WO2014094352A1 - 应用在手术中的低温等离子体发生器及其组成的刀系统 - Google Patents

应用在手术中的低温等离子体发生器及其组成的刀系统 Download PDF

Info

Publication number
WO2014094352A1
WO2014094352A1 PCT/CN2013/001425 CN2013001425W WO2014094352A1 WO 2014094352 A1 WO2014094352 A1 WO 2014094352A1 CN 2013001425 W CN2013001425 W CN 2013001425W WO 2014094352 A1 WO2014094352 A1 WO 2014094352A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
microprocessor
plasma generator
physiological saline
low
Prior art date
Application number
PCT/CN2013/001425
Other languages
English (en)
French (fr)
Inventor
李政
何成东
Original Assignee
成都美创电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都美创电子科技有限公司 filed Critical 成都美创电子科技有限公司
Priority to ES13865082T priority Critical patent/ES2724237T3/es
Priority to EP13865082.5A priority patent/EP2937052B1/en
Priority to US14/442,888 priority patent/US20150297280A1/en
Publication of WO2014094352A1 publication Critical patent/WO2014094352A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/042Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating using additional gas becoming plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/08Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by means of electrically-heated probes
    • A61B18/10Power sources therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • A61B2018/00583Coblation, i.e. ablation using a cold plasma
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00827Current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/007Aspiration

Definitions

  • the present invention relates to a plasma generator, and more particularly to a low temperature plasma generator for use in surgery and a knife system thereof.
  • Surgery is one of the main treatments for Western medicine. It is commonly known as "opening a knife". Its main purpose is to remove diseased tissue, repair damage, transplant organs, and improve the function and shape of the body. Early surgery is limited to simple manual methods, such as cutting, harming U, and sutures on the body surface, such as abscess drainage, mass resection, and trauma suture. Thus, surgery is a form of operation that destroys tissue integrity (cutting), or restores tissue whose integrity has been compromised.
  • the object of the present invention is to provide a low-temperature plasma generator applied in surgery and a knife system thereof, which overcomes the problem that the existing surgery is prone to high temperature of the laser knife during the cutting and ablation process, thereby damaging the healthy skin of the patient and causing smoke. defect.
  • a low temperature plasma generator for use in surgery comprising: a CPU control module, a vibration module connected to the CPU control module, and an output module connected to the vibration module; wherein the CPU control module comprises:
  • An analog to digital conversion circuit coupled to the input of the microprocessor
  • An interface chip that performs signal interaction with the microprocessor
  • a display driving circuit and an audio prompting device respectively electrically connected to an output end of the interface chip, and a display device receiving an output signal of the display driving circuit
  • the analog/digital conversion circuit and the microprocessor are electrically connected to the vibration module, respectively.
  • the vibration module includes:
  • a key operation unit that inputs a signal to the microprocessor
  • a current detecting circuit that inputs a detection signal to the analog/digital conversion circuit
  • a power control circuit that receives a control signal of the microprocessor
  • a first oscillating unit and a voltage amplifying circuit respectively connected to the output end of the power control circuit the first oscillating unit is bidirectionally connected to the voltage amplifying circuit, and both are connected to the output module;
  • a second oscillating unit for transmitting a signal to the voltage amplifying circuit.
  • the output module includes:
  • a second power amplifying circuit connected to the voltage amplifying circuit and inputting a detection signal to the current detecting circuit.
  • the present invention also provides a knife system comprising the above low temperature plasma generator, comprising a physiological saline input device and a plasma knife, and electrically connected to the plasma knife a low temperature plasma generator comprising: a CPU control module, a vibration module coupled to the CPU control module, and an output module coupled to the vibration module; wherein the CPU control module includes - a microprocessor ;
  • An analog to digital conversion circuit coupled to the input of the microprocessor
  • An interface chip that performs signal interaction with the microprocessor
  • a display driving circuit and an audio prompting device respectively electrically connected to an output end of the interface chip, and a display device receiving an output signal of the display driving circuit
  • the analog/digital conversion circuit and the microprocessor are electrically connected to the vibration module, respectively.
  • the vibration module includes:
  • a key operation unit that inputs a signal to the microprocessor
  • a current detecting circuit that inputs a detection signal to the analog/digital conversion circuit
  • a power control circuit that receives a control signal of the microprocessor
  • a first oscillating unit and a voltage amplifying circuit respectively connected to the output end of the power control circuit the first oscillating unit is bidirectionally connected to the voltage amplifying circuit, and both are connected to the output module;
  • a second oscillating unit for transmitting a signal to the voltage amplifying circuit.
  • the output module includes:
  • a second power amplifying circuit connected to the voltage amplifying circuit and inputting a detection signal to the current detecting circuit.
  • the plasma knife includes a solid head and a handle, wherein:
  • the handle includes a handle body disposed on the handle body and respectively connected to the first power An amplifying circuit and an electrode input interface of the output end of the second power amplifying circuit, and a physiological saline input interface disposed at one end of the handle body, and a waste liquid discharge port at the same end of the handle body as the physiological saline input interface;
  • the cutter head includes a cutter head body integrally fixed with the handle body, an electrode disposed on the cutter head body and connected to the electrode input interface, the electrode including an electrode disposed on the cutter head body One end, and a second end of the electrode disposed on the cutter head away from one end of the handle body, and a physiological saline output hole disposed on the cutter head and communicating with the physiological saline input interface, and disposed on the cutter head
  • the body is away from the waste liquid absorption hole of one end of the handle and communicates with the waste liquid discharge port.
  • the physiological saline input device includes a physiological saline storage bottle, a delivery tube disposed at one end of the physiological saline storage bottle and communicating therewith, and a physiological saline input controller disposed on the delivery tube, the delivery tube The other end is connected to the physiological saline input port.
  • the present invention has the following beneficial effects -
  • the present invention controls a plasma knife by a low-temperature plasma generator, and uses a low-temperature plasma generator to excite electric energy, and generates plasma when the physiological saline flows toward the cutter head. Since the physiological saline flow takes a lot of heat, the temperature is low. Interrupted tissue to achieve low temperature cutting, hemostasis, ablation; due to the cooling effect of physiological saline, there will be no problem of excessive temperature causing solid-liquid volatilization to produce smoke, and it will not damage the healthy skin around the patient's cutting site, effectively The problem that the existing laser knife has too high temperature causes the solid-liquid volatilization to generate smoke affects the normal operation of the operation, and the temperature is too high to damage the surrounding healthy skin is solved.
  • the invention provides a waste liquid absorption hole in the cutter head, and can timely absorb the waste tissue, the tissue fluid and the excess physiological saline generated during ablation and cutting, so as to prevent the healthy skin of the patient from being infected by the diseased tissue; Because the cutting and ablation during surgery can cause bleeding, The waste liquid absorption hole can absorb and clean the blood instead of other auxiliary equipment. Therefore, the invention not only reduces the workload of the medical staff in the operation, improves the surgical progress, but also saves medical materials, reduces the operation cost, and reduces the patient. The economic burden.
  • the plasma knife of the present invention replaces the conventional scalpel, and overcomes the inconvenience of the conventional scalpel and the inability to be flexibly applied to a specific part, and can flexibly perform cutting and ablation regardless of the patient's part. And to ensure the effect of surgery.
  • the present invention has been improved from the control circuit and the physical structure of the plasma blade, so that the temperature control of the plasma knife is more precise, the physical structure is more reasonable, and the practical value is greatly improved.
  • Figure 1 is a schematic block diagram of a low temperature plasma generator of the present invention.
  • FIG. 2 is a schematic structural view of an embodiment of the present invention.
  • FIG 3 is an enlarged schematic view showing the structure of a cutter head according to an embodiment of the present invention.
  • the subject matter claimed herein consists of two parts: a low temperature plasma generator, and a knife system consisting of the low temperature plasma generator.
  • low temperature plasma generators are mainly used in physiology
  • the plasma is generated in the brine to provide energy
  • the knife system is a complete plasma scalpel system that can be used for cutting and ablation of various operations.
  • the low temperature plasma generator mainly comprises three parts: a CPU control module, a vibration module and an output module.
  • the CPU module is used for controlling and prompting, and the prompt includes the display and the sound is not mentioned.
  • the CPU module includes a microprocessor, an analog/digital conversion circuit connected to the microprocessor at the output end, and an interface chip for performing information exchange with the microprocessor.
  • the interface chip transmits a signal to the display driving circuit and the sound prompting device, and the display driving circuit transmits a signal to the display device after receiving the signal, and the display device performs information display; the analog/digital conversion circuit receives the signal transmitted from the vibration module. .
  • the display device in this embodiment selects a liquid crystal display, and the sound presenting device selects a loudspeaker.
  • the vibration module includes a current detecting circuit that transmits a signal to the analog/digital conversion circuit, a key operating unit that transmits a signal to the microprocessor, and a power control circuit that receives the microprocessor signal.
  • the power control circuit simultaneously transmits a control signal from the microprocessor to the bidirectionally connected first oscillating unit and the voltage amplifying circuit, and outputs the first oscillating unit and the voltage amplifying circuit to precisely control the plasma knives.
  • an input of an oscillating signal is also performed on the voltage amplifying circuit through the second oscillating unit to ensure the validity of the control signal.
  • the output module respectively receives signals from the first oscillating unit and the voltage amplifying circuit, and outputs the control signal through the first power amplifying circuit and the second power amplifying circuit, and the second power amplifying circuit outputs the signal at the same time
  • the feedback is sent to the current detection circuit and transmitted back to the microprocessor via the analog-to-digital conversion circuit for output monitoring to ensure safety and reliability.
  • the working process of the above ion generator is as follows:
  • the low temperature plasma generator is input to the power source to generate the power drive current and the system display control current.
  • the display, control, power regulation, sound output and alarm of the entire system are processed and controlled by the microprocessor at high speed.
  • the microprocessor presets the required power output value and outputs it to the vibration module, and the vibration module converts the power output value into a pulse width modulation signal, and controls the first power amplification circuit to realize the first-level power size drive, and then outputs;
  • the second power amplifying circuit realizes the secondary power driving, amplifying and outputting the plasma energy. Since the second power amplifying circuit re-enters the CPU control module through the vibration module, the low temperature plasma generator can also monitor the magnitude and change of the driving energy at a high speed during the power amplification process to prevent overcurrent and overvoltage in the amplification process from affecting the device. Safe and endanger the lives of patients.
  • the present invention also provides a knife system comprising a saline input device and a plasma knife, and a low temperature plasma generator coupled to the plasma blade.
  • the physiological saline input device includes a physiological saline storage bottle 1, a delivery tube 2 connected to the interface of the physiological saline storage bottle, and a physiological saline input controller 3 having one end disposed on the delivery tube 2 for controlling the delivery of physiological saline.
  • the delivery tube is used to deliver the physiological saline stored in the physiological saline storage bottle to the plasma knife, and the physiological saline input controller controls the delivery tube to adjust the physiological saline flow rate.
  • a bracket 4 is further disposed.
  • the upper end of the bracket 4 is provided with a hook for hanging a physiological saline storage bottle, and the physiological saline input controller is fixed on the bracket 4.
  • the plasma knife includes a solid head and a handle.
  • the handle comprises a handle body 7, and the handle body is provided with an electrode input interface connected to the low temperature plasma generator, a physiological saline input interface, and a waste liquid discharge port.
  • the physiological saline input interface and the waste liquid discharge port are disposed at one end of the handle body away from the cutter head, and the waste liquid discharge pipe is connected with the waste liquid discharge pipe 6 for discharging the waste generated by cutting and ablation during the operation, and the physiological A delivery pipe 2 is connected to the brine input interface.
  • a physiological saline for receiving the output of the delivery tube.
  • the cutter head comprises a cutter head body 8 integrally fixed with the handle body, an electrode, a physiological saline output hole 10 disposed on the cutter head body and communicating with the physiological saline input interface, and disposed on the cutter body away from the handle body.
  • the physiological saline enters the cutter body from the handle body, the waste liquid enters from the cutter body to the handle body, so the plasma knife is provided with a physiological saline channel and a waste liquid channel; the physiological saline input interface is output through the physiological saline channel and the physiological saline solution.
  • the pores communicate with each other, and the physiological saline is output through the physiological saline output hole, and the waste liquid discharge hole is connected to the waste liquid absorption hole through the waste liquid passage, and absorbs the discarded liquid and the diseased tissue which is cut and ablated.
  • the low temperature plasma generator is connected to the handle of the plasma knife through the input interface of the electrode.
  • the control method of the plasma knife is as follows:
  • the first step is to use a low temperature plasma generator to output a driving signal through the first power amplifying circuit, and output plasma energy through the second power amplifying circuit to generate a plasma, and form two electrodes to input to the cutter head. Forming a positive and negative electrode at the first end of the electrode of the cutter head and the second end of the electrode;
  • the physiological saline solution in the physiological saline storage bottle is taken out by the physiological saline output controller to flow to the plasma cutter head;
  • the physiological saline flows to the first end of the electrode and the second end of the electrode respectively, and the first end of the electrode and the second end of the electrode are electrically conducted through the saline, and the low temperature plasma is generated at the second end of the electrode when conducting.
  • a "plasma knife” is formed to ablate and cut the body; at this time, the waste liquid absorption hole absorbs waste tissue, tissue fluid, blood, and excess physiological saline which are generated during ablation and cutting.
  • each circuit in the present invention such as an analog-to-digital conversion circuit, a display driving circuit, a power control circuit, a voltage amplifying circuit, a current detecting circuit, a first power amplifying circuit, a second power amplifying circuit, etc., adopts an existing circuit.
  • the other hardware devices are also existing devices, and are not described in this embodiment.
  • the present invention can be well implemented.

Abstract

一种应用在手术中的低温等离子体发生器(5)及等离子体刀系统。所述低温等离子体发生器(5)包括:CPU控制模块、与CPU控制模块相连的振动模块、与振动模块相连的输出模块。所述等离子刀系统包括:所述低温等离子体发生器(5)、生理盐水输入设备和等离子刀。该等离子体刀实现了低温切割,从而克服了现有切割手术中温度过高、烟雾大的缺陷。

Description

应用在手术中的低温等离子体发生器及其组成的刀系统 技术领域
本发明涉及一种等离子发生器, 具体地说, 是涉及一种应用在手术中的 低温等离子体发生器及其组成的刀系统。
背景技术
手术是西医的主要治疗方法之一, 俗称 "开刀", 其主要目的在于去除病 变组织、 修复损伤、 移植器官、 改善机体的功能和形态等。 早期手术仅限于 用简单的手工方法, 在人体体表进行切、 害 U、 缝, 如脓肿引流、 肿物切除、 外伤缝合等。 由此可见, 手术是一种破坏组织完整性 (切开), 或使完整性受 到破坏的组织复原的操作方式。
在现今社会, 科学技术不断发展, 等离子技术已经被广泛应用于手术之 中, 并为手术的顺利开展提供了极大的帮助。 但是, 现有的激光刀容易出现 温度过高导致在手术中损伤患者健康组织, 而健康组织受到损伤便需要其他 辅助设备进行止血、 清理, 既增加手术时间, 增加了医护人员的工作量, 又 影响了患者的生命安全; 而且, 温度过高还会导致固液挥发进而产生烟雾, 这会极大地影响手术的顺利开展, 严重时将危及患者生命。 因此, 研究出一 种克服上述缺陷的手术设备非常急迫。
发明内容
本发明的目的在于提供一种应用在手术中的低温等离子体发生器及其组 成的刀系统, 克服现有手术在切割、 消融过程中容易出现激光刀温度过高损 伤患者健康肌肤以及导致产生烟雾的缺陷。
为了实现上述目的, 本发明采用的技术方案如下:
1
确认本 应用在手术中的低温等离子体发生器,其特征在于,包括 CPU控制模块, 与该 CPU控制模块相连的振动模块,和与该振动模块相连的输出模块;其中, 所述 CPU控制模块包括:
微处理器;
与所述微处理器的输入端相连的模 /数转换电路;
与所述微处理器进行信号交互的接口芯片;
以及, 分别与所述接口芯片的输出端电连接的显示驱动电路和声音提示 装置, 和接收所述显示驱动电路的输出信号的显示装置;
所述模 /数转换电路和微处理器分别与所述振动模块电连接。
进一步地, 所述振动模块包括:
向所述微处理器输入信号的按键操作单元;
向所述模 /数转换电路输入检测信号的电流检测电路;
接收所述微处理器的控制信号的功率控制电路;
以及, 分别与所述功率控制电路的输出端相连的第一振荡单元和电压放 大电路, 该第一振荡单元与电压放大电路双向连接, 且均与所述输出模块相 连;
和用于发送信号到所述电压放大电路的第二振荡单元。
再进一步地, 所述输出模块包括:
输入端与所述第一振荡单元相连的第一功率放大电路;
和输入端与所述电压放大电路相连且向所述电流检测电路输入检测信号 的第二功率放大电路。
以上述技术为基础, 本发明还提供了一种由上述低温等离子体发生器组 成的刀系统, 包括生理盐水输入设备和等离子刀, 以及与该等离子刀电连接 的低温等离子体发生器;该低温等离子体发生器包括 CPU控制模块,与该 CPU 控制模块相连的振动模块,和与该振动模块相连的输出模块;其中,所述 CPU 控制模块包括- 微处理器;
与所述微处理器的输入端相连的模 /数转换电路;
与所述微处理器进行信号交互的接口芯片;
以及, 分别与所述接口芯片的输出端电连接的显示驱动电路和声音提示 装置, 和接收所述显示驱动电路的输出信号的显示装置;
所述模 /数转换电路和微处理器分别与所述振动模块电连接。
其中, 所述振动模块包括:
向所述微处理器输入信号的按键操作单元;
向所述模 /数转换电路输入检测信号的电流检测电路;
接收所述微处理器的控制信号的功率控制电路;
以及, 分别与所述功率控制电路的输出端相连的第一振荡单元和电压放 大电路, 该第一振荡单元与电压放大电路双向连接, 且均与所述输出模块相 连;
和用于发送信号到所述电压放大电路的第二振荡单元。
而所述输出模块则包括:
输入端与所述第一振荡单元相连的第一功率放大电路;
和输入端与所述电压放大电路相连且向所述电流检测电路输入检测信号 的第二功率放大电路。
进一步地, 所述等离子刀包括固为一体的刀头与手柄, 其中:
所述手柄包括手柄本体, 设置在该手柄本体上并分别连接所述第一功率 放大电路和所述第二功率放大电路的输出端的电极输入接口, 以及设置于该 手柄本体一端端头的生理盐水输入接口, 和与该生理盐水输入接口位于手柄 本体上同一端的废弃液排出口;
所述刀头包括与所述手柄本体固为一体的刀头本体, 设置在该刀头本体 上且与所述电极输入接口相连的电极, 该电极包括设置在所述刀头本体上的 电极第一端, 和设置在刀头上远离手柄本体一端的电极第二端, 以及设置于 所述刀头本体上并与所述生理盐水输入接口相通的生理盐水输出孔, 和设置 于所述刀头本体远离手柄的一端并与所述废弃液排出口相通的废弃液吸收 孔。
再进一步地, 所述生理盐水输入设备包括生理盐水储存瓶, 一端设置于 该生理盐水储存瓶上且与其连通的输送管, 和设置在该输送管上的生理盐水 输入控制器, 所述输送管的另一端与所述生理盐水输入接口相连。
与现有技术相比, 本发明具有以下有益效果-
( 1 )本发明通过低温等离子体发生器控制等离子刀, 利用低温等离子体 发生器激发电能, 在生理盐水流向刀头时产生等离子体, 由于生理盐水流动 会带走很多热量, 因此在温度较低时打断组织实现低温切割、 止血、 消融; 由于生理盐水的降温作用, 不会出现温度过高导致固液挥发产生烟雾的问题, 也不会因此损伤病人切割处周围的健康肌肤的问题, 有效地解决了现有激光 刀存在的温度过高导致固液挥发产生烟雾影响手术正常进行的问题, 和温度 过高损伤切割周围的健康肌肤的问题。
( 2 )本发明在刀头设置了废弃液吸收孔, 能够及时吸收在消融、 切割时 产生的废弃组织、 组织液及多余的生理盐水, 避免病人的健康肌肤受到这些 病变组织的影响而感染; 同时, 由于手术中进行切割、 消融会导致出血, 该 废弃液吸收孔能代替其他辅助设备对血液进行吸收、 清理, 因此, 本发明既 减轻了手术中医护人员的工作量, 提高了手术进程, 又节省了医用材料, 降 低了手术成本, 减轻了患者的经济负担。
(3 )本发明中的等离子刀取代了常规的手术刀, 克服了常规手术刀操作 不便、 无法灵活应用于特殊部位的缺陷, 无论是病人的哪一个部位, 都能灵 活地进行切割、 消融, 并保证手术效果。
(4 )本发明从等离子刀的控制电路和物理结构两方面进行了改善, 使等 离子刀的温度控制更加精确, 物理结构更加合理, 实用价值得到了极大的提 升。
附图说明
图 1为本发明中低温等离子体发生器的原理框图。
图 2为本发明一实施例的结构示意图。
图 3为本发明一实施例中刀头的结构放大示意图。
其中附图标记对应的部件名称如下:
1一生理盐水储存瓶, 2—输送管, 3—生理盐水输入控制器, 4一支架, 5 一低温等离子体发生器, 6—废弃液排出管, 7—手柄本体, 8—刀头本体, 9 一电极第一端, 10—生理盐水输出孔, 11一废弃液吸收孔, 12—电极第二端。 具体实施方式
下面结合附图与实施例对本发明作进一步说明, 本发明的实施方式包括 但不限于下列实施例。
实施例
本发明请求保护的主题共两部分: 低温等离子体发生器, 以及由该低温 等离子体发生器组成的刀系统。 其中, 低温等离子体发生器主要用于在生理 盐水中产生等离子体提供能量, 而刀系统则为一个完整的等离子手术刀系统, 可以用于各种手术的切割、 消融。
如图 1所示, 该低温等离子体发生器主要包括 CPU控制模块、 振动模块 和输出模块三部分。 其中, CPU模块用于控制、 提示, 该提示包括显示和声 音提不。
具体地说, 所述 CPU 模块包括微处理器, 输出端与微处理器相连的模 / 数转换电路, 与微处理器进行信息交互的接口芯片。 其中, 接口芯片传输信 号给显示驱动电路和声音提示装置, 显示驱动电路在接收到信号之后传输信 号给显示装置, 由显示装置进行信息显示; 所述模 /数转换电路接收从振动模 块传输的信号。
作为一种优选, 本实施例中的显示装置选择液晶显示器, 声音提示装置 选择扩音器。
所述振动模块包括传输信号给模 /数转换电路的电流检测电路, 传输信号 给微处理器的按键操作单元, 接收微处理器信号的功率控制电路。 该功率控 制电路同时将来自微处理器的控制信号传输给双向连接的第一振荡单元和电 压放大电路, 由第一振荡单元和电压放大电路进行输出, 以对等离子刀进行 精确控制。 为了确保控制效果, 在电压放大电路上还通过第二振荡单元进行 振荡信号的输入, 以确保控制信号的有效性。
所述输出模块分别接收来自第一振荡单元和电压放大电路的信号, 并通 过第一功率放大电路和第二功率放大电路进行控制信号的输出, 且第二功率 放大电路在输出信号的同时将信号反馈给电流检测电路, 并经由模 /数转换电 路传回给微处理器, 实现输出监控, 确保安全性和可靠性。
上述离子发生器的工作过程如下: 将低温等离子体发生器输入电源, 产生功率驱动电流和系统显示控制电 流, 此时整个系统的显示、 控制、 功率调节、 声音输出和报警都由微处理器 高速处理与控制。
首先微处理器预置需要的功率输出值, 并输出到振动模块, 振动模块将 该功率输出值转化成脉宽调制信号, 并控制第一功率放大电路实现一级功率 大小驱动, 再输出; 然后第二功率放大电路实现二级功率驱动、 放大并输出 等离子能量。 由于第二功率放大电路通过振动模块再进入 CPU控制模块, 因 此低温等离子体发生器在功率放大过程中还能够高速监控驱动能量的大小和 变化, 以防止放大过程产生过流过压而影响设备的安全和危及患者的生命。
如图 2所示, 本发明还提供了一种刀系统, 包括生理盐水输入设备和等 离子刀, 以及与该等离子刀连接的低温等离子体发生器。
该生理盐水输入设备包括生理盐水储存瓶 1、与生理盐水储存瓶的接口相 连接的输送管 2,和一端设置在该输送管 2上用于控制生理盐水输送的生理盐 水输入控制器 3。所述输送管用于将生理盐水储存瓶中储存的生理盐水输送到 等离子刀, 而生理盐水输入控制器控制该输送管, 用以调节生理盐水流量大 小。
本实施例还设置了支架 4, 该支架 4上端设置有钩子, 用于悬挂生理盐水 储存瓶, 所述生理盐水输入控制器固定在该支架 4上。
所述等离子刀包括固为一体的刀头和手柄。 其中, 手柄包括手柄本体 7, 该手柄本体内设置有与低温等离子体发生器相连的电极输入接口、 生理盐水 输入接口、 废弃液排出口。 其中, 生理盐水输入接口和废弃液排出口均设置 在手柄本体远离刀头的一端,废弃液排出孔上连接有废弃液排出管 6,用于排 出手术中切割、消融产生的废弃物,而生理盐水输入接口上则连接有输送管 2, 用于接收输送管输出的生理盐水。
如图 3所示, 刀头包括与手柄本体固为一体的刀头本体 8、 电极、 设置在 刀头本体上并与生理盐水输入接口相通的生理盐水输出孔 10、 设置于刀头本 体远离手柄的一端并与废弃液排出口相通的废弃液吸收孔 11, 其中该电极包 括电极第一端 9和电极第二端 12, 电极一端设置在刀头上, 另一端设置在刀 头远离手柄本体的一端。
由于生理盐水从手柄本体进入到刀头本体, 废弃液从刀头本体进入到手 柄本体排出, 因此等离子刀内部设置有生理盐水通道和废弃液通道; 生理盐 水输入接口通过生理盐水通道与生理盐水输出孔相通, 通过生理盐水输出孔 输出生理盐水, 废弃液排出孔通过废弃液通道与废弃液吸收孔相连, 吸收废 弃的液体和切割、 消融出来的病变组织。
低温等离子体发生器通过与电极输入接口连接在等离子刀的手柄上, 对 等离子刀的控制方法如下:
第一步, 利用低温等离子体发生器工作, 一方面通过第一功率放大电路 输出驱动信号, 另一方面通过第二功率放大电路输出等离子能量, 产生等离 子体, 并形成两个电极输入到刀头, 在刀头的电极第一端和电极第二端分别 形成正负电极;
第二步, 利用生理盐水输出控制器抽出生理盐水储存瓶内的生理盐水, 使其流向等离子刀头;
第三步, 生理盐水分别流向电极第一端和电极第二端, 并通过生理盐水 的导电性导通电极第一端和电极第二端, 导通时在电极第二端处产生低温等 离子体, 形成 "等离子体刀", 对肌体进行消融和切割; 此时废弃液吸收孔吸 收在消融、 切割时产生的废弃组织、 组织液、 血以及多余的生理盐水。 需要说明的是, 本发明中各个电路, 如模数转换电路、 显示驱动电路、 功率控制电路、 电压放大电路、 电流检测电路、 第一功率放大电路、 第二功 率放大电路等均采用现有电路, 其他各个硬件设备也为现有设备, 本实施例 中不再赘述。
如上所述, 便可很好的实现本发明。

Claims

WO 2014/094352 权 禾 |j 要 求 书 PCT/CN2013/001425
1、 应用在手术中的低温等离子体发生器, 其特征在于, 包括 CPU控制模 块, 与该 CPU控制模块相连的振动模块, 和与该振动模块相连的输出模块; 其中, 所述 CPU控制模块包括- 微处理器;
与所述微处理器的输入端相连的模 /数转换电路;
与所述微处理器进行信号交互的接口芯片;
以及,分别与所述接口芯片的输出端电连接的显示驱动电路和声音提示装 置, 和接收所述显示驱动电路的输出信号的显示装置;
所述模 /数转换电路和微处理器分别与所述振动模块电连接。
2、 根据权利要求 1所述的应用在手术中的低温等离子体发生器, 其特征 在于, 所述振动模块包括- 向所述微处理器输入信号的按键操作单元;
向所述模 /数转换电路输入检测信号的电流检测电路;
接收所述微处理器的控制信号的功率控制电路;
以及,分别与所述功率控制电路的输出端相连的第一振荡单元和电压放大 电路, 该第一振荡单元与电压放大电路双向连接, 且均与所述输出模块相连; 和用于发送信号到所述电压放大电路的第二振荡单元。
3、 根据权利要求 2所述的应用在手术中的低温等离子体发生器, 其特征 在于, 所述输出模块包括:
输入端与所述第一振荡单元相连的第一功率放大电路;
和输入端与所述电压放大电路相连且向所述电流检测电路输入检测信号 的第二功率放大电路。
4、 一种由低温等离子体发生器组成的刀系统, 其特征在于, 包括生理盐 水输入设备和等离子刀, 以及与该等离子刀电连接的低温等离子体发生器; 该 低温等离子体发生器包括 CPU控制模块,与该 CPU控制模块相连的振动模块, 和与该振动模块相连的输出模块; 其中, 所述 CPU控制模块包括:
微处理器;
与所述微处理器的输入端相连的模 /数转换电路;
与所述微处理器进行信号交互的接口芯片;
以及,分别与所述接口芯片的输出端电连接的显示驱动电路和声音提示装 置, 和接收所述显示驱动电路的输出信号的显示装置;
所述模 /数转换电路和微处理器分别与所述振动模块电连接。
5、 根据权利要求 4所述的一种由低温等离子体发生器组成的刀系统, 其 特征在于, 所述振动模块包括:
向所述微处理器输入信号的按键操作单元;
向所述模 /数转换电路输入检测信号的电流检测电路;
接收所述微处理器的控制信号的功率控制电路;
以及,分别与所述功率控制电路的输出端相连的第一振荡单元和电压放大 电路, 该第一振荡单元与电压放大电路双向连接, 且均与所述输出模块相连; 和用于发送信号到所述电压放大电路的第二振荡单元。
6、 根据权利要求 5所述的一种由低温等离子体发生器组成的刀系统, 其 特征在于, 所述输出模块包括:
输入端与所述第一振荡单元相连的第一功率放大电路;
和输入端与所述电压放大电路相连且向所述电流检测电路输入检测信号 的第二功率放大电路。
7、 根据权利要求 6所述的一种由低温等离子体发生器组成的刀系统, 其 特征在于, 所述等离子刀包括固为一体的刀头与手柄, 其中:
所述手柄包括手柄本体 (7), 设置在该手柄本体 (7) 上并分别连接所述 第一功率放大电路和所述第二功率放大电路的输出端的电极输入接口, 以及设 置于该手柄本体 (7) —端端头的生理盐水输入接口, 和与该生理盐水输入接 口位于手柄本体 (7) 上同一端的废弃液排出口;
所述刀头包括与所述手柄本体 (7) 固为一体的刀头本体 (8), 设置在该 刀头本体 (8 ) 上且与所述电极输入接口相连的电极, 该电极包括设置在所述 刀头本体(8)上的电极第一端 (9), 和设置在刀头上远离手柄本体(7)—端 的电极第二端(12), 以及设置于所述刀头本体(8)上并与所述生理盐水输入 接口相通的生理盐水输出孔(10), 和设置于所述刀头本体(8)远离手柄的一 端并与所述废弃液排出口相通的废弃液吸收孔 (11 )。
8、 根据权利要求 7所述的一种由低温等离子体发生器组成的刀系统, 其 特征在于, 所述生理盐水输入设备包括生理盐水储存瓶(1 ), 一端设置于该生 理盐水储存瓶(1 )上且与其连通的输送管(2), 和设置在该输送管 (2)上的 生理盐水输入控制器 (3 ), 所述输送管 (2) 的另一端与所述生理盐水输入接 口相连。
PCT/CN2013/001425 2012-12-21 2013-11-21 应用在手术中的低温等离子体发生器及其组成的刀系统 WO2014094352A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES13865082T ES2724237T3 (es) 2012-12-21 2013-11-21 Generador de plasma de baja temperatura usado en cirugía
EP13865082.5A EP2937052B1 (en) 2012-12-21 2013-11-21 Low-temperature plasma generator used in surgery
US14/442,888 US20150297280A1 (en) 2012-12-21 2013-11-21 Low-temperature plasma generator used in surgery and knife system formed by same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210561325.8A CN103040519B (zh) 2012-12-21 2012-12-21 应用在手术中的低温等离子体发生器及受其控制的刀系统
CN201210561325.8 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014094352A1 true WO2014094352A1 (zh) 2014-06-26

Family

ID=48053535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001425 WO2014094352A1 (zh) 2012-12-21 2013-11-21 应用在手术中的低温等离子体发生器及其组成的刀系统

Country Status (6)

Country Link
US (1) US20150297280A1 (zh)
EP (1) EP2937052B1 (zh)
CN (1) CN103040519B (zh)
ES (1) ES2724237T3 (zh)
TR (1) TR201908681T4 (zh)
WO (1) WO2014094352A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109771024A (zh) * 2017-10-27 2019-05-21 上海诺英医疗器械有限公司 一种低温等离子圈套刀手术系统
CN109907819A (zh) * 2017-10-27 2019-06-21 上海诺英医疗器械有限公司 一种低温等离子切开刀手术系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103040519B (zh) * 2012-12-21 2015-01-14 成都美创电子科技有限公司 应用在手术中的低温等离子体发生器及受其控制的刀系统
CN105559882A (zh) * 2015-12-15 2016-05-11 江苏邦士医疗科技有限公司 一种低温等离子射频手术系统
CN106880401B (zh) * 2017-03-28 2023-05-26 成都美创医疗科技股份有限公司 一种等离子清创手术刀
JP2021516137A (ja) * 2017-10-27 2021-07-01 上海諾英医療器械有限公司Neowing Medical Co., Ltd. 低温プラズマ型スネアデバイス、システム及び方法
CN107736932A (zh) * 2017-10-27 2018-02-27 上海诺英医疗器械有限公司 一种低温等离子剥离刀手术系统及方法
CN109303604B (zh) * 2018-11-18 2024-02-02 苏州爱科硕科技有限公司 新型的关节手术用低温等离子双极手术电极
CN110393584A (zh) * 2019-08-22 2019-11-01 成都美创医疗科技股份有限公司 一种低温等离子体手术刀
WO2021092628A1 (en) * 2019-11-06 2021-05-14 Insightful Instruments, Inc. Systems and methods for incising tissue
CN112220555A (zh) * 2020-10-01 2021-01-15 成都美创医疗科技股份有限公司 一种显微低温等离子体电极及其手术系统
CN115429424B (zh) * 2022-09-06 2023-03-28 中国人民解放军空军军医大学 一种低温等离子体手术电路
CN115869059A (zh) * 2023-02-23 2023-03-31 中国人民解放军空军军医大学 一种低温等离子手术系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1491620A (zh) * 2002-10-24 2004-04-28 广东合好工贸有限公司 医用双极等离子体功率源的功率输出电路
GB2454461A (en) * 2007-11-06 2009-05-13 Microoncology Ltd A Device to treat and/or kill bacteria and viral disease using microwave plasma
CN201727580U (zh) * 2010-08-17 2011-02-02 刘向东 等离子耳鼻喉手术刀
US20110028970A1 (en) * 1995-11-22 2011-02-03 Jean Woloszko Electrosurgical systems and methods for removing and modifying tissue
CN202173470U (zh) * 2011-06-27 2012-03-28 潘龙祥 电外科手术双极等离子发生器
CN103040519A (zh) * 2012-12-21 2013-04-17 成都美创电子科技有限公司 应用在手术中的低温等离子体发生器及受其控制的刀系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005039390A2 (en) * 2003-10-20 2005-05-06 Arthrocare Corporation Electrosurgical method and apparatus for removing tissue within a bone body
US8192474B2 (en) * 2006-09-26 2012-06-05 Zeltiq Aesthetics, Inc. Tissue treatment methods
GB2452103B (en) * 2007-01-05 2011-08-31 Arthrocare Corp Electrosurgical system with suction control apparatus and system
US9226798B2 (en) * 2008-10-10 2016-01-05 Truevision Systems, Inc. Real-time surgical reference indicium apparatus and methods for surgical applications
KR101044314B1 (ko) * 2008-11-25 2011-06-29 포항공과대학교 산학협력단 저온 플라즈마를 이용한 지혈장치
KR101124419B1 (ko) * 2009-02-18 2012-03-20 포항공과대학교 산학협력단 마이크로파 플라즈마 생성을 위한 휴대용 전력 공급 장치
US10588684B2 (en) * 2010-07-19 2020-03-17 Covidien Lp Hydraulic conductivity monitoring to initiate tissue division
CN201789680U (zh) * 2010-08-13 2011-04-06 华中科技大学 一种人体可直接触摸的低温等离子体的产生装置
JP5762708B2 (ja) * 2010-09-16 2015-08-12 国立大学法人名古屋大学 プラズマ生成装置、プラズマ処理装置及びプラズマ処理方法
JP5170216B2 (ja) * 2010-11-16 2013-03-27 株式会社デンソー プラズマ発生装置
CN102475574A (zh) * 2010-11-25 2012-05-30 北京恒福思特科技发展有限责任公司 用于电外科手术的手术刀和电外科手术系统
GB201021032D0 (en) * 2010-12-10 2011-01-26 Creo Medical Ltd Electrosurgical apparatus
CN102409525A (zh) * 2011-09-13 2012-04-11 上海理工大学 一种低温等离子发生装置及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110028970A1 (en) * 1995-11-22 2011-02-03 Jean Woloszko Electrosurgical systems and methods for removing and modifying tissue
CN1491620A (zh) * 2002-10-24 2004-04-28 广东合好工贸有限公司 医用双极等离子体功率源的功率输出电路
GB2454461A (en) * 2007-11-06 2009-05-13 Microoncology Ltd A Device to treat and/or kill bacteria and viral disease using microwave plasma
CN201727580U (zh) * 2010-08-17 2011-02-02 刘向东 等离子耳鼻喉手术刀
CN202173470U (zh) * 2011-06-27 2012-03-28 潘龙祥 电外科手术双极等离子发生器
CN103040519A (zh) * 2012-12-21 2013-04-17 成都美创电子科技有限公司 应用在手术中的低温等离子体发生器及受其控制的刀系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109771024A (zh) * 2017-10-27 2019-05-21 上海诺英医疗器械有限公司 一种低温等离子圈套刀手术系统
CN109907819A (zh) * 2017-10-27 2019-06-21 上海诺英医疗器械有限公司 一种低温等离子切开刀手术系统

Also Published As

Publication number Publication date
EP2937052A4 (en) 2016-08-10
ES2724237T3 (es) 2019-09-09
CN103040519B (zh) 2015-01-14
CN103040519A (zh) 2013-04-17
TR201908681T4 (tr) 2019-07-22
EP2937052A1 (en) 2015-10-28
US20150297280A1 (en) 2015-10-22
EP2937052B1 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
WO2014094352A1 (zh) 应用在手术中的低温等离子体发生器及其组成的刀系统
CN108289708B (zh) 组合式发生器的电路拓扑
US20110238063A1 (en) Method of Tracking Reposable Instrument Usage
JPH07124101A (ja) 高周波焼灼装置
CN103083083B (zh) 变频高频电刀
JPH10500604A (ja) 電気外科用ゼネレータと共に使用される補助装置の動作率制御システム
GB2470189A (en) Electrosurgical generator with tissue boiling detection having time delay
CN113397656A (zh) 双极高频超声双输出手术系统
Sutton Power sources in endoscopic surgery
CN202699277U (zh) 高频手术治疗仪
CN102783987A (zh) 超声刀系统
JP2000217835A (ja) 超音波手術装置
CN107518942A (zh) 一种氩气流量控制方法及控制系统
JP6257850B1 (ja) エネルギー処置システム及び、そのエネルギー処置システムにおけるエネルギー発生装置
CN208864480U (zh) 射频等离子手术电极
JPH10146344A (ja) 電気手術装置
CN102783988A (zh) 超声吸引刀系统
JPH08275957A (ja) 電気的外科手術装置
CN102783989A (zh) 超声骨刀系统
CN109528271B (zh) 一种具有双水平脉冲输出模式的超声刀
CN115580269A (zh) 一种多通道高压电脉冲发生器
CN115227341B (zh) 一种超声及等离子双输出外科手术系统
CN218960909U (zh) 一种超声高频外科集成手术设备
CN102783990A (zh) 超声手术刀系统
CN213345843U (zh) 后路脊柱肿瘤全切椎间盘切割刀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865082

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14442888

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013865082

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE