WO2013004173A1 - 一种gsm移动终端的tis测试方法 - Google Patents
一种gsm移动终端的tis测试方法 Download PDFInfo
- Publication number
- WO2013004173A1 WO2013004173A1 PCT/CN2012/078102 CN2012078102W WO2013004173A1 WO 2013004173 A1 WO2013004173 A1 WO 2013004173A1 CN 2012078102 W CN2012078102 W CN 2012078102W WO 2013004173 A1 WO2013004173 A1 WO 2013004173A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mobile terminal
- gsm mobile
- base station
- power
- station emulator
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/0082—Monitoring; Testing using service channels; using auxiliary channels
- H04B17/0087—Monitoring; Testing using service channels; using auxiliary channels using auxiliary channels or channel simulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/20—Monitoring; Testing of receivers
- H04B17/29—Performance testing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
Definitions
- the present invention relates to the field of mobile communication technologies, and in particular, to a TIS test method for a GSM mobile terminal.
- the test system has a huge investment and the test method is complicated.
- the OTA test (tested by air conduction) includes two main test indicators: Total Radiated Power (TRP: Total Radiated Power) and Total Isotropic Sensitivity (TIS: Total omnidirectional sensitivity).
- TRP Total Radiated Power
- TIS Total Isotropic Sensitivity
- the TIS test takes the longest time, and a comprehensive single-channel TIS test takes about 1 hour of testing time. Compared to the total investment of several million RMB in the OTA test system, the greater the test time, the greater the cost. At the same time, due to the huge cost, it is impossible for test certification laboratories or R&D institutions to build many OTA laboratories. Therefore, the OTA darkroom must be a scarce resource. If the OTA lab is occupied for a long time, it will cause other items to be tested to wait in line, which will increase the time cost of R&D.
- the technical problem to be solved by the present invention is to provide a TIS test method for a GSM mobile terminal, which can greatly shorten the test time of the TIS and improve the test efficiency of the TIS.
- a TIS test method for a GSM mobile terminal comprising the steps of:
- the GSM mobile terminal and the base station emulator are directly connected by RF cable for conducting test, and determine the power value Rx Level actually received by the baseband chip of the GSM mobile terminal when the GSM mobile terminal reaches the bit error rate standard under the conduction test, and the conduction test is performed.
- the actual received power of the baseband chip of the GSM mobile terminal is P Sens Rx Level ; the method further includes the following steps:
- Step1 Put the GSM mobile terminal into the fixed position of the turntable of the OTA test system and connect to the base station emulator;
- Step 2 The OTA test system controls the Theta axis and the Phi axis of the turntable to rotate to a first predetermined position;
- Step3 The OTA test system controls the darkroom transceiver antenna to rotate to a horizontal position
- Step4 The OTA test system controls the base station emulator to the initial power P initial ;
- Step 5 Measure the bit error rate of the GSM mobile terminal; and test the Rx Level value of the received power of the GSM mobile terminal baseband chip when the base station emulator output power is set to the initial power P initial , and set it as P Init Rx Level .
- P cellpower indicates the power that the base station emulator should set
- P initial is the initial power when the base station emulator is tested
- P Init Rx Level indicates that the base station emulator output power is set to the initial value, and the GSM mobile terminal baseband chip Receive power
- P Sens Rx Level indicates the actual received power of the baseband chip when the GSM mobile terminal reaches sensitivity in the conduction test
- Step7 Measure the bit error rate of the GSM mobile terminal at this time
- Step 8 When it is determined that the GSM mobile terminal error rate does not exceed the standard at this time, the base station emulator transmission power is reduced by a predetermined value. When the GSM mobile terminal error rate exceeds the standard at this time, the base station emulator transmission power is increased by one. Pre-determined value, re-test; record the base station emulator transmit power at this time, that is, the sensitivity of the position SENS ⁇ , ⁇ , ANT
- Step9 The OTA test system controls the darkroom transceiver antenna to rotate to the vertical position, repeating step 4-8
- Step10 The test system controls the turntable Theta and Phi axes to rotate to the second predetermined position, and repeats Step 3-9;
- Step11 The test system controls the turntable Theta axis every 30 0 , and the Phi axis tests every 30 0. When all the angles of the turntable Theta and Phi axes are tested, according to the formula:
- ⁇ and ⁇ are the angles of the Theta and Phi axes, respectively, and EIS is the sensitivity SENS ⁇ , ⁇ , ANT to compensate the power value of the angle darkroom receiving antenna gain, the unit is watt; N and M are the Theta and Phi axes respectively.
- the number of points, EIS ⁇ and EIS ⁇ are the sensitivity of the darkroom receiving antenna rotation level and vertical position test, respectively.
- the TIS test method of the GSM mobile terminal wherein the GSM mobile terminal does not exceed the standard when the error rate is less than 2.4%.
- the TIS test method of the GSM mobile terminal wherein the predetermined value in the step Step 8 is 0.5 dB.
- the TIS testing method of the GSM mobile terminal wherein the first predetermined position is separated from the Theta axis of the second predetermined position by 30 0 , and the Phi axis is separated by 30 0 .
- the TIS test method of the GSM mobile terminal wherein the number of test points for setting the Theta and Phi axes is 12 points.
- a TIS test method for a GSM mobile terminal comprising the steps of:
- Sp1 Put the GSM mobile terminal into the fixed position of the turntable of the OTA test system and connect to the base station emulator;
- the OTA test system controls the Theta axis and the Phi axis of the turntable to rotate to a first predetermined position
- the OTA test system controls the darkroom transceiver antenna to rotate to a horizontal position
- the OTA test system controls the base station emulator to the initial power P initial ;
- the OTA test system controls the base station emulator to reduce a predetermined value of transmit power
- Sp5-3 When the BER of the GSM mobile terminal is not exceeded, repeat Sp5-1 and Sp5-2 until the bit error rate exceeds the standard; and record the transmit power of the base station emulator when the standard is exceeded, which is the sensitivity SENS ⁇ of the position . ⁇ , ANT ; and obtain the power value Rx Level of the mobile terminal baseband chip at this time is P Sens Rx Level ;
- the OTA test system controls the darkroom transceiver antenna to rotate to the vertical position, and measures the sensitivity of the mobile terminal SENS ⁇ , ⁇ , ANT at this time; and tests and obtains the received power value Rx Level of the GSM mobile terminal baseband chip at this time; When the output power of the base station emulator is set to an initial value, the power received by the baseband chip of the GSM mobile terminal is measured as P Init Rx Level ;
- P cellpower indicates the power that the base station emulator should set
- P initial is the initial power when the base station emulator is tested
- P Init Rx Level indicates that the base station emulator output power is set to the initial value, and the GSM mobile terminal baseband chip Receive power
- P Sens Rx Level indicates the actual received power of the baseband chip when the GSM mobile terminal reaches sensitivity in the conduction test
- the base station power is decreased by a predetermined value. If the value exceeds the standard, the base station power is increased by a predetermined value, and the test is re-tested; and the base station emulator transmit power just after the standard is recorded, that is, the position is Sensitivity SENS ⁇ , ⁇ , ANT ;
- the OTA test system controls the darkroom transceiver antenna to rotate to a horizontal position
- the OTA test system controls the base station emulator to the initial power P initial ;
- Sp5-10 measuring the bit error rate of the GSM mobile terminal; and testing the received power Rx Level value measured by the GSM mobile terminal baseband chip when the base station emulator output power is set to the initial value; and setting the base station emulator output power When the initial value is set, the power received by the baseband chip of the GSM mobile terminal is measured as P Init Rx Level ;
- P cellpower indicates the power that the base station emulator should set
- P initial is the initial power when the base station emulator is tested
- P Init Rx Level indicates that the base station emulator output power is set to the initial value, and the GSM mobile terminal baseband chip Receive power
- P Sens Rx Level indicates the actual received power of the baseband chip when the GSM mobile terminal reaches sensitivity in the conduction test
- the base station emulator transmission power is reduced by a predetermined value.
- the base station emulator transmission power is increased by one.
- Pre-determined value re-test; record the base station emulator transmit power at this time, that is, the sensitivity of the position SENS ⁇ , ⁇ , ANT ;
- Sp9 OTA test system controls the darkroom transceiver antenna to rotate to the vertical position, repeating sp4-8;
- the test system controls the turntable Theta and Phi axes to rotate to the second predetermined position, and repeats Sp3-9.
- ⁇ and ⁇ are the angles of the Theta and Phi axes, respectively, and EIS is the sensitivity SENS ⁇ , ⁇ , ANT to compensate the power value of the angle darkroom receiving antenna gain, the unit is watt; N and M are the Theta and Phi axes respectively.
- the number of points, EIS ⁇ and EIS ⁇ are the sensitivity of the darkroom receiving antenna rotation level and vertical position test, respectively.
- the TIS test method of the GSM mobile terminal wherein the GSM mobile terminal does not exceed the standard when the error rate is less than 2.4%, and the GSM mobile terminal exceeds the standard when the error rate is greater than or equal to 2.4%.
- the TIS test method of the GSM mobile terminal wherein the predetermined value in the step Sp8 is 0.5 dB.
- the TIS testing method of the GSM mobile terminal wherein the first predetermined position is separated from the Theta axis of the second predetermined position by 30 0 , and the Phi axis is separated by 30 0 .
- the TIS test method of the GSM mobile terminal wherein the number of test points for setting the Theta and Phi axes is 12 points.
- the baseband chip receiving power Rx corresponding to the mobile terminal corresponding to the sensitivity (Sensitivity) transmitted by the GSM mobile terminal The Level value to quickly locate the sensitivity of any position under radiation can improve the sensitivity search time for each angle in the TIS test, thereby increasing the overall measurement speed of the TIS.
- the Level value is a method for quickly locating the sensitivity of any position under radiation, which can improve the sensitivity search time of each angle in the TIS test, thereby improving the overall measurement speed of the TIS.
- FIG. 1 is a schematic view showing the structure of an OTA darkroom according to an embodiment of the present invention.
- FIG. 1 it is a typical OTA (Over The Air: Test by air conduction) Schematic diagram of the darkroom 100, and the GSM mobile terminal (device under test) 200 is placed on a turntable 110.
- This turntable 110 has two rotating shafts, respectively named Theta axis ( ⁇ Axis) and Phi axis ( ⁇ axis).
- the OTA darkroom 100 transceiver antenna 120 can have two orientations: horizontal and vertical.
- the typical TIS (entire radiant spherical phone receiving sensitivity index) test steps are as follows:
- the GSM mobile terminal 200 is powered on and connected to the base station emulator. And placed to the fixed position of the turntable 110.
- the Test system controls the Theta and Phi axes of the turntable 110 to rotate to a certain position.
- test system controls the darkroom transceiver antenna 120 to rotate to a horizontal position.
- the test system controls the base station emulator to the initial power P initial .
- the initial power P initial refers to the starting value of each sensitivity search.
- the base station emulator Each time the mobile phone changes to a new location, the base station emulator always starts from a relatively high initial transmit power, gradually reducing the power until the error The code rate is exceeded.
- S9 The test system controls the darkroom transceiver antenna to rotate to the vertical position, repeating S4-8.
- test system controls the turntable Theta and Phi axes to rotate to another position, and repeats S3-9.
- ⁇ is the angle of the Theta and Phi axes above; EIS is the sensitivity SENS ⁇ , ⁇ , ANT to compensate the power value of the angle darkroom receiving antenna gain, the unit is Watt; N and M are Theta and Phi axes respectively
- the test points are 12 points for the standard Theta and 12 points for the Phi.
- the embodiment of the present invention proposes a new TIS test method for a GSM mobile terminal, and each sensitivity SENS ⁇ , ⁇ , ANT needs to be obtained only by repeating 2-3 times S5.
- the specific implementation method is as follows:
- the conduction test refers to the test performed by the GSM mobile terminal and the base station emulator using a direct connection of the radio frequency cable.
- the conduction sensitivity refers to the transmit power of the base station emulator when the BER (bit error rate) exceeds 2.4%.
- Rx Level refers to the actual received power measured by the terminal baseband chip reported by the GSM mobile terminal to the base station emulator.
- the sensitivity of existing GSM terminals is between -108dBm and -110dBm, and Rx Lvel is also in this range.
- a GSM mobile terminal is assumed, and the sensitivity and Rx Level (the actual power received by the GSM mobile terminal) are both -109 dBm, which is set in the conduction test, and the GSM mobile terminal reports when it reaches the sensitivity.
- the Rx Level, the actual power received by the GSM mobile terminal is P Sens Rx Level .
- the TIS test method of the new GSM mobile terminal proposed by the present invention is as follows:
- Step1 The GSM mobile terminal is powered on, connected to the base station emulator of the OTA test system, and placed in a fixed position on the turntable.
- Step2 The OTA test system controls the Theta axis ( ⁇ axis) and the Phi axis ( ⁇ axis) of the turntable 110 to rotate to the first predetermined position.
- Step 3 The OTA test system controls the darkroom transceiver antenna 120 to rotate to a horizontal position.
- Step4 The OTA test system controls the base station emulator to initial power P initial (initial: initial).
- the initial power P initial refers to the starting value of each sensitivity search.
- the base station emulator Each time the mobile phone changes to a new location, the base station emulator always starts from a relatively high initial transmit power, gradually reducing the power until the error The code rate is exceeded.
- Step 5 Measure the bit error rate BER of the GSM mobile terminal.
- the Rx Level value of the received power measured by the GSM mobile terminal baseband chip is tested at the time when the base station emulator output power is set to the initial value. Since it is in the radiation mode at this time, the Rx Level is generally not equal to the power of the base station emulator. Assuming that the base station emulator output power is set to the initial value, the power received by the baseband chip of the GSM mobile terminal is measured as P Init Rx Level .
- the radiation mode is a relative conduction test, in which case the GSM mobile terminal and the base station emulator are not connected by a radio frequency cable, but are directly connected wirelessly.
- P initial is the initial initial power when the base station emulator is tested;
- P Init Rx Level indicates the power received by the GSM mobile terminal baseband chip when the base station emulator output power is set to the initial value;
- P Sens Rx Level indicates that in the conduction test, The power actually received by the GSM mobile terminal when the GSM mobile terminal reaches sensitivity.
- Step7 Measure the BER of the GSM mobile terminal, and the bit error rate BER should be very close to 2.4%.
- Step 8 If the bit error rate BER does not exceed the standard, then reduce a predetermined value such as 0.5 dB base station emulator transmit power. If the value exceeds the standard, increase the predetermined value, such as 0.5 dB base station power, and retest. Record the base station emulator transmit power at this time, which is the sensitivity SENS ⁇ , ⁇ , ANT of the position .
- a predetermined value such as 0.5 dB base station emulator transmit power.
- the GSM mobile terminal does not exceed the standard when the bit error rate is less than 2.4%, and the GSM mobile terminal exceeds the standard when the error rate is greater than or equal to 2.4%.
- Step9 The test system controls the darkroom transceiver antenna to rotate to the vertical position, repeating step 4-8.
- Step 10 The test system controls the turntable Theta and Phi axes to rotate to the second predetermined position, and repeats Step 3-9.
- Step11 After all angles of the turntable Theta and Phi axes are tested, the sensitivity SENS ⁇ , ⁇ , ANT of all positions is weighted according to the formula to obtain the final TIS.
- Theta axis ( ⁇ axis) is tested every 30 0 and the Phi axis ( ⁇ axis) is tested every 30 0 .
- the TIS calculation formula is as follows:
- ⁇ is the angle of the Theta and Phi axes above; EIS is the sensitivity SENS ⁇ , ⁇ , ANT to compensate the power value of the angle darkroom receiving antenna gain, the unit is Watt; N and M are Theta and Phi axes respectively
- the test points are 12 points for the standard Theta and 12 points for the Phi.
- the obtaining time of the sensitivity SENS ⁇ , ⁇ , ANT of each position only needs to be repeated three times at most: step 5: testing once at the initial power, and setting the power P in the next base station emulator cellpower test once, in the vicinity of P cellpower search once. Therefore , the acquisition time of each SENS ⁇ , ⁇ , ANT can be shortened, thereby reducing the total test time of the TIS.
- Using the GSM mobile terminal to transmit the sensitivity (Sensitivity) corresponding to the mobile terminal baseband chip receiving power Rx Level value to quickly locate the sensitivity of any position under the radiation, can improve the sensitivity search time of each angle in the TIS test, thereby improving the TIS Overall measurement speed.
- the sensitivity of the GSM mobile terminal in the conduction mode and the actual reception power of the GSM mobile terminal baseband chip Rx Level is not convenient for testing.
- the TIS test method test of the GSM mobile terminal according to another embodiment of the present invention may also be adopted, including the following steps:
- the GSM mobile terminal is powered on, connected to the base station emulator of the OTA test system, and placed in a fixed position on the turntable.
- the OTA test system controls the Theta axis ( ⁇ axis) and the Phi axis ( ⁇ axis) of the turntable 110 to rotate to the first predetermined position.
- the OTA test system controls the darkroom transceiver antenna 120 to rotate to a horizontal position.
- the OTA test system controls the base station emulator to initial power P initial (initial: initial).
- the initial power P initial refers to the starting value of each sensitivity search.
- the base station emulator Each time the mobile phone changes to a new location, the base station emulator always starts from a relatively high initial transmit power, gradually reducing the power until the error The code rate is exceeded.
- Sp5 Measuring the bit error rate BER of a GSM mobile terminal.
- the test system controls the base station emulator to lower a predetermined value such as 0.5 dB transmit power.
- Sp5-2 Measure the bit error rate BER of the mobile terminal.
- the OTA test system controls the darkroom transceiver antenna to rotate to the vertical position, and measures the sensitivity of the mobile terminal SENS ⁇ , ⁇ , ANT at this time.
- the GSM mobile terminal baseband chip at this time is tested to receive the power value Rx Level. Since it is in the radiation mode at this time, the Rx Level is generally not equal to the power of the base station emulator.
- the output power of the base station emulator is set to an initial value
- the power received by the baseband chip of the GSM mobile terminal is measured as P Init Rx Level .
- P cellpower indicates the power that the base station emulator should set
- P initial is the initial power when the base station emulator is tested
- P Init Rx Level indicates that the base station emulator output power is set to the initial value, and the GSM mobile terminal baseband chip Receive power
- P Sens Rx Level indicates the actual received power of the baseband chip when the GSM mobile terminal reaches sensitivity in the conduction test.
- the BER should be very close to 2.4% (the GSM standard defines BER to be less than 2.4% ie not exceeding the standard).
- bit error rate does not exceed the standard, then reduce a predetermined value such as 0.5 dB base station power. If it exceeds the standard, increase the predetermined value, such as 0.5 dB base station power, and retest. Recording the base station emulator transmit power at this time, that is, the sensitivity of the position SENS ⁇ , ⁇ , ANT ;
- the OTA test system controls the darkroom transceiver antenna to rotate to a horizontal position.
- the OTA test system controls the base station emulator to the initial power P initial .
- the initial power P initial refers to the starting value of each sensitivity search.
- the base station emulator Each time the mobile phone changes to a new location, the base station emulator always starts from a relatively high initial transmit power, gradually reducing the power until the error The code rate is exceeded.
- the Rx Level value of the received power measured by the GSM mobile terminal baseband chip is tested at the time when the base station emulator output power is set to the initial value. Since it is in the radiation mode at this time, the Rx Level is generally not equal to the power of the base station emulator. Assuming that the base station emulator output power is set to the initial value, the power received by the baseband chip of the GSM mobile terminal is measured as P Init Rx Level .
- the radiation mode is a relative conduction test, in which case the GSM mobile terminal and the base station emulator are not connected by a radio frequency cable, but are directly connected wirelessly.
- P cellpower P initial -( P Init Rx Level - P Sens Rx Level ).
- P cellpower represents the power that the base station emulator should set next.
- P initial is the initial initial power when the base station emulator is tested;
- P Init Rx Level indicates the power received by the GSM mobile terminal baseband chip when the base station emulator output power is set to the initial value;
- P Sens Rx Level indicates that in the conduction test, The power actually received by the GSM mobile terminal when the GSM mobile terminal reaches sensitivity.
- bit error rate BER does not exceed the standard (the GSM standard defines that the BER is less than 2.4%, that is, does not exceed the standard), then reduce a predetermined value such as 0.5 dB base station emulator transmit power. If the standard exceeds the standard, increase the predetermined value such as 0.5 dB base station power. ,retest. Record the base station emulator transmit power at this time, which is the sensitivity SENS ⁇ , ⁇ , ANT of the position .
- the test system controls the darkroom transceiver antenna to rotate to the vertical position, repeating sp4-8;
- the test system controls the turntable Theta and Phi axes to rotate to the second predetermined position, and repeats Sp3-9.
- ⁇ and ⁇ are the angles of the Theta and Phi axes, respectively, and EIS is the sensitivity SENS ⁇ , ⁇ , ANT to compensate the power value of the angle darkroom receiving antenna gain, the unit is watt; N and M are the Theta and Phi axes respectively.
- the number of points, EIS ⁇ and EIS ⁇ are the sensitivity of the darkroom receiving antenna rotation level and vertical position test, respectively.
- the second embodiment of the present invention uses the mobile terminal baseband chip receiving power Rx corresponding to the sensitivity (Sensitivity) of the mobile terminal at any point.
- Level value to quickly locate the sensitivity of any position under radiation, omitting the initial test conduction sensitivity and the actual received power of the baseband chip of the GSM mobile terminal Rx Level, but the measurement time of the first point will be longer. But only 1/144 of the total number of tests, so the overall test time will still save a lot, which can improve the sensitivity search time of each angle in the TIS test, thus improving the overall measurement speed of TIS.
- the TIS test method of the GSM mobile terminal uses the mobile terminal baseband chip receiving power Rx corresponding to the sensitivity (Sensitivity) of the GSM mobile terminal.
- the Level value to quickly locate the sensitivity of any position under radiation can improve the sensitivity search time for each angle in the TIS test, thereby increasing the overall measurement speed of the TIS.
- the Level value is a method for quickly locating the sensitivity of any position under radiation, which can improve the sensitivity search time of each angle in the TIS test, thereby improving the overall measurement speed of the TIS.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
Abstract
本发明公开了一种GSM移动终端的TIS测试方法;将GSM移动终端和基站仿真器使用射频线缆直接连接进行传导测试,确定传导测试下GSM移动终端达到误码率标准时GSM移动终端基带芯片实际接收到的功率值Rx Level,使用Rx Level值来快速定位辐射下任何位置的灵敏度的方法,可以提高TIS测试中每个角度的灵敏度搜索时间,从而提高TIS的整体测量速度。以及使用移动终端辐射模式任意一点下灵敏度对应的移动终端基带芯片接收功率Rx Level值来快速定位辐射下任何位置的灵敏度的方法,其可以提高TIS测试中每个角度的灵敏度搜索时间,从而提高TIS的整体测量速度。
Description
技术领域
本发明涉及移动通信技术领域,尤其涉及的是一种GSM移动终端的TIS测试方法。
背景技术
众所周知,现在的GSM移动终端OTA(Over The
Air:通过空气传导进行的测试)测试系统投资巨大,测试方法复杂。OTA测试(通过空气传导进行的测试)包括两种主要测试指标:Total Radiated
Power(TRP:总辐射功率)和Total Isotropic
Sensitivity(TIS:总全向灵敏度)。其中TIS测试占用时间最长,一次全面的单信道TIS测试需要1小时左右的测试时间。相对OTA测试系统几百万人民币的总投资,测试时间越大,所花费的成本就越大。同时,由于巨额成本,测试认证实验室或者研发机构不可能建设很多的OTA实验室。因此OTA暗室必然是一种稀缺资源。如果长时间占用OTA实验室也会造成其他待测项目的排队等待,进而造成研发的时间成本增加。
因此,现有技术还有待于改进和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种GSM移动终端的TIS测试方法,可以大大的缩短TIS的测试时间,提高了TIS的测试效率。
本发明解决技术问题所采用的技术方案如下:
一种GSM移动终端的TIS测试方法,其中,包括步骤:
首先将GSM移动终端和基站仿真器使用射频线缆直接连接进行传导测试,确定传导测试下GSM移动终端达到误码率标准时GSM移动终端基带芯片实际接收到的功率值Rx
Level,并将该传导测试下GSM移动终端基带芯片实际接收功率为 PSens Rx Level ;所述方法还包括以下步骤:
Step1: 将GSM移动终端开机放置到OTA测试系统的转台固定位置,并连接到基站仿真器;
Step2: OTA测试系统控制转台的Theta轴和Phi轴转动到第一预定位置;
Step3: OTA测试系统控制暗室收发天线转动到水平位置;
Step4: OTA测试系统控制基站仿真器到初始功率 Pinitial ;
Step5: 测量GSM移动终端的误码率;并测试此时在基站仿真器输出功率设为初始功率
Pinitial 时,GSM移动终端基带芯片的接收功率的Rx Level值,设为 PInit Rx Level
。
Step6: 当GSM移动终端误码率没有超标,OTA测试系统控制基站仿真器降低发射功率为
Pcellpower=Pinitial-( PInit Rx Level-
PSens Rx Level ) ;
其中,Pcellpower
表示下一步基站仿真器应该设置的功率;Pinitial 为基站仿真器测试时的初始功率;PInit Rx Level
表示基站仿真器输出功率设为初始值的时候,GSM移动终端基带芯片的接收功率;PSens Rx Level
表示在传导测试中,GSM移动终端达到灵敏度时基带芯片实际接收功率;
Step7: 测量此时的GSM移动终端误码率;
Step8:
当判断此时的GSM移动终端误码率没有超标,则对基站仿真器发射功率减少一预定值,当此时的GSM移动终端误码率超标,则对基站仿真器发射功率增加一该预定值,重新测试;记录此时的基站仿真器发射功率,即为该位置的灵敏度
SENS θ , φ ,ANT
Step9: OTA测试系统控制暗室收发天线转动到垂直位置,重复step4-8
Step10:测试系统控制转台Theta和Phi轴转动到第二预定位置,并重复Step3-9;
加权统计所有位置的灵敏度 SENS θ , φ ,ANT
,从而获得最终的TIS;
其中 θ , φ 分别为上述Theta和Phi轴的角度,EIS是灵敏度 SENS θ , φ
,ANT 补偿该角度暗室接收天线增益后的功率值,单位为瓦;N和M分别是Theta和Phi轴的测试点数, EIS θ、 EIS
φ 分别是暗室接收天线转动水平和垂直位置测试的灵敏度。
所述GSM移动终端的TIS测试方法,其中,所述GSM移动终端误码率小于2.4%时不超标。
所述GSM移动终端的TIS测试方法,其中,所述步骤Step8中的预定值为0.5dB。
所述GSM移动终端的TIS测试方法,其中,所述第一预定位置与第二预定位置的Theta轴相隔300,Phi轴相隔300。
所述GSM移动终端的TIS测试方法,其中,设定Theta和Phi轴的测试点数都为12点。
一种GSM移动终端的TIS测试方法,其中,包括步骤:
Sp1:将GSM移动终端开机放置到OTA测试系统的转台固定位置,并连接到基站仿真器;
Sp2: OTA测试系统控制转台的Theta轴和Phi轴转动到第一预定位置;
Sp3: OTA测试系统控制暗室收发天线转动到水平位置;
Sp4: OTA测试系统控制基站仿真器到初始功率Pinitial ;
Sp5:测量GSM移动终端的误码率;
Sp5-1:当GSM移动终端误码率没有超标,OTA测试系统控制基站仿真器降低一预定值发射功率;
Sp5-2:测量此时的GSM移动终端误码率;
Sp5-3:当GSM移动终端误码率BER没有超标,重复Sp5-1和
Sp5-2直至误码率超标;并记录刚超标时的基站仿真器发射功率,即为该位置的灵敏度 SENS θ , φ ,ANT
;并获得此时的移动终端基带芯片接收到功率值Rx Level即为PSens Rx Level ;
Sp5-4:OTA测试系统控制暗室收发天线转动到垂直位置,测量获取此时移动终端的灵敏度SENS
θ , φ ,ANT ;并测试获取此时的GSM移动终端基带芯片接收到功率值Rx
Level;设基站仿真器输出功率设为初始值的时候,测得GSM移动终端基带芯片接收到的功率为PInit Rx Level ;
Sp5-5:当GSM移动终端灵敏度没有超标,OTA测试系统控制基站仿真器降低发射功率,并将发射功率设置为:Pcellpower=Pinitial-(
PInit Rx Level- PSens Rx Level ) ;
其中,Pcellpower
表示下一步基站仿真器应该设置的功率;Pinitial 为基站仿真器测试时的初始功率;PInit Rx Level
表示基站仿真器输出功率设为初始值的时候,GSM移动终端基带芯片的接收功率;PSens Rx Level
表示在传导测试中,GSM移动终端达到灵敏度时基带芯片实际接收功率;
Sp5-6: 测量移动终端误码率;
Sp5-7:
当误码率没有超标,那么降低一预定值基站功率,如果超标,那么增加一预定值基站功率,重新测试;并记录刚超标时的基站仿真器发射功率,即为该位置的灵敏度SENS
θ , φ ,ANT ;
Sp5-8: OTA测试系统控制暗室收发天线转动到水平位置;
Sp5-9:OTA测试系统控制基站仿真器到初始功率Pinitial ;
Sp5-10:测量GSM移动终端的误码率;并测试此时在基站仿真器输出功率设为初始值时候,GSM移动终端基带芯片测得的接收功率Rx
Level值;并设基站仿真器输出功率设为初始值的时候,测得GSM移动终端基带芯片接收到的功率为PInit Rx Level ;。
Sp6:当GSM移动终端误码率没有超标,OTA测试系统控制基站仿真器降低发射功率为
Pcellpower=Pinitial-( PInit Rx Level-
PSens Rx Level ) ;
其中, Pcellpower
表示下一步基站仿真器应该设置的功率;Pinitial 为基站仿真器测试时的初始功率; PInit Rx Level
表示基站仿真器输出功率设为初始值的时候,GSM移动终端基带芯片的接收功率; PSens Rx Level
表示在传导测试中,GSM移动终端达到灵敏度时基带芯片实际接收功率;
Sp7: 测量GSM移动终端误码率;
Sp8:当判断此时的GSM移动终端误码率没有超标,则对基站仿真器发射功率减少一预定值,当此时的GSM移动终端误码率超标,则对基站仿真器发射功率增加一该预定值,重新测试;记录此时的基站仿真器发射功率,即为该位置的灵敏度SENS
θ , φ ,ANT ;
Sp9: OTA测试系统控制暗室收发天线转动到垂直位置,重复sp4-8;
Sp10:测试系统控制转台Theta和Phi轴转动到第二预定位置,并重复Sp3-9。
加权统计所有位置的灵敏度SENS θ , φ ,ANT
,从而获得最终的TIS;
其中 θ , φ 分别为上述Theta和Phi轴的角度,EIS是灵敏度SENS θ , φ
,ANT 补偿该角度暗室接收天线增益后的功率值,单位为瓦;N和M分别是Theta和Phi轴的测试点数, EIS θ、 EIS
φ 分别是暗室接收天线转动水平和垂直位置测试的灵敏度。
所述GSM移动终端的TIS测试方法,其中,所述GSM移动终端误码率小于2.4%时不超标,GSM移动终端误码率大于等于2.4%时超标。
所述GSM移动终端的TIS测试方法,其中,所述步骤Sp8中的预定值为0.5dB。
所述GSM移动终端的TIS测试方法,其中,所述第一预定位置与第二预定位置的Theta轴相隔300,Phi轴相隔300。
所述GSM移动终端的TIS测试方法,其中,设定Theta和Phi轴的测试点数都为12点。
本发明所提供的一种GSM移动终端的TIS测试方法
,由于使用GSM移动终端传导下灵敏度(Sensitivity)对应的移动终端基带芯片接收功率Rx
Level值来快速定位辐射下任何位置的灵敏度的方法,可以提高TIS测试中每个角度的灵敏度搜索时间,从而提高TIS的整体测量速度。
以及使用移动终端辐射模式任意一点下灵敏度(Sensitivity)对应的移动终端基带芯片接收功率Rx
Level值来快速定位辐射下任何位置的灵敏度的方法,其可以提高TIS测试中每个角度的灵敏度搜索时间,从而提高TIS的整体测量速度。
附图说明
图1是本发明实施例的OTA暗室结构示意图。
具体实施方式
本发明所提供的一种GSM移动终端的TIS测试方法,为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,是一种典型的OTA (Over The
Air:通过空气传导进行的测试)暗室100结构示意图,GSM移动终端(被测设备)200放置于一个转台110之上。这个转台110有两个转轴,分别被命名为Theta轴(θ
轴)和Phi轴( φ 轴)。OTA暗室100收发天线120可以有两个方向:水平和垂直方向。
典型的TIS(整个辐射球面手机接收灵敏度指标)测试步骤如下:
S1:GSM移动终端200开机,连接到基站仿真器。并放置到转台110固定位置。
S2: 测试系统控制转台110的Theta和Phi轴转动到某一位置。
S3: 测试系统控制暗室收发天线120转动到水平位置。
S4: 测试系统控制基站仿真器到初始功率Pinitial
。该初始功率Pinitial
指的是每一次灵敏度搜索的起始值,每次手机换到新的位置,基站仿真器总是从一个最开始的比较高的发射功率开始,逐渐的降低功率,直到误码率超标。
S5: 测量GSM移动终端200的误码率(BER)。
S6:
如果GSM移动终端误码率没有超标(GSM标准定义为BER小于2.4%即不超标),测试系统控制基站仿真器降低发射功率。
S7: 测量GSM移动终端200的灵敏度;
S8:
如果灵敏度没有超标,重复S6和S7直至误码率超标。记录此时的基站仿真器发射功率,即为该位置的灵敏度SENS θ , φ ,ANT
。因为待测终端有两个转轴位置,接收天线有水平和垂直位置。所以需要三个下标(θ、φ、ANT)来表示不同的位置下的灵敏度。
S9: 测试系统控制暗室收发天线转动到垂直位置,重复S4-8。
S10: 测试系统控制转台Theta和Phi轴转动到另一位置,并重复S3-9。
S11:转台Theta和Phi轴所有角度测试完毕以后,根据公式加权统计所有的灵敏度 SENS θ
, φ ,ANT 从而获得最终的TIS。
其中 θ , φ 即上述Theta和Phi轴的角度;EIS是灵敏度 SENS θ , φ
,ANT 补偿该角度暗室接收天线增益后的功率值,单位为瓦(Watt);N和M分别是Theta和Phi轴的测试点数,标准Theta
为12点,Phi为 12点,EIS θ、 EIS φ
分别是暗室接收天线转动水平和垂直位置测试的灵敏度。其中Theta由于对称关系,只需要测试一半数据。因此总测试点数为6*12*2=144点。
由于S5需要的时长是固定的,S5被重复的次数越多,总的测试时间就会越长。而原来的算法中,为了获得每个灵敏度SENS θ , φ
,ANT ,需要多次重复S5.而且每个角度的灵敏度SENS θ , φ ,ANT
与基站仿真器到初始功率相差越大,重复次数就会越多,总的测试时间就会越长,GSM移动终端TIS的测试效率就无法提高。
为了克服上述缺陷,本发明实施例提出了一种新的GSM移动终端的TIS测试方法,每个灵敏度 SENS
θ , φ ,ANT 需要仅仅重复2-3次S5即可获得。具体的实现方法如下:
首先,在测试之前,先进行传导测试,确定传导下GSM移动终端达到误码率标准时候的Rx
Level(GSM移动终端基带芯片实际接收到的功率)值。所谓传导测试指的是GSM移动终端和基站仿真器使用射频线缆直接连接进行的测试。在GSM终端中,传导灵敏度指的是BER(误码率)超过2.4%时候,基站仿真器的发射功率。而Rx
Level指的是GSM移动终端向基站仿真器汇报的终端基带芯片测得实际接收到的功率。
一般情况下,现有GSM终端的灵敏度在-108dBm~-110dBm之间,Rx
Lvel也在这个范围内。为了描述方便,本发明实施例中假设有一台GSM移动终端,其灵敏度和Rx
Level(GSM移动终端实际接收到的功率)都是-109dBm,设定在传导测试中,GSM移动终端达到灵敏度时候汇报的Rx
Level,GSM移动终端实际接收到的功率为PSens Rx Level 。
本发明提出的新GSM移动终端的TIS测试方法如下:
Step1: GSM移动终端开机,连接到OTA测试系统的基站仿真器,并放置到转台上的固定位置。
Step2:
OTA测试系统控制转台110的Theta轴(θ轴)和Phi轴(φ轴)转动到第一预定位置。
Step3: OTA测试系统控制暗室收发天线120转动到水平位置。
Step4: OTA测试系统控制基站仿真器到初始功率 Pinitial
(initial:初始)。该初始功率Pinitial
指的是每一次灵敏度搜索的起始值,每次手机换到新的位置,基站仿真器总是从一个最开始的比较高的发射功率开始,逐渐的降低功率,直到误码率超标。
Step5:测量GSM移动终端的误码率BER。同时,测试此时在基站仿真器输出功率设为初始值时候,GSM移动终端基带芯片测得的接收功率Rx
Level值。由于此时处于辐射模式,Rx
Level一般不等于基站仿真器的功率。假设基站仿真器输出功率设为初始值的时候,测得GSM移动终端基带芯片接收到的功率为PInit Rx
Level 。其中,所述辐射模式是相对传导测试而言,这时GSM移动终端和基站仿真器不通过射频线缆连接,而是直接无线连接。
Step6:
如果GSM移动终端误码率BER没有超标,OTA测试系统控制基站仿真器降低发射功率,此时测试系统将设置发射功率为:
Pcellpower=Pinitial-( PInit Rx Level-
PSens Rx Level ) 。其中,Pcellpower
表示下一步基站仿真器应该设置的功率。Pinitial 为基站仿真器测试时最初的初始功率;PInit Rx
Level 表示基站仿真器输出功率设为初始值的时候,GSM移动终端基带芯片接收到的功率;PSens Rx Level
表示在传导测试中,GSM移动终端达到灵敏度时的GSM移动终端实际接收到的功率。
Step7: 测量GSM移动终端误码率BER,此时误码率BER应该会非常接近2.4%。
Step8:
如果误码率BER没有超标,那么降低一预定值如0.5dB基站仿真器发射功率,如果超标,那么增加该预定值如0.5dB基站功率,重新测试。记录此时的基站仿真器发射功率,即为该位置的灵敏度SENS
θ , φ ,ANT 。
其中,所述GSM移动终端误码率小于2.4%时不超标,GSM移动终端误码率大于等于2.4%时超标。
Step9: 测试系统控制暗室收发天线转动到垂直位置,重复step4-8。
Step10:测试系统控制转台Theta和Phi轴转动到第二预定位置,并重复Step3-9。
Step11:转台Theta和Phi轴所有角度测试完毕以后,根据公式加权统计所有位置的灵敏度SENS
θ , φ ,ANT ,从而获得最终的TIS。
其中 θ , φ 即上述Theta和Phi轴的角度;EIS是灵敏度 SENS θ , φ
,ANT 补偿该角度暗室接收天线增益后的功率值,单位为瓦(Watt);N和M分别是Theta和Phi轴的测试点数,标准Theta
为12点,Phi为 12点,EIS θ、 EIS φ
分别是暗室接收天线转动水平和垂直位置测试的灵敏度。其中Theta由于对称关系,只需要测试一半数据。因此总测试点数为6*12*2=144点。
由上可见,本发明实施例的方法中,每个位置的灵敏度SENS θ , φ ,ANT
的获得时间最多仅需要三次重复step 5:在初始功率下测试一次,在下一步基站仿真器设置的功率Pcellpower 下测试一次,在
Pcellpower 附近搜索一次即可。因此可以缩短每个SENS θ , φ ,ANT
的获得时间,进而减少TIS的总测试时间。使用GSM移动终端传导下灵敏度(Sensitivity)对应的移动终端基带芯片接收功率Rx
Level值来快速定位辐射下任何位置的灵敏度的方法,可以提高TIS测试中每个角度的灵敏度搜索时间,从而提高TIS的整体测量速度。
当然,有的情况下传导模式的GSM移动终端的灵敏度和GSM移动终端基带芯片实际接收功率Rx
Level不方便测试。在这种情况下,也可以采用本发明的另一实施例的GSM移动终端的TIS测试方法测试,包括如下步骤:
Sp1: GSM移动终端开机,连接到OTA测试系统的基站仿真器,并放置到转台上的固定位置。
Sp2:
OTA测试系统控制转台110的Theta轴(θ轴)和Phi轴(φ轴)转动到第一预定位置。
Sp3: OTA测试系统控制暗室收发天线120转动到水平位置。
Sp4: OTA测试系统控制基站仿真器到初始功率
Pinitial(initial:初始)。该初始功率Pinitial
指的是每一次灵敏度搜索的起始值,每次手机换到新的位置,基站仿真器总是从一个最开始的比较高的发射功率开始,逐渐的降低功率,直到误码率超标。
Sp5:测量GSM移动终端的误码率BER。
Sp5-1:如果移动终端误码率没有超标(GSM标准定义为BER小于2.4%即不超标),测试系统控制基站仿真器降低一预定值如0.5dB发射功率。
Sp5-2:测量移动终端误码率BER。
Sp5-3:如果GSM移动终端误码率BER没有超标(GSM标准定义为BER小于2.4%即不超标),重复Sp5-2和
Sp5-3直至误码率超标。当刚超标时,记录此时的基站仿真器发射功率,即为该位置的灵敏度SENS θ , φ ,ANT
。同时也要获得此时的移动终端基带芯片接收到功率值Rx Level即为PSens Rx Level 。
Sp5-4:OTA测试系统控制暗室收发天线转动到垂直位置,测量此时移动终端的灵敏度SENS θ
, φ ,ANT 。同时,测试此时的GSM移动终端基带芯片接收到功率值Rx Level。由于此时处于辐射模式,Rx
Level一般不等于基站仿真器的功率。本实施例中假设基站仿真器输出功率设为初始值的时候,测得GSM移动终端基带芯片接收到的功率为PInit Rx
Level 。
Sp5-5:如果移动终端灵敏度没有超标(GSM标准定义为BER小于2.4%即不超标),测试系统控制基站仿真器降低发射功率。此时测试系统将设置发射功率为:Pcellpower=Pinitial-(
PInit Rx Level- PSens Rx Level )
。其中,Pcellpower 表示下一步基站仿真器应该设置的功率;Pinitial 为基站仿真器测试时的初始功率;
PInit Rx Level 表示基站仿真器输出功率设为初始值的时候,GSM移动终端基带芯片的接收功率;PSens Rx
Level 表示在传导测试中,GSM移动终端达到灵敏度时基带芯片实际接收功率。
Sp5-6:
测量移动终端误码率BER,此时BER应该会非常接近2.4%(GSM标准定义为BER小于2.4%即不超标)。
Sp5-7:
如果误码率没有超标,那么降低一预定值如0.5dB基站功率,如果超标,那么增加一预定值如0.5dB基站功率,重新测试。记录此时的基站仿真器发射功率,即为该位置的灵敏度SENS
θ , φ ,ANT ;
Sp5-8: OTA测试系统控制暗室收发天线转动到水平位置。
Sp5-9:OTA测试系统控制基站仿真器到初始功率Pinitial
。该初始功率Pinitial
指的是每一次灵敏度搜索的起始值,每次手机换到新的位置,基站仿真器总是从一个最开始的比较高的发射功率开始,逐渐的降低功率,直到误码率超标。
Sp5-10:测量GSM移动终端的误码率BER。同时,测试此时在基站仿真器输出功率设为初始值时候,GSM移动终端基带芯片测得的接收功率Rx
Level值。由于此时处于辐射模式,Rx
Level一般不等于基站仿真器的功率。假设基站仿真器输出功率设为初始值的时候,测得GSM移动终端基带芯片接收到的功率为 PInit Rx
Level 。其中,所述辐射模式是相对传导测试而言,这时GSM移动终端和基站仿真器不通过射频线缆连接,而是直接无线连接。
Sp6:如果GSM移动终端误码率BER没有超标,OTA测试系统控制基站仿真器降低发射功率,此时测试系统将设置发射功率为:
Pcellpower=Pinitial-( PInit Rx Level-
PSens Rx Level ) 。其中,Pcellpower
表示下一步基站仿真器应该设置的功率。Pinitial 为基站仿真器测试时最初的初始功率;PInit Rx
Level 表示基站仿真器输出功率设为初始值的时候,GSM移动终端基带芯片接收到的功率;PSens Rx Level
表示在传导测试中,GSM移动终端达到灵敏度时的GSM移动终端实际接收到的功率。
Sp7: 测量GSM移动终端误码率BER,此时误码率BER应该会非常接近2.4%。
Sp8:如果误码率BER没有超标(GSM标准定义为BER小于2.4%即不超标),那么降低一预定值如0.5dB基站仿真器发射功率,如果超标,那么增加该预定值如0.5dB基站功率,重新测试。记录此时的基站仿真器发射功率,即为该位置的灵敏度SENS
θ , φ ,ANT 。
Sp9: 测试系统控制暗室收发天线转动到垂直位置,重复sp4-8;
Sp10:测试系统控制转台Theta和Phi轴转动到第二预定位置,并重复Sp3-9。
加权统计所有位置的灵敏度SENS θ , φ ,ANT
,从而获得最终的TIS;
其中 θ , φ 分别为上述Theta和Phi轴的角度,EIS是灵敏度SENS θ , φ
,ANT 补偿该角度暗室接收天线增益后的功率值,单位为瓦;N和M分别是Theta和Phi轴的测试点数,EIS θ、 EIS
φ 分别是暗室接收天线转动水平和垂直位置测试的灵敏度。
本发明第二种实施例使用移动终端辐射模式任意一点下灵敏度(Sensitivity)对应的移动终端基带芯片接收功率Rx
Level值来快速定位辐射下任何位置的灵敏度的方法,省略了初始测试传导灵敏度和GSM移动终端基带芯片实际接收功率Rx
level,但是第一个点的测量时间会更长一点。但是仅仅是总测试数量的1/144,因此总体的测试时间还是会节省很多,其可以提高TIS测试中每个角度的灵敏度搜索时间,从而提高TIS的整体测量速度。
综上所述,本发明实施例的GSM移动终端的TIS测试方法,由于使用GSM移动终端传导下灵敏度(Sensitivity)对应的移动终端基带芯片接收功率Rx
Level值来快速定位辐射下任何位置的灵敏度的方法,可以提高TIS测试中每个角度的灵敏度搜索时间,从而提高TIS的整体测量速度。
以及使用移动终端辐射模式任意一点下灵敏度(Sensitivity)对应的移动终端基带芯片接收功率Rx
Level值来快速定位辐射下任何位置的灵敏度的方法,其可以提高TIS测试中每个角度的灵敏度搜索时间,从而提高TIS的整体测量速度。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。
Claims (18)
- [根据细则26改正13.08.2012]
一种GSM移动终端的TIS测试方法,其特征在于,包括步骤:首先将GSM移动终端和基站仿真器使用射频线缆直接连接进行传导测试,确定传导测试下GSM移动终端达到误码率标准时GSM移动终端基带芯片实际接收到的功率值Rx Level,并将该传导测试下GSM移动终端基带芯片实际接收功率为PSens Rx Level ;所述方法还包括以下步骤:Step1: 将GSM移动终端开机放置到OTA测试系统的转台固定位置,并连接到基站仿真器;Step2: OTA测试系统控制转台的Theta轴和Phi轴转动到第一预定位置;Step3: OTA测试系统控制暗室收发天线转动到水平位置;Step4: OTA测试系统控制基站仿真器到初始功率Pinitial ;Step5: 测量GSM移动终端的误码率;并测试此时在基站仿真器输出功率设为初始功率Pinitial 时,GSM移动终端基带芯片的接收功率的Rx Level值,设为PInit Rx Level ;Step6: 当GSM移动终端误码率没有超标,OTA测试系统控制基站仿真器降低发射功率为Pcellpower=Pinitial-( PInit Rx Level- PSens Rx Level ) ;其中,Pcellpower 表示下一步基站仿真器应该设置的功率;Pinitial 为基站仿真器测试时的初始功率;PInit Rx Level 表示基站仿真器输出功率设为初始值的时候,GSM移动终端基带芯片的接收功率;PSens Rx Level 表示在传导测试中,GSM移动终端达到灵敏度时基带芯片实际接收功率;Step7: 测量此时的GSM移动终端误码率;Step8: 当判断此时的GSM移动终端误码率没有超标,则对基站仿真器发射功率减少一预定值,当此时的GSM移动终端误码率超标,则对基站仿真器发射功率增加一该预定值,重新测试;记录此时的基站仿真器发射功率,即为该位置的灵敏度SENS θ , φ ,ANT ;Step9: OTA测试系统控制暗室收发天线转动到垂直位置,重复步骤Step4-8;Step10:测试系统控制转台Theta和Phi轴转动到第二预定位置,并重复步骤Step3-9;Step11:测试系统控制转台Theta轴每隔300,Phi轴每隔300测试一次,当转台Theta和Phi轴所有角度测试完毕后,根据公式:加权统计所有位置的灵敏度SENS θ , φ ,ANT ,从而获得最终的TIS;其中θ , φ 分别为上述Theta和Phi轴的角度,EIS是灵敏度SENS θ , φ ,ANT 补偿该角度暗室接收天线增益后的功率值,单位为瓦;N和M分别是Theta和Phi轴的测试点数,EIS θ、 EIS φ 分别是暗室接收天线转动水平和垂直位置测试的灵敏度。 - 根据权利要求1所述GSM移动终端的TIS测试方法,其特征在于,所述GSM移动终端误码率小于2.4%时不超标。
- 根据权利要求1所述GSM移动终端的TIS测试方法,其特征在于,所述步骤Step8中的预定值为0.5dB。
- 根据权利要求1所述GSM移动终端的TIS测试方法,其特征在于,所述第一预定位置与第二预定位置的Theta轴相隔300,Phi轴相隔300。
- 根据权利要求1所述GSM移动终端的TIS测试方法,其特征在于,设定Theta和Phi轴的测试点数都为12点。
- 一种GSM移动终端的TIS测试方法,其特征在于,包括步骤:首先将GSM移动终端和基站仿真器使用射频线缆直接连接进行传导测试,确定传导测试下GSM移动终端达到误码率标准时GSM移动终端基带芯片实际接收到的功率值Rx Level,并将该传导测试下GSM移动终端基带芯片实际接收功率为 ;所述方法还包括以下步骤:Step1: 将GSM移动终端开机放置到OTA测试系统的转台固定位置,并连接到基站仿真器;Step2: OTA测试系统控制转台的Theta轴和Phi轴转动到第一预定位置;Step3: OTA测试系统控制暗室收发天线转动到水平位置。
- 根据权利要求6所述GSM移动终端的TIS测试方法,其特征在于,所述方法还包括以下步骤:Step4: OTA测试系统控制基站仿真器到初始功率Pinitial ;Step5: 测量GSM移动终端的误码率;并测试此时在基站仿真器输出功率设为初始功率Pinitial 时,GSM移动终端基带芯片的接收功率的Rx Level值,设为PInit Rx Level ;Step6: 当GSM移动终端误码率没有超标,OTA测试系统控制基站仿真器降低发射功率为Pcellpower=Pinitial-( PInit Rx Level- PSens Rx Level ) ;其中,Pcellpower 表示下一步基站仿真器应该设置的功率;Pinitial 为基站仿真器测试时的初始功率;PInit Rx Level 表示基站仿真器输出功率设为初始值的时候,GSM移动终端基带芯片的接收功率;PSens Rx Level 表示在传导测试中,GSM移动终端达到灵敏度时基带芯片实际接收功率;Step7: 测量此时的GSM移动终端误码率;Step8: 当判断此时的GSM移动终端误码率没有超标,则对基站仿真器发射功率减少一预定值,当此时的GSM移动终端误码率超标,则对基站仿真器发射功率增加一该预定值,重新测试;记录此时的基站仿真器发射功率,即为该位置的灵敏度SENS θ , φ ,ANT 。
- 根据权利要求7所述GSM移动终端的TIS测试方法,其特征在于,,所述方法还包括以下步骤:Step9: OTA测试系统控制暗室收发天线转动到垂直位置,重复所述步骤Step4-8;Step10:测试系统控制转台Theta和Phi轴转动到第二预定位置,并重复所述步骤Step3-9。
- [根据细则26改正13.08.2012]
一种GSM移动终端的TIS测试方法,其特征在于,包括步骤:Sp1:将GSM移动终端开机放置到OTA测试系统的转台固定位置,并连接到基站仿真器;Sp2: OTA测试系统控制转台的Theta轴和Phi轴转动到第一预定位置;Sp3: OTA测试系统控制暗室收发天线转动到水平位置;Sp4: OTA测试系统控制基站仿真器到初始功率Pinitial ;Sp5:测量GSM移动终端的误码率;Sp5-1:当GSM移动终端误码率没有超标,OTA测试系统控制基站仿真器降低一预定值发射功率;Sp5-2:测量此时的GSM移动终端误码率;Sp5-3:当GSM移动终端误码率BER没有超标,重复Sp5-1和 Sp5-2直至误码率超标;并记录刚超标时的基站仿真器发射功率,即为该位置的灵敏度SENS θ , φ ,ANT ;并获得此时的移动终端基带芯片接收到功率值Rx Level即为PSens Rx Level ;Sp5-4:OTA测试系统控制暗室收发天线转动到垂直位置,测量获取此时移动终端的灵敏度SENS θ , φ ,ANT ;并测试获取此时的GSM移动终端基带芯片接收到功率值Rx Level;设基站仿真器输出功率设为初始值的时候,测得GSM移动终端基带芯片接收到的功率为PInit Rx Level ;Sp5-5:当GSM移动终端灵敏度没有超标,OTA测试系统控制基站仿真器降低发射功率,并将发射功率设置为:Pcellpower=Pinitial-( PInit Rx Level- PSens Rx Level ) ;其中, Pcellpower 表示下一步基站仿真器应该设置的功率;Pinitial 为基站仿真器测试时的初始功率;PInit Rx Level 表示基站仿真器输出功率设为初始值的时候,GSM移动终端基带芯片的接收功率;PSens Rx Level 表示在传导测试中,GSM移动终端达到灵敏度时基带芯片实际接收功率;Sp5-6: 测量移动终端误码率;Sp5-7: 当误码率没有超标,那么降低一预定值基站功率,如果超标,那么增加一预定值基站功率,重新测试;并记录刚超标时的基站仿真器发射功率,即为该位置的灵敏度SENS θ , φ ,ANT ;Sp5-8: OTA测试系统控制暗室收发天线转动到水平位置;Sp5-9:OTA测试系统控制基站仿真器到初始功率Pinitial ;Sp5-10:测量GSM移动终端的误码率;并测试此时在基站仿真器输出功率设为初始值时候,GSM移动终端基带芯片测得的接收功率Rx Level值;并设基站仿真器输出功率设为初始值的时候,测得GSM移动终端基带芯片接收到的功率为PInit Rx Level ;Sp6:当GSM移动终端误码率没有超标,OTA测试系统控制基站仿真器降低发射功率为Pcellpower=Pinitial-( PInit Rx Level- PSens Rx Level ) ;其中, Pcellpower 表示下一步基站仿真器应该设置的功率;Pinitial 为基站仿真器测试时的初始功率;PInit Rx Level 表示基站仿真器输出功率设为初始值的时候,GSM移动终端基带芯片的接收功率;PSens Rx Level 表示在传导测试中,GSM移动终端达到灵敏度时基带芯片实际接收功率;Sp7: 测量GSM移动终端误码率;Sp8:当判断此时的GSM移动终端误码率没有超标,则对基站仿真器发射功率减少一预定值,当此时的GSM移动终端误码率超标,则对基站仿真器发射功率增加一该预定值,重新测试;记录此时的基站仿真器发射功率,即为该位置的灵敏度SENS θ , φ ,ANT ;Sp9: OTA测试系统控制暗室收发天线转动到垂直位置,重复步骤Sp4-8;Sp10:测试系统控制转台Theta和Phi轴转动到第二预定位置,并重复步骤Sp3-9;Sp11:测试系统控制转台Theta轴每隔300,Phi轴每隔300测试一次,当转台Theta和Phi轴所有角度测试完毕后,根据公式:加权统计所有位置的灵敏度SENS θ , φ ,ANT ,从而获得最终的TIS;其中 θ , φ 分别为上述Theta和Phi轴的角度,EIS是灵敏度SENS θ , φ ,ANT 补偿该角度暗室接收天线增益后的功率值,单位为瓦;N和M分别是Theta和Phi轴的测试点数,EIS θ、 EIS φ 分别是暗室接收天线转动水平和垂直位置测试的灵敏度。 - 根据权利要求9所述GSM移动终端的TIS测试方法,其特征在于,所述GSM移动终端误码率小于2.4%时不超标,GSM移动终端误码率大于等于2.4%时超标。
- 根据权利要求9所述GSM移动终端的TIS测试方法,其特征在于,所述步骤Sp8中的预定值为0.5dB。
- 根据权利要求9所述GSM移动终端的TIS测试方法,其特征在于,所述第一预定位置与第二预定位置的Theta轴相隔300,Phi轴相隔300。
- 根据权利要求9所述GSM移动终端的TIS测试方法,其特征在于,设定Theta和Phi轴的测试点数都为12点。
- 一种GSM移动终端的TIS测试方法,其特征在于,包括步骤:Sp1:将GSM移动终端开机放置到OTA测试系统的转台固定位置,并连接到基站仿真器;Sp2: OTA测试系统控制转台的Theta轴和Phi轴转动到第一预定位置;Sp3: OTA测试系统控制暗室收发天线转动到水平位置。
- 根据权利要求14所述GSM移动终端的TIS测试方法,其特征在于,所述方法还包括以下步骤:Sp4: OTA测试系统控制基站仿真器到初始功率Pinitial ;Sp5:测量GSM移动终端的误码率;Sp5-1:当GSM移动终端误码率没有超标,OTA测试系统控制基站仿真器降低一预定值发射功率;Sp5-2:测量此时的GSM移动终端误码率;Sp5-3:当GSM移动终端误码率BER没有超标,重复Sp5-1和 Sp5-2直至误码率超标;并记录刚超标时的基站仿真器发射功率,即为该位置的灵敏度SENS θ , φ ,ANT ;并获得此时的移动终端基带芯片接收到功率值Rx Level即为 PSens Rx Level ;Sp5-4:OTA测试系统控制暗室收发天线转动到垂直位置,测量获取此时移动终端的灵敏度SENS θ , φ ,ANT ;并测试获取此时的GSM移动终端基带芯片接收到功率值Rx Level;设基站仿真器输出功率设为初始值的时候,测得GSM移动终端基带芯片接收到的功率为PInit Rx Level ;Sp5-5:当GSM移动终端灵敏度没有超标,OTA测试系统控制基站仿真器降低发射功率,并将发射功率设置为:Pcellpower=Pinitial-( PInit Rx Level- PSens Rx Level ) ;其中,Pcellpower 表示下一步基站仿真器应该设置的功率; Pinitial 为基站仿真器测试时的初始功率; PInit Rx Level 表示基站仿真器输出功率设为初始值的时候,GSM移动终端基带芯片的接收功率;PSens Rx Level 表示在传导测试中,GSM移动终端达到灵敏度时基带芯片实际接收功率。
- 根据权利要求15所述GSM移动终端的TIS测试方法,其特征在于,所述方法还包括以下步骤:Sp5-6: 测量移动终端误码率;Sp5-7: 当误码率没有超标,那么降低一预定值基站功率,如果超标,那么增加一预定值基站功率,重新测试;并记录刚超标时的基站仿真器发射功率,即为该位置的灵敏度SENS θ , φ ,ANT ;Sp5-8: OTA测试系统控制暗室收发天线转动到水平位置;Sp5-9:OTA测试系统控制基站仿真器到初始功率 Pinitial ;Sp5-10:测量GSM移动终端的误码率;并测试此时在基站仿真器输出功率设为初始值时候,GSM移动终端基带芯片测得的接收功率Rx Level值;并设基站仿真器输出功率设为初始值的时候,测得GSM移动终端基带芯片接收到的功率为PInit Rx Level ;Sp6:当GSM移动终端误码率没有超标,OTA测试系统控制基站仿真器降低发射功率为 Pcellpower=Pinitial-( PInit Rx Level- PSens Rx Level ) ;其中,Pcellpower 表示下一步基站仿真器应该设置的功率; Pinitial 为基站仿真器测试时的初始功率;PInit Rx Level 表示基站仿真器输出功率设为初始值的时候,GSM移动终端基带芯片的接收功率;PSens Rx Level 表示在传导测试中,GSM移动终端达到灵敏度时基带芯片实际接收功率。
- 根据权利要求16所述GSM移动终端的TIS测试方法,其特征在于,所述方法还包括以下步骤:Sp7: 测量GSM移动终端误码率;Sp8:当判断此时的GSM移动终端误码率没有超标,则对基站仿真器发射功率减少一预定值,当此时的GSM移动终端误码率超标,则对基站仿真器发射功率增加一该预定值,重新测试;记录此时的基站仿真器发射功率,即为该位置的灵敏度SENS θ , φ ,ANT 。
- 根据权利要求17所述GSM移动终端的TIS测试方法,其特征在于,所述方法还包括以下步骤:Sp9: OTA测试系统控制暗室收发天线转动到垂直位置,重复所述步骤Sp4-8;Sp10:测试系统控制转台Theta和Phi轴转动到第二预定位置,并重复所述步骤Sp3-9。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110189515.7 | 2011-07-07 | ||
CN201110189515A CN102324987A (zh) | 2011-07-07 | 2011-07-07 | 一种gsm移动终端的tis测试方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013004173A1 true WO2013004173A1 (zh) | 2013-01-10 |
Family
ID=45452663
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/078102 WO2013004173A1 (zh) | 2011-07-07 | 2012-07-03 | 一种gsm移动终端的tis测试方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102324987A (zh) |
WO (1) | WO2013004173A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115811370A (zh) * | 2022-12-09 | 2023-03-17 | 荣耀终端有限公司 | 定位性能的测试方法、相关装置及系统 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102324987A (zh) * | 2011-07-07 | 2012-01-18 | 惠州Tcl移动通信有限公司 | 一种gsm移动终端的tis测试方法 |
CN103906095B (zh) * | 2012-12-25 | 2017-07-28 | 深圳市共进电子股份有限公司 | 一种无线覆盖性能测试系统及方法 |
CN103336181B (zh) * | 2013-05-28 | 2015-10-07 | 惠州Tcl移动通信有限公司 | 一种gps ota测试方法及系统 |
CN104022836A (zh) * | 2014-05-21 | 2014-09-03 | 北京邮电大学 | 一种多制式移动终端的tis测试系统及方法 |
CN107819529B (zh) * | 2016-09-13 | 2021-01-05 | 深圳市新益技术有限公司 | 一种tis快速测量的方法 |
CN108540342A (zh) * | 2018-03-23 | 2018-09-14 | 上海鸿洛通信电子有限公司 | 测试方法、装置及设备 |
CN113422656A (zh) * | 2021-05-28 | 2021-09-21 | 中国电力科学研究院有限公司 | 一种基于射频技术的无线灵敏度测试方法及装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200934211A (en) * | 2008-01-18 | 2009-08-01 | Arima Communication Corp | Automatic test method for speeding up total isotropic sensitivity of mobile phone |
CN101510806A (zh) * | 2009-03-06 | 2009-08-19 | 于伟 | 收发同频的移动终端总全向灵敏度测试方法和装置 |
CN101605350A (zh) * | 2009-07-01 | 2009-12-16 | 工业和信息化部通信计量中心 | 基于多种无线接入技术空间性能测试系统及其测试方法 |
CN102324987A (zh) * | 2011-07-07 | 2012-01-18 | 惠州Tcl移动通信有限公司 | 一种gsm移动终端的tis测试方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1830495B1 (en) * | 2006-03-01 | 2008-12-03 | Research In Motion Limited | System and method for determining total isotropic sensitivity (TIS) |
CN101459477B (zh) * | 2008-12-28 | 2012-07-04 | 中国电子科技集团公司第四十一研究所 | 一种手机天线辐射性能自动测试方法 |
-
2011
- 2011-07-07 CN CN201110189515A patent/CN102324987A/zh active Pending
-
2012
- 2012-07-03 WO PCT/CN2012/078102 patent/WO2013004173A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200934211A (en) * | 2008-01-18 | 2009-08-01 | Arima Communication Corp | Automatic test method for speeding up total isotropic sensitivity of mobile phone |
CN101510806A (zh) * | 2009-03-06 | 2009-08-19 | 于伟 | 收发同频的移动终端总全向灵敏度测试方法和装置 |
CN101605350A (zh) * | 2009-07-01 | 2009-12-16 | 工业和信息化部通信计量中心 | 基于多种无线接入技术空间性能测试系统及其测试方法 |
CN102324987A (zh) * | 2011-07-07 | 2012-01-18 | 惠州Tcl移动通信有限公司 | 一种gsm移动终端的tis测试方法 |
Non-Patent Citations (2)
Title |
---|
LUO, JIAN, THE NEW TECHNOLOGY OF WIRELESS COMMUNICATION-MEASURE THE PERFORMANCE OF THE MOBILE WITH THE AIR INTERFACE * |
SAFETY & EMC, August 2004 (2004-08-01), pages 52 - 54 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115811370A (zh) * | 2022-12-09 | 2023-03-17 | 荣耀终端有限公司 | 定位性能的测试方法、相关装置及系统 |
CN115811370B (zh) * | 2022-12-09 | 2023-09-22 | 荣耀终端有限公司 | 定位性能的测试方法、相关装置及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN102324987A (zh) | 2012-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013004173A1 (zh) | 一种gsm移动终端的tis测试方法 | |
WO2021118228A1 (en) | Electronic device and method for switching of antenna thereof | |
WO2020204299A1 (ko) | 카메라가 수집한 데이터에 기반하여 빔을 제어하는 전자 장치 및 전자 장치의 동작 방법 | |
WO2021054597A1 (en) | Electronic device for determining path of line of sight (los) and method for the same | |
WO2020231112A1 (en) | Electronic device including antenna | |
WO2016153204A1 (ko) | 빔 포밍 방식을 지원하는 통신 시스템에서 풀 듀플렉스 방식을 운용하는 장치 및 방법 | |
WO2020171504A1 (en) | Heat transfer member and electronic device including the same | |
EP4018557A1 (en) | Method and user equipment for a signal reception | |
WO2020085791A1 (ko) | 안테나 및 이를 포함하는 전자 장치 | |
EP3776908A1 (en) | Method and apparatus for sensor assisted beam selection, beam tracking, and antenna module selection | |
WO2018068405A1 (zh) | WiFi性能测试方法及系统 | |
WO2020101262A1 (en) | Antenna using slot and electronic device including the same | |
WO2021206366A1 (ko) | 안테나를 포함하는 전자 장치 및 전자 장치에서 안테나와 연관된 출력 제어 방법 | |
WO2016089120A1 (ko) | 하이브리드 다중-입력 다중-출력 방식을 지원하는 통신 시스템에서 빔 운용 장치 및 방법 | |
EP3335270A1 (en) | Antenna device and electronic device including the same | |
WO2017065554A1 (en) | Apparatus and method for performing beamforming operation in millimeter wave communication system | |
WO2020054973A1 (ko) | 안테나 어레이를 이용하여 외부 객체를 감지하는 전자 장치 및 그의 동작 방법 | |
WO2020122593A1 (en) | Electronic device for attenuating at least part of signal received by antenna and method for controlling communication signal | |
WO2019039671A1 (ko) | 위상 배열 안테나를 캘리브레이션하기 위한 장치 및 방법 | |
WO2019112136A1 (ko) | 무선 통신 시스템에서 빔포밍을 수행하는 전자 장치 및 이를 위한 방법 | |
WO2017119766A1 (en) | Apparatus and method for transmitting and receiving signal in communication system supporting rate compatible low density parity check code | |
WO2021015521A1 (en) | Electronic device comprising antenna and power backoff control method for the electronic device | |
WO2021025468A1 (en) | Electronic device including antenna | |
EP3659263A1 (en) | Electronic device supporting multi-band wireless communications and method of controlling same | |
US11044027B2 (en) | Wireless transmission performance test system and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12807003 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12807003 Country of ref document: EP Kind code of ref document: A1 |