WO2014092283A1 - Analogue magnetic locating apparatus and location measurement method - Google Patents

Analogue magnetic locating apparatus and location measurement method Download PDF

Info

Publication number
WO2014092283A1
WO2014092283A1 PCT/KR2013/006938 KR2013006938W WO2014092283A1 WO 2014092283 A1 WO2014092283 A1 WO 2014092283A1 KR 2013006938 W KR2013006938 W KR 2013006938W WO 2014092283 A1 WO2014092283 A1 WO 2014092283A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
floor
calculated
measuring
analog
Prior art date
Application number
PCT/KR2013/006938
Other languages
French (fr)
Korean (ko)
Inventor
김성신
김정민
정은국
정경훈
배선일
Original Assignee
(주)아티스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아티스 filed Critical (주)아티스
Publication of WO2014092283A1 publication Critical patent/WO2014092283A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0261Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic plots
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/04Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation

Definitions

  • the present invention relates to a magnetic positioning device equipped with a plurality of analog magnetic sensors and its position measuring method using a fuzzy inference system, and more particularly to the magnetic strength (Gauss) of two cylindrical magnets embedded in the floor.
  • the present invention relates to a method of measuring the exact position of two magnets using a fuzzy inference system (FIS) by measuring with an analog magnetic position device.
  • FIS fuzzy inference system
  • a magnetic position device is a device used in a magnet-gyro guidance system (AGV) for an automated guided vehicle (AGV).
  • AGV magnet-gyro guidance system
  • AGV automated guided vehicle
  • the magnetic-gyro guidance device induces an unmanned transport vehicle at an angular velocity calculated by a gyro in a position where there is no magnet on the floor, and when the magnet embedded in the floor is detected by the magnetic positioning device, the magnetic positioning device is Measure the position of the magnet.
  • the gyro of the self-gyro induction device used in the unmanned transportation vehicle is mainly MEMS (Micro Electro Mechanical System) type, and the cumulative error has to be corrected. .
  • the magnetic position device used in the related art measures the position of a magnet by using 8 x 5 digital magnetic sensors at intervals of 10 mm.
  • a conventional measuring method uses a digital type having an on / off output.
  • the type magnetic sensor By using the type magnetic sensor, the magnetic strength cannot be directly measured, and only the presence or absence of magnetism above a certain magnetic strength is determined, and the position of the magnet is measured by the center of gravity.
  • this measurement method has a problem that the error is always 5mm or more because it uses the center of gravity method based on the position of the magnetic sensor composed of 10mm intervals.
  • the performance of the magnetic positioning device with the positioning accuracy of about ⁇ 5mm may look good, but when calculating the angle using two magnets, assuming that the distance and angle of the two magnets are 30mm and 0 °, respectively, the maximum is 45 °. Will cause an angular error of.
  • the accuracy of angle measurement using two magnets is very important because the distance between the two magnets is very important because the closer the distance between the magnets becomes, the larger the error becomes and the smaller the distance, the smaller the error.
  • the maximum measurement distance of the magnetic positioning device having 8 x 5 magnetic sensors at 10mm intervals is 80mm and 50mm in length and width, respectively, so the distance between the magnets cannot be far apart.
  • the accuracy of the position measurement of the magnetic positioning device is inevitably increased.
  • the conventional magnetic positioning device uses a digital magnetic sensor, which makes it difficult to accurately measure the position of the magnet. There is this.
  • the conventional magnetic positioning device has to use 8 X 5 or more magnetic sensors at least 10 mm apart by using a digital magnetic sensor having an on / off output. If not, there is a problem that a large error occurs when measuring the magnet position.
  • the present invention is to solve the problems as described above, by measuring the magnetic strength of the magnet using a magnetic positioning device having an analog magnetic sensor, and to measure the exact position of the magnet through a fuzzy inference system
  • the purpose is to provide.
  • the inside of the magnetic position device detects the magnet embedded in the floor And an analog type magnetic position device in which a plurality of magnetic sensors are arranged and spaced apart by a predetermined distance for measurement.
  • the plurality of magnetic sensors are characterized in that the analog magnetic sensor for directly sensing and measuring the magnet embedded in the floor.
  • the magnetic sensor is characterized in that the arrangement interval can be adjusted according to the specifications of the magnet embedded in the floor.
  • a position measuring method of a magnetic positioning device coupled to a lower portion of an unmanned vehicle for measuring a position of a magnet embedded in a floor the method of measuring the position of the magnet embedded in the floor through a magnetic sensor disposed inside the magnetic positioning device. Detecting and measuring magnetism; searching and selecting a magnetic sensor having the largest measured magnetic value among the magnetic sensors disposed on the upper, lower, right, and left sides of the magnetic positioning device; Calculating the difference between the horizontal and vertical magnetic intensities using a magnetic sensor, calculating the central position using the positions of the selected magnetic sensors, and the fuzzy inference system using the calculated horizontal and vertical magnetic intensity differences. Calculating the position of the magnet by adding to and adding the calculated center position value to the output value calculated by the inference system.
  • the position measuring method of the analog self-location device comprising is provided.
  • the horizontal difference of magnetic intensity is calculated through the magnetic sensors disposed at the top and bottom of the selected magnetic sensors, and the vertical difference of the magnetic strength is calculated through the magnetic sensors arranged at the right and left sides. do.
  • Analog type magnetic positioning device and position measuring method can measure the magnetic strength of the magnet using an analog magnetic sensor can directly measure the strength of the magnetic, between the magnet and the magnetic positioning device There is an effect that can freely adjust the spacing of.
  • FIG. 1 is a layout diagram of a conventional magnetic position device.
  • FIG. 2 is a layout diagram of an analog type magnetic position device according to an embodiment of the present invention.
  • Figure 3 is a flow chart of the position measurement of the analog magnetic position device according to an embodiment of the present invention.
  • FIG. 4 is a block diagram of input belonging function of the fuzzy inference system according to an embodiment of the present invention.
  • 5 is a block diagram of output belonging function of the fuzzy inference system according to an embodiment of the present invention.
  • FIG. 2 is a layout diagram of an analog type magnetic position device according to an embodiment of the present invention.
  • the analog type magnetic position device includes a magnetic sensor 21 coupled to a predetermined distance therein.
  • the magnetic sensor 21 is disposed inside the analog type magnetic position device 20 and coupled to the upper and lower intervals 22 and the left and right intervals 23 of a predetermined length.
  • Figure 3 is a flow chart of the position measurement of the analog magnetic position device according to an embodiment of the present invention.
  • the position measuring method of the analog type magnetic position device according to an embodiment of the present invention, magnetic sensing and measuring step 101S, magnetic sensor search and selection step (102S, 103S, 104S, 105S), magnetic The horizontal difference calculation step 106S of the intensity, the vertical difference calculation step 107S of the magnetic intensity, the center position calculation step 108S of the selected magnetic sensor, the fuzzy inference step 201S and the magnet position calculation step 301S. .
  • the magnetic sensing and measuring step 101S is a step of sensing and measuring the magnetism of the magnet embedded in the floor through the plurality of analog magnetic sensors 21.
  • the magnetic sensor search and selection steps 102S, 103S, 104S, and 105S are performed by the plurality of analog magnetic sensors 21 based on the values measured by the magnets of the magnets. ),
  • the analog magnetic sensor 21 having the largest measured value (magnetic strength) is selected among the analog magnetic sensors 21 arranged on the bottom, bottom (rightmost), right (rightmost) and left (leftmost).
  • the horizontal difference of the measured values is calculated by using the measured values selected at the upper and lower ends in the magnetic sensor search and selection steps 102S, 103S, 104S, and 105S.
  • the vertical difference of the measured values is calculated using the measured values selected from the right and the left in the magnetic sensor search and selection steps 102S, 103S, 104S, and 105S.
  • Equations 1 and 2 The horizontal and vertical difference calculations of the magnetic strengths are calculated through Equations 1 and 2, respectively.
  • G max is the largest measured value, which means a constant of 39 G (Gauss)
  • G t , G b , G r , and G l represent the measured values of the upper, lower, right, and left sides, respectively. it means.
  • the horizontal and vertical difference values of the calculated measured values are used as input values of the fuzzy inference step S201.
  • the center position calculation step 108S of the selected magnetic sensor is a step of calculating the center position (average position) using the positions of the selected analog magnetic sensors 21.
  • the magnet position calculation step 301S calculates the magnet position based on the value extracted through the fuzzy inference step S201 and the center position value calculated in the center position calculation step 108S of the selected magnetic sensor.
  • FIG. 4 is a block diagram of input belonging function of the fuzzy inference system according to an embodiment of the present invention.
  • the input belonging function of the fuzzy inference system has a horizontal difference and a vertical difference value of magnetic intensity as inputs, and the belonging function functions 201 to 207 are Gaussian distribution similar to the magnetic distribution.
  • the Gaussian distribution varies greatly depending on the specification of the magnet embedded in the floor, the distance between the magnet and the analog magnetic position device 20, and the distance between the analog magnetic sensor 21, and the distribution of the Gaussian according to Equation 3 Use
  • Equation 3 ⁇ denotes a range of horizontal difference and vertical difference of measured values, and ⁇ and c denote variance and average, respectively.
  • the input range ⁇ (204) of the belonging function of FIG. 4A is -0.4 to 0.4, and the central belonging function 201 has variance and average of 0.169 and 0, respectively.
  • the variance of the (bottom) membership function 203 is equal to 0.169fh and the mean is -0.4 and 0.4fmf, respectively.
  • the input range ⁇ (207) of the membership function of FIG. 4B is -1 to 1, and the central membership function 205 has the variance and the mean as 0.424 and 0, respectively.
  • the variance of the (right) membership function 207 is equal to 0.424, with an average of -1.0 to 1.0, respectively.
  • 5 is a block diagram of output belonging function of the fuzzy inference system according to an embodiment of the present invention.
  • the output belonging function of the fuzzy inference system refers to an offset value of horizontal and vertical values of FIGS. 5A and 5B, respectively, and the belonging function functions 211 to 217 are general trigonometric functions.
  • the belonging function (211 to 217) may be changed according to the specification.
  • the input ranges 214 and 218 of the belonging function are the vertical distance 22 and the left and right distance 23 between the magnetic sensors, respectively.
  • analog type magnetic positioning device can measure the position and angle of the magnet embedded in the floor using one or more than two.
  • the analog magnetic position device and the position measuring method according to the present invention can measure the magnetic strength of the magnet by using the analog magnetic sensor can directly measure the magnetic strength, the distance between the magnet and the magnetic position device It has the effect of free adjustment.
  • the present invention relates to a magnetic positioning device equipped with a plurality of analog magnetic sensors and its position measuring method using a fuzzy inference system, and more particularly to the magnetic strength (Gauss) of two cylindrical magnets embedded in the floor. It is used to measure the exact position of two magnets through the Fuzzy Interence System (FIS).
  • FIS Fuzzy Interence System

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The present invention relates to an analogue magnetic locating apparatus and a location measurement method and provides a location measurement method for an analogue magnetic locating apparatus, the location measurement method for the magnetic locating apparatus, which is coupled to the bottom part of an automated guided vehicle in order to measure the locations of magnets buried in a floor, according to the present invention, comprising the steps of: sensing and measuring the magnetism of the magnets buried in the floor by using magnetic sensors disposed inside the magnetic locating apparatus; searching for and selecting a magnetic sensor having the greatest value for the measured magnetism, among the magnetic sensors disposed at the top, bottom, left, and right of the inside of the magnetic locating apparatus; calculating horizontal and vertical magnetic intensity differences by using the selected magnetic sensor; calculating a center location using the locations of the selected magnetic sensors; inputting into a fuzzy inference system the calculated horizontal and vertical magnetic intensity differences; and calculating the locations of the magnets by adding the calculated center location value to an output value calculated by the fuzzy inference system.

Description

아날로그형 자기위치장치와 위치측정 방법Analog Magnetic Positioning Device and Position Measurement Method
본 발명은 다수개의 아날로그형 자기센서가 구비된 자기위치장치와 퍼지 추론 시스템을 이용한 그것의 위치측정 방법에 관한 것으로, 더욱 상세하게는 바닥에 매설된 두 개의 원기둥형 자석의 자기 세기(Gauss)를 아날로그형 자기위치장치로 측정하여 퍼지 추론 시스템(FIS: Fuzzy Interence System)을 통해 두 자석의 정확한 위치를 계측하는 방법에 관한 것이다.The present invention relates to a magnetic positioning device equipped with a plurality of analog magnetic sensors and its position measuring method using a fuzzy inference system, and more particularly to the magnetic strength (Gauss) of two cylindrical magnets embedded in the floor. The present invention relates to a method of measuring the exact position of two magnets using a fuzzy inference system (FIS) by measuring with an analog magnetic position device.
일반적으로, 자기위치장치는 무인운반차(AGV: Automated Guided Vehicle)를 위한 자기-자이로 유도장치(Magnet-gyro Guidance System)에 사용되는 장치이다.In general, a magnetic position device is a device used in a magnet-gyro guidance system (AGV) for an automated guided vehicle (AGV).
이러한, 자기-자이로 유도장치는 바닥에 자석이 없는 위치에서는 자이로(Gyroscope)에 의해 계산된 각속도로 무인운반차를 유도하다가, 바닥에 매설된 자석이 자기위치장치에 의해 감지되면, 자기위치장치는 자석의 위치를 계측한다.The magnetic-gyro guidance device induces an unmanned transport vehicle at an angular velocity calculated by a gyro in a position where there is no magnet on the floor, and when the magnet embedded in the floor is detected by the magnetic positioning device, the magnetic positioning device is Measure the position of the magnet.
이때, 무인운반차에 사용되는 자기-자이로 유도장치의 자이로는 주로 MEMS(Micro Electro Mechanical System)형으로 누적오차가 크기 때문에 일정시간마다 자기위치장치로 계측된 자석의 위치로 누적오차를 보정하여야 했다.At this time, the gyro of the self-gyro induction device used in the unmanned transportation vehicle is mainly MEMS (Micro Electro Mechanical System) type, and the cumulative error has to be corrected. .
도 1에서 보는 바와 같이, 종래에 사용된 자기위치장치에는 디지털형 자기센서를 10mm 간격으로 8 X 5개로 사용하여 자석의 위치를 계측하였으나, 이와 같은 종래의 계측 방법은 on/off 출력을 가지는 디지털형 자기센서를 이용함으로써, 자기의 세기를 직접 계측할 수는 없고 일정 자기 세기 이상인 자기의 존재 여부만을 판단하여 무게중심법을 통해 자석의 위치를 계측하였다.As shown in FIG. 1, the magnetic position device used in the related art measures the position of a magnet by using 8 x 5 digital magnetic sensors at intervals of 10 mm. However, such a conventional measuring method uses a digital type having an on / off output. By using the type magnetic sensor, the magnetic strength cannot be directly measured, and only the presence or absence of magnetism above a certain magnetic strength is determined, and the position of the magnet is measured by the center of gravity.
하지만, 이러한 계측 방법은 10mm 간격으로 구성된 자기센서의 위치를 토대로 무게중심법을 사용하기 때문에 항상 5mm 이상의 오차를 가지게 되는 문제점이 있다.However, this measurement method has a problem that the error is always 5mm or more because it uses the center of gravity method based on the position of the magnetic sensor composed of 10mm intervals.
이러한, 약 ±5mm의 위치측정 정밀도인 자기위치장치의 성능이 좋아 보일 수 있으나, 두 개의 자석을 이용하여 각도를 계산할 때, 두 자석의 간격과 각도를 각각 30mm, 0°로 가정하면 최대 45°의 각도 오차를 발생하게 된다.The performance of the magnetic positioning device with the positioning accuracy of about ± 5mm may look good, but when calculating the angle using two magnets, assuming that the distance and angle of the two magnets are 30mm and 0 °, respectively, the maximum is 45 °. Will cause an angular error of.
두 자석을 이용한 각도측정 정밀도는 두 자석의 간격이 매우 중요한데, 이는 자석 간의 거리가 가까워질수록 각도측정 오차는 매우 커지게 되고 거리가 멀수록 오차가 줄어들게 되기 때문이다.The accuracy of angle measurement using two magnets is very important because the distance between the two magnets is very important because the closer the distance between the magnets becomes, the larger the error becomes and the smaller the distance, the smaller the error.
하지만, 10mm 간격으로 8 X 5개의 자기센서를 가지는 자기위치장치의 최대 계측 거리는 세로와 가로가 각각 80mm와 50mm이기 때문에 자석간의 거리를 멀리 둘 수 가 없다.However, the maximum measurement distance of the magnetic positioning device having 8 x 5 magnetic sensors at 10mm intervals is 80mm and 50mm in length and width, respectively, so the distance between the magnets cannot be far apart.
이에, 두 자석을 계측하여 정확한 각도를 계산하기 위해서는 자기위치장치의 위치측정 정밀도를 올리는 수 밖에 없지만, 종래의 자기위치장치는 디지털형 자기센서를 이용하기 때문에 자석의 위치를 정밀하게 측정하기 어려운 문제점이 있다.Therefore, in order to calculate the correct angle by measuring two magnets, the accuracy of the position measurement of the magnetic positioning device is inevitably increased. However, the conventional magnetic positioning device uses a digital magnetic sensor, which makes it difficult to accurately measure the position of the magnet. There is this.
또한, 도 1에서와 같이 종래의 자기위치장치는 on/off 출력을 가지는 디지털형 자기센서를 이용함으로써 최소 10mm 간격으로 8 X 5개 이상의 자기센서를 사용해야했으며, 자석과 자기위치장치 사이의 간격을 정확히 하지 않으면 자석위치의 측정 시 큰 오차가 발생하는 문제점이 있다.In addition, as shown in FIG. 1, the conventional magnetic positioning device has to use 8 X 5 or more magnetic sensors at least 10 mm apart by using a digital magnetic sensor having an on / off output. If not, there is a problem that a large error occurs when measuring the magnet position.
본 발명은 상술한 바와 같은 문제를 해결하기 위한 것으로, 아날로그형 자기센서를 구비하는 자기위치장치를 이용하여 자석의 자기 세기를 계측하고, 이를 퍼지 추론 시스템을 통해 자석의 정확한 위치를 측정하는 방법을 제공하는 것에 목적이 있다.The present invention is to solve the problems as described above, by measuring the magnetic strength of the magnet using a magnetic positioning device having an analog magnetic sensor, and to measure the exact position of the magnet through a fuzzy inference system The purpose is to provide.
본 발명의 바람직한 일실시예에 의하면, 무인운반차의 하부에 결합되어 바닥에 매설된 자석의 위치를 계측하기 위한 자기위치장치에 있어서, 상기 자기위치장치의 내부에는 상기 바닥에 매설된 자석을 감지 및 계측하기 위해 다수개의 자기센서들이 일정간격 이격하여 배치되어 결합된 아날로그형 자기위치장치가 제공된다.According to a preferred embodiment of the present invention, in the magnetic position device for measuring the position of the magnet embedded in the floor coupled to the lower portion of the unmanned vehicle, the inside of the magnetic position device detects the magnet embedded in the floor And an analog type magnetic position device in which a plurality of magnetic sensors are arranged and spaced apart by a predetermined distance for measurement.
상기 다수개의 자기센서는 상기 바닥에 매설된 자석을 직접 감지 및 계측하기 위한 아날로그형 자기센서인 것을 특징으로 한다.The plurality of magnetic sensors are characterized in that the analog magnetic sensor for directly sensing and measuring the magnet embedded in the floor.
상기 자기센서는 상기 바닥에 매설된 자석의 사양에 따라 배치 간격을 조절할 수 있는 것을 특징으로 한다.The magnetic sensor is characterized in that the arrangement interval can be adjusted according to the specifications of the magnet embedded in the floor.
무인운반차의 하부에 결합되어 바닥에 매설된 자석의 위치를 계측하기 위한 자기위치장치의 위치측정 방법에 있어서, 상기 자기위치장치의 내부에 배치된 자기센서를 통해 상기 바닥에 매설된 상기 자석의 자기를 감지 및 계측하는 단계와, 상기 자기위치장치 내부의 상단, 하단, 우측 및 좌측에 배치된 상기 자기센서들 중 상기 계측된 자기 값이 가장 큰 자기센서를 검색 및 선택하는 단계와, 상기 선택된 자기센서를 통해 가로 및 세로의 자기 세기 차이를 계산하는 단계와, 상기 선택된 자기센서들의 위치를 이용하여 중심 위치를 계산하는 단계와, 상기 계산된 가로 및 세로의 자기 세기 차이를 이용하여 퍼지 추론 시스템에 입력하는 단계 및 상기 계산된 중심 위치 값을 상기 추론 시스템에서 계산된 출력 값을 더하여 자석의 위치를 계산하는 단계를 포함하는 아날로그형 자기위치장치의 위치측정 방법이 제공된다.A position measuring method of a magnetic positioning device coupled to a lower portion of an unmanned vehicle for measuring a position of a magnet embedded in a floor, the method of measuring the position of the magnet embedded in the floor through a magnetic sensor disposed inside the magnetic positioning device. Detecting and measuring magnetism; searching and selecting a magnetic sensor having the largest measured magnetic value among the magnetic sensors disposed on the upper, lower, right, and left sides of the magnetic positioning device; Calculating the difference between the horizontal and vertical magnetic intensities using a magnetic sensor, calculating the central position using the positions of the selected magnetic sensors, and the fuzzy inference system using the calculated horizontal and vertical magnetic intensity differences. Calculating the position of the magnet by adding to and adding the calculated center position value to the output value calculated by the inference system. The position measuring method of the analog self-location device comprising is provided.
상기 선택된 자기센서들 중 상단과 하단에 배치된 상기 자기센서들을 통해 서는 자기 세기의 가로 차이를 계산하고, 우측과 좌측에 배치된 상기 자기센서들을 통해서는 자기 세기의 세로 차이를 계산하는 것을 특징으로 한다.The horizontal difference of magnetic intensity is calculated through the magnetic sensors disposed at the top and bottom of the selected magnetic sensors, and the vertical difference of the magnetic strength is calculated through the magnetic sensors arranged at the right and left sides. do.
본 발명의 일실시예에 따른 아날로그형 자기위치장치와 위치측정 방법은 아날로그형 자기센서를 이용하여 자석의 자기 세기를 계측할 수 있어 자기의 세기를 직접 계측할 수 있으며, 자석과 자기위치장치 사이의 간격 조절을 자유롭게 할 수 있는 효과가 있다.Analog type magnetic positioning device and position measuring method according to an embodiment of the present invention can measure the magnetic strength of the magnet using an analog magnetic sensor can directly measure the strength of the magnetic, between the magnet and the magnetic positioning device There is an effect that can freely adjust the spacing of.
또한, 자기위치장치에 구비된 자기센서 간의 간격이 넓어도 자기센서에서 계측된 데이터를 통해 퍼지 추론 시스템을 이용하여, 보다 정확한 자석의 위치를 계산할 수 있고, 적은 개수의 자기센서를 사용할 수 있어 제작비용을 낮출 수 있는 효과가 있다.In addition, even if the distance between the magnetic sensors provided in the magnetic positioning device is wide, using the fuzzy inference system through the data measured by the magnetic sensor, it is possible to calculate the more accurate position of the magnet, it is possible to use a small number of magnetic sensors This can lower the cost.
도 1은 종래의 자기위치장치의 레이아웃 구성도.1 is a layout diagram of a conventional magnetic position device.
도 2는 본 발명의 일실시예에 따른 아날로그형 자기위치장치의 레이아웃 구성도.2 is a layout diagram of an analog type magnetic position device according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 아날로그형 자기위치장치의 위치측정 순서도.Figure 3 is a flow chart of the position measurement of the analog magnetic position device according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 퍼지 추론 시스템의 입력 소속도 함수들에 대한 구성도.4 is a block diagram of input belonging function of the fuzzy inference system according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 퍼지 추론 시스템의 출력 소속도 함수들에 대한 구성도.5 is a block diagram of output belonging function of the fuzzy inference system according to an embodiment of the present invention.
* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings
10:디지털형 자기위치장치10: digital magnetic positioning device
11:디지털형 자기센서 12:자기센서 간격11: Digital magnetic sensor 12: Magnetic sensor spacing
20:아날로그형 자기위치장치20: Analog type magnetic positioning device
21:아날로그형 자기센서 22:자기센서 상하간격21: Analog type magnetic sensor 22: Magnetic sensor vertical gap
23:자기센서 좌우간격23: Magnetic sensor left and right interval
101S:자기감지 및 계측단계 101S: Magnetic sensing and measuring stage
102S,103S,104S,105S:자기센서 검색 및 선택단계102S, 103S, 104S, 105S: Magnetic Sensor Search and Selection
106S:자기세기의 가로차이 계산단계106S: Calculation of Horizontal Difference of Magnetic Century
107S:자기세기의 세로차이 계산단계107S: Calculate Vertical Difference of Magnetic Century
108S:선택된 자기센서의 중심위치 계산단계108S: Calculation of the center position of the selected magnetic sensor
201S:퍼지추론단계201S: Purge Reasoning Step
301S:자석위치 계산단계301S: Magnet position calculation step
이하, 본 발명의 일실시예에 따른 아날로그형 자기위치장치와 위치측정 방법의 바람직한 실시예를 첨부된 도면을 참조하여 설명하기로 한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다.Hereinafter, a preferred embodiment of an analog type magnetic positioning device and a position measuring method according to an embodiment of the present invention will be described with reference to the accompanying drawings. In this process, the thickness of the lines or the size of the components shown in the drawings may be exaggerated for clarity and convenience of description.
또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 하여 내려져야 할 것이다.In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to the intention or convention of a user or an operator. Therefore, definitions of these terms should be made based on the contents throughout the specification.
도 2는 본 발명의 일실시예에 따른 아날로그형 자기위치장치의 레이아웃 구성도이다.2 is a layout diagram of an analog type magnetic position device according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 일실시예에 따른 아날로그형 자기위치장치는 내부에 일정간격 이격하여 결합된 자기센서(21)를 포함한다.Referring to FIG. 2, the analog type magnetic position device according to an embodiment of the present invention includes a magnetic sensor 21 coupled to a predetermined distance therein.
자기센서(21)는 일정 길이의 상하간격(22)과 좌우간격(23)을 두고 아날로그형 자기위치장치(20)의 내부에 배치되어 결합된다.The magnetic sensor 21 is disposed inside the analog type magnetic position device 20 and coupled to the upper and lower intervals 22 and the left and right intervals 23 of a predetermined length.
이는, 바닥에 매설된 자석(미도시)의 사양에 따라 자기센서(21)의 상하격(22)과 좌우간격(23)을 조절할 수 있어, 자기센서(21)의 개수를 줄일 수 있다.This can adjust the upper and lower intervals 22 and the left and right intervals 23 of the magnetic sensor 21 according to the specifications of the magnet (not shown) embedded in the floor, it is possible to reduce the number of magnetic sensors 21.
도 3은 본 발명의 일실시예에 따른 아날로그형 자기위치장치의 위치측정 순서도이다.Figure 3 is a flow chart of the position measurement of the analog magnetic position device according to an embodiment of the present invention.
도 3을 참조하면, 본 발명의 일실시예에 따른 아날로그형 자기위치장치의 위치측정 방법은 자기감지 및 계측단계(101S), 자기센서 검색 및 선택단계(102S,103S,104S,105S), 자기세기의 가로차이 계산단계(106S), 자기세기의 세로차이 계산단계(107S), 선택된 자기센서의 중심위치 계산단계(108S), 퍼지추론단계(201S) 및 자석위치 계산단계(301S)를 포함한다.Referring to Figure 3, the position measuring method of the analog type magnetic position device according to an embodiment of the present invention, magnetic sensing and measuring step 101S, magnetic sensor search and selection step (102S, 103S, 104S, 105S), magnetic The horizontal difference calculation step 106S of the intensity, the vertical difference calculation step 107S of the magnetic intensity, the center position calculation step 108S of the selected magnetic sensor, the fuzzy inference step 201S and the magnet position calculation step 301S. .
자기감지 및 계측단계(101S)는 다수개의 아날로그형 자기센서(21)들을 통해 바닥에 매설된 자석의 자기를 감지 및 계측하는 단계이다.The magnetic sensing and measuring step 101S is a step of sensing and measuring the magnetism of the magnet embedded in the floor through the plurality of analog magnetic sensors 21.
자기센서 검색 및 선택단계(102S,103S,104S,105S)는 다수개의 아날로그형 자기센서(21)가 자석의 자기를 계측한 값을 기반으로 아날로그형 자기위치장치(20) 내부의 상단(맨 위쪽), 하단(맨 아래쪽), 우측(맨 오른쪽) 및 좌측(맨 왼쪽)에 배치된 아날로그형 자기센서(21) 중 계측 값(자기세기)이 가장 큰 아날로그형 자기센서(21)를 선택한다.The magnetic sensor search and selection steps 102S, 103S, 104S, and 105S are performed by the plurality of analog magnetic sensors 21 based on the values measured by the magnets of the magnets. ), The analog magnetic sensor 21 having the largest measured value (magnetic strength) is selected among the analog magnetic sensors 21 arranged on the bottom, bottom (rightmost), right (rightmost) and left (leftmost).
자기세기의 가로차이 계산단계(106S)는 자기센서 검색 및 선택단계(102S,103S,104S,105S)에서 상단과 하단에서 선택된 계측 값을 이용하여 계측 값의 가로 차이를 계산한다.In the horizontal difference calculation step 106S of the magnetic strength, the horizontal difference of the measured values is calculated by using the measured values selected at the upper and lower ends in the magnetic sensor search and selection steps 102S, 103S, 104S, and 105S.
자기세기의 세로차이 계산단계(107S)는 자기센서 검색 및 선택단계(102S,103S,104S,105S)에서 우측과 좌측에서 선택된 계측 값을 이용하여 계측 값의 세로 차이를 계산한다.In the vertical difference calculation step 107S of the magnetic strength, the vertical difference of the measured values is calculated using the measured values selected from the right and the left in the magnetic sensor search and selection steps 102S, 103S, 104S, and 105S.
이러한, 자기세기의 가로차이와 세로차이 계산은 각각 수학식 1과 수학식 2를 통해 계산된다.The horizontal and vertical difference calculations of the magnetic strengths are calculated through Equations 1 and 2, respectively.
[수학식 1][Equation 1]
Dv = (Gt - Gb)/Gmax D v = (G t -G b ) / G max
[수학식 2][Equation 2]
Dh = (Gr - Gl)/Gmax D h = (G r -G l ) / G max
수학식 1과 수학식 2에서 Gmax 는 가장 큰 계측 값으로 39G(Gauss)의 상수를 의미하고, Gt 와 Gb, Gr, Gl은 각각 상단, 하단, 우측 및 좌측의 계측 값을 의미한다.In Equation 1 and Equation 2, G max is the largest measured value, which means a constant of 39 G (Gauss), and G t , G b , G r , and G l represent the measured values of the upper, lower, right, and left sides, respectively. it means.
계산된 계측 값의 가로 차이와 세로 차이 값은 퍼지 추론 단계(S201)의 입력값으로 사용된다.The horizontal and vertical difference values of the calculated measured values are used as input values of the fuzzy inference step S201.
선택된 자기센서의 중심위치 계산단계(108S)는 선택된 아날로그형 자기센서(21)들의 위치를 이용하여 중심위치(평균위치)를 계산하는 단계이다.The center position calculation step 108S of the selected magnetic sensor is a step of calculating the center position (average position) using the positions of the selected analog magnetic sensors 21.
자석위치 계산단계(301S)는 퍼지 추론 단계(S201)를 거쳐 인출된 값과 선택된 자기센서의 중심위치 계산단계(108S)에서 계산된 중심위치의 값을 기반으로 자석의 위치를 계산한다.The magnet position calculation step 301S calculates the magnet position based on the value extracted through the fuzzy inference step S201 and the center position value calculated in the center position calculation step 108S of the selected magnetic sensor.
도 4는 본 발명의 일실시예에 따른 퍼지 추론 시스템의 입력 소속도 함수들에 대한 구성도이다. 4 is a block diagram of input belonging function of the fuzzy inference system according to an embodiment of the present invention.
도 4를 참조하면, 본 발명에 따른 퍼지 추론 시스템의 입력 소속도 함수는 각각 자기 세기의 가로 차이와 세로 차이 값을 입력으로 가지고 소속도 함수들(201 내지 207)은 자기의 분포와 유사한 가우시안 분포를 이용한다.Referring to FIG. 4, the input belonging function of the fuzzy inference system according to the present invention has a horizontal difference and a vertical difference value of magnetic intensity as inputs, and the belonging function functions 201 to 207 are Gaussian distribution similar to the magnetic distribution. Use
이때, 가우시안 분포는 바닥에 매설된 자석의 사양, 자석과 아날로그형 자기위치장치(20) 사이의 간격, 아날로그형 자기센서(21)간의 간격에 따라 크게 달라지는데, 이에 따른 가우시안의 분포는 수학식 3을 이용한다.At this time, the Gaussian distribution varies greatly depending on the specification of the magnet embedded in the floor, the distance between the magnet and the analog magnetic position device 20, and the distance between the analog magnetic sensor 21, and the distribution of the Gaussian according to Equation 3 Use
[수학식 3]  [Equation 3]
Figure PCTKR2013006938-appb-I000001
Figure PCTKR2013006938-appb-I000001
수학식 3에서 χ는 계측 값의 가로 차이와 세로 차이 값의 범위를 의미하고 σ와 c는 각각 분산과 평균을 의미한다.In Equation 3, χ denotes a range of horizontal difference and vertical difference of measured values, and σ and c denote variance and average, respectively.
도 4a의 소속도 함수의 입력범위 χ(204)는 -0.4 ~ 0.4이고 중심 소속도 함수(201)는 분산과 평균을 각각 0.169와 0으로 가지게 되며 위쪽(top) 소속도 함수(202)와 아래쪽(bottom) 소속도 함수(203)의 분산은 0.169fh 같고 평균은 각각 -0.4와 0.4fmf 가진다.The input range χ (204) of the belonging function of FIG. 4A is -0.4 to 0.4, and the central belonging function 201 has variance and average of 0.169 and 0, respectively. The variance of the (bottom) membership function 203 is equal to 0.169fh and the mean is -0.4 and 0.4fmf, respectively.
도 4b의 소속도 함수의 입력범위 χ(207)는 -1 ~ 1이고 중심 소속도 함수(205)는 분산과 평균을 각각 0.424와 0으로 가지게 되며 왼쪽(left) 소속도 함수(206)와 오른쪽(right) 소속도 함수(207)의 분산은 0.424로 같고 평균은 각각 -1.0 ~ 1.0을 가진다.The input range χ (207) of the membership function of FIG. 4B is -1 to 1, and the central membership function 205 has the variance and the mean as 0.424 and 0, respectively. The variance of the (right) membership function 207 is equal to 0.424, with an average of -1.0 to 1.0, respectively.
이때, 도 4a와 도 4b의 소속도 함수의 파라미터들이 다른 이유는 1축 자기센서를 이용하였기 때문이며, 이는 사양에 따라 변경될 수 있다.At this time, the reason why the parameters of the membership function of FIGS. 4A and 4B are different is that a single-axis magnetic sensor is used, which may be changed according to specifications.
도 5는 본 발명의 일실시예에 따른 퍼지 추론 시스템의 출력 소속도 함수들에 대한 구성도이다.5 is a block diagram of output belonging function of the fuzzy inference system according to an embodiment of the present invention.
도5를 참조하면, 본 발명에 따른 퍼지 추론 시스템의 출력 소속도 함수는 도 5a와 도 5b로 각각 가로와 세로의 오프셋(offset) 값을 의미하고 소속도 함수(211 내지 217)들은 일반적인 삼각함수를 이용한다.Referring to FIG. 5, the output belonging function of the fuzzy inference system according to the present invention refers to an offset value of horizontal and vertical values of FIGS. 5A and 5B, respectively, and the belonging function functions 211 to 217 are general trigonometric functions. Use
이때, 소속도 함수(211 내지 217)들은 사양에 따라 변경될 수 있다.At this time, the belonging function (211 to 217) may be changed according to the specification.
이러한, 소속도 함수의 입력범위들(214,218)은 각각 자기센서 간에 상하 간격(22)와 좌우거리(23)이다.The input ranges 214 and 218 of the belonging function are the vertical distance 22 and the left and right distance 23 between the magnetic sensors, respectively.
아울러, 본 발명에 따른 아날로그형 자기위치장치는 한 개 또는 두 개 이상을 이용하여 바닥에 매설된 자석의 위치와 각도를 계측할 수 있다.In addition, the analog type magnetic positioning device according to the present invention can measure the position and angle of the magnet embedded in the floor using one or more than two.
따라서, 본 발명에 따른 아날로그형 자기위치장치와 위치측정 방법은 아날로그형 자기센서를 이용하여 자석의 자기 세기를 계측할 수 있어 자기의 세기를 직접 계측할 수 있으며, 자석과 자기위치장치 사이의 간격 조절을 자유롭게 할 수 있는 효과가 있다.Therefore, the analog magnetic position device and the position measuring method according to the present invention can measure the magnetic strength of the magnet by using the analog magnetic sensor can directly measure the magnetic strength, the distance between the magnet and the magnetic position device It has the effect of free adjustment.
또한, 자기위치장치에 구비된 자기센서 간의 간격이 넓어도 자기센서에서 계측된 데이터를 통해 퍼지 추론 시스템을 이용하여, 보다 정확한 자석의 위치를 계산할 수 있고, 적은 개수의 자기센서를 사용할 수 있어 제작비용을 낮출 수 있는 효과가 있다. In addition, even if the distance between the magnetic sensors provided in the magnetic positioning device is wide, using the fuzzy inference system through the data measured by the magnetic sensor, it is possible to calculate the more accurate position of the magnet, it is possible to use a small number of magnetic sensors This can lower the cost.
이상 본 발명의 바람직한 실시예를 첨부도면을 참조하여 설명하였지만, 당해 기술분야에 숙련된 사람은 하기의 특허청구범위에 기재된 본 발명의 기술적 사상으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경할 수 있음을 이해할 수 있을 것이다.Although preferred embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art may variously modify and change the present invention without departing from the spirit of the invention as set forth in the claims below. It will be appreciated.
본 발명은 다수개의 아날로그형 자기센서가 구비된 자기위치장치와 퍼지 추론 시스템을 이용한 그것의 위치측정 방법에 관한 것으로, 더욱 상세하게는 바닥에 매설된 두 개의 원기둥형 자석의 자기 세기(Gauss)를 아날로그형 자기위치장치로 측정하여 퍼지 추론 시스템(FIS: Fuzzy Interence System)을 통해 두 자석의 정확한 위치를 계측하는 방법에 사용된다.The present invention relates to a magnetic positioning device equipped with a plurality of analog magnetic sensors and its position measuring method using a fuzzy inference system, and more particularly to the magnetic strength (Gauss) of two cylindrical magnets embedded in the floor. It is used to measure the exact position of two magnets through the Fuzzy Interence System (FIS).

Claims (5)

  1. 무인운반차의 하부에 결합되어 바닥에 매설된 자석의 위치를 계측하기 위한 자기위치장치에 있어서,In the magnetic position device coupled to the lower portion of the unmanned vehicle for measuring the position of the magnet embedded in the floor,
    상기 자기위치장치의 내부에는 상기 바닥에 매설된 자석을 감지 및 계측하기 위해 다수개의 자기센서들이 일정간격 이격하여 배치되어 결합되는 것을 특징으로 하는 아날로그형 자기위치장치.And a plurality of magnetic sensors arranged and spaced apart from each other by a predetermined interval to sense and measure the magnet embedded in the bottom of the magnetic positioning device.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 다수개의 자기센서는 상기 바닥에 매설된 자석을 직접 감지 및 계측하기 위한 아날로그형 자기센서인 것을 특징으로 하는 아날로그형 자기위치장치.The plurality of magnetic sensors are analog magnetic sensors, characterized in that the analog magnetic sensor for directly sensing and measuring the magnet embedded in the floor.
  3. 상기 자기센서는 상기 바닥에 매설된 자석의 사양에 따라 배치 간격을 조절할 수 있는 것을 특징으로 하는 아날로그형 자기위치장치.The magnetic sensor is an analog type magnetic positioning device, characterized in that the arrangement interval can be adjusted according to the specifications of the magnet embedded in the floor.
  4. 무인운반차의 하부에 결합되어 바닥에 매설된 자석의 위치를 계측하기 위한 자기위치장치의 위치측정 방법에 있어서,In the position measuring method of the magnetic positioning device for measuring the position of the magnet embedded in the floor coupled to the lower portion of the unmanned vehicle,
    상기 자기위치장치의 내부에 배치된 자기센서를 통해 상기 바닥에 매설된 상기 자석의 자기를 감지 및 계측하는 단계;Sensing and measuring the magnetism of the magnet embedded in the floor through a magnetic sensor disposed in the magnetic position device;
    상기 자기위치장치 내부의 상단, 하단, 우측 및 좌측에 배치된 상기 자기센서들 중 상기 계측된 자기 값이 가장 큰 자기센서를 검색 및 선택하는 단계;Searching for and selecting a magnetic sensor having the largest measured magnetic value among the magnetic sensors disposed on the upper, lower, right, and left sides of the magnetic position device;
    상기 선택된 자기센서를 통해 가로 및 세로의 자기 세기 차이를 계산하는 단계; Calculating a difference between the horizontal and vertical magnetic intensities by using the selected magnetic sensor;
    상기 선택된 자기센서들의 위치를 이용하여 중심 위치를 계산하는 단계;Calculating a center position using the positions of the selected magnetic sensors;
    상기 계산된 가로 및 세로의 자기 세기 차이를 이용하여 퍼지 추론 시스템에 입력하는 단계; 및Inputting to the fuzzy inference system using the calculated transverse and longitudinal magnetic intensity differences; And
    상기 계산된 중심 위치 값을 상기 추론 시스템에서 계산된 출력 값을 더하여 자석의 위치를 계산하는 단계;를 포함하여 이루어지는 아날로그형 자기위치장치의 위치측정 방법.Calculating the position of the magnet by adding the calculated center position value to the output value calculated by the inference system.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 선택된 자기센서들 중 상단과 하단에 배치된 상기 자기센서들을 통해 서는 자기 세기의 가로 차이를 계산하고, 우측과 좌측에 배치된 상기 자기센서들을 통해서는 자기 세기의 세로 차이를 계산하는 것을 특징으로 하는 아날로그형 자기위치장치의 위치측정 방법.The horizontal difference of magnetic intensity is calculated through the magnetic sensors disposed at the top and bottom of the selected magnetic sensors, and the vertical difference of the magnetic strength is calculated through the magnetic sensors arranged at the right and left sides. Position measuring method of analog magnetic positioning device.
PCT/KR2013/006938 2012-12-12 2013-08-01 Analogue magnetic locating apparatus and location measurement method WO2014092283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120144888A KR20140076407A (en) 2012-12-12 2012-12-12 Positioning method and analog type magnetic positioning system
KR10-2012-0144888 2012-12-12

Publications (1)

Publication Number Publication Date
WO2014092283A1 true WO2014092283A1 (en) 2014-06-19

Family

ID=50934546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006938 WO2014092283A1 (en) 2012-12-12 2013-08-01 Analogue magnetic locating apparatus and location measurement method

Country Status (2)

Country Link
KR (1) KR20140076407A (en)
WO (1) WO2014092283A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505935A (en) * 2020-04-30 2020-08-07 内蒙古工业大学 Automatic guided vehicle control method and system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107491079B (en) * 2017-10-12 2021-01-26 广东嘉腾机器人自动化有限公司 Control method and device for automated guided vehicle and computer readable storage medium
CN107678431A (en) * 2017-10-12 2018-02-09 广东嘉腾机器人自动化有限公司 Single steering engine control method, device and computer-readable recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040074685A1 (en) * 2001-02-12 2004-04-22 Tham Yew Keong Magnetic sensor for an automated guided vehicle system
JP2005182612A (en) * 2003-12-22 2005-07-07 Kaneda Kikai Seisakusho Ltd Removable floor for automated guided vehicle
JP2007213356A (en) * 2006-02-10 2007-08-23 Tcm Corp Automated guided facility
US20120197477A1 (en) * 2010-08-03 2012-08-02 Fori Automation, Inc. Sensor system and method for use with an automated guided vehicle (agv)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040074685A1 (en) * 2001-02-12 2004-04-22 Tham Yew Keong Magnetic sensor for an automated guided vehicle system
JP2005182612A (en) * 2003-12-22 2005-07-07 Kaneda Kikai Seisakusho Ltd Removable floor for automated guided vehicle
JP2007213356A (en) * 2006-02-10 2007-08-23 Tcm Corp Automated guided facility
US20120197477A1 (en) * 2010-08-03 2012-08-02 Fori Automation, Inc. Sensor system and method for use with an automated guided vehicle (agv)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM, JUNG MIN ET AL.: "Positioning Accuracy Improvement of Analog-type Magnetic Positioning System using Fuzzy Inference System", JOURNAL OF KOREA INSTITUTE OF INTELLIGENT SYSTEMS, vol. 22, no. 3, June 2012 (2012-06-01), pages 367 - 372, Retrieved from the Internet <URL:http://dx.doi.org/10.5391/JKIIS.2012.22.3.367> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505935A (en) * 2020-04-30 2020-08-07 内蒙古工业大学 Automatic guided vehicle control method and system
CN111505935B (en) * 2020-04-30 2022-10-18 内蒙古工业大学 Automatic guided vehicle control method and system

Also Published As

Publication number Publication date
KR20140076407A (en) 2014-06-20

Similar Documents

Publication Publication Date Title
WO2014092283A1 (en) Analogue magnetic locating apparatus and location measurement method
WO2013085174A1 (en) Torque sensor for measuring torsion of steering column and measurement method using the same
WO2019212112A1 (en) Electrode sheet cutting device and cutting method
WO2014017693A1 (en) System and method for correcting gps using image recognition information
WO2015126009A1 (en) Digitizer integrated with touchscreen using three-axis magnetic force sensors and magnetic force pen
WO2014163318A1 (en) Interference compensating single point detecting current sensor for a multiplex busbar
WO2015186853A1 (en) Underwater detection device and underwater detection method
WO2016175501A1 (en) Step recognition system and method therefor, and storage medium in which program for processing same method is recorded
TWI461654B (en) Position detection method of moving body system and moving body
WO2016186283A1 (en) Method and system for measuring earth&#39;s magnetic field via marine magnetic force exploration for eliminating magnetic field disturbance, and recording medium therefor
WO2019054543A1 (en) Weighing device having position-adjustable load cell
WO2017213476A1 (en) High-sensitivity metal detector robust against disturbance
WO2021015418A1 (en) Apparatus for determining position of driving test vehicle on basis of rtk gnss
WO2016140389A1 (en) Wearable device and system for user monitoring
WO2020241914A1 (en) Master and slave of robot tool changing system
WO2013183829A1 (en) Method of measuring rotating speed of sphere using accelerometer
WO2019107648A1 (en) System and method for preventing crane collision
WO2020096137A1 (en) System and method for correcting gas analysis value of standard insulating oil
WO2014133366A1 (en) Mixer
WO2015147407A1 (en) Multi-contact type position detection apparatus for target board
CN107702633A (en) A kind of quick inspection method of coke oven wall perpendicularity
WO2014007507A1 (en) System and method for providing group vehicle operation information
WO2015088089A1 (en) Apparatus and method for inspecting defect of steel plate
WO2013151243A1 (en) Synchronization method between mobile terminal and exhibition device using motion recognition apparatus
WO2015174581A1 (en) Touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863460

Country of ref document: EP

Kind code of ref document: A1