WO2014094431A1 - 演进通信系统的网络覆盖规划方法及装置 - Google Patents

演进通信系统的网络覆盖规划方法及装置 Download PDF

Info

Publication number
WO2014094431A1
WO2014094431A1 PCT/CN2013/080398 CN2013080398W WO2014094431A1 WO 2014094431 A1 WO2014094431 A1 WO 2014094431A1 CN 2013080398 W CN2013080398 W CN 2013080398W WO 2014094431 A1 WO2014094431 A1 WO 2014094431A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication system
network
coverage
evolved
base station
Prior art date
Application number
PCT/CN2013/080398
Other languages
English (en)
French (fr)
Inventor
王月倩
李淑玲
韩冰
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US14/652,596 priority Critical patent/US9730080B2/en
Priority to KR1020157012923A priority patent/KR101729873B1/ko
Priority to JP2015535961A priority patent/JP5982579B2/ja
Priority to EP13863768.1A priority patent/EP2938115B1/en
Publication of WO2014094431A1 publication Critical patent/WO2014094431A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/22Traffic simulation tools or models
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to a network coverage planning method and apparatus for an evolved communication system.
  • the main coverage planning method is theoretical estimation and planning through link budget and system simulation, and many factors will result in the actual coverage effect of the theoretically obtained coverage plan.
  • expected goals such as: complex wireless environment (trees, buildings, large vehicles occlusion, refraction, etc.) and user business habits
  • user distribution is difficult to accurately simulate through propagation models, propagation model correction test, loss estimation, interference estimation
  • the theoretically directed coverage planning is carried out before the network is built. It is impossible to verify its accuracy through actual tests.
  • the network planning and construction it is found that the planning fails to meet the expected goals and the revision of the planning design requires a great price.
  • the coverage performance after the network construction often fails to meet the expected target, which is particularly prone to occur: the coverage of individual areas shrinks after the network is built, and the coverage of the area that can be continuously covered in the original plan is weakly covered. The user has dropped more calls; or the deep coverage requirement cannot be met, and the received level value reported by the terminal does not meet the expected requirement. These have greatly affected the KPI indicators such as cell throughput, edge rate, and dropped call rate.
  • the network coverage planning cost is changed and the implementation is difficult by modifying and supplementing the site. Bringing adverse effects.
  • the technical problem to be solved by the present invention is to provide a network coverage planning method and apparatus for an evolved communication system, which can effectively improve the actual coverage effect after the theory-based coverage planning networking fails to meet the expected planning target.
  • the situation can significantly improve the coverage performance of the evolved communication system, and it is closer to the expected coverage target after the network is built.
  • the present invention provides a network coverage planning method for an evolved communication system, including:
  • the coverage parameters of the entire network of the evolved communication system are planned according to the theoretical coverage parameters of the single base station, the theoretical coverage parameters of the entire network, and the simulated measured coverage parameters.
  • the theoretical coverage parameters of the single base station include a maximum coverage distance, a station spacing, and an antenna height of a single base station;
  • the theoretical coverage parameters of the entire network include coverage of the entire network, number of stations, site location, and antenna height;
  • the simulated measured coverage parameters include coverage, number of stations, and site location and antenna height;
  • the actual coverage parameters of the entire network include coverage of the entire network, number of stations, site location, and antenna height.
  • the theoretical coverage parameter of the single base station that obtains the evolved communication system by using the link budget specifically includes:
  • the theoretical coverage parameters of the entire network obtained by using the network simulation to obtain an evolved communication system include:
  • the network planning tool is used for simulation, and the simulation result of the received signal of the whole network reference signal of the evolved communication system on the current website is obtained, and the coverage effect of the received power simulation map is displayed according to the reference signal of the whole network, and the received power of the reference signal is not satisfied for the figure.
  • the area of the predetermined value is used for the station compensation plan, and the simulated coverage effect is re-simulated after the station is replenished until the reference signal received power of the region where the reference signal received power simulation distribution of the evolved communication system satisfies a predetermined ratio is greater than a predetermined value.
  • the predetermined value is -100 dBm; the predetermined ratio is 95%.
  • the relationship between the reception level of the live network communication system and the evolved communication system is determined by:
  • RSRP RSCP- PCCPCH power + CRS power - L_ path loss difference
  • the PCCPCH power is the main common control physical channel power in the live network communication system
  • the CRS power is the cell reference symbol power in the evolved communication system
  • the L_path loss difference is the difference between the path loss of the existing network communication system and the evolved communication system. Determined by:
  • L 46.3+33.9*log(f)-13.82*log(Hbs)-a(Hms)+(44.9-6.55*log(Hbs))*log(d)+Cm
  • L_the live network is the path loss of the live network communication system
  • f is the frequency point
  • Hbs is the base station height
  • Hms is the terminal height
  • Cm is the city correction factor
  • RSRP is the receiving level of an evolved communication system and is determined by:
  • RSRP CRS power + antenna gain - shadow fading margin - L_ evolution
  • RSCP is the receiving level of the live network communication system and is determined by:
  • RSCP PCCPCH power + antenna gain - shadow fading margin - L_ live network.
  • the evolved communication system is a TD-LTE system
  • the live network communication system is a TD-SCDMA system.
  • the present invention also provides a network coverage planning apparatus for an evolved communication system, including:
  • a link budget module configured to obtain a theoretical coverage parameter of a single base station of an evolved communication system by using a link budget
  • a network simulation module for obtaining a theoretical coverage parameter of the entire network of the evolved communication system by using network simulation
  • An analog measurement calculation module is configured to calculate an evolution communication system in the same planning area by using a measurement reporting data of the terminal in the existing network communication system corresponding to the evolved communication system and a relationship between the current network communication system and the reception level of the evolved communication system The received level value in the wireless environment in which the existing network communication system is located to estimate the simulated measured coverage parameter of the evolved communication system;
  • the comprehensive adjustment module is configured to plan coverage parameters of the entire network of the evolved communication system according to the theoretical coverage parameters of the single base station, the theoretical coverage parameters of the entire network, and the simulated measured coverage parameters.
  • the theoretical coverage parameters of the single base station include a maximum coverage distance, a station spacing, and an antenna height of a single base station;
  • the theoretical coverage parameters of the entire network include coverage of the entire network, number of stations, site location, and antenna height;
  • the simulated measured coverage parameters include coverage, number of stations, and site location and antenna height;
  • the actual coverage parameters of the entire network include coverage of the entire network, number of stations, site location, and antenna height.
  • the link budget module is further configured to:
  • the network simulation module is further configured to:
  • the network planning tool is used for simulation, and the simulation result of the received signal of the whole network reference signal of the evolved communication system on the current website is obtained, and the coverage effect of the received power simulation map is displayed according to the reference signal of the whole network, and the received power of the reference signal is not satisfied for the figure.
  • the area of the predetermined value is used for the station compensation plan, and the simulated coverage effect is re-simulated after the station is replenished until the reference signal received power of the region where the reference signal received power simulation distribution of the evolved communication system satisfies a predetermined ratio is greater than a predetermined value.
  • the predetermined value is -100 dBm; the predetermined ratio is 95%.
  • the relationship between the reception level of the live network communication system and the evolved communication system is determined by:
  • RSRP RSCP- PCCPCH power + CRS power - L_ path loss difference
  • the PCCPCH power is the main common control physical channel power in the live network communication system
  • the CRS power is the cell reference symbol power in the evolved communication system
  • the L_path loss difference is the difference between the path loss of the existing network communication system and the evolved communication system. Determined by:
  • L 46.3+33.9*log(f)-13.82*log(Hbs)-a(Hms)+(44.9-6.55*log(Hbs))*log(d)+Cm
  • L_the live network is the path loss of the live network communication system
  • f is the frequency point
  • Hbs is the base station height
  • Hms is the terminal height
  • Cm is the city correction factor
  • RSRP is the receiving level of an evolved communication system and is determined by:
  • RSRP CRS power + antenna gain - shadow fading margin - L_ evolution
  • RSCP is the receiving level of the live network communication system and is determined by:
  • RSCP PCCPCH power + antenna gain - shadow fading margin - L_ live network.
  • the evolved communication system is a TD-LTE system
  • the live network communication system is a TD-SCDMA system.
  • the invention utilizes the actual measurement reporting of the terminal in the live network operation communication system to carry out the network coverage planning of the evolved communication system, so that the network coverage planning is more accurate, and the actual coverage effect after the theory-based coverage planning networking is effectively improved and can not be achieved. It is expected that the planning objectives will be closer to the expected coverage targets after the network is built.
  • FIG. 1 is a flowchart of a network coverage planning method of an evolved communication system according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a network coverage planning apparatus of an evolved communication system according to an embodiment of the present invention.
  • the present invention provides a network coverage planning method for an evolved communication system, including:
  • the theoretical coverage parameters of the single base station include a single base station maximum coverage distance, a station spacing, and an antenna height;
  • the theoretical coverage parameters of the entire network include coverage of the entire network, number of stations, site location, and antenna height;
  • the simulated measured coverage parameters include coverage, number of stations, and site location and antenna height;
  • the actual coverage parameters of the entire network include coverage of the entire network, number of stations, site location, and antenna height.
  • the theoretical coverage parameter of the single base station that obtains the evolved communication system by using the link budget specifically includes:
  • the theoretical coverage parameter of the entire network using the network simulation to obtain an evolved communication system specifically includes:
  • the network planning tool is used for simulation, and the simulation result of the received signal of the whole network reference signal of the evolved communication system on the current website is obtained, and the coverage effect of the received power simulation map is displayed according to the reference signal of the whole network, and the received power of the reference signal is not satisfied for the figure.
  • the area of the predetermined value is used for the station compensation plan, and the simulated coverage effect is re-simulated after the station is replenished until the reference signal received power of the region where the reference signal received power simulation distribution of the evolved communication system satisfies a predetermined ratio is greater than a predetermined value.
  • the predetermined value is -100 dBm; the predetermined ratio is 95%.
  • the reception level relationship between the live network communication system and the evolved communication system is determined by:
  • RSRP RSCP- PCCPCH power + CRS power - L_ path loss difference
  • the PCCPCH power is the main common control physical channel power in the live network communication system
  • the CRS power is the cell reference symbol power in the evolved communication system
  • the L_path loss difference is the difference between the path loss of the existing network communication system and the evolved communication system. Determined by:
  • L 46.3+33.9*log(f)-13.82*log(Hbs)-a(Hms)+(44.9-6.55*log(Hbs))*log(d)+Cm
  • L_the live network is the path loss of the live network communication system
  • f is the frequency point
  • Hbs is the base station height
  • Hms is the terminal height
  • Cm is the city correction factor
  • RSRP is the receiving level of an evolved communication system and is determined by:
  • RSRP CRS power + antenna gain - shadow fading margin - L_ evolution
  • RSCP is the receiving level of the live network communication system and is determined by:
  • RSCP PCCPCH power + antenna gain - shadow fading margin - L_ live network.
  • the present invention also provides a network coverage planning apparatus for an evolved communication system, as shown in FIG. 2, including:
  • a link budget module 1 for obtaining a theoretical coverage parameter of a single base station of an evolved communication system by using a link budget
  • the network simulation module 2 is configured to obtain a theoretical coverage parameter of the entire network of the evolved communication system by using network simulation;
  • the simulation measurement calculation module 3 is configured to calculate the evolution communication in the same planning area by using the measurement reporting data of the terminal in the existing network communication system corresponding to the evolved communication system and the relationship between the current network communication system and the receiving level of the evolved communication system.
  • the receiving level value of the system in the wireless environment in which the existing network communication system is located to estimate the simulated measured coverage parameter of the evolved communication system;
  • the comprehensive adjustment module 4 is configured to plan coverage parameters of the entire network of the evolved communication system according to the theoretical coverage parameters of the single base station, the theoretical coverage parameters of the entire network, and the simulated measured coverage parameters.
  • the theoretical coverage parameters of the single base station include a single base station maximum coverage distance, a station spacing, and an antenna height;
  • the theoretical coverage parameters of the entire network include coverage of the entire network, number of stations, site location, and antenna height;
  • the simulated measured coverage parameters include coverage, number of stations, and site location and antenna height;
  • the actual coverage parameters of the entire network include coverage of the entire network, number of stations, site location, and antenna height.
  • the link budget module is further configured to:
  • the network simulation module is further configured to:
  • the network planning tool is used for simulation, and the simulation result of the received signal of the whole network reference signal of the evolved communication system on the current website is obtained, and the coverage effect of the received power simulation map is displayed according to the reference signal of the whole network, and the received power of the reference signal is not satisfied for the figure.
  • the area of the predetermined value is used for the station compensation plan, and the simulated coverage effect is re-simulated after the station is replenished until the reference signal received power of the region where the reference signal received power simulation distribution of the evolved communication system satisfies a predetermined ratio is greater than a predetermined value.
  • the predetermined value is -100 dBm; the predetermined ratio is 95%.
  • the reception level relationship between the live network communication system and the evolved communication system is determined by:
  • RSRP RSCP- PCCPCH power + CRS power - L_ path loss difference
  • the PCCPCH power is the main common control physical channel power in the live network communication system
  • the CRS power is the cell reference symbol power in the evolved communication system
  • the L_path loss difference is the difference between the path loss of the existing network communication system and the evolved communication system. Determined by:
  • L 46.3+33.9*log(f)-13.82*log(Hbs)-a(Hms)+(44.9-6.55*log(Hbs))*log(d)+Cm
  • L_the live network is the path loss of the live network communication system
  • f is the frequency point
  • Hbs is the base station height
  • Hms is the terminal height
  • Cm is the city correction factor
  • RSRP is the receiving level of an evolved communication system and is determined by:
  • RSRP CRS power + antenna gain - shadow fading margin - L_ evolution
  • RSCP is the receiving level of the live network communication system and is determined by:
  • RSCP PCCPCH power + antenna gain - shadow fading margin - L_ live network.
  • the evolved communication system is a TD-LTE system
  • the live network communication system is a TD-SCDMA system.
  • the following is an example of how to apply the network coverage planning method of the evolved communication system of the present invention to the TD-LTE network coverage plan by using the existing network 3G communication system: TD-SCDMA evolution to the TD-LTE system as an example, that is, for the existing TD-
  • the planning of the SCDMA system site is supplemented to complete the coverage planning of the TD-LTE system.
  • the link theory budget is used to obtain the TD-LTE single station coverage coarse plan.
  • the maximum allowable path loss of a single station in various environments is estimated, and the parameters such as the maximum coverage distance of the cell in the wireless environment are obtained by selecting an appropriate propagation model or the propagation model correction result.
  • the TD-LTE network coverage simulation of the current website address Use the network planning tool to simulate and obtain the TD-LTE network-wide reference signal receiving power of the TD-SCDMA site on the live network (Reference) Signal Receiving Power , abbreviated as RSRP) simulation result graph, according to the coverage effect displayed by the RSRP simulation map of the whole network, for the area where the RSRP is not satisfied, for example, the area of -100dBm is complemented, and the simulated coverage effect is re-simulated after the station is replenished until the RSRP simulation of the LTE network
  • the distribution satisfies, for example, 95% of the region RSRP value is greater than -100 dBm.
  • MR Measurement Report
  • L is the path loss
  • f is the frequency point (unit: MHz)
  • Hbs is the height of the base station (unit: m)
  • Hms is the terminal height (unit: m)
  • a(Hms) is the terminal correction factor (unit: dB)
  • Cm City correction factor (unit: dB).
  • TD-LTE band 2600MHz For example, according to the actual operation in a network, take the TD-LTE band 2600MHz, TD-SCDMA band 2016 MHz, then:
  • RSRP CRS power+antenna gain-shadow fading margin-L_lte (3)
  • RSCP PCCPCH power + antenna gain - shadow fading margin - L_td (4)
  • the two communication systems have the same shadow fading margin in the same wireless environment.
  • the dual-mode FAD antenna has the same antenna gain.
  • Cell-specific reference symbol (CRS: Cell-specific Reference signals), whose power is the cell reference symbol power in the TD-LTE system, PCCPCH (Primary Common Control Physical) Channel), whose power is the main common control physical channel power in the TD-SCDMA system, and both power values are configurable in the network. Therefore, the relationship between TD-SCDMA and TD-LTE reception levels is obtained:
  • RSRP RSCP-PCCPCH power+CRS power-L_path loss difference (5)
  • the above two systems receive the relationship between the levels, and the PCCPCH power configured in the existing network and the CRS power configured in the TD-LTE (generally the maximum value of 15 dBm of the 8 antennas in the initial stage of network planning) are brought into Equation 6, which can be planned.
  • the MR data reported by each cell in the existing TD-SCDMA network, and the TD-LTE of each cell is derived.
  • RSRP distribution
  • TD-LTE network coverage requirements more than 95% of the common reference signal received power RSRP in the target area is greater than -100dBm, the building penetration loss is 15dB, and the RSRP is left after the projection is 15dB, that is, the coverage RSRP threshold is - 115dBm. Therefore, the calculated TD-LTE network coverage does not meet the required area, and the supplementary site needs to be added for coverage enhancement. For example, from the measured MR projection coverage plan, 75 stations need to be added on the current website, 55 stations and the theoretical planning suggestion station area overlap, and the other 20 stations are used according to the current network MR coverage plan than the traditional theoretical plan. Site.
  • the three parts of the results are comprehensively analyzed to obtain the final LTE network coverage plan.
  • the analysis found that the number of base stations planned by the traditional theoretical planning method is less than the number of stations in the current network measurement reporting plan, and the operator has organized more than 20 sites in the two methods to find more field surveys.
  • the location of the base station in the traditional coverage planning section is mostly in the position of occlusion or high density of people and vehicles, and software simulation cannot accurately simulate these factors, resulting in inaccurate theoretical coverage planning.
  • the proportion of RSRP greater than -100 dBm in the planning area is increased by 3% compared with the traditional coverage planning scheme, and the coverage performance is significantly improved according to the traditional planning method.
  • the coverage planning method and device combined with the theory of the present invention and the existing network can effectively reduce the difference between the planning expectation and the coverage performance after the network is built, improve the accuracy of the coverage planning, and bring the evolution network.
  • the improvement and coverage of the coverage performance can also be directly applied to network planning tool software.
  • the present invention discloses a network coverage planning method and apparatus for an evolved communication system.
  • the link budget and the network are used.
  • the coverage planning method for estimating the receiving level of the evolved system based on the actual MR measurement reported value of the terminal of the current network communication system is added. This method is simple and intuitive, and the network coverage of the subsequent evolved communication system is carried out.
  • it can effectively improve the situation that the actual coverage of the traditional theory-based coverage planning fails to meet the expected planning objectives, and the coverage performance of the evolved communication system can be significantly improved. After the network is built, it is closer to the expected coverage target.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种演进通信系统的网络覆盖规划方法及装置,其中,釆用链路预算获得演进通信系统的单个基站的理论覆盖参数;釆用网络仿真模拟获得演进通信系统的全网的理论覆盖参数;利用与所述演进通信系统对应的现网通信系统中终端的测量上报数据以及现网通信系统与演进通信系统接收电平间的关系,计算同一规划区域内演进通信系统在现网通信系统所在的无线环境下的接收电平值,以估算演进通信系统的模拟实测覆盖参数;根据所述单个基站的理论覆盖参数、全网的理论覆盖参数以及所述模拟实测覆盖参数对演进通信系统的全网的覆盖参数进行规划。应用本发明,使得网络覆盖规划更为准确,使得建网后更加贴近预期覆盖目标。

Description

演进通信系统的网络覆盖规划方法及装置
技术领域
本发明涉及移动通信技术领域,尤其涉及一种演进通信系统的网络覆盖规划方法和装置。
背景技术
现有的演进通信系统的网络覆盖规划中,主要覆盖规划手段是通过链路预算和系统仿真来进行理论估算和规划,其中多种因素都会导致从理论上得到的覆盖规划的实际覆盖效果达不到预期目标,例如:复杂的无线环境(树木、建筑、大型车辆的遮挡、折射等)及用户业务使用习惯、用户分布情况很难通过传播模型准确模拟,传播模型校正测试、损耗估算、干扰估算、地图精度等都不可避免地存在误差。而且理论指导的覆盖规划是在建网前进行的,无法通过实际测试验证其准确性,当网络规划建设完成后,发现规划达不到预期目标而修改规划设计需要付出很大代价。
因此,在目前对演进通信系统的覆盖规划中,往往存在建网后的覆盖性能达不到预期目标,尤其容易出现:建网后个别区域覆盖收缩,原规划中可连续覆盖的区域边缘弱覆盖,用户掉话较多;或者无法达到深度覆盖要求,终端上报的接收电平值占比达不到预期要求。这些都较大影响了小区吞吐量、边缘速率、掉话率等KPI指标,且通信网络建设完成后,再通过修改、补充站址等手段来更改网络覆盖规划成本高、实施难,给网络运营带来不利影响。
发明内容
(一)要解决的技术问题
本发明要解决的技术问题是,针对上述缺陷,如何提供一种演进通信系统的网络覆盖规划方法和装置,其能够有效改善基于理论的覆盖规划组网后实际覆盖效果达不到预期规划目标的情况,可使演进通信系统的覆盖性能有明显的提升,建网后更加贴近预期覆盖目标。
(二)技术方案
为解决上述技术问题,本发明提供了一种演进通信系统的网络覆盖规划方法,包括:
A. 采用链路预算获得演进通信系统的单个基站的理论覆盖参数;
B. 采用网络仿真模拟获得演进通信系统的全网的理论覆盖参数;
C. 利用与所述演进通信系统对应的现网通信系统中终端的测量上报数据以及现网通信系统与演进通信系统接收电平间的关系,计算同一规划区域内演进通信系统在现网通信系统所在的无线环境下的接收电平值,以估算演进通信系统的模拟实测覆盖参数;
D. 根据所述单个基站的理论覆盖参数、全网的理论覆盖参数以及所述模拟实测覆盖参数对演进通信系统的全网的覆盖参数进行规划。
可选的,所述单个基站的理论覆盖参数包括单个基站最大覆盖距离、站间距和天线高度;所述全网的理论覆盖参数包括全网的覆盖范围、站点数、站点位置和天线高度;所述模拟实测覆盖参数包括覆盖范围、站点数和站点位置和天线高度;所述全网的实际覆盖参数包括全网的覆盖范围、站点数、站点位置和天线高度。
可选的,所述采用链路预算获得演进通信系统的单个基站的理论覆盖参数具体包括:
考虑单个基站覆盖的边缘速率与边缘接收电平,估算出各种环境下的单个基站的最大允许路径损耗,通过选择合适的传播模型或者传播模型校正结果估算无线环境下单个基站的最大覆盖距离或站间距。
可选的,所述采用网络仿真模拟获得演进通信系统的全网的理论覆盖参数具体包括:
使用网络规划工具进行仿真,得到现网站址上演进通信系统的全网参考信号接收功率仿真结果图,根据全网参考信号接收功率仿真图显示的覆盖效果,对于图中不满足参考信号接收功率大于预定值的区域进行补站规划,补站后重新仿真模拟覆盖效果,直至演进通信系统的参考信号接收功率仿真分布满足预定比例的区域的参考信号接收功率值大于预定值为止。
可选的,所述预定值为-100dBm;所述预定比例为95%。
可选的,所述现网通信系统与演进通信系统的接收电平关系由下式确定:
RSRP=RSCP- PCCPCH功率+CRS功率-L_路损差
其中,PCCPCH功率为现网通信系统中主公共控制物理信道功率,CRS功率为演进通信系统中小区参考符号功率,L_路损差为现网通信系统与演进通信系统的路损的差值,由下式确定:
L_路损差= L_演进-L_现网,
L=46.3+33.9*log(f)-13.82*log(Hbs)-a(Hms)+(44.9-6.55*log(Hbs))*log(d)+Cm 其中,L为路损,L_演进为演进通信系统的路损,L_现网为现网通信系统的路损,f为频点,Hbs为基站高度,Hms为终端高度,a(Hms)为终端的修正因子,Cm为城市修正因子,
RSRP为演进通信系统的接收电平,由下式确定:
RSRP=CRS功率+天线增益-阴影衰落余量-L_演进,
RSCP为现网通信系统的接收电平,由下式确定:
RSCP=PCCPCH功率+天线增益-阴影衰落余量-L_现网。
可选的,所述演进通信系统为TD-LTE系统,所述现网通信系统为TD-SCDMA系统。
本发明还提供一种演进通信系统的网络覆盖规划装置,其包括:
链路预算模块,用于采用链路预算获得演进通信系统的单个基站的理论覆盖参数;
网络仿真模块,用于采用网络仿真模拟获得演进通信系统的全网的理论覆盖参数;
模拟实测计算模块,用于利用与所述演进通信系统对应的现网通信系统中终端的测量上报数据以及现网通信系统与演进通信系统接收电平间的关系,计算同一规划区域内演进通信系统在现网通信系统所在的无线环境下的接收电平值,以估算演进通信系统的模拟实测覆盖参数;
综合调整模块,用于根据所述单个基站的理论覆盖参数、全网的理论覆盖参数以及所述模拟实测覆盖参数对演进通信系统的全网的覆盖参数进行规划。
可选的,所述单个基站的理论覆盖参数包括单个基站最大覆盖距离、站间距和天线高度;所述全网的理论覆盖参数包括全网的覆盖范围、站点数、站点位置和天线高度;所述模拟实测覆盖参数包括覆盖范围、站点数和站点位置和天线高度;所述全网的实际覆盖参数包括全网的覆盖范围、站点数、站点位置和天线高度。
可选的,所述链路预算模块进一步用于:
考虑单个基站覆盖的边缘速率与边缘接收电平,估算出各种环境下的单个基站的最大允许路径损耗,通过选择合适的传播模型或者传播模型校正结果估算无线环境下单个基站的最大覆盖距离或站间距。
可选的,所述网络仿真模块进一步用于:
使用网络规划工具进行仿真,得到现网站址上演进通信系统的全网参考信号接收功率仿真结果图,根据全网参考信号接收功率仿真图显示的覆盖效果,对于图中不满足参考信号接收功率大于预定值的区域进行补站规划,补站后重新仿真模拟覆盖效果,直至演进通信系统的参考信号接收功率仿真分布满足预定比例的区域的参考信号接收功率值大于预定值为止。
可选的,所述预定值为-100dBm;所述预定比例为95%。
可选的,所述现网通信系统与演进通信系统的接收电平关系由下式确定:
RSRP=RSCP- PCCPCH功率+CRS功率-L_路损差
其中,PCCPCH功率为现网通信系统中主公共控制物理信道功率,CRS功率为演进通信系统中小区参考符号功率,L_路损差为现网通信系统与演进通信系统的路损的差值,由下式确定:
L_路损差= L_演进-L_现网,
L=46.3+33.9*log(f)-13.82*log(Hbs)-a(Hms)+(44.9-6.55*log(Hbs))*log(d)+Cm 其中,L为路损,L_演进为演进通信系统的路损,L_现网为现网通信系统的路损,f为频点,Hbs为基站高度,Hms为终端高度,a(Hms)为终端的修正因子,Cm为城市修正因子,
RSRP为演进通信系统的接收电平,由下式确定:
RSRP=CRS功率+天线增益-阴影衰落余量-L_演进,
RSCP为现网通信系统的接收电平,由下式确定:
RSCP=PCCPCH功率+天线增益-阴影衰落余量-L_现网。
可选的,所述演进通信系统为TD-LTE系统,所述现网通信系统为TD-SCDMA系统。
(三)有益效果
本发明利用对现网运行通信系统中终端实际测量上报来进行演进通信系统的网络覆盖规划,使得网络覆盖规划更为准确,有效改善了基于理论的覆盖规划组网后实际覆盖效果与达不到预期规划目标的情况,使得建网后更加贴近预期覆盖目标。
附图说明
图1是本发明实施例所述的演进通信系统的网络覆盖规划方法的流程图;
图2是本发明实施例所述的演进通信系统的网络覆盖规划装置的结构图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细说明。以下实施例用于说明本发明,但不用来限制本发明的范围。
参见图1,本发明提供了一种演进通信系统的网络覆盖规划方法,包括:
A、采用链路预算获得演进通信系统的单个基站的理论覆盖参数,如单站最大覆盖距离、站间距、天线高度等粗略的基站规模估算参数;
B、采用网络仿真模拟获得演进通信系统的全网的理论覆盖参数;
C、利用与所述演进通信系统对应的现网通信系统中终端的测量上报数据(Measurement Report,简称MR)以及现网通信系统与演进通信系统接收电平间的关系,计算同一规划区域内演进通信系统在现网通信系统所在的无线环境下的接收电平值,以估算演进通信系统的模拟实测覆盖参数,即估算结合现网测量结果的演进通信系统覆盖情况;
D、根据所述单个基站的理论覆盖参数、全网的理论覆盖参数以及所述模拟实测覆盖参数对演进通信系统的全网的覆盖参数进行规划,如对演进通信系统的覆盖范围、站点数、站点位置、天线高度等进行覆盖规划。
优选地,所述单个基站的理论覆盖参数包括单个基站最大覆盖距离、站间距和天线高度;所述全网的理论覆盖参数包括全网的覆盖范围、站点数、站点位置和天线高度;所述模拟实测覆盖参数包括覆盖范围、站点数和站点位置和天线高度;所述全网的实际覆盖参数包括全网的覆盖范围、站点数、站点位置和天线高度。
优选地,所述采用链路预算获得演进通信系统的单个基站的理论覆盖参数具体包括:
考虑单个基站覆盖的边缘速率与边缘接收电平,估算出各种环境下的单个基站的最大允许路径损耗,通过选择合适的传播模型或者传播模型校正结果估算无线环境下单个基站的最大覆盖距离或者站间距等参数。
优选地,所述采用网络仿真模拟获得演进通信系统的全网的理论覆盖参数具体包括:
使用网络规划工具进行仿真,得到现网站址上演进通信系统的全网参考信号接收功率仿真结果图,根据全网参考信号接收功率仿真图显示的覆盖效果,对于图中不满足参考信号接收功率大于预定值的区域进行补站规划,补站后重新仿真模拟覆盖效果,直至演进通信系统的参考信号接收功率仿真分布满足预定比例的区域的参考信号接收功率值大于预定值为止。
优选地,所述预定值为-100dBm;所述预定比例为95%。
优选地,所述现网通信系统与演进通信系统的接收电平关系由下式确定:
RSRP=RSCP- PCCPCH功率+CRS功率-L_路损差
其中,PCCPCH功率为现网通信系统中主公共控制物理信道功率,CRS功率为演进通信系统中小区参考符号功率,L_路损差为现网通信系统与演进通信系统的路损的差值,由下式确定:
L_路损差= L_演进-L_现网,
L=46.3+33.9*log(f)-13.82*log(Hbs)-a(Hms)+(44.9-6.55*log(Hbs))*log(d)+Cm 其中,L为路损,L_演进为演进通信系统的路损,L_现网为现网通信系统的路损,f为频点,Hbs为基站高度,Hms为终端高度,a(Hms)为终端的修正因子,Cm为城市修正因子,
RSRP为演进通信系统的接收电平,由下式确定:
RSRP=CRS功率+天线增益-阴影衰落余量-L_演进,
RSCP为现网通信系统的接收电平,由下式确定:
RSCP=PCCPCH功率+天线增益-阴影衰落余量-L_现网。
本发明还提供了一种演进通信系统的网络覆盖规划装置,如图2所示,包括:
链路预算模块1,用于采用链路预算获得演进通信系统的单个基站的理论覆盖参数;
网络仿真模块2,用于采用网络仿真模拟获得演进通信系统的全网的理论覆盖参数;
模拟实测计算模块3,用于利用与所述演进通信系统对应的现网通信系统中终端的测量上报数据以及现网通信系统与演进通信系统接收电平间的关系,计算同一规划区域内演进通信系统在现网通信系统所在的无线环境下的接收电平值,以估算演进通信系统的模拟实测覆盖参数;
综合调整模块4,用于根据所述单个基站的理论覆盖参数、全网的理论覆盖参数以及所述模拟实测覆盖参数对演进通信系统的全网的覆盖参数进行规划。
优选地,所述单个基站的理论覆盖参数包括单个基站最大覆盖距离、站间距和天线高度;所述全网的理论覆盖参数包括全网的覆盖范围、站点数、站点位置和天线高度;所述模拟实测覆盖参数包括覆盖范围、站点数和站点位置和天线高度;所述全网的实际覆盖参数包括全网的覆盖范围、站点数、站点位置和天线高度。
优选地,所述链路预算模块进一步用于:
考虑单个基站覆盖的边缘速率与边缘接收电平,估算出各种环境下的单个基站的最大允许路径损耗,通过选择合适的传播模型或者传播模型校正结果估算无线环境下单个基站的最大覆盖距离或站间距。
优选地,所述网络仿真模块进一步用于:
使用网络规划工具进行仿真,得到现网站址上演进通信系统的全网参考信号接收功率仿真结果图,根据全网参考信号接收功率仿真图显示的覆盖效果,对于图中不满足参考信号接收功率大于预定值的区域进行补站规划,补站后重新仿真模拟覆盖效果,直至演进通信系统的参考信号接收功率仿真分布满足预定比例的区域的参考信号接收功率值大于预定值为止。
优选地,所述预定值为-100dBm;所述预定比例为95%。
优选地,所述现网通信系统与演进通信系统的接收电平关系由下式确定:
RSRP=RSCP- PCCPCH功率+CRS功率-L_路损差
其中,PCCPCH功率为现网通信系统中主公共控制物理信道功率,CRS功率为演进通信系统中小区参考符号功率,L_路损差为现网通信系统与演进通信系统的路损的差值,由下式确定:
L_路损差= L_演进-L_现网,
L=46.3+33.9*log(f)-13.82*log(Hbs)-a(Hms)+(44.9-6.55*log(Hbs))*log(d)+Cm 其中,L为路损,L_演进为演进通信系统的路损,L_现网为现网通信系统的路损,f为频点,Hbs为基站高度,Hms为终端高度,a(Hms)为终端的修正因子,Cm为城市修正因子,
RSRP为演进通信系统的接收电平,由下式确定:
RSRP=CRS功率+天线增益-阴影衰落余量-L_演进,
RSCP为现网通信系统的接收电平,由下式确定:
RSCP=PCCPCH功率+天线增益-阴影衰落余量-L_现网。
优选地,所述演进通信系统为TD-LTE系统,所述现网通信系统为TD-SCDMA系统。
下面以现网3G通信系统:TD-SCDMA演进升级到TD-LTE系统为例,说明如何应用本发明所述演进通信系统的网络覆盖规划方法进行TD-LTE网络覆盖规划,即对于现有TD-SCDMA系统站址的规划补充来完成TD-LTE系统的覆盖规划。
首先,进行链路理论预算得到TD-LTE单站覆盖粗规划。按照考虑边缘速率与边缘接收电平两个要求,估算出各种环境下的单站最大允许路径损耗,通过选择合适的传播模型或传播模型校正结果得到无线环境下小区最大覆盖距离等参数,从而获得各覆盖环境下的基站数目以及整个网络的大致规模。
第二,现网站址的TD-LTE全网覆盖模拟仿真。使用网络规划工具进行仿真,得到现网TD-SCDMA站址的TD-LTE全网参考信号接收功率(Reference Signal Receiving Power ,简称RSRP)仿真结果图,根据全网RSRP仿真图显示的覆盖效果,对于图中不满足RSRP大于例如-100dBm的区域进行补站规划,补站后重新仿真模拟覆盖效果,直至LTE网络RSRP仿真分布满足例如95%的区域RSRP值大于-100dBm为止。
第三,根据TD-SCDMA现网终端的的测量上报(Measurement Report,简称MR),推算出TD-LTE系统的接收电平。
由COST231 HATA模型的路损公式推算:
L=46.3+33.9*log(f)-13.82*log(Hbs)-a(Hms)+(44.9-6.55*log(Hbs))*log(d)+Cm (1)
其中,L为路损,f为频点(单位:MHz),Hbs为基站高度(单位:m),Hms为终端高度(单位:m),a(Hms)为终端修正因子(单位:dB),Cm: 城市修正因子(单位:dB)。
如按照某网络中实际运行情况为例,取TD-LTE频段2600MHz,TD-SCDMA频段2016 MHz,则:
L_路损差=L_lte-L_td=33.9*(lg(f_lte)- lg(f_td))=3.745(dB) (2)
由接收电平计算:
TD-LTE: RSRP=CRS功率+天线增益-阴影衰落余量-L_lte (3)
TD-SCDMA:RSCP=PCCPCH功率+天线增益-阴影衰落余量-L_td (4)
其中,两个通信系统在相同无线环境下阴影衰落余量相同,如采用双模的FAD天线,天线增益相同。小区专用参考符号(CRS:Cell-specific reference signals),其功率是TD-LTE系统中小区参考符号功率,PCCPCH(Primary Common Control Physical Channel),其功率是TD-SCDMA系统中主公共控制物理信道功率,两部分功率值都在网络中可配置。因此,得到TD-SCDMA与TD-LTE接收电平之间关系:
RSRP=RSCP-PCCPCH功率+CRS功率-L_路损差 (5)
即 RSRP=RSCP-PCCPCH功率+ CRS功率-3.745 (6)
由以上两个系统接收电平间关系,将现网中配置的PCCPCH功率、TD-LTE中配置的CRS功率(一般在网络规划初期8天线可选择最大值15dBm)带入公式6,可由规划区域内TD-SCDMA现网中各小区实测上报的MR数据,推算出各小区的TD-LTE RSRP分布情况。
下面举一个具体规划的例子:根据采集到的正常运行的TD-SCDMA网络MR数据(即长期内大量现网各终端的RSCP样本值,由运营商提供),按符合小区95%区域覆盖率,筛选出满足小区覆盖要求的RSCP门限,再按公式6的TD-SCDMA和TD-LTE接收电平的关系,推算出LTE网络各小区 95%区域覆盖率的RSRP值所绘制出的RSRP分布图。按照TD-LTE网络覆盖要求:目标区域内95%以上的公共参考信号接收功率RSRP大于-100dBm,取建筑物穿透损耗15dB,对推算后RSRP留15dB余量,即满足覆盖的RSRP门限为-115dBm。从而推算出的TD-LTE网络覆盖不满足要求的区域,需要补充站址进行覆盖增强。例如由实测MR推算覆盖规划需要在现网站址上增站75个,55个站和理论规划建议补站区重合,另20个补站为使用本方案根据现网MR覆盖规划比传统理论规划多加的站点。
第四,经过链路预算、仿真模拟、现网实测MR数据推算,将3部分结果综合分析得到最终的LTE网络覆盖规划。分析发现,使用传统的理论规划方法规划的基站数少于本方案的结合了现网测量上报规划的站数,经过运营商组织对两种方法差异的20个站址的实地勘查,发现多于传统覆盖规划部分的基站位置,实际中大多处于被遮挡或人车密度大的位置,而软件仿真无法准确模拟这些因素,导致了理论覆盖规划不准确。经过本发明应用TD-SCDMA终端测量进行TD-LTE网络覆盖规划,规划区内RSRP大于-100dBm占比比传统覆盖规划方案提高了3%,覆盖性能照传统的规划方法有了明显提高。
可见,在演进网络建设前期,使用本发明的理论与现网结合的覆盖规划方法和装置,可有效减小规划预期与建网后覆盖性能的差异,提高覆盖规划的准确性,带来演进网络的覆盖性能的完善和提高,本发明还可直接应用于网络规划工具软件。
综上所述,本发明公开了一种演进通信系统的网络覆盖规划方法和装置,在目前较普遍的已有现网通信系统需要升级建设演进通信系统的应用场景下,在链路预算和网络仿真进行理论网络覆盖规划的基础上,增加了根据现网通信系统的终端实际MR测量上报值来推算演进系统接收电平的覆盖规划方法,这种方法简便直观,在进行后续演进通信系统网络覆盖规划时,可有效改善传统的基于理论的覆盖规划组网后实际覆盖效果达不到预期规划目标的情况,可使演进通信系统的覆盖性能有明显的提升,建网后更加贴近预期覆盖目标。
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。

Claims (1)

  1. 权 利 要 求 书
    1、一种演进通信系统的网络覆盖规划方法,其特征在于,包括:
    采用链路预算获得演进通信系统的单个基站的理论覆盖参数;
    采用网络仿真模拟获得演进通信系统的全网的理论覆盖参数;
    利用与所述演进通信系统对应的现网通信系统中终端的测量上报数据以及现网通信系统与演进通信系统接收电平间的关系,计算同一规划区域内演进通信系统在现网通信系统所在的无线环境下的接收电平值,以估算演进通信系统的模拟实测覆盖参数;
    根据所述单个基站的理论覆盖参数、全网的理论覆盖参数以及所述模拟实测覆盖参数对演进通信系统的全网的覆盖参数进行规划。
    2、根据权利要求1所述的网络覆盖规划方法,其特征在于,
    所述单个基站的理论覆盖参数包括单个基站最大覆盖距离、站间距和天线高度;所述全网的理论覆盖参数包括全网的覆盖范围、站点数、站点位置和天线高度;所述模拟实测覆盖参数包括覆盖范围、站点数和站点位置和天线高度;所述全网的实际覆盖参数包括全网的覆盖范围、站点数、站点位置和天线高度。
    3、根据权利要求2所述的网络覆盖规划方法,其特征在于,所述采用链路预算获得演进通信系统的单个基站的理论覆盖参数具体包括:
    考虑单个基站覆盖的边缘速率与边缘接收电平,估算出各种环境下的单个基站的最大允许路径损耗,通过选择合适的传播模型或者传播模型校正结果估算无线环境下单个基站的最大覆盖距离或站间距。
    4、根据权利要求1所述的网络覆盖规划方法,其特征在于,所述采用网络仿真模拟获得演进通信系统的全网的理论覆盖参数具体包括:
    使用网络规划工具进行仿真,得到现网站址上演进通信系统的全网参考信号接收功率仿真结果图,根据全网参考信号接收功率仿真图显示的覆盖效果,对于图中不满足参考信号接收功率大于预定值的区域进行补站规划,补站后重新仿真模拟覆盖效果,直至演进通信系统的参考信号接收功率仿真分布满足预定比例的区域的参考信号接收功率值大于预定值为止。
    5、根据权利要求4所述的网络覆盖规划方法,其特征在于,所述预定值为-100dBm;所述预定比例为95%。
    6、根据权利要求1所述的网络覆盖规划方法,其特征在于,所述现网通信系统与演进通信系统的接收电平关系由下式确定:
    RSRP=RSCP- PCCPCH功率+CRS功率-L_路损差
    其中,PCCPCH功率为现网通信系统中主公共控制物理信道功率,CRS功率为演进通信系统中小区参考符号功率,L_路损差为现网通信系统与演进通信系统的路损的差值,由下式确定:
    L_路损差= L_演进-L_现网,
    L=46.3+33.9*log(f)-13.82*log(Hbs)-a(Hms)+(44.9-6.55*log(Hbs))*log(d)+Cm 其中,L为路损,L_演进为演进通信系统的路损,L_现网为现网通信系统的路损,f为频点,Hbs为基站高度,Hms为终端高度,a(Hms)为终端的修正因子,Cm为城市修正因子,
    RSRP为演进通信系统的接收电平,由下式确定:
    RSRP=CRS功率+天线增益-阴影衰落余量-L_演进,
    RSCP为现网通信系统的接收电平,由下式确定:
    RSCP=PCCPCH功率+天线增益-阴影衰落余量-L_现网。
    7、根据权利要求1-6任一所述的网络覆盖规划方法,其特征在于,所述演进通信系统为TD-LTE系统,所述现网通信系统为TD-SCDMA系统。
    8、一种演进通信系统的网络覆盖规划装置,其特征在于,包括:
    链路预算模块,用于采用链路预算获得演进通信系统的单个基站的理论覆盖参数;
    网络仿真模块,用于采用网络仿真模拟获得演进通信系统的全网的理论覆盖参数;
    模拟实测计算模块,用于利用与所述演进通信系统对应的现网通信系统中终端的测量上报数据以及现网通信系统与演进通信系统接收电平间的关系,计算同一规划区域内演进通信系统在现网通信系统所在的无线环境下的接收电平值,以估算演进通信系统的模拟实测覆盖参数;
    综合调整模块,用于根据所述单个基站的理论覆盖参数、全网的理论覆盖参数以及所述模拟实测覆盖参数对演进通信系统的全网的覆盖参数进行规划。
    9、根据权利要求8所述的网络覆盖规划装置,其特征在于,
    所述单个基站的理论覆盖参数包括单个基站最大覆盖距离、站间距和天线高度;所述全网的理论覆盖参数包括全网的覆盖范围、站点数、站点位置和天线高度;所述模拟实测覆盖参数包括覆盖范围、站点数和站点位置和天线高度;所述全网的实际覆盖参数包括全网的覆盖范围、站点数、站点位置和天线高度。
    10、根据权利要求9所述的网络覆盖规划装置,其特征在于,所述链路预算模块进一步用于:
    考虑单个基站覆盖的边缘速率与边缘接收电平,估算出各种环境下的单个基站的最大允许路径损耗,通过选择合适的传播模型或者传播模型校正结果估算无线环境下单个基站的最大覆盖距离或站间距。
    11、根据权利要求8所述的网络覆盖规划装置,其特征在于,所述网络仿真模块进一步用于:
    使用网络规划工具进行仿真,得到现网站址上演进通信系统的全网参考信号接收功率仿真结果图,根据全网参考信号接收功率仿真图显示的覆盖效果,对于图中不满足参考信号接收功率大于预定值的区域进行补站规划,补站后重新仿真模拟覆盖效果,直至演进通信系统的参考信号接收功率仿真分布满足预定比例的区域的参考信号接收功率值大于预定值为止。
    12、根据权利要求11所述的网络覆盖规划装置,其特征在于,所述预定值为-100dBm;所述预定比例为95%。
    13、根据权利要求8所述的网络覆盖规划装置,其特征在于,所述现网通信系统与演进通信系统的接收电平关系由下式确定:
    RSRP=RSCP- PCCPCH功率+CRS功率-L_路损差
    其中,PCCPCH功率为现网通信系统中主公共控制物理信道功率,CRS功率为演进通信系统中小区参考符号功率,L_路损差为现网通信系统与演进通信系统的路损的差值,由下式确定:
    L_路损差= L_演进-L_现网,
    L=46.3+33.9*log(f)-13.82*log(Hbs)-a(Hms)+(44.9-6.55*log(Hbs))*log(d)+Cm 其中,L为路损,L_演进为演进通信系统的路损,L_现网为现网通信系统的路损,f为频点,Hbs为基站高度,Hms为终端高度,a(Hms)为终端的修正因子,Cm为城市修正因子,
    RSRP为演进通信系统的接收电平,由下式确定:
    RSRP=CRS功率+天线增益-阴影衰落余量-L_演进,
    RSCP为现网通信系统的接收电平,由下式确定:
    RSCP=PCCPCH功率+天线增益-阴影衰落余量-L_现网。
    14、根据权利要求8-13任一项所述的网络覆盖规划装置,其特征在于,所述演进通信系统为TD-LTE系统,所述现网通信系统为TD-SCDMA系统。
PCT/CN2013/080398 2012-12-20 2013-07-30 演进通信系统的网络覆盖规划方法及装置 WO2014094431A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/652,596 US9730080B2 (en) 2012-12-20 2013-07-30 Network coverage planning method and apparatus of evolution communication system
KR1020157012923A KR101729873B1 (ko) 2012-12-20 2013-07-30 진화 통신 시스템의 네트워크 커버리지 계획 방법 및 장치
JP2015535961A JP5982579B2 (ja) 2012-12-20 2013-07-30 進化通信システムのネットワークカバレッジ計画方法及び装置
EP13863768.1A EP2938115B1 (en) 2012-12-20 2013-07-30 Network coverage planning method and device of evolution communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210560840.4 2012-12-20
CN201210560840.4A CN103052081B (zh) 2012-12-20 2012-12-20 演进通信系统的网络覆盖规划方法和装置

Publications (1)

Publication Number Publication Date
WO2014094431A1 true WO2014094431A1 (zh) 2014-06-26

Family

ID=48064554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080398 WO2014094431A1 (zh) 2012-12-20 2013-07-30 演进通信系统的网络覆盖规划方法及装置

Country Status (6)

Country Link
US (1) US9730080B2 (zh)
EP (1) EP2938115B1 (zh)
JP (1) JP5982579B2 (zh)
KR (1) KR101729873B1 (zh)
CN (1) CN103052081B (zh)
WO (1) WO2014094431A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992263A (zh) * 2015-01-28 2016-10-05 中国移动通信集团陕西有限公司 基站站址偏移预评估方法及系统
CN114363925A (zh) * 2021-12-16 2022-04-15 北京红山信息科技研究院有限公司 一种网络质差自动识别方法
CN116390106A (zh) * 2023-04-18 2023-07-04 国脉通信规划设计有限公司 一种智慧社区5g网络规划方法

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103052081B (zh) 2012-12-20 2016-05-18 大唐移动通信设备有限公司 演进通信系统的网络覆盖规划方法和装置
CN103533554A (zh) * 2013-10-21 2014-01-22 上海邮电设计咨询研究院有限公司 一种基于3g路测数据预测4g lte网络覆盖的方法
CN105636074B (zh) * 2014-11-07 2019-12-10 中兴通讯股份有限公司 测试环境的构建方法及装置
CN105050106B (zh) 2015-08-24 2019-12-10 中磊电子(苏州)有限公司 一种测量控制方法及应用其的基站
CN105208570B (zh) 2015-09-09 2020-02-07 中磊电子(苏州)有限公司 小型基站及其运作方法
CN106714191B (zh) * 2015-11-17 2020-05-01 中国移动通信集团广东有限公司 一种网络覆盖评估方法及装置
CN105407495A (zh) * 2015-12-03 2016-03-16 中国联合网络通信集团有限公司 一种lte网络的规划方法及装置
CN107257562B (zh) * 2017-06-12 2019-11-26 中国联合网络通信集团有限公司 归属地的确认方法和确认系统
US20190021012A1 (en) * 2017-07-12 2019-01-17 Commscope Technologies Llc Method and system for rf planning in a dynamic spectrum environment
CN109462856A (zh) * 2017-09-06 2019-03-12 中国移动通信有限公司研究院 获取rsrp的方法及网络侧设备
CN110505632B (zh) * 2018-05-18 2022-04-15 中国移动通信集团设计院有限公司 站址规划方法和装置
CN109219058B (zh) * 2018-09-03 2020-10-09 湖南华诺科技有限公司 一种基于无线链路损耗差异性的网络评估方法
CN109472075B (zh) * 2018-10-30 2022-11-08 成都四方伟业软件股份有限公司 一种基站性能分析方法及系统
US11259191B2 (en) 2018-11-26 2022-02-22 Samsung Electronics Co., Ltd. Methods and apparatus for coverage prediction and network optimization in 5G new radio networks
CN109526019B (zh) * 2018-12-26 2022-04-08 国网湖南省电力有限公司 基于实测数据的无线专网基站覆盖范围传播模型校正方法
CN109905881A (zh) * 2019-01-09 2019-06-18 中国电力科学研究院有限公司 一种基于人工蜂群算法确定基站选取方案的方法及系统
CN109548035B (zh) * 2019-01-11 2022-03-18 中国联合网络通信集团有限公司 基站规划方法及装置
CN110167034B (zh) * 2019-04-10 2022-05-17 中国联合网络通信集团有限公司 基站的规划方法及装置
CN112020072B (zh) * 2019-05-31 2023-04-07 中国移动通信集团河南有限公司 一种基站选址方法与装置
CN110430596B (zh) * 2019-08-06 2022-10-04 中国联合网络通信集团有限公司 无线信号覆盖区域的质量评估方法、装置及可读存储介质
CN112469066B (zh) * 2019-09-09 2023-02-28 中国移动通信集团河北有限公司 5g网络覆盖评估方法及装置
US11277499B2 (en) 2019-09-30 2022-03-15 CACI, Inc.—Federal Systems and methods for performing simulations at a base station router
CN113055925B (zh) * 2019-12-26 2022-12-02 中国移动通信集团上海有限公司 网络覆盖信息获取方法、装置、设备及计算机存储介质
CN111263368B (zh) * 2020-01-17 2024-05-03 西安中兴精诚通讯有限公司 共享铁塔通信资源评估方法
CN111669762B (zh) * 2020-05-22 2023-05-26 中国联合网络通信集团有限公司 一种站间距的确定方法及装置
US11805541B2 (en) 2020-06-17 2023-10-31 Commscope Technologies Llc Methods and systems for provisioning of parameter data of radios controlled by a spectrum access system
US11012868B1 (en) 2020-06-19 2021-05-18 At&T Intellectual Property I, L.P. Indoor planning for densifying mobility networks
CN112423306B (zh) * 2020-08-24 2022-07-05 国网浙江省电力有限公司嘉兴供电公司 一种基站自动选址方法
CN111935732B (zh) * 2020-09-09 2020-12-22 南京嘉环科技股份有限公司 识别网络覆盖结构空洞的方法、装置、计算机系统与服务器
KR20220055363A (ko) * 2020-10-26 2022-05-03 삼성전자주식회사 복수의 모델들 중 어느 하나의 모델을 이용하여 기지국의 네트워크의 상태를 조정하기 위한 상태 제어 파라미터를 제어하는 방법 및 이를 수행하는 전자 장치
US12047248B2 (en) 2020-10-26 2024-07-23 Samsung Electronics Co., Ltd. Method of controlling state control parameter for adjusting state of network of base station by using any one of plurality of models and electronic device performing the method
CN114599040B (zh) * 2020-12-07 2023-09-19 中国移动通信集团山西有限公司 基站位置确定方法、装置和电子设备
CN115119213A (zh) * 2021-03-17 2022-09-27 中兴通讯股份有限公司 网络覆盖预测方法及其设备、计算机可读存储介质
CN113099464B (zh) * 2021-05-12 2022-11-08 国网河南省电力公司经济技术研究院 面向配电网的无线传感器网络部署方法、计算机可读介质
CN113873532B (zh) * 2021-09-02 2024-04-19 中通服咨询设计研究院有限公司 一种智慧园区5g网络规划方法
CN114189871B (zh) * 2021-11-18 2022-09-20 国网福建省电力有限公司漳州供电公司 一种考虑校正信号传播模型的电力5g基站布局方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845631A (zh) * 2005-04-06 2006-10-11 华为技术有限公司 无线通信系统网络规划的实现方法
WO2011109918A1 (en) * 2010-03-08 2011-09-15 Nokia Siemens Networks Oy Method, network element and system for scheduling communication link
CN102307357A (zh) * 2011-08-25 2012-01-04 中兴通讯股份有限公司 一种网络规划方法及系统
CN102523590A (zh) * 2012-01-05 2012-06-27 北京邮电大学 多制式智能可配的无线网络的规划方法
CN102625323A (zh) * 2012-03-08 2012-08-01 电信科学技术研究院 网络规划方法与装置
CN103052081A (zh) * 2012-12-20 2013-04-17 大唐移动通信设备有限公司 演进通信系统的网络覆盖规划方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985735B2 (en) * 2001-09-10 2006-01-10 Koninklijke Kpn N.V. Method and system for planning and evaluation of CDMA radio networks
ATE447305T1 (de) * 2002-02-07 2009-11-15 Koninkl Kpn Nv Verfahren und system zur planung und/oder auswertung der abdeckung in abwärtsrichtung in (cdma) funknetzen
US7133679B2 (en) * 2003-10-27 2006-11-07 Nokia Corporation Radio network planning
EP1653755B1 (en) * 2004-11-01 2008-04-23 Ascom (Schweiz) AG Method and device for assessment of a coverage of a cellular network system
JP4711117B2 (ja) * 2005-04-19 2011-06-29 日本電気株式会社 探索方法および探索システムと探索プログラム
CN101060689B (zh) * 2007-05-17 2011-11-09 华为技术有限公司 通信系统网络规划的方法和设备
US8098590B2 (en) * 2008-06-13 2012-01-17 Qualcomm Incorporated Apparatus and method for generating performance measurements in wireless networks
US9210586B2 (en) * 2009-05-08 2015-12-08 Qualcomm Incorporated Method and apparatus for generating and exchanging information for coverage optimization in wireless networks
US20100305931A1 (en) * 2009-05-28 2010-12-02 Fordham Bradley S Wireless network design simulation package
CN102960015B (zh) * 2009-12-21 2016-06-29 荷兰皇家Kpn电信集团 协作式无线接入网的自动覆盖评估方法和系统
CN102413480B (zh) * 2010-09-21 2014-04-30 中兴通讯股份有限公司 反向测试覆盖的方法及系统
KR101620678B1 (ko) * 2011-05-20 2016-05-12 애플 인크. 하이브리드 네트워크 환경들에서 클라이언트 서버 인터액션을 위한 장치 및 방법들
CN106353723B (zh) * 2011-11-04 2019-12-13 瑞典爱立信有限公司 基于虚拟参考测量的用户设备的定位

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845631A (zh) * 2005-04-06 2006-10-11 华为技术有限公司 无线通信系统网络规划的实现方法
WO2011109918A1 (en) * 2010-03-08 2011-09-15 Nokia Siemens Networks Oy Method, network element and system for scheduling communication link
CN102307357A (zh) * 2011-08-25 2012-01-04 中兴通讯股份有限公司 一种网络规划方法及系统
CN102523590A (zh) * 2012-01-05 2012-06-27 北京邮电大学 多制式智能可配的无线网络的规划方法
CN102625323A (zh) * 2012-03-08 2012-08-01 电信科学技术研究院 网络规划方法与装置
CN103052081A (zh) * 2012-12-20 2013-04-17 大唐移动通信设备有限公司 演进通信系统的网络覆盖规划方法和装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992263A (zh) * 2015-01-28 2016-10-05 中国移动通信集团陕西有限公司 基站站址偏移预评估方法及系统
CN105992263B (zh) * 2015-01-28 2019-05-14 中国移动通信集团陕西有限公司 基站站址偏移预评估方法及系统
CN114363925A (zh) * 2021-12-16 2022-04-15 北京红山信息科技研究院有限公司 一种网络质差自动识别方法
CN114363925B (zh) * 2021-12-16 2023-10-24 北京红山信息科技研究院有限公司 一种网络质差自动识别方法
CN116390106A (zh) * 2023-04-18 2023-07-04 国脉通信规划设计有限公司 一种智慧社区5g网络规划方法

Also Published As

Publication number Publication date
US9730080B2 (en) 2017-08-08
CN103052081B (zh) 2016-05-18
EP2938115A1 (en) 2015-10-28
KR101729873B1 (ko) 2017-04-24
EP2938115A4 (en) 2016-07-27
JP5982579B2 (ja) 2016-08-31
JP2015534789A (ja) 2015-12-03
US20150350923A1 (en) 2015-12-03
CN103052081A (zh) 2013-04-17
EP2938115B1 (en) 2019-05-22
KR20150084010A (ko) 2015-07-21

Similar Documents

Publication Publication Date Title
WO2014094431A1 (zh) 演进通信系统的网络覆盖规划方法及装置
WO2018082180A1 (zh) 无线终端接收性能的测试方法及系统
WO2017082632A1 (ko) 빔포밍이 적용되는 통신 시스템에서 복수 개의 기지국들에 의한 협력 통신 제공 방법 및 장치
WO2019007022A1 (zh) 基于广播的网格化差分数据播发方法、服务器及存储介质
WO2019194659A1 (en) Method and system for sensor-based beam management by user equipment
EP4018557A1 (en) Method and user equipment for a signal reception
WO2018068405A1 (zh) WiFi性能测试方法及系统
WO2013034044A1 (zh) Wcdma移动终端功率校准的方法及校准系统
WO2016089120A1 (ko) 하이브리드 다중-입력 다중-출력 방식을 지원하는 통신 시스템에서 빔 운용 장치 및 방법
WO2011087227A2 (en) Communication apparatus and precoding method based on multiple cells and multiple users
CN104854900A (zh) 无线网络kpi的测量方法、用户设备、网络设备以及系统
WO2015110014A1 (en) Method, apparatus, and terminal device for determining user activity range
WO2019198942A1 (en) Method of processing image, computer-readable storage medium recording method, and apparatus for processing image
WO2019051909A1 (zh) 空调器运行参数调整方法、空调器及计算机可读存储介质
WO2015120774A1 (en) Network access method and apparatus applied to mobile application
WO2013004173A1 (zh) 一种gsm移动终端的tis测试方法
WO2017014540A1 (ko) 무선 통신 시스템에서 송신 전력을 제어하기 위한 장치 및 방법
WO2017084301A1 (zh) 音频数据播放方法、装置及智能电视机
WO2017088429A1 (zh) 移动终端控制显示终端上触屏应用程序的方法及系统
WO2012109995A1 (zh) 一种双模终端异系统重选和切换的测量补偿方法及装置
WO2019071775A1 (zh) 节点定位方法、服务器、系统及计算机可读存储介质
WO2017190453A1 (zh) 无线通讯的连接控制方法及装置
CN113115325A (zh) 一种无线网络质量优化方法及装置
WO2020009335A1 (en) Method, storage medium, and electronic device for wireless network design
WO2015180584A1 (en) Sound effect playback method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863768

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535961

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013863768

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157012923

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14652596

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE