WO2014094376A1 - Automatic segmentation method for cervical cancer image based on t2-mri and dw-mri - Google Patents

Automatic segmentation method for cervical cancer image based on t2-mri and dw-mri Download PDF

Info

Publication number
WO2014094376A1
WO2014094376A1 PCT/CN2013/070942 CN2013070942W WO2014094376A1 WO 2014094376 A1 WO2014094376 A1 WO 2014094376A1 CN 2013070942 W CN2013070942 W CN 2013070942W WO 2014094376 A1 WO2014094376 A1 WO 2014094376A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
segmentation
tumor
mri
bladder
Prior art date
Application number
PCT/CN2013/070942
Other languages
French (fr)
Chinese (zh)
Inventor
李悟
考月英
田捷
Original Assignee
中国科学院自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院自动化研究所 filed Critical 中国科学院自动化研究所
Publication of WO2014094376A1 publication Critical patent/WO2014094376A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/143Segmentation; Edge detection involving probabilistic approaches, e.g. Markov random field [MRF] modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20076Probabilistic image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing

Definitions

  • the invention belongs to the field of image processing, and particularly relates to a method for automatically segmenting cervical cancer images based on T2-weighted nuclear magnetic resonance imaging T2-MRI and diffusion weighted magnetic resonance imaging DW-MRI. Background technique
  • Cervical cancer is one of the common malignant tumors that seriously threaten women's life and health.
  • the accurate segmentation of cervical cancer has important clinical significance and application value for the prevention, diagnosis and treatment of cervical cancer.
  • FIG. 1 (a) and (b) show the T2-MR image and DW-MR image of the abdomen of cervical cancer patients.
  • the cervix is located between the bladder and the rectum. It can be seen from Fig.
  • CMAP combined maximum posterior probability
  • a T2-weighted magnetic resonance imaging T2-MRI and diffusion-weighted magnetic resonance imaging DW-MRI automatic segmentation method for cervical cancer images including:
  • Step 1 Register the DW-MR image into the T2-MR image by nonlinear registration method, and classify the registered DW-MR image;
  • Step 2 Filter the T2-MR image using nonlinear anisotropic diffusion filtering technique, segment the bladder and rectum, and segment the region of interest using the segmentation results of the bladder and rectum;
  • Step 3 For T2-MR images The region of interest and the DW-MR image were combined with the maximum posterior probability CMAP for precise segmentation of the tumor.
  • the invention fully utilizes the effective information of the T2-MR image and the DW-MR image, and can effectively overcome the influence of noise, local volume effect and intensity overlap in the T2-MR image, and is an accurate and effective segmentation method for cervical cancer. It has important clinical significance and application value for the prevention, diagnosis and treatment of cervical cancer.
  • Figure 1 is an anatomical view of a patient with cervical cancer, (a) is a T2-M image; (b) is a DW-MR image;
  • Figure 2 is an automatic segmentation frame diagram based on T2-MRI and DW-MRI
  • FIG. 3 is a flow chart of the Maximum Posterior Probability Method (CMAP);
  • the core idea of the present invention is a T2-weighted magnetic resonance imaging (T2-MRI) and diffusion-weighted magnetic resonance imaging (DW-MRI) automatic segmentation framework for cervical cancer images and the use of joint maximum posterior probability (CMAP).
  • the method for segmenting the cervical cancer tumor region includes the following steps: First, the DW-MR image is registered to the T2-MR image by using a nonlinear registration method (here, the mutual information registration method is taken as an example), and the registration is performed.
  • DW-MR images are classified; then T2-MR images are filtered using nonlinear anisotropic diffusion filtering techniques (here, PM nonlinear anisotropic diffusion filtering is used as an example), then the bladder and rectum are segmented, and the bladder and The segmentation result of the rectum divides the region of interest (including normal tissues and tumors). Finally, the region of interest and the DW-MR image of the T2-MR image are combined with the maximum posterior probability (CMAP) for accurate segmentation of the tumor.
  • CMAP maximum posterior probability
  • FIG. 2 is a flowchart of a T2 weighted magnetic resonance imaging (T2-MRI) and diffusion weighted magnetic resonance imaging (DW-MRI) cervical segmentation image automatic segmentation framework provided by the present invention, which comprises the following steps. :
  • Step 1 Use a nonlinear registration method (such as mutual information registration method, Demons algorithm, etc.) to register the DW-MR image to the T2-MR image, and sub-step the registered DW-MR image.
  • Step 2 Adopt The nonlinear anisotropic diffusion filtering technique filters the T2-MR image, then segments the bladder and rectum, and uses the segmentation results of the bladder and rectum to segment the region of interest (including normal tissues and tumors);
  • Step 3 Accurate segmentation of the tumor is performed using the combined maximum posterior probability (CMAP) method for the region of interest and the DW-MR image of the T2-M image.
  • Step 1 above includes the following two small steps: 1) Registering the DW-MR image to the T2-MR image using a nonlinear registration method, where the mutual information registration method is used as an example; 2) The registered DW-MR The image classification is an automatic threshold classification method to achieve the initial segmentation and localization of the tumor.
  • CMAP maximum posterior probability
  • the above step 2 includes the following four steps: 1) filtering the T2-M image by using a nonlinear anisotropic diffusion filtering technique to preserve the edge information while removing noise, where PM nonlinear anisotropic diffusion filtering is taken as an example; Bladder segmentation; 3) rectal segmentation; 4) segmentation of the region of interest.
  • the gradient threshold is the gradient threshold.
  • the method used for bladder segmentation in the second small step above is the active contour model.
  • the model was built based on our prior knowledge that the bladder is the more uniform monolithic region with the highest gray value in the T2-M image of the abdominal cavity.
  • the rectal segmentation uses the a priori knowledge that the rectum is located below the cervix and the preliminary segmentation results of the tumor in step 1.
  • the fuzzy C-means algorithm is used on the T2-MR image of the bladder to obtain the rectal segmentation. result.
  • the region of interest is segmented.
  • the preliminary segmentation result of the tumor in step 1 is used, and the fuzzy C-means algorithm is used to segment the inclusion.
  • the region of interest of the tumor and normal tissue, the results are shown in Figure 4 (b).
  • step 3 is to accurately segment the tumor by using the combined maximum posterior probability (CMAP) method for the region of interest and the DW-MR image of the T2-MR image, and the result is shown in Fig. 4(e).
  • CMAP maximum posterior probability
  • CMAP joint maximum a posteriori probability
  • the specific steps are as follows: 1) Calculate the energy function of the T2-M image ⁇ 2 ; 2) Calculate the energy function of the DW-M image t/ (x 3) Calculate the joint energy function of the T2-MR image and the DW-MR image ⁇ 2 ( + ⁇ / ( ; 4) to determine whether the termination condition is satisfied, and if so, determine the type of tumor and normal tissue according to the principle of minimum energy, thereby Output the accurately segmented tumor area; return to step 1 if the termination condition is not met.
  • the corresponding calculation formula in each small step is shown in the following description.
  • the traditional MAP segmentation algorithm is to obtain the segmentation result L ⁇ , which makes the posterior probability ⁇ x
  • X arg max (
  • ⁇ ⁇ is the gray mean of the first type of tissue at the pixel
  • n ik is the Gaussian white noise corresponding to the tissue at the pixel Z
  • x) It can be expressed as:
  • t ⁇ x ⁇ is a potential function
  • is a constant
  • the energy function f/ 2 (x) of the T2-M image in the first small step described above can be calculated from the calculation formula of f/(x).
  • the energy function ⁇ / ( ⁇ ) of the DW-MR image in the second small step above can be calculated according to the calculation formula of [/(X).
  • ? is the weight coefficient, which is used to balance the influence of the T2-MR image and the DW-MR image on the segmentation result.
  • FIG. 4 shows the effect of the T2-weighted magnetic resonance imaging (T2-MRI) and diffusion-weighted magnetic resonance imaging (DW-MRI) cervical cancer image segmentation framework experiments.
  • T2-MRI T2-weighted magnetic resonance imaging
  • DW-MRI diffusion-weighted magnetic resonance imaging
  • the method of the present invention is based on T2-weighted magnetic resonance imaging (T2-MRI) and diffusion-weighted magnetic resonance imaging (DW-MRI) automatic segmentation framework for cervical cancer images and the use of joint maximum posterior probability (CMAP).
  • T2-MRI T2-weighted magnetic resonance imaging
  • DW-MRI diffusion-weighted magnetic resonance imaging
  • CMAP joint maximum posterior probability

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Probability & Statistics with Applications (AREA)
  • Software Systems (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

An automatic segmentation method for a cervical cancer image based on T2-weighted magnetic resonance imaging (T2-MRI) and diffusion-weighted magnetic resonance imaging (DW-MRI), including: registering a DW-MR image to a T2-MR image using a nonlinear registration method, and classifying the registered DW-MR image; filtering the T2-MR image using a nonlinear anisotropic diffusion filtering technique, segmenting a bladder and a rectum, and segmenting a region of interest using the segmentation results of the bladder and the rectum; and performing accurate segmentation of a tumour on the region of interest of the T2-MR image and the DW-MR image using a combined maximum a posteriori probability (CMAP) method. The present invention makes full use of the effective information about a T2-MR image and a DW-MR image, can effectively overcome the influences of noise, partial volume effect and intensity overlap in the T2-MR image, is an accurate and effective segmentation method for cervical cancer, and has important clinical significance and application value for the prevention, diagnosis and treatment of cervical cancer.

Description

基于 T2-MRI和 DW-MRI的宫颈癌图像自动分割方法 本申请要求了 2012年 12月 19日提交的、申请号为 201210554664. 3、 发明名称为 "基于 T2-MRI和 DW-MRI的宫颈癌图像自动分割方法"的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域  Automated segmentation method for cervical cancer images based on T2-MRI and DW-MRI This application claims the application number 201210554664. 3, the invention name is "T2-MRI and DW-MRI based cervical cancer" Priority of the Chinese Patent Application for the Automatic Image Segmentation Method, the entire contents of which are incorporated herein by reference. Technical field
本发明属于图像处理领域, 具体涉及一种基于 T2加权的核磁共振成 像 T2-MRI和弥散加权的核磁共振成像 DW-MRI的宫颈癌图像自动分割方 法。 背景技术  The invention belongs to the field of image processing, and particularly relates to a method for automatically segmenting cervical cancer images based on T2-weighted nuclear magnetic resonance imaging T2-MRI and diffusion weighted magnetic resonance imaging DW-MRI. Background technique
宫颈癌是严重威胁女性生命健康的常见恶性肿瘤之一。 宫颈癌的准确 分割, 对预防、 诊断和治疗宫颈癌有着重要的临床意义和应用价值。  Cervical cancer is one of the common malignant tumors that seriously threaten women's life and health. The accurate segmentation of cervical cancer has important clinical significance and application value for the prevention, diagnosis and treatment of cervical cancer.
随着影像学技术的发展, 医学图像分割已经成为医学图像分析领域里 关键和具有挑战性的问题。而宫颈癌分割又由于复杂的人体腹部组织结构 变得尤为复杂, 单一成像模式 T2-MRI不能完全显示宫颈癌的有效信息。 如图 1 (a)和(b)分别为宫颈癌病人腹部的 T2-MR图像和 DW-MR图像, 宫颈位于膀胱和直肠的中间。 从图 1 (a) 可以看出, T2-MR 图像具有较 高空间分辨率,肿瘤边界比较清晰, 但是宫颈的正常组织、肿瘤、膀胱壁和 直肠相互之间都有较严重的强度重叠; 从图 1 (b)可以看出在 DW-MR图 像中肿瘤具有明显较高的灰度值, 但是其分辨率低, 肿瘤边界较模糊。 因 此单一成像模式下的宫颈癌分割的自动实现是相当困难的, 一些常规的方 法例如区域增长和阈值等都无法很好的分割肿瘤。 发明内容  With the development of imaging technology, medical image segmentation has become a key and challenging problem in the field of medical image analysis. The segmentation of cervical cancer is particularly complicated by the complex structure of the human abdomen. The single imaging mode T2-MRI does not fully display the effective information of cervical cancer. Figure 1 (a) and (b) show the T2-MR image and DW-MR image of the abdomen of cervical cancer patients. The cervix is located between the bladder and the rectum. It can be seen from Fig. 1 (a) that the T2-MR image has a higher spatial resolution and the tumor boundary is clearer, but the normal tissue of the cervix, the tumor, the bladder wall and the rectum have more severe intensity overlap with each other; Figure 1 (b) shows that the tumor has a significantly higher gray value in the DW-MR image, but its resolution is low and the tumor boundary is blurred. Therefore, the automatic realization of cervical cancer segmentation in a single imaging mode is quite difficult, and some conventional methods such as region growth and threshold cannot segment the tumor well. Summary of the invention
本发明的目的在于提供一种基于 T2-MRI和 DW-MRI的宫颈癌图像自 动分割框架以及利用联合最大后验概率 (CMAP) 精确分割宫颈癌肿瘤区 域的方法, 从而进行准确的宫颈癌分割。 It is an object of the present invention to provide a cervical cancer image based on T2-MRI and DW-MRI. The dynamic segmentation framework and the method of accurately segmenting the cervical cancer tumor region by using the combined maximum posterior probability (CMAP) to accurately segment the cervical cancer.
为达到上述目的, 一种基于 T2加权的核磁共振成像 T2-MRI和弥散加 权的核磁共振成像 DW-MRI的宫颈癌图像自动分割方法, 包括:  To achieve the above objectives, a T2-weighted magnetic resonance imaging T2-MRI and diffusion-weighted magnetic resonance imaging DW-MRI automatic segmentation method for cervical cancer images, including:
步骤 1 : 利用非线性配准方法将 DW-MR图像配准到 T2-MR图像, 并对 配准后的 DW-MR图像进行分类;  Step 1: Register the DW-MR image into the T2-MR image by nonlinear registration method, and classify the registered DW-MR image;
步骤 2 : 采用非线性各向异性扩散滤波技术对 T2-MR图像进行滤波, 分割出膀胱和直肠, 并利用膀胱和直肠的分割结果将感兴趣区分割出来; 步骤 3 : 对 T2-MR图像的感兴趣区和 DW-MR图像采用联合最大后验概 率 CMAP的方法进行肿瘤的精确分割。  Step 2: Filter the T2-MR image using nonlinear anisotropic diffusion filtering technique, segment the bladder and rectum, and segment the region of interest using the segmentation results of the bladder and rectum; Step 3: For T2-MR images The region of interest and the DW-MR image were combined with the maximum posterior probability CMAP for precise segmentation of the tumor.
本发明充分利用了 T2-MR图像和 DW-MR图像的有效信息, 可以有 效地克服 T2-MR图像中的噪声、 局部容积效应和强度重叠的影响, 是一 种精确有效的宫颈癌分割方法, 对预防、 诊断和治疗宫颈癌有着重要的临 床意义和应用价值。 附图说明  The invention fully utilizes the effective information of the T2-MR image and the DW-MR image, and can effectively overcome the influence of noise, local volume effect and intensity overlap in the T2-MR image, and is an accurate and effective segmentation method for cervical cancer. It has important clinical significance and application value for the prevention, diagnosis and treatment of cervical cancer. DRAWINGS
图 1是宫颈癌病人的解剖结构图, (a)是 T2-M 图像; (b)是 DW-MR 图像;  Figure 1 is an anatomical view of a patient with cervical cancer, (a) is a T2-M image; (b) is a DW-MR image;
图 2是基于 T2-MRI和 DW-MRI的自动分割框架图;  Figure 2 is an automatic segmentation frame diagram based on T2-MRI and DW-MRI;
图 3是最大后验概率方法 (CMAP) 的流程图;  Figure 3 is a flow chart of the Maximum Posterior Probability Method (CMAP);
图 4是基于 T2加权的核磁共振成像(T2-MRI) 和弥散加权的核磁共 振成像(DW-MRI) 的宫颈癌图像自动分割框架实验效果图, (a)是原图; (b)红色轮廓线内为包含肿瘤和正常组织的感兴趣区; (c)配准到 T2-M 图像的 DW-MR图像; (d)只在 T2-MR图像上采用 MAP方法的宫颈癌分 割结果 (即 ^ = 0时); (e) 在 T2-MR图像和 DW-M 图像上采用 CMAP 方法的宫颈癌分割结果 (即 ^ = 1时); (0 专家手工分割结果。 具体实施方式 Figure 4 is a graphical representation of the auto-segmentation framework of cervical cancer images based on T2-weighted magnetic resonance imaging (T2-MRI) and diffusion-weighted magnetic resonance imaging (DW-MRI), (a) is the original image; (b) red outline Intra-line is the region of interest containing tumor and normal tissue; (c) DW-MR image registered to T2-M image; (d) Cervical cancer segmentation result using MAP method only on T2-MR image (ie ^ (0) (e) Cervical cancer segmentation results using the CMAP method on T2-MR images and DW-M images (ie, ^ = 1); (0 Experts manually segmentation results. detailed description
为使本发明的目的、 技术方案和优点更加清楚明白, 以下结合具体实 施例, 并参照附图, 对本发明进一步详细说明。  In order to make the objects, the technical solutions and the advantages of the present invention more comprehensible, the present invention will be further described in detail below with reference to the accompanying drawings.
本发明的核心思想是一种基于 T2加权的核磁共振成像 (T2-MRI) 和 弥散加权的核磁共振成像 (DW-MRI) 的宫颈癌图像自动分割框架以及利 用联合最大后验概率 (CMAP) 精确分割宫颈癌肿瘤区域的方法, 具体步 骤包括: 首先, 利用非线性配准方法将 DW-MR图像配准到 T2-MR图像 (这里采用互信息配准方法作为示例), 并对配准后的 DW-MR图像进行 分类;然后采用非线性各向异性扩散滤波技术对 T2-MR图像进行滤波(这 里采用 P-M非线性各向异性扩散滤波作为示例),接着分割出膀胱和直肠, 并利用膀胱和直肠的分割结果将感兴趣区(包含正常组织和肿瘤)分割出 来; 最后对 T2-MR图像的感兴趣区和 DW-MR图像采用联合最大后验概 率 (CMAP) 的方法进行肿瘤的精确分割。  The core idea of the present invention is a T2-weighted magnetic resonance imaging (T2-MRI) and diffusion-weighted magnetic resonance imaging (DW-MRI) automatic segmentation framework for cervical cancer images and the use of joint maximum posterior probability (CMAP). The method for segmenting the cervical cancer tumor region includes the following steps: First, the DW-MR image is registered to the T2-MR image by using a nonlinear registration method (here, the mutual information registration method is taken as an example), and the registration is performed. DW-MR images are classified; then T2-MR images are filtered using nonlinear anisotropic diffusion filtering techniques (here, PM nonlinear anisotropic diffusion filtering is used as an example), then the bladder and rectum are segmented, and the bladder and The segmentation result of the rectum divides the region of interest (including normal tissues and tumors). Finally, the region of interest and the DW-MR image of the T2-MR image are combined with the maximum posterior probability (CMAP) for accurate segmentation of the tumor.
以下结合具体的实施例对根据本发明提供的这种基于 T2加权的核磁 共振成像(T2-MRI)和弥散加权的核磁共振成像(DW-MRI) 的宫颈癌图 像自动分割框架以及利用联合最大后验概率 (CMAP) 精确分割宫颈癌肿 瘤区域的方法进行详细描述。 如图 2所示为本发明提供的基于 T2加权的 核磁共振成像(T2-MRI)和弥散加权的核磁共振成像(DW-MRI) 的宫颈 癌图像自动分割框架的流程图, 该方法包括以下步骤:  The automatic segmentation framework of cervical cancer images based on T2-weighted magnetic resonance imaging (T2-MRI) and diffusion-weighted magnetic resonance imaging (DW-MRI) provided according to the present invention and the use of joint maximization are described below in connection with specific embodiments. Probability of Probability (CMAP) A method for accurately segmenting the tumor area of a cervical cancer is described in detail. FIG. 2 is a flowchart of a T2 weighted magnetic resonance imaging (T2-MRI) and diffusion weighted magnetic resonance imaging (DW-MRI) cervical segmentation image automatic segmentation framework provided by the present invention, which comprises the following steps. :
步骤 1 : 利用非线性配准方法 (如互信息配准方法、 Demons算法等) 将 DW-MR图像配准到 T2-MR图像, 并对配准后的 DW-MR图像进行分 步骤 2: 采用非线性各向异性扩散滤波技术对 T2-MR图像进行滤波, 接着分割出膀胱和直肠, 并利用膀胱和直肠的分割结果将感兴趣区(包含 正常组织和肿瘤) 分割出来;  Step 1: Use a nonlinear registration method (such as mutual information registration method, Demons algorithm, etc.) to register the DW-MR image to the T2-MR image, and sub-step the registered DW-MR image. Step 2: Adopt The nonlinear anisotropic diffusion filtering technique filters the T2-MR image, then segments the bladder and rectum, and uses the segmentation results of the bladder and rectum to segment the region of interest (including normal tissues and tumors);
步骤 3 :对 T2-M 图像的感兴趣区和 DW-MR图像采用联合最大后验 概率 (CMAP) 的方法进行肿瘤的精确分割。 上述步骤 1包括以下两小步: 1 ) 利用非线性配准方法将 DW-MR图 像配准到 T2-MR图像, 这里采用互信息配准方法作为示例; 2)对配准后 的 DW-MR图像进行分类是采用的自动阈值分类方法, 实现肿瘤的初步分 割及定位。 Step 3: Accurate segmentation of the tumor is performed using the combined maximum posterior probability (CMAP) method for the region of interest and the DW-MR image of the T2-M image. Step 1 above includes the following two small steps: 1) Registering the DW-MR image to the T2-MR image using a nonlinear registration method, where the mutual information registration method is used as an example; 2) The registered DW-MR The image classification is an automatic threshold classification method to achieve the initial segmentation and localization of the tumor.
上述步骤 2包括以下四步: 1 )采用非线性各向异性扩散滤波技术对 T2-M 图像进行滤波, 在去除噪声的同时保持边缘信息, 这里采用 P-M 非线性各向异性扩散滤波作为示例; 2) 膀胱分割; 3 ) 直肠分割; 4) 感 兴趣区分割。  The above step 2 includes the following four steps: 1) filtering the T2-M image by using a nonlinear anisotropic diffusion filtering technique to preserve the edge information while removing noise, where PM nonlinear anisotropic diffusion filtering is taken as an example; Bladder segmentation; 3) rectal segmentation; 4) segmentation of the region of interest.
上述第一小步中 P-M非线性扩散滤波器公式如下:
Figure imgf000006_0001
The formula of the PM nonlinear diffusion filter in the above first small step is as follows:
Figure imgf000006_0001
其中/。(0为图像在 z处的像素强度值, ζ·表示图像的位置信息为 是梯度算子, 代表时间, ·)是扩散系数, 两种形式为:  among them/. (0 is the pixel intensity value of the image at z, ζ· indicates that the position information of the image is a gradient operator, representing time, ·) is a diffusion coefficient, and the two forms are:
II V/ II 2 II V/ II 2
c(V/) = exp (-- ~ ^-)
Figure imgf000006_0002
c(V/) = exp (-- ~ ^-)
Figure imgf000006_0002
其中 是梯度门限。  Among them is the gradient threshold.
上述第二小步中膀胱分割采用的方法是主动轮廓模型。该模型的建立 是基于我们巳有的先验知识——膀胱是腹腔 T2-M 图像中灰度值最高的 较均匀的整块区域。  The method used for bladder segmentation in the second small step above is the active contour model. The model was built based on our prior knowledge that the bladder is the more uniform monolithic region with the highest gray value in the T2-M image of the abdominal cavity.
上述第三小步中直肠分割利用了直肠位于宫颈的下方这一先验知识 和步骤 1 中的肿瘤初步分割结果, 在去除膀胱的 T2-MR图像上采用了模 糊 C均值的算法, 得到直肠分割结果。  In the third small step above, the rectal segmentation uses the a priori knowledge that the rectum is located below the cervix and the preliminary segmentation results of the tumor in step 1. The fuzzy C-means algorithm is used on the T2-MR image of the bladder to obtain the rectal segmentation. result.
上述第四小步中感兴趣区分割, 在去除膀胱和直肠的 T2-MR图像上, 利用步骤 1中肿瘤的初步分割结果, 采用模糊 C均值的算法, 分割出包含 肿瘤和正常组织的感兴趣区, 结果如图 4 (b)。 In the fourth small step above, the region of interest is segmented. On the T2-MR image of the bladder and rectum, the preliminary segmentation result of the tumor in step 1 is used, and the fuzzy C-means algorithm is used to segment the inclusion. The region of interest of the tumor and normal tissue, the results are shown in Figure 4 (b).
上述步骤 3为对 T2-MR图像的感兴趣区和 DW-MR图像采用联合最 大后验概率 (CMAP) 的方法进行肿瘤的精确分割, 结果如图 4 (e)。  The above step 3 is to accurately segment the tumor by using the combined maximum posterior probability (CMAP) method for the region of interest and the DW-MR image of the T2-MR image, and the result is shown in Fig. 4(e).
下面具体介绍上述联合最大后验概率 (CMAP) 方法具体实施过程。 设; F表示图像, y = , "N, 表示图像在 ;处的灰度值, W表示图像的 像素的总个数。假定图像要被分为 ^类, 以
Figure imgf000007_0001
= 1,2,… 代表像素 ;被归 为第 类。 联合最大后验概率 (CMAP) 方法的流程图如图 3所示, 其具 体步骤如下: 1)计算 T2-M 图像的能量函数^ 2 ; 2)计算 DW-M 图 像的能量函数 t/ (x) ; 3)计算 T2-MR图像和 DW-MR图像的联合能量函 数^2( + ^/ ( ; 4)判断是否满足终止条件, 若满足, 根据能量最小原 则判定肿瘤和正常组织的类别, 从而输出精确分割的肿瘤区域; 若不满足 终止条件返回步骤 1 )。每一小步中对应的计算公式在如下的讲述中会展示 出。
The specific implementation process of the above joint maximum a posteriori probability (CMAP) method is specifically described below. Let F; denote the image, y = , "N, denote the gray value at the image ; W denotes the total number of pixels of the image. Suppose the image is to be classified into ^, to
Figure imgf000007_0001
= 1,2,... represents a pixel ; is classified as a class. The flow chart of the Joint Maximum A Posteriori Probability (CMAP) method is shown in Figure 3. The specific steps are as follows: 1) Calculate the energy function of the T2-M image^ 2 ; 2) Calculate the energy function of the DW-M image t/ (x 3) Calculate the joint energy function of the T2-MR image and the DW-MR image ^ 2 ( + ^/ ( ; 4) to determine whether the termination condition is satisfied, and if so, determine the type of tumor and normal tissue according to the principle of minimum energy, thereby Output the accurately segmented tumor area; return to step 1 if the termination condition is not met. The corresponding calculation formula in each small step is shown in the following description.
传统的 MAP 分割算法是求取分割结果 L^, 使得后验概率 ^x| _y)最 大。 即:  The traditional MAP segmentation algorithm is to obtain the segmentation result L^, which makes the posterior probability ^x| _y) the largest. which is:
Λ  Λ
X = arg max (x | y) 根据贝叶斯公式, P(x| y;i可以表示为- P(x\y)=P{y[X^{x)∞P(y\x)P(x) 从上式可以看出, 图像分割的目标转化为并求取分割结果 X, 使得 Ρ(_ν| Ρ( )最大, 即: X = arg max (x | y) According to the Bayesian formula, P(x| y;i can be expressed as - P(x\y)= P{y [ X ^ {x) ∞P(y\x)P (x) As can be seen from the above equation, the object of image segmentation is transformed into and the segmentation result X is obtained, so that Ρ(_ν| Ρ( ) is the largest, namely:
Λ  Λ
X = arg max ( | x)P(x)} 其中 <y|x)和 P ( 分别为在给定分割 χ条件下的概率密度和先验概率。 下面计算 ty|x)和 ^)。  X = arg max ( | x)P(x)} where <y|x) and P (the probability density and prior probability respectively under a given partition 。 condition. ty|x) and ^) are calculated below.
假定图像中噪声是高斯白噪声, 则图像模型为: 其中, μΛ是第 类组织在像素 处的灰度均值, nik第 类组织在像素 Z处 对应的高斯白噪声, 它的分布服从正态分布 W(0, σΐ 故 P(y|x)可以表示 为: Assuming the noise in the image is Gaussian white noise, the image model is: Where μ Λ is the gray mean of the first type of tissue at the pixel, n ik is the Gaussian white noise corresponding to the tissue at the pixel Z, and its distribution obeys the normal distribution W(0, σΐ, P(y|x) It can be expressed as:
P{y I =
Figure imgf000008_0001
P{y I =
Figure imgf000008_0001
由吉布斯分布表示为:
Figure imgf000008_0002
Expressed by the Gibbs distribution as:
Figure imgf000008_0002
其中, a 一化常数, f/ (x)为能量函数: Where a constant, f / (x) is the energy function:
其中, 为第位置的邻域, t^x^为势函数, δ为常数。  Wherein, is the neighborhood of the first position, t^x^ is a potential function, and δ is a constant.
最终将后验概率公式转化为:  Finally, the posterior probability formula is transformed into:
P(x I y) cxp -U(x)} 分割目标进一步转化为求取分割结果 X, 使得能量函数最小, 即  P(x I y) cxp -U(x)} The segmentation target is further transformed into the segmentation result X, which minimizes the energy function, ie
arg min U (x)
Figure imgf000008_0004
Arg min U (x)
Figure imgf000008_0004
上述第一小步中的 T2-M 图像的能量函数 f/2(x)可以根据 f/(x)的计算 公式计算出。 The energy function f/ 2 (x) of the T2-M image in the first small step described above can be calculated from the calculation formula of f/(x).
上述第二小步中的 DW-MR图像的能量函数 ί/ (χ)可以根据 [/(X)的计 算公式计算出。  The energy function ί/ (χ) of the DW-MR image in the second small step above can be calculated according to the calculation formula of [/(X).
由于 T2-MR图像的后验概率 P72(x|yT2)和 DW-MR图像的后验概率 ^ Wy^)是独立的, 因此 CMAP的分割方法就是求取分割结果 L^, 使 = arg max (PT1 (x | yT1 )PDW (x \ y DW )) 根据 MAP算法中转化为能量函数的公式, 将上式转化为 Since the posterior probability P 72 (x|y T2 ) of the T2-MR image and the posterior probability of the DW-MR image ^ Wy^) are independent, the CMAP segmentation method is to obtain the segmentation result L^, so that = arg max (P T1 (x | y T1 )P DW (x \ y DW )) converts the above expression into a formula based on the energy function in the MAP algorithm.
PT1 I yT2 )PDW (X yDW )∞ eXp{" iUT2 (X) + βϋ DW (χ))} P T1 I y T 2 ) P DW ( X y DW ) ∞ eX p{" i U T2 ( X ) + β ϋ DW ( χ ))}
其中 ?是权重系数,用来平衡 T2-MR图像和 DW-MR图像对分割结果的 影响程度。最后 CMAP分割算法的问题就转化为了求取能量函数最小问题:  Where ? is the weight coefficient, which is used to balance the influence of the T2-MR image and the DW-MR image on the segmentation result. Finally, the problem of the CMAP segmentation algorithm is transformed into the minimum problem of the energy function:
arg min(?7r2 (x) + βϋ DW (χ)) 上述第三小步的 T2-MR 图像和 DW-MR 图像的联合能量函数 f^W + ^^ x)就可以根据上述 [/f2 (x)和 [/^ (χ)的公式计算出来。 Arg min(?7 r2 (x) + βϋ DW (χ)) The joint energy function f^W + ^^ x) of the T2-MR image and the DW-MR image of the third small step above can be based on the above [/ f2 The formulas for (x) and [/^ (χ) are calculated.
当 ^ = 0时, CMAP方法就成为了 MAP方法, 此时的实验分割结果如 图 4 (d); 当 取不同的值时, T2-MR图像和 DW-MR图像对分割结果的 影响程度也就不同。
Figure imgf000009_0001
When ^ = 0, the CMAP method becomes the MAP method. The experimental segmentation result at this time is shown in Fig. 4(d). When different values are taken, the influence of the T2-MR image and the DW-MR image on the segmentation result is also It is different.
Figure imgf000009_0001
为了验证本发明方法, 我们采用手动分割宫颈癌作为标准参考。  To validate the method of the invention, we used manual segmentation of cervical cancer as a standard reference.
图 4给出了本发明给出的这种基于 T2加权的核磁共振成像 (T2-MRI) 和弥散加权的核磁共振成像 (DW-MRI) 的宫颈癌图像自动分割框架实验 效果图。 (a)原图; (b)红色轮廓线内为包含肿瘤和正常组织的感兴趣区; (c) 配准到 T2-M 图像的 DW-M 图像; (d) 只在 T2-M 图像上采用 MAP方法的宫颈癌分割结果(即 = 0时); ( e )在 T2-MR图像和 DW-MR 图像上采用 CMAP方法的宫颈癌分割结果 (即 ^ = 1时); (f) 专家手工分 割结果。  Figure 4 shows the effect of the T2-weighted magnetic resonance imaging (T2-MRI) and diffusion-weighted magnetic resonance imaging (DW-MRI) cervical cancer image segmentation framework experiments. (a) original image; (b) the red outline is the region of interest containing the tumor and normal tissue; (c) the DW-M image registered to the T2-M image; (d) only on the T2-M image Cervical cancer segmentation results using the MAP method (ie, when 0 = 0); (e) Cervical cancer segmentation results using the CMAP method on T2-MR images and DW-MR images (ie, ^ = 1); (f) Expert manual Segment the result.
实验表明,本发明方法一一种基于 T2加权的核磁共振成像(T2-MRI) 和弥散加权的核磁共振成像 (DW-MRI) 的宫颈癌图像自动分割框架以及 利用联合最大后验概率 (CMAP) 精确分割宫颈癌肿瘤区域的方法一准确 的分割出了宫颈癌图像的肿瘤区域, 达到了分割肿瘤的目的。  Experiments have shown that the method of the present invention is based on T2-weighted magnetic resonance imaging (T2-MRI) and diffusion-weighted magnetic resonance imaging (DW-MRI) automatic segmentation framework for cervical cancer images and the use of joint maximum posterior probability (CMAP). The method of accurately segmenting the tumor area of cervical cancer accurately segmented the tumor area of the cervical cancer image and achieved the purpose of segmenting the tumor.
以上所述, 仅为本发明中的具体实施方式, 但本发明的保护范围并不 局限于此, 任何熟悉该技术的人在本发明所揭露的技术范围内, 可理解想 到的变换或替换, 都应涵盖在本发明的包含范围之内, 因此, 本发明的保 护范围应该以权利要求书的保护范围为准。 The above description is only a specific embodiment of the present invention, but the scope of protection of the present invention is not In view of the above, it is to be understood that those skilled in the art are within the scope of the present invention within the scope of the present invention. Therefore, the scope of protection of the present invention should be The scope of protection of the request shall prevail.

Claims

权 利 要 求 Rights request
1. 一种基于 T2加权的核磁共振成像 T2-MRI和弥散加权的核磁共振 成像 DW-MRI的宫颈癌图像自动分割方法, 包括: 1. A T2-weighted magnetic resonance imaging T2-MRI and diffusion-weighted nuclear magnetic resonance imaging DW-MRI automatic segmentation method for cervical cancer images, including:
步骤 1 : 利用非线性配准方法将 DW-MR图像配准到 T2-MR图像, 并对 配准后的 DW-MR图像进行分类;  Step 1: Register the DW-MR image into the T2-MR image by nonlinear registration method, and classify the registered DW-MR image;
步骤 2 : 采用非线性各向异性扩散滤波技术对 T2-MR图像进行滤波, 分割出膀胱和直肠, 并利用膀胱和直肠的分割结果将感兴趣区分割出来; 步骤 3 : 对 T2-MR图像的感兴趣区和 DW-MR图像采用联合最大后验概 率 CMAP的方法进行肿瘤的精确分割。  Step 2: Filter the T2-MR image using nonlinear anisotropic diffusion filtering technique, segment the bladder and rectum, and segment the region of interest using the segmentation results of the bladder and rectum; Step 3: For T2-MR images The region of interest and the DW-MR image were combined with the maximum posterior probability CMAP for precise segmentation of the tumor.
2. 根据权利要求 1 所述的方法, 其特征在于所述非线性配准方法包 括互信息配准方法或 Demons算法。  2. Method according to claim 1, characterized in that the non-linear registration method comprises a mutual information registration method or a Demons algorithm.
3. 根据权利要求 1 所述的方法, 其特征在于所述对配准后的 DW-MR 图像进行分类采用自动阈值分类方法, 实现肿瘤的初步分割及定位。  3. The method according to claim 1, wherein the classifying the registered DW-MR images adopts an automatic threshold classification method to achieve preliminary segmentation and localization of the tumor.
4. 根据权利要求 1 所述的方法, 其特征在于所述非线性各向异性扩 散滤波技术包括 P-M非线性各向异性扩散滤波。  4. The method of claim 1 wherein the nonlinear anisotropic diffusion filtering technique comprises P-M nonlinear anisotropic diffusion filtering.
5. 根据权利要求 4所述的方法, 其特征在于由下式实现 P-M非线性 各向异性扩散滤波-
Figure imgf000011_0001
5. The method according to claim 4, characterized in that PM nonlinear anisotropic diffusion filtering is realized by the following formula -
Figure imgf000011_0001
其中/。《为图像在 z处的像素强度值, V是梯度算子, 是散度算子, ί代表时间, ·)是扩散系数, 两种形式为- among them/. "For the pixel intensity value of the image at z, V is the gradient operator, is the scatter operator, ί is the time, ·) is the diffusion coefficient, and the two forms are -
II V/ II 2 II V/ II 2
c(V/) = exp (-- ~ ^-)
Figure imgf000011_0002
c(V/) = exp (-- ~ ^-)
Figure imgf000011_0002
其中 是梯度门限。 Among them is the gradient threshold.
6. 根据权利要求 1 所述的方法, 其特征在于所述膀胱分割采用主动 轮廓模型, 其中, 所述膀胱是腹腔 T2-MR图像中灰度值最高的较均匀的整 块区域。 6. The method of claim 1 wherein said bladder segmentation employs an active contour model, wherein said bladder is a relatively uniform monolithic region having the highest gray value in the abdominal T2-MR image.
7. 根据权利要求 1 所述的方法, 其特征在于, 所述直肠分割利用直 肠位于宫颈的下方这一先验知识和步骤 1中的肿瘤初步分割结果, 在去除 膀胱的 T2-MR图像上采用了模糊 C均值的算法, 得到直肠分割结果。  7. The method according to claim 1, wherein the rectal segmentation uses a priori knowledge that the rectum is located below the cervix and the preliminary segmentation result of the tumor in step 1, and is used on the T2-MR image of the bladder removal. The algorithm of fuzzy C-means is obtained, and the result of rectal segmentation is obtained.
8. 根据权利要求 1所述的方法, 其特征在于所述感兴趣区分割包括 在去除膀胱和直肠的 T2-MR图像上, 利用步骤 1中肿瘤的初步分割结果, 采用模糊 C均值的算法, 分割出包含肿瘤和正常组织的感兴趣区。  8. The method according to claim 1, wherein the segmentation of the region of interest comprises using a fuzzy C-means algorithm on the T2-MR image of the removal of the bladder and the rectum, using the preliminary segmentation result of the tumor in step 1, The region of interest containing the tumor and normal tissue is segmented.
9. 根据权利要求 1所述的方法, 其特征在于所述步骤 3包括: 9. The method of claim 1 wherein said step 3 comprises:
1) 计算 T2-MR图像的能量函数 t/T2(x); 1) Calculate the energy function t/ T2 (x) of the T2-MR image ;
2) 计算 DW-MR图像的能量函数 t/ (x);  2) Calculate the energy function of the DW-MR image t/ (x);
3)计算 T2-MR图像和 DW-MR图像的联合能量函数^ 2 + ;3) Calculate the joint energy function of the T2-MR image and the DW-MR image ^ 2 + ;
4) 判断是否满足终止条件, 若满足, 根据能量最小原则判定肿瘤和 正常组织的类别, 从而输出精确分割的肿瘤区域, 若不满足终止条件返回 步骤 1)。 4) Determine whether the termination condition is satisfied. If it is satisfied, determine the type of tumor and normal tissue according to the principle of minimum energy, thereby outputting the accurately segmented tumor area, and return to step 1) if the termination condition is not satisfied.
10.根据权利要求 9 所述的方法, 其特征在于所述能量函数 f/ 2(x)和 t/ (x)由下式计算:10. Method according to claim 9, characterized in that the energy functions f / 2 (x) and t / (x) are calculated by:
, - ½  , - 1⁄2
+ (σ ) + ( σ )
)  )
其中, 表示图像在 ;处的灰度值, W表示图像的像素的总 个数。假定图像要被分为 类, 以 χ,.ϋ = ιυ代表像素 皮归为第/ 1类。 Which represents the image; gray value at, W represents the total number of pixels of the image. Suppose the image is to be classified into classes, with χ, .ϋ = ιυ representing the pixel skin as class /1.
是第 类组织在像素 ^处的灰度均值, ^第/ 1类组织在像素 Z处对应的高 斯白噪声的方差, 为第 z位置的邻域, ί^χ,,χ^为势函数, 为常数, ¾是 所有属于第 类组织的像素的集合。 Is the gray mean of the class I organization at the pixel ^, ^ the variance of the Gaussian white noise corresponding to the class 1 tissue at the pixel Z , which is the neighborhood of the zth position, ί^χ, χ^ is the potential function, A constant, 3⁄4 is a collection of all pixels belonging to a class of organization.
11.根据权利要求 9所述的方法, 其特征在于所述根据联合能量函数 UT2 (x) + UDW(x)最小的原则进行分类由下式计算: XCMAP = + βυοπ(χ)) 其中, ?是权重系数
Figure imgf000013_0001
The method according to claim 9, characterized in that the classification according to the principle that the joint energy function U T2 (x) + U DW (x) is the smallest is calculated by: XCMAP = + βυ οπ (χ)) where ? is the weight coefficient
Figure imgf000013_0001
12. 根据权利要求 11 所述的方法, 其特征在于通过比较不同的?值 下的分割结果, 得到精确的肿瘤分割结果。  12. The method according to claim 11, characterized by comparing different ones? The segmentation result under the value gives accurate tumor segmentation results.
PCT/CN2013/070942 2012-12-19 2013-01-24 Automatic segmentation method for cervical cancer image based on t2-mri and dw-mri WO2014094376A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210554664.3 2012-12-19
CN201210554664.3A CN102999917B (en) 2012-12-19 2012-12-19 Cervical cancer image automatic segmentation method based on T2-MRI and DW-MRI

Publications (1)

Publication Number Publication Date
WO2014094376A1 true WO2014094376A1 (en) 2014-06-26

Family

ID=47928451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070942 WO2014094376A1 (en) 2012-12-19 2013-01-24 Automatic segmentation method for cervical cancer image based on t2-mri and dw-mri

Country Status (2)

Country Link
CN (1) CN102999917B (en)
WO (1) WO2014094376A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2613083C1 (en) * 2015-12-28 2017-03-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский национальный исследовательский медицинский университет имени Н.И. Пирогова" Министерства здравоохранения Российской Федерации (ФГБОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России) Method for determining volume of tumour in case of cervical cancer in performing magnetic-resonance tomography
RU2657845C1 (en) * 2017-06-28 2018-06-15 Федеральное государственное бюджетное образовательное учреждение дополнительного профессионального образования "Российская медицинская академия непрерывного профессионального образования" Министерства здравоохранения Российской Федерации (ФГБОУ ДПО РМАНПО Минздрава России) Method for diagnostics of spondylogenic cervical myelopathy without spinal cord compression
US11049221B2 (en) 2018-04-27 2021-06-29 Imam Abdulrahman Bin Faisal University Gradient vector orientation based nonlinear diffusion filter
US11276175B2 (en) 2017-05-18 2022-03-15 Brainlab Ag Determining a clinical target volume

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10139354B2 (en) 2014-04-07 2018-11-27 Prismatic Sensors Spectral X-ray imaging
CN104091337B (en) * 2014-07-11 2017-07-14 北京工业大学 A kind of deformation medical image registration method based on PCA and differomorphism Demons
CN108961274B (en) * 2018-07-05 2021-03-02 四川大学 Automatic head and neck tumor segmentation method in MRI (magnetic resonance imaging) image
CN109685767A (en) * 2018-11-26 2019-04-26 西北工业大学 A kind of bimodal brain tumor MRI dividing method based on Cluster-Fusion algorithm
CN109584233A (en) * 2018-11-29 2019-04-05 广西大学 Three-dimensional image segmentation method based on subjective threshold value and three-dimensional label technology
CN109636827A (en) * 2018-12-14 2019-04-16 东北大学 A kind of method of extracted in self-adaptive cervix neoplasms MR image
CN117333725A (en) * 2023-11-29 2024-01-02 中国医学科学院北京协和医院 Congenital cervical deformity classification method, system and equipment based on MRI

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1445725A (en) * 2003-04-29 2003-10-01 上海交通大学 Method for utilizing 3D visual anatomy atlas in cerebral surgical operation guidance system
CN101833756A (en) * 2009-03-10 2010-09-15 南通爱普医疗器械有限公司 Three-dimensional visualization method for maps in neurosurgery navigation system
CN102521832A (en) * 2011-12-07 2012-06-27 中国科学院深圳先进技术研究院 Image analysis method and system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101987019A (en) * 2009-08-03 2011-03-23 徐子海 Positron emission tomography (PET) and computed tomography (CT) cross-modality medical image fusion method based on wavelet transform

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1445725A (en) * 2003-04-29 2003-10-01 上海交通大学 Method for utilizing 3D visual anatomy atlas in cerebral surgical operation guidance system
CN101833756A (en) * 2009-03-10 2010-09-15 南通爱普医疗器械有限公司 Three-dimensional visualization method for maps in neurosurgery navigation system
CN102521832A (en) * 2011-12-07 2012-06-27 中国科学院深圳先进技术研究院 Image analysis method and system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2613083C1 (en) * 2015-12-28 2017-03-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский национальный исследовательский медицинский университет имени Н.И. Пирогова" Министерства здравоохранения Российской Федерации (ФГБОУ ВО РНИМУ им. Н.И. Пирогова Минздрава России) Method for determining volume of tumour in case of cervical cancer in performing magnetic-resonance tomography
US11276175B2 (en) 2017-05-18 2022-03-15 Brainlab Ag Determining a clinical target volume
RU2657845C1 (en) * 2017-06-28 2018-06-15 Федеральное государственное бюджетное образовательное учреждение дополнительного профессионального образования "Российская медицинская академия непрерывного профессионального образования" Министерства здравоохранения Российской Федерации (ФГБОУ ДПО РМАНПО Минздрава России) Method for diagnostics of spondylogenic cervical myelopathy without spinal cord compression
US11049221B2 (en) 2018-04-27 2021-06-29 Imam Abdulrahman Bin Faisal University Gradient vector orientation based nonlinear diffusion filter
US11488287B2 (en) 2018-04-27 2022-11-01 Imam Abdulrahman Bin Faisal University Medical image denoising method
US11557023B1 (en) 2018-04-27 2023-01-17 Imam Abdulrahman Bin Faisal University Apparatus for denoising a medical image
US11699214B2 (en) 2018-04-27 2023-07-11 Imam Abdulrahman Bin Faisal University Computer aided image denoising method for clinical analysis of PET images

Also Published As

Publication number Publication date
CN102999917A (en) 2013-03-27
CN102999917B (en) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2014094376A1 (en) Automatic segmentation method for cervical cancer image based on t2-mri and dw-mri
Xu et al. DW-Net: A cascaded convolutional neural network for apical four-chamber view segmentation in fetal echocardiography
WO2018120644A1 (en) Blood vessel extraction method and system
Giannini et al. A fully automatic algorithm for segmentation of the breasts in DCE-MR images
Rorden et al. Age-specific CT and MRI templates for spatial normalization
US20170337686A1 (en) Kind of x-ray chest image rib suppression method based on poisson model
CN109035160A (en) The fusion method of medical image and the image detecting method learnt based on fusion medical image
CN106709920B (en) Blood vessel extraction method and device
CN106651874B (en) Space domain splitting method after brain tumor surgery based on multi-modal MRI data
Koundal et al. Challenges and future directions in neutrosophic set-based medical image analysis
Xu et al. Segmentation based denoising of PET images: An iterative approach via regional means and affinity propagation
CN108038840B (en) Image processing method and device, image processing equipment and storage medium
Saeed et al. Cerebellum segmentation employing texture properties and knowledge based image processing: applied to normal adult controls and patients
Abdel-massieh et al. Automatic liver tumor segmentation from CT scans with knowledge-based constraints
Mirajkar et al. Acute ischemic stroke detection using wavelet based fusion of CT and MRI images
Kakileti et al. Automated blood vessel extraction in two-dimensional breast thermography
Feng et al. Multimodal medical image fusion based on visual saliency map and multichannel dynamic threshold neural P systems in sub-window variance filter domain
CN111477304A (en) Tumor irradiation imaging combination method for fusing PET (positron emission tomography) image and MRI (magnetic resonance imaging) image
Karami et al. Anatomy-based algorithm for automatic segmentation of human diaphragm in noncontrast computed tomography images
Aslan et al. Fusion of CT and MR liver images by SURF-based registration
Myint et al. Effective kidney segmentation using gradient based approach in abdominal CT images
Salwe et al. Brain tumor pixels detection using adaptive wavelet based histogram thresholding and fine windowing
Singh et al. Co‐registration of in vivo human MRI brain images to postmortem histological microscopic images
Ladefoged et al. Automatic correction of dental artifacts in PET/MRI
Garg et al. Detection of cervical cancer by using thresholding & watershed segmentation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13865691

Country of ref document: EP

Kind code of ref document: A1