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of Embodiment 2 of a spectrum interference detecting apparatus according to an embodiment of the present invention
  • FIG. 6 is a diagram of wireless spectrum interference analysis and detection according to an embodiment of the present invention
  • FIG. 7 is a flowchart of a spectrum interference detecting method according to an embodiment of the present invention. detailed description
  • the present invention provides a spectrum interference detecting apparatus and method.
  • the present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • FIG. 3 is a schematic structural diagram of a spectrum interference detecting apparatus according to an embodiment of the present invention.
  • the spectrum interference detecting apparatus according to an embodiment of the present invention includes: The receiving antenna 30, the normal signal processing unit 31, the interference signal processing unit 32, the radio frequency channel processing unit 33, the radio frequency sampling unit 34, and the interference signal detecting unit 35 are described in detail below for each module of the embodiment of the present invention.
  • a receiving antenna 30 configured to receive a spatial signal; the spatial signal includes a normal signal and an interference signal
  • the receiving antenna 30 may be: a receiving antenna 30 of the base station itself connected to the normal signal processing unit 31 and the interference signal processing unit 32; or, the receiving antenna 30 includes: and the interference signal processing unit 32.
  • the normal signal processing unit 31 is configured to perform filtering and low-noise amplification on the normal signal received by the receiving antenna 30, and send the processed normal signal to the radio frequency channel processing unit 33.
  • the normal signal processing unit 31 specifically includes:
  • a duplex filter configured to duplex filter a normal signal
  • the low noise amplifier is configured to perform low noise amplification on the normal signal after duplex filtering, and send the normal signal after low noise amplification to the RF channel processing unit 33.
  • the interference signal processing unit 32 is configured to pre-process the interference signal received by the receiving antenna 30, and send it to the RF channel processing unit 33;
  • the interference signal processing unit 32 specifically includes:
  • a wideband coupler configured to couple interference signals
  • An envelope detector configured to detect the coupled interference signal to obtain an amplitude of the interference signal
  • a comparator configured to compare an amplitude of the interference signal with a preset amplitude threshold. If the amplitude of the interference signal is greater than the amplitude threshold, the interference signal is passed through the limiter by the control switch. If the amplitude of the interference signal is less than the amplitude threshold, Passing the control switch to directly flow the interference signal into the RF channel processing unit 33;
  • the limiter is configured to limit the incoming interference signal, and send the limited interference signal to the RF channel processing unit 33.
  • the radio frequency channel processing unit 33 is configured to perform radio frequency processing on the received normal signal, and perform radio frequency processing on the pre-processed interference signal in the idle time slot;
  • the RF sampling unit 34 is configured to perform radio frequency sampling on the normal signal after the radio frequency processing according to the input sampling clock, and perform radio frequency sampling on the interference signal after the radio frequency processing in the idle time slot, and the interference signal after the radio frequency sampling Send to the interference signal detecting unit 35;
  • the interference signal detecting unit 35 is configured to perform a digital domain fast Fourier transform on the interference signal after the radio frequency sampling, perform band identification, and acquire a communication system of the interference signal.
  • the interference signal detecting unit 35 specifically includes:
  • the frequency band identification module is configured to perform digital domain fast Fourier transform on the interference signal after the RF sampling, and perform frequency band identification of the interference signal according to the position and bandwidth of the interference signal in the frequency domain;
  • the communication system identification module is configured to be in the frequency band After the identification module performs the digital domain fast Fourier transform on the interference signal, the interference signal in the time domain is sequentially passed through digital filters of various standards, and the communication system of the interference signal is determined according to the maximum amplitude information in the digital filter of various standards.
  • the interference signal detecting unit 35 may further include: a cell information identifying module configured to demodulate the interference signal in the time domain to zero frequency, and adopt a fixed signal sequence specific to the standard signal corresponding to the communication system of the interference signal at the baseband And performing correlation calculation with the interference signal to acquire related cell information of the interference signal.
  • a cell information identifying module configured to demodulate the interference signal in the time domain to zero frequency, and adopt a fixed signal sequence specific to the standard signal corresponding to the communication system of the interference signal at the baseband And performing correlation calculation with the interference signal to acquire related cell information of the interference signal.
  • the normal receiving antenna of the base station is directly utilized, and then the normal receiving channel of the base station is also multiplexed to complete the detection. It should be noted that, in the apparatus of FIG. 4, an auxiliary detecting antenna is added, and in the apparatus of FIG. 5, the receiving antenna of the base station is used, and the two embodiments are different only in the receiving antenna, and the processing process of the following interference signals is completely the same. of.
  • the processing flow of the spectrum interference detecting apparatus shown in FIG. 4 is as follows: In order not to affect the sensitivity of the normal receiving channel of the base station, an auxiliary detecting antenna is used, bypassing the duplexer 109 and the low noise amplifier 110, directly receiving the wireless interference.
  • the signal is pre-processed and then passed through the switch to enter the normal receive channel of the base station.
  • the pre-processing process of the radio interference signal is: the interference signal first passes through the wideband coupler 101, then passes through the envelope detector 102, and then the control signal outputted by the comparator 103 controls whether the interference signal needs to pass through the limiter 104 or Direct.
  • the RF sampling ADC 106 After the interference signal enters the receiving channel of the transceiver board through the switch, after passing through the RF channel processing unit 105 on the receiving channel, the RF sampling ADC 106 is input, and the RF sampling ADC 106 performs RF sampling according to the sampling clock sent by the clock device 107, and the RF The sampling ADC 106 can use real sampling, either real sampling or complex sampling. It should be noted that if complex sampling is used, the signal entering the RF sampling ADC must be I and Q quadrature signals.
  • the processing flow of the spectrum interference detecting apparatus shown in FIG. 5 is as follows: directly using the base station's own receiving antenna, and then pre-processing the received wireless interference signal, wherein the pre-processing steps are: the interference signal first passes through the wideband coupler 101, Then, the envelope detector 102 is passed through the control signal outputted by the comparator 103 to control whether the interference signal needs to pass through the limiter 104 or through. After the interference signal is selected by the switch to enter the receiving channel of the transceiver board, after passing through the RF channel processing unit 105 on the receiving channel, the RF sampling ADC 106 is input, and the RF sampling ADC 106 performs RF sampling according to the sampling clock sent by the sampling clock device 107. , RF sampling The ADC 106 can use either real or multiple samples. It should be noted that if complex sampling is used, the signal entering the RF sampling ADC must be I and Q quadrature signals.
  • FIG. 6 is a flowchart of wireless spectrum interference analysis and detection according to an embodiment of the present invention.
  • the interference signal is The detection unit (not shown in FIG. 4 and FIG. 5) performs detailed detection on the interference in the time domain after performing radio frequency sampling, and the specific processing procedure is as follows:
  • the signal after the RF sampling process is directly subjected to digital domain FFT conversion to perform frequency band identification.
  • Signal band identification is performed based on the position and bandwidth of the signal in the frequency domain.
  • the sampling rate can reach 3.6Ghz, and the complex sampling is adopted.
  • the frequency domain bandwidth can cover all the standard signals in the 3.5Ghz of the current communication frequency band. If real sampling is used, the sampling rate can be changed as needed.
  • the purpose is to determine the true frequency and amplitude information of the signal by changing the sampling frequency and observing the frequency variation of the signal falling within the Nyquist zone.
  • the preliminary signal system classification is performed according to the existing internationally specified spectrum resource list.
  • the spectrum signals of the existing communication class are classified into GSM, CDMA, WCDMA, TDSCDMA, WLAN, BlueTooth, LTE, and the like. Within the signal range of these standards, their frequency bands may overlap or be adjacent.
  • a further confirmation method is to pass the interference signal in the time domain and pass through the digital filter of each system, wherein the communication system with the maximum amplitude is the interference signal.
  • the frequency of the interference signal determined by the FFT is around 800 megabytes, then this frequency may be a GSM850M signal or a CDMA signal.
  • a further clarification method is to simultaneously pass the interference signal through the CDMA system in the time domain and the digital filter of the GSM850M system, wherein the communication system with the largest amplitude is the interference signal.
  • the interference signal in the time domain can be demodulated to zero frequency, and the signal is correlated with the baseband signal, and the specific budget of the standard signal is used in the standard signal.
  • a fixed signal sequence is correlated with the received signal to obtain the largest correlation peak.
  • GSM has a fixed set of 8 training sequences
  • CDM A2000 uses a variable WALSH code
  • WCDMA uses a complex scrambling code to distinguish between base stations and users, and the complex scrambling code consists of a GOLD sequence.
  • the forward scrambling code can use a long scrambling code. Or short scrambling code
  • LTE uses ZC sequence
  • TDSCDMA uses MIDAMBLE training sequence
  • the spectrum interference detecting apparatus of the embodiment of the present invention can reuse the receiving channel of the normal base station, and the receiving channel of the wireless broadband base station uses the radio frequency sampling, so the range of the interference signal that can be detected is very wide.
  • the conventional detection method can only detect the interference signal in the receiving frequency band or a certain part of the signal in the receiving frequency band, and the technical solution of the embodiment of the invention can receive all the wireless interference signals unknown in the surrounding area for detection and analysis.
  • FIG. 7 is a flowchart of the spectrum interference detecting method according to the embodiment of the present invention, as shown in FIG.
  • the spectrum interference detecting method according to an embodiment of the present invention includes the following processing:
  • Step 701 The normal signal processing unit filters and low-noise the normal signal in the spatial signal received by the receiving antenna, and sends the processed normal signal to the radio channel processing unit.
  • the receiving antenna is: a receiving antenna of the base station connected to the normal signal processing unit and the interference signal processing unit, or the receiving antenna includes: an auxiliary detecting antenna connected to the interference signal processing unit, and The receiving antenna of the base station itself connected to the normal signal processing unit.
  • Step 701 specifically includes the following processing: the duplex filter in the normal signal processing unit performs duplex filtering on the normal signal; the low noise amplifier in the normal signal processing unit performs low noise amplification on the normal signal after duplex filtering, and Sending a normal signal after low noise amplification to RF channel processing unit.
  • Step 702 The interference signal processing unit preprocesses the interference signal in the spatial signal received by the receiving antenna, and sends the interference signal to the radio channel processing unit.
  • Step 702 specifically includes the following processing:
  • the wideband coupler in the interference signal processing unit performs power coupling on the interference signal; the envelope detector in the interference signal processing unit detects the coupled interference signal to obtain the amplitude of the interference signal; the comparator in the interference signal processing unit will The amplitude of the interference signal is compared with a preset amplitude threshold. If the amplitude of the interference signal is greater than the amplitude threshold, the interference signal is passed through the limiter by the control switch. If the amplitude of the interference signal is less than the amplitude threshold, the interference signal is controlled by the control switch. Directly flowing into the RF channel processing unit; the limiter in the interference signal processing unit limits the incoming interference signal, and sends the limited interference signal to the RF channel processing unit.
  • Step 703 The radio channel processing unit performs radio frequency processing on the received normal signal, and performs radio frequency processing on the pre-processed interference signal in the idle time slot.
  • Step 704 The radio frequency sampling unit performs radio frequency sampling on the normal signal after the radio frequency processing according to the input sampling clock, and performs radio frequency sampling on the interference signal after the radio frequency processing in the idle time slot, and sends the interference signal after the radio frequency sampling.
  • the interference signal detecting unit performs radio frequency sampling on the normal signal after the radio frequency processing according to the input sampling clock, and performs radio frequency sampling on the interference signal after the radio frequency processing in the idle time slot, and sends the interference signal after the radio frequency sampling.
  • Step 705 The interference signal detecting unit performs a digital domain fast Fourier transform on the interference signal after the radio frequency sampling, performs frequency band identification, and acquires a communication system of the interference signal.
  • Step 705 specifically includes: performing a digital domain fast Fourier transform on the interference signal after the radio frequency sampling by the frequency band identification module in the interference signal detecting unit, and performing frequency band identification of the interference signal according to the position and bandwidth of the interference signal in the frequency domain;
  • the communication system identification module in the signal detection unit performs the digital domain fast Fourier transform on the interference signal after the frequency band identification module, and sequentially passes the interference signal in the time domain through digital filters of various standards, and the digital filter according to various standards.
  • the maximum amplitude information within the determination determines the communication format of the interfering signal.
  • the method according to the embodiment of the present invention further includes: the cell information identifying module in the interference signal detecting unit demodulates the interference signal in the time domain to zero frequency, and adopts communication with the interference signal at the baseband.
  • the fixed signal sequence unique to the corresponding standard signal of the system is correlated with the interference signal to obtain the relevant cell information of the interference signal.
  • Step 1 In the spectrum interference detecting apparatus shown in FIG. 4, the interference signal enters the interference signal pre-processing unit by using the detection antenna. In the spectrum interference detection apparatus shown in FIG. 5, the interference signal enters through the receiving antenna of the base station itself. Interference signal preprocessing unit.
  • the pre-processing of the interference signal is as follows: The interference signal first passes through the wideband coupler 101, then passes through the envelope detector 102, and then passes through the control signal outputted by the comparator 103 to control whether the interference signal needs to pass through the limiter 104 or through.
  • the detection of the radio interference signal can be performed by using the protection time slot transmitted and received by the primary base station. (When receiving the interference signal, the base station cannot transmit the signal at this time, so as to avoid the signal power is too large and affect the acquisition of the interference signal.)
  • Step 2 After the interference signal is selected by the switch to enter the receiving channel of the transceiver board, after passing through the RF channel processing unit 105 on the receiving channel, the RF sampling ADC 106 is input for RF sampling.
  • Step 3 The signal after the RF sampling process directly performs digital domain FFT transformation to perform frequency band identification.
  • Signal band identification is performed based on the position and bandwidth of the signal in the frequency domain.
  • the sampling rate can reach 3.6Ghz, and the multi-sampling is adopted.
  • the frequency domain bandwidth can cover all the standard signals in the 3.5Ghz of the current communication frequency band. If real sampling is used, the sampling rate is required as needed.
  • the purpose of the change is to determine the true frequency and amplitude information of the signal by changing the sampling frequency and observing the frequency variation of the signal falling within the Nyquist zone.
  • Step 4 After determining the frequency band of the signal, perform preliminary signal classification according to the existing internationally specified spectrum resource list.
  • the spectrum signals of the existing communication class are classified into GSM, CDMA, WCDMA, TDSCDMA, WLAN, BlueTooth, LTE, and the like. Within the signal range of these standards, their frequency bands may overlap or be adjacent.
  • a further confirmation method is to pass the interference signal in the time domain and pass through the digital filter of each system, wherein the communication system with the maximum amplitude is the interference signal.
  • the frequency of the interference signal determined by the FFT is around 800 megabytes, then this frequency may be a GSM850M signal or a CDMA signal.
  • a further clarification method is to simultaneously pass the interference signal through the CDMA system in the time domain and the digital filter of the GSM850M system, wherein the communication system with the largest amplitude is the interference signal.
  • Step 5 in order to further obtain specific information such as a cell of the interference signal, the interference signal in the time domain may be demodulated to zero frequency, and the signal is correlated with the baseband signal, and the specific signal related budget is the standard signal. A unique fixed signal sequence is correlated with the received signal to obtain the largest correlation peak.
  • GSM has a fixed set of 8 training sequences
  • CDMA2000 uses a variable WALSH code
  • WCDMA uses a complex scrambling code to distinguish between base stations and users, and a complex scrambling code consists of a GOLD sequence.
  • the forward scrambling code can use a long scrambling code or Short scrambling code
  • LTE uses ZC sequence
  • TDSCDMA uses MIDAMBLE training sequence
  • Step 6 Finally, through the operation of the relevant training sequence, the information about the exact relevant cell of the interference signal is obtained.
  • the technical solution of the embodiment of the present invention can not only affect the normal operation of the transceiver part of the base station, but also save the cost.
  • the frequency, amplitude, system, and cell information of the interference signal are detected, so that the wireless broadband base station can better perform frequency planning and the like.
  • modules in the devices of the embodiments can be adaptively changed and placed in one or more devices different from the embodiment.
  • the modules or units or components of the embodiments may be combined into one module or unit or component, and further they may be divided into a plurality of sub-modules or sub-units or sub-components.
  • all the features disclosed in the specification, including the accompanying claims, the abstract and the drawings may be employed in any combination and so disclosed.
  • Each feature disclosed in the specification (including the accompanying claims, the abstract and the drawings) may be replaced by alternative features that provide the same, equivalent or similar purpose.
  • the various component embodiments of the present invention may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • Those skilled in the art will appreciate that some or all of the functionality of some or all of the components of the spectral interference detecting apparatus in accordance with embodiments of the present invention may be implemented in practice using a microprocessor or digital signal processor (DSP).
  • DSP digital signal processor
  • the invention can also be implemented as a device or device program (e.g., a computer program and a computer program product) for performing some or all of the methods described herein.
  • Such a program implementing the invention may be stored on a computer readable medium or may be in the form of one or more signals. Such signals may be downloaded from an Internet website, provided on a carrier signal, or provided in any other form.
  • the present invention provides a spectrum interference detecting apparatus and method, the apparatus comprising: a receiving antenna configured to receive a spatial signal; a normal signal processing unit configured to filter a normal signal and low noise amplification, and send the signal to the radio frequency processing unit;
  • the interference signal processing unit is configured to pre-process the interference signal and send it to the RF processing unit;
  • the RF processing unit is configured to perform radio frequency processing on the received normal signal, and perform the pre-processed interference signal in the idle time slot.
  • the radio frequency sampling unit is configured to perform radio frequency sampling on the normal signal according to the input sampling clock, and perform radio frequency sampling on the interference signal after the radio frequency processing in the idle time slot, and send the interference signal after the radio frequency sampling to the interference.
  • the signal detecting unit is configured to perform a digital domain fast Fourier transform on the interference signal after the RF sampling, perform frequency band identification, and acquire a communication system of the interference signal.
  • the invention can solve the problem that the unknown interference signal around the wireless broadband base station cannot be detected and analyzed in the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种频谱干扰检测装置及方法。该装置包括:接收天线(30),配置为接收空间信号;正常信号处理单元(31),配置为对正常信号进行滤波和低噪声放大,并发送到射频通道处理单元(33);干扰信号处理单元(32),配置为对干扰信号进行预处理,并发送到射频通道处理单元(33);射频通道处理单元(33),配置为对接收到的正常信号进行射频处理,并在空闲时隙对预处理后的干扰信号进行射频处理;射频采样单元(34),配置为根据输入的采样时钟,对正常信号进行射频采样,并在空闲时隙对进行射频处理后的干扰信号进行射频采样,并将射频采样后的干扰信号发送到干扰信号检测单元(35);干扰信号检测单元(35),配置为对射频采样后的干扰信号进行数字域快速傅里叶变换,进行频段识别,并获取干扰信号的通信制式。

Description

频谱干扰检测装置及方法 技术领域
本发明涉及移动通讯领域, 特别是涉及一种频谱干扰检测装置及方法。 背景技术
随着通信技术的不断发展, 目前各个国家都会使用几种不同的通信制 式共同组网建站, 为了组网安装的方便并节省成本, 可以同时适用于不同 通信制式的无线宽带基站需求日益增加。 但是, 由于这种无线宽带基站接 收处理带宽太宽, 所以很容易受到空间的干扰。 在实际使用时, 最好对空 间的各种无线频谱信号进行收集和分析, 以便更好地进行频率的规划。 因 此, 目前急需一种无线宽带基站的频谱干扰的检测装置以及检测方法, 对 空间中接收到的各种干扰信号进行提取, 处理和分析, 从而确定干扰信号 的频率, 幅度和详细的小区等信息。
图 1是现有技术中传统基站使用的干扰信号检测装置示意图, 图 2是 现有技术中传统基站干扰信号检测的流程图, 如图 1和图 2所示, 在现有 技术中, 适用于传统的无线基站的干扰信号的检测方法如下:
利用现有的基站接收通道来进行接收分析, 将接收频段内的干扰信号 或接收频段内的某部分干扰信号接收进来, 经过双工器 109, 低噪放 110和 射频通道处理单元 111 ,进入混频器后,经过中频滤波器和中频处理单元 112 进入模数转换器(ADC ) 113处理。 预先在基站中保存多种不同干扰信号对 应的成形滤波系数、 带宽、 以及中心频点等信息。 在将干扰中频信号变频 成基带信号时, 选择基站中已经存在的一些成形滤波器等参数, 选择合适 的中心频点, 进行下变频操作, 得到对应不同干扰信号的基带信号, 再对 得到的基带信号进行分析。 上述适用于传统的无线基站的干扰信号的检测方法的特点在于: 1、 直 接使用了基站的接收天线和正常的接收通道。 2、 上述方法只能检测在基站 接收频段内的干扰信号或频段内的某部分干扰信号, 对于接收频段外的干 扰信号不能接收检测。 3、 上述方法是针对周围干扰信号已知的情况下, 预 先在基站中保存不同的成形滤波器等信息, 而对于一些未知的周围干扰信 号没有提及解决办法。 发明内容
本发明实施例提供一种频谱干扰检测装置及方法, 以解决现有技术中 无法对无线宽带基站周围的未知干扰信号进行检测分析的问题。
本发明实施例提供一种频谱干扰检测装置, 包括: 接收天线, 配置为 接收空间信号; 正常信号处理单元, 配置为对接收天线接收到的正常信号 进行滤波和低噪声放大, 并将处理后的正常信号发送到射频通道处理单元; 干扰信号处理单元, 配置为对接收天线接收到的干扰信号进行预处理, 并 发送到射频通道处理单元; 射频通道处理单元, 配置为对接收到的正常信 号进行射频处理, 并在空闲时隙对预处理后的干扰信号进行射频处理; 射 频采样单元, 配置为根据输入的采样时钟, 对进行射频处理后的正常信号 进行射频采样, 并在空闲时隙对进行射频处理后的干扰信号进行射频采样, 并将射频采样后的干扰信号发送到干扰信号检测单元; 干扰信号检测单元, 配置为对射频采样后的干扰信号进行数字域快速傅里叶变换, 进行频段识 别, 并获取干扰信号的通信制式。
优选地, 接收天线为: 与正常信号处理单元和干扰信号处理单元连接 的基站自身的接收天线、 或者, 接收天线包括: 与干扰信号处理单元连接 的辅助检测天线、 以及与正常信号处理单元连接的基站自身的接收天线。
优选地, 正常信号处理单元具体包括: 双工滤波器, 配置为对正常信 号进行双工滤波; 低噪放大器, 配置为对进行双工滤波后的正常信号进行 低噪声放大, 并将进行低噪声放大后的正常信号发送到射频通道处理单元。 优选地, 干扰信号处理单元具体包括: 宽带耦合器, 配置为对干扰信 号进行耦合; 包络检测器, 配置为对耦合后的干扰信号进行检测, 获取干 扰信号的幅度; 比较器, 配置为将干扰信号的幅度与预先设置的幅度阈值 进行比较, 如果干扰信号的幅度大于幅度阈值, 则通过控制开关使干扰信 号经过限幅器, 如果干扰信号的幅度小于幅度阈值, 则通过控制开关使干 扰信号直接流入射频通道处理单元; 限幅器, 配置为对流入的干扰信号进 行限幅, 并将限幅后的干扰信号发送到射频通道处理单元。
优选地, 干扰信号检测单元具体包括: 频段识别模块, 配置为对射频 采样后的干扰信号进行数字域快速傅里叶变换, 并根据干扰信号在频域上 的位置和带宽进行干扰信号的频段识别; 通信制式识别模块, 配置为在频 段识别模块对干扰信号进行数字域快速傅里叶变换后, 将时域内的干扰信 号依次经过各种制式的数字滤波器, 根据各种制式的数字滤波器内的最大 幅度信息确定干扰信号的通信制式。
优选地, 干扰信号检测单元还包括: 小区信息识别模块, 配置为将时 域内的干扰信号解调到零频, 在基带采用与干扰信号的通信制式相应的制 式信号内特有的固定信号序列, 与干扰信号进行相关运算, 获取干扰信号 的相关小区信息。
本发明实施例还提供了一种频谱干扰检测方法, 包括: 正常信号处理 单元对接收天线接收到的正常信号进行滤波和低噪声放大, 并将处理后的 正常信号发送到射频通道处理单元; 干扰信号处理单元对接收天线接收到 的干扰信号进行预处理, 并发送到射频通道处理单元; 射频通道处理单元 对接收到的正常信号进行射频处理, 并在空闲时隙对预处理后的干扰信号 进行射频处理; 射频采样单元根据输入的采样时钟, 对进行射频处理后的 正常信号进行射频采样, 并在空闲时隙对进行射频处理后的干扰信号进行 射频采样, 并将射频采样后的干扰信号发送到干扰信号检测单元; 干扰信 号检测单元对射频采样后的干扰信号进行数字域快速傅里叶变换, 进行频 段识别, 并获取干扰信号的通信制式。
优选地, 接收天线为: 与正常信号处理单元和干扰信号处理单元连接 的基站自身的接收天线、 或者, 接收天线包括: 与干扰信号处理单元连接 的辅助检测天线、 以及与正常信号处理单元连接的基站自身的接收天线。
优选地, 正常信号处理单元对接收天线接收到的正常信号进行滤波和 低噪声放大, 并将处理后的正常信号发送到射频通道处理单元具体包括: 正常信号处理单元中的双工滤波器对正常信号进行双工滤波; 正常信号处 理单元中的低噪放大器对进行双工滤波后的正常信号进行低噪声放大, 并 将进行低噪声放大后的正常信号发送到射频通道处理单元。
优选地, 干扰信号处理单元对接收天线接收到的干扰信号进行预处理, 并发送到射频通道处理单元具体包括: 干扰信号处理单元中的宽带耦合器 对干扰信号进行耦合; 干扰信号处理单元中的包络检测器对耦合后的干扰 信号进行检测, 获取干扰信号的幅度; 干扰信号处理单元中的比较器将干 扰信号的幅度与预先设置的幅度阈值进行比较, 如果干扰信号的幅度大于 幅度阈值, 则通过控制开关使干扰信号经过限幅器, 如果干扰信号的幅度 小于幅度阈值, 则通过控制开关使干扰信号直接流入射频通道处理单元; 干扰信号处理单元中的限幅器对流入的干扰信号进行限幅, 并将限幅后的 干扰信号发送到射频通道处理单元。
优选地, 干扰信号检测单元对射频采样后的干扰信号进行数字域快速 傅里叶变换, 进行频段识别, 并获取干扰信号的通信制式具体包括: 干扰 信号检测单元中的频段识别模块对射频采样后的干扰信号进行数字域快速 傅里叶变换, 并根据干扰信号在频域上的位置和带宽进行干扰信号的频段 识别; 干扰信号检测单元中的通信制式识别模块在频段识别模块对干扰信 号进行数字域快速傅里叶变换后, 将时域内的干扰信号依次经过各种制式 的数字滤波器, 根据各种制式的数字滤波器内的最大幅度信息确定干扰信 号的通信制式。
优选地, 上述方法还包括: 干扰信号检测单元中的小区信息识别模块 将时域内的干扰信号解调到零频, 在基带采用与干扰信号的通信制式相应 的制式信号内特有的固定信号序列, 与干扰信号进行相关运算, 获取干扰 信号的相关小区信息。
本发明实施例有益效果如下:
通过利用检测天线或者基站自身接收天线, 复用现有的接收通道来设 计的检测装置, 可以将更多的未知的无线干扰信号同时接收进来分析处理, 既没有影响基站收发信部分的正常工作, 而且又节省了成本; 此外, 本发 明实施例的技术方案能够检测到干扰信号的频率、 幅度、 制式、 以及小区 等信息, 以便于无线宽带基站更好的进行频率规划等工作。 附图说明
在整个附图中, 用相同的参考符号表示相同的部件。 在附图中: 图 1是现有技术中传统基站使用的干扰信号检测装置示意图; 图 2是现有技术中传统基站干扰信号检测的流程图;
图 3是本发明实施例的频谱干扰检测装置的结构示意图;
图 4是本发明实施例的频谱干扰检测装置实现方式一的示意图; 图 5是本发明实施例的频谱干扰检测装置实现方式二的示意图; 图 6是本发明实施例的无线频谱干扰分析检测的流程图;
图 7是本发明实施例的频谱干扰检测方法的流程图。 具体实施方式
为了解决现有技术中无法对无线宽带基站周围的未知干扰信号进行检 测分析的问题, 本发明提供了一种频谱干扰检测装置及方法, 以下结合附 图以及实施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的 具体实施例仅仅用以解释本发明, 并不限定本发明。
装置实施例
根据本发明的实施例, 提供了一种频谱干扰检测装置, 图 3是本发明 实施例的频谱干扰检测装置的结构示意图, 如图 3 所示, 根据本发明实施 例的频谱干扰检测装置包括: 接收天线 30、 正常信号处理单元 31、 干扰信 号处理单元 32、 射频通道处理单元 33、 射频采样单元 34、 以及干扰信号检 测单元 35 , 以下对本发明实施例的各个模块进行详细的说明。
接收天线 30, 配置为接收空间信号; 该空间信号包括正常信号和干扰 信号
优选地, 在本发明实施例中, 接收天线 30可以为: 与正常信号处理单 元 31和干扰信号处理单元 32连接的基站自身的接收天线 30; 或者, 接收 天线 30包括: 与干扰信号处理单元 32连接的辅助检测天线、 以及与正常 信号处理单元 31连接的基站自身的接收天线 30。
正常信号处理单元 31 ,配置为对接收天线 30接收到的正常信号进行滤 波和低噪声放大, 并将处理后的正常信号发送到射频通道处理单元 33; 优选地, 正常信号处理单元 31具体包括:
双工滤波器, 配置为对正常信号进行双工滤波;
低噪放大器, 配置为对进行双工滤波后的正常信号进行低噪声放大, 并将进行低噪声放大后的正常信号发送到射频通道处理单元 33。
干扰信号处理单元 32,配置为对接收天线 30接收到的干扰信号进行预 处理, 并发送到射频通道处理单元 33;
干扰信号处理单元 32具体包括:
宽带耦合器, 配置为对干扰信号进行耦合; 包络检测器, 配置为对耦合后的干扰信号进行检测, 获取干扰信号的 幅度;
比较器, 配置为将干扰信号的幅度与预先设置的幅度阈值进行比较, 如果干扰信号的幅度大于幅度阈值, 则通过控制开关使干扰信号经过限幅 器, 如果干扰信号的幅度小于幅度阈值, 则通过控制开关使干扰信号直接 流入射频通道处理单元 33;
限幅器, 配置为对流入的干扰信号进行限幅, 并将限幅后的干扰信号 发送到射频通道处理单元 33。
射频通道处理单元 33 , 配置为对接收到的正常信号进行射频处理, 并 在空闲时隙对预处理后的干扰信号进行射频处理;
射频采样单元 34, 配置为根据输入的采样时钟, 对进行射频处理后的 正常信号进行射频采样, 并在空闲时隙对进行射频处理后的干扰信号进行 射频采样, 并将射频采样后的干扰信号发送到干扰信号检测单元 35;
干扰信号检测单元 35 , 配置为对射频采样后的干扰信号进行数字域快 速傅里叶变换, 进行频段识别, 并获取干扰信号的通信制式。
干扰信号检测单元 35具体包括:
频段识别模块, 配置为对射频采样后的干扰信号进行数字域快速傅里 叶变换, 并根据干扰信号在频域上的位置和带宽进行干扰信号的频段识别; 通信制式识别模块, 配置为在频段识别模块对干扰信号进行数字域快 速傅里叶变换后, 将时域内的干扰信号依次经过各种制式的数字滤波器, 根据各种制式的数字滤波器内的最大幅度信息确定干扰信号的通信制式。
优选地, 干扰信号检测单元 35还可以包括: 小区信息识别模块, 配置 为将时域内的干扰信号解调到零频, 在基带采用与干扰信号的通信制式相 应的制式信号内特有的固定信号序列, 与干扰信号进行相关运算, 获取干 扰信号的相关小区信息。 以下结合附图, 对本发明实施例的上述技术方案进行详细的说明。 在本发明实施例中, 上述频谱干扰检测装置可以有两种实现方案: 第 一种方案如图 4所示, 增加一根辅助检测天线, 复用基站的正常接收通道 完成检测; 第二种方案如图 5 所示, 直接利用基站的正常接收天线, 然后 同样复用基站的正常接收通道完成检测。 需要说明的是, 图 4装置中增加 一个辅助检测天线, 图 5装置中使用基站自身的接收天线, 两种实施例方 案仅在接收的天线这里有区别, 后面干扰信号的处理过程都是完全一样的。
如图 4所示的频谱干扰检测装置的处理流程如下: 为了不影响基站正 常接收通道的灵敏度, 使用一根辅助检测天线, 绕过双工器 109和低噪放 110, 直接对接收的无线干扰信号预先处理, 然后经过开关选择进入基站的 正常接收通道。 其中, 无线干扰信号的预先处理过程是: 干扰信号先通过 宽带耦合器 101 , 然后经过包络检测器 102, 再通过比较器 103后输出的控 制信号来控制干扰信号是否需要经过限幅器 104还是直通。 干扰信号经过 开关进入收发信机单板的接收通道后, 经过接收通道上的射频通道处理单 元 105后, 进入射频采样 ADC 106, 射频采样 ADC 106根据时钟装置 107 发送的采样时钟进行射频采样, 射频采样 ADC 106可以使用实采样, 可以 使用实采样, 也可以采用复采样。 需要注意的是, 如果采用复采样, 进入 射频采样 ADC的信号必须是 I、 Q正交信号。
如图 5 所示的频谱干扰检测装置的处理流程如下: 直接使用基站自己 的接收天线, 然后对接收到的无线干扰信号预先处理, 其中预先处理的步 驟为: 干扰信号先通过宽带耦合器 101 , 然后经过包络检测器 102, 再通过 比较器 103后输出的控制信号来控制干扰信号是否需要经过限幅器 104还 是直通。 干扰信号通过开关选择进入收发信机单板的接收通道后, 经过接 收通道上的射频通道处理单元 105后, 进入射频采样 ADC 106, 射频采样 ADC 106根据采样时钟装置 107发送的采样时钟进行射频采样, 射频采样 ADC 106可以使用实采样, 也可以采用复采样。 需要注意的是, 如果采用 复采样, 进入射频采样 ADC的信号必须是 I、 Q正交信号。
图 6是本发明实施例的无线频谱干扰分析检测的流程图, 如图 6所示, 在如图 4、 图 5所示的频谱干扰检测装置中的射频采样 ADC 106进行射频 采样后, 干扰信号检测单元(未在图 4、 图 5中示出)会对进行射频采样后 干扰在时域进行详细检测, 具体处理过程如下:
射频采样处理后的信号, 直接进行数字域 FFT变换, 进行频段识别。 根据信号在频域上的位置和带宽进行信号频段识别。 目前采样速率可达 3.6Ghz, 而且采用复采样, 频域带宽可以覆盖目前的通讯的频段的 3.5Ghz 内的所有制式信号。 如果采用实采样, 要求采样速率根据需要可以改变, 目的是为了通过改变采样频率, 观测落入奈奎斯特域带内信号的频率变化, 确定信号的真实频率和幅度信息。
确定了信号的频段后, 根据已有的国际规定频谱资源列表进行初步信 号制式分类。 现有的通信类的频谱信号分为 GSM、 CDMA, WCDMA、 TDSCDMA、 WLAN、 BlueTooth, LTE等。 在这些制式的信号范围内, 他 们的频段有可能重叠或者相邻。 进一步确认的方法是将干扰信号在时域, 经过各制式的数字滤波器, 其中得到最大幅度的就是干扰信号的通信制式。
例如, 经过 FFT后确定下来的干扰信号频率在 800多兆附近, 那么这 个频率有可能是 GSM850M信号或者是 CDMA信号。 进一步确认的方法 是将干扰信号同时经过时域中的 CDMA制式和 GSM850M制式的数字滤波 器, 其中得到最大幅度的就是干扰信号的通信制式。
为了更进一步地获取干扰信号的小区等具体信息, 可以将时域内的干 扰信号解调到零频, 在基带对信号进行做相关预算, 具体是什么制式信号 相关预算就是用该制式信号内特有的固定的信号序列, 与接收到的信号进 行相关运算, 求得最大的相关峰值。 例如: GSM有固定的 8组训练序列; CDM A2000是采用可变的 WALSH 码; WCDMA是采用复扰码来区分基站和用户,复扰码由 GOLD序列组成, 前向扰码可选用长扰码或短扰码; LTE 采用 ZC序列; TDSCDMA 采用 MIDAMBLE训练序列
最后通过相关训练序列的运算, 得出干扰信号确切的相关小区的信息。 综上所述, 本发明实施例的频谱干扰检测装置可以复用正常基站的接 收通道, 并且无线宽带基站的接收通道是采用射频采样, 所以能检测到的 干扰信号范围非常宽。 传统的检测方法只能检测接收频段内的干扰信号或 接收频段内的某部分信号, 而本发明实施例的技术方案可以将周围未知的 所有无线干扰信号全部接收进来进行检测分析。
方法实施例
根据本发明的实施例, 提供了一种频谱干扰检测方法, 用于上述装置 实施例中的谱干扰检测装置, 图 7是本发明实施例的频谱干扰检测方法的 流程图, 如图 7所示, 根据本发明实施例的频谱干扰检测方法包括如下处 理:
步驟 701 ,正常信号处理单元对接收天线接收到的空间信号中的正常信 号进行滤波和低噪声放大, 并将处理后的正常信号发送到射频通道处理单 元;
优选地, 对应于上述装置实施例, 接收天线为: 与正常信号处理单元 和干扰信号处理单元连接的基站自身的接收天线、 或者, 接收天线包括: 与干扰信号处理单元连接的辅助检测天线、 以及与正常信号处理单元连接 的基站自身的接收天线。
步驟 701 具体包括如下处理: 正常信号处理单元中的双工滤波器对正 常信号进行双工滤波; 正常信号处理单元中的低噪放大器对进行双工滤波 后的正常信号进行低噪声放大, 并将进行低噪声放大后的正常信号发送到 射频通道处理单元。
步驟 702,干扰信号处理单元对接收天线接收到的空间信号中的干扰信 号进行预处理, 并发送到射频通道处理单元;
步驟 702具体包括如下处理:
干扰信号处理单元中的宽带耦合器对干扰信号进行功率耦合; 干扰信 号处理单元中的包络检测器对耦合后的干扰信号进行检测, 获取干扰信号 的幅度; 干扰信号处理单元中的比较器将干扰信号的幅度与预先设置的幅 度阈值进行比较, 如果干扰信号的幅度大于幅度阈值, 则通过控制开关使 干扰信号经过限幅器, 如果干扰信号的幅度小于幅度阈值, 则通过控制开 关使干扰信号直接流入射频通道处理单元; 干扰信号处理单元中的限幅器 对流入的干扰信号进行限幅, 并将限幅后的干扰信号发送到射频通道处理 单元。
步驟 703 ,射频通道处理单元对接收到的正常信号进行射频处理, 并在 空闲时隙对预处理后的干扰信号进行射频处理;
步驟 704,射频采样单元根据输入的采样时钟,对进行射频处理后的正 常信号进行射频采样, 并在空闲时隙对进行射频处理后的干扰信号进行射 频采样, 并将射频采样后的干扰信号发送到干扰信号检测单元;
步驟 705 ,干扰信号检测单元对射频采样后的干扰信号进行数字域快速 傅里叶变换, 进行频段识别, 并获取干扰信号的通信制式。
步驟 705具体包括: 干扰信号检测单元中的频段识别模块对射频采样 后的干扰信号进行数字域快速傅里叶变换, 并根据干扰信号在频域上的位 置和带宽进行干扰信号的频段识别; 干扰信号检测单元中的通信制式识别 模块在频段识别模块对干扰信号进行数字域快速傅里叶变换后, 将时域内 的干扰信号依次经过各种制式的数字滤波器, 根据各种制式的数字滤波器 内的最大幅度信息确定干扰信号的通信制式。 优选地, 在执行了步驟 705之后, 根据本发明实施例的方法还包括: 干扰信号检测单元中的小区信息识别模块将时域内的干扰信号解调到零 频, 在基带采用与干扰信号的通信制式相应的制式信号内特有的固定信号 序列, 与干扰信号进行相关运算, 获取干扰信号的相关小区信息。
以下结合附图, 对本发明实施例的上述技术方案进行详细说明。
在装置实施例中已经对频谱干扰检测装置的结构进行了详细的说明, 在此不再赘述, 仅对频谱干扰检测方法进行详细说明。 如下:
步驟 1 , 在如图 4所示的频谱干扰检测装置中, 干扰信号利用检测天线 进入干扰信号预处理单元, 在如图 5 所示的频谱干扰检测装置中, 干扰信 号通过基站自身的接收天线进入干扰信号预处理单元。 干扰信号的预先处 理的步驟为: 干扰信号先通过宽带耦合器 101 , 然后经过包络检测器 102, 再通过比较器 103后输出的控制信号来控制干扰信号是否需要经过限幅器 104还是直通。
需要说明的是, 无线干扰信号的检测可以利用主基站发射和接收的保 护时隙进行。 (在接收干扰信号时, 基站此时不能发射信号, 以免信号功率 太大, 影响干扰信号的采集。 )
步驟 2, 干扰信号通过开关选择进入收发信机单板的接收通道后, 经过 接收通道上的射频通道处理单元 105后, 进入射频采样 ADC 106进行射频 采样。
步驟 3, 射频采样处理后的信号, 直接进行数字域 FFT变换, 进行频 段识别。 根据信号在频域上的位置和带宽进行信号频段识别。 目前采样速 率可达 3.6Ghz, 而且采用复采样, 频域带宽可以覆盖目前的通讯的频段的 3.5Ghz 内的所有制式信号。 如果采用实采样, 要求采样速率根据需要可以 改变, 目的是为了通过改变采样频率, 观测落入奈奎斯特域带内信号的频 率变化, 确定信号的真实频率和幅度信息。
步驟 4, 确定了信号的频段后,根据已有的国际规定频谱资源列表进行 初步信号制式分类。现有的通信类的频谱信号分为 GSM、 CDMA、 WCDMA、 TDSCDMA、 WLAN、 BlueTooth, LTE等。 在这些制式的信号范围内, 他 们的频段有可能重叠或者相邻。 进一步确认的方法是将干扰信号在时域, 经过各制式的数字滤波器, 其中得到最大幅度的就是干扰信号的通信制式。
例如, 经过 FFT后确定下来的干扰信号频率在 800多兆附近, 那么这 个频率有可能是 GSM850M信号或者是 CDMA信号。 进一步确认的方法 是将干扰信号同时经过时域中的 CDMA制式和 GSM850M制式的数字滤波 器, 其中得到最大幅度的就是干扰信号的通信制式。
步驟 5, 为了更进一步地获取干扰信号的小区等具体信息, 可以将时 域内的干扰信号解调到零频, 在基带对信号进行做相关预算, 具体是什么 制式信号相关预算就是用该制式信号内特有的固定的信号序列, 与接收到 的信号进行相关运算, 求得最大的相关峰值。
例如, GSM有固定的 8组训练序列; CDMA2000是采用可变的 WALSH 码; WCDMA是采用复扰码来区分基站和用户,复扰码由 GOLD序列组成, 前向扰码可选用长扰码或短扰码; LTE 采用 ZC序列; TDSCDMA 采用 MIDAMBLE训练序列
步驟 6, 最后通过相关训练序列的运算,得出干扰信号确切的相关小区 的信息。
综上所述, 借助于本发明实施例的技术方案, 通过利用检测天线或者 基站自身接收天线, 复用现有的接收通道来设计的检测装置, 可以将更多 的未知的无线干扰信号同时接收进来分析处理, 既没有影响基站收发信部 分的正常工作, 而且又节省了成本; 此外, 本发明实施例的技术方案能够 检测到干扰信号的频率、 幅度、 制式、 以及小区等信息, 以便于无线宽带 基站更好的进行频率规划等工作。
在此提供的算法和显示不与任何特定计算机、 虚拟系统或者其它设备 固有相关。 各种通用系统也可以与基于在此的示教一起使用。 根据上面的 描述, 构造这类系统所要求的结构是显而易见的。 此外, 本发明也不针对 任何特定编程语言。 应当明白, 可以利用各种编程语言实现在此描述的本 发明的内容, 并且上面对特定语言所做的描述是为了披露本发明的最佳实 施方式。
在此处所提供的说明书中, 说明了大量具体细节。 然而, 能够理解, 本发明的实施例可以在没有这些具体细节的情况下实践。 在一些实例中, 并未详细示出公知的方法、 结构和技术, 以便不模糊对本说明书的理解。
类似地, 应当理解, 为了精简本公开并帮助理解各个发明方面中的一 个或多个, 在上面对本发明的示例性实施例的描述中, 本发明的各个特征 有时被一起分组到单个实施例、 图、 或者对其的描述中。 然而, 并不应将 该公开的方法解释成反映如下意图: 即所要求保护的本发明要求比在每个 权利要求中所明确记载的特征更多的特征。 更确切地说, 如下面的权利要 求书所反映的那样, 发明方面在于少于前面公开的单个实施例的所有特征。 因此 , 遵循具体实施方式的权利要求书由此明确地并入该具体实施方式 , 其中每个权利要求本身都作为本发明的单独实施例。
本领域那些技术人员可以理解, 可以对实施例中的设备中的模块进行 自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。 可以把实施例中的模块或单元或组件组合成一个模块或单元或组件, 以及 此外可以把它们分成多个子模块或子单元或子组件。 除了这样的特征和 /或 过程或者单元中的至少一些是相互排斥之外, 可以采用任何组合对本说明 书 (包括伴随的权利要求、 摘要和附图) 中公开的所有特征以及如此公开 说明书 (包括伴随的权利要求、 摘要和附图) 中公开的每个特征可以由提 供相同、 等同或相似目的的替代特征来代替。
此外, 本领域的技术人员能够理解, 尽管在此所述的一些实施例包括 其它实施例中所包括的某些特征而不是其它特征, 但是不同实施例的特征 的组合意味着处于本发明的范围之内并且形成不同的实施例。 例如, 在下 面的权利要求书中, 所要求保护的实施例的任意之一都可以以任意的组合 方式来使用。
本发明的各个部件实施例可以以硬件实现, 或者以在一个或者多个处 理器上运行的软件模块实现, 或者以它们的组合实现。 本领域的技术人员 应当理解, 可以在实践中使用微处理器或者数字信号处理器(DSP )来实现 根据本发明实施例的频谱干扰检测装置中的一些或者全部部件的一些或者 全部功能。 本发明还可以实现为用于执行这里所描述的方法的一部分或者 全部的设备或者装置程序(例如, 计算机程序和计算机程序产品)。 这样的 实现本发明的程序可以存储在计算机可读介质上, 或者可以具有一个或者 多个信号的形式。 这样的信号可以从因特网网站上下载得到, 或者在载体 信号上提供, 或者以任何其他形式提供。
应该注意的是上述实施例对本发明进行说明而不是对本发明进行限 制, 并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出 替换实施例。 在权利要求中, 不应将位于括号之间的任何参考符号构造成 对权利要求的限制。 单词 "包含" 不排除存在未列在权利要求中的元件或 步驟。 位于元件之前的单词 "一" 或 "一个" 不排除存在多个这样的元件。 本发明可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算 机来实现。 在列举了若干装置的单元权利要求中, 这些装置中的若干个可 以是通过同一个硬件项来具体体现。 单词第一、 第二、 以及第三等的使用 不表示任何顺序。 可将这些单词解释为名称。 工业实用性
本发明提供一种频谱干扰检测装置及方法, 所述装置包括: 接收天线, 配置为接收空间信号; 正常信号处理单元, 配置为对正常信号进行滤波和 低噪声放大, 并发送到射频处理单元; 干扰信号处理单元, 配置为对干扰 信号进行预处理, 并发送到射频处理单元; 射频处理单元, 配置为对接收 到的正常信号进行射频处理, 并在空闲时隙对预处理后的干扰信号进行射 频处理; 射频采样单元, 配置为根据输入的采样时钟, 对正常信号进行射 频采样, 并在空闲时隙对进行射频处理后的干扰信号进行射频采样, 并将 射频采样后的干扰信号发送到干扰信号检测单元; 干扰信号检测单元, 配 置为对射频采样后的干扰信号进行数字域快速傅里叶变换, 进行频段识别, 并获取干扰信号的通信制式。 本发明能够解决现有技术中无法对无线宽带 基站周围的未知干扰信号进行检测分析的问题。

Claims

权利要求书
1、 一种频谱干扰检测装置, 所述装置包括:
接收天线, 配置为接收空间信号, 其中, 所述空间信号包括正常信号 和干扰信号;
正常信号处理单元, 配置为对所述接收天线接收到的正常信号进行滤 波和低噪声放大, 并将处理后的所述正常信号发送到射频通道处理单元; 干扰信号处理单元, 配置为对所述接收天线接收到的干扰信号进行预 处理, 并发送到所述射频通道处理单元;
射频通道处理单元, 配置为对接收到的所述正常信号进行射频处理, 并在空闲时隙对预处理后的所述干扰信号进行射频处理;
射频采样单元, 配置为根据输入的采样时钟, 对进行射频处理后的所 述正常信号进行射频采样, 并在空闲时隙对进行射频处理后的所述干扰信 号进行射频采样 , 并将射频采样后的所述干扰信号发送到干扰信号检测单 元;
干扰信号检测单元, 配置为对射频采样后的所述干扰信号进行数字域 快速傅里叶变换, 进行频段识别, 并获取所述干扰信号的通信制式。
2、 如权利要求 1所述的方法, 其中, 所述接收天线为: 与所述正常信 号处理单元和所述干扰信号处理单元连接的基站自身的接收天线; 或者, 所述接收天线包括: 与所述干扰信号处理单元连接的辅助检测天线、 以及与所述正常信号处理单元连接的基站自身的接收天线。
3、 如权利要求 2所述的装置, 其中, 所述正常信号处理单元包括: 双工滤波器, 配置为对所述正常信号进行双工滤波;
低噪放大器, 配置为对进行双工滤波后的所述正常信号进行低噪声放 大, 并将进行低噪声放大后的所述正常信号发送到所述射频通道处理单元。
4、 如权利要求 2所述的装置, 其中, 所述干扰信号处理单元包括: 宽带耦合器, 配置为对所述干扰信号进行功率耦合;
包络检测器, 配置为对耦合后的所述干扰信号进行幅度检测, 获取所 述干扰信号的幅度;
比较器, 配置为将所述干扰信号的幅度与预先设置的幅度阈值进行比 较, 如果所述干扰信号的幅度大于所述幅度阈值, 则通过控制开关使所述 干扰信号经过限幅器, 如果所述干扰信号的幅度小于所述幅度阈值, 则通 过控制开关使所述干扰信号直接流入所述射频通道处理单元;
限幅器, 配置为对流入的所述干扰信号的功率进行限幅, 并将限幅后 的所述干扰信号发送到所述射频通道处理单元。
5、 如权利要求 2所述的装置, 其中, 所述干扰信号检测单元包括: 频段识别模块, 配置为对射频采样后的所述干扰信号进行数字域快速 傅里叶变换, 并根据所述干扰信号在频域上的位置和带宽进行所述干扰信 号的频段识别;
通信制式识别模块, 配置为在所述频段识别模块对所述干扰信号进行 数字域快速傅里叶变换后, 将时域内的所述干扰信号依次经过各种制式的 数字滤波器, 根据各种制式的数字滤波器内的最大幅度信息确定所述干扰 信号的通信制式。
6、 如权利要求 5所述的装置, 其中, 所述干扰信号检测单元还包括: 小区信息识别模块, 配置为将时域内的所述干扰信号解调到零频, 在 基带采用与所述干扰信号的通信制式相应的制式信号内特有的固定信号序 列, 与所述干扰信号进行相关运算, 获取所述干扰信号的相关小区信息。
7、 一种频谱干扰检测方法, 所述方法包括:
正常信号处理单元对接收天线接收到的正常信号进行滤波和低噪声放 大, 并将处理后的所述正常信号发送到射频通道处理单元;
干扰信号处理单元对所述接收天线接收到的干扰信号进行预处理, 并 发送到所述射频通道处理单元;
所述射频通道处理单元对接收到的所述正常信号进行射频处理, 并在 空闲时隙对预处理后的所述干扰信号进行射频处理;
射频采样单元根据输入的采样时钟, 对进行射频处理后的所述正常信 号进行射频采样, 并在空闲时隙对进行射频处理后的所述干扰信号进行射 频采样, 并将射频采样后的所述干扰信号发送到干扰信号检测单元;
干扰信号检测单元对射频采样后的所述干扰信号进行数字域快速傅里 叶变换, 进行频段识别, 并获取所述干扰信号的通信制式。
8、 如权利要求 7所述的方法, 其中, 所述接收天线为: 与所述正常信 号处理单元和所述干扰信号处理单元连接的基站自身的接收天线; 或者, 所述接收天线包括: 与所述干扰信号处理单元连接的辅助检测天线、 以及与所述正常信号处理单元连接的基站自身的接收天线。
9、 如权利要求 8所述的方法, 其中, 所述正常信号处理单元对接收天 线接收到的正常信号进行滤波和低噪声放大, 并将处理后的所述正常信号 发送到射频通道处理单元包括:
所述正常信号处理单元中的双工滤波器对所述正常信号进行双工滤 波;
所述正常信号处理单元中的低噪放大器对进行双工滤波后的所述正常 信号进行低噪声放大, 并将进行低噪声放大后的所述正常信号发送到所述 射频通道处理单元。
10、 如权利要求 8所述的方法, 其中, 所述干扰信号处理单元对所述 接收天线接收到的干扰信号进行预处理, 并发送到所述射频通道处理单元 包括:
所述干扰信号处理单元中的宽带耦合器对所述干扰信号进行耦合; 所述干扰信号处理单元中的包络检测器对耦合后的所述干扰信号进行 检测, 获取所述干扰信号的幅度;
所述干扰信号处理单元中的比较器将所述干扰信号的幅度与预先设置 的幅度阈值进行比较, 如果所述干扰信号的幅度大于所述幅度阈值, 则通 过控制开关使所述干扰信号经过限幅器, 如果所述干扰信号的幅度小于所 述幅度阈值, 则通过控制开关使所述干扰信号直接流入所述射频通道处理 单元;
所述干扰信号处理单元中的限幅器对流入的所述干扰信号进行限幅, 并将限幅后的所述干扰信号发送到所述射频通道处理单元。
11、 如权利要求 8 所述的方法, 其中, 所述干扰信号检测单元对射频 采样后的所述干扰信号进行数字域快速傅里叶变换, 进行频段识别, 并获 取所述干扰信号的通信制式包括:
所述干扰信号检测单元中的频段识别模块对射频采样后的所述干扰信 号进行数字域快速傅里叶变换, 并根据所述干扰信号在频域上的位置和带 宽进行所述干扰信号的频段识别;
所述干扰信号检测单元中的通信制式识别模块在所述频段识别模块对 所述干扰信号进行数字域快速傅里叶变换后, 将时域内的所述干扰信号依 次经过各种制式的数字滤波器, 根据各种制式的数字滤波器内的最大幅度 信息确定所述干扰信号的通信制式。
12、 如权利要求 11所述的方法, 其中, 所述方法还包括:
所述干扰信号检测单元中的小区信息识别模块将时域内的所述干扰信 号解调到零频, 在基带采用与所述干扰信号的通信制式相应的制式信号内 特有的固定信号序列, 与所述干扰信号进行相关运算, 获取所述干扰信号 的相关小区信息。
PCT/CN2013/083151 2012-12-18 2013-09-09 频谱干扰检测装置及方法 WO2014094460A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/653,347 US9325437B2 (en) 2012-12-18 2013-09-09 Apparatus and method for detecting spectrum interference
EP13865370.4A EP2922224B1 (en) 2012-12-18 2013-09-09 Apparatus and method for detecting frequency spectrum interference

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210548428.0A CN103873162B (zh) 2012-12-18 2012-12-18 频谱干扰检测装置及方法
CN201210548428.0 2012-12-18

Publications (1)

Publication Number Publication Date
WO2014094460A1 true WO2014094460A1 (zh) 2014-06-26

Family

ID=50911327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083151 WO2014094460A1 (zh) 2012-12-18 2013-09-09 频谱干扰检测装置及方法

Country Status (4)

Country Link
US (1) US9325437B2 (zh)
EP (1) EP2922224B1 (zh)
CN (1) CN103873162B (zh)
WO (1) WO2014094460A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107864493A (zh) * 2016-09-22 2018-03-30 中国移动通信有限公司研究院 一种共存通信系统间的干扰协调方法和装置
CN109347596A (zh) * 2018-11-21 2019-02-15 北京华清友道科技有限公司 飞行目标侦测干扰系统及方法
WO2021042724A1 (zh) * 2019-09-04 2021-03-11 深圳市富斯科技有限公司 Ofdm系统抗干扰的方法、装置与电子设备及存储介质

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8761702B2 (en) * 2012-07-02 2014-06-24 Spreadtrum Communications Usa Inc. Detection and mitigation of interference based on interference location
US9762630B2 (en) * 2013-02-06 2017-09-12 Elaine Lu Systems and methods for parents' connection and communication platform
CN105721074B (zh) * 2014-12-05 2018-11-02 中国移动通信集团公司 一种干扰信号的检测方法及装置
CN104794436A (zh) * 2015-04-03 2015-07-22 北京奇虎科技有限公司 数据防窃取装置及方法
CN105425060B (zh) * 2015-11-04 2018-09-04 上海与德通讯技术有限公司 一种天线耦合的干扰检测方法及检测系统
US10085206B2 (en) * 2016-03-08 2018-09-25 Wipro Limited Methods and systems for optimization of cell selection in TD-SCDMA networks
CN105873183B (zh) * 2016-03-23 2019-05-28 华为技术有限公司 一种搜网方法及用户设备
US10986514B2 (en) * 2016-03-28 2021-04-20 Qualcomm Incorporated Method and apparatus for signaling using generalized Chu sequences
CN105978645A (zh) * 2016-05-11 2016-09-28 希诺麦田技术(深圳)有限公司 一种规避信号干扰的装置及规避信号干扰的方法
CN107871343A (zh) * 2016-09-28 2018-04-03 北京中科国技信息系统有限公司 电子不停车收费系统etc检测系统及方法
CN106788813B (zh) * 2016-12-12 2020-06-19 青岛海信移动通信技术股份有限公司 一种干扰信号检测、消除装置、方法以及移动终端
CN107064683B (zh) * 2017-04-20 2020-12-25 捷开通讯(深圳)有限公司 一种干扰检测装置
CN107276626A (zh) * 2017-05-31 2017-10-20 广东欧珀移动通信有限公司 射频控制电路及电子设备
CN108020740B (zh) * 2017-11-29 2020-02-07 中国科学院新疆天文台 一种设备区域电磁干扰检测识别系统及方法
CN109362098B (zh) * 2018-11-23 2022-06-14 赛尔通信服务技术股份有限公司 一种识别4g移动通信干扰信号的方法及装置
CN111983646B (zh) * 2018-12-29 2023-03-17 上海司南卫星导航技术股份有限公司 一种接收装置、终端装置和计算机可读存储介质
CN112671484B (zh) * 2019-10-15 2022-06-21 广东振子电子科技有限公司 一种基于5gnr网络同步的实时频谱符号滤波干扰检测方法及系统
CN110890899B (zh) * 2019-12-25 2024-04-09 中电科航空电子有限公司 机载电磁波设备干扰抑制系统、方法及耦合天线确定方法
CN111182554A (zh) * 2019-12-30 2020-05-19 中国科学院微电子研究所 一种通信频率调整方法、基带处理器、电子设备和芯片
CN111474955B (zh) * 2020-04-22 2023-11-14 上海特金信息科技有限公司 无人机图传信号制式的识别方法、装置、设备及存储介质
CN114079478B (zh) * 2020-08-21 2023-09-22 Oppo(重庆)智能科技有限公司 信号干扰处理方法、装置、存储介质及电子设备
CN112083448B (zh) * 2020-09-04 2023-08-15 哈尔滨工程大学 面向卫星导航系统的干扰信号分类识别特征提取方法及系统
CN112162159A (zh) * 2020-09-08 2021-01-01 中电科仪器仪表有限公司 一种基于信号识别的电磁干扰现场测试方法
US11558158B2 (en) * 2020-11-10 2023-01-17 Intel Corporation Methods and devices for dynamically avoiding radio frequency interference
CN113419221B (zh) * 2021-06-15 2024-03-08 上海志良电子科技有限公司 一种基于数字信道化储频的多目标干扰信号产生方法
CN113572518A (zh) * 2021-08-05 2021-10-29 上海寻航者智能科技有限公司 无人机反制区域内卫星定位信号的恢复方法及系统
CN115694714B (zh) * 2023-01-03 2023-03-21 成都实时技术股份有限公司 一种多模式信号检测方法
CN117675089A (zh) * 2023-12-14 2024-03-08 江苏君立华域信息安全技术股份有限公司 一种窄带无人机通讯干扰装置及其干扰方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1551199A2 (en) * 2003-12-30 2005-07-06 Nokia Corporation Method and system for interference detection
CN101453228A (zh) * 2007-12-04 2009-06-10 松下电器产业株式会社 共站址干扰消除系统和方法
CN101986573A (zh) * 2010-10-25 2011-03-16 中兴通讯股份有限公司 一种双模通信系统的频谱干扰抵消装置、系统及方法
CN102186202A (zh) * 2011-01-04 2011-09-14 京信通信系统(中国)有限公司 一种干扰源定位系统以及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304594B1 (en) * 1998-07-27 2001-10-16 General Dynamics Government Systems Corporation Interference detection and avoidance technique
NZ552270A (en) * 2006-12-21 2008-10-31 Ind Res Ltd Detection of wideband interference
EP2391023B1 (en) * 2010-05-31 2012-11-21 ST-Ericsson SA Detecting interference in wireless receiver
EP2408117A1 (en) * 2010-07-13 2012-01-18 ST-Ericsson SA Synchronizing and detecting interference in wireless receiver
CN202261303U (zh) * 2011-09-29 2012-05-30 中国电子科技集团公司第五十四研究所 基于认知无线电的抗干扰装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1551199A2 (en) * 2003-12-30 2005-07-06 Nokia Corporation Method and system for interference detection
CN101453228A (zh) * 2007-12-04 2009-06-10 松下电器产业株式会社 共站址干扰消除系统和方法
CN101986573A (zh) * 2010-10-25 2011-03-16 中兴通讯股份有限公司 一种双模通信系统的频谱干扰抵消装置、系统及方法
CN102186202A (zh) * 2011-01-04 2011-09-14 京信通信系统(中国)有限公司 一种干扰源定位系统以及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107864493A (zh) * 2016-09-22 2018-03-30 中国移动通信有限公司研究院 一种共存通信系统间的干扰协调方法和装置
CN107864493B (zh) * 2016-09-22 2020-11-06 中国移动通信有限公司研究院 一种共存通信系统间的干扰协调方法和装置
CN109347596A (zh) * 2018-11-21 2019-02-15 北京华清友道科技有限公司 飞行目标侦测干扰系统及方法
CN109347596B (zh) * 2018-11-21 2024-03-15 北京世安立天科技发展有限公司 飞行目标侦测干扰系统及方法
WO2021042724A1 (zh) * 2019-09-04 2021-03-11 深圳市富斯科技有限公司 Ofdm系统抗干扰的方法、装置与电子设备及存储介质

Also Published As

Publication number Publication date
CN103873162A (zh) 2014-06-18
US20150304056A1 (en) 2015-10-22
EP2922224B1 (en) 2017-11-01
EP2922224A1 (en) 2015-09-23
CN103873162B (zh) 2016-02-10
EP2922224A4 (en) 2015-12-02
US9325437B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
WO2014094460A1 (zh) 频谱干扰检测装置及方法
US9524628B1 (en) Detecting signal modulation for motion detection
CN100361409C (zh) 扩频无线基站中检测带内干扰的方法和系统
US20160330640A1 (en) Systems and methods for wireless scanning
Yang et al. Riding the airways: Ultra-wideband ambient backscatter via commercial broadcast systems
AU2007319384B2 (en) Systems and methods for detecting the presence of a transmission signal in a wireless channel
JP5356539B2 (ja) セルサーチを実行する方法及び装置
EP2432181B1 (en) Apparatus and method for communication
CN101378310B (zh) 检测基于频域特性的信号的方法及相关接收器
WO2007129737A1 (ja) 干渉抑圧方法及び干渉抑圧装置
CN102036260B (zh) 一种演进系统中发射天线配置的检测方法及装置
TajDini et al. Men-in-the-middle attack simulation on low energy wireless devices using software define radio
JP2015111826A (ja) 多帯域ワイヤレスローカルエリアネットワーク内の早期フレーム帯域評価
Kennedy et al. RF fingerprint detection in a wireless multipath channel
CN113132898B (zh) 一种5g nr上行能量测量方法
US10548037B2 (en) System and method for cellular network identification
US8724750B2 (en) Adjacent channel rejection of a CCK blocker
CN102932814B (zh) 移动终端信号检测方法、装置及系统
CN114584227A (zh) 自动化突发信号检测方法
Zhou et al. Low complexity burst packet detection for wireless-powered UWB RFID systems
KR101640074B1 (ko) 무선 디바이스의 rf 특징 수집 장치 및 방법
Kishore et al. Waveform and energy based dual stage sensing technique for cognitive radio using RTL-SDR
CN104349354A (zh) Lte信号识别方法及装置
CN114697863B (zh) 定位方法及装置
KR102606794B1 (ko) 라우터의 전송신호 제어 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013865370

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14653347

Country of ref document: US

Ref document number: 2013865370

Country of ref document: EP