WO2014092280A1 - 핸드오버 제어 방법 - Google Patents

핸드오버 제어 방법 Download PDF

Info

Publication number
WO2014092280A1
WO2014092280A1 PCT/KR2013/006719 KR2013006719W WO2014092280A1 WO 2014092280 A1 WO2014092280 A1 WO 2014092280A1 KR 2013006719 W KR2013006719 W KR 2013006719W WO 2014092280 A1 WO2014092280 A1 WO 2014092280A1
Authority
WO
WIPO (PCT)
Prior art keywords
handover
service
base station
parameter
terminal
Prior art date
Application number
PCT/KR2013/006719
Other languages
English (en)
French (fr)
Inventor
이현송
허시영
이경준
차용주
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to US14/652,121 priority Critical patent/US10015704B2/en
Publication of WO2014092280A1 publication Critical patent/WO2014092280A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1438Negotiation of transmission parameters prior to communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a handover control method.
  • LTE Long Term Evolution
  • TDD Time Division Duplexing
  • FDD Frequency Division Duplexing
  • the terminal supporting the TDD / FDD dual mode may selectively access the TDD network and the FDD network in a coexistence network where the TDD network and the FDD network coexist.
  • the terminal may cause a load on the access network by executing a service. Therefore, there is a need for a method for effectively balancing loads in a coexistence network. In addition, there is a need for a method of selectively controlling a network to which a terminal accesses and operating a coexistence network according to the technical characteristics of the TDD network and the FDD network and the network operation policy of the communication service provider.
  • An object of the present invention is to provide a handover control method for controlling a terminal to selectively use a network according to a service by changing a handover condition based on a service used by a terminal.
  • a method for controlling a handover of a terminal by a first base station comprising: setting a handover parameter determined based on a handover policy; and sending a message including the handover parameter to the terminal.
  • a handover parameter comprising a service parameter, wherein the service parameter is a handover of the terminal to induce handover from the first base station to the second base station according to the handover policy. This parameter is used to determine the condition.
  • the handover policy may include a policy of serving a first type of service in a network of the first base station and serving a second type of service in a network of a second base station.
  • the service parameter may be a parameter applied to a handover condition when the service executed in the terminal is the second type of service.
  • the service parameter is a first service parameter that makes the measured signal of the first base station used when determining the first handover condition smaller than the measured value, and a measured value that measures the measured signal of the first base station used when determining the second handover condition. At least one of the second service parameter to make smaller, and the third service parameter to make the measurement signal of the second base station used when determining the second handover condition larger than the measured value.
  • a method for controlling a handover of a terminal handed over from a second base station to the first base station by a first base station the terminal and the terminal in response to a handover request received from the second base station; Comprising a step of completing a handover procedure, setting a handover parameter determined based on a handover policy, and transmitting a message including the handover parameter to the terminal, the handover parameter is a service
  • a service parameter is a parameter used when determining a handover condition of the terminal to induce a service to be used by the first base station according to the handover policy.
  • the handover policy may include a policy of serving a first type of service in a network of the first base station and serving a second type of service in a network of a second base station.
  • the service parameter may be a parameter applied to a handover condition when the service executed in the terminal is the first type of service.
  • the service parameter is a first service parameter that makes the measured signal of the first base station used when determining the first handover condition larger than the measured value, and a measured value that measures the measured signal of the first base station used when determining the second handover condition. At least one of the second service parameter to make larger, and the third service parameter to make the measurement signal of the second base station used when determining the second handover condition smaller than the measured value.
  • a method for controlling a handover of a terminal by a first base station comprising: setting a service parameter determined based on a handover policy; receiving a message requesting the service parameter from a terminal; And transmitting a message including the service parameter to the terminal, wherein the service parameter of the terminal to induce handover from the first base station to the second base station according to the handover policy.
  • This parameter is used to determine the handover condition.
  • the handover policy may include a policy of serving a first type of service in a network of the first base station and serving a second type of service in a network of a second base station.
  • Receiving the message may receive a message for requesting the service parameter from the terminal executing the second type of service.
  • a method for controlling handover by a terminal comprising: storing a service parameter, determining whether to apply the service parameter to a handover condition based on a handover policy, and the service parameter
  • the method may include determining a handover condition to which the service parameter is applied and reporting the same to the first base station, wherein the service parameter indicates handover from the first base station to the second base station according to the handover policy. It includes a parameter used when determining the handover condition of the terminal to induce.
  • the handover policy may include a policy of serving a first type of service in a network of the first base station, and serving a second type of service in a network of the second base station.
  • the determining of whether to apply the service parameter to the handover condition may determine whether to apply the service parameter to the handover condition when the service executed in the terminal is the second type of service.
  • the service parameter is a first service parameter that makes the measured signal of the first base station used when determining the first handover condition smaller than the measured value, and a measured value that measures the measured signal of the first base station used when determining the second handover condition. At least one of the second service parameter to make smaller, and the third service parameter to make the measurement signal of the second base station used when determining the second handover condition larger than the measured value.
  • the storing of the handover parameter may store the handover parameter received from the first base station.
  • the network can be selectively and controlled to be used according to the service used by the terminal, thereby enabling economical and efficient network operation in the coexistence network environment.
  • the network by deriving a service suitable for the characteristics of each network as well as the load of each network, it is possible to make full use of limited frequency resources.
  • the present invention can be controlled to selectively use the network according to the service by reflecting the policy of the operator.
  • FIG. 1 is a diagram illustrating a coexistence network according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a communication system according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a handover procedure according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a handover control method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a handover control method according to another embodiment of the present invention.
  • FIG. 6 is a flowchart of a handover control method according to another embodiment of the present invention.
  • FIG. 7 is a block diagram of a terminal according to an embodiment of the present invention.
  • FIG. 8 is a block diagram of a handover control apparatus according to an embodiment of the present invention.
  • a terminal is a mobile station (MS), a mobile terminal (MT), a subscriber station (SS), a portable subscriber station (PSS), a user equipment (UE) It may also refer to an access terminal (AT) or the like, and may include all or a part of functions of a mobile terminal, a subscriber station, a portable subscriber station, a user device, and an access terminal.
  • MS mobile station
  • MT mobile terminal
  • SS subscriber station
  • PSS portable subscriber station
  • UE user equipment
  • AT access terminal
  • a base station includes an access point (AP), a radio access station (RAS), a node B (Node B), an advanced node B (evolved NodeB, eNodeB), and a base transceiver station.
  • AP access point
  • RAS radio access station
  • Node B node B
  • eNodeB advanced node B
  • MMR Mobile Multihop Relay
  • the base station is divided into an apparatus for processing radio signal, a remote radio head (RRH), or a radio unit (RU), and an apparatus for processing digital signal, or a digital unit (DU). Can be implemented.
  • RRH remote radio head
  • RU radio unit
  • DU digital unit
  • FIG. 1 is a diagram illustrating a coexistence network according to an embodiment of the present invention
  • FIG. 2 is a diagram illustrating a communication system according to an embodiment of the present invention.
  • a time division duplexing (TDD) base station 100 and a frequency division duplexing (FDD) base station 200 form a coexistence network.
  • the terminal 300 supports the TDD / FDD dual mode.
  • the terminal 300 is selectively connected to the TDD base station 100 and the FDD base station 200 and connected to the core network.
  • the terminal 300 accesses a content server related to a service through a core network.
  • the core network is a network composed of devices related to packet transmission, for example, a mobility management entity (MME), a serving gateway (S-GW), a packet data gateway (Packet Data Network Gateway, PDN-GW).
  • MME mobility management entity
  • S-GW serving gateway
  • PDN-GW Packet Data Network Gateway
  • the TDD base station 100 wirelessly communicates with the terminal 300 in a TDD manner, and connects the connected terminal 300 to the core network.
  • the network to which the TDD base station 100 and the terminal 300 are connected is called a TDD network.
  • the FDD base station 200 wirelessly communicates with the terminal 300 in an FDD manner, and connects the connected terminal 300 to the core network.
  • the network to which the FDD base station 200 and the terminal 300 are connected is called an FDD network.
  • the TDD base station 100 and the FDD base station 200 share information on a coexistence network and a handover policy.
  • the TDD base station 100 and the FDD base station 200 change the handover condition of the terminal 300 based on the handover policy. That is, the TDD base station 100 and the FDD base station 200 change the handover condition to induce handover to another adjacent base station.
  • the handover policy may vary, and in particular, may be set to use the access network differently according to the type of service. For example, the handover policy requires that symmetric / QoS-guaranteed services such as VoLTE use the same FDD network for uplink and downlink frequency domains, while asymmetric / broadcast services that consume a lot of downlink resources such as multimedia. It may be configured to use a TDD network that can set the downlink frequency domain.
  • each of the TDD base station 100 and the FDD base station 200 is an apparatus for processing radio signal, a remote radio head (RRH), or a radio unit (RU) (110/210),
  • the digital signal processing apparatus may be implemented by being separated into an apparatus for processing digital signal or digital unit (DU) 130/230.
  • the digital signal processors 130 and 230 may be integrated into one digital signal processor.
  • the TDD base station 100 and the FDD base station 200 will be described in detail how to change the handover conditions to induce handover from the TDD network to the FDD network, or from the FDD network to the TDD network.
  • FIG. 3 is a flowchart of a handover procedure according to an embodiment of the present invention.
  • the FDD-TDD network handover may follow an inter-frequency handover procedure.
  • the handover condition includes a handover initiation condition (Event A2) for triggering handover and a handover execution condition (Event A3) for determining whether to perform handover.
  • the FDD base station 200 transmits a message (RRC connection reconfiguration) including a parameter for inter-frequency handover to the terminal 300 (S110).
  • the terminal 300 determines whether the handover start condition (Event A2) is satisfied (S120).
  • the terminal 300 reports measurement information related to the handover start condition Event A2 (Measurement report) (S130).
  • the FDD base station 200 transmits a message (RRC connection reconfiguration) including measure gap activation information (S140).
  • the terminal 300 determines whether the handover execution condition (Event A3) is satisfied (S150).
  • the terminal 300 reports measurement information related to the handover execution condition Event A3 (Measurement report) (S160).
  • the FDD base station 200 requests a handover to the TDD base station 100 (S170).
  • the TDD base station 100 responds to the handover request to the FDD base station 200 (S180).
  • the terminal 300 hands over to the TDD base station 100 (S190).
  • the handover initiation condition Event A2 is a condition for determining whether the measurement signal Ms of the serving cell is worse than a threshold.
  • the entering condition of the handover start condition Event A2 is shown in Equation 1, and the leaving condition is shown in Equation 2.
  • Hys Hysteresis serves to prevent the phenomenon (ping pong phenomenon) to be satisfied by alternating the entry condition of equation (1) and the departure condition of equation (2).
  • the handover execution condition (Event A3) is a condition for determining whether the measurement signal Mn of the neighbor cell is more than a predetermined value (offset) better than the measurement signal Mp of the serving cell / primary cell PCell. PCell).
  • the entering condition of the handover execution condition Event A3 is shown in Equation 3, and the leaving condition is shown in Equation 4.
  • Equations 3 and 4 Ofn and Ofp are offsets related to frequencies of neighboring cells and serving cells, respectively, and Ocn and Ocp are offsets related to neighboring cells and serving cells.
  • the terminal 300 measures the signals of the serving cell and the neighbor cell according to parameters related to the handover start condition Event A2 and the handover execution condition Event A3.
  • FIG. 4 is a flowchart of a handover control method according to an embodiment of the present invention.
  • the TDD base station 100 and the FDD base station 200 set a handover parameter determined based on a handover policy (S210).
  • the handover policy may include a policy for designating a use network for each service type, and may further include various additional policies such as handover according to load and handover according to operator needs. That is, the handover policy may be set such that the first type of service is serviced in the TDD network and the second type of service is serviced in the FDD network.
  • the handover parameter is information used to determine a handover condition and includes general handover parameters (Ofn, Ofp, Ocn, Ocp, etc.), and service related parameters (Osvc, Osp, Osn). do. In the future, parameters related to services are simply called "service parameters".
  • the service parameter is a parameter that induces handover to a designated network according to a service, and is set such that the terminal uses the corresponding service in a network designated to a certain service.
  • the service parameter is a parameter that prevents handover from a designated network to another network according to the service, and is set to maintain the corresponding service in the designated network.
  • the service parameter is applied when the handover start condition Event A2 and the handover execution condition Event A3 are determined.
  • the FDD base station 200 transmits a message (RRC connection reconfiguration) including a handover parameter (S220).
  • the handover parameter includes a service parameter.
  • the terminal 300 executes the TDD service (S230).
  • the TDD service is a service designated to serve in the TDD network according to the handover policy.
  • the terminal 300 determines whether to apply the service parameter when determining the handover condition based on the execution service and the handover policy (S240). If the terminal 300 executes a service set to serve in an FDD network, the terminal 300 does not apply service parameters.
  • the terminal 300 Since the execution service is a TDD service, the terminal 300 applies a service parameter when determining a handover condition (S250).
  • the terminal 300 changes the measurement signal Ms of the serving cell as shown in Equation 5 using the service parameter Osvc. That is, the service parameter Osvc makes the measurement signal Ms' of the serving cell used when determining the handover condition smaller than the actual value Ms. Therefore, the terminal 300 easily satisfies the handover start condition Event A2.
  • the terminal 300 changes at least one of the measurement signal Mp of the serving cell / primary cell PCell and the measurement signal Mn of the neighbor cell using the service parameters Osp and Osn as shown in Equation 6 below. . That is, the service parameters Osp and Osn make the measurement signal Ms' of the serving cell / primary cell PCell used when determining the handover condition smaller than the actual value Ms or the measurement signal Mn of the neighbor cell. Make ') larger than the actual value (Mn). Therefore, the terminal 300 easily satisfies the handover execution condition Event A3.
  • the terminal 300 determines whether the handover condition is satisfied based on the service parameter, and reports measurement information related to the handover condition (Sasurement report).
  • the FDD base station 200 requests a handover to the TDD base station 100 (S270).
  • the TDD base station 100 responds to the handover request to the FDD base station 200 (S271).
  • the terminal 300 hands over to the TDD base station 100 (S272).
  • the TDD base station 100 transmits a message (RRC connection reconfiguration) including a handover parameter (S280).
  • the handover parameter includes a service parameter.
  • the service parameter sent by the TDD base station 100 is set to a value that makes it difficult for the terminal 300 to hand over to the FDD base station 200. That is, the TDD base station 100 sets service parameters for maintaining the corresponding service in the TDD network. This service parameter may be the opposite of the sign of the parameter for inducing handover. Alternatively, a service parameter may be applied to maintain the service by adding the service parameter in Equations 5 and 6.
  • the terminal 300 determines a handover condition based on the handover parameter including the service parameter (S290).
  • the terminal 300 terminates the TDD service (S291).
  • the terminal 300 releases the application of the service parameter (S292). That is, when the TDD service is terminated, the terminal 300 does not apply service parameters when determining the handover condition.
  • the base station provides a service parameter for the terminal to easily move to the network specified in the execution service.
  • the terminal applies the service parameter when determining the handover condition to easily handover to the network designated for the execution service.
  • the base station provides a service parameter that is set not to return to the network before the handover.
  • FIG. 5 is a flowchart illustrating a handover control method according to another embodiment of the present invention.
  • the terminal 300 stores the handover parameter determined based on the handover policy (S310).
  • the handover policy may be set such that the first type of service is served by the TDD network and the second type of service is served by the FDD network.
  • the handover parameter is information used to determine a handover condition and includes service parameters Osvc, Osp and Osn.
  • the terminal 300 may receive a service parameter from the base station.
  • the FDD base station 200 transmits a message (RRC connection reconfiguration) including a handover parameter (S320).
  • the terminal 300 executes the TDD service (S330).
  • the terminal 300 determines whether to apply a service parameter when determining a handover condition based on the execution service and the handover policy (S340).
  • the terminal 300 determines a handover condition by applying service parameters (S350). That is, as shown in Equation 5, the terminal 300 makes the measurement signal Ms' of the serving cell used when determining the handover condition smaller than the actual value Ms by using the service parameter Osvc. As shown in equations (6) and (7), the terminal 300 uses the service parameters Osp and Osn to determine a measurement signal Ms' of the serving cell / primary cell PCell used when determining a handover condition. Ms) or the measurement signal Mn 'of the neighboring cell is made larger than the actual value Mn.
  • service parameters S350
  • the terminal 300 determines whether the handover condition is satisfied based on the service parameter, and reports measurement information related to the handover condition in step S360.
  • the FDD base station 200 requests a handover to the TDD base station 100 (S370).
  • the TDD base station 100 responds to the handover request to the FDD base station 200 (S371).
  • the terminal 300 hands over to the TDD base station 100 (S372).
  • the TDD base station 100 transmits a message (RRC connection reconfiguration) including a handover parameter (S380). At this time, the TDD base station 100 transmits only a normal handover parameter. Alternatively, the TDD base station 100 may further transmit a service parameter.
  • the terminal 300 determines whether the handover condition is satisfied based on the stored service parameter (S390).
  • the service parameter is a value that makes it difficult for the terminal 300 to hand over to the FDD base station 200.
  • the terminal 300 terminates the TDD service (S391).
  • the terminal 300 releases the application of the service parameter (S392). That is, when the TDD service is terminated, the terminal 300 does not apply service parameters when determining the handover condition.
  • the terminal stores a parameter applied according to a service when determining a handover condition.
  • the terminal applies the service parameter when determining the handover condition to easily handover to the network designated for the execution service.
  • the terminal applies the service parameter until the execution service is terminated so as not to hand over to another network even after the handover.
  • FIG. 6 is a flowchart of a handover control method according to another embodiment of the present invention.
  • the base station may apply a handover policy only to a specific terminal.
  • the handover policy includes a policy for designating a use network by service type.
  • the FDD base station 200 transmits a message (RRC connection reconfiguration) including a handover parameter (S410).
  • the terminal 300 executes the TDD service (S420).
  • the terminal 300 determines whether service parameters (Osvc, Osp, Osn) are necessary when determining a handover condition based on the execution service and the handover policy (S430).
  • the terminal 300 When executing the service designated to serve in the TDD network, the terminal 300 requests the FDD base station 200 to handover parameters including service parameters (S440).
  • the FDD base station 200 transmits a handover parameter including a service parameter (S450).
  • the terminal 300 determines the handover condition by applying the service parameter (S460).
  • the subsequent handover procedure is similar to the embodiment described above.
  • the terminal requests a service parameter from the base station based on the service executed by the terminal. Therefore, the base station can apply the handover policy only to a specific terminal. Through this, the base station induces access to a network optimized for service, thereby providing differentiated quality to the terminal.
  • FIG. 7 is a block diagram of a terminal according to an embodiment of the present invention.
  • the terminal 300 is a configuration for handover, and includes a handover parameter storage unit 310 and a handover determination unit 330.
  • the handover parameter storage unit 310 stores the handover parameter determined based on the handover policy.
  • the handover policy may be set such that the first type of service is served by the TDD network and the second type of service is served by the FDD network.
  • the handover parameter is information used to determine a handover condition and includes service parameters Osvc, Osp and Osn.
  • the handover parameter storage unit 310 may receive a handover parameter from the base station.
  • the handover determiner 330 processes the handover according to the handover procedure based on the parameters stored in the handover parameter storage 310. At this time, the handover determination unit 330 determines whether to apply the service parameter when determining the handover condition, based on the execution service and the handover policy. The handover determination unit 330 determines a handover condition by applying a service parameter when the execution service is not a service currently assigned to the serving cell.
  • the terminal 300 is programmed to implement the embodiments proposed in the present invention using a processor, a memory, and a transmission / reception unit.
  • FIG. 8 is a block diagram of a handover control apparatus according to an embodiment of the present invention.
  • the handover control apparatus 400 includes a handover parameter manager 410 and a handover performer 430.
  • the handover control apparatus 400 may be implemented in the TDD base station 100 and the FDD base station 200 so that the TDD base station 100 and the FDD base station 200 may control the handover.
  • the handover control device 400 may be implemented separately from the TDD base station 100 / FDD base station 200.
  • the handover parameter manager 410 stores the handover parameter determined based on the handover policy.
  • the handover parameter includes various parameters related to an inter-frequency handover procedure and a service parameter.
  • the service parameter is a parameter for inducing handover to a network designated to a random service when a random service is executed in the terminal.
  • the service parameter is a parameter (Osvc) that makes the measurement signal Ms' of the serving cell used when determining the handover condition smaller than the actual value Ms, and the measurement of the serving cell / primary cell (PCell) used when determining the handover condition.
  • Parameters Osp and Osn that make the signal Ms 'smaller than the actual value Ms or make the measurement signal Mn' of the neighboring cell larger than the actual value Mn are included.
  • the handover performer 430 processes the handover according to the handover procedure. At this time, the handover performer 430 transmits the parameter stored in the handover parameter manager 410 to the terminal. In this case, the handover performer 430 may transmit a service parameter only to a specific terminal.
  • the policy for specifying the use network by service type is limited, but the base station may change the service parameters (Osvc, Osp, Osn) according to various handover policies such as network status and operator need. Therefore, the base station can easily induce handover only by changing the service parameter according to the acceptance strategy or network load in each service network.
  • the procedure for handing over from the FDD base station to the TDD base station is taken as an example, but the procedure for handing over from the TDD base station to the FDD base station is applied in the same manner.
  • the FDD base station and the TDD base station are only examples of networks having different frequencies or different communication methods, and the present invention can be applied to various communication systems for inducing handover from the first network to the second network.
  • the network can be selectively and controlled according to the service used by the terminal, thereby enabling economic and efficient network operation in the coexistence network environment.
  • the network by deriving a service suitable for the characteristics of each network as well as the load of each network, it is possible to make full use of limited frequency resources.
  • the present invention can be controlled to selectively use the network according to the service by reflecting the policy of the operator.
  • the embodiments of the present invention described above are not only implemented through the apparatus and the method, but may be implemented through a program for realizing a function corresponding to the configuration of the embodiments of the present invention or a recording medium on which the program is recorded.

Abstract

제1기지국이 단말의 핸드오버를 제어하는 방법으로서, 핸드오버 정책을 기초로 결정된 핸드오버 파라미터를 설정하는 단계, 그리고 상기 단말로 상기 핸드오버 파라미터를 포함하는 메시지를 전송하는 단계를 포함하고, 상기 핸드오버 파라미터는 서비스 파라미터를 포함하고, 상기 서비스 파라미터는 상기 핸드오버 정책에 따라 상기 제1기지국에서 상기 제2기지국으로의 핸드오버를 유도하기 위해 상기 단말의 핸드오버 조건 판단 시 이용되는 파라미터이다.

Description

핸드오버 제어 방법
본 발명은 핸드오버 제어 방법에 관한 것이다.
LTE(Long Term Evolution)는 네트워크 효율을 높이기 위해 TDD(Time Division Duplexing)망과 FDD(Frequency Division Duplexing)망을 구축한다. TDD/FDD 듀얼 모드를 지원하는 단말은 TDD망과 FDD망이 공존하는 공존망에서 TDD망과 FDD망에 선택적으로 접속할 수 있다.
이때, 단말이 서비스를 실행하여 접속망의 부하를 유발할 수 있다. 따라서, 공존망에서 효과적으로 부하를 분산하는 방법이 요구된다. 또한 단말이 접속하는 망을 선택적으로 제어하여 TDD망과 FDD망의 기술 특성과 통신 사업자의 망 운용 정책에 따라 공존망을 운용하는 방법이 요구된다.
본 발명이 해결하고자 하는 과제는 단말에서 사용하는 서비스를 기초로 핸드오버 조건을 변경하여, 단말이 서비스에 따라 선택적으로 망을 사용하도록 제어하는 핸드오버 제어 방법을 제공하는 것이다.
본 발명의 한 실시예에 따른 제1기지국이 단말의 핸드오버를 제어하는 방법으로서, 핸드오버 정책을 기초로 결정된 핸드오버 파라미터를 설정하는 단계, 그리고 상기 단말로 상기 핸드오버 파라미터를 포함하는 메시지를 전송하는 단계를 포함하고, 상기 핸드오버 파라미터는 서비스 파라미터를 포함하고, 상기 서비스 파라미터는 상기 핸드오버 정책에 따라 상기 제1기지국에서 상기 제2기지국으로의 핸드오버를 유도하기 위해 상기 단말의 핸드오버 조건 판단 시 이용되는 파라미터이다.
상기 핸드오버 정책은 제1종류의 서비스를 상기 제1기지국의 망에서 서비스하고, 제2종류의 서비스를 제2기지국의 망에서 서비스하는 정책을 포함할 수 있다.
상기 서비스 파라미터는 상기 단말에서 실행되는 서비스가 상기 제2종류의 서비스인 경우 핸드오버 조건에 적용되는 파라미터일 수 있다.
상기 서비스 파라미터는 제1 핸드오버 조건 판단 시 이용되는 상기 제1기지국의 측정 신호를 측정값보다 작게 만드는 제1서비스 파라미터, 제2 핸드오버 조건 판단 시 이용되는 상기 제1기지국의 측정 신호를 측정값보다 작게 만드는 제2서비스 파라미터, 그리고 제2 핸드오버 조건 판단 시 이용되는 상기 제2기지국의 측정 신호를 측정값보다 크게 만드는 제3서비스 파라미터 중 적어도 하나를 포함할 수 있다.
본 발명의 다른 실시예에 따른 제1기지국이 제2기지국에서 상기 제1기지국으로 핸드오버한 단말의 핸드오버를 제어하는 방법으로서, 상기 제2기지국으로부터 수신한 핸드오버 요청에 응답하여 상기 단말과의 핸드오버 절차를 완료하는 단계, 핸드오버 정책을 기초로 결정된 핸드오버 파라미터를 설정하는 단계, 그리고 상기 단말로 상기 핸드오버 파라미터를 포함하는 메시지를 전송하는 단계를 포함하고, 상기 핸드오버 파라미터는 서비스 파라미터를 포함하고, 상기 서비스 파라미터는 상기 핸드오버 정책에 따라 상기 제1기지국에서 서비스를 이용하도록 유도하기 위해 상기 단말의 핸드오버 조건 판단 시 이용되는 파라미터이다.
상기 핸드오버 정책은 제1종류의 서비스를 상기 제1기지국의 망에서 서비스하고, 제2종류의 서비스를 제2기지국의 망에서 서비스하는 정책을 포함할 수 있다.
상기 서비스 파라미터는 상기 단말에서 실행되는 서비스가 상기 제1종류의 서비스인 경우 핸드오버 조건에 적용되는 파라미터일 수 있다.
상기 서비스 파라미터는 제1 핸드오버 조건 판단 시 이용되는 상기 제1기지국의 측정 신호를 측정값보다 크게 만드는 제1서비스 파라미터, 제2 핸드오버 조건 판단 시 이용되는 상기 제1기지국의 측정 신호를 측정값보다 크게 만드는 제2서비스 파라미터, 그리고 제2 핸드오버 조건 판단 시 이용되는 상기 제2기지국의 측정 신호를 측정값보다 작게 만드는 제3서비스 파라미터 중 적어도 하나를 포함할 수 있다.
본 발명의 또 다른 실시예에 따른 제1기지국이 단말의 핸드오버를 제어하는 방법으로서, 핸드오버 정책을 기초로 결정된 서비스 파라미터를 설정하는 단계, 단말로부터 상기 서비스 파라미터를 요청하는 메시지를 수신하는 단계, 그리고 상기 단말로 상기 서비스 파라미터를 포함하는 메시지를 전송하는 단계를 포함하고, 상기 서비스 파라미터는 상기 핸드오버 정책에 따라 상기 제1기지국에서 상기 제2기지국으로의 핸드오버를 유도하기 위해 상기 단말의 핸드오버 조건 판단 시 이용되는 파라미터이다.
상기 핸드오버 정책은 제1종류의 서비스를 상기 제1기지국의 망에서 서비스하고, 제2종류의 서비스를 제2기지국의 망에서 서비스하는 정책을 포함할 수 있다.
상기 메시지를 수신하는 단계는 상기 제2종류의 서비스를 실행한 상기 단말로부터 상기 서비스 파라미터를 요청하는 메시지를 수신할 수 있다.
본 발명의 또 다른 실시예에 따른 단말이 핸드오버를 제어하는 방법으로서, 서비스 파라미터를 저장하는 단계, 핸드오버 정책을 기초로 상기 서비스 파라미터를 핸드오버 조건에 적용할지 판단하는 단계, 그리고 상기 서비스 파라미터를 적용하는 경우, 상기 서비스 파라미터가 적용된 핸드오버 조건을 판단하여 제1기지국으로 보고하는 단계를 포함하고, 상기 서비스 파라미터는 상기 핸드오버 정책에 따라 상기 제1기지국에서 제2기지국으로의 핸드오버를 유도하기 위해 상기 단말의 핸드오버 조건 판단 시 이용되는 파라미터를 포함한다.
상기 핸드오버 정책은 제1종류의 서비스를 상기 제1기지국의 망에서 서비스하고, 제2종류의 서비스를 상기 제2기지국의 망에서 서비스하는 정책을 포함할 수 있다.
상기 서비스 파라미터를 핸드오버 조건에 적용할지 판단하는 단계는 상기 단말에서 실행되는 서비스가 상기 제2종류의 서비스인 경우 상기 서비스 파라미터를 핸드오버 조건에 적용하도록 판단할 수 있다.
상기 서비스 파라미터는 제1 핸드오버 조건 판단 시 이용되는 상기 제1기지국의 측정 신호를 측정값보다 작게 만드는 제1서비스 파라미터, 제2 핸드오버 조건 판단 시 이용되는 상기 제1기지국의 측정 신호를 측정값보다 작게 만드는 제2서비스 파라미터, 그리고 제2 핸드오버 조건 판단 시 이용되는 상기 제2기지국의 측정 신호를 측정값보다 크게 만드는 제3서비스 파라미터 중 적어도 하나를 포함할 수 있다.
상기 핸드오버 파라미터를 저장하는 단계는 상기 제1기지국으로부터 수신한 상기 핸드오버 파라미터를 저장할 수 있다.
본 발명의 실시예에 따르면 단말에서 사용하는 서비스에 따라 선택적으로 망을 사용하도록 제어하여 공존망 환경에서 경제적이고 효율적인 네트워크 운용이 가능하다. 본 발명의 실시예에 따르면 각 망의 부하뿐만 아니라, 각 망의 특성에 적합한 서비스를 유도함으로써, 한정된 주파수 자원을 최대한 활용할 수 있다. 또한, 본 발명에 따르면 사업자의 정책을 반영하여 서비스에 따라 선택적으로 망을 사용하도록 제어할 수 있다.
도 1은 본 발명의 한 실시예에 따른 공존망을 설명하는 도면이다.
도 2는 본 발명의 한 실시예에 따른 통신 시스템을 설명하는 도면이다.
도 3은 본 발명의 한 실시예에 따른 핸드오버 절차의 흐름도이다.
도 4는 본 발명의 한 실시예에 따른 핸드오버 제어 방법의 흐름도이다.
도 5는 본 발명의 다른 실시예에 따른 핸드오버 제어 방법의 흐름도이다.
도 6은 본 발명의 또 다른 실시예에 따른 핸드오버 제어 방법의 흐름도이다.
도 7은 본 발명의 한 실시예에 따른 단말의 블록도이다.
도 8은 본 발명의 한 실시예에 따른 핸드오버 제어 장치의 블록도이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 단말은 이동국(Mobile Station, MS), 이동 단말(Mobile Terminal, MT), 가입자국(Subscriber Station, SS), 휴대 가입자국(Portable Subscriber Station, PSS), 사용자 장치(User Equipment, UE), 접근 단말(Access Terminal, AT) 등을 지칭할 수도 있고, 이동 단말, 가입자국, 휴대 가입자 국, 사용자 장치, 접근 단말 등의 전부 또는 일부의 기능을 포함할 수도 있다.
본 명세서에서 기지국(base station, BS)은 접근점(Access Point, AP), 무선 접근국(Radio Access Station, RAS), 노드B(Node B), 고도화 노드B(evolved NodeB, eNodeB), 송수신 기지국(Base Transceiver Station, BTS), MMR(Mobile Multihop Relay)-BS 등을 지칭할 수도 있고, 접근점, 무선 접근국, 노드B, eNodeB, 송수신 기지국, MMR-BS 등의 전부 또는 일부의 기능을 포함할 수도 있다.
기지국은 무선 신호 처리장치[apparatus for processing radio signal, Remote Radio Head(RRH), 또는 Radio Unit(RU)], 그리고 디지털 신호 처리장치[apparatus for processing digital signal, 또는 Digital Unit(DU)]로 분리되어 구현될 수 있다.
도 1은 본 발명의 한 실시예에 따른 공존망을 설명하는 도면이고, 도 2는 본 발명의 한 실시예에 따른 통신 시스템을 설명하는 도면이다.
도 1을 참고하면, TDD(Time Division Duplexing) 기지국(100)과 FDD(Frequency Division Duplexing) 기지국(200)은 공존망을 형성한다.
단말(300)은 TDD/FDD 듀얼모드(dual mode)를 지원한다. 단말(300)은 TDD 기지국(100)과 FDD 기지국(200)에 선택적으로 접속하여 코어망에 연결된다. 단말(300)은 코어망을 통해 서비스에 관계된 컨텐츠 서버에 접속한다. 여기서 코어망은 패킷 전송에 관련된 장치들로 구성된 망으로서, 예를 들면, 이동성 관리장치(Mobility Management Entity, MME), 서빙 게이트웨이(Serving Gateway, S-GW), 패킷데이터 게이트웨이(Packet Data Network Gateway, PDN-GW)를 포함할 수 있다.
TDD 기지국(100)은 TDD 방식으로 단말(300)과 무선 통신하고, 접속한 단말(300)을 코어망에 연결한다. TDD 기지국(100)과 단말(300)이 연결된 망을 TDD망이라고 한다.
FDD 기지국(200)은 FDD 방식으로 단말(300)과 무선 통신하고, 접속한 단말(300)을 코어망에 연결한다. FDD 기지국(200)과 단말(300)이 연결된 망을 FDD망이라고 한다.
TDD 기지국(100)과 FDD 기지국(200)은 공존망에 대한 정보와 핸드오버 정책을 공유한다. 그리고, TDD 기지국(100)과 FDD 기지국(200)은 핸드오버 정책을 기초로 단말(300)의 핸드오버 조건을 변경한다. 즉, TDD 기지국(100)과 FDD 기지국(200)은 핸드오버 조건을 변경하여 인접한 다른 기지국으로의 핸드오버를 유도한다. 핸드오버 정책은 다양할 수 있고, 특히, 서비스 종류에 따라 접속망을 다르게 이용하도록 설정될 수 있다. 예를 들어, 핸드오버 정책은 VoLTE와 같은 대칭형/QoS보장형 서비스는 상향링크와 하향링크의 주파수영역이 동일한 FDD망을 사용하도록 하고, 멀티미디어와 같이 하향자원을 많이 소모하는 비대칭형/방송형 서비스는 하향링크의 주파수영역을 넓게 설정할 수 있는 TDD망을 사용하도록 설정될 수 있다.
도 2를 참고하면, TDD 기지국(100)과 FDD 기지국(200) 각각은 무선 신호 처리장치[apparatus for processing radio signal, Remote Radio Head(RRH), 또는 Radio Unit(RU)](110/210), 그리고 디지털 신호 처리장치[apparatus for processing digital signal, 또는 Digital Unit(DU)](130/230)로 분리되어 구현될 수 있다.
디지털 신호 처리장치(130, 230)는 하나의 디지털 신호 처리장치로 통합될 수 있다.
다음에서, TDD 기지국(100)과 FDD 기지국(200)이 핸드오버 조건을 변경하여 TDD망에서 FDD망으로, 또는 FDD망에서 TDD망으로 핸드오버를 유도하는 방법에 대해 자세히 살펴본다.
도 3은 본 발명의 한 실시예에 따른 핸드오버 절차의 흐름도이다.
도 3을 참고하면, FDD망-TDD망 핸드오버는 주파수간 핸드오버(inter-frequency handover) 절차를 따를 수 있다. 핸드오버 조건은 핸드오버를 개시(triggering)하기 위한 핸드오버 개시 조건(Event A2)과 핸드오버 수행 여부를 결정하는 핸드오버 수행 조건(Event A3)을 포함한다.
단말(300)이 FDD 기지국(200)에 연결된 경우, FDD 기지국(200)은 단말(300)로 주파수간 핸드오버를 위한 파라미터를 포함하는 메시지(RRC connection reconfiguration)를 전송한다(S110).
단말(300)은 핸드오버 개시 조건(Event A2)을 만족하는지 판단한다(S120).
단말(300)은 핸드오버 개시 조건(Event A2)에 관련된 측정 정보를 보고(Measurement report)한다(S130).
FDD 기지국(200)은 measure gap activation 정보를 포함하는 메시지(RRC connection reconfiguration)를 전송한다(S140).
단말(300)은 핸드오버 수행 조건(Event A3)을 만족하는지 판단한다(S150).
단말(300)은 핸드오버 수행 조건(Event A3)에 관련된 측정 정보를 보고(Measurement report)한다(S160).
FDD 기지국(200)은 TDD 기지국(100)으로 핸드오버를 요청한다(S170).
TDD 기지국(100)은 FDD 기지국(200)으로 핸드오버 요청에 응답한다(S180).
이후, 단말(300)이 TDD 기지국(100)으로 핸드오버한다(S190).
핸드오버 개시 조건(Event A2)은 서빙셀의 측정 신호(Ms)가 임계값(threshold)보다 나쁜지를 판단하는 조건(serving becomes worse than threshold)이다. 핸드오버 개시 조건(Event A2)의 진입 조건(entering condition)은 수학식 1과 같고, 벗어나는 조건(leaving condition)은 수학식 2와 같다. 여기서 Hys(Hysteresis)는 수학식 1의 진입조건과 수학식 2의 벗어나는 조건을 번갈아 가며 만족하는 현상(핑퐁현상)을 방지하는 역할을 한다.
[수학식 1]
Ms+Hys < Threshold
[수학식 2]
Ms-Hys > Threshhold
핸드오버 수행 조건(Event A3)은 이웃셀의 측정 신호(Mn)가 서빙셀/프라이머리셀(PCell)의 측정 신호(Mp)보다 일정값(offset) 이상 좋은지를 판단하는 조건(Neighbour becomes offset better than PCell)이다. 핸드오버 수행 조건(Event A3)의 진입 조건(entering condition)은 수학식 3과 같고, 벗어나는 조건(leaving condition)은 수학식 4와 같다.
[수학식 3]
Mn+Ofn+Ocn-Hys > Mp+Ofp+Ocp+Off
[수학식 4]
Mn+Ofn+Ocn+Hys < Mp+Ofp+Ocp+Off
수학식 3과 수학식 4에서, Ofn과 Ofp 각각은 이웃셀과 서빙셀의 주파수에 관계된 오프셋이고, Ocn과 Ocp 각각은 이웃셀과 서빙셀에 관계된 오프셋이다.
이와 같이, 단말(300)은 핸드오버 개시 조건(Event A2)과 핸드오버 수행 조건(Event A3)에 관계된 파라미터에 따라 서빙셀과 이웃셀의 신호를 측정한다.
도 4는 본 발명의 한 실시예에 따른 핸드오버 제어 방법의 흐름도이다.
도 4를 참고하면, TDD 기지국(100)과 FDD 기지국(200)은 핸드오버 정책을 기초로 결정된 핸드오버 파라미터를 설정한다(S210).
핸드오버 정책은 서비스 종류별로 이용망을 지정하는 정책을 포함하고, 부하에 따른 핸드오버, 사업자 필요에 따른 핸드오버 등 다양한 부가 정책을 더 포함할 수 있다. 즉, 핸드오버 정책은 제1종류의 서비스는 TDD망에서 서비스하고, 제2종류의 서비스는 FDD망에서 서비스하도록 설정될 수 있다.
핸드오버 파라미터는 핸드오버 조건을 판단하는데 이용되는 정보로서, 통상의 핸드오버 파라미터(Ofn, Ofp, Ocn, Ocp 등), 그리고 서비스에 관계된 파라미터(service specific parameter)(Osvc, Osp, Osn)를 포함한다. 앞으로, 서비스에 관계된 파라미터를 간단히 "서비스 파라미터"로 부른다.
서비스 파라미터는 서비스에 따라 지정된 망으로 핸드오버를 유도하는 파라미터로서, 단말이 임의 서비스에 지정된 망에서 해당 서비스를 이용하도록 설정된다. 또한, 서비스 파라미터는 서비스에 따라 지정된 망에서 다른 망으로의 핸드오버를 막는 파라미터로서, 지정된 망에서 해당 서비스를 유지하도록 설정된다. 서비스 파라미터는 핸드오버 개시 조건(Event A2)과 핸드오버 수행 조건(Event A3) 판단 시 적용된다.
단말(300)이 FDD 기지국(200)에 연결된 경우, FDD 기지국(200)은 핸드오버 파라미터를 포함하는 메시지(RRC connection reconfiguration)를 전송한다(S220). 핸드오버 파라미터는 서비스 파라미터를 포함한다.
단말(300)이 TDD 서비스를 실행한다(S230). 여기서, TDD 서비스는 핸드오버 정책에 따라 TDD망에서 서비스하기로 지정된 서비스이다.
단말(300)은 실행 서비스와 핸드오버 정책을 기초로, 핸드오버 조건 판단 시, 서비스 파라미터를 적용할지 판단한다(S240). 만약, 단말(300)은 FDD망에서 서비스하기로 설정된 서비스를 실행한 경우에는 서비스 파라미터를 적용하지 않는다.
실행 서비스가 TDD 서비스이므로, 단말(300)은 핸드오버 조건 판단 시 서비스 파라미터를 적용한다(S250).
단말(300)은 서비스 파라미터(Osvc)를 이용하여 서빙셀의 측정 신호(Ms)를 수학식 5와 같이 변경한다. 즉, 서비스 파라미터(Osvc)는 핸드오버 조건 판단 시 이용되는 서빙셀의 측정 신호(Ms')를 실제값(Ms)보다 작게 만든다. 따라서, 단말(300)은 핸드오버 개시 조건(Event A2)을 만족하기 쉬워진다.
[수학식 5]
Ms'= Ms - Osvc
단말(300)은 서비스 파라미터(Osp, Osn)를 이용하여, 서빙셀/ 프라이머리셀(PCell)의 측정 신호(Mp)와 이웃셀의 측정 신호(Mn) 중 적어도 하나를 수학식 6과 같이 변경한다. 즉, 서비스 파라미터(Osp, Osn)는 핸드오버 조건 판단 시 이용되는 서빙셀/프라이머리셀(PCell)의 측정 신호(Ms')를 실제값(Ms)보다 작게 만들거나, 이웃셀의 측정 신호(Mn')를 실제값(Mn)보다 크게 만든다. 따라서, 단말(300)은 핸드오버 실행 조건(Event A3)을 만족하기 쉬워진다.
[수학식 6]
Mp'= Mp - Osp
Mn' = Mn + Osn
단말(300)은 서비스 파라미터를 기초로 핸드오버 조건을 만족하는 지 판단하여, 핸드오버 조건에 관련된 측정 정보를 보고(Measurement report)한다(S260).
FDD 기지국(200)은 TDD 기지국(100)으로 핸드오버를 요청한다(S270).
TDD 기지국(100)은 FDD 기지국(200)으로 핸드오버 요청에 응답한다(S271).
이후, 단말(300)이 TDD 기지국(100)으로 핸드오버한다(S272).
TDD 기지국(100)은 핸드오버 파라미터를 포함하는 메시지(RRC connection reconfiguration)를 전송한다(S280). 핸드오버 파라미터는 서비스 파라미터를 포함한다. TDD 기지국(100)이 보내는 서비스 파라미터는 단말(300)이 FDD 기지국(200)으로 핸드오버하기 어렵도록 만드는 값으로 설정된다. 즉, TDD 기지국(100)은 TDD 망에서 해당 서비스를 유지하도록 만들기 위한 서비스 파라미터를 설정한다. 이 서비스 파라미터는 핸드오버를 유도하기 위한 파라미터의 부호와 반대일 수 있다. 또는 수학식 5와 6에서 서비스 파라미터를 더하는 방식으로 해당 서비스를 유지하도록 만들기 위한 서비스 파라미터가 적용될 수 있다.
단말(300)은 서비스 파라미터를 포함하는 핸드오버 파라미터를 기초로 핸드오버 조건을 판단한다(S290).
단말(300)이 TDD 서비스를 종료한다(S291).
그러면, 단말(300)은 핸드오버 조건 판단 시, 서비스 파라미터 적용을 해제한다(S292). 즉, 단말(300)은 TDD 서비스가 종료되면, 핸드오버 조건 판단 시 서비스 파라미터를 적용하지 않는다.
이와 같이, 기지국은 단말이 실행 서비스에 지정된 망으로 손쉽게 이동시키기 위한 서비스 파라미터를 제공한다. 그리고, 단말은 서비스 파라미터를 핸드오버 조건 판단 시 적용하여, 실행 서비스에 지정된 망으로 손쉽게 핸드오버한다. 또한, 기지국은 핸드오버 전의 망으로 되돌아가지 않도록 설정된 서비스 파라미터를 제공한다.
도 5는 본 발명의 다른 실시예에 따른 핸드오버 제어 방법의 흐름도이다.
도 5를 참고하면, 단말(300)은 핸드오버 정책을 기초로 결정된 핸드오버 파라미터를 저장한다(S310). 핸드오버 정책은 제1종류의 서비스는 TDD망에서 서비스하고, 제2종류의 서비스는 FDD망에서 서비스하도록 설정될 수 있다. 핸드오버 파라미터는 핸드오버 조건을 판단하는데 이용되는 정보로서, 서비스 파라미터(Osvc, Osp, Osn)를 포함한다. 단말(300)은 서비스 파라미터를 기지국으로부터 수신할 수 있다.
단말(300)이 FDD 기지국(200)에 연결된 경우, FDD 기지국(200)은 핸드오버 파라미터를 포함하는 메시지(RRC connection reconfiguration)를 전송한다(S320).
단말(300)이 TDD 서비스를 실행한다(S330).
단말(300)은 실행 서비스와 핸드오버 정책을 기초로, 핸드오버 조건 판단 시, 서비스 파라미터를 적용할지 판단한다(S340).
실행 서비스가 TDD 서비스이므로, 단말(300)은 서비스 파라미터를 적용하여 핸드오버 조건 판단한다(S350). 즉, 단말(300)은 수학식 5와 같이, 서비스 파라미터(Osvc)를 이용하여, 핸드오버 조건 판단 시 이용되는 서빙셀의 측정 신호(Ms')를 실제값(Ms)보다 작게 만든다. 단말(300)은 수학식 6 및 7과 같이, 서비스 파라미터(Osp, Osn)를 이용하여, 핸드오버 조건 판단 시 이용되는 서빙셀/프라이머리셀(PCell)의 측정 신호(Ms')를 실제값(Ms)보다 작게 만들거나, 이웃셀의 측정 신호(Mn')를 실제값(Mn)보다 크게 만든다.
단말(300)은 서비스 파라미터를 기초로 핸드오버 조건을 만족하는 지 판단하여, 핸드오버 조건에 관련된 측정 정보를 보고(Measurement report)한다(S360).
FDD 기지국(200)은 TDD 기지국(100)으로 핸드오버를 요청한다(S370).
TDD 기지국(100)은 FDD 기지국(200)으로 핸드오버 요청에 응답한다(S371).
이후, 단말(300)이 TDD 기지국(100)으로 핸드오버한다(S372).
TDD 기지국(100)은 핸드오버 파라미터를 포함하는 메시지(RRC connection reconfiguration)를 전송한다(S380). 이때, TDD 기지국(100)은 통상의 핸드오버 파라미터만을 전송한다. 또는 TDD 기지국(100)은 서비스 파라미터를 더 전송할 수 있다.
단말(300)은 저장된 서비스 파라미터를 기초로 핸드오버 조건을 만족하는 지 판단한다(S390). 서비스 파라미터는 단말(300)이 FDD 기지국(200)으로 핸드오버하기 어렵게 만드는 값이다.
단말(300)이 TDD 서비스를 종료한다(S391).
그러면, 단말(300)은 핸드오버 조건 판단 시, 서비스 파라미터 적용을 해제한다(S392). 즉, 단말(300)은 TDD 서비스가 종료되면, 핸드오버 조건 판단 시 서비스 파라미터를 적용하지 않는다.
이와 같이, 단말은 핸드오버 조건 판단 시 서비스에 따라 적용되는 파라미터를 저장한다. 그리고, 단말은 서비스 파라미터를 핸드오버 조건 판단 시 적용하여, 실행 서비스에 지정된 망으로 손쉽게 핸드오버한다. 또한, 핸드오버 후에도 다른 망으로 다시 핸드오버하지 않도록 단말은 실행 서비스가 종료될 때까지 서비스 파라미터를 적용한다.
도 6은 본 발명의 또 다른 실시예에 따른 핸드오버 제어 방법의 흐름도이다.
도 6을 참고하면, 기지국은 특정 단말에 대해서만 핸드오버 정책을 적용할 수 있다. 핸드오버 정책은 서비스 종류별로 이용망을 지정하는 정책을 포함한다.
단말(300)이 FDD 기지국(200)에 연결된 경우, FDD 기지국(200)은 핸드오버 파라미터를 포함하는 메시지(RRC connection reconfiguration)를 전송한다(S410).
단말(300)이 TDD 서비스를 실행한다(S420).
단말(300)은 실행 서비스와 핸드오버 정책을 기초로, 핸드오버 조건 판단 시, 서비스 파라미터(Osvc, Osp, Osn)가 필요한지 판단한다(S430).
TDD망에서 서비스하기로 지정된 서비스를 실행한 경우, 단말(300)은 FDD 기지국(200)으로 서비스 파라미터를 포함하는 핸드오버 파라미터를 요청한다(S440).
FDD 기지국(200)은 서비스 파라미터를 포함하는 핸드오버 파라미터를 전송한다(S450).
단말(300)은 서비스 파라미터를 적용하여 핸드오버 조건을 판단한다(S460).
이후의 핸드오버 절차는 앞에서 설명한 실시예와 유사하다.
이와 같이, 단말이 자신이 실행한 서비스를 기초로 기지국에 서비스 파라미터를 요청한다. 따라서, 기지국은 특정 단말에 대해서만 핸드오버 정책을 적용할 수 있다. 이를 통해 기지국은 서비스에 최적화된 망으로의 접속을 유도함으로서, 차별화된 품질을 단말에 제공할 수 있다.
도 7은 본 발명의 한 실시예에 따른 단말의 블록도이다.
도 7을 참고하면, 단말(300)은 핸드오버를 위한 구성으로서, 핸드오버 파라미터 저장부(310), 그리고 핸드오버 판단부(330)를 포함한다.
핸드오버 파라미터 저장부(310)는 핸드오버 정책을 기초로 결정된 핸드오버 파라미터를 저장한다. 핸드오버 정책은 제1종류의 서비스는 TDD망에서 서비스하고, 제2종류의 서비스는 FDD망에서 서비스하도록 설정될 수 있다. 핸드오버 파라미터는 핸드오버 조건을 판단하는데 이용되는 정보로서, 서비스 파라미터(Osvc, Osp, Osn)를 포함한다. 핸드오버 파라미터 저장부(310)는 기지국으로부터 핸드오버 파라미터를 수신할 수 있다.
핸드오버 판단부(330)는 핸드오버 파라미터 저장부(310)에 저장된 파라미터를 기초로 핸드오버 절차에 따라 핸드오버를 처리한다. 이때, 핸드오버 판단부(330)는 실행 서비스와 핸드오버 정책을 기초로, 핸드오버 조건 판단 시, 서비스 파라미터를 적용할지 판단한다. 핸드오버 판단부(330)는 실행 서비스가 현재 서빙셀에 지정된 서비스가 아닌 경우, 서비스 파라미터를 적용하여 핸드오버 조건을 판단한다.
단말(300)은 프로세서, 메모리 및 송수신 유닛을 이용하여 본 발명에서 제안한 실시예들을 구현하도록 프로그램된다.
도 8은 본 발명의 한 실시예에 따른 핸드오버 제어 장치의 블록도이다.
도 8을 참고하면, 핸드오버 제어 장치(400)는 핸드오버 파라미터 관리부(410), 그리고 핸드오버 수행부(430)를 포함한다. 핸드오버 제어 장치(400)는 TDD 기지국(100)과 FDD 기지국(200)에 구현되어, TDD 기지국(100)과 FDD 기지국(200)이 핸드오버를 제어할 수 있다. 또는, 핸드오버 제어 장치(400)는 TDD 기지국(100)/FDD 기지국(200)과 별도로 구현될 수 있다.
핸드오버 파라미터 관리부(410)는 핸드오버 정책을 기초로 결정된 핸드오버 파라미터를 저장한다. 핸드오버 파라미터는 주파수간 핸드오버(inter-frequency handover) 절차에 관계된 각종 파라미터, 그리고 서비스 파라미터를 포함한다. 서비스 파라미터는 단말에서 임의 서비스가 실행되는 경우, 임의 서비스에 지정된 망으로 핸드오버를 유도하기 위한 파라미터이다. 서비스 파라미터는 핸드오버 조건 판단 시 이용되는 서빙셀의 측정 신호(Ms')를 실제값(Ms)보다 작게 만드는 파라미터(Osvc), 핸드오버 조건 판단 시 이용되는 서빙셀/프라이머리셀(PCell)의 측정 신호(Ms')를 실제값(Ms)보다 작게 만들거나, 이웃셀의 측정 신호(Mn')를 실제값(Mn)보다 크게 만드는 파라미터(Osp, Osn)를 포함한다.
핸드오버 수행부(430)는 핸드오버 절차에 따라 핸드오버를 처리한다. 이때, 핸드오버 수행부(430)는 핸드오버 파라미터 관리부(410)에 저장된 파라미터를 단말로 전송한다. 이때, 핸드오버 수행부(430)는 특정 단말에게만 서비스 파라미터를 전송할 수 있다.
여기서는 서비스 종류별로 이용망을 지정하는 정책을 한정했으나, 기지국은 서비스 파라미터(Osvc, Osp, Osn)를 망의 상태, 사업자 필요성 등의 다양한 핸드오버 정책에 따라 가변할 수 있다. 따라서, 기지국은 서비스별 망에서의 수용 전략이나 망 부하에 따라 서비스 파라미터 변경만으로 쉽게 핸드오버를 유도할 수 있다.
여기서는 FDD 기지국에서 TDD 기지국으로 핸드오버하는 절차를 예로 들었으나, TDD 기지국에서 FDD 기지국으로 핸드오버하는 절차도 동일한 방식으로 적용된다. 또한, FDD 기지국과 TDD 기지국은 주파수가 다르거나, 통신 방식이 다른 망의 예일 뿐이며, 본 발명은 제1망에서 제2망으로의 핸드오버를 유도하는 다양한 통신 시스템에 적용될 수 있다.
이와 같이 본 발명의 실시예에 따르면 단말에서 사용하는 서비스에 따라 선택적으로 망을 사용하도록 제어하여 공존망 환경에서 경제적이고 효율적인 네트워크 운용이 가능하다. 본 발명의 실시예에 따르면 각 망의 부하뿐만 아니라, 각 망의 특성에 적합한 서비스를 유도함으로써, 한정된 주파수 자원을 최대한 활용할 수 있다. 또한, 본 발명에 따르면 사업자의 정책을 반영하여 서비스에 따라 선택적으로 망을 사용하도록 제어할 수 있다.
이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (16)

  1. 제1기지국이 단말의 핸드오버를 제어하는 방법으로서,
    핸드오버 정책을 기초로 결정된 핸드오버 파라미터를 설정하는 단계, 그리고
    상기 단말로 상기 핸드오버 파라미터를 포함하는 메시지를 전송하는 단계를 포함하고,
    상기 핸드오버 파라미터는 서비스 파라미터를 포함하고, 상기 서비스 파라미터는 상기 핸드오버 정책에 따라 상기 제1기지국에서 상기 제2기지국으로의 핸드오버를 유도하기 위해 상기 단말의 핸드오버 조건 판단 시 이용되는 파라미터인 핸드오버 제어 방법.
  2. 제1항에서,
    상기 핸드오버 정책은 제1종류의 서비스를 상기 제1기지국의 망에서 서비스하고, 제2종류의 서비스를 제2기지국의 망에서 서비스하는 정책을 포함하는 핸드오버 제어 방법.
  3. 제2항에서,
    상기 서비스 파라미터는 상기 단말에서 실행되는 서비스가 상기 제2종류의 서비스인 경우 핸드오버 조건에 적용되는 파라미터인 핸드오버 제어 방법.
  4. 제1항에서,
    상기 서비스 파라미터는
    제1 핸드오버 조건 판단 시 이용되는 상기 제1기지국의 측정 신호를 측정값보다 작게 만드는 제1서비스 파라미터, 제2 핸드오버 조건 판단 시 이용되는 상기 제1기지국의 측정 신호를 측정값보다 작게 만드는 제2서비스 파라미터, 그리고 제2 핸드오버 조건 판단 시 이용되는 상기 제2기지국의 측정 신호를 측정값보다 크게 만드는 제3서비스 파라미터 중 적어도 하나를 포함하는 핸드오버 제어 방법.
  5. 제1기지국이 제2기지국에서 상기 제1기지국으로 핸드오버한 단말의 핸드오버를 제어하는 방법으로서,
    상기 제2기지국으로부터 수신한 핸드오버 요청에 응답하여 상기 단말과의 핸드오버 절차를 완료하는 단계,
    핸드오버 정책을 기초로 결정된 핸드오버 파라미터를 설정하는 단계, 그리고
    상기 단말로 상기 핸드오버 파라미터를 포함하는 메시지를 전송하는 단계를 포함하고,
    상기 핸드오버 파라미터는 서비스 파라미터를 포함하고, 상기 서비스 파라미터는 상기 핸드오버 정책에 따라 상기 제1기지국에서 서비스를 이용하도록 유도하기 위해 상기 단말의 핸드오버 조건 판단 시 이용되는 파라미터인 핸드오버 제어 방법.
  6. 제5항에서,
    상기 핸드오버 정책은 제1종류의 서비스를 상기 제1기지국의 망에서 서비스하고, 제2종류의 서비스를 제2기지국의 망에서 서비스하는 정책을 포함하는 핸드오버 제어 방법.
  7. 제6항에서,
    상기 서비스 파라미터는 상기 단말에서 실행되는 서비스가 상기 제1종류의 서비스인 경우 핸드오버 조건에 적용되는 파라미터인 핸드오버 제어 방법.
  8. 제5항에서,
    상기 서비스 파라미터는
    제1 핸드오버 조건 판단 시 이용되는 상기 제1기지국의 측정 신호를 측정값보다 크게 만드는 제1서비스 파라미터, 제2 핸드오버 조건 판단 시 이용되는 상기 제1기지국의 측정 신호를 측정값보다 크게 만드는 제2서비스 파라미터, 그리고 제2 핸드오버 조건 판단 시 이용되는 상기 제2기지국의 측정 신호를 측정값보다 작게 만드는 제3서비스 파라미터 중 적어도 하나를 포함하는 핸드오버 제어 방법.
  9. 제1기지국이 단말의 핸드오버를 제어하는 방법으로서,
    핸드오버 정책을 기초로 결정된 서비스 파라미터를 설정하는 단계,
    단말로부터 상기 서비스 파라미터를 요청하는 메시지를 수신하는 단계, 그리고
    상기 단말로 상기 서비스 파라미터를 포함하는 메시지를 전송하는 단계를 포함하고,
    상기 서비스 파라미터는 상기 핸드오버 정책에 따라 상기 제1기지국에서 상기 제2기지국으로의 핸드오버를 유도하기 위해 상기 단말의 핸드오버 조건 판단 시 이용되는 파라미터인 핸드오버 제어 방법.
  10. 제9항에서,
    상기 핸드오버 정책은 제1종류의 서비스를 상기 제1기지국의 망에서 서비스하고, 제2종류의 서비스를 제2기지국의 망에서 서비스하는 정책을 포함하는 핸드오버 제어 방법.
  11. 제10항에서,
    상기 메시지를 수신하는 단계는
    상기 제2종류의 서비스를 실행한 상기 단말로부터 상기 서비스 파라미터를 요청하는 메시지를 수신하는 핸드오버 제어 방법.
  12. 단말이 핸드오버를 제어하는 방법으로서,
    서비스 파라미터를 저장하는 단계,
    핸드오버 정책을 기초로 상기 서비스 파라미터를 핸드오버 조건에 적용할지 판단하는 단계, 그리고
    상기 서비스 파라미터를 적용하는 경우, 상기 서비스 파라미터가 적용된 핸드오버 조건을 판단하여 제1기지국으로 보고하는 단계를 포함하고,
    상기 서비스 파라미터는 상기 핸드오버 정책에 따라 상기 제1기지국에서 제2기지국으로의 핸드오버를 유도하기 위해 상기 단말의 핸드오버 조건 판단 시 이용되는 파라미터를 포함하는 핸드오버 제어 방법.
  13. 제12항에서,
    상기 핸드오버 정책은 제1종류의 서비스를 상기 제1기지국의 망에서 서비스하고, 제2종류의 서비스를 상기 제2기지국의 망에서 서비스하는 정책을 포함하는 핸드오버 제어 방법.
  14. 제13항에서,
    상기 서비스 파라미터를 핸드오버 조건에 적용할지 판단하는 단계는
    상기 단말에서 실행되는 서비스가 상기 제2종류의 서비스인 경우 상기 서비스 파라미터를 핸드오버 조건에 적용하도록 판단하는 핸드오버 제어 방법.
  15. 제12항에서,
    상기 서비스 파라미터는
    제1 핸드오버 조건 판단 시 이용되는 상기 제1기지국의 측정 신호를 측정값보다 작게 만드는 제1서비스 파라미터, 제2 핸드오버 조건 판단 시 이용되는 상기 제1기지국의 측정 신호를 측정값보다 작게 만드는 제2서비스 파라미터, 그리고 제2 핸드오버 조건 판단 시 이용되는 상기 제2기지국의 측정 신호를 측정값보다 크게 만드는 제3서비스 파라미터 중 적어도 하나를 포함하는 핸드오버 제어 방법.
  16. 제12항에서,
    상기 핸드오버 파라미터를 저장하는 단계는
    상기 제1기지국으로부터 수신한 상기 핸드오버 파라미터를 저장하는 핸드오버 제어 방법.
PCT/KR2013/006719 2012-12-14 2013-07-26 핸드오버 제어 방법 WO2014092280A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/652,121 US10015704B2 (en) 2012-12-14 2013-07-26 Method of controlling handover

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120146715A KR101571878B1 (ko) 2012-12-14 2012-12-14 핸드오버 제어 방법
KR10-2012-0146715 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014092280A1 true WO2014092280A1 (ko) 2014-06-19

Family

ID=50934543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006719 WO2014092280A1 (ko) 2012-12-14 2013-07-26 핸드오버 제어 방법

Country Status (3)

Country Link
US (1) US10015704B2 (ko)
KR (1) KR101571878B1 (ko)
WO (1) WO2014092280A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2013CH04707A (ko) * 2013-10-18 2015-04-24 Samsung India Software Operations Pvt Ltd
WO2016037305A1 (en) * 2014-09-08 2016-03-17 Qualcomm Incorporated Flexible transmissions on one or more frequency division duplexing resources
CN108810960B (zh) * 2017-04-28 2021-06-22 华为技术有限公司 一种小区切换、确定上行发送功率的方法及装置
US10862613B2 (en) * 2018-02-01 2020-12-08 T-Mobile Usa, Inc. Dynamic numerology based on services
WO2020223931A1 (zh) * 2019-05-08 2020-11-12 北京小米移动软件有限公司 小区切换方法及装置、切换配置方法及装置和用户设备
CN113692023B (zh) * 2020-05-18 2023-03-31 中国移动通信有限公司研究院 切换决策的确定方法、装置、相关设备及存储介质
US11641609B2 (en) 2021-02-26 2023-05-02 T-Mobile Usa, Inc. TDD-to-FDD handover based on service type and uplink quality

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090042494A (ko) * 2007-10-26 2009-04-30 에스케이 텔레콤주식회사 이종망간 핸드오버 시스템 및 방법
KR20090050357A (ko) * 2007-11-15 2009-05-20 엘지전자 주식회사 이동통신 단말기의 핸드오버 방법
KR20100061003A (ko) * 2008-11-28 2010-06-07 주식회사 케이티 이동단말 및 이를 이용한 핸드오버 선택 방법
KR20120049555A (ko) * 2010-11-09 2012-05-17 에스케이 텔레콤주식회사 이기종 망간 핸드오버 시스템 및 방법

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7596378B1 (en) * 1999-09-30 2009-09-29 Qualcomm Incorporated Idle mode handling in a hybrid GSM/CDMA network
US20020165789A1 (en) * 2001-05-04 2002-11-07 Dudek Kenneth Paul Product and service presentment and payment system for mobile e-commerce
CN100556178C (zh) * 2003-06-12 2009-10-28 富士通株式会社 基站装置和移动通信系统
KR20040110633A (ko) * 2003-06-20 2004-12-31 삼성전자주식회사 이동통신 시스템에 있어 핸드오버 수행 방법
FR2865095B1 (fr) * 2004-01-08 2006-04-28 Nortel Networks Ltd Procede d'allocation de ressources de communication et systeme de radiocommunication pour la mise en oeuvre du procede
WO2005086377A1 (en) * 2004-03-05 2005-09-15 Samsung Electronics Co., Ltd. System and method for handover to minimize service delay due to ping pong effect in bwa communication system
US7382791B2 (en) * 2004-06-01 2008-06-03 Broadcom Corporation VoIP service threshold determination by home wireless router
US7529560B2 (en) * 2004-06-10 2009-05-05 Nokia Corporation Intersystem cell reselection from GERAN to UTRAN
US7181222B2 (en) * 2004-12-30 2007-02-20 Motorola, Inc. Radio configuration-based handoff parameter adjustment
CN100499545C (zh) * 2005-08-19 2009-06-10 华为技术有限公司 一种移动因特网协议注册/去注册方法
GB2418806B (en) * 2005-08-19 2006-09-27 Ipwireless Inc Duplex operation in a cellular communication system
US20080045262A1 (en) * 2006-08-16 2008-02-21 Vanvinh Phan Method and Apparatus for Providing Service-Based Cell Reselection
JP2008103865A (ja) * 2006-10-18 2008-05-01 Nec Corp ハンドオーバ制御システム及びその方法並びにそれを用いた移動通信システム及び無線基地局
US8126461B2 (en) * 2006-11-01 2012-02-28 Snrlabs Corporation System, method, and computer-readable medium for user equipment managing multiple radio networks for handover and low-power operations
US9572089B2 (en) * 2007-09-28 2017-02-14 Interdigital Patent Holdings, Inc. Method and apparatus for supporting home Node B services
CN101400087B (zh) * 2007-09-30 2010-06-23 华为技术有限公司 一种小区重选/切换的方法、设备及系统
US20090163223A1 (en) * 2007-12-21 2009-06-25 Elektrobit Wireless Communications Ltd. Load balancing in mobile environment
US8238370B2 (en) * 2008-01-17 2012-08-07 Mediatek Inc. Methods for transmitting system information bit streams and communication apparatuses utilizing the same
KR101037072B1 (ko) 2008-09-11 2011-05-26 주식회사 케이티 핸드오버 방법 및 핸드오버 제어장치
US8271025B2 (en) * 2008-10-20 2012-09-18 At&T Mobility Ii Llc Device network technology selection and display in multi-technology wireless environments
US20100284367A1 (en) * 2008-11-10 2010-11-11 Futurewei Technologies, Inc. System and Method for Handovers in a Multi-Carrier Wireless Communications System
US8204029B2 (en) * 2008-11-10 2012-06-19 Cisco Technology, Inc. Mobile intelligent roaming using multi-modal access point devices
KR101086033B1 (ko) 2008-12-17 2011-11-22 주식회사 케이티 네트워크 관리 장치 및 그의 이동국 핸드오버 제어 방법
US9002315B2 (en) * 2009-05-01 2015-04-07 Qualcomm Incorporated Systems, apparatus and methods for facilitating emergency call service in wireless communication systems
EP2486750B1 (en) * 2009-10-07 2014-11-26 Koninklijke KPN N.V. System for updating a neighbour cell list (NCL) of a wireless access node of a telecommunications architecture and method therefore
US8285291B2 (en) * 2010-02-02 2012-10-09 Clearwire Ip Holdings Llc System and method for multimode device handover
US20120329440A1 (en) * 2010-02-09 2012-12-27 Research In Motion Limited RFSP Selective Camping
US8792365B2 (en) 2010-05-26 2014-07-29 Qualcomm Incorporated Service-based inter-radio access technology (inter-RAT) handover
US8755329B2 (en) * 2010-06-11 2014-06-17 Blackberry Limited Methods and apparatus for voice domain operation
EP2403186B1 (en) * 2010-07-02 2017-12-27 Vodafone IP Licensing limited Telecommunication networks
WO2013045980A1 (en) * 2011-09-29 2013-04-04 Nokia Siemens Networks Oy Handover management based on load
US10009819B2 (en) * 2012-11-02 2018-06-26 Apple Inc. Network cell transitions for VoLTE devices at call initiation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090042494A (ko) * 2007-10-26 2009-04-30 에스케이 텔레콤주식회사 이종망간 핸드오버 시스템 및 방법
KR20090050357A (ko) * 2007-11-15 2009-05-20 엘지전자 주식회사 이동통신 단말기의 핸드오버 방법
KR20100061003A (ko) * 2008-11-28 2010-06-07 주식회사 케이티 이동단말 및 이를 이용한 핸드오버 선택 방법
KR20120049555A (ko) * 2010-11-09 2012-05-17 에스케이 텔레콤주식회사 이기종 망간 핸드오버 시스템 및 방법

Also Published As

Publication number Publication date
KR20140077663A (ko) 2014-06-24
KR101571878B1 (ko) 2015-12-04
US20150341834A1 (en) 2015-11-26
US10015704B2 (en) 2018-07-03

Similar Documents

Publication Publication Date Title
WO2014092280A1 (ko) 핸드오버 제어 방법
WO2012060608A2 (ko) 셀간 간섭 조정 방법 및 기지국
WO2011093681A2 (ko) 셀 커버리지 맵 생성을 위한 측정 방법 및 이를 위한 장치
WO2015142150A1 (en) Power headroom report method of dual-connectivity ue in mobile communication system
WO2013147499A1 (ko) 이동 통신 시스템에서 단말 상태 천이 시 이동 정보 보존 및 이종 셀 네트워크에서 효과적으로 재 접속하는 방법 및 장치
WO2012070855A2 (en) Method of communicating data based on an unlicensed band in a wireless communication system
WO2014148818A1 (en) Method and apparatus for performing communication in wireless communication system
WO2014157904A1 (en) Location-specific wlan information provision method in cell of wireless communication system
WO2016144099A1 (ko) 단말이 셀을 재 선택하는 방법 및 장치
WO2013012220A1 (en) Method for reducing interference under multi-carrier configuration
WO2012002709A2 (ko) 무선 통신 시스템 및 그 시스템에서 핸드오버 수행 방법
WO2015115835A1 (ko) 이동 통신 시스템에서 단말이 복수의 캐리어들을 이용하는 데이터 송수신 방법 및 장치
WO2014185697A1 (ko) 측정 수행 방법 및 장치
WO2014137127A1 (ko) 셀 재선택 방법 및 그 사용자 장치
WO2017030399A1 (en) Ue access method and apparatus
WO2018088837A1 (ko) 단말이 셀 재선택 절차를 수행하는 방법 및 이를 지원하는 장치
WO2015190785A1 (ko) 협력 셀 클러스터링을 기반으로 하는 협력 통신 및 핸드오버 수행 방법 및 장치.
WO2017026836A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 사이드링크 단말 정보 보고 방법 및 상기 방법을 이용하는 단말
WO2012021004A2 (ko) 무선 통신 시스템에서 로그된 측정 보고 방법 및 장치
WO2014142487A1 (ko) 무선접속 시스템에서 온오프 스몰셀에 대한 정보를 관리하는 방법 및 이를 지원하는 장치
WO2013176481A1 (en) A method and system for minimizing power consumption of user equipment during cell detection
WO2018199641A1 (ko) 무선 통신 시스템에서 lte/nr 인터워킹을 위하여 측정을 구성하고 보고하는 방법 및 장치
WO2016085109A1 (ko) 무선 통신 시스템에서 메크로 기지국의 핸드오버방법 및 장치
WO2015005751A1 (ko) 무선 셀룰라 통신 시스템에서 기지국 간 단말의 단말 대 단말 발견 신호 전송 방법 및 장치
WO2015126160A1 (en) Video telephony service quality enhancement method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862917

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14652121

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/11/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13862917

Country of ref document: EP

Kind code of ref document: A1