WO2014091967A1 - Float glass production device and float glass production method - Google Patents

Float glass production device and float glass production method Download PDF

Info

Publication number
WO2014091967A1
WO2014091967A1 PCT/JP2013/082492 JP2013082492W WO2014091967A1 WO 2014091967 A1 WO2014091967 A1 WO 2014091967A1 JP 2013082492 W JP2013082492 W JP 2013082492W WO 2014091967 A1 WO2014091967 A1 WO 2014091967A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
float
cooling water
cooling
glass ribbon
Prior art date
Application number
PCT/JP2013/082492
Other languages
French (fr)
Japanese (ja)
Inventor
誓也 田中
要介 稲井
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020157015400A priority Critical patent/KR102120201B1/en
Priority to JP2014551992A priority patent/JPWO2014091967A1/en
Priority to CN201380064954.2A priority patent/CN104837780A/en
Publication of WO2014091967A1 publication Critical patent/WO2014091967A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon
    • C03B18/06Changing or regulating the dimensions of the molten glass ribbon using mechanical means, e.g. restrictor bars, edge rollers

Definitions

  • the present invention relates to a float glass manufacturing apparatus and a float glass manufacturing method.
  • a float method is known as one method for producing a glass plate.
  • a plate glass is roughly manufactured through the following steps.
  • the molten glass is introduced onto the surface of the molten tin accommodated in the float bath.
  • the molten glass is continuously conveyed from the upstream side to the downstream side to form a glass ribbon.
  • a sheet glass is produced by slowly cooling the glass ribbon and pulling it out of the float bath by roll conveyance.
  • an apparatus called a top roll controls the width and thickness of the glass ribbon of the molten glass that has flowed into the float bath and advances the glass ribbon to the upstream area of the float bath (the side on which the molten glass flows into the float bath).
  • a plurality of edge rolls arranged on both edge portions of the glass ribbon in the region (1).
  • the top roll is provided with a rotating member at the tip. Therefore, the rotating member is brought into contact with the surfaces of the edge portions on both sides of the glass ribbon, the glass ribbon is pressed and the rotating member is rotated, thereby suppressing the shrinkage of the glass ribbon and having a predetermined width and thickness. Can be transported.
  • shrinkage of the glass ribbon means shrinkage in the width direction of the glass ribbon.
  • the tip part of the top roll is in direct contact with the high temperature glass ribbon, the temperature may rise significantly during use in an uncooled state. For this reason, the top end portion of the top roll is usually cooled by circulating cooling water through a flow passage formed inside the top roll (for example, Patent Documents 1 and 2).
  • the top roll can be intermittently vibrated or an inert gas can be sprayed onto the top roll to prevent an increase in the amount of tin adhering to it. I can't get it. Further, since the adhesion between tin and the top roll becomes stronger with time, it is necessary to replace the top roll after a certain period of time, and there is a problem that productivity is impaired.
  • the temperature of the cooling water of the top roll fluctuates according to the fluctuation of the outside air temperature. That is, the temperature of the cooling water is high during the day and low at night. Therefore, depending on fluctuations in the outside air temperature, tin adhered to the top roll may fall on the glass ribbon or into the molten tin bath during production due to the difference in thermal expansion from the top roll surface.
  • the temperature fluctuation of the glass ribbon in contact with the top roll was caused by the temperature fluctuation of the cooling water of the top roll, the pressure for pressing the glass ribbon with the top roll was fluctuated, and the fluctuation of the glass ribbon width could not be suppressed.
  • the present invention has been made in view of such circumstances, and it is possible to suppress that the tin adhered to the surface of the top roll falls on the glass ribbon or in the molten tin bath during production, and the fluctuation of the plate width of the glass ribbon.
  • Another object of the present invention is to provide a float glass manufacturing apparatus and a float glass manufacturing method that suppress a concave bubble defect on the bottom surface of a glass ribbon.
  • the float glass manufacturing apparatus is characterized in that the fluctuation range of the temperature is controlled within 4 ° C. per day.
  • the fluctuation range is controlled within 3 ° C. per hour.
  • the cooling device includes a cooling tower of a water circulation system and a cooling fan whose rotation speed is controlled manually or by an inverter.
  • the upper limit temperature of the cooling water measured by the temperature measuring device is 40 ° C. or less.
  • the step of introducing the molten glass into the float bath, the step of transporting the molten glass from the upstream side to the downstream side of the float bath, forming a glass ribbon, and the top end portion of the top roll as the glass A step of suppressing shrinkage of the glass ribbon by rotating while pressing against the upper surfaces of both sides of a predetermined region in the ribbon traveling direction, wherein the top roll has a rotatable tip
  • the tip portion has a hollow structure having a tip portion space inside, and has a flow passage for supplying cooling water to the tip portion space, and the temperature of the cooling water is adjusted outside the float bath.
  • a temperature control means having cooling means for cooling the cooling water whose temperature has risen due to heat exchange in the float bath.
  • the fluctuation range is controlled within 3 ° C. per hour.
  • the cooling means includes a cooling tower of a water circulation system and a cooling fan whose rotation speed is controlled manually or by an inverter.
  • the upper limit temperature of the cooling water measured outside the float bath is set to 40 ° C. or less.
  • tin adhered to the surface of the top roll is prevented from falling on the glass ribbon or in the molten tin bath during production, and fluctuations in the plate width of the glass ribbon, or concave bubble defects on the bottom surface of the glass ribbon. It is possible to provide a float glass manufacturing apparatus and a float glass manufacturing method for suppressing the above.
  • FIG. 1 is a flowchart schematically showing a flow of a method for producing a plate glass by a float process.
  • FIG. 2 is a top view schematically showing an example of the upper surface of the float bath of the float glass manufacturing apparatus.
  • FIG. 3A is a side sectional view schematically showing an example of the relative positional relationship between the top roll and the glass ribbon, and an example of the tip end portion of the top roll.
  • FIG. 3B is a cross-sectional view schematically showing an example of the tip portion of the top roll.
  • FIG. 4 is a schematic view of a water circulation system as an example of the cooling device in the present invention.
  • FIG. 5 is a flowchart schematically showing the flow of the method for manufacturing a glass sheet according to the present invention.
  • FIG. 6 is a graph of changes over time in the temperature of the top roll cooling water and the outside air temperature.
  • FIG. 1 schematically shows a flow chart of a method for producing a plate glass by a float process.
  • the manufacturing method of plate glass by the float process is (I) a melting step (step S110) for melting the raw materials to produce molten glass; (II) In the float glass production, a glass ribbon forming step (step S120) for introducing a molten glass into a float bath and forming a glass ribbon; (III) A slow cooling step (step S130) in which a glass ribbon is obtained by gradually cooling the glass ribbon in a slow cooling furnace; Have
  • molten glass is manufactured by putting raw materials such as silica sand, limestone, and / or soda ash prepared and mixed in accordance with the composition of the plate glass into a melting furnace.
  • the temperature of the melting furnace varies depending on the composition of the plate glass, but is, for example, about 1400 ° C. to 1600 ° C.
  • the heating method is not particularly limited.
  • the raw material may be heated by a flame of a burner provided inside the melting furnace.
  • the burner uses, for example, heavy oil or natural gas as fuel.
  • heating may be performed using a general electric melting furnace.
  • the molten glass obtained in the step (I) is introduced into a float bath containing molten tin to form a glass ribbon. Moreover, the obtained glass ribbon is carried out from the exit of a float bath. This process will be described in detail later.
  • the slow cooling furnace can supply heat from the combustion gas or electric heater to a required position in the slow cooling furnace. Therefore, the glass ribbon introduced into the slow cooling furnace at a relatively high temperature is finally cooled to a temperature range close to normal temperature and discharged from the slow cooling furnace.
  • a plate glass is manufactured by the above process.
  • step S120 step S120
  • FIG. 2 is a diagram schematically showing an example of a top view of the float bath of the float glass manufacturing apparatus used in the glass ribbon forming step (II) (step S120).
  • the float glass manufacturing apparatus 200 includes an introduction unit 210, a float bath 230, a transport apparatus 280, and a top roll 300.
  • the introduction part 210 is a part for introducing the molten glass obtained in the aforementioned step (I) into the float bath 230 having molten tin (including molten tin alloy, hereinafter referred to as molten tin) 220 inside. It is.
  • the molten glass introduced into the float bath 230 continuously moves from the upstream side 232 to the downstream side 234 of the float bath 230 in a state of floating on the surface of the molten tin 220, whereby the glass ribbon 240 is moved. It is formed.
  • the glass ribbon 240 tends to reach an equilibrium thickness (for example, around 7 mm) due to the relationship between the surface tension of the molten glass and gravity in an unconstrained state, while the glass ribbon is pulled and conveyed in the traveling direction.
  • the width (the length in the vertical direction in FIG. 2) tends to shrink toward the central direction. Therefore, the top roll 300 is used to suppress the shrinkage of the glass ribbon 240 and maintain the thickness of the glass ribbon 240 at a predetermined thickness.
  • the temperature measuring device 260 is a device that measures the temperature of the cooling water of the top roll 300, and is installed outside the float bath 230.
  • a thermocouple is used for the temperature measuring device 260. By sequentially displaying the measured temperature data on the screen of the temperature display device 261, the monitor can easily grasp the measured temperature data.
  • the fluctuation range is set to 4 ° C. or less per day manually by a monitor or by the cooling fan 263 whose rotation speed is controlled by the inverter 262.
  • the fluctuation range in the present invention means a difference between the maximum temperature and the minimum temperature.
  • the rotational speed of the cooling fan 263 is increased from morning to noon, and the rotational speed of the cooling fan 263 is decreased from day to night.
  • the present invention is not limited to this. Even at midnight, when the fluctuation range of the temperature of the cooling water is likely to be outside the desired range, the rotational speed of the cooling fan 263 is increased or decreased.
  • the inverter 262 once converts AC power supplied as a driving power source for the cooling fan 263 into DC power, and converts it back to AC power having a frequency different from that of the AC power. Since the rotation speed of the cooling fan 263 depends on the frequency of the AC power converted again, the rotation speed of the cooling fan 263 can be finely adjusted by changing the frequency of the AC power. Therefore, the temperature of the cooling water can be kept within a desired fluctuation range.
  • the inverter 262 converts the drive power frequency of the cooling fan 263 to a high frequency and increases the rotational speed of the cooling fan 263. In addition, when the temperature of the cooling water is likely to fall and fall outside the desired fluctuation range, the inverter 262 converts the driving power frequency of the cooling fan 263 to a low frequency and reduces the rotational speed of the cooling fan 263.
  • the control means of the inverter 262 sends a command for adjusting the rotational speed to the cooling fan 263 that supplies cooling air so that the measured temperature approaches the preset temperature by feedback control such as PID control.
  • PID control such as PID control.
  • the PID control includes a proportional element (P), an integral element (I) and a differential element (D), and receives a temperature deviation between the measured temperature and the target temperature.
  • the distribution ratio is calculated according to the proportional gain, integration time, and derivative time, and the driving power frequency of the cooling fan 263 is determined.
  • FIG. 3 shows the relative positional relationship between the glass ribbon 240 and the tip portion 320 of the top roll 300 when the top roll 300 is used to maintain the thickness of the glass ribbon 240 at a constant thickness.
  • the top roll 300 has a disk-shaped rotating member 325 at the distal end portion 320.
  • the rotating member 325 has a protrusion 326 formed along the circumferential direction around the rotating member 325.
  • both side portions of the glass ribbon 240 are pressed by the rotating member 325, particularly the protrusion 326, and the rotating member 325 is It is rotated. For this reason, the glass ribbon 240 is restrained by the rotating member 325 and cannot contract in a direction perpendicular to the traveling direction. Therefore, the glass ribbon 240 can be maintained at a predetermined thickness by using the top roll 300.
  • the rotating member 325 has a structure that is rotated with respect to the central axis 328 of the top roll 300.
  • the front end portion 320 of the top roll 300 Since the front end portion 320 of the top roll 300 is in direct contact with the high temperature glass ribbon 240, the temperature may increase significantly during use. Therefore, the front end portion 320 of the top roll 300 is configured to be cooled by circulating cooling water through a front end portion space formed inside the top roll 300. Thereby, the temperature rise of the front-end
  • the float glass manufacturing apparatus 200 shown in FIG. 2 includes a transfer device 280 provided in the dross box 281 outside the outlet on the downstream side 234 of the float bath 230.
  • the transport device 280 is, for example, a lift-out roll device.
  • the glass ribbon 240 is drawn out from the outlet of the float bath 230 by the rotation of the lift-out roll device, and then carried into the slow cooling furnace 285. Thereafter, the glass ribbon 240 is gradually cooled to room temperature (near) in the slow cooling furnace 285.
  • FIG. 3A is a side sectional view schematically showing an example of the relative positional relationship between the top roll and the glass ribbon and an example of the top end portion of the top roll.
  • FIG. 3B is a cross-sectional view schematically showing an example of the tip portion of the top roll.
  • the top roll 300 has a front end portion 320 and a support post portion 350, and the front end portion 320 is installed at one end of the support post portion 350.
  • the distal end portion 320 is constituted by a substantially disc-shaped rotating member 325, and the rotating member 325 has a hollow structure having a distal end portion space 322 therein. Further, the rotating member 325 has two rows of gear shapes formed along the entire outer periphery of the disk, and thus has a plurality of protrusions 326 on the outer periphery.
  • the protrusion 326 has a triangular cross section, but the present invention is not limited to this. That is, the protrusion 326 may have any cross-sectional shape.
  • the cross-section of the protrusion may be rectangular or semicircular.
  • the rows of the protrusions 326 are not particularly limited, and may be two rows as shown in FIG. 3A or another number (for example, one row or three rows or more).
  • the support column 350 includes an inner tube 355 and an outer tube 370 that extend along the direction of the same central axis 328.
  • the inner tube 355 and the outer tube 370 are constituted by hollow tubular members.
  • the inner tube 355 has an inner space 360 inside.
  • One end of the outer tube 370 is coupled to the distal end portion 320 via the coupling portion 340, and the inner tube 355 is accommodated therein.
  • An outer space 380 is formed between the inner peripheral surface of the outer tube 370 and the outer peripheral surface of the inner tube 355.
  • the top roll 300 has a speed reduction mechanism such as a gear connected to the outer tube 370 and a drive device such as a motor on the other end side of the support column 350. Therefore, by controlling a speed reduction mechanism such as a gear or a timing belt by the driving device, the rotating member 325 of the distal end portion 320 can be rotated at a predetermined number of rotations via the outer tube 370 of the column portion 350.
  • a speed reduction mechanism such as a gear connected to the outer tube 370 and a drive device such as a motor on the other end side of the support column 350. Therefore, by controlling a speed reduction mechanism such as a gear or a timing belt by the driving device, the rotating member 325 of the distal end portion 320 can be rotated at a predetermined number of rotations via the outer tube 370 of the column portion 350.
  • the tip portion 320 of the top roll 300 is cooled by the cooling water.
  • the cooling water passes through the inner space 360 of the inner tube 355, reaches the tip end space 322 of the rotating member 325, and then flows through the outer space 380.
  • the cooling water may flow in the opposite direction.
  • a cooling water flow path is formed through a path through the inner space 360 of the inner tube 355, the tip end space 322 of the rotating member 325, and the outer space 380.
  • the temperature of the cooling water flowing through the flow path of the top roll 300 fluctuates in accordance with the fluctuation of the outside air temperature, and is in a state of success.
  • cooling water whose temperature fluctuation width is controlled within 4 ° C. is used.
  • the fluctuation range of the temperature of the cooling water used in the present invention is preferably controlled within 3 ° C, more preferably controlled within 2 ° C, and even more preferably controlled within 1 ° C. .
  • the fluctuation range of the temperature of the cooling water in the present invention is preferably controlled in units of days (24 hours). Since the outside air temperature fluctuates by several degrees to several tens of degrees per day, by controlling the fluctuation range in units of days, tin falls from the top roll, fluctuations in the width of the glass ribbon, or the bottom of the glass ribbon It is possible to suppress a bubble defect of a concave surface.
  • the fluctuation range of the temperature of the cooling water in the present invention is controlled even in units of one hour.
  • the outside air temperature may fluctuate close to 10 ° C during one hour, so by controlling the fluctuation range even in units of one hour, the tin falls from the top roll, the fluctuation of the glass ribbon width, or the glass ribbon A concave bubble defect on the bottom surface can be suppressed.
  • the upper limit temperature of the cooling water measured by the temperature measuring device is preferably 40 ° C. or lower.
  • the temperature of the cooling water is highest in the tip end space 322 of the top roll 300 in contact with the glass ribbon.
  • the upper limit temperature exceeds 40 ° C.
  • the impurity components contained in the cooling water may be deposited and deposited on the walls constituting the flow path due to the evaporation of the cooling water. Therefore, the flow path of the cooling water is narrowed or the flow path is blocked, and there may arise a problem that the top end portion of the top roll cannot be sufficiently cooled.
  • the material of the rotating member 325 is not particularly limited.
  • the rotating member 325 is made of a metal such as steel or a heat-resistant alloy. By using the metal rotating member 325, the cooling effect during cooling of the rotating member 325 is enhanced.
  • the surface of the rotating member 325 may be coated or surface-modified.
  • the coating material preferably has heat resistance, and for example, metal nitride or the like may be used.
  • the surface modification preferably has a property of low affinity and / or low adsorptivity to glass ribbon, molten tin, tin oxide and the like.
  • the rotating member 325 has a substantially disk shape whose center passes through the central axis 328.
  • the diameter of the disk is not particularly limited, but is preferably in the range of, for example, 100 to 300 mm (about 4 to 12 inches), more preferably in the range of 120 to 250 mm (about 5 to 10 inches), 150 More preferably, it is in the range of ⁇ 230 mm (about 6-9 inches).
  • the material of the inner tube 355 and the outer tube 370 is not particularly limited.
  • the inner tube 355 and the outer tube 370 may be made of a metal such as steel (for example, stainless steel) or a heat resistant alloy.
  • the outer tube 370 may have a surface coated or surface modified.
  • the coating material preferably has heat resistance, and for example, metal nitride or the like may be used.
  • the surface modification preferably has a property of low affinity and / or low adsorptivity to glass ribbon, molten tin, tin oxide and the like.
  • FIG. 4 is a schematic view of a water circulation system as an example of the cooling device in the present invention.
  • the cooling device 400 includes a cooling tower 410 of a water circulation system and a cooling fan 263 whose rotation speed is controlled manually or by an inverter.
  • the water tank 450 at the bottom of the cooling tower 410 is connected to the suction port of the pump 420 via a pipe line, and the discharge port of the pump 420 is connected to the inlet of the heat exchanger 430 via the pipe line.
  • the outlet is connected to the upper side surface of the cooling tower 410 via a pipe line.
  • Cooling fins 440 are installed above the cooling tower 410, and a water treatment material 460 made of resin or metal is installed in a portion of the water tank 450 through which water passes.
  • the cooling tower 410 includes a round shape and a square shape, the water treatment material 460 is preferably round and square according to the shape.
  • the method for producing glass according to the present invention is based on the aforementioned float method, (1) introducing molten glass into the float bath (step S510); (2) transporting the molten glass from the upstream side of the float bath to the downstream side to form a glass ribbon (step S520); (3) By rotating the top roll in the traveling direction of the glass ribbon while pressing the tip of the top roll against a predetermined region in the traveling direction of the glass ribbon, that is, the upper surface of both sides of the glass ribbon in the upstream region of the float bath, A step of suppressing shrinkage of the glass ribbon, wherein the top roll has a tip space at the tip, and the tip space has a temperature fluctuation range of 4 ° C. or less per day. And a step (Step S530) through which water is circulated.
  • the present invention is effective for producing a non-alkali glass glass plate having a thin plate (plate thickness: 0.1 mm to 1.0 mm).
  • non-alkali glass Asahi Glass trade name
  • FIG. 6 is a graph showing daily fluctuations in the cooling water temperature Tb and the outside air temperature Ta under the above conditions.
  • the vertical axis of the graph represents the cooling water temperature Tb and the outside air temperature Ta.
  • the solid line represents the cooling water temperature.
  • the outside air temperature is represented by a broken line, and the value depends on the temperature measuring device installed in the float bath building.
  • the fluctuation amount on the vertical axis was normalized by setting each minimum temperature to 0 ° C.
  • the normalized cooling water temperature Tb and outside air temperature Ta were set to Tb ′ and Ta ′, respectively.
  • FIG. 6 shows that although the outside air temperature Ta on the outer surface of the bottom casing varies greatly with the passage of time, the cooling water temperature Tb on the outer surface of the bottom casing does not vary greatly, and the daily fluctuation range is a desired range. It is within.
  • Example 1 the fluctuation range of the cooling water temperature was set to 2 ° C. or less per day.
  • Example 2 the fluctuation range was within 4 ° C. on a daily basis, and within 3 ° C. on an hourly basis.
  • Example 3 the fluctuation range of the cooling water temperature was within 4 ° C. per day, and was over 3 ° C. per hour.
  • Comparative Example 1 since the temperature of the cooling water was determined according to the fluctuation of the outside air temperature, the fluctuation range exceeded 4 ° C. on a daily basis.
  • Comparative Example 2 the number of rotations of the cooling fan was adjusted so that the upper limit temperature of the cooling water measured outside the float bath exceeded 40 ° C.
  • the fluctuation range of the temperature of the cooling water By making the fluctuation range of the temperature of the cooling water within 4 ° C. per day, it was confirmed that (1) the occurrence frequency of fluctuations in the width of the glass ribbon and (2) the occurrence frequency of tin falling fixed to the top roll could be suppressed. . Furthermore, it was confirmed that the frequency of falling can be further suppressed by setting the fluctuation range within 3 ° C. in units of one hour. Moreover, if the upper limit temperature of the cooling water measured outside the float bath was set to 40 ° C. or less, (3) it was confirmed that the glass ribbon was not wound around the top roll tip.
  • tin fixed to the top roll surface can be prevented from falling on the glass ribbon or into the molten tin bath during production, and the fluctuation of the plate width of the glass ribbon can be suppressed.
  • Productivity can be improved.
  • the float glass is useful as a glass substrate for a display such as a liquid crystal display device.
  • central axis 350 ... strut part, 355 ... inner pipe, 360 ... inner space, 370 ... outer pipe, 380 ... outer space, 400 ... cooling device, 410 ... Cooling tower, 420 ... Pump, 430 ... Heat exchanger, 440 ... Cooling fin, 450 ... Water tank part, 460 ... Water treatment Wood

Abstract

The present invention provides a float glass production device and a float glass production method that suppress the dropping of tin fixed to a top roll surface on to a glass ribbon or inside a molten tin bath during production, and suppress variation in glass ribbon plate thickness. The present invention pertains to a float glass production device comprising a float bath (230) wherein a molten glass ribbon (240) is carried, and a top roll (300) used to suppress the expansion/contraction of the molten glass ribbon (240). The float glass production device (200) is characterized by: the top roll (300) having a rotatable tip section (320) that comes in contact with the molten glass ribbon (240); the tip section (320) having a hollow structure having an internal tip section space (322), and having a flow channel that provides cooling water to the tip section space (322); and the fluctuation margin for the cooling water temperature being controlled to within 4°C per day, by a temperature control device (265) comprising a temperature measurement device that measures the cooling water temperature and is arranged on the outside of the float bath, and a cooling device that cools the cooling water having had the temperature thereof increased by heat exchange inside the float bath.

Description

フロートガラス製造装置、およびフロートガラス製造方法Float glass manufacturing apparatus and float glass manufacturing method
 本発明は、フロートガラス製造装置、およびフロートガラス製造方法に関する。 The present invention relates to a float glass manufacturing apparatus and a float glass manufacturing method.
 ガラス板を製造する一つの方法として、フロート法が知られている。このフロート法では、大まかには、以下の工程を経て、板ガラスが製造される。 A float method is known as one method for producing a glass plate. In this float process, a plate glass is roughly manufactured through the following steps.
 (1)フロートバス内に収容されている溶融スズの表面に、溶融ガラスを導入する。 (1) The molten glass is introduced onto the surface of the molten tin accommodated in the float bath.
 (2)溶融スズ上で、溶融ガラスを上流側から下流側に沿って連続的に搬送し、ガラスリボンを形成する。 (2) On the molten tin, the molten glass is continuously conveyed from the upstream side to the downstream side to form a glass ribbon.
 (3)ガラスリボンの両側端部を軽く抑え付け、ガラスリボンの幅方向の収縮を抑制する。 (3) Slightly hold the side edges of the glass ribbon to suppress shrinkage in the width direction of the glass ribbon.
 (4)このガラスリボンを徐冷しながら、ロール搬送により、フロートバスから引き出すことにより、板ガラスが製造される。 (4) A sheet glass is produced by slowly cooling the glass ribbon and pulling it out of the float bath by roll conveyance.
 ここで、(3)の工程では、トップロールと呼ばれる装置が使用される。このトップロールは、フロートバス内へ流入された溶融ガラスのガラスリボンの幅と厚さを制御するとともにガラスリボンを前進させるために、フロートバスの上流域(フロートバスへ溶融ガラスが流入される側の領域)においてガラスリボンの両側の縁部に複数配される縁ロールである。このトップロールは、先端部に回転部材が設置されている。したがって、この回転部材をガラスリボンの両側の縁部の表面に接触させ、ガラスリボンを押さえ付けるとともに回転部材を回転させることにより、ガラスリボンの収縮を抑制し、所定の幅と厚さをもってガラスリボンを搬送させることができる。なお、以下本明細書においてガラスリボンの収縮という場合は、ガラスリボンの幅方向の収縮を意味するものとする。 Here, in the step (3), an apparatus called a top roll is used. This top roll controls the width and thickness of the glass ribbon of the molten glass that has flowed into the float bath and advances the glass ribbon to the upstream area of the float bath (the side on which the molten glass flows into the float bath). A plurality of edge rolls arranged on both edge portions of the glass ribbon in the region (1). The top roll is provided with a rotating member at the tip. Therefore, the rotating member is brought into contact with the surfaces of the edge portions on both sides of the glass ribbon, the glass ribbon is pressed and the rotating member is rotated, thereby suppressing the shrinkage of the glass ribbon and having a predetermined width and thickness. Can be transported. In the following description, the term “shrinkage of the glass ribbon” means shrinkage in the width direction of the glass ribbon.
 なお、トップロールの先端部は、高温のガラスリボンと直接接するため、無冷却状態では、使用時に温度が著しく上昇するおそれがある。そのため、通常、トップロールの先端部は、トップロールの内部に形成された流通路に冷却水を流通させることにより、冷却されている(例えば特許文献1、2)。 In addition, since the tip part of the top roll is in direct contact with the high temperature glass ribbon, the temperature may rise significantly during use in an uncooled state. For this reason, the top end portion of the top roll is usually cooled by circulating cooling water through a flow passage formed inside the top roll (for example, Patent Documents 1 and 2).
 溶融スズ浴内のトップロールには、経時的に主に溶融スズが付着する。この原因は、トップロールが水冷されており溶融スズ浴内では比較的低温度の部材であるため、トップロール表面に溶融スズ浴内で揮発したスズなどが凝結することや、溶融スズ浴内の溶融スズが何らかの原因で直接付着したりするためであると考えられる。トップロールとガラスリボンとの接触部に付着したスズが増加すると、そのスズの厚さの影響によりトップロールでガラスリボンを押さえる圧力が変動したり、そのスズがガラスリボンに付着しやすくなったり、ガラスリボンとトップロールとが離れにくくなったりする。これによって、ガラスリボンの厚さが変動し、均一な厚さの板ガラスの製造が難しくなるという問題があった。 溶 融 Molten tin adheres to the top roll in the molten tin bath over time. This is because the top roll is water-cooled and is a relatively low temperature member in the molten tin bath, so that the volatilized tin etc. in the molten tin bath condenses on the top roll surface, This is probably because molten tin adheres directly for some reason. When tin adhering to the contact portion between the top roll and the glass ribbon increases, the pressure of pressing the glass ribbon with the top roll fluctuates due to the thickness of the tin, or the tin tends to adhere to the glass ribbon, It may be difficult to separate the glass ribbon from the top roll. As a result, the thickness of the glass ribbon fluctuates, and there is a problem that it is difficult to manufacture a plate glass having a uniform thickness.
 付着するスズの増加を防ぐため、間欠的にトップロールを振動させたり、トップロールに不活性ガスを吹き付けたりすることもできるが、スズとトップロール表面との付着性が高いと充分な効果は得られない。また、スズとトップロールとの固着は経時的に強くなるので、一定の期間をおいてトップロールを取り替える必要があり、生産性を損なうという問題もあった。 The top roll can be intermittently vibrated or an inert gas can be sprayed onto the top roll to prevent an increase in the amount of tin adhering to it. I can't get it. Further, since the adhesion between tin and the top roll becomes stronger with time, it is necessary to replace the top roll after a certain period of time, and there is a problem that productivity is impaired.
 そこで、フロート法による板ガラスの製造のための溶融スズ浴で利用するトップロールの表面への溶融スズなどの異物の付着を、トップロール表面に設けた薄膜によって低減することを特徴とするフロート法による板ガラスの製造方法、およびこの方法に適した上記溶融スズなどの異物の付着を低減するトップロールに関する発明が提供された(特許文献1)。 Therefore, by the float method characterized in that adhesion of foreign matters such as molten tin to the surface of the top roll used in the molten tin bath for the production of plate glass by the float method is reduced by a thin film provided on the top roll surface. The invention regarding the manufacturing method of plate glass, and the top roll which reduces adhesion of foreign materials, such as the said molten tin suitable for this method, was provided (patent document 1).
日本国特開2008-189516号公報Japanese Unexamined Patent Publication No. 2008-189516 国際公開第2010/147189号International Publication No. 2010/147189
 しかしながら、上記発明による対策を講じても、トップロール表面にスズが付着することを完全に抑制することはできず、トップロール表面に固着したスズが生産中にガラスリボン上に落下することで、トップロールでガラスリボンを押さえる圧力が変動し、ガラスリボンの板幅変動を抑制できていなかった。 However, even if the measures according to the invention are taken, it is not possible to completely suppress the adhesion of tin to the top roll surface, and tin stuck to the top roll surface falls on the glass ribbon during production, The pressure to hold the glass ribbon with the top roll fluctuated, and the fluctuation of the glass ribbon width could not be suppressed.
 また、トップロール表面に固着したスズが生産中に溶融スズ浴内に落下することにより、気泡が発生し、ガラスリボンのボトム面に凹状の気泡欠点が生じ、板ガラスの生産性に影響を及ぼしていた。 In addition, when tin adhered to the top roll surface falls into the molten tin bath during production, bubbles are generated, and a concave bubble defect occurs on the bottom surface of the glass ribbon, affecting the productivity of the plate glass. It was.
 ここで、トップロールの冷却水の温度は、外気温の変動に応じて変動する。つまり、冷却水の温度は、昼間は高くなり夜間は低くなる。したがって、外気温の変動に応じて、トップロールに固着したスズが、トップロール表面との熱膨張差により、生産中にガラスリボン上、または溶融スズ浴内に落下することがあった。 Here, the temperature of the cooling water of the top roll fluctuates according to the fluctuation of the outside air temperature. That is, the temperature of the cooling water is high during the day and low at night. Therefore, depending on fluctuations in the outside air temperature, tin adhered to the top roll may fall on the glass ribbon or into the molten tin bath during production due to the difference in thermal expansion from the top roll surface.
 また、トップロールの冷却水の温度変動により、トップロールに接するガラスリボンの温度変動が生じ、トップロールでガラスリボンを押さえる圧力が変動し、ガラスリボンの板幅変動を抑制できていなかった。 Further, the temperature fluctuation of the glass ribbon in contact with the top roll was caused by the temperature fluctuation of the cooling water of the top roll, the pressure for pressing the glass ribbon with the top roll was fluctuated, and the fluctuation of the glass ribbon width could not be suppressed.
 本発明は、このような事情に鑑みてなされたもので、トップロール表面に固着したスズが生産中にガラスリボン上、または溶融スズ浴内に落下することを抑制し、ガラスリボンの板幅変動、またはガラスリボンのボトム面の凹状の気泡欠点を抑制するフロートガラス製造装置、およびフロートガラス製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is possible to suppress that the tin adhered to the surface of the top roll falls on the glass ribbon or in the molten tin bath during production, and the fluctuation of the plate width of the glass ribbon. Another object of the present invention is to provide a float glass manufacturing apparatus and a float glass manufacturing method that suppress a concave bubble defect on the bottom surface of a glass ribbon.
 本発明では、溶融ガラスリボンが搬送されるフロートバスと、前記溶融ガラスリボンの収縮の抑制に使用されるトップロールと、を備えるフロートガラス製造装置であって、前記トップロールは、前記溶融ガラスリボンと接触する、回転可能な先端部を有し、該先端部は、内部に先端部空間を有する中空構造となっており、かつ当該先端部空間に冷却水を供給する流通路を有し、前記冷却水の温度を測定するフロートバス外に設置された温度測定装置と、フロートバス内で熱交換により温度が上昇した前記冷却水を冷却する冷却装置と、を備える温度制御装置によって、前記冷却水の温度の変動幅が日単位で4℃以内に制御されることを特徴とするフロートガラス製造装置が提供される。 In this invention, it is a float glass manufacturing apparatus provided with the float bath in which a molten glass ribbon is conveyed, and the top roll used for suppression of shrinkage | contraction of the said molten glass ribbon, Comprising: The said top roll is the said molten glass ribbon. The tip has a hollow structure having a tip space inside, and has a flow passage for supplying cooling water to the tip space, The temperature control device comprising a temperature measuring device installed outside the float bath for measuring the temperature of the cooling water, and a cooling device for cooling the cooling water whose temperature has risen due to heat exchange in the float bath, the temperature control device comprising: The float glass manufacturing apparatus is characterized in that the fluctuation range of the temperature is controlled within 4 ° C. per day.
 好ましくは、前記変動幅が1時間単位で3℃以内に制御される。 Preferably, the fluctuation range is controlled within 3 ° C. per hour.
 また、好ましくは、前記冷却装置は、水循環系のクーリングタワーと、手動またはインバータにより回転数が制御される冷却ファンと、を備える。 Preferably, the cooling device includes a cooling tower of a water circulation system and a cooling fan whose rotation speed is controlled manually or by an inverter.
 さらに、好ましくは、前記温度測定装置によって測定された、前記冷却水の上限温度を40℃以下とする。 Furthermore, preferably, the upper limit temperature of the cooling water measured by the temperature measuring device is 40 ° C. or less.
 また、本発明では、フロートバスに溶融ガラスを導入するステップと、前記溶融ガラスを前記フロートバスの上流側から下流側に搬送させ、ガラスリボンを形成するステップと、トップロールの先端部を前記ガラスリボンの進行方向の所定領域の両側の上面に押し付けながら回転させることにより、前記ガラスリボンの収縮を抑制するステップと、を有する、フロートガラス製造方法であって、前記トップロールは、回転可能な先端部を有し、該先端部は、内部に先端部空間を有する中空構造となっており、かつ当該先端部空間に冷却水を供給する流通路を有し、前記冷却水の温度をフロートバス外で測定する温度測定手段と、フロートバス内で熱交換により温度が上昇した前記冷却水を冷却する冷却手段と、を有する温度制御手段によって、前記先端部空間および前記流通路において、前記冷却水の温度の変動幅が日単位で4℃以内に制御されることを特徴とするフロートガラス製造方法が提供される。 In the present invention, the step of introducing the molten glass into the float bath, the step of transporting the molten glass from the upstream side to the downstream side of the float bath, forming a glass ribbon, and the top end portion of the top roll as the glass A step of suppressing shrinkage of the glass ribbon by rotating while pressing against the upper surfaces of both sides of a predetermined region in the ribbon traveling direction, wherein the top roll has a rotatable tip The tip portion has a hollow structure having a tip portion space inside, and has a flow passage for supplying cooling water to the tip portion space, and the temperature of the cooling water is adjusted outside the float bath. And a temperature control means having cooling means for cooling the cooling water whose temperature has risen due to heat exchange in the float bath. , In the tip space and the flow passage, a float glass manufacturing method characterized in that the fluctuation range of the temperature of the cooling water is controlled within 4 ° C. on a daily basis is provided.
 好ましくは、前記変動幅が1時間単位で3℃以内に制御される。 Preferably, the fluctuation range is controlled within 3 ° C. per hour.
 また、好ましくは、前記冷却手段は、水循環系のクーリングタワーと、手動またはインバータにより回転数が制御される冷却ファンと、から成る。 Preferably, the cooling means includes a cooling tower of a water circulation system and a cooling fan whose rotation speed is controlled manually or by an inverter.
 さらに、好ましくは、前記フロートバス外で測定した冷却水の上限温度を40℃以下とする。 Furthermore, preferably, the upper limit temperature of the cooling water measured outside the float bath is set to 40 ° C. or less.
 本発明では、トップロール表面に固着したスズが生産中にガラスリボン上、または溶融スズ浴内に落下することを抑制し、ガラスリボンの板幅変動、またはガラスリボンのボトム面の凹状の気泡欠点を抑制するフロートガラス製造装置、およびフロートガラス製造方法を提供することが可能となる。 In the present invention, tin adhered to the surface of the top roll is prevented from falling on the glass ribbon or in the molten tin bath during production, and fluctuations in the plate width of the glass ribbon, or concave bubble defects on the bottom surface of the glass ribbon. It is possible to provide a float glass manufacturing apparatus and a float glass manufacturing method for suppressing the above.
図1は、フロート法による板ガラスの製造方法のフローを概略的に示したフロー図である。FIG. 1 is a flowchart schematically showing a flow of a method for producing a plate glass by a float process. 図2は、フロートガラス製造装置のフロートバスの上面の一例を、概略的に示した上面図である。FIG. 2 is a top view schematically showing an example of the upper surface of the float bath of the float glass manufacturing apparatus. 図3(a)は、トップロールとガラスリボンの相対位置関係と、トップロールの先端部の一例を概略的に示した側断面図である。図3(b)は、トップロールの先端部の一例を概略的に示した断面図である。FIG. 3A is a side sectional view schematically showing an example of the relative positional relationship between the top roll and the glass ribbon, and an example of the tip end portion of the top roll. FIG. 3B is a cross-sectional view schematically showing an example of the tip portion of the top roll. 図4は、本発明における冷却装置の一例である水循環系の概略図である。FIG. 4 is a schematic view of a water circulation system as an example of the cooling device in the present invention. 図5は、本発明による板ガラスの製造方法のフローを概略的に示したフロー図である。FIG. 5 is a flowchart schematically showing the flow of the method for manufacturing a glass sheet according to the present invention. 図6は、トップロール冷却水の温度および外気温の経時変化のグラフである。FIG. 6 is a graph of changes over time in the temperature of the top roll cooling water and the outside air temperature.
 以下、本発明の特徴について詳しく説明する。 Hereinafter, the features of the present invention will be described in detail.
 まず、本発明をより良く理解するため、図1を参照して、フロート法による板ガラスの製造工程について、簡単に説明する。 First, in order to better understand the present invention, a plate glass manufacturing process by the float method will be briefly described with reference to FIG.
 図1は、フロート法による板ガラスの製造方法のフロー図を概略的に示したものである。フロート法による板ガラスの製造方法は、
(I)原材料を溶解して、溶融ガラスを製造する溶解工程(ステップS110)と、
(II)フロートガラス製造において、フロートバスに溶融ガラスを導入して、ガラスリボンを形成するガラスリボン形成工程(ステップS120)と、
(III)徐冷炉でガラスリボンを徐冷して、板ガラスを得る徐冷工程(ステップS130)と、
 を有する。
FIG. 1 schematically shows a flow chart of a method for producing a plate glass by a float process. The manufacturing method of plate glass by the float process is
(I) a melting step (step S110) for melting the raw materials to produce molten glass;
(II) In the float glass production, a glass ribbon forming step (step S120) for introducing a molten glass into a float bath and forming a glass ribbon;
(III) A slow cooling step (step S130) in which a glass ribbon is obtained by gradually cooling the glass ribbon in a slow cooling furnace;
Have
 (I)の溶解工程では、板ガラスの組成に合わせて調合、混合された、珪砂、石灰石、および/またはソーダ灰等の原材料を、溶解窯に投入することにより、溶融ガラスが製造される。溶解窯の温度は、板ガラスの組成によって異なるが、例えば1400℃~1600℃程度である。 In the melting step (I), molten glass is manufactured by putting raw materials such as silica sand, limestone, and / or soda ash prepared and mixed in accordance with the composition of the plate glass into a melting furnace. The temperature of the melting furnace varies depending on the composition of the plate glass, but is, for example, about 1400 ° C. to 1600 ° C.
 加熱の方法は、特に限られず、例えば、溶解窯内部に設けたバーナーの火炎により、原材料を加熱しても良い。バーナーは、例えば、重油または天然ガスを燃料とする。あるいは、一般的な電気溶解炉を用いて、加熱を行っても良い。 The heating method is not particularly limited. For example, the raw material may be heated by a flame of a burner provided inside the melting furnace. The burner uses, for example, heavy oil or natural gas as fuel. Alternatively, heating may be performed using a general electric melting furnace.
 (II)のガラスリボン形成工程では、(I)の工程で得られた溶融ガラスが、溶融スズを収容するフロートバスに導入され、ガラスリボンが形成される。また、得られたガラスリボンがフロートバスの出口から搬出される。この工程については、後に詳しく説明する。 (II) In the glass ribbon forming step, the molten glass obtained in the step (I) is introduced into a float bath containing molten tin to form a glass ribbon. Moreover, the obtained glass ribbon is carried out from the exit of a float bath. This process will be described in detail later.
 (III)の徐冷工程では、フロートバスから引き出されたガラスリボンが徐冷され、板ガラスが提供される。 (III) In the slow cooling step, the glass ribbon drawn out of the float bath is slowly cooled to provide plate glass.
 徐冷炉は、燃焼ガスまたは電気ヒータによる熱を、徐冷炉内の必要位置に供給することができる。したがって、比較的高温で徐冷炉内に導入されたガラスリボンは、最終的に常温に近い温度域まで冷却され、徐冷炉から排出される。 The slow cooling furnace can supply heat from the combustion gas or electric heater to a required position in the slow cooling furnace. Therefore, the glass ribbon introduced into the slow cooling furnace at a relatively high temperature is finally cooled to a temperature range close to normal temperature and discharged from the slow cooling furnace.
 以上の工程により、板ガラスが製造される。 A plate glass is manufactured by the above process.
 次に、図2を参照して、前述の(II)の工程(ステップS120)について、より詳しく説明する。 Next, with reference to FIG. 2, the above-described step (II) (step S120) will be described in more detail.
 図2は、(II)のガラスリボン形成工程(ステップS120)に使用されるフロートガラス製造装置のフロートバスの上面図の一例を、概略的に示した図である。 FIG. 2 is a diagram schematically showing an example of a top view of the float bath of the float glass manufacturing apparatus used in the glass ribbon forming step (II) (step S120).
 フロートガラス製造装置200は、導入部210と、フロートバス230と、搬送装置280と、トップロール300とを有する。 The float glass manufacturing apparatus 200 includes an introduction unit 210, a float bath 230, a transport apparatus 280, and a top roll 300.
 導入部210は、前述の工程(I)で得られた溶融ガラスを、内部に溶融スズ(溶融スズ合金も含み、以下溶融スズと称す。)220を有するフロートバス230内に導入するための部分である。 The introduction part 210 is a part for introducing the molten glass obtained in the aforementioned step (I) into the float bath 230 having molten tin (including molten tin alloy, hereinafter referred to as molten tin) 220 inside. It is.
 フロートバス230内に導入された溶融ガラスは、溶融スズ220の表面に浮遊した状態で、フロートバス230の上流側232から下流側234に向かって連続的に移動し、これにより、ガラスリボン240が形成される。 The molten glass introduced into the float bath 230 continuously moves from the upstream side 232 to the downstream side 234 of the float bath 230 in a state of floating on the surface of the molten tin 220, whereby the glass ribbon 240 is moved. It is formed.
 なお、ガラスリボン240は、無拘束状態では、溶融ガラスの表面張力と重力との関係により平衡厚み(例えば7mm前後)に至る傾向にある一方、ガラスリボンは進行方向に引っ張られて搬送されるため、特に幅(図2の上下方向の長さ)が中心方向に向かって収縮する傾向にある。そこで、このガラスリボン240の収縮を抑制して、ガラスリボン240の厚さを所定の厚さに維持するため、トップロール300が使用される。 Note that the glass ribbon 240 tends to reach an equilibrium thickness (for example, around 7 mm) due to the relationship between the surface tension of the molten glass and gravity in an unconstrained state, while the glass ribbon is pulled and conveyed in the traveling direction. In particular, the width (the length in the vertical direction in FIG. 2) tends to shrink toward the central direction. Therefore, the top roll 300 is used to suppress the shrinkage of the glass ribbon 240 and maintain the thickness of the glass ribbon 240 at a predetermined thickness.
 温度測定装置260は、トップロール300の冷却水の温度を測定する装置であり、フロートバス230外に設置されている。温度測定装置260には、例えば、熱電対を用いる。測定された温度データを温度表示装置261の画面に逐次表示することで、測定された温度データを監視員が容易に把握できる。 The temperature measuring device 260 is a device that measures the temperature of the cooling water of the top roll 300, and is installed outside the float bath 230. For the temperature measuring device 260, for example, a thermocouple is used. By sequentially displaying the measured temperature data on the screen of the temperature display device 261, the monitor can easily grasp the measured temperature data.
 温度測定装置260によって測定された測定温度に基づき、監視員によって手動で、またはインバータ262で、回転数が制御される冷却ファン263によって、前記変動幅を日単位で4℃以内にする。なお、本発明における変動幅は、最高温度と最低温度との差を意味する。 Based on the measured temperature measured by the temperature measuring device 260, the fluctuation range is set to 4 ° C. or less per day manually by a monitor or by the cooling fan 263 whose rotation speed is controlled by the inverter 262. The fluctuation range in the present invention means a difference between the maximum temperature and the minimum temperature.
 変動幅の制御について説明する。例えば、フロートガラスの製造が朝から昼に掛けて実施している場合、外気温は上昇傾向である。前記冷却水の温度も上昇傾向であり、且つ、変動幅が所望の範囲外となりそうな場合は、冷却ファン263の回転数を増加させる。 Explain the control of fluctuation range. For example, when the production of float glass is carried out from morning to noon, the outside temperature tends to rise. If the temperature of the cooling water is also increasing and the fluctuation range is likely to be outside the desired range, the number of rotations of the cooling fan 263 is increased.
 フロートガラスの製造が昼から夜に掛けて実施している場合、外気温は下降傾向である。前記冷却水の温度が下降傾向であり、且つ、変動幅が所望の範囲外となりそうな場合は、冷却ファン263の回転数を減少させる。 When the float glass is manufactured from day to night, the outside air temperature is on a downward trend. When the temperature of the cooling water tends to decrease and the fluctuation range is likely to be outside the desired range, the rotational speed of the cooling fan 263 is decreased.
 上記説明では、朝から昼に掛けては冷却ファン263の回転数を増加し、昼から夜に掛けては冷却ファン263の回転数を減少させているが、本発明はこれに限定されない。深夜であっても、前記冷却水の温度の変動幅が所望の範囲外となりそうな場合は、冷却ファン263の回転数を増加または減少させる。 In the above description, the rotational speed of the cooling fan 263 is increased from morning to noon, and the rotational speed of the cooling fan 263 is decreased from day to night. However, the present invention is not limited to this. Even at midnight, when the fluctuation range of the temperature of the cooling water is likely to be outside the desired range, the rotational speed of the cooling fan 263 is increased or decreased.
 また、インバータ262は、冷却ファン263の駆動電源として供給されている交流電力を、一旦直流電力に変換し、前記交流電力とは異なる周波数の交流電力へと変換し直す。冷却ファン263の回転数は、変換し直された交流電力の周波数に依存しているため、交流電力の周波数を変えることで、冷却ファン263の回転数を微調整できる。したがって、前記冷却水の温度を所望の変動幅の範囲内に収めることができる。 In addition, the inverter 262 once converts AC power supplied as a driving power source for the cooling fan 263 into DC power, and converts it back to AC power having a frequency different from that of the AC power. Since the rotation speed of the cooling fan 263 depends on the frequency of the AC power converted again, the rotation speed of the cooling fan 263 can be finely adjusted by changing the frequency of the AC power. Therefore, the temperature of the cooling water can be kept within a desired fluctuation range.
 前記冷却水の温度が上昇して、所望の変動幅の範囲外となりそうな場合は、インバータ262によって冷却ファン263の駆動電力周波数を高周波数に変換し、冷却ファン263の回転数を増加させる。また、前記冷却水の温度が下降して、所望の変動幅の範囲外となりそうな場合は、インバータ262によって冷却ファン263の駆動電力周波数を低周波数に変換し、冷却ファン263の回転数を減少させる。 When the temperature of the cooling water rises and is likely to be outside the range of the desired fluctuation range, the inverter 262 converts the drive power frequency of the cooling fan 263 to a high frequency and increases the rotational speed of the cooling fan 263. In addition, when the temperature of the cooling water is likely to fall and fall outside the desired fluctuation range, the inverter 262 converts the driving power frequency of the cooling fan 263 to a low frequency and reduces the rotational speed of the cooling fan 263. Let
インバータ262の制御手段は、例えばPID制御などのフィードバック制御により、測定温度が予め設定した温度に近づくように、冷却用の空気を供給する冷却ファン263に対して回転数を調整する指令を送る。このようにして、温度測定、冷却条件設定、冷却条件変更を順次かつ連続的に実施することで、上記温度測定装置260による測定温度が上記設定温度から所定の温度範囲内に収まるように、前記冷却水の温度が制御される。 The control means of the inverter 262 sends a command for adjusting the rotational speed to the cooling fan 263 that supplies cooling air so that the measured temperature approaches the preset temperature by feedback control such as PID control. In this way, by performing temperature measurement, cooling condition setting, and cooling condition change sequentially and continuously, the temperature measured by the temperature measuring device 260 is within the predetermined temperature range from the set temperature. The temperature of the cooling water is controlled.
PID制御は、比例要素(P:proportional element)、積分要素(I:integral element)および微分要素(D:differential element)を含んで構成され、測定温度と目標温度の温度偏差を受けて、所定の比例ゲイン、積分時間および微分時間に従って分配率を算出し、冷却ファン263の駆動電力周波数を決定する。 The PID control includes a proportional element (P), an integral element (I) and a differential element (D), and receives a temperature deviation between the measured temperature and the target temperature. The distribution ratio is calculated according to the proportional gain, integration time, and derivative time, and the driving power frequency of the cooling fan 263 is determined.
 図3には、トップロール300を使用して、ガラスリボン240の厚さを一定の薄さに維持するときの、ガラスリボン240とトップロール300の先端部320の相対位置関係を示す。 FIG. 3 shows the relative positional relationship between the glass ribbon 240 and the tip portion 320 of the top roll 300 when the top roll 300 is used to maintain the thickness of the glass ribbon 240 at a constant thickness.
 図3に示すように、トップロール300は、先端部320に円盤状の回転部材325を有する。通常の場合、この回転部材325は、該回転部材325の周囲に、円周方向に沿って形成された突起部326を有する。 As shown in FIG. 3, the top roll 300 has a disk-shaped rotating member 325 at the distal end portion 320. In a normal case, the rotating member 325 has a protrusion 326 formed along the circumferential direction around the rotating member 325.
 この回転部材325を、ガラスリボン240の進行方向に沿った両側部分の表面に接触させた場合、回転部材325、特に突起部326により、ガラスリボン240の両側部分が押さえ付けられ、回転部材325が回転される。このため、ガラスリボン240は、回転部材325によって拘束され、進行方向に対して垂直な方向に、収縮することができなくなる。したがって、トップロール300を使用することにより、ガラスリボン240を、所定の厚さに維持することができる。 When the rotating member 325 is brought into contact with the surfaces of both side portions along the traveling direction of the glass ribbon 240, both side portions of the glass ribbon 240 are pressed by the rotating member 325, particularly the protrusion 326, and the rotating member 325 is It is rotated. For this reason, the glass ribbon 240 is restrained by the rotating member 325 and cannot contract in a direction perpendicular to the traveling direction. Therefore, the glass ribbon 240 can be maintained at a predetermined thickness by using the top roll 300.
 回転部材325は、トップロール300の中心軸328に対して回転される構造となっている。 The rotating member 325 has a structure that is rotated with respect to the central axis 328 of the top roll 300.
 トップロール300の先端部320は、高温のガラスリボン240と直接接するため、使用時に温度が著しく上昇するおそれがある。そのため、トップロール300の先端部320は、トップロール300の内部に形成された先端部空間に冷却水を流通させることにより、冷却される構成となっている。これにより、トップロール300の先端部320の温度上昇を抑制することができる。 Since the front end portion 320 of the top roll 300 is in direct contact with the high temperature glass ribbon 240, the temperature may increase significantly during use. Therefore, the front end portion 320 of the top roll 300 is configured to be cooled by circulating cooling water through a front end portion space formed inside the top roll 300. Thereby, the temperature rise of the front-end | tip part 320 of the top roll 300 can be suppressed.
 また、図2に示したフロートガラス製造装置200は、フロートバス230の下流側234の出口の外側のドロスボックス281に設けられた搬送装置280を有する。 Further, the float glass manufacturing apparatus 200 shown in FIG. 2 includes a transfer device 280 provided in the dross box 281 outside the outlet on the downstream side 234 of the float bath 230.
 搬送装置280は、例えば、リフトアウトロール装置である。リフトアウトロール装置の回転により、ガラスリボン240は、フロートバス230の出口から引き出され、その後、徐冷炉285に搬入される。その後、ガラスリボン240は、徐冷炉285において、室温(近傍)まで徐冷される。 The transport device 280 is, for example, a lift-out roll device. The glass ribbon 240 is drawn out from the outlet of the float bath 230 by the rotation of the lift-out roll device, and then carried into the slow cooling furnace 285. Thereafter, the glass ribbon 240 is gradually cooled to room temperature (near) in the slow cooling furnace 285.
 次に、図3を参照して、トップロールについて、詳しく説明する。 Next, the top roll will be described in detail with reference to FIG.
 図3(a)は、トップロールとガラスリボンの相対位置関係と、トップロールの先端部の一例を概略的に示した側断面図である。図3(b)は、トップロールの先端部の一例を概略的に示した断面図である。 FIG. 3A is a side sectional view schematically showing an example of the relative positional relationship between the top roll and the glass ribbon and an example of the top end portion of the top roll. FIG. 3B is a cross-sectional view schematically showing an example of the tip portion of the top roll.
 トップロール300は、先端部320と、支柱部350とを有し、支柱部350の一端に、先端部320が設置されている。 The top roll 300 has a front end portion 320 and a support post portion 350, and the front end portion 320 is installed at one end of the support post portion 350.
 先端部320は、略円盤状の回転部材325で構成され、該回転部材325は、内部に先端部空間322を有する中空構造となっている。また、回転部材325は、円盤の外周全周に沿って歯車形状が2列形成され、このため、外周に複数の突起部326を2列有する。なお、図において、突起部326は、三角形状の断面を有するが、本発明は、これに限られるものではない。すなわち、突起部326は、いかなる断面形状を有しても良く、例えば、突起部の断面は、矩形状または半円状等であっても良い。また、突起部326の列は、特に限られず、図3(a)に示すような2列であっても、その他の数(例えば、1列または3列以上)であっても良い。 The distal end portion 320 is constituted by a substantially disc-shaped rotating member 325, and the rotating member 325 has a hollow structure having a distal end portion space 322 therein. Further, the rotating member 325 has two rows of gear shapes formed along the entire outer periphery of the disk, and thus has a plurality of protrusions 326 on the outer periphery. In the figure, the protrusion 326 has a triangular cross section, but the present invention is not limited to this. That is, the protrusion 326 may have any cross-sectional shape. For example, the cross-section of the protrusion may be rectangular or semicircular. In addition, the rows of the protrusions 326 are not particularly limited, and may be two rows as shown in FIG. 3A or another number (for example, one row or three rows or more).
 支柱部350は、同一の中心軸328の方向に沿って伸びる内管355および外管370を有する。内管355および外管370は、中空の管状部材で構成される。内管355は、内部に内側空間360を有する。外管370は、一端が結合部340を介して、先端部320と結合されており、内部には、内管355が収容されている。外管370の内周面と、内管355の外周面の間には、外側空間380が形成されている。 The support column 350 includes an inner tube 355 and an outer tube 370 that extend along the direction of the same central axis 328. The inner tube 355 and the outer tube 370 are constituted by hollow tubular members. The inner tube 355 has an inner space 360 inside. One end of the outer tube 370 is coupled to the distal end portion 320 via the coupling portion 340, and the inner tube 355 is accommodated therein. An outer space 380 is formed between the inner peripheral surface of the outer tube 370 and the outer peripheral surface of the inner tube 355.
 なお、図3(a)には示していないが、トップロール300は、支柱部350の他端側に、外管370に接続されたギア等の減速機構、およびモータ等の駆動装置を有する。したがって、駆動装置によりギアやタイミングベルト等の減速機構を制御することにより、支柱部350の外管370を介して、先端部320の回転部材325を、所定の回転数で回転させることができる。 Although not shown in FIG. 3A, the top roll 300 has a speed reduction mechanism such as a gear connected to the outer tube 370 and a drive device such as a motor on the other end side of the support column 350. Therefore, by controlling a speed reduction mechanism such as a gear or a timing belt by the driving device, the rotating member 325 of the distal end portion 320 can be rotated at a predetermined number of rotations via the outer tube 370 of the column portion 350.
 前述のように、トップロール300の先端部320は、冷却水により、冷却される。冷却水は、例えば、内管355の内側空間360を通り、回転部材325の先端部空間322に至り、その後、外側空間380を通って流れる。あるいは、冷却水は、その逆向きに流れても良い。トップロール300の内部には、内管355の内側空間360と回転部材325の先端部空間322と外側空間380とを通じた経路で、冷却水の流通路が形成される。 As described above, the tip portion 320 of the top roll 300 is cooled by the cooling water. For example, the cooling water passes through the inner space 360 of the inner tube 355, reaches the tip end space 322 of the rotating member 325, and then flows through the outer space 380. Alternatively, the cooling water may flow in the opposite direction. Inside the top roll 300, a cooling water flow path is formed through a path through the inner space 360 of the inner tube 355, the tip end space 322 of the rotating member 325, and the outer space 380.
 ここで、従来においては、トップロール300の流通路を流れる冷却水の温度は、外気温の変動に応じて変動しており、成り行きの状態であった。 Here, conventionally, the temperature of the cooling water flowing through the flow path of the top roll 300 fluctuates in accordance with the fluctuation of the outside air temperature, and is in a state of success.
 近年は、例えば液晶パネルなどの表示装置向けに、厚さが薄い板ガラス(例えば厚さ0.1mm~1mmなど)の生産が拡大している。また、これらのガラスとしては、主に、無アルカリガラスが使用される。このガラスは、高融点であり、通常のソーダライムガラスに比べて、融点が100℃以上高い。 In recent years, production of thin glass plates (for example, thicknesses of 0.1 mm to 1 mm, etc.) for display devices such as liquid crystal panels has been increasing. Moreover, as these glass, an alkali free glass is mainly used. This glass has a high melting point, and the melting point is higher by 100 ° C. or more than ordinary soda lime glass.
 このようなガラスの場合、ガラスの製造時に、ガラスリボンを今まで以上に薄くする必要があり、一製造設備当たりに設置されるトップロールの数を、これまで以上に増やす必要がある。また、同じスペース内に配置されるトップロールの数を増やすためには、トップロールの先端部に設置される回転部材の寸法を、より小さくする必要がある。このような回転部材の寸法の小型化に伴って、近年、冷却水用の流通路は、より狭小化される傾向にあるため、冷却水の温度変動による影響を受けやすい。 In the case of such glass, it is necessary to make the glass ribbon thinner than before when manufacturing the glass, and it is necessary to increase the number of top rolls installed per manufacturing facility more than ever. Moreover, in order to increase the number of top rolls arrange | positioned in the same space, it is necessary to make the dimension of the rotating member installed in the front-end | tip part of a top roll smaller. In recent years, with the reduction in the size of the rotating member, since the flow passage for cooling water tends to be narrowed, it is easily affected by temperature fluctuation of the cooling water.
したがって、このような近年の状況の下では、トップロール表面へのスズ付着、およびそれに伴うスズ落下の問題に加えて、ガラスリボンの板幅変動を抑制できない問題が発生する傾向が高くなる。 Therefore, under such a recent situation, in addition to the problem of tin adhesion to the surface of the top roll and the accompanying tin falling, there is a high tendency that a problem that the fluctuation of the plate width of the glass ribbon cannot be suppressed occurs.
 上記スズ落下、ガラスリボンの板幅変動、またはガラスリボンのボトム面の凹状の気泡欠点を抑制するため、温度の変動幅が4℃以内に制御される冷却水を使用する。特に、本発明に使用する冷却水の温度の変動幅は、3℃以内に制御されることが好ましく、2℃以内に制御されることがより好ましく、1℃以内に制御されることがさらに好ましい。 In order to suppress the above-mentioned tin dropping, fluctuation of the glass ribbon plate width, or concave bubble defect on the bottom surface of the glass ribbon, cooling water whose temperature fluctuation width is controlled within 4 ° C. is used. In particular, the fluctuation range of the temperature of the cooling water used in the present invention is preferably controlled within 3 ° C, more preferably controlled within 2 ° C, and even more preferably controlled within 1 ° C. .
 本発明における前記冷却水の温度の変動幅は、日単位(24時間)で制御されることが好ましい。外気温は、1日の間で数℃~数10℃も変動するため、日単位で変動幅を制御することで、トップロールからのスズ落下、ガラスリボンの板幅変動、またはガラスリボンのボトム面の凹状の気泡欠点を抑制することができる。 The fluctuation range of the temperature of the cooling water in the present invention is preferably controlled in units of days (24 hours). Since the outside air temperature fluctuates by several degrees to several tens of degrees per day, by controlling the fluctuation range in units of days, tin falls from the top roll, fluctuations in the width of the glass ribbon, or the bottom of the glass ribbon It is possible to suppress a bubble defect of a concave surface.
 また、本発明における前記冷却水の温度の変動幅は、1時間単位でも制御されることが好ましい。外気温は、1時間の間で10℃近く変動することもあるため、1時間単位でも変動幅を制御することで、よりトップロールからのスズ落下、ガラスリボンの板幅変動、またはガラスリボンのボトム面の凹状の気泡欠点を抑制することができる。 Further, it is preferable that the fluctuation range of the temperature of the cooling water in the present invention is controlled even in units of one hour. The outside air temperature may fluctuate close to 10 ° C during one hour, so by controlling the fluctuation range even in units of one hour, the tin falls from the top roll, the fluctuation of the glass ribbon width, or the glass ribbon A concave bubble defect on the bottom surface can be suppressed.
 さらに、前記温度測定装置によって測定された冷却水の上限温度は、40℃以下とすることが好ましい。冷却水の温度は、ガラスリボンと接触するトップロール300の先端部空間322において最も高くなる。前記上限温度が40℃を上回ると、冷却水の蒸発により、冷却水中に含まれる不純物成分が流通路を構成する壁に析出、堆積するおそれがある。したがって、冷却水の流通路が狭まり、あるいは流通路が閉塞され、トップロールの先端部を十分に冷却することができなくなるという問題が生じ得る。 Furthermore, the upper limit temperature of the cooling water measured by the temperature measuring device is preferably 40 ° C. or lower. The temperature of the cooling water is highest in the tip end space 322 of the top roll 300 in contact with the glass ribbon. When the upper limit temperature exceeds 40 ° C., the impurity components contained in the cooling water may be deposited and deposited on the walls constituting the flow path due to the evaporation of the cooling water. Therefore, the flow path of the cooling water is narrowed or the flow path is blocked, and there may arise a problem that the top end portion of the top roll cannot be sufficiently cooled.
 このような冷却水の「詰まり」が生じると、トップロールの先端部の温度が上昇し、トップロールの先端部が溶融ガラスに接着してしまったり、先端部にガラスリボンが巻き付いたりして、歯車状の回転部材が十分に回転することができなくなるおそれがある。この場合、トップロールが適正に動作することができなくなる上、ガラスリボンの搬送にも支障が生じるおそれがある。 When such clogging of cooling water occurs, the temperature at the tip of the top roll rises, the tip of the top roll adheres to the molten glass, or a glass ribbon wraps around the tip, There is a possibility that the gear-shaped rotating member cannot sufficiently rotate. In this case, the top roll cannot operate properly, and there is a possibility that the conveyance of the glass ribbon may be hindered.
 また、フロートガラス製造を一時中断するメンテナンス時において、トップロール300の先端部320に不活性ガスを吹き付け、固着したスズを落下させることは周知の事実であるが、さらに、フロートガラス製造時とは異なり、冷却水の温度の変動幅を4℃超にするとより効果的に固着したスズを落下させることが可能となる。したがって、フロートガラス製造時におけるフロートガラスの生産性を改善できる。 In addition, it is a well-known fact that an inert gas is sprayed on the tip portion 320 of the top roll 300 and the fixed tin is dropped during maintenance when the float glass production is temporarily suspended. On the other hand, when the fluctuation range of the temperature of the cooling water exceeds 4 ° C., it is possible to drop tin that is more effectively fixed. Therefore, the productivity of float glass at the time of float glass manufacture can be improved.
 なお、本発明によるトップロール300において、回転部材325の材質は、特に限られない。通常の場合、回転部材325は、例えば鋼、または耐熱合金のような金属で構成される。金属製の回転部材325を使用することにより、回転部材325の冷却時の冷却効果が高まる。 In the top roll 300 according to the present invention, the material of the rotating member 325 is not particularly limited. In a normal case, the rotating member 325 is made of a metal such as steel or a heat-resistant alloy. By using the metal rotating member 325, the cooling effect during cooling of the rotating member 325 is enhanced.
 また、回転部材325は、表面がコーティングまたは表面改質されていても良い。コーティングの材料は、耐熱性を有するものが好ましく、例えば、金属窒化物等が使用されても良い。表面改質は、ガラスリボン、溶融スズ、スズ酸化物等に対する親和性および/または吸着性が低い特性のものが好ましい。 Further, the surface of the rotating member 325 may be coated or surface-modified. The coating material preferably has heat resistance, and for example, metal nitride or the like may be used. The surface modification preferably has a property of low affinity and / or low adsorptivity to glass ribbon, molten tin, tin oxide and the like.
 また、回転部材325は、中心が中心軸328を通る略円盤の形状で構成される。円盤の直径は、特に限られないが、例えば100~300mm(約4~12インチ)の範囲であることが好ましく、120~250mm(約5~10インチ)の範囲であることがより好ましく、150~230mm(約6~9インチ)の範囲であることがさらに好ましい。 Further, the rotating member 325 has a substantially disk shape whose center passes through the central axis 328. The diameter of the disk is not particularly limited, but is preferably in the range of, for example, 100 to 300 mm (about 4 to 12 inches), more preferably in the range of 120 to 250 mm (about 5 to 10 inches), 150 More preferably, it is in the range of ~ 230 mm (about 6-9 inches).
 内管355および外管370の材質は、特に限られない。内管355および外管370は、例えば鋼(例えばステンレス鋼)、または耐熱合金のような金属で構成されても良い。また、外管370は、表面がコーティングまたは表面改質されていても良い。コーティングの材料は、耐熱性を有するものが好ましく、例えば、金属窒化物等が使用されても良い。表面改質は、ガラスリボン、溶融スズ、スズ酸化物等に対する親和性および/または吸着性が低い特性のものが好ましい。 The material of the inner tube 355 and the outer tube 370 is not particularly limited. The inner tube 355 and the outer tube 370 may be made of a metal such as steel (for example, stainless steel) or a heat resistant alloy. Further, the outer tube 370 may have a surface coated or surface modified. The coating material preferably has heat resistance, and for example, metal nitride or the like may be used. The surface modification preferably has a property of low affinity and / or low adsorptivity to glass ribbon, molten tin, tin oxide and the like.
 図4は、本発明における冷却装置の一例である水循環系の概略図である。 FIG. 4 is a schematic view of a water circulation system as an example of the cooling device in the present invention.
 冷却装置400は、水循環系のクーリングタワー410と、手動またはインバータにより回転数が制御される冷却ファン263と、から構成される。 The cooling device 400 includes a cooling tower 410 of a water circulation system and a cooling fan 263 whose rotation speed is controlled manually or by an inverter.
 クーリングタワー410の底部の水槽部450は、管路を介してポンプ420の吸引口に接続され、ポンプ420の吐出口は管路を介して熱交換器430の入口に接続され、熱交換器430の出口は管路を介してクーリングタワー410の上方側面に接続されている。 The water tank 450 at the bottom of the cooling tower 410 is connected to the suction port of the pump 420 via a pipe line, and the discharge port of the pump 420 is connected to the inlet of the heat exchanger 430 via the pipe line. The outlet is connected to the upper side surface of the cooling tower 410 via a pipe line.
 クーリングタワー410の内部上方には冷却フィン440が設置され、水槽部450の水が通過する部分には、樹脂または金属製の水処理材460が設置されている。クーリングタワー410には、丸型と角型があるが、水処理材460もそれに合わせて丸型と角型にすることが好ましい。 Cooling fins 440 are installed above the cooling tower 410, and a water treatment material 460 made of resin or metal is installed in a portion of the water tank 450 through which water passes. Although the cooling tower 410 includes a round shape and a square shape, the water treatment material 460 is preferably round and square according to the shape.
 次に、図5を参照して、本発明によるガラスの製造方法について、説明する。 Next, a glass manufacturing method according to the present invention will be described with reference to FIG.
 本発明によるガラスの製造方法は、前述のフロート法に基づくものであり、当該方法は、
 (1)フロートバスに、溶融ガラスを導入するステップ(ステップS510)と、
 (2)溶融ガラスをフロートバスの上流側から下流側に搬送させ、ガラスリボンを形成するステップ(ステップS520)と、
 (3)トップロールの先端部を前記ガラスリボンの進行方向の所定領域、すなわちフロートバスの上流領域におけるガラスリボンの両側の上面に押し付けながらトップロールをガラスリボンの進行方向に回転させることにより、前記ガラスリボンの収縮を抑制するステップであって、前記トップロールは、前記先端部に、先端部空間を有し、該先端部空間には、温度の変動幅が日単位で4℃以内である冷却水が流通されるステップ(ステップS530)と、を有する。
The method for producing glass according to the present invention is based on the aforementioned float method,
(1) introducing molten glass into the float bath (step S510);
(2) transporting the molten glass from the upstream side of the float bath to the downstream side to form a glass ribbon (step S520);
(3) By rotating the top roll in the traveling direction of the glass ribbon while pressing the tip of the top roll against a predetermined region in the traveling direction of the glass ribbon, that is, the upper surface of both sides of the glass ribbon in the upstream region of the float bath, A step of suppressing shrinkage of the glass ribbon, wherein the top roll has a tip space at the tip, and the tip space has a temperature fluctuation range of 4 ° C. or less per day. And a step (Step S530) through which water is circulated.
 前述のように、トップロール表面に固着したスズが生産中にガラスリボン上、または溶融スズ浴内に落下することを抑制し、ガラスリボンの板幅変動、またはガラスリボンのボトム面の凹状の気泡欠点を抑制する。本発明は、薄板(板厚:0.1mm~1.0mm)の無アルカリガラスガラス板の製造に有効である。 As described above, tin stuck to the surface of the top roll is prevented from falling onto the glass ribbon or into the molten tin bath during production, and fluctuations in the plate width of the glass ribbon, or concave air bubbles on the bottom surface of the glass ribbon. Suppress disadvantages. The present invention is effective for producing a non-alkali glass glass plate having a thin plate (plate thickness: 0.1 mm to 1.0 mm).
 2500×2200×0.7mmの大きさの無アルカリガラス(AN100:旭硝子商品名)を製造する際の実施例を以下に示す。 Examples for producing non-alkali glass (AN100: Asahi Glass trade name) having a size of 2500 × 2200 × 0.7 mm are shown below.
 図6は、上記条件における冷却水温度Tb、外気温度Taの日変動を示したグラフである。グラフの縦軸は冷却水温度Tbおよび外気温度Taを表わしている。実線は冷却水温度を表わしている。外気温度は破線で表わされ、その値はフロートバス建屋内に設置した温度測定装置による。また、縦軸の変動量は、それぞれの最低温度を0℃として規格化した。規格化した冷却水温度Tb、外気温度TaをそれぞれTb’、Ta’とした。 FIG. 6 is a graph showing daily fluctuations in the cooling water temperature Tb and the outside air temperature Ta under the above conditions. The vertical axis of the graph represents the cooling water temperature Tb and the outside air temperature Ta. The solid line represents the cooling water temperature. The outside air temperature is represented by a broken line, and the value depends on the temperature measuring device installed in the float bath building. In addition, the fluctuation amount on the vertical axis was normalized by setting each minimum temperature to 0 ° C. The normalized cooling water temperature Tb and outside air temperature Ta were set to Tb ′ and Ta ′, respectively.
 図6より、ボトムケーシング外表面の外気温度Taが、時間の経過と共に大きく変動しているにも関わらず、ボトムケーシング外表面の冷却水温度Tbは大きく変動せず、その日変動幅は所望の範囲内に収まっている。 FIG. 6 shows that although the outside air temperature Ta on the outer surface of the bottom casing varies greatly with the passage of time, the cooling water temperature Tb on the outer surface of the bottom casing does not vary greatly, and the daily fluctuation range is a desired range. It is within.
 実施例1は、冷却水温度の変動幅を日単位で2℃以内とした。実施例2は、前記変動幅を日単位で4℃以内とし、1時間単位で3℃以内とした。実施例3は、冷却水温度の変動幅を日単位で4℃以内とし、1時間単位で3℃超とした。 In Example 1, the fluctuation range of the cooling water temperature was set to 2 ° C. or less per day. In Example 2, the fluctuation range was within 4 ° C. on a daily basis, and within 3 ° C. on an hourly basis. In Example 3, the fluctuation range of the cooling water temperature was within 4 ° C. per day, and was over 3 ° C. per hour.
 比較例1は、外気温の変動に応じて、冷却水の温度を成り行きとしたため、前記変動幅が日単位で4℃を超えた。比較例2は、フロートバス外で測定した冷却水の上限温度が40℃を超えるように冷却ファンの回転数を調整した。 In Comparative Example 1, since the temperature of the cooling water was determined according to the fluctuation of the outside air temperature, the fluctuation range exceeded 4 ° C. on a daily basis. In Comparative Example 2, the number of rotations of the cooling fan was adjusted so that the upper limit temperature of the cooling water measured outside the float bath exceeded 40 ° C.
 評価指標として、下記(1)~(3)を用いた。
(1)ガラスリボンの板幅変動発生頻度(ここでいう変動は4インチ以上の変動)
(2)トップロールに固着したスズ落下発生頻度
(3)トップロール先端部へのガラスリボンの巻き付きの有無
表1に評価結果、表2に評価指標の定義を示す。(1)、(3)はバス内監視カメラまたは覗き窓からフロートバス内を観察することで確認した。(2)は、バス内監視カメラまたは覗き窓からフロートバス内を観察することで確認するのは困難なため、徐冷工程後の欠点検出機で確認した。
The following (1) to (3) were used as evaluation indexes.
(1) Glass ribbon fluctuation occurrence frequency (the fluctuation here is a fluctuation of 4 inches or more)
(2) Tin fall occurrence frequency fixed to top roll (3) Presence / absence of winding of glass ribbon around top end of top roll Table 1 shows the evaluation results and Table 2 shows the definition of the evaluation index. (1) and (3) were confirmed by observing the inside of the float bath from the monitoring camera in the bus or the observation window. Since (2) is difficult to confirm by observing the inside of the float bath from the in-bus monitoring camera or the observation window, it was confirmed by a defect detector after the slow cooling step.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 冷却水の温度の変動幅を日単位で4℃以内にしたことで、(1)ガラスリボンの板幅変動発生頻度、及び(2)トップロールに固着したスズ落下発生頻度を抑制できることを確認した。さらに、変動幅を1時間単位で3℃以内にしたことで、落下発生頻度をより抑制できることを確認した。また、フロートバス外で測定した冷却水の上限温度を40℃以下にすれば、(3)トップロール先端部へのガラスリボンの巻き付きが発生しないことを確認した。 By making the fluctuation range of the temperature of the cooling water within 4 ° C. per day, it was confirmed that (1) the occurrence frequency of fluctuations in the width of the glass ribbon and (2) the occurrence frequency of tin falling fixed to the top roll could be suppressed. . Furthermore, it was confirmed that the frequency of falling can be further suppressed by setting the fluctuation range within 3 ° C. in units of one hour. Moreover, if the upper limit temperature of the cooling water measured outside the float bath was set to 40 ° C. or less, (3) it was confirmed that the glass ribbon was not wound around the top roll tip.
 以上、本発明の実施形態について詳説したが、本発明は、上述した実施形態に限定されることはなく、本発明の範囲を逸脱することなく、上述した実施形態に種々の変形および置換を加えることができる。 As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited to embodiment mentioned above, A various deformation | transformation and substitution are added to embodiment mentioned above, without deviating from the scope of the present invention. be able to.
本出願は、2012年12月11日出願の日本特許出願2012-270240に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2012-270240 filed on Dec. 11, 2012, the contents of which are incorporated herein by reference.
 本発明によれば、トップロール表面に固着したスズが生産中にガラスリボン上、または溶融スズ浴内に落下することを抑制し、ガラスリボンの板幅変動を抑制することができ、フロートガラスの生産性を改善できる。該フロートガラスは、液晶表示装置等のディスプレイ用のガラス基板等として有用である。 According to the present invention, tin fixed to the top roll surface can be prevented from falling on the glass ribbon or into the molten tin bath during production, and the fluctuation of the plate width of the glass ribbon can be suppressed. Productivity can be improved. The float glass is useful as a glass substrate for a display such as a liquid crystal display device.
 200…フロートガラス製造装置、210…導入部、220…溶融スズ、230…フロートバス、232…上流側、234…下流側、240…ガラスリボン、250…冷却水循環路、260…温度測定装置、261…温度表示装置、262…インバータ、263…冷却ファン、264…通信ケーブル、265…温度制御装置、280…搬送装置、281…ドロスボックス、285…徐冷炉、300…トップロール、320…先端部、322…先端部空間、325…回転部材、326…突起部、328…中心軸、350…支柱部、355…内管、360…内側空間、370…外管、380…外側空間、400…冷却装置、410…クーリングタワー、420…ポンプ、430…熱交換器、440…冷却フィン、450…水槽部、460…水処理材 DESCRIPTION OF SYMBOLS 200 ... Float glass manufacturing apparatus, 210 ... Introduction part, 220 ... Molten tin, 230 ... Float bath, 232 ... Upstream side, 234 ... Downstream side, 240 ... Glass ribbon, 250 ... Cooling water circulation path, 260 ... Temperature measuring device, 261 ... Temperature display device, 262 ... Inverter, 263 ... Cooling fan, 264 ... Communication cable, 265 ... Temperature control device, 280 ... Transport device, 281 ... Dross box, 285 ... Slow cooling furnace, 300 ... Top roll, 320 ... Tip, 322 ... tip end space, 325 ... rotating member, 326 ... projection part, 328 ... central axis, 350 ... strut part, 355 ... inner pipe, 360 ... inner space, 370 ... outer pipe, 380 ... outer space, 400 ... cooling device, 410 ... Cooling tower, 420 ... Pump, 430 ... Heat exchanger, 440 ... Cooling fin, 450 ... Water tank part, 460 ... Water treatment Wood

Claims (8)

  1.  溶融ガラスリボンが搬送されるフロートバスと、
     前記溶融ガラスリボンの収縮の抑制に使用されるトップロールと、
     を備えるフロートガラス製造装置であって、
     前記トップロールは、前記溶融ガラスリボンと接触する、回転可能な先端部を有し、
     該先端部は、内部に先端部空間を有する中空構造となっており、かつ当該先端部空間に冷却水を供給する流通路を有し、
     前記冷却水の温度を測定するフロートバス外に設置された温度測定装置と、
     フロートバス内で熱交換により温度が上昇した前記冷却水を冷却する冷却装置と、
     を備える温度制御装置によって、
     前記冷却水の温度の変動幅が日単位で4℃以内に制御されることを特徴とするフロートガラス製造装置。
    A float bath in which the molten glass ribbon is conveyed;
    A top roll used for suppressing shrinkage of the molten glass ribbon;
    A float glass manufacturing apparatus comprising:
    The top roll has a rotatable tip that contacts the molten glass ribbon,
    The tip has a hollow structure having a tip space inside, and has a flow passage for supplying cooling water to the tip space.
    A temperature measuring device installed outside the float bath for measuring the temperature of the cooling water;
    A cooling device for cooling the cooling water whose temperature has been increased by heat exchange in the float bath;
    With a temperature control device comprising
    The float glass manufacturing apparatus, wherein a fluctuation range of the temperature of the cooling water is controlled within 4 ° C. per day.
  2.  前記変動幅が1時間単位で3℃以内に制御される請求項1に記載のフロートガラス製造装置。 The float glass manufacturing apparatus according to claim 1, wherein the fluctuation range is controlled within 3 ° C per hour.
  3.  前記冷却装置は、
     水循環系のクーリングタワーと、
     手動またはインバータにより回転数が制御される冷却ファンと、
     を備える請求項1または請求項2に記載のフロートガラス製造装置。
    The cooling device is
    A water cooling tower,
    A cooling fan whose rotational speed is controlled manually or by an inverter;
    The float glass manufacturing apparatus of Claim 1 or Claim 2 provided with these.
  4.  前記温度測定装置によって測定された、前記冷却水の上限温度を40℃以下とする請求項1乃至3のいずれか1項に記載のフロートガラス製造装置。 The float glass manufacturing apparatus according to any one of claims 1 to 3, wherein an upper limit temperature of the cooling water measured by the temperature measuring apparatus is 40 ° C or lower.
  5.  フロートバスに溶融ガラスを導入するステップと、
     前記溶融ガラスを前記フロートバスの上流側から下流側に搬送させ、ガラスリボンを形成するステップと、
     トップロールの先端部を前記ガラスリボンの進行方向の所定領域の両側の上面に押し付けながら回転させることにより、前記ガラスリボンの収縮を抑制するステップと、
     を有する、フロートガラス製造方法であって、
     前記トップロールは、回転可能な先端部を有し、
     該先端部は、内部に先端部空間を有する中空構造となっており、かつ当該先端部空間に冷却水を供給する流通路を有し、
     前記冷却水の温度をフロートバス外で測定する温度測定手段と、
     フロートバス内で熱交換により温度が上昇した前記冷却水を冷却する冷却手段と、
     を有する温度制御手段によって、
     前記先端部空間および前記流通路において、前記冷却水の温度の変動幅が日単位で4℃以内に制御されることを特徴とするフロートガラス製造方法。
    Introducing molten glass into the float bath;
    Transporting the molten glass from the upstream side of the float bath to the downstream side to form a glass ribbon;
    Suppressing the shrinkage of the glass ribbon by rotating while pressing the top end of the top roll against the upper surfaces of both sides of the predetermined region in the traveling direction of the glass ribbon;
    A float glass manufacturing method comprising:
    The top roll has a rotatable tip,
    The tip has a hollow structure having a tip space inside, and has a flow passage for supplying cooling water to the tip space.
    Temperature measuring means for measuring the temperature of the cooling water outside the float bath; and
    Cooling means for cooling the cooling water whose temperature has risen due to heat exchange in the float bath;
    By temperature control means having
    The float glass manufacturing method, wherein a fluctuation range of the temperature of the cooling water is controlled within 4 ° C. per day in the leading end space and the flow passage.
  6.  前記変動幅が1時間単位で3℃以内に制御される請求項5に記載のフロートガラス製造方法。 The method for producing a float glass according to claim 5, wherein the fluctuation range is controlled within 3 ° C in units of one hour.
  7.  前記冷却手段は、
     水循環系のクーリングタワーと、
     手動またはインバータにより回転数が制御される冷却ファンと、
     から成る請求項5または請求項6に記載のフロートガラス製造方法。
    The cooling means is
    A water cooling tower,
    A cooling fan whose rotational speed is controlled manually or by an inverter;
    The float glass manufacturing method according to claim 5 or 6, comprising:
  8.  前記フロートバス外で測定した冷却水の上限温度を40℃以下とする請求項5乃至7のいずれか1項に記載のフロートガラス製造方法。 The float glass manufacturing method according to any one of claims 5 to 7, wherein an upper limit temperature of the cooling water measured outside the float bath is 40 ° C or lower.
PCT/JP2013/082492 2012-12-11 2013-12-03 Float glass production device and float glass production method WO2014091967A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157015400A KR102120201B1 (en) 2012-12-11 2013-12-03 Float glass production device and float glass production method
JP2014551992A JPWO2014091967A1 (en) 2012-12-11 2013-12-03 Float glass manufacturing apparatus and float glass manufacturing method
CN201380064954.2A CN104837780A (en) 2012-12-11 2013-12-03 Float glass production device and float glass production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-270240 2012-12-11
JP2012270240 2012-12-11

Publications (1)

Publication Number Publication Date
WO2014091967A1 true WO2014091967A1 (en) 2014-06-19

Family

ID=50934259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082492 WO2014091967A1 (en) 2012-12-11 2013-12-03 Float glass production device and float glass production method

Country Status (5)

Country Link
JP (1) JPWO2014091967A1 (en)
KR (1) KR102120201B1 (en)
CN (1) CN104837780A (en)
TW (1) TW201422540A (en)
WO (1) WO2014091967A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016073262A1 (en) * 2014-11-03 2016-05-12 Ppg Industries Ohio, Inc. Automated float glass system
KR20190033442A (en) 2017-09-21 2019-03-29 에이지씨 가부시키가이샤 Borosilicate glass and method for producing the same
KR20200018290A (en) 2018-08-09 2020-02-19 에이지씨 가부시키가이샤 Cooling structure, float glass production device and float glass production method
CN112456774A (en) * 2020-12-21 2021-03-09 成都金杉玻璃工艺有限公司 Quick cooling device is used in glass production
JP2021050137A (en) * 2014-11-19 2021-04-01 フィブ スタン Device for manipulating edge of float glass ribbon, comprising inclined wheel, and installation comprising such device
CN113816590A (en) * 2021-10-28 2021-12-21 河南省中联玻璃有限责任公司 Ultra-white glass based on float process and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110407445B (en) * 2019-07-09 2021-11-26 四川虹科创新科技有限公司 System and method for detecting and processing plate width accident in float glass forming process
CN110357406A (en) * 2019-08-21 2019-10-22 河北南玻玻璃有限公司 A kind of side water installations changing glass following table edge stress

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137156A (en) * 1987-11-25 1989-05-30 Mitsubishi Motors Corp Method of controlling operation of cooling fan for cooling tower
JPH0222336U (en) * 1988-07-29 1990-02-14
JP2004298918A (en) * 2003-03-31 2004-10-28 Nippon Steel Corp Continuous casting roll excellent in thermal cracking resistance and method for cooling the same
WO2010147189A1 (en) * 2009-06-19 2010-12-23 旭硝子株式会社 Top roller, float glass production device, and float glass production method
JP2012086989A (en) * 2010-10-15 2012-05-10 Nippon Electric Glass Co Ltd Glass plate manufacturing apparatus and glass plate manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2743346Y (en) * 2004-06-25 2005-11-30 中国洛阳浮法玻璃集团有限责任公司 Constant temperature control device of float glass production line cooling water
JP5056035B2 (en) 2007-02-05 2012-10-24 旭硝子株式会社 Manufacturing method of plate glass by float method
WO2012060197A1 (en) * 2010-11-04 2012-05-10 旭硝子株式会社 Method for producing float plate glass and apparatus for producing float plate glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137156A (en) * 1987-11-25 1989-05-30 Mitsubishi Motors Corp Method of controlling operation of cooling fan for cooling tower
JPH0222336U (en) * 1988-07-29 1990-02-14
JP2004298918A (en) * 2003-03-31 2004-10-28 Nippon Steel Corp Continuous casting roll excellent in thermal cracking resistance and method for cooling the same
WO2010147189A1 (en) * 2009-06-19 2010-12-23 旭硝子株式会社 Top roller, float glass production device, and float glass production method
JP2012086989A (en) * 2010-10-15 2012-05-10 Nippon Electric Glass Co Ltd Glass plate manufacturing apparatus and glass plate manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016073262A1 (en) * 2014-11-03 2016-05-12 Ppg Industries Ohio, Inc. Automated float glass system
KR20170063863A (en) * 2014-11-03 2017-06-08 비트로, 에스.에이.비. 데 씨.브이. Automated float glass system
KR101974189B1 (en) 2014-11-03 2019-04-30 비트로 플랫 글래스 엘엘씨 Automated float glass system
JP2021050137A (en) * 2014-11-19 2021-04-01 フィブ スタン Device for manipulating edge of float glass ribbon, comprising inclined wheel, and installation comprising such device
JP7065934B2 (en) 2014-11-19 2022-05-12 フィブ スタン A device for manipulating the edges of float glass ribbons with tilted wheels, and equipment with such devices.
KR20190033442A (en) 2017-09-21 2019-03-29 에이지씨 가부시키가이샤 Borosilicate glass and method for producing the same
KR20200018290A (en) 2018-08-09 2020-02-19 에이지씨 가부시키가이샤 Cooling structure, float glass production device and float glass production method
CN112456774A (en) * 2020-12-21 2021-03-09 成都金杉玻璃工艺有限公司 Quick cooling device is used in glass production
CN113816590A (en) * 2021-10-28 2021-12-21 河南省中联玻璃有限责任公司 Ultra-white glass based on float process and preparation method thereof

Also Published As

Publication number Publication date
JPWO2014091967A1 (en) 2017-01-12
KR102120201B1 (en) 2020-06-08
KR20150095662A (en) 2015-08-21
CN104837780A (en) 2015-08-12
TW201422540A (en) 2014-06-16

Similar Documents

Publication Publication Date Title
WO2014091967A1 (en) Float glass production device and float glass production method
TWI527777B (en) Manufacture of glass plate and manufacturing method of glass plate
WO2010147189A1 (en) Top roller, float glass production device, and float glass production method
JP6280503B2 (en) Process and apparatus for forming glass ribbon
TWI480251B (en) A manufacturing method of a glass plate and a manufacturing apparatus for a glass plate
JP5418228B2 (en) Sheet glass manufacturing method
JP5704362B2 (en) Float plate glass manufacturing method and float plate glass manufacturing apparatus
TWI393684B (en) Float bath system for manufacturing float glass
KR101844319B1 (en) Method and apparatus for making glass sheet
TWI568696B (en) A glass substrate manufacturing method and a glass substrate manufacturing apparatus
JP2015504411A (en) Equipment for reducing radiant heat loss from molded products in glass forming process
JP7438285B2 (en) How to reduce the lifetime of air bubbles on the surface of glass melt
TWI588101B (en) Apparatus and methods for providing a clean glass-making environment
JP2015502315A5 (en)
CN104445868A (en) Method for manufacturing glass substrate
US20180009695A1 (en) Method for manufacturing float glass, and float glass
CN104797539A (en) Slow cooling device, slow cooling method, device for manufacturing glass plate, and method for manufacturing glass plate
KR20160125288A (en) Apparatus for producing float glass and method for producing float glass
TW201226337A (en) Apparatus for producing float plate glass and method for producing float plate glass
CN106007342B (en) Backup roll, glass manufacturing apparatus, and glass manufacturing method
CN104743776A (en) Method for producing float plate glass
TWI454435B (en) Glass plate manufacturing method
JP6630217B2 (en) Manufacturing method of glass plate
CN105377773A (en) Manufacturing method for glass substrate and manufacturing apparatus for glass substrate
TW201802043A (en) System and method for roll upset management

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863423

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551992

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157015400

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863423

Country of ref document: EP

Kind code of ref document: A1