WO2014094323A1 - 隔离式升压电路、背光模块及其液晶显示装置 - Google Patents

隔离式升压电路、背光模块及其液晶显示装置 Download PDF

Info

Publication number
WO2014094323A1
WO2014094323A1 PCT/CN2012/087305 CN2012087305W WO2014094323A1 WO 2014094323 A1 WO2014094323 A1 WO 2014094323A1 CN 2012087305 W CN2012087305 W CN 2012087305W WO 2014094323 A1 WO2014094323 A1 WO 2014094323A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
diode
mos transistor
anode
led string
Prior art date
Application number
PCT/CN2012/087305
Other languages
English (en)
French (fr)
Inventor
张华�
杨翔
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/810,466 priority Critical patent/US20140176878A1/en
Publication of WO2014094323A1 publication Critical patent/WO2014094323A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0083Details of electrical connections of light sources to drivers, circuit boards, or the like
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details

Definitions

  • the invention belongs to the field of liquid crystal display, and particularly relates to an isolated booster circuit, a backlight module using the isolated booster circuit and a liquid crystal display device thereof.
  • FIG. 1 is a schematic diagram of a conventional LED backlight boost circuit. As shown in Fig. 1, the opposite end of the primary winding of the transformer T900 is connected to the positive terminal of the diode D1, and the same-name end of the secondary winding is connected to the negative terminal of the diode.
  • the driving signal unit 901 sends an on signal to the MOS transistor Q1, the MOS transistor Q1 is turned on, the diode D1 prevents the high voltage of the same name of the secondary winding of the transformer T900 from damaging the MOS transistor Q1; when the driving signal unit 901 sends a cutoff signal to the MOS transistor Q1
  • the MOS transistor Q1 is turned off, the primary coil of the transformer T900 is supplied to the LED string 30 in series with the induced electromotive force on the secondary coil, and the output voltage is effectively increased by changing the turns ratio of the primary coil to the secondary coil.
  • the diode D1 between the primary coil and the secondary coil of the transformer T900 reversely isolates the high voltage on the secondary coil, and the diode D1 remains There is a reverse current, the power is consumed on the diode D1, the temperature rises, and the reverse current becomes larger as the temperature of the diode D1 increases.
  • the vicious cycle causes the power consumption on the diode D1 to increase, and the temperature is too high. , the overall circuit efficiency will be reduced.
  • the transformer T900 has a leakage inductance.
  • an object of the present invention is to provide an isolated booster circuit including a voltage input terminal, a driving signal unit, a transformer, and a controllable reverse isolation circuit, wherein the transformer includes a primary coil And a secondary coil, the voltage input end is connected to the same name end of the primary coil, and the different name end of the primary coil is connected to the 01 end of the controllable reverse isolation circuit, and the same name end of the secondary coil
  • the 02 terminal of the controllable reverse isolation circuit is connected, and the controllable reverse isolation circuit
  • the 03 terminal is connected to the drive signal unit.
  • controllable reverse isolation circuit includes a second MOS transistor having a first diode and a second capacitor parasitized therein, and one end of the second capacitor and a positive pole of the first diode
  • the source of the second MOS transistor is connected to the 01 terminal of the controllable reverse isolation circuit, and the other end of the second capacitor is opposite to the cathode of the first diode and the drain of the second MOS transistor Connected to the 02 end of the controllable reverse isolation circuit, the gate of the second MOS transistor is set to the controllable reverse isolation circuit 03
  • the isolated booster circuit further includes a first MOS transistor, a first capacitor, an LED string, and a resistor, wherein a drain of the first MOS transistor is connected to a different end of the primary coil, and the source is electrically
  • the grounding is connected to the driving signal unit, the different name end of the secondary coil is connected to the positive pole of the LED light string, one end of the resistor is connected to the negative pole of the LED light string, and the other end is electrically grounded.
  • One end of the first capacitor is connected to the anode of the LED string, and the other end is electrically grounded.
  • the isolated booster circuit further includes a rectifier circuit, wherein a terminal end of the rectifier circuit is connected to a different end of the secondary coil, and a terminal end of the rectifier circuit is connected to a positive pole of the LED light string. And causing the rectifier circuit to be connected between the opposite end of the secondary coil and the positive pole of the LED string.
  • the first diode is a Schottky diode.
  • the rectifier circuit is a second diode, an anode of the second diode is connected to a different end of the secondary coil, and a cathode of the second diode is connected to the LED lamp. The positive pole of the string.
  • Another object of the present invention is to provide a backlight module including an isolated booster circuit, wherein the isolated booster circuit includes a voltage input terminal, a driving signal unit, a transformer, and a controllable reverse isolation circuit; wherein the transformer a primary winding and a secondary winding, wherein the voltage input is connected to the same end of the primary coil, and the different end of the primary is connected to the 01 end of the controllable reverse isolation circuit, the secondary winding The same name end is connected to the 02 end of the controllable reverse isolation circuit, and the 03 end of the controllable reverse isolation circuit is connected to the drive signal unit; wherein the controllable reverse isolation circuit comprises a second MOS tube.
  • a first diode and a second capacitor are parasitized therein, and one end of the second capacitor is connected to the anode of the first diode and the source of the second MOS transistor to become the controllable reverse isolation
  • the other end of the second capacitor is connected to the cathode of the first diode and the drain of the second MOS transistor to form the 02 terminal of the controllable reverse isolation circuit.
  • the isolated booster circuit further includes a first MOS transistor, a first capacitor, an LED string, and a resistor, and a drain of the first MOSFET is connected to a different end of the primary coil, and the source is electrically
  • the grounding is connected to the driving signal unit, the different name end of the secondary coil is connected to the positive pole of the LED light string, one end of the resistor is connected to the negative pole of the LED light string, and the other end is electrically grounded.
  • One end of the first capacitor is connected to the anode of the LED string, and the other end is electrically grounded.
  • the isolated booster circuit further includes a rectifier circuit, wherein a terminal end of the rectifier circuit is connected to a different end of the secondary coil, and a terminal end of the rectifier circuit is connected to a positive pole of the LED light string. And causing the rectifier circuit to be connected between the opposite end of the secondary coil and the positive pole of the LED string.
  • the first diode is a Schottky diode.
  • the rectifier circuit is a second diode, an anode of the second diode is connected to a different end of the secondary coil, and a cathode of the second diode is connected to the LED lamp. The positive pole of the string.
  • Another object of the present invention is to provide a liquid crystal display device including a liquid crystal panel and a backlight module that provides a light source to the liquid crystal panel, the backlight module includes an isolated booster circuit, and the isolated booster circuit includes a voltage input terminal.
  • a driving signal unit a transformer and a controllable reverse isolation circuit; wherein the transformer comprises a primary coil and a secondary coil, the voltage input end is connected to the same name end of the primary coil, and the different name end of the primary coil
  • the 01 terminal connection of the controllable reverse isolation circuit is connected to the 02 terminal of the controllable reverse isolation circuit, and the 03 terminal of the controllable reverse isolation circuit is connected to the drive signal
  • the controllable reverse isolation circuit includes a second MOS transistor having a first diode and a second capacitor parasitized therein, one end of the second capacitor and a positive pole of the first diode
  • the source of the second MOS transistor is connected to the 01 terminal of the controllable reverse isolation circuit, and the other end of the second capacitor is opposite to
  • the pole connection is the 02 terminal of the controllable reverse isolation circuit, and the gate of the second MOS transistor is set to the 03 terminal of the controllable reverse isolation circuit.
  • the isolated booster circuit further includes a first MOS transistor, a first capacitor, an LED string, and a resistor, wherein a drain of the first MOS transistor is connected to a different end of the primary coil, and the source is electrically
  • the grounding is connected to the driving signal unit, the different name end of the secondary coil is connected to the positive pole of the LED light string, one end of the resistor is connected to the negative pole of the LED light string, and the other end is electrically grounded.
  • One end of the first capacitor is connected to the anode of the LED string, and the other end is electrically grounded.
  • the isolated booster circuit further includes a rectifier circuit, wherein a terminal end of the rectifier circuit is connected to a different end of the secondary coil, and a terminal end of the rectifier circuit is connected to a positive pole of the LED light string. And causing the rectifier circuit to be connected between the opposite end of the secondary coil and the positive pole of the LED string.
  • the first diode is a Schottky diode.
  • the rectifier circuit is a second diode, an anode of the second diode is connected to a different end of the secondary coil, and a cathode of the second diode is connected to the LED lamp. The positive pole of the string.
  • the isolated booster circuit of the present invention supplies power to the LED light string in the backlight module of the liquid crystal display, and replaces the original common diode with the power source MOS tube with low on-state loss to connect to the different name of the primary coil of the transformer.
  • the internal parasitic Schottky diode has a higher blocking voltage than the ordinary diode, and the reverse current is small, which can improve the efficiency of the whole circuit, and the internal parasitic capacitance can effectively absorb the leakage inductance of the transformer.
  • the released pulse voltage effectively improves the safety and stability of the circuit.
  • FIG. 1 is a schematic diagram of a conventional isolated booster circuit.
  • 2 is a schematic diagram of an isolated booster circuit in accordance with an embodiment of the present invention.
  • 3 is a schematic diagram of a controllable reverse isolation circuit in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an isolated booster circuit according to an embodiment of the present invention.
  • the liquid crystal display device to which the isolated booster circuit of the present embodiment is applied may include, for example, a liquid crystal panel, and a backlight module that supplies a light source to the liquid crystal panel.
  • the backlight module includes LED strings in parallel or in series, and an isolated boost circuit for supplying power to the LED strings.
  • the isolated booster circuit includes a power source U, a transformer T20, a first switch transistor, a drive signal unit 21, a controllable reverse isolation circuit, a rectifier circuit, a first capacitor C1, a resistor R1, and a series LED lamp string 30;
  • the terminal is the positive pole of the power source U, the power source U is used to input the DC power source to be boosted, and the transformer T20 includes the primary coil L1 and the secondary coil L2, wherein the anode of the power source U is connected to the same name end of the primary coil L1 of the transformer T20, the power source
  • the negative pole of U is electrically grounded; the 01 end of the controllable reverse isolation circuit is connected to the different end of the primary coil L1 of the transformer T20, and the 02 end of the controllable reverse isolation circuit is connected to the same end of the secondary coil L2 of the transformer T20.
  • the 03 terminal of the controllable reverse isolation circuit is connected to the driving signal unit 21; the drain of the first MOS transistor Q1 is connected to the different name end of the primary coil L1 of the transformer T20, the source thereof is electrically grounded, and the gate is connected
  • the driving signal unit 21; the 04 terminal of the rectifier circuit is connected to the different end of the secondary winding of the transformer T20, and the 05 terminal of the rectifier circuit is connected to the positive pole of the series LED string 30, and the rectifier circuit can be, for example, the second a device such as a tube D2 or other general-purpose rectifier circuit; one end of the resistor R1 is connected to the negative pole of the LED string 30 in series, and the other end is electrically grounded, and one end of the first capacitor C1 is connected to the anode of the LED string 30 connected in series, and One end is electrically grounded.
  • the controllable reverse isolation circuit can be replaced by, for example, an electronic switch having an isolated connection function, or an integrated IC, which can be isolated when the MOS transistor Q1 is turned on.
  • the high voltage on the secondary coil L2 of the transformer T20, and the primary coil L1 and the secondary coil L2 of the transformer T20 are connected as the operating voltage of the LED string 30 when the MOS transistor Q1 is turned off.
  • FIG. 3 is a schematic structural diagram of a controllable reverse isolation circuit according to an embodiment of the present invention.
  • the controllable reverse isolation circuit includes a second MOS transistor Q2, which is a power MOS transistor with low on-state loss.
  • the MOS transistor Q2 is internally parasitized with a second capacitor C2, a first diode D1, and a second parasitic capacitor.
  • One end of C2 is connected to the anode of the first diode D1 and the source of the MOS transistor Q2 to form a 01 end of the controllable reverse isolation circuit; the other end of the internally parasitic second capacitor C2 is connected to the first diode D1.
  • the drain of the negative electrode and the MOS transistor Q2 is formed as the 02 terminal of the controllable reverse isolation circuit; the gate of the MOS transistor Q2 is set to the 03 terminal, which is connected to the drive signal unit 21.
  • the capacitor C2 and the diode D1 are parasitic on the MOS transistor Q2, the substantial circuit shown in FIG.
  • the capacitor C2 and the diode D1 which are parasitic inside the MOS transistor Q2 may not be utilized, and the diodes and capacitors with better characteristics are directly connected at both ends of the MOS transistor Q2.
  • the first diode D1 is preferably a Schottky diode having a high blocking voltage and a small reverse current.
  • the isolated booster circuit uses the transformer T20 to increase the output voltage by using the transformer T20, and the output voltage is converted to a DC current by the rectifier circuit, and then output to the series LED string 30. A suitable voltage is provided for the series of LED strings 30.
  • the driving signal unit 21 sends an ON signal to the MOS transistor Q1
  • the ON signal is also sent to the MOS transistor Q2.
  • the MOS transistor Q1 and the MOS transistor Q2 are simultaneously turned on, and the output voltage of the power supply is boosted by the transformer T20.
  • the boosted voltage is output, and is rectified by a rectifying circuit to supply power to the LED string 30.
  • the MOS transistor Q1 and the MOS transistor Q2 are simultaneously turned on, the high voltage conduction on the secondary coil L2 of the transformer T20 is performed.
  • the energy stored in the leakage inductance of the secondary coil L2 is eliminated; when the driving signal unit 21 sends a shutdown signal to the MOS transistor Q1, the shutdown signal is also sent to the MOS transistor Q2, at this time, the MOS transistor Q1 and the MOS transistor Q2 is simultaneously turned off, and the induced electromotive force on the primary coil L1 of the transformer T20 and the secondary coil L2 is connected in series as the voltage of the LED string 30 through the first diode D1 parasitic to the MOS transistor Q2.
  • One end of the second capacitor C2 parasitic on the MOS transistor Q2 is connected to the different end of the primary coil L1 of the transformer T20, and the other end is connected to the same end of the secondary coil L2 of the transformer T20, and the drive signal unit 21 simultaneously turns off the signal.
  • the MOS transistor Q1 and the MOS transistor Q2 are issued, the MOS transistor Q1 and the MOS transistor Q2 are simultaneously turned off, and the induced electromotive force on the primary coil L1 and the secondary coil L2 of the transformer T20 passes through the first two poles parasitic inside the MOS transistor Q2.
  • the tube D1 is connected in series as the voltage of the LED string 30, and the second capacitor C2 can effectively absorb the pulse voltage released by the leakage inductance of the transformer T20, and protect the key components such as the MOS transistor Q1, the MOS transistor Q2 or the first diode D1. Improve the safety and stability of the circuit.
  • the present invention uses a power MOS transistor Q2 with low on-state loss instead of the conventional diode.
  • the internal parasitic Schottky first diode D1 has a higher blocking voltage than the normal diode, and the reverse current Small, can improve the efficiency of the whole circuit, in addition, the internal parasitic second capacitor C2 can effectively absorb the pulse voltage released by the leakage inductance of the transformer T20, effectively improving the safety and stability of the circuit. While the invention has been particularly shown and described with reference to the exemplary embodiments of the embodiments of the invention Various changes in form and detail.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Led Devices (AREA)

Abstract

公开了一种隔离式升压电路、背光模块及其液晶显示装置。该隔离式升压电路为液晶显示装置的背光模块中的LED灯串(30)提供电源,其包括电压输入端、驱动信号单元(21)、变压器(T20)及可控反向隔离电路。该变压器(T20)包括初级线圈(L1)和次级线圈(L2),电压输入端连接初级线圈(L1)的同名端,次级线圈(L2)的异名端连接于LED灯串(30);初级线圈(L1)的异名端与可控反向隔离电路的01端连接,次级线圈(L2)的同名端与可控反向隔离电路的02端连接,可控反向隔离电路的03端连接于驱动信号单元(21)。该隔离式升压电路可提高整个电路的效率,有效提高电路的安全性和稳定性。

Description

隔离式升压电路、 背光模块及其液晶显示装置 技术领域
本发明属于液晶显示领域, 尤其涉及一种隔离式升压电路、 采用隔离式升 压电路的背光模块及其液晶显示装置。
背景技术
现有的液晶显示装置通常都采用 LED作为背光源,图 1为现有的一种 LED 背光升压电路示意图。 如图 1所示, 变压器 T900的初级线圈的异名端与二极 管 D1的正极连接, 次级线圈的同名端与二极管的负极连接。 当驱动信号单元 901发出导通信号给 MOS管 Q1时, MOS管 Q1导通, 二极管 D1阻止变压器 T900的次级线圈同名端的高压损坏 MOS管 Q1 ; 当驱动信号单元 901发出截 止信号给 MOS管 Q1时, MOS管 Q1截止, 变压器 T900的初级线圈与次级线 圈上的感应电动势串联提供给 LED灯串 30, 通过改变初级线圈与次级线圈的 匝数比, 使输出电压有效增大。
但在上述电路中, 一方面当 MOS管 Q1导通时, 当 MOS导通时, 变压器 T900初级线圈和次级线圈之间的二极管 D1反向隔离次级线圈上的高电压,二 极管 D1 中仍存在着反向电流, 二极管 D1上会消耗功率, 温度升高, 而反向 电流又会随着二极管 D1 温度的升高而变大, 如此恶性循环, 导致二极管 D1 上消耗功率增加, 温度过高, 整个电路效率会降低。 另一方面, 变压器 T900 存在着漏感, MOS管 Q1导通时储存在漏感中的能量会在 MOS管 Q1关断时 以很大的尖峰电压释放出来, 对二极管 D1和 MOS管 Q1产生冲击, 加速其老 化, 严重时会击穿。 发明内容
为解决上述现有技术的问题, 本发明的目的是提供一种隔离式升压电路, 其包括电压输入端、 驱动信号单元、 变压器及可控反向隔离电路, 其中, 所述 变压器包括初级线圈和次级线圈, 所述电压输入端连接所述初级线圈的同名 端, 所述初级线圈的异名端与所述可控反向隔离电路的 01 端连接, 所述次级 线圈的同名端与所述可控反向隔离电路的 02端连接, 所述可控反向隔离电路 的 03端连接所述驱动信号单元。 进一步地, 所述可控反向隔离电路包括第二 M0S管, 其内部寄生有第一 二极管和第二电容, 所述第二电容的一端与所述第一二极管的正极及所述第二 MOS管的源极连接成为所述可控反向隔离电路的 01端, 所述第二电容的另一 端与所述第一二极管的负极及所述第二 MOS管的漏极连接成为所述可控反向 隔离电路的 02端, 所述第二 MOS管的栅极设为所述可控反向隔离电路的 03
¾。 进一步地, 所述隔离式升压电路还包括第一 MOS管、 第一电容、 LED灯 串及电阻, 所述第一 MOS管的漏极连接于所述初级线圈的异名端, 源极电性 接地, 栅极连接于所述驱动信号单元, 所述次级线圈的异名端与所述 LED灯 串的正极连接, 所述电阻的一端与 LED灯串的负极连接, 另一端电性接地, 所述第一电容的一端连接于所述 LED灯串的正极, 另一端电性接地。 进一步地, 所述隔离式升压电路还包括整流电路, 所述整流电路的 04端 连接于所述次级线圈的异名端, 所述整流电路的 05端连接于所述 LED灯串的 正极, 使所述整流电路连接于所述次级线圈的异名端和所述 LED灯串的正极 之间。 进一步地, 所述第一二极管为肖特基二极管。 进一步地, 所述整流电路为第二二极管, 所述第二二极管的正极连接于所 述次级线圈的异名端, 所述第二二极管的负极连接于所述 LED灯串的正极。 本发明的另一目的是提供一种背光模块, 包括隔离式升压电路, 所述隔离 式升压电路包括电压输入端、 驱动信号单元、 变压器及可控反向隔离电路; 其 中, 所述变压器包括初级线圈和次级线圈, 所述电压输入端连接所述初级线圈 的同名端, 所述初级线圈的异名端与所述可控反向隔离电路的 01 端连接, 所 述次级线圈的同名端与所述可控反向隔离电路的 02端连接, 所述可控反向隔 离电路的 03端连接所述驱动信号单元; 其中, 所述可控反向隔离电路包括第 二 MOS管, 其内部寄生有第一二极管和第二电容, 所述第二电容的一端与所 述第一二极管的正极及所述第二 MOS管的源极连接成为所述可控反向隔离电 路的 01端, 所述第二电容的另一端与所述第一二极管的负极及所述第二 MOS 管的漏极连接成为所述可控反向隔离电路的 02端,所述第二 MOS管的栅极设 进一步地, 所述隔离式升压电路还包括第一 M0S管、 第一电容、 LED灯 串及电阻, 所述第一 M0S管的漏极连接于所述初级线圈的异名端, 源极电性 接地, 栅极连接于所述驱动信号单元, 所述次级线圈的异名端与所述 LED灯 串的正极连接, 所述电阻的一端与 LED灯串的负极连接, 另一端电性接地, 所述第一电容的一端连接于所述 LED灯串的正极, 另一端电性接地。 进一步地, 所述隔离式升压电路还包括整流电路, 所述整流电路的 04端 连接于所述次级线圈的异名端, 所述整流电路的 05端连接于所述 LED灯串的 正极, 使所述整流电路连接于所述次级线圈的异名端和所述 LED灯串的正极 之间。 进一步地, 所述第一二极管为肖特基二极管。 进一步地, 所述整流电路为第二二极管, 所述第二二极管的正极连接于所 述次级线圈的异名端, 所述第二二极管的负极连接于所述 LED灯串的正极。 本发明的另一目的是提供一种液晶显示装置, 包括液晶面板及向液晶面板 提供光源的背光模块, 所述背光模块包括隔离式升压电路, 所述隔离式升压电 路包括电压输入端、 驱动信号单元、 变压器及可控反向隔离电路; 其中, 所述 变压器包括初级线圈和次级线圈, 所述电压输入端连接所述初级线圈的同名 端, 所述初级线圈的异名端与所述可控反向隔离电路的 01 端连接, 所述次级 线圈的同名端与所述可控反向隔离电路的 02端连接, 所述可控反向隔离电路 的 03端连接所述驱动信号单元; 其中, 所述可控反向隔离电路包括第二 MOS 管, 其内部寄生有第一二极管和第二电容, 所述第二电容的一端与所述第一二 极管的正极及所述第二 MOS 管的源极连接成为所述可控反向隔离电路的 01 端, 所述第二电容的另一端与所述第一二极管的负极及所述第二 MOS管的漏 极连接成为所述可控反向隔离电路的 02端,所述第二 MOS管的栅极设为所述 可控反向隔离电路的 03端。 进一步地, 所述隔离式升压电路还包括第一 MOS管、 第一电容、 LED灯 串及电阻, 所述第一 MOS管的漏极连接于所述初级线圈的异名端, 源极电性 接地, 栅极连接于所述驱动信号单元, 所述次级线圈的异名端与所述 LED灯 串的正极连接, 所述电阻的一端与 LED灯串的负极连接, 另一端电性接地, 所述第一电容的一端连接于所述 LED灯串的正极, 另一端电性接地。 进一步地, 所述隔离式升压电路还包括整流电路, 所述整流电路的 04端 连接于所述次级线圈的异名端, 所述整流电路的 05端连接于所述 LED灯串的 正极, 使所述整流电路连接于所述次级线圈的异名端和所述 LED灯串的正极 之间。 进一步地, 所述第一二极管为肖特基二极管。 进一步地, 所述整流电路为第二二极管, 所述第二二极管的正极连接于所 述次级线圈的异名端, 所述第二二极管的负极连接于所述 LED灯串的正极。 本发明的隔离式升压电路, 为液晶显示器的背光模组中的 LED灯串提供 电源, 其用通态损耗低的功率 MOS管代替了原有的普通二极管连接于变压器 初级线圈的异名端和次级线圈的同名端之间, 其内部寄生的肖特基二极管比普 通的二极管隔断电压高、 反向电流小, 可提高整个电路的效率, 另外其内部寄 生的电容可以有效吸收变压器漏感释放出来的脉冲电压, 有效提高电路的安全 性和稳定性。
附图说明 图 1是现有的一种隔离式升压电路示意图。 图 2是本发明实施例的隔离式升压电路示意图。 图 3是本发明实施例的可控反向隔离电路示意图。
具体实施方式 为了更好地阐述本发明所采取的技术手段及其效果, 以下结合本发明的实 施例及其附图进行详细描述, 其中, 相同的标号始终表示相同的部件。 本发明实施例的隔离式升压电路应用于液晶显示领域, 为背光模组中的 LED灯串提供电源。 请参考图 2, 图 2示出的是本发明实施例的隔离式升压电路示意图。 应用本实施例隔离式升压电路的液晶显示装置例如可以包括液晶面板, 以 及给液晶面板提供光源的背光模组。 背光模组包括并联或串联的 LED灯串, 以及为 LED灯串提供电源的隔离式升压电路, 本实施例以串联的 LED灯串为 例具体介绍。 该隔离式升压电路包括电源 U、 变压器 T20、 第一开关管、 驱动信号单元 21、 可控反向隔离电路、 整流电路、 第一电容 Cl、 电阻 R1及串联的 LED灯 串 30; 电压输入端为电源 U的正极, 电源 U用于输入待升压的直流电源, 变 压器 T20包括初级线圈 L1和次级线圈 L2, 其中, 电源 U的正极与变压器 T20 的初级线圈 L1的同名端连接, 电源 U的负极电性接地; 可控反向隔离电路的 01端连接于变压器 T20的初级线圈 L1的异名端, 可控反向隔离电路的 02端 连接于变压器 T20的次级线圈 L2的同名端,可控反向隔离电路的 03端连接于 驱动信号单元 21 ; 第一 MOS管 Ql, 其漏极连接于变压器 T20的初级线圈 L1 的异名端, 其源极电性接地, 其栅极连接于驱动信号单元 21 ; 整流电路的 04 端连接于变压器 T20的次级线圈的异名端,整流电路的 05端连接于串联的 LED 灯串 30的正极,该整流电路例如可为第二二极管 D2等元件或其他通用的整流 电路; 电阻 R1的一端连接于串联的 LED灯串 30的负极, 另一端电性接地, 第一电容 C1的一端连接于串联的 LED灯串 30的正极, 另一端电性接地。 在本实施例隔离式升压电路中, 可控反向隔离电路可由例如具有隔离连接 功能的电子开关、或集成 IC代替, 所述隔离连接功能指的是能完成在 MOS管 Q1导通时隔离变压器 T20的次级线圈 L2上的高电压, 及在 MOS管 Q1关断 时连接变压器 T20的初级线圈 L1和次级线圈 L2作为 LED灯串 30的工作电压。 请参考图 3,图 3所示为本发明实施例的可控反向隔离电路的结构示意图。 该可控反向隔离电路包括第二 MOS管 Q2, 其为通态损耗低的功率 MOS 管, 该 MOS管 Q2内部寄生有第二电容 C2、第一二极管 D1 ; 内部寄生的第二 电容 C2的一端与第一二极管 D1的正极及 MOS管 Q2的源极连接形成为可控 反向隔离电路的 01端; 内部寄生的第二电容 C2的另一端与第一二极管 D1的 负极及 MOS管 Q2的漏极连接形成为可控反向隔离电路的 02端; MOS管 Q2 的栅极设为 03端, 其连接驱动信号单元 21。 在本实施例中, 由于电容 C2及 二极管 D1为寄生于 MOS管 Q2, 所以图 3所示实质为一等效电路。 可选地,在本实施例的上述可控反向隔离电路中可以不利用其 MOS管 Q2 内部寄生的电容 C2和二极管 Dl, 而直接在 MOS管 Q2两端另外并联特性较 好的二极管和电容。 在本实施例中, 第一二极管 D1优选为隔断电压高、 反向电流小的肖特基 二极管。 请同时参考图 2和图 3, 该隔离式升压电路将电源 U输入的直流电运用变 压器 T20来提高输出电压,输出电压经过整流电路变为直流电流后输出至串联 的 LED灯串 30的电压, 为串联的 LED灯串 30提供合适的电压。 当驱动信号 单元 21发出导通信号给 MOS管 Q1时, 同时也将导通信号发给 MOS管 Q2, 此时 MOS管 Ql、 MOS管 Q2同时导通, 电源的输出电压经变压器 T20升压 后将升压后的电压输出, 经过整流电路整流后供电给 LED灯串 30使用, 此过 程中, 由于 MOS管 Q1及 MOS管 Q2同时导通,将变压器 T20的次级线圈 L2 上的高电压导通到底, 消除次级线圈 L2漏感中储存的能量; 当驱动信号单元 21发出关断信号给 MOS管 Q1时, 同时也将关断信号发给 MOS管 Q2, 此时 MOS管 Q1和 MOS管 Q2同时关断, 变压器 T20的初级线圈 L1与次级线圈 L2上的感应电动势通过寄生于 MOS管 Q2的第一二极管 D1串联起来, 作为 LED灯串 30的电压。 寄生于 MOS管 Q2的第二电容 C2的一端与变压器 T20的初级线圈 L1的 异名端连接, 另一端与变压器 T20的次级线圈 L2的同名端连接, 当驱动信号 单元 21同时将关断信号发给 MOS管 Q1和 MOS管 Q2时, 此时 MOS管 Q1 和 MOS管 Q2同时关断, 变压器 T20的初级线圈 L1与次级线圈 L2上的感应 电动势通过 MOS管 Q2内部寄生的第一二极管 D1串联起来, 作为 LED灯串 30的电压, 第二电容 C2可有效地吸收变压器 T20漏感释放出来的脉冲电压, 保护关键元器件例如 MOS管 Ql、 MOS管 Q2或第一二极管 Dl, 提高电路的 安全性和稳定性。 综上所述, 本发明采用了通态损耗低的功率 MOS管 Q2代替了原有的普 通二极管, 其内部寄生的肖特基第一二极管 D1比普通的二极管隔断电压高、 反向电流小, 可提高整个电路的效率, 另外其内部寄生的第二电容 C2可以有 效吸收变压器 T20 漏感释放出来的脉冲电压, 有效提高电路的安全性和稳定 性。 虽然本发明是参照其示例性的实施例被具体描述和显示的, 但是本领域的 普通技术人员应该理解, 在不脱离由权利要求限定的本发明的精神和范围的情 况下, 可以对其进行形式和细节的各种改变。

Claims

权利要求书
1、 一种隔离式升压电路, 其中, 包括电压输入端、 驱动信号单元、 变压 器及可控反向隔离电路, 其中, 所述变压器包括初级线圈和次级线圈, 所述电 压输入端连接所述初级线圈的同名端,所述初级线圈的异名端与所述可控反向 隔离电路的 01端连接, 所述次级线圈的同名端与所述可控反向隔离电路的 02 端连接, 所述可控反向隔离电路的 03端连接所述驱动信号单元。
2、 根据权利要求 1所述的隔离式升压电路, 其中, 所述可控反向隔离电 路包括第二 MOS管, 其内部寄生有第一二极管和第二电容, 所述第二电容的 一端与所述第一二极管的正极及所述第二 MOS管的源极连接成为所述可控反 向隔离电路的 01 端, 所述第二电容的另一端与所述第一二极管的负极及所述 第二 MOS管的漏极连接成为所述可控反向隔离电路的 02端, 所述第二 MOS 管的栅极设为所述可控反向隔离电路的 03端。
3、 根据权利要求 1所述的隔离式升压电路, 其中, 所述隔离式升压电路 还包括第一 MOS管、 第一电容、 LED灯串及电阻, 所述第一 MOS管的漏极 连接于所述初级线圈的异名端,源极电性接地,栅极连接于所述驱动信号单元, 所述次级线圈的异名端与所述 LED灯串的正极连接, 所述电阻的一端与 LED 灯串的负极连接, 另一端电性接地, 所述第一电容的一端连接于所述 LED灯 串的正极, 另一端电性接地。
4、 根据权利要求 2所述的隔离式升压电路, 其中, 所述隔离式升压电路 还包括第一 MOS管、 第一电容、 LED灯串及电阻, 所述第一 MOS管的漏极 连接于所述初级线圈的异名端,源极电性接地,栅极连接于所述驱动信号单元, 所述次级线圈的异名端与所述 LED灯串的正极连接, 所述电阻的一端与 LED 灯串的负极连接, 另一端电性接地, 所述第一电容的一端连接于所述 LED灯 串的正极, 另一端电性接地。
5、 根据权利要求 3所述的隔离式升压电路, 其中, 所述隔离式升压电路 还包括整流电路, 所述整流电路的 04端连接于所述次级线圈的异名端, 所述 整流电路的 05端连接于所述 LED灯串的正极, 使所述整流电路连接于所述次 级线圈的异名端和所述 LED灯串的正极之间。
6、 根据权利要求 4所述的隔离式升压电路, 其中, 所述隔离式升压电路 还包括整流电路, 所述整流电路的 04端连接于所述次级线圈的异名端, 所述 整流电路的 05端连接于所述 LED灯串的正极, 使所述整流电路连接于所述次 级线圈的异名端和所述 LED灯串的正极之间。
7、 根据权利要求 2所述的隔离式升压电路, 其中, 所述第一二极管为肖 特基二极管。
8、 根据权利要求 5所述的隔离式升压电路, 其中, 所述整流电路为第二 二极管, 所述第二二极管的正极连接于所述次级线圈的异名端, 所述第二二极 管的负极连接于所述 LED灯串的正极。
9、 根据权利要求 6所述的隔离式升压电路, 其中, 所述整流电路为第二 二极管, 所述第二二极管的正极连接于所述次级线圈的异名端, 所述第二二极 管的负极连接于所述 LED灯串的正极。
10、 一种背光模块, 包括隔离式升压电路, 其中, 所述隔离式升压电路包 括电压输入端、 驱动信号单元、 变压器及可控反向隔离电路; 其中, 所述变压 器包括初级线圈和次级线圈, 所述电压输入端连接所述初级线圈的同名端, 所 述初级线圈的异名端与所述可控反向隔离电路的 01 端连接, 所述次级线圈的 同名端与所述可控反向隔离电路的 02端连接, 所述可控反向隔离电路的 03端 连接所述驱动信号单元; 其中, 所述可控反向隔离电路包括第二 MOS管, 其 内部寄生有第一二极管和第二电容, 所述第二电容的一端与所述第一二极管的 正极及所述第二 MOS管的源极连接成为所述可控反向隔离电路的 01端,所述 第二电容的另一端与所述第一二极管的负极及所述第二 MOS管的漏极连接成 为所述可控反向隔离电路的 02端,所述第二 MOS管的栅极设为所述可控反向 隔离电路的 03端。
11、 根据权利要求 10所述的背光模块, 其中, 所述隔离式升压电路还包 括第一 MOS管、 第一电容、 LED灯串及电阻, 所述第一 MOS管的漏极连接 于所述初级线圈的异名端, 源极电性接地, 栅极连接于所述驱动信号单元, 所 述次级线圈的异名端与所述 LED灯串的正极连接, 所述电阻的一端与 LED灯 串的负极连接, 另一端电性接地, 所述第一电容的一端连接于所述 LED灯串 的正极, 另一端电性接地。
12、 根据权利要求 11 所述的背光模块, 其中, 所述隔离式升压电路还包 括整流电路, 所述整流电路的 04端连接于所述次级线圈的异名端, 所述整流 电路的 05端连接于所述 LED灯串的正极, 使所述整流电路连接于所述次级线 圈的异名端和所述 LED灯串的正极之间。
13、 根据权利要求 10所述的背光模块, 其中, 所述第一二极管为肖特基 二极管。
14、 根据权利要求 12所述的背光模块, 其中, 所述整流电路为第二二极 管, 所述第二二极管的正极连接于所述次级线圈的异名端, 所述第二二极管的 负极连接于所述 LED灯串的正极。
15、一种液晶显示装置,包括液晶面板及向液晶面板提供光源的背光模块, 所述背光模块包括隔离式升压电路, 其中, 所述隔离式升压电路包括电压输入 端、 驱动信号单元、 变压器及可控反向隔离电路; 其中, 所述变压器包括初级 线圈和次级线圈, 所述电压输入端连接所述初级线圈的同名端, 所述初级线圈 的异名端与所述可控反向隔离电路的 01 端连接, 所述次级线圈的同名端与所 述可控反向隔离电路的 02端连接, 所述可控反向隔离电路的 03端连接所述驱 动信号单元; 其中, 所述可控反向隔离电路包括第二 MOS管, 其内部寄生有 第一二极管和第二电容, 所述第二电容的一端与所述第一二极管的正极及所述 第二 MOS管的源极连接成为所述可控反向隔离电路的 01端,所述第二电容的 另一端与所述第一二极管的负极及所述第二 MOS管的漏极连接成为所述可控 反向隔离电路的 02端,所述第二 MOS管的栅极设为所述可控反向隔离电路的 03端。
16、 根据权利要求 15所述的液晶显示装置, 其中, 所述隔离式升压电路 还包括第一 MOS管、 第一电容、 LED灯串及电阻, 所述第一 MOS管的漏极 连接于所述初级线圈的异名端,源极电性接地,栅极连接于所述驱动信号单元, 所述次级线圈的异名端与所述 LED灯串的正极连接, 所述电阻的一端与 LED 灯串的负极连接, 另一端电性接地, 所述第一电容的一端连接于所述 LED灯 串的正极, 另一端电性接地。
17、 根据权利要求 16所述的液晶显示装置, 其中, 所述隔离式升压电路 还包括整流电路, 所述整流电路的 04端连接于所述次级线圈的异名端, 所述 整流电路的 05端连接于所述 LED灯串的正极, 使所述整流电路连接于所述次 级线圈的异名端和所述 LED灯串的正极之间。
18、 根据权利要求 15所述的液晶显示装置, 其中, 所述第一二极管为肖 特基二极管。
19、 根据权利要求 17所述的液晶显示装置, 其中, 所述整流电路为第二 二极管, 所述第二二极管的正极连接于所述次级线圈的异名端, 所述第二二极 管的负极连接于所述 LED灯串的正极。
PCT/CN2012/087305 2012-12-20 2012-12-24 隔离式升压电路、背光模块及其液晶显示装置 WO2014094323A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/810,466 US20140176878A1 (en) 2012-12-20 2012-12-24 Isolated Boost Circuit, Backlight Module and Liquid Crystal Display Device Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210556683.X 2012-12-20
CN201210556683.XA CN103066850B (zh) 2012-12-20 2012-12-20 隔离式升压电路、背光模块及液晶显示装置

Publications (1)

Publication Number Publication Date
WO2014094323A1 true WO2014094323A1 (zh) 2014-06-26

Family

ID=48109341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087305 WO2014094323A1 (zh) 2012-12-20 2012-12-24 隔离式升压电路、背光模块及其液晶显示装置

Country Status (2)

Country Link
CN (1) CN103066850B (zh)
WO (1) WO2014094323A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103269549A (zh) * 2013-05-31 2013-08-28 深圳市华星光电技术有限公司 Led背光驱动电路及电子装置
KR102244183B1 (ko) 2017-05-27 2021-04-26 유 린 리 구동 시스템
CN110446292B (zh) * 2018-05-03 2022-07-08 李玉麟 驱动装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060181904A1 (en) * 2005-02-16 2006-08-17 Samsung Electronics Co., Ltd. Driving apparatus of display device and DC-DC converter
WO2012129823A1 (zh) * 2011-03-30 2012-10-04 深圳市华星光电技术有限公司 Boost级联升压电路
CN102761264A (zh) * 2011-04-29 2012-10-31 京东方科技集团股份有限公司 一种Boost升压电路、背光驱动装置及液晶显示器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102364848B (zh) * 2011-02-01 2013-04-03 杭州士兰微电子股份有限公司 一种原边控制的恒流开关电源控制器及方法
US8773085B2 (en) * 2011-03-22 2014-07-08 Ledillion Technologies Inc. Apparatus and method for efficient DC-to-DC conversion through wide voltage swings
CN102723871A (zh) * 2012-05-10 2012-10-10 深圳Tcl新技术有限公司 升压电路、led背光驱动电源及电视机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060181904A1 (en) * 2005-02-16 2006-08-17 Samsung Electronics Co., Ltd. Driving apparatus of display device and DC-DC converter
WO2012129823A1 (zh) * 2011-03-30 2012-10-04 深圳市华星光电技术有限公司 Boost级联升压电路
CN102761264A (zh) * 2011-04-29 2012-10-31 京东方科技集团股份有限公司 一种Boost升压电路、背光驱动装置及液晶显示器

Also Published As

Publication number Publication date
CN103066850B (zh) 2016-04-27
CN103066850A (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
TW201249256A (en) Frequency-variable dimming control apparatus for light-emitting diodes and method for operating the same
WO2013152513A1 (zh) 一种led背光驱动电路、背光模组和液晶显示装置
US9479041B2 (en) Bootstrap driving circuit without extra power supply
WO2015100805A1 (zh) 反激式升压电路、led背光驱动电路及液晶显示器
WO2012003685A1 (zh) 一种提高器件耐压的电路
WO2014094323A1 (zh) 隔离式升压电路、背光模块及其液晶显示装置
EP3324707A1 (en) Isolated single-ended primary inductor converter with voltage clamp circuit
CN201995169U (zh) 大功率led路灯驱动电源
WO2018218639A1 (zh) 一种内置供电电容的功率开关驱动电路
US9642199B2 (en) LED driver circuit and electronic device
US20120268024A1 (en) Current-sharing backlight driving circuit for light-emitting diodes and method for operating the same
WO2013174152A1 (zh) 同步整流装置及同步整流电源
CN106910475B (zh) 新型液晶电视背灯驱动电路
CN102316653B (zh) 一种用于冷阴极荧光灯的电子镇流器
US20130234614A1 (en) Replaceable electrical ballast tube
WO2014075338A1 (zh) 背光驱动的直流升压拓扑电路
TWI358886B (en) Switching power supply circuit and working method
Wang et al. High input voltage single-stage flyback AC/DC LED driver using series-connected MOSFETs
CN109936888B (zh) 高频驱动电路及使用该高频驱动电路的照明装置
CN109861217B (zh) 一种新型芯片供电电路
TW536862B (en) Power supply circuit for cold cathode fluorescent lamp
KR100864739B1 (ko) 액정 표시 장치의 면광원 구동회로
WO2017128695A1 (zh) 零电压准谐振升压电路
CN202231935U (zh) 一种用于冷阴极荧光灯的电子镇流器
KR100838415B1 (ko) 액정 표시 장치의 면광원 구동회로

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13810466

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890349

Country of ref document: EP

Kind code of ref document: A1