WO2014094202A1 - 等相差分波束形成装置 - Google Patents

等相差分波束形成装置 Download PDF

Info

Publication number
WO2014094202A1
WO2014094202A1 PCT/CN2012/086752 CN2012086752W WO2014094202A1 WO 2014094202 A1 WO2014094202 A1 WO 2014094202A1 CN 2012086752 W CN2012086752 W CN 2012086752W WO 2014094202 A1 WO2014094202 A1 WO 2014094202A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
insulating dielectric
insulating
dielectric substrate
metal reflector
Prior art date
Application number
PCT/CN2012/086752
Other languages
English (en)
French (fr)
Inventor
吴壁群
刘玉
Original Assignee
广东博纬通信科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东博纬通信科技有限公司 filed Critical 广东博纬通信科技有限公司
Priority to PCT/CN2012/086752 priority Critical patent/WO2014094202A1/zh
Publication of WO2014094202A1 publication Critical patent/WO2014094202A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/085Triplate lines

Definitions

  • the present invention relates to the field of base station antenna technology, and more particularly to an equal phase differential beamforming apparatus. Background technique
  • Traditional tunable antenna elements consist of power splitters, transformers, and phase adjusters. In high-performance antennas, these components are closely related to each other. Because these components interact strongly, it is sometimes difficult to form an ideal beam shape. A standardized beamforming network is needed to solve these problems.
  • US Patent No. 5,949,303 a network for adjusting the beam angle of an antenna array is disclosed.
  • the beam forming network includes a fixed substrate, a stripline network, and a movable insulator.
  • the insulator is placed on the fixed substrate and Between the strip lines, the strip lines extend in the same direction in which the insulators move, and a portion of the strip lines are covered by the insulator.
  • the propagation rate of the signal component is reduced by the action of the insulator between the strip line and the fixed substrate, so that the phase difference of the different outputs of the network can be controlled.
  • This technique has the following disadvantages: First, the relative position of the output interrupt constrains the distribution, and in some practical applications contradicts the physical implementation of the beamforming network; secondly, this method is not applicable to linear antenna arrays containing odd output ports. .
  • an antenna feed network with an integrated phase shifter includes a branch network of a common feeder with a plurality of ports and an insulating sheet mounted adjacent the network, the insulating sheets being movable to synchronously adjust a phase relationship between the common feeder and one or more ports.
  • the strip line 18 is located between the insulator 47a and the insulator 47b.
  • each adjacent The phase difference between the output ports changes synchronously, and the maximum phase difference of adjacent output ports is determined by the maximum distance that the insulators 47a, 47b can move, i.e., by the length of the strip line 18.
  • the phase difference between adjacent output ports is proportional to the downtilt angle of the antenna array, and the strip line 18 has a linear shape, which is suitable for application in an antenna array with a small downtilt angle (such as a 10 degree downtilt); if the device is applied at a large downtilt angle In an antenna array (e.g., a dip angle greater than 15 degrees), it is necessary to greatly increase the length of the strip line 18, which will make the length of the entire device much larger than the length of the antenna array, increasing the length, cost, and complexity of the antenna. .
  • the lengths of the insulators 47a, 47b are also greatly increased.
  • the insulators 47a, 47b are generally made of a PVC material, when the length is too large, the insulators 47a, 47b are easily bent and deformed, affecting the overall performance of the device. In addition, the insulators 47a, 47b cover the strip line 18 and the power divider over a large area, increasing the loss of the device.
  • the application of the prior art beamforming apparatus has limitations and is not suitable for use in a large downtilt antenna array.
  • the area of the insulator in the beam forming device is large, which increases the processing precision, difficulty and cost of the insulator, and is easily bent and deformed; the insulator overlaps with most of the transmission lines to increase the loss.
  • An equal-phase differential beamforming device includes a first metal reflector, a second metal reflector, an insulating dielectric sheet, a sliding device, a dielectric substrate, and a feeder network etched on the dielectric substrate;
  • the feeder network includes a series connection a transmission line and a power distribution subunit, each fixed transmission line and two insulating dielectric sheets form a phase shifter subunit, and the two insulating dielectric sheets are respectively disposed on an upper bottom surface and a lower bottom surface of the dielectric substrate, and are opposite to the fixing a transmission line is disposed;
  • the dielectric substrate and the insulating dielectric sheet are sandwiched between the first metal reflective plate and the second metal reflective plate;
  • the first metal reflective plate and the dielectric substrate are provided with a limiting sliding slot, and the sliding device is sequentially worn
  • the first metal reflector and the limiting slot on the dielectric substrate are connected to the insulating dielectric sheets on both sides of the dielectric substrate, and are used to drive a plurality of insulating dielectric
  • the sliding device comprises a pull rod, a pull rod rail and a latch, wherein the pull rod rail is fixed on a side of the first metal reflector facing away from the dielectric substrate, the pull rod is slidably mounted on the pull rod rail, and the latch end is The other end is fixedly connected to the pull rod, and the other end passes through the first metal reflector and the limiting slot on the dielectric substrate in sequence, and is fixedly connected to the insulating medium sheets on both sides of the dielectric substrate.
  • a positioning hole is formed in the insulating medium piece, and the pin passes through the positioning hole and is fixedly connected to the insulating medium piece.
  • the second metal reflector is also provided with a limiting sliding slot, and the latch also passes through the limiting slot on the second metal reflector.
  • Each of the insulating dielectric sheets has at least one impedance converting portion, and in each phase shifter subunit, the impedance converting portions on the two insulating dielectric sheets overlap with the corresponding fixed transmission lines.
  • the fixed transmission line is a meandering transmission line
  • the tortuous transmission line includes a plurality of straight line transmission lines and a connection transmission line; the plurality of linear transmission lines are arranged in parallel with each other and extend along a moving direction of the insulating medium piece; and the plurality of straight line transmission lines are connected end to end through a connection transmission line.
  • Each of the insulating dielectric sheets has at least one impedance converting portion, and in each phase shifter subunit, the impedance converting portions on the two insulating dielectric sheets overlap with each of the corresponding linear transmission lines in the corresponding zigzag transmission lines.
  • a low loss microwave dielectric material is filled between the power distribution subunit and the metal reflector.
  • the insulating dielectric sheets distributed on the bottom surface and the lower bottom surface of the dielectric substrate are symmetrical about the dielectric substrate.
  • the isophase differential beam forming apparatus splits the entire insulator on the feeder network in the prior art into a plurality of relatively small insulating dielectric sheets, and sets the insulating dielectric sheet only at the corresponding position of the fixed transmission line. And all the insulating media pieces are controlled to move synchronously by a sliding device.
  • the insulating dielectric sheet does not overlap with the power distribution sub-unit during the moving process, thereby avoiding unnecessary loss of the insulating dielectric sheet to the feeder network.
  • the design of multiple small insulating dielectric sheets instead of the large large insulators not only solves the problem that the insulator is easily bent and deforms, but also reduces the manufacturing cost of the isophase differential beamforming device.
  • FIG. 1 is a schematic structural view of a 10-port device in the prior art 2.
  • FIG. 2 is a schematic structural view of an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an assembly structure according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a detailed disassembly according to an embodiment of the present invention.
  • Figure 5 is a top plan view of the portion A of Figure 2. detailed description
  • an isophase differential beam forming apparatus includes a first metal reflector 1 , a second metal reflector 2 , an insulating dielectric sheet 6 , a sliding device 4 , a dielectric substrate 3 , and an etched substrate 3 .
  • the feeder network 5 includes fixed transmission lines 51 and power distribution subunits 52 connected in series.
  • a plurality of insulating dielectric sheets 6 are symmetrically distributed on the upper bottom surface and the lower bottom surface of the dielectric substrate 3, and the dielectric substrate 3 and the insulating dielectric sheet 6 are sandwiched between the first metal reflective plate 1 and the second metal reflective plate 2.
  • the first metal reflector 1 is provided with a plurality of limiting slots 11 , and the same position on the dielectric substrate 3 is correspondingly provided with a limiting slot 31 , and the same position on the second metal reflector 2 is also correspondingly limited. Slot 21.
  • the sliding device 4 passes through the limiting sliding slot 11 , the limiting sliding slot 31 and the limiting sliding slot 21 from the upper surface of the first metal reflector 1 , and also the insulating medium distributed on both sides of the dielectric substrate 3 .
  • the piece 6 is fixedly connected.
  • the sliding device 4 is configured to drive a plurality of insulating media sheets 6 to move synchronously on the feeder network 5 within a range defined by the limiting slots 11, 21, 31.
  • the limit chutes 11, 21, 31 are used to define the movement stroke of the insulating dielectric sheet 6, so that the insulating dielectric sheet 6 overlaps only the fixed transmission line 51 in the feeder network 5 during the movement.
  • the thickness of the dielectric substrate 3 is between 0.1 mm and 3 mm, and the first feeder network 5a and the second feeder network are etched on the dielectric substrate 3. 5b.
  • the first feeder network 5a and the second feeder network 5b are symmetrically distributed on both sides of the center line in the longitudinal direction of the dielectric substrate 3.
  • the first feeder network 5a is composed of a first fixed transmission line 51a, a first power distribution subunit 52a, a second fixed transmission line 51b, a second power distribution subunit 52b, a third power distribution subunit 52c, and a third fixed in series.
  • the transmission line 51c, the fourth power distribution subunit 52d, and the fourth fixed transmission line 51d are composed.
  • the second feeder network 5b is connected by a fifth fixed transmission line 51a', which is sequentially connected in series, and a fifth power The allocation subunit 52a', the sixth fixed transmission line 51b', the sixth power distribution subunit 52b', the seventh power distribution subunit 52c', the seventh fixed transmission line 51c', the eighth power distribution subunit 52d', and the eighth fixed The transmission line 51d' is composed.
  • the fixed transmission line 51 in the embodiment of the present invention is a zigzag transmission line, and the zigzag transmission line includes a plurality of linear transmission lines and a connection transmission line; the plurality of linear transmission lines are arranged in parallel with each other and extend along a moving direction of the insulating dielectric sheet 6; Straight line transmission lines are connected end to end by connecting transmission lines.
  • the meandering transmission line in the embodiment of the present invention comprises two linear transmission lines and a connecting transmission line, and the two linear transmission lines are connected end to end through a connection transmission line, and the whole is a U-shaped loop structure.
  • the power distribution subunit 52 is a two-way splitter, and is composed of a three-segment linear transmission line star connection.
  • each of the fixed transmission lines 51 and the two insulating dielectric sheets 6 constitute a phase shifter subunit, and the two insulating dielectric sheets 6 are respectively disposed on the upper and lower bottom surfaces of the dielectric substrate 3, and
  • the fixed transmission line 51 is being disposed.
  • the first insulating dielectric sheet 61 and the fifth insulating dielectric sheet 65 are respectively disposed on the upper bottom surface and the lower bottom surface of the dielectric substrate 3, and are disposed opposite to the first fixed transmission line 51a, and the three constitute a shift.
  • the first insulating dielectric sheet 61 and the fifth insulating dielectric sheet 65 are also disposed opposite to the fifth fixed transmission line 51a', and the three constitute another phase shifter subunit.
  • the second insulating dielectric sheet 62 and the sixth insulating dielectric sheet 66 are respectively disposed on the upper bottom surface and the lower bottom surface of the dielectric substrate 3, and are disposed opposite to the second fixed transmission line 51b, and the three constitute a phase shifter subunit; meanwhile, the second The insulating dielectric sheet 62 and the sixth insulating dielectric sheet 66 are also disposed opposite to the sixth fixed transmission line 51b', and the three constitute another phase shifter subunit.
  • the third insulating dielectric sheet 63 and the seventh insulating dielectric sheet 67 are respectively disposed on the upper bottom surface and the lower bottom surface of the dielectric substrate 3, and are disposed opposite to the third fixed transmission line 51c, and the three constitute a phase shifter subunit; meanwhile, the third The insulating dielectric sheet 63 and the seventh insulating dielectric sheet 67 are also disposed opposite to the seventh fixed transmission line 5 lc', and the three constitute another phase shifter subunit.
  • the fourth insulating dielectric sheet 64 and the eighth insulating dielectric sheet 68 are respectively disposed on the upper bottom surface and the lower bottom surface of the dielectric substrate 3, and are disposed opposite to the fourth fixed transmission line 51d, and the three constitute a phase shifter subunit; meanwhile, the fourth The insulating dielectric sheet 64 and the eighth insulating dielectric sheet 68 are also disposed opposite the eighth fixed transmission line 51d', which constitutes another phase shifter subunit.
  • each of the insulating dielectric sheets 6 is provided with two rectangular grooves 13, 14, and the rectangular grooves 13, 14 are impedance conversion portions of the insulating dielectric sheet 6, and are used as impedance transformers for the fixed transmission line 51. .
  • Fig. 5 is a plan view showing an enlarged structure of a portion A in Fig. 3.
  • the fourth insulating dielectric sheet 64 and the eighth insulating dielectric sheet 68 are laid flat on the upper and lower sides of the dielectric substrate 3, respectively.
  • the upper end of the fourth insulating dielectric piece 6 4 is provided with two rectangular grooves 13 and 14 having the same shape; likewise, the same position of the eighth insulating dielectric piece 68 is also provided with rectangular grooves 13 and 14; wherein, the rectangular groove 13 and the Each of the straight transmission lines of the eight fixed transmission lines 51d' overlaps, and each of the rectangular transmission lines 14 and the fourth fixed transmission line 51d overlap.
  • the eighth insulating dielectric sheet 68 is blocked by the dielectric substrate 3 and completely overlaps the fourth insulating dielectric sheet 64, it is not shown in the drawing.
  • the rectangular grooves 14, 13 serve as the fourth fixed transmission line 51d and the eighth fixed transmission line 51d, respectively.
  • the impedance transformer of ' changes the impedance matching characteristics of both ends of the fourth fixed transmission line 51d and the eighth fixed transmission line 51d'.
  • the embodiment of the present invention adopts a zigzag transmission line instead of the linear transmission line, and connects a plurality of linear transmission lines arranged in parallel with each other to form a zigzag transmission line.
  • the space on the dielectric substrate 3 is more fully utilized, and the effective length of the fixed transmission line 51 is multiplied, thereby multiplying the upper limit of the differential phase change at both ends of the fixed transmission line 51, so that the present invention
  • the isophase differential beamforming device provided by the embodiment can provide a larger downtilt angle for the antenna array without increasing the length and space.
  • a low-loss microwave dielectric material (not shown) may be filled between the power distribution sub-unit 52 and the first metal reflector 1 or the second metal reflector 2, The low loss microwave medium does not overlap the insulating dielectric sheet 6.
  • the sliding device 4 is composed of two tie rods 10, two tie rod guides 11 and eight pins 9 mounted on the tie rods 10.
  • the tie rod guide 11 is fixed to the upper bottom surface of the first metal reflector 1, that is, the side facing away from the dielectric substrate 3.
  • the tie rod 10 is slidably mounted between the two tie rod guides 11, and is movable in the extending direction of the length of the dielectric substrate 3 under the guiding action of the pull rod guide 11.
  • One end of the plug 9 is fixed to the tie rod 10, and the other end is fixedly connected to the insulating medium piece 6 at the corresponding position.
  • each of the insulating dielectric sheets 6 is provided with two positioning holes 15 through which the pins 9 pass through
  • the positioning hole 15 at the position is fixedly connected to the insulating dielectric sheet 6.
  • the insulating dielectric sheet 6 moves synchronously with the tie rod 10 and the plug 9.
  • each of the latches 9 has a corresponding limit chute 11, 31 or 21 on the first metal reflector 1, the dielectric substrate 3 and the second metal reflector 2, respectively.
  • the limit chutes 11, 31 and 21 function to limit the moving range of the slide device 4, and control the starting position of the movement of the insulating sheet 6.
  • the latch 9 moves between the start and end positions of the limit chutes 11, 31 and 21, all of the insulating dielectric sheets 6 also move synchronously, and only have a fixed transmission line 51 in the feeder network 5 during the movement. Overlapping.
  • the signal is input from the input port 20, and is output from the output ports 21, 22, 23, 24, 25, when all the insulation
  • the variable lead signal change amount at both ends of the first fixed transmission line 51a and the second fixed transmission line 51b and the variable positions at both ends of the third fixed transmission line 51c and the fourth fixed transmission line 51d The amount of delay signal change is equal, that is, a differential phase + A is generated when the signal passes through the first fixed transmission line 51a or the second fixed transmission line 51b, and an opposite difference is generated when the signal passes through the third fixed transmission line 51c or the fourth fixed transmission line 51d.
  • Phase-A Phase-A.
  • the transmission signal from the input port 20 to the output port 21 sequentially passes through the second fixed transmission line 51b and the first fixed transmission line 51a, generating a differential phase of +2A;
  • the transmission signal from the input port 20 to the output port 22 passes through the second fixed transmission line 51b to generate a differential phase of +A;
  • the transmission signal from the input port 20 to the output port 23 passes through the unfixed transmission line 51, and the differential phase generated is 0;
  • the transmission signal from the input port 20 to the output port 24 passes through the third fixed transmission line 51c to generate a differential phase of -A;
  • the transmission signal from the input port 20 to the output port 25 sequentially passes through the third fixed transmission line 51c and the fourth fixed transmission line 51d, resulting in a differential phase of -2A.
  • the principle that the second feeder network 5b generates the differential phase is similar to the first feeder network 5a. I will not repeat them here.
  • the output ports 21, 22, 23, 24, 25 or 2, 22', 23', 24', 25' of the isophase differential beamforming device of the embodiment of the present invention respectively connect five dual-polarized antenna radiations
  • the unit (not shown) forms a base station antenna
  • the insulating dielectric sheet 6 is synchronously moved by the tie rod 10, and the phase of the input signal of the corresponding radiation unit changes linearly, thereby realizing the function of the antenna beam to be electrically tilted down.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

一种等相差分波束形成装置,其包括第一金属反射板(1)、第二金属反射板(2)、绝缘介质片(6)、滑动装置(4)、介质基板(3)和蚀刻于介质基板上的馈线网络(5);所述介质基板(3)和绝缘介质片(6)夹在第一金属反射板(1)和第二金属反射板(2)之间;所述滑动装置(4)与绝缘介质片(6)连接,用于带动多个绝缘介质片(6)同步移动,所述绝缘介质片(6)在移动过程中仅与馈线网络(5)中的固定传输线(51)有交迭。所述等相差分波束形成装置,在移动过程中,不与功率分配子单元(52)交迭,避免了绝缘介质片对馈线网络造成多余的损耗。同时,多块小型绝缘介质片代替整块大型绝缘体的设计既解决了绝缘体容易弯曲变形的问题,又降低了等相差分波束形成装置的制造成本。

Description

等相差分波束形成装置 技术领域
本发明涉及基站天线技术领域, 更具体地说, 涉及一种等相差分波束形成 装置。 背景技术
传统的可调谐天线元件由功率分配器、 变压器和相位调整器组成, 在高性 能的天线中, 这些部件是互相紧密联系的, 由于这些部件强力地相互作用, 有 时难以形成理想的波束形状, 因此需要规范的波束形成网络来解决这些问题。
在现有技术一, 美国发明专利 US5949303中, 公开了一种可调整天线阵列 的波束俯角的网络, 该波束形成网络包括固定基板、 带状线网络和可移动的绝 缘体, 绝缘体放置在固定基板及带状线之间, 带状线沿着绝缘体活动的同一方 向延伸, 且部分带状线被绝缘体覆盖。 信号分量的传播速率由位于带状线及固 定基板之间的绝缘体的作用而减小, 因此网络的不同输出的相位差距就能得到 控制。 此技术有如下缺点: 首先, 输出中断的相对位置对分布造成约束, 在某 些实际应用中与波束形成网络的物理实现相矛盾; 其次, 这种方法不适用于包 含奇数输出端口的线性天线阵列。
在现有技术二, 欧洲发明专利 WO 03/019723中, 公开了一种带有集成移相 器的天线馈送网络。 该装置包括带有多个端口的公共馈线的分支网络和安装在 网络附近的绝缘片, 绝缘片可移动以便同步地调整公共馈线与一个或多个端口 之间的相位关系。
图 1为现有技术二所提供实施例中的一种 10端口装置图, 带状线 18位于 绝缘体 47a与绝缘体 47b之间, 当绝缘体 47a与绝缘体 47b以相同的方向同步 移动时, 各相邻输出端口间的相位差同步地改变, 且相邻输出端口的最大相位 差由绝缘体 47a、 47b可移动的最大距离决定, 即由带状线 18的长度决定。 相 邻输出端口的相位差与天线阵列的下倾角成正比, 带状线 18呈直线形状, 适合 应用在小下倾角 (如 10度下倾角) 的天线阵列中; 如果该装置应用在大下倾角 (如大于 15度下倾角)的天线阵列中, 就需要大幅度地增加带状线 18的长度, 这将使整个装置的长度远远大于天线阵列的长度, 增加天线的长度、 成本和复 杂程度。 对应的, 绝缘体 47a、 47b的长度也要大大增加, 由于绝缘体 47a、 47b 一般使用 PVC材料制成, 当长度过大时, 绝缘体 47a、 47b容易弯曲变形, 影响 了装置的整体性能。 此外, 绝缘体 47a、 47b大面积地覆盖了带状线 18和功率 分配器, 增大了装置的损耗。
综上所述, 现有技术中的波束形成装置的应用具有局限性, 不适合应用在 大下倾天线阵列中。 波束形成装置中绝缘体的面积较大, 增加了绝缘体的加工 精度、 难度和成本, 并且容易弯曲变形; 绝缘体与大部分传输线有交迭, 增大 了损耗。 发明内容
本发明的目的在于提供一种等相差分波束形成装置, 减小绝缘介质片造成 的不必要损耗, 同时降低绝缘介质片的制造难度和成本, 并提高等相差分波束 形成装置在大下倾天线阵列中的适用性。
为达到上述目的, 本发明采用以下技术方案:
一种等相差分波束形成装置, 包括第一金属反射板、 第二金属反射板、 绝 缘介质片、 滑动装置、 介质基板和蚀刻于介质基板上的馈线网络; 所述馈线网 络包括相互串联的固定传输线和功率分配子单元, 每段固定传输线与两个绝缘 介质片构成一个移相器子单元, 所述两个绝缘介质片分别设置在介质基板的上 底面和下底面, 并且正对所述固定传输线设置; 所述介质基板和绝缘介质片夹 在第一金属反射板和第二金属反射板之间; 所述第一金属反射板和介质基板上 设有限位滑槽, 所述滑动装置依次穿过第一金属反射板和介质基板上的限位滑 槽, 与介质基板两侧面的绝缘介质片连接, 用于在限位滑槽的始末位置之间, 带动多个绝缘介质片在各自对应的固定传输线上同步移动, 所述绝缘介质片在 移动过程中仅与馈线网络中的固定传输线有交迭。
所述滑动装置包括拉杆、 拉杆导轨和插销, 拉杆导轨固定于第一金属反射 板背向介质基板的一侧, 所述拉杆可滑动地安装于拉杆导轨上, 所述插销一端 固定连接于拉杆上, 另一端依次穿过第一金属反射板和介质基板上的限位滑槽, 且与介质基板两侧面的绝缘介质片固定连接。
所述绝缘介质片上开设有定位孔, 所述插销穿过定位孔, 与绝缘介质片固 定连接。
所述第二金属反射板上也设有限位滑槽, 所述插销还穿过第二金属反射板 上的限位滑槽。
每个绝缘介质片至少具有一个阻抗变换部分, 在每个移相器子单元中, 两 个绝缘介质片上的阻抗变换部分均与对应的固定传输线有交迭。
所述固定传输线为曲折传输线, 所述曲折传输线包括多段直线传输线和连 接传输线; 所述多段直线传输线相互平行排列, 沿绝缘介质片的移动方向延伸; 所述多段直线传输线通过连接传输线依次首尾相连。
每个绝缘介质片至少具有一个阻抗变换部分, 在每个移相器子单元中, 两 个绝缘介质片上的阻抗变换部分与对应的曲折传输线中的每一段直线传输线均 有交迭。
所述功率分配子单元与所述金属反射板之间填充有低损耗微波介质材料。 分布于介质基板上底面和下底面的绝缘介质片关于介质基板对称。
本发明实施例提供的等相差分波束形成装置, 将现有技术中馈线网络上整 块的绝缘体拆分为多块相对较小的绝缘介质片, 仅在固定传输线的对应位置设 置绝缘介质片, 并通过一滑动装置控制所有绝缘介质片同步移动。 所述绝缘介 质片在移动过程中, 不与功率分配子单元交迭, 避免了绝缘介质片对馈线网络 造成多余的损耗。 同时, 多块小型绝缘介质片代替整块大型绝缘体的设计既解 决了绝缘体容易弯曲变形的问题, 又降低了等相差分波束形成装置的制造成本。 附图说明
图 1为现有技术二中的 10端口装置结构示意图。
图 2为本发明实施例的结构示意图。
图 3为本发明实施例的组装结构示意图。
图 4为本发明实施例的详细拆解结构示意图。 图 5为图 2中 A部分的俯视结构示意图。 具体实施方式
下面将结合附图和具体的实施例, 对本发明进行进一步的详细说明。
仅仅出于方便的原因,在以下的说明中,使用了特定的方向术语,比如"上"、 "下"、 "左"、 "右"等等, 是以对应的附图为参照的, 并不能认为是对本发明 的限制, 当图面的定义方向发生改变时, 这些词语表示的方向应当解释为相应 的不同方向。
请参阅图 2,本发明实施例提供的等相差分波束形成装置包括第一金属反射 板 1、 第二金属反射板 2、 绝缘介质片 6、 滑动装置 4、 介质基板 3和蚀刻于介 质基板 3上的馈线网络 5。 所述馈线网络 5包括相互串联的固定传输线 51和功 率分配子单元 52。多个绝缘介质片 6对称分布于介质基板 3的上底面和下底面, 所述介质基板 3和绝缘介质片 6夹在第一金属反射板 1和第二金属反射板 2之 间。 所述第一金属反射板 1上设有多个限位滑槽 11, 介质基板 3上的相同位置 对应设有限位滑槽 31,第二金属反射板 2上的相同位置也对应设有限位滑槽 21。 所述滑动装置 4从第一金属反射板 1的上表面依次穿过限位滑槽 11、 限位滑槽 31和限位滑槽 21, 同时, 还与分布于介质基板 3两侧面的绝缘介质片 6固定连 接。 所述滑动装置 4用于在限位滑槽 11、 21、 31所限定的范围内, 带动多个绝 缘介质片 6在馈线网络 5上同步移动。 所述限位滑槽 11、 21、 31用于限定绝缘 介质片 6的运动行程, 使绝缘介质片 6在移动过程中仅与馈线网络 5中的固定 传输线 51有交迭。
具体地, 如图 3和图 4所示, 在本发明实施例中, 所述介质基板 3的厚度 在 0.1mm~3mm之间,介质基板 3上蚀刻有第一馈线网络 5a和第二馈线网络 5b。 所述第一馈线网络 5a和第二馈线网络 5b对称分布于介质基板 3长度方向上的 中线两侧。 其中, 第一馈线网络 5a由依次串联的第一固定传输线 51a、 第一功 率分配子单元 52a、 第二固定传输线 51b、 第二功率分配子单元 52b、 第三功率 分配子单元 52c、 第三固定传输线 51c、 第四功率分配子单元 52d和第四固定传 输线 51d组成。 第二馈线网络 5b由依次串联的第五固定传输线 51a'、 第五功率 分配子单元 52a'、第六固定传输线 51b'、第六功率分配子单元 52b'、第七功率分 配子单元 52c'、第七固定传输线 51c'、第八功率分配子单元 52d'和第八固定传输 线 51d'组成。
其中, 本发明实施例中的固定传输线 51为曲折传输线, 所述曲折传输线包 括多段直线传输线和连接传输线; 所述多段直线传输线相互平行排列, 且沿绝 缘介质片 6 的移动方向延伸; 所述多段直线传输线通过连接传输线依次首尾相 连。 本发明实施例中的曲折传输线包括两段直线传输线和一段连接传输线, 所 述两段直线传输线通过连接传输线首尾相连, 整体呈 U型回路结构。 所述功率 分配子单元 52为一分二功分器, 由三段直线传输线星形连接组成。
在所述馈线网络 5中, 每一段固定传输线 51与两个绝缘介质片 6构成一个 移相器子单元, 所述两个绝缘介质片 6分别设置在介质基板 3的上底面和下底 面, 并且正对所述固定传输线 51设置。 具体地, 如图 4所示, 第一绝缘介质片 61和第五绝缘介质片 65分别设置在介质基板 3的上底面和下底面,并且正对第 一固定传输线 51a设置, 三者构成一个移相器子单元; 同时, 第一绝缘介质片 61和第五绝缘介质片 65还正对第五固定传输线 51a'设置,三者构成另一个移相 器子单元。
第二绝缘介质片 62和第六绝缘介质片 66分别设置在介质基板 3的上底面 和下底面, 并且正对第二固定传输线 51b设置, 三者构成一个移相器子单元; 同时, 第二绝缘介质片 62和第六绝缘介质片 66还正对第六固定传输线 51b'设 置, 三者构成另一个移相器子单元。
第三绝缘介质片 63和第七绝缘介质片 67分别设置在介质基板 3的上底面 和下底面, 并且正对第三固定传输线 51c 设置, 三者构成一个移相器子单元; 同时,第三绝缘介质片 63和第七绝缘介质片 67还正对第七固定传输线 5 lc'设置, 三者构成另一个移相器子单元。
第四绝缘介质片 64和第八绝缘介质片 68分别设置在介质基板 3的上底面 和下底面, 并且正对第四固定传输线 51d设置, 三者构成一个移相器子单元; 同时, 第四绝缘介质片 64和第八绝缘介质片 68还正对第八固定传输线 51d'设 置, 三者构成另一个移相器子单元。 如图 3所示, 每个绝缘介质片 6上均开设有两个矩形槽 13、 14, 所述矩形 槽 13、 14为绝缘介质片 6的阻抗变换部分, 作为固定传输线 51的阻抗变换器 使用。通过选择合适尺寸的矩形槽 13、 14, 可以使固定传输线 51两端具有良好 的阻抗匹配特性。 图 5显示的是图 3中 A部分的放大结构俯视图, 第四绝缘介 质片 64和第八绝缘介质片 68分别平置于介质基板 3的上下两侧。 第四绝缘介 质片 64 的上端开有两个形状相同的矩形槽 13、 14; 同样的, 第八绝缘介质片 68的相同位置也开设有矩形槽 13、 14; 其中, 矩形槽 13与第八固定传输线 51d' 中的每一段直线传输线均有交迭, 矩形槽 14与第四固定传输线 51d中的每一段 直线传输线均有交迭。 由于第八绝缘介质片 68被介质基板 3遮挡且与第四绝缘 介质片 64完全重叠, 故未在图中示出。 当第四绝缘介质片 64与第八绝缘介质 片 68在第四固定传输线 51d和第八固定传输线 51d'上同步移动时, 矩形槽 14、 13分别作为第四固定传输线 51d和第八固定传输线 51d'的阻抗变换器, 使第四 固定传输线 51d和第八固定传输线 51d'的两端的阻抗匹配特性发生改变。
与现有技术二相比, 本发明实施例采用了曲折传输线代替了直线传输线, 将多段相互平行排列的直线传输线首尾相接, 形成曲折传输线。 通过折叠式的 迂回设计, 更加充分地利用了介质基板 3上的空间, 成倍增加了固定传输线 51 的有效长度, 从而成倍地增加了固定传输线 51两端差分相位变化的上限, 使得 本发明实施例提供的等相差分波束形成装置可以在不增加长度和占用空间的前 提下, 为天线阵列提供更大的下倾角度。
为固定介质基板 3并使介质基板保持平整, 还可以在功率分配子单元 52与 第一金属反射板 1或第二金属反射板 2之间填充低损耗微波介质材料 (未示于 图中), 所述低损耗微波介质与绝缘介质片 6没有交迭。
如图 4所示, 本发明实施例中, 所述滑动装置 4由两个拉杆 10, 两个拉杆 导轨 11和八个安装在拉杆 10上的插销 9组成。 拉杆导轨 11固定在第一金属反 射板 1的上底面, 即背向介质基板 3的一面。 拉杆 10可滑动地安装在两个拉杆 导轨 11之间, 可在拉杆导轨 11的导向作用下沿介质基板 3的长度延伸方向运 动。 插销 9的一端固定在拉杆 10上, 另一端与对应位置的绝缘介质片 6固定连 接。 具体地, 每个绝缘介质片 6上均开设有两个定位孔 15, 所述插销 9穿过对 应位置的定位孔 15, 与绝缘介质片 6固定连接。当两个拉杆 10同时受力同步移 动时, 绝缘介质片 6随拉杆 10和插销 9同步移动, 通过改变绝缘介质片 6与固 定传输线 51的相对位置, 可以改变固定传输线 51两端的电信号的相位。
第一金属反射板 1上的限位滑槽 11、介质基板 3上的限位滑槽 31和第二金 属反射板 2上的限位滑槽 21被制作成腰圆形, 用于供插销 9插入并移动, 每一 个插销 9在第一金属反射板 1、介质基板 3和第二金属反射板 2上都分别有一个 对应的限位滑槽 11、 31或 21。 所述限位滑槽 11、 31和 21起限制滑动装置 4移 动范围的作用, 控制绝缘介质片 6移动的始末位置。 当拉杆 10移动时, 插销 9 在限位滑槽 11、 31和 21的始末位置之间移动, 所有绝缘介质片 6也同步移动, 并且在移动过程中仅与馈线网络 5中的固定传输线 51有交迭。
以第一馈线网络 5a为例, 当本发明实施例提供的等相差分波束形成装置馈 电时, 信号从输入口 20输入, 从输出口 21、 22、 23、 24、 25输出, 当所有绝 缘介质片 6随拉杆 10向介质基板 3的上方移动时, 第一固定传输线 51a、 第二 固定传输线 51b两端的可变超前信号变化量和第三固定传输线 51c、第四固定传 输线 51d两端的可变延迟信号变化量相等, 即信号经过第一固定传输线 51a或 第二固定传输线 51b时会分别产生一个差分相位 + A, 信号经过第三固定传输线 51c或第四固定传输线 51d时会产生一个相反的差分相位 -A。
于是, 从输入口 20至输出口 21 的传输信号依次经过第二固定传输线 51b 和第一固定传输线 51a, 产生 +2A的差分相位;
从输入口 20至输出口 22的传输信号经过第二固定传输线 51b, 产生 +A的 差分相位;
从输入端口 20至输出口 23的传输信号经未过固定传输线 51, 产生的差分 相位为 0;
从输入口 20至输出口 24的传输信号经过第三固定传输线 51c, 产生 -A的 差分相位;
从输入口 20至输出口 25的传输信号依次经过第三固定传输线 51c和第四 固定传输线 51d, 产生 -2A的差分相位。
相应的, 第二馈线网络 5b产生差分相位的原理与第一馈线网络 5a类似, 在此不再赘述。
因此, 当本发明实施例的等相差分波束形成装置的输出端口 21、 22、 23、 24、 25或 2 、 22'、 23'、 24'、 25'分别连接五个双极化的天线辐射单元 (未示于 图中) 并组成基站天线时, 通过拉杆 10同步移动绝缘介质片 6, 对应的辐射单 元的输入信号的相位发生线性变化, 从而实现天线波束电下倾的功能。
以上所述实施例仅表达了本发明的优选实施方式, 其描述较为具体和详 细, 但并不能因此而理解为对本发明专利范围的限制。 应当指出的是, 对于本 领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干变 形和改进, 这些都属于本发明的保护范围。 因此, 本发明专利的保护范围应以 所附权利要求为准。

Claims

权 利 要 求 书
1、 一种等相差分波束形成装置, 其特征在于, 包括第一金属反射板、 第二 金属反射板、 绝缘介质片、 滑动装置、 介质基板和蚀刻于介质基板上的馈线网 络; 所述馈线网络包括相互串联的固定传输线和功率分配子单元, 每段固定传 输线与两个绝缘介质片构成一个移相器子单元, 所述两个绝缘介质片分别设置 在介质基板的上底面和下底面, 并且正对所述固定传输线设置; 所述介质基板 和绝缘介质片夹在第一金属反射板和第二金属反射板之间; 所述第一金属反射 板和介质基板上设有限位滑槽, 所述滑动装置依次穿过第一金属反射板和介质 基板上的限位滑槽, 与介质基板两侧面的绝缘介质片连接, 用于在限位滑槽的 始末位置之间, 带动多个绝缘介质片在各自对应的固定传输线上同步移动, 所 述绝缘介质片在移动过程中仅与馈线网络中的固定传输线有交迭。
2、 根据权利要求 1所述的等相差分波束形成装置, 其特征在于, 所述滑动 装置包括拉杆、 拉杆导轨和插销, 拉杆导轨固定于第一金属反射板背向介质基 板的一侧, 所述拉杆可滑动地安装于拉杆导轨上, 所述插销一端固定连接于拉 杆上, 另一端依次穿过第一金属反射板和介质基板上的限位滑槽, 且与介质基 板两侧面的绝缘介质片固定连接。
3、 根据权利要求 2所述的等相差分波束形成装置, 其特征在于, 所述绝缘 介质片上开设有定位孔, 所述插销穿过定位孔, 与绝缘介质片固定连接。
4、 根据权利要求 2所述的等相差分波束形成装置, 其特征在于, 所述第二 金属反射板上也设有限位滑槽, 所述插销还穿过第二金属反射板上的限位滑槽。
5、 根据权利要求 1所述的等相差分波束形成装置, 其特征在于, 每个绝缘 介质片至少具有一个阻抗变换部分, 在每个移相器子单元中, 两个绝缘介质片 传输线为曲折传输线, 所述曲折传输线包括多段直线传输线和连接传输线; 所 述多段直线传输线相互平行排列, 沿绝缘介质片的移动方向延伸; 所述多段直 线传输线通过连接传输线依次首尾相连。
7、 根据权利要求 6所述的等相差分波束形成装置, 其特征在于, 每个绝缘 介质片至少具有一个阻抗变换部分, 在每个移相器子单元中, 两个绝缘介质片 上的阻抗变换部分与对应的曲折传输线中的每一段直线传输线均有交迭。
8、 根据权利要求 1所述的等相差分波束形成装置, 其特征在于, 所述功率 分配子单元与所述金属反射板之间填充有低损耗微波介质材料。
9、 根据权利要求 1所述的等相差分波束形成装置, 其特征在于, 分布于介 质基板上底面和下底面的绝缘介质片关于介质基板对称。
PCT/CN2012/086752 2012-12-17 2012-12-17 等相差分波束形成装置 WO2014094202A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/086752 WO2014094202A1 (zh) 2012-12-17 2012-12-17 等相差分波束形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/086752 WO2014094202A1 (zh) 2012-12-17 2012-12-17 等相差分波束形成装置

Publications (1)

Publication Number Publication Date
WO2014094202A1 true WO2014094202A1 (zh) 2014-06-26

Family

ID=50977504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086752 WO2014094202A1 (zh) 2012-12-17 2012-12-17 等相差分波束形成装置

Country Status (1)

Country Link
WO (1) WO2014094202A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016074592A1 (zh) * 2014-11-11 2016-05-19 李梓萌 一种阵列天线可调移相装置和天线
CN106505281A (zh) * 2016-12-27 2017-03-15 深圳国人通信股份有限公司 一种小型化单步式移相器
WO2018113185A1 (zh) * 2016-12-23 2018-06-28 深圳国人通信股份有限公司 一种介质移相器
WO2018120618A1 (zh) * 2016-12-27 2018-07-05 深圳国人通信股份有限公司 一种小型化单步式移相器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547788A (zh) * 2001-08-24 2004-11-17 3 带有集成的移相器的可调整的天线馈送网络
GB2426635A (en) * 2005-05-27 2006-11-29 Alan Dick & Company Ltd Phase shifting arrangement
CN101694897A (zh) * 2009-10-30 2010-04-14 网拓(上海)通信技术有限公司 移相器
CN101707271A (zh) * 2008-12-24 2010-05-12 广东通宇通讯设备有限公司 等相差分多路复合移相器
CN103050764A (zh) * 2012-12-17 2013-04-17 广东博纬通信科技有限公司 等相差分波束形成装置
CN203071212U (zh) * 2012-12-17 2013-07-17 广东博纬通信科技有限公司 等相差分波束形成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1547788A (zh) * 2001-08-24 2004-11-17 3 带有集成的移相器的可调整的天线馈送网络
GB2426635A (en) * 2005-05-27 2006-11-29 Alan Dick & Company Ltd Phase shifting arrangement
CN101707271A (zh) * 2008-12-24 2010-05-12 广东通宇通讯设备有限公司 等相差分多路复合移相器
CN101694897A (zh) * 2009-10-30 2010-04-14 网拓(上海)通信技术有限公司 移相器
CN103050764A (zh) * 2012-12-17 2013-04-17 广东博纬通信科技有限公司 等相差分波束形成装置
CN203071212U (zh) * 2012-12-17 2013-07-17 广东博纬通信科技有限公司 等相差分波束形成装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016074592A1 (zh) * 2014-11-11 2016-05-19 李梓萌 一种阵列天线可调移相装置和天线
RU2650416C1 (ru) * 2014-11-11 2018-04-13 Зи-Менг ЛИ Антенна и антенная решетка с регулируемыми фазовращателями
RU2650416C9 (ru) * 2014-11-11 2018-07-02 Зи-Менг ЛИ Антенна и антенная решетка с регулируемыми фазовращателями
WO2018113185A1 (zh) * 2016-12-23 2018-06-28 深圳国人通信股份有限公司 一种介质移相器
CN106505281A (zh) * 2016-12-27 2017-03-15 深圳国人通信股份有限公司 一种小型化单步式移相器
WO2018120618A1 (zh) * 2016-12-27 2018-07-05 深圳国人通信股份有限公司 一种小型化单步式移相器

Similar Documents

Publication Publication Date Title
EP2879235B1 (en) Phase-shifting unit module, manufacturing method therefor, phase-shifting device, and antenna
Wang et al. A 60 GHz horizontally polarized magnetoelectric dipole antenna array with 2-D multibeam endfire radiation
US10153533B2 (en) Waveguide
US8907744B2 (en) Multi-line phase shifter having a fixed plate and a mobile plate in slideable engagement to provide vertical beam-tilt
US9887458B2 (en) Compact butler matrix, planar two-dimensional beam-former and planar antenna comprising such a butler matrix
CN106921011B (zh) 一种移相器及天线
EP3109942A1 (en) Array antenna
CN103094689B (zh) 介质移相模块及其移相单元、馈电网络和天线
WO2011050579A1 (zh) 移相器
WO2014094202A1 (zh) 等相差分波束形成装置
Sbarra et al. A novel Rotman lens in SIW technology
Cheng et al. Millimeter-wave frequency beam scanning array with a phase shifter based on substrate-integrated-waveguide
KR101831432B1 (ko) 기지국 안테나
EP3823089A1 (en) Phase switcher and electric tilt antenna
JP5620534B2 (ja) 移相器及びアンテナシステム
CN106785249B (zh) 超宽带90°移相网络
US8253641B1 (en) Wideband wide scan antenna matching structure using electrically floating plates
Song et al. 60GHz Rotman lens and new compact low loss delay line using LTCC technology
CN203071212U (zh) 等相差分波束形成装置
Suhaimi et al. Review of switched beamforming networks for scannable antenna application towards fifth generation (5G) technology
US20090033438A1 (en) Adjustable Phase Shifter For Antenna
CN102760951A (zh) 天线阵列馈电网络
RU2449435C1 (ru) Плоская решетка антенн дифракционного излучения и делитель мощности, используемый в ней
CN104505560A (zh) 相位调节装置及相位调节单元
Maleki et al. Implementation of a miniaturized planar 4-port microstrip Butler matrix for broadband applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/11/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12890320

Country of ref document: EP

Kind code of ref document: A1