WO2014091532A1 - Method for operating hot chamber die casting machine - Google Patents

Method for operating hot chamber die casting machine Download PDF

Info

Publication number
WO2014091532A1
WO2014091532A1 PCT/JP2012/081904 JP2012081904W WO2014091532A1 WO 2014091532 A1 WO2014091532 A1 WO 2014091532A1 JP 2012081904 W JP2012081904 W JP 2012081904W WO 2014091532 A1 WO2014091532 A1 WO 2014091532A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
mold
injection plunger
plunger
molten metal
Prior art date
Application number
PCT/JP2012/081904
Other languages
French (fr)
Japanese (ja)
Inventor
武宏 梅木
剛士 石川
達義 宮崎
Original Assignee
Ykk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ykk株式会社 filed Critical Ykk株式会社
Priority to PCT/JP2012/081904 priority Critical patent/WO2014091532A1/en
Priority to CN201280075351.8A priority patent/CN104870122B/en
Priority to TW102142748A priority patent/TWI519363B/en
Publication of WO2014091532A1 publication Critical patent/WO2014091532A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/02Hot chamber machines, i.e. with heated press chamber in which metal is melted
    • B22D17/04Plunger machines

Definitions

  • the present invention relates to an operation method of a hot chamber die cast machine.
  • a hot chamber die casting machine shown in FIG. 10 is known. That is, a gooseneck 3 is provided in a molten metal 2 of a melting pot 1 called a pot or crucible filled with a molten metal. And a runner 6 communicating with the injection chamber 5. An injection plunger 7 is fitted into the injection chamber 5 so as to be movable up and down, and the hot water supply port 4 is opened and closed by moving the injection plunger 7 up and down by an injection cylinder (not shown).
  • the leading end 6 a of the runner 6 is positioned above the upper surface of the molten metal 2, that is, the pot hot bath surface 2 a, and a nozzle 8 is provided at the leading end 6 a of the runner 6.
  • the nozzle 8 is continuous with the cavity 9 a of the mold 9.
  • the fixed mold 9b and the movable mold 9c are closed and opened by a mold clamping mechanism (not shown).
  • the above-described hot chamber die casting machine operates as follows.
  • the mold 9 is closed, and the injection plunger 7 opens the hot water supply port 4 and supplies the molten metal 2 to the injection chamber 5.
  • the hot water surface 2b is the same height as the pot hot water surface 2a.
  • the hot water inlet 4 is closed and further moved downward to pressurize the molten metal 2 in the injection chamber 5. Then, it is injected into the cavity 9a of the mold 9 (injection process).
  • FIG. 11 shows the state where the injection is completed, and the injection plunger 7 is at the lower injection completion position.
  • the hot water supply port 4 is opened and the inside of the above-mentioned space 10 is under negative pressure.
  • the molten metal 2 in 1 sequentially flows into the injection chamber 5 from the hot water supply port 4 (hot water supply), the molten metal surface 2b of the molten metal 2 in the runway 6 rises sequentially, and the space 10 becomes gradually smaller.
  • the molten metal 2 is filled up to the nozzle 8 as shown in FIG. In this state, the pressure inside the nozzle 8 is lower than the atmospheric pressure.
  • the movable mold 9c of the mold 9 is moved and opened as shown in FIG. 15, and the injection molded product 11 in the cavity 9a is taken out.
  • the inside of the nozzle 8 communicates with the atmosphere, so that the molten metal 2 in the injection chamber 5 sequentially flows out of the hot water inlet 4 into the melting pot 1 due to the difference in height between the nozzle 8 and the pot hot water surface 2a, for a predetermined time.
  • the hot water surface 2b in the runner 6 becomes the same height as the pot hot water surface 2a, and the space 10 becomes larger. From this state, the movable die 9c is brought into contact with the fixed die 9b and the die is closed, and the state where the die clamping is completed is the state shown in FIG.
  • the operation method of injection molding an injection molded product with a conventional hot chamber die casting machine is as described above, it continues to the end of the runner 6 and the nozzle 8 in a state where the mold clamping is completed as shown in FIG.
  • the injection plunger 7 is moved downward at high speed from the mold clamping completion state shown in FIG. 10 and the injection operation is performed, the air in the space 10 enters the cavity 9a of the mold 9 and is injected. Since a cast hole is generated in the molded product and the quality of the injection molded product is deteriorated, the injection plunger 7 is slowly moved downward from the mold clamping completion state shown in FIG. The nest is not generated.
  • Patent Document 1 discloses an operation method of a hot chamber die cast machine that solves this problem, does not generate a cast hole in an injection molded product, and shortens the time required for injection molding.
  • a metal sensor for detecting the molten metal is provided in the nozzle, and the amount of the molten metal in the nozzle (the height of the molten metal surface) is detected by the metal sensor so that the size of the space can be known.
  • the molten metal in the nozzle reaches the set amount, it is possible to detect that the space has reached the set size. Then, in a state where the mold is opened (for example, the state shown in FIG. 15 and FIG.
  • the injection plunger is moved slowly downward to send the molten metal in the injection chamber to the runner and the nozzle.
  • stop the injection plunger close the mold and move the injection plunger downward at high speed to inject the molten metal into the mold chamber. This is an operation method in which injection molding is performed.
  • the metal sensor since the metal sensor detects the molten metal, the metal sensor has a problem in durability because it touches the molten metal at a high temperature. Moreover, since the amount of the molten metal in the nozzle is detected based on the detection of the molten metal by the metal sensor, the size of the space is set to the set size. The size of cannot be set freely.
  • the object of the present invention is to prevent the occurrence of a cast hole due to air mixing in an injection molded product, to shorten the time required for injection molding, and to be excellent in durability and to freely set the size of the space.
  • the operation method of the hot chamber die-casting machine is to prevent the occurrence of a cast hole due to air mixing in an injection molded product, to shorten the time required for injection molding, and to be excellent in durability and to freely set the size of the space.
  • the molten metal 2 in the melting pot 1 is moved up and down the injection plunger 7 of the gooseneck 3, so that the cavity of the mold 9 passes through the filler port 4, the injection chamber 5, the runner 6, and the nozzle 8.
  • the operation method of the hot chamber die-casting machine which injects into 9a and inject-molds the injection molded article 11, With the mold 9 closed, the injection plunger 7 is moved downward from the injection molding start position to the lowest injection completion position, and the molten metal in the injection chamber 5 is injected into the cavity 9 a of the mold 9.
  • a hot chamber die casting machine operating method comprising a fifth step of closing the mold 9 after taking out the injection molded product 11 from the mold 9.
  • the injection plunger 7 is moved downward from the set position to fill the space 10 with the molten metal, so that the injection plunger 7 stops at the filling completion position,
  • the operation method of the hot chamber die cast machine can be set such that the injection plunger 7 is moved upward by a set stroke from the filling completion position to the injection molding start position.
  • the size of the space 10 can be made to match the set stroke from the filling completion position of the injection plunger 7 to the injection forming start position, and the size of the space 10 can be changed by changing the set stroke. be able to.
  • the stroke detecting means 30 for detecting the movement stroke of the injection plunger 7 detects the stroke in which the injection plunger 7 has moved upward from the filling completion position, and the injection plunger when the detected stroke is the set stroke. 7 can be used as the operation method of the hot chamber die cast machine in which the injection molding start position is stopped.
  • the injection plunger 7 can be accurately set to the injection molding start position.
  • the setting position of the injection plunger 7 is detected based on the movement stroke of the injection plunger 7 detected by the stroke detection means 30 and the injection plunger 7 is moved according to the detected position. It can be set as the operation method of the hot chamber die-cast machine which controls and sets to a set position.
  • the injection plunger 7 can be stopped at the set position with high accuracy.
  • the filling completion position of the injection plunger 7 is set as a target position, and when the set target position and the actual filling completion position are different, the first injection molding operation is performed at the next time.
  • the operation method of the hot chamber die-casting machine in which the filling completion position is corrected by increasing / decreasing the waiting time in the two steps can be obtained.
  • the filling completion position when the filling completion position is changed by repeating the injection molding operation a plurality of times, the filling completion position can be corrected to the target position.
  • the operation of the hot chamber die cast machine is such that the injection plunger 7 is moved from the filling completion position to the sagging prevention position to form the space 10 in the nozzle side portion, and then the mold 9 is opened. It can be a method.
  • the molten metal does not flow down from the nozzle 8 when the mold 9 is opened.
  • the size of the space 10 formed in the nozzle side part in the second step is the operation method of the hot chamber die cast machine in which the molten metal in the nozzle 8 is separated from the mold 9. Can do.
  • the fixed mold 9b of the mold 9 is a hot chamber die cast machine in which the hot water inlet 9d is always in contact with the nozzle 8, the movable mold 9c is moved, the mold is closed, and the mold is opened.
  • the operation method can be as follows.
  • the operation method of the hot chamber die cast machine can be set such that the setting position of the injection plunger 7 is changed after performing the injection molding operation a plurality of times.
  • the space 10 at the start of injection molding has a set size, and even if the injection plunger 7 is moved to the injection completion position at a high speed, a cast hole due to air mixing does not occur in the injection molded product.
  • the time required for injection molding can be shortened.
  • the size of the space 10 can be freely set by changing the injection molding start position of the injection plunger 7.
  • the hot chamber die cast machine of the present invention is similar to the conventional hot chamber die cast machine shown in FIG. 10 and includes a melting pot 1, a gooseneck 3, a nozzle 8, and a mold 9. , An injection cylinder 20 for moving the injection plunger 7 up and down, and means 30 for detecting the movement stroke of the injection plunger 7 are provided.
  • the gooseneck 3 which is an injection part is submerged in the molten metal 2 of the melting pot 1 and the molten metal in the mold 9 (for example, an alloy such as zinc, aluminum, magnesium, copper, etc.) Is press-fitted.
  • the injection cylinder 20 is extended, contracted, and stopped by a command from the controller 40.
  • the expansion operation and the contraction operation are performed.
  • the valve 22 is switched by a command from the controller 40. It is done.
  • the injection cylinder 20 is extended, the injection plunger 7 is moved downward, and is moved upward by being contracted.
  • the stroke detection means 30 is a sensor using, for example, a laser, and the detected stroke value is sent to the controller 40.
  • the injection plunger 7 moves up and down as will be described later.
  • the supply amount of the fluid pressure source 21 per unit time is increased or decreased, or the fluid pressure source 21 is moved.
  • the amount of fluid pressure supplied per unit time to the expansion chamber 23 and the contraction chamber 24 of the injection cylinder 20 can be increased or decreased by providing a throttle in the connection circuit between the injection cylinder 20 and the opening area of the valve 22. good.
  • the state shown in FIG. 1 is obtained when the first injection molding operation starts after the long-term stop or after the mold replacement, that is, when the first injection molding operation starts. That is, the mold 9 is closed, and the molten metal in the runner 6 of the gooseneck 3 is at a height up to the middle of the runner 6, and its molten metal surface 2 b is the same height as the pot molten metal surface 2 a, and the nozzle 8
  • the space 10 formed continuously inside the nozzle 8 or the tip of the runner 6, that is, the size of the space 10 formed in the nozzle side portion is the same as the state shown in FIG. is there.
  • the first injection molding operation is as follows. 1, the injection cylinder 20 is extended from the state where the first injection molding operation is started, and the injection plunger 7 is moved downward to inject the molten metal in the injection chamber 5 into the cavity 9a of the mold 9. Then, the injection molded product 11 is molded by the injection plunger 7 being at the injection completion position shown in FIG.
  • the injection completion position of the injection plunger 7 in the injection completion state shown in FIG. 2 is determined by the pressing force of the injection plunger 7 (extension thrust of the injection cylinder 20) and the volume of the cavity 9a of the mold 9. That is, when the molten metal 2 is filled in the cavity 9a of the mold 9 at a predetermined pressure, the injection plunger 7 does not move any further, and as shown in FIG. Since the upper hot water supply position is always the same (for example, top dead center), the injection completion position of the injection plunger 7 is determined as described above.
  • the return operation after the completion of injection is as follows.
  • the injection cylinder 20 is contracted and operated from the injection completion state, and the injection plunger 7 is moved upward to return.
  • the molten metal at the tip of the nozzle 8 is separated from the mold 9, and the inside of the runner 6
  • the molten metal surface 2b of the molten metal gradually falls, and a negative pressure space 10 is generated at the nozzle side portion.
  • the injection plunger 7 is moved upward to the hot water supply position shown in FIG.
  • the above-described operation is the first step.
  • the hot water supply port 4 When the injection plunger 7 moves upward to the hot water supply position (top dead center) shown in FIG. 4, the hot water supply port 4 is opened, and the injection chamber 5 and the inside of the melting pot 1 communicate with each other through the hot water supply port 4.
  • the molten metal 2 in 1 is supplied into the injection chamber 5 from the hot water supply port 4, and the molten metal surface 2b in the runner 6 rises sequentially as time passes. That is, it becomes a hot water supply state.
  • the injection plunger 7 is waited at a hot water supply position for a set time so that a space 10 is formed in the nozzle side portion. That is, when waiting at the hot water supply position for a long time, the space 10 is filled with the molten metal. Then, after the set time has elapsed, the injection plunger 7 is moved downward again to stop at the set position where the hot water supply port 4 is closed as shown in FIG. This set position is above the injection completion position shown in FIG. The above-described operation is the second step of forming the space 10 in the nozzle side portion.
  • the molten metal 2 in the melting pot 1 is not supplied into the injection chamber 5 and a space 10 is formed in the nozzle side portion. That is, if the aforementioned hot water supply state continues for a long time, the molten metal fills the nozzle 8 and the space 10 is not formed in the nozzle side portion, but the nozzle side portion (inside the nozzle 8 is controlled by controlling the time of the hot water supply state. Since the amount of the molten metal filled in the top of the runner 6) can be adjusted, the time of the hot water supply state (that is, the time of waiting the injection plunger 7 at the hot water supply position) is set as the set time, so that the nozzle side portion A space 10 can be formed.
  • the size of the space 10 that changes per unit time depends on the amount of hot water supplied from the hot water supply port 4 into the injection chamber 5 per unit time, the volume of the runner 6, and the volume of the nozzle 8. Can be calculated. Moreover, the size of the space 10 when the injection plunger 7 moves to the hot water supply position shown in FIG. 4 and starts hot water supply from the hot water inlet 4 into the injection chamber 5 is the volume of the injection chamber 5 and the runner 6. And the volume of the nozzle 8 and the movement stroke of the injection plunger 7 from the injection completion position to the hot water supply position.
  • the controller 40 switches the valve 22 to extend the injection cylinder 20 and starts to move the injection plunger 7 downward. To set position.
  • the size of the space 10 described above is preferably such that the molten metal in the nozzle 8 is not in contact with the mold 9, for example, the injection molded product 11 in the cavity 9a.
  • the molten metal in the nozzle 8 is not easily cooled by the cooling heat for cooling the injection molded product 11 in the cavity 9a of the mold 9, and the injection molding operation described later is easy to perform.
  • the operation of stopping the injection plunger 7 at the aforementioned set position can be performed as follows.
  • the set position is set in advance with reference to the hot water supply position shown in FIG.
  • the stroke detecting means 30 detects the movement stroke of the injection plunger 7 from the hot water supply position, and obtains the position of the injection plunger 7 from the detected stroke.
  • the injection cylinder 20 is stopped using the valve 22 as a neutral position, and the injection plunger 7 is set to the set position shown in FIG.
  • a hot water supply position and a set position of the injection plunger 7 are set in advance, and a position difference (height difference) between the hot water supply position and the set position is obtained by calculation or actual measurement and input to the controller 40.
  • the stroke detecting means 30 detects the movement stroke in which the injection plunger 7 has moved downward from the hot water supply position, and when the movement stroke becomes the difference between the aforementioned positions, the controller 40 sets the valve 22 to the neutral position, and the injection cylinder 20 To stop the injection plunger 7 at the set position.
  • the movement stroke of the injection plunger 7 can be detected by the stroke of the injection cylinder 20, that is, the flow rate of the fluid pressure to be supplied, the supply amount per unit time is constant and the time for which the valve 22 is set to the fluid pressure supply position is controlled. By doing so, the injection plunger 7 can be set to the set position.
  • the molten metal is filled into the space 10 described above.
  • This operation is as follows.
  • the injection cylinder 20 is extended to move the injection plunger 7 downward, and the molten metal in the injection chamber 5 is sequentially fed into the space 10 and filled.
  • the molten metal is pressurized and the injection plunger 7 stops at the filling completion position shown in FIG.
  • This operation is the third step.
  • the molten metal is not injected into the cavity 9a of the mold 9.
  • the filling completion position of the injection plunger 7 is detected and input to the controller 40.
  • the stroke detecting means 30 detects a movement stroke until the injection plunger 7 moves downward from the set position and stops, and the filling completion position is detected based on the set position based on the detected movement stroke.
  • the filling completion position of the injection plunger 7 described above is determined by the size of the space 10 at the set position shown in FIG. 5, and the actual filling is completed if the space 10 has a size that matches the target filling completion position. Although the position coincides with the target filling completion position, if the size of the space 10 is different from the above-described size, the actual filling completion position differs from the target filling completion position. That is, since the setting position of the injection plunger 7 shown in FIG.
  • the downward movement stroke of the injection plunger 7 is increased. It becomes longer, the filling completion position is closer to the lower part than the target position, and if it is smaller, the downward movement stroke of the injection plunger 7 is shorter, and the filling completion position is closer to the upper part than the target position.
  • the filling completion position when the size of the space 10 is the target size is obtained by calculation or measurement, and that position is input to the controller 40 as the target position.
  • This target position is compared with the detected filling completion position. If they are the same, the filling completion position is the target position. If they are different, the filling completion position is different from the target position. Then, when the filling completion position is not the target position, the filling completion position is set as the target position by controlling the waiting time in the hot water supply state during the next injection molding operation.
  • an error of the molten metal to be filled in the space 10 is calculated based on the difference between the target position and the detected filling completion position and the volume per unit stroke of the injection plunger 7, and the time of the hot water supply operation state (hot water supply) by the error.
  • the filling completion position is corrected by increasing or decreasing (time).
  • the mold 9 may be opened after the injection plunger 7 has been moved to the filling completion position. However, the mold 9 is molded in a state where the molten metal is filled in the nozzle 8 as shown in FIG.
  • a phenomenon called dripping (drawing) that is, the molten metal in the nozzle 8 may flow down, so that the mold 9 is opened after performing the dripping (drawing) preventing operation. That is, as shown in FIG. 6, since the inside of the nozzle 8 is sideways and the hot water inlet 9d of the fixed mold 9b is also sideways, when the mold 9 is opened with the molten metal filled in the nozzle 8, the fixed mold The molten metal may flow down through the hot water inlet 9d of the mold 9b.
  • the aforementioned sagging (drawing) prevention operation is as follows.
  • the injection plunger 7 is moved upward by a few millimeters from the filling completion position shown in FIG. 6 to obtain a sagging (drawing) prevention position shown in FIG.
  • the space 10 in the injection chamber 5 has a negative pressure, and the molten metal is drawn back into the injection chamber 5.
  • the space 10 is formed in the nozzle side portion, and the molten metal in the nozzle 8 Even when the mold 9 is opened, the molten metal in the nozzle 8 does not flow down to the hot water inlet 9d of the fixed mold 9 with the molten metal surface 2b positioned lower than or at the same position as the lower peripheral edge of the outlet of the nozzle 8.
  • the molten metal in the nozzle 8 does not flow down to the hot water inlet 9d of the fixed mold 9 with the molten metal surface 2b positioned lower than or at the same position as the lower peripheral edge of the outlet of the nozzle 8.
  • an upward movement stroke from the filling completion position of the injection plunger 7 is detected by the stroke detection means 30, and the injection is performed when the detected stroke matches a preset lifting stroke (set stroke) of several mm.
  • the plunger 7 is stopped.
  • the pulling stroke is determined by the size of the space 10 and the amount of movement of the molten metal per unit stroke of the injection plunger 7.
  • the mold 9 is opened, and as shown in FIG. 8, the fixed mold 9b and the movable mold 9c are separated from each other and the inside of the nozzle 8 is communicated with the atmosphere. . Since the mold 9 is moved and closed by moving the movable mold 9c while the hot water inlet 9d of the fixed mold 9b is in contact with the nozzle 8, the fixed mold 9b does not move. The hot water inlet 9d and the nozzle 8 do not repeat contact and separation, and a gap is formed between the hot water inlet 9d and the nozzle 8, so that the molten metal does not leak.
  • the size setting operation of the space 10 is performed.
  • the size setting operation of the space 10 is as follows. After the injection plunger 7 has moved to the sagging (drawing) prevention position, the injection plunger 7 is moved upward, and the molten metal surface height 2b of the nozzle side portion is sequentially decreased to sequentially increase the size of the space 10. . When the size of the space 10 reaches the set size, the injection plunger 7 is stopped, and the set size space 10 is formed in the nozzle side portion as shown in FIG. This operation is the fourth step.
  • the position where the injection plunger 7 is stopped is the injection molding start position.
  • This injection molding start position is set in advance with reference to the filling completion position, and the position of the injection plunger 7 is obtained by the stroke detected by the stroke detection means 30.
  • the position of the injection plunger 7 reaches the set injection molding start position, the injection plunger 7 is stopped.
  • the size of the space 10 is determined by the upward movement stroke from the filling completion position (sagging (drawing) prevention position) of the injection plunger 7. Based on the amount of change in the molten metal due to the unit movement distance, the upward movement stroke from the filling completion position or the dripping (drawing) prevention position of the injection plunger 7 is calculated and obtained, and the stroke is input to the controller 40.
  • the controller 40 switches the valve 22 to the neutral position, and stops the injection cylinder 20 so that the injection plunger 7 is injection molded as shown in FIG.
  • the start position is set, and the size of the space 10 on the nozzle side portion is set as a set size.
  • the operation of stopping the injection plunger 7 at the injection molding start position may be controlled by the time for moving the injection plunger 7.
  • the time for switching the valve 22 to the fluid pressure supply position is the time required for the injection plunger 7 to move from the filling completion position (sagging (drawing) prevention position) to the injection molding start position. Is the neutral position.
  • the injection molded product 11 is taken out from the mold 9 and the mold 9 is closed as shown in FIG.
  • This operation is the fifth step.
  • the injection plunger 7 is moved downward at a high speed to reach the injection completion position as shown in FIG. 2, thereby completing the second injection molding operation.
  • the injection plunger 7 is stopped at an arbitrary position to increase the time from the start of injection molding to the removal of the injection molded product. By doing so, the injection molded article 11 can be sufficiently cooled.
  • the operation for setting the size of the space 10 may be performed before the mold 9 is opened. For example, as shown in FIG. 6, when the plunger 7 moves to the filling completion position, the operation of setting the size of the space 10 is performed. Then, the mold is opened and the injection molded product 11 is taken out.
  • the operations shown in FIGS. 3 to 9 and 2 are repeated to perform the third and subsequent injection molding operations.
  • the target filling is performed by controlling the time of the hot water supply state shown in FIG. 4 (time for waiting the injection plunger 7 at the hot water supply position). Try to be the completion position.
  • the setting position of the injection plunger 7 is changed. By doing in this way, since the injection plunger 7 moves over the whole region of the injection chamber 5, the whole region in the injection chamber 5 can be used effectively.
  • the opening area of the hot water supply port 4 when the injection plunger 7 is at the hot water supply position is constant.
  • the opening area of the hot water supply port 4 is adjusted, and the molten metal 2 in the melting pot 1 is replaced with hot water supply.
  • the flow rate of hot water supplied from the port 4 into the injection chamber 5 per unit time may be increased or decreased.
  • the hot water supply port 4 has a circular shape, an oval shape, or a slit shape, the lower end surface of the injection plunger 7 is positioned in the middle of the hot water supply port 4 in the vertical direction, and the lower end surface of the injection plunger 7 is moved vertically. By changing to, the opening area of the hot water supply port 4 can be adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

The present invention is a method for operating a hot chamber die casting machine that, in addition to not generating blow holes in the injection molding, is capable of injection molding in a short time and has excellent durability and with which the size of the space can be set freely. The method is configured so that: injection molding is performed by moving an injection plunger (7) to an injection completion position; the injection plunger (7) is then moved to a molten metal supply position and after waiting for a set period at the molten metal supply position, is moved to a set position to form a continuous space (10) between a nozzle (8) and a molten metal path (6); subsequently, the injection plunger (7) is moved to a filling completion position to fill molten metal in the space (10); after opening the mold (9) and removing the injection molding (11), the injection plunger (7) is moved to the injection molding start position to form a space (10) of a set size; and the mold is closed in this state and the injection plunger (7) is moved to the injection completion position.

Description

ホットチャンバーダイキャストマシンの動作方法Operation method of hot chamber die casting machine
 本発明は、ホットチャンバーダイキャストマシンの動作方法に関する。 The present invention relates to an operation method of a hot chamber die cast machine.
 従来、ホットチャンバーダイキャストマシンとしては図10に示すものが知られている。
 すなわち、金属溶湯が入れられたポットやルツボ等と呼ばれるメルティングポット1の金属溶湯2内にグースネック3が設けられ、このグースネック3は、給湯口4でメルティングポット1内に連通した射出チャンバー5と、この射出チャンバー5と連通した湯道6を有する。
 前記射出チャンバー5内に射出プランジャ7が上下動自在に嵌挿され、この射出プランジャ7を図示しない射出シリンダで上下動することで前記給湯口4を開閉する。
 前記湯道6の先端部6aは前記金属溶湯2の上面、つまりポット湯面2aよりも上方に位置し、その湯道6の先端部6aにノズル8が設けてある。
 このノズル8が金型9のキャビティ9aと連続している。この金型9は固定金型9bと可動金型9cを図示しない型締め機構で型閉じ、型開きするものである。
Conventionally, a hot chamber die casting machine shown in FIG. 10 is known.
That is, a gooseneck 3 is provided in a molten metal 2 of a melting pot 1 called a pot or crucible filled with a molten metal. And a runner 6 communicating with the injection chamber 5.
An injection plunger 7 is fitted into the injection chamber 5 so as to be movable up and down, and the hot water supply port 4 is opened and closed by moving the injection plunger 7 up and down by an injection cylinder (not shown).
The leading end 6 a of the runner 6 is positioned above the upper surface of the molten metal 2, that is, the pot hot bath surface 2 a, and a nozzle 8 is provided at the leading end 6 a of the runner 6.
The nozzle 8 is continuous with the cavity 9 a of the mold 9. In this mold 9, the fixed mold 9b and the movable mold 9c are closed and opened by a mold clamping mechanism (not shown).
 前述したホットチャンバーダイキャストマシンは次のように動作される。
 図10に示す状態では、金型9が型閉じされ、射出プランジャ7は給湯口4を開放し金属溶湯2を射出チャンバー5に給湯する上部の給湯位置で、湯道6内の金属溶湯2の湯面2bはポット湯面2aと同一高さである。
 図10に示す状態から射出プランジャ7を下方に移動することで、給湯口4を閉じ、さらに下方に移動することで射出チャンバー5内の金属溶湯2が加圧され、湯道6、ノズル8を経て金型9のキャビティ9a内に射出される(射出工程)。
 射出完了した状態が図11で、射出プランジャ7は下部の射出完了位置となる。
The above-described hot chamber die casting machine operates as follows.
In the state shown in FIG. 10, the mold 9 is closed, and the injection plunger 7 opens the hot water supply port 4 and supplies the molten metal 2 to the injection chamber 5. The hot water surface 2b is the same height as the pot hot water surface 2a.
By moving the injection plunger 7 downward from the state shown in FIG. 10, the hot water inlet 4 is closed and further moved downward to pressurize the molten metal 2 in the injection chamber 5. Then, it is injected into the cavity 9a of the mold 9 (injection process).
FIG. 11 shows the state where the injection is completed, and the injection plunger 7 is at the lower injection completion position.
 図11に示す射出完了状態から射出プランジャ7を上方に移動して復帰動作することで、射出チャンバー5内が負圧となり、ノズル8先端と射出プランジャ7の先端の高さの差による圧力で金属溶湯2が射出プランジャ7とともに上に移動するので、図12に示すように、金型9とノズル8先端の金属溶湯2が切り離され、ノズル8内と湯道6の先端部分は金属溶湯2が存在しない空間10となる。金型9のキャビティ9a内の射出成形品11は冷却されている。
 図12に示す状態から射出プランジャ7がさらに上方に移動し、図13に示すように前述の給湯位置とすると、給湯口4が開き、前述の空間10内が負圧であるから、メルティングポット1内の金属溶湯2が給湯口4から射出チャンバー5内に順次流入(給湯)し、湯道6内の金属溶湯2の湯面2bが順次上がり、前記空間10が順次小さくなる。
 そして、所定の時間が経過すると図14に示すようにノズル8まで金属溶湯2が充填して前述の空間10がなくなる。この状態ではノズル8内は大気圧よりも低い圧力である。
When the injection plunger 7 is moved upward from the injection completion state shown in FIG. 11 and returned, the inside of the injection chamber 5 becomes a negative pressure, and the metal due to the pressure difference between the tip of the nozzle 8 and the tip of the injection plunger 7 Since the molten metal 2 moves upward together with the injection plunger 7, as shown in FIG. 12, the molten metal 2 at the tip of the mold 9 and the nozzle 8 is separated, and the molten metal 2 is separated from the inside of the nozzle 8 and the distal end portion of the runner 6. It becomes a space 10 that does not exist. The injection molded product 11 in the cavity 9a of the mold 9 is cooled.
When the injection plunger 7 moves further upward from the state shown in FIG. 12 and reaches the above-mentioned hot water supply position as shown in FIG. 13, the hot water supply port 4 is opened and the inside of the above-mentioned space 10 is under negative pressure. The molten metal 2 in 1 sequentially flows into the injection chamber 5 from the hot water supply port 4 (hot water supply), the molten metal surface 2b of the molten metal 2 in the runway 6 rises sequentially, and the space 10 becomes gradually smaller.
When a predetermined time elapses, the molten metal 2 is filled up to the nozzle 8 as shown in FIG. In this state, the pressure inside the nozzle 8 is lower than the atmospheric pressure.
 前述した図14に示す状態から、図15に示すように金型9の可動金型9cを移動して型開きし、キャビティ9a内の射出成形品11を取り出す。
 これにより、ノズル8内が大気に連通するので、ノズル8とポット湯面2aの高低差により射出チャンバー5内の金属溶湯2が給湯口4からメルティングポット1内に順次流出し、所定の時間が経過すると図16に示すように、湯道6内の湯面2bはポット湯面2aと同一高さとなり、前述の空間10が大きくなる。
 この状態から可動金型9cを固定金型9bに接して型閉じし、型締め完了した状態が前述の図10に示す状態である。
From the state shown in FIG. 14, the movable mold 9c of the mold 9 is moved and opened as shown in FIG. 15, and the injection molded product 11 in the cavity 9a is taken out.
As a result, the inside of the nozzle 8 communicates with the atmosphere, so that the molten metal 2 in the injection chamber 5 sequentially flows out of the hot water inlet 4 into the melting pot 1 due to the difference in height between the nozzle 8 and the pot hot water surface 2a, for a predetermined time. As shown in FIG. 16, the hot water surface 2b in the runner 6 becomes the same height as the pot hot water surface 2a, and the space 10 becomes larger.
From this state, the movable die 9c is brought into contact with the fixed die 9b and the die is closed, and the state where the die clamping is completed is the state shown in FIG.
 従来のホットチャンバーダイキャストマシンにより射出成形品を射出成形する動作方法は、前述のようであるから、図10に示すように型締め完了した状態で湯道6の先端部とノズル8とに連続した大きな空間10が存在し、この図10に示す型締め完了状態から射出プランジャ7を下方に高速で移動して射出動作すると、その空間10内の空気が金型9のキャビティ9a内に入り込み射出成形品に鋳巣が発生して射出成形品の品質が低下するから、図10に示す型締め完了状態から射出プランジャ7をゆっくりと下方に移動し、空間10内の空気により射出成形品に鋳巣が発生しないようにしている。 Since the operation method of injection molding an injection molded product with a conventional hot chamber die casting machine is as described above, it continues to the end of the runner 6 and the nozzle 8 in a state where the mold clamping is completed as shown in FIG. When the injection plunger 7 is moved downward at high speed from the mold clamping completion state shown in FIG. 10 and the injection operation is performed, the air in the space 10 enters the cavity 9a of the mold 9 and is injected. Since a cast hole is generated in the molded product and the quality of the injection molded product is deteriorated, the injection plunger 7 is slowly moved downward from the mold clamping completion state shown in FIG. The nest is not generated.
 このために、前述した従来の動作方法では、射出成形に要する時間が長くなってしまう。 For this reason, in the conventional operation method described above, the time required for injection molding becomes long.
 このことを解消し、射出成形品に鋳巣が発生することがなく、しかも射出成形に要する時間を短くできるようにしたホットチャンバーダイキャストマシンの動作方法が特許文献1に開示されている。
 すなわち、ノズルに金属溶湯を検出する金属センサを設け、この金属センサによりノズル内の金属溶湯の量(湯面高さ)を検出することで、前述の空間の大きさを知ることができるようにし、ノズル内の金属溶湯が設定の量となったことにより、その空間が設定の大きさとなったことを検出できるようにする。
 そして、金型が型開きの状態(例えば、前述の図15、図16の状態)で、射出プランジャを下方にゆっくりと移動して射出チャンバー内の金属溶湯を湯道、ノズルに送り、ノズル内の金属溶湯が設定の量となったことを検出したら射出プランジャを停止し、金型を型閉じた後に、射出プランジャを高速で下方に移動して金型のチャンバ内に金属溶湯を射出して射出成形するようにした動作方法である。
Patent Document 1 discloses an operation method of a hot chamber die cast machine that solves this problem, does not generate a cast hole in an injection molded product, and shortens the time required for injection molding.
In other words, a metal sensor for detecting the molten metal is provided in the nozzle, and the amount of the molten metal in the nozzle (the height of the molten metal surface) is detected by the metal sensor so that the size of the space can be known. When the molten metal in the nozzle reaches the set amount, it is possible to detect that the space has reached the set size.
Then, in a state where the mold is opened (for example, the state shown in FIG. 15 and FIG. 16 described above), the injection plunger is moved slowly downward to send the molten metal in the injection chamber to the runner and the nozzle. When it is detected that the molten metal has reached the set amount, stop the injection plunger, close the mold and move the injection plunger downward at high speed to inject the molten metal into the mold chamber. This is an operation method in which injection molding is performed.
 この動作方法であれば、ノズル内の空間が設定した大きさとなってから、射出プランジャを高速で下方に移動して射出成形するので、射出成形品に空気混入による鋳巣が発生することがないと共に、射出成形に要する時間を短くできる。 With this operation method, since the injection plunger is moved downward at a high speed and injection molding is performed after the space in the nozzle becomes the set size, a casting hole due to air mixing does not occur in the injection molded product. At the same time, the time required for injection molding can be shortened.
特開2003-53507号公報JP 2003-53507 A
 前述した従来の動作方法は、金属センサで金属溶湯を検出するので、その金属センサは高温の金属溶湯に触れるために耐久性に問題がある。
 しかも、ノズル内の金属溶湯の量を金属センサの溶湯検出に基づいて検出することで、空間の大きさを設定の大きさとするから、空間の大きさは金属センサの設置位置によって制約され、空間の大きさを自由に設定することができない。
In the conventional operation method described above, since the metal sensor detects the molten metal, the metal sensor has a problem in durability because it touches the molten metal at a high temperature.
Moreover, since the amount of the molten metal in the nozzle is detected based on the detection of the molten metal by the metal sensor, the size of the space is set to the set size. The size of cannot be set freely.
 本発明の目的は、射出成形品に空気混入による鋳巣が発生することがないと共に、射出成形に要する時間を短くでき、しかも耐久性に優れ、空間の大きさを自由に設定できるようにしたホットチャンバーダイキャストマシンの動作方法とすることである。 The object of the present invention is to prevent the occurrence of a cast hole due to air mixing in an injection molded product, to shorten the time required for injection molding, and to be excellent in durability and to freely set the size of the space. The operation method of the hot chamber die-casting machine.
 本発明は、メルティングポット1内の金属溶湯2を、グースネック3の射出プランジャ7を上下に移動することにより、給油口4、射出チャンバー5、湯道6、ノズル8を経て金型9のキャビティ9a内に射出して射出成形品11を射出成形するホットチャンバーダイキャストマシンの動作方法であって、
 前記金型9を型閉じした状態で射出プランジャ7を射出成形開始位置から最も下の射出完了位置まで下方に移動して射出チャンバー5内の金属溶湯を、金型9のキャビティ9a内に射出した後に、前記射出チャンバー5とメルティングポット1を連通する給湯口4を開放する最も上の給湯位置まで射出プランジャ7を上方に移動する第1の工程と、
 前記射出プランジャ7を前記給湯位置で設定時間待機した後に前記給湯位置よりも下で給湯口4を閉じる設定位置まで下方に移動することで、ノズル側部分に空間10を形成する第2の工程と、
 前記射出プランジャ7を前記設定位置から金型9のキャビティ9aに射出成形品11が存在する状態で、前記設定位置よりも下で、前記空間10内に金属溶湯を充填して空間10をなくす充填完了位置まで下方に移動する第3の工程と、
 前記射出プランジャ7を充填完了位置から、当該充填完了位置よりも上で前記給油口4を閉じる前記射出成形開始位置まで上方に移動してノズル側部分に設定空間10を形成する第4の工程と、
 前記金型9から射出成形品11を取り出した後に、金型9を型閉じする第5の工程を有することを特徴とするホットチャンバーダイキャストマシンの動作方法である。
According to the present invention, the molten metal 2 in the melting pot 1 is moved up and down the injection plunger 7 of the gooseneck 3, so that the cavity of the mold 9 passes through the filler port 4, the injection chamber 5, the runner 6, and the nozzle 8. The operation method of the hot chamber die-casting machine which injects into 9a and inject-molds the injection molded article 11,
With the mold 9 closed, the injection plunger 7 is moved downward from the injection molding start position to the lowest injection completion position, and the molten metal in the injection chamber 5 is injected into the cavity 9 a of the mold 9. A first step of moving the injection plunger 7 upward to the uppermost hot water supply position that opens the hot water supply port 4 communicating with the injection chamber 5 and the melting pot 1;
A second step of forming a space 10 in the nozzle side part by moving the injection plunger 7 downward to a set position for closing the hot water supply port 4 below the hot water supply position after waiting for a set time at the hot water supply position; ,
Filling the injection plunger 7 from the set position in a state where the injection molded product 11 exists in the cavity 9a of the mold 9 and filling the molten metal in the space 10 below the set position to eliminate the space 10 A third step of moving downward to a completion position;
A fourth step of forming the setting space 10 in the nozzle side portion by moving the injection plunger 7 upward from the filling completion position to the injection molding start position for closing the fuel filler port 4 above the filling completion position; ,
A hot chamber die casting machine operating method comprising a fifth step of closing the mold 9 after taking out the injection molded product 11 from the mold 9.
 本発明においては、前記第3の工程において、射出プランジャ7を設定位置から下方に移動して空間10内に金属溶湯が充填されることで、射出プランジャ7が充填完了位置で停止し、
 前記第4の工程において、射出プランジャ7を充填完了位置から設定したストロークだけ上方に移動して射出成形開始位置とするようにしたホットチャンバーダイキャストマシンの動作方法とすることができる。
In the present invention, in the third step, the injection plunger 7 is moved downward from the set position to fill the space 10 with the molten metal, so that the injection plunger 7 stops at the filling completion position,
In the fourth step, the operation method of the hot chamber die cast machine can be set such that the injection plunger 7 is moved upward by a set stroke from the filling completion position to the injection molding start position.
 このようにすれば、空間10の大きさを射出プランジャ7の充填完了位置から射出形成開始位置までの設定ストロークに見合う大きさにできると共に、その設定ストロークを変えることで空間10の大きさを変えることができる。 In this way, the size of the space 10 can be made to match the set stroke from the filling completion position of the injection plunger 7 to the injection forming start position, and the size of the space 10 can be changed by changing the set stroke. be able to.
 本発明においては、前記射出プランジャ7の移動ストロークを検出するストローク検出手段30で射出プランジャ7が充填完了位置から上方に移動したストロークを検出し、その検出したストロークが設定したストロークのときに射出プランジャ7を停止して射出成形開始位置とするホットチャンバーダイキャストマシンの動作方法とすることができる。 In the present invention, the stroke detecting means 30 for detecting the movement stroke of the injection plunger 7 detects the stroke in which the injection plunger 7 has moved upward from the filling completion position, and the injection plunger when the detected stroke is the set stroke. 7 can be used as the operation method of the hot chamber die cast machine in which the injection molding start position is stopped.
 このようにすれば、射出プランジャ7を精度良く射出成形開始位置とすることができる。 In this way, the injection plunger 7 can be accurately set to the injection molding start position.
 本発明においては、前記射出プランジャ7の設定位置は、この射出プランジャ7の位置をストローク検出手段30が検出した射出プランジャ7の移動ストロークに基づいて検出し、その検出した位置によって射出プランジャ7を移動制御して設定位置とするホットチャンバーダイキャストマシンの動作方法とすることができる。 In the present invention, the setting position of the injection plunger 7 is detected based on the movement stroke of the injection plunger 7 detected by the stroke detection means 30 and the injection plunger 7 is moved according to the detected position. It can be set as the operation method of the hot chamber die-cast machine which controls and sets to a set position.
 このようにすれば、射出プランジャ7を精度良く設定位置に停止できる。 In this way, the injection plunger 7 can be stopped at the set position with high accuracy.
 本発明においては、前記第3の工程において、射出プランジャ7の充填完了位置を目標位置として設定し、この設定した目標位置と実際の充填完了位置が異なる場合には、次回の射出成形動作時に第2工程における待機時間を増減することで充填完了位置を補正するようにしたホットチャンバーダイキャストマシンの動作方法とすることができる。 In the present invention, in the third step, the filling completion position of the injection plunger 7 is set as a target position, and when the set target position and the actual filling completion position are different, the first injection molding operation is performed at the next time. The operation method of the hot chamber die-casting machine in which the filling completion position is corrected by increasing / decreasing the waiting time in the two steps can be obtained.
 このようにすれば、射出成形動作を複数回繰り返すことで充填完了位置が変化した場合に、その充填完了位置を目標の位置に補正することができる。 In this way, when the filling completion position is changed by repeating the injection molding operation a plurality of times, the filling completion position can be corrected to the target position.
 本発明においては、前記射出プランジャ7を充填完了位置からたれ防止位置まで移動してノズル側部分に空間10を形成し、その後に金型9を型開きするようにしたホットチャンバーダイキャストマシンの動作方法とすることができる。 In the present invention, the operation of the hot chamber die cast machine is such that the injection plunger 7 is moved from the filling completion position to the sagging prevention position to form the space 10 in the nozzle side portion, and then the mold 9 is opened. It can be a method.
 このようにすれば、金型9を型開きしたときに、ノズル8から金属溶湯が流れ落ちることがない。 In this way, the molten metal does not flow down from the nozzle 8 when the mold 9 is opened.
 本発明においては、前記第2の工程でノズル側部分に形成した空間10の大きさは、ノズル8内の金属溶湯が金型9と離れる大きさとしたホットチャンバーダイキャストマシンの動作方法とすることができる。 In the present invention, the size of the space 10 formed in the nozzle side part in the second step is the operation method of the hot chamber die cast machine in which the molten metal in the nozzle 8 is separated from the mold 9. Can do.
 このようにすれば、金型9の冷却によってノズル8内の金属溶湯が冷却されにくい。 In this way, the molten metal in the nozzle 8 is not easily cooled by the cooling of the mold 9.
 本発明においては、前記金型9の固定金型9bは、その湯入口9dがノズル8と常時接触し、可動金型9cを移動して型閉じ、型開きするようにしたホットチャンバーダイキャストマシンの動作方法とすることができる。 In the present invention, the fixed mold 9b of the mold 9 is a hot chamber die cast machine in which the hot water inlet 9d is always in contact with the nozzle 8, the movable mold 9c is moved, the mold is closed, and the mold is opened. The operation method can be as follows.
 このようにすれば、固定金型9bが移動しないので、その湯入口9dとノズル8が接離を繰り返すことがなく、固定金型9bの湯入口9dとノズル8との間に隙間が生じ、金属溶湯が漏れることがない。 In this way, since the fixed mold 9b does not move, the hot water inlet 9d and the nozzle 8 do not repeat contact and separation, and a gap is generated between the hot water inlet 9d and the nozzle 8 of the fixed mold 9b, The molten metal does not leak.
 本発明においては、複数回射出成形動作した後に、前記射出プランジャ7の設定位置を変更するようにしたホットチャンバーダイキャストマシンの動作方法とすることができる。 In the present invention, the operation method of the hot chamber die cast machine can be set such that the setting position of the injection plunger 7 is changed after performing the injection molding operation a plurality of times.
 このようにすれば、射出プランジャ7が射出チャンバー5の全域に亘って移動するので、その射出チャンバー5の全域を有効利用することができる。 In this way, since the injection plunger 7 moves over the entire area of the injection chamber 5, the entire area of the injection chamber 5 can be used effectively.
 本発明によれば、射出成形開始するときの空間10は設定した大きさで、射出プランジャ7を高速で射出完了位置まで移動しても射出成形品に空気混入による鋳巣が発生することがなく、射出成形に要する時間を短くできる。
 しかも、射出プランジャ7を移動制御するのみで、高温の金属溶湯の影響を受けるセンサ等を使用していないので、耐久性に優れている。
 さらに、射出プランジャ7の射出成形開始位置を変更することで、空間10の大きさを自由に設定できる。
According to the present invention, the space 10 at the start of injection molding has a set size, and even if the injection plunger 7 is moved to the injection completion position at a high speed, a cast hole due to air mixing does not occur in the injection molded product. The time required for injection molding can be shortened.
Moreover, since only the movement of the injection plunger 7 is controlled and no sensor or the like affected by the high-temperature molten metal is used, the durability is excellent.
Furthermore, the size of the space 10 can be freely set by changing the injection molding start position of the injection plunger 7.
本発明の第1回目の射出成形動作開始時の説明図である。It is explanatory drawing at the time of the start of the 1st injection molding operation | movement of this invention. 本発明の射出プランジャが射出完了位置のときの説明図である。It is explanatory drawing when the injection plunger of this invention is an injection completion position. 本発明の射出プランジャが復帰途中のときの説明図である。It is explanatory drawing when the injection plunger of this invention is in the middle of a return. 本発明の射出プランジャが給湯位置のときの説明図である。It is explanatory drawing when the injection plunger of this invention is a hot-water supply position. 本発明の射出プランジャが給湯口を閉じる設定位置のときの説明図である。It is explanatory drawing when the injection plunger of this invention is a setting position which closes a hot-water supply port. 本発明の射出プランジャが充填完了位置のときの説明図である。It is explanatory drawing when the injection plunger of this invention is a filling completion position. 本発明の射出プランジャがたれ(ドローリング)防止位置のときの説明図である。It is explanatory drawing when the injection plunger of this invention is a sagging (drawing) prevention position. 本発明の射出プランジャが射出成形開始位置のときの説明図である。It is explanatory drawing when the injection plunger of this invention is an injection molding start position. 本発明の金型を型閉じしたときの説明図である。It is explanatory drawing when the metal mold | die of this invention is closed. 従来の型締め完了時の説明図である。It is explanatory drawing at the time of completion of the conventional mold clamping. 従来の射出プランジャが射出成形完了位置のときの説明図である。It is explanatory drawing when the conventional injection plunger is an injection molding completion position. 従来の射出プランジャが復帰途中のときの説明図である。It is explanatory drawing when the conventional injection plunger is in the middle of a return. 従来の射出プランジャが給湯位置のときの説明図である。It is explanatory drawing when the conventional injection plunger is a hot-water supply position. 従来の給湯完了時の説明図である。It is explanatory drawing at the time of the completion of the conventional hot water supply. 従来の金型を型開き開始したときの説明図である。It is explanatory drawing when the mold opening of the conventional metal mold | die is started. 従来の金型を型開き完了したときの説明図である。It is explanatory drawing when mold opening of the conventional metal mold is completed.
 本発明のホットチャンバーダイキャストマシンは図1に示すように、先に図10で示した従来のホットチャンバーダイキャストマシンと同様で、メルティングポット1、グースネック3、ノズル8、金型9を備え、その射出プランジャ7を上下移動する射出シリンダ20、射出プランジャ7の移動ストロークを検出する手段30を備えている。ホットチャンバーダイキャストマシンは、射出部であるグースネック3がメルティングポット1の金属溶湯2の中に沈んでおり、金型9に溶融した金属(例えば、亜鉛、アルミニウム、マグネシウム、銅等の合金)を圧入している。
 前記射出シリンダ20はコントローラ40からの指令で伸び作動、縮み作動、停止する。例えば、空気や油の流体圧源21の流体圧をバルブ22を切り換えることで伸び室23、縮み室24に供給することで伸び作動、縮み作動し、そのバルブ22はコントローラ40からの指令で切り換えられる。
 この射出シリンダ20が伸び作動すると射出プランジャ7は下方に移動し、縮み作動することで上方に移動する。
 前記ストローク検出手段30は、例えばレーザを用いたセンサで、その検出したストローク値はコントローラ40に送られる。
As shown in FIG. 1, the hot chamber die cast machine of the present invention is similar to the conventional hot chamber die cast machine shown in FIG. 10 and includes a melting pot 1, a gooseneck 3, a nozzle 8, and a mold 9. , An injection cylinder 20 for moving the injection plunger 7 up and down, and means 30 for detecting the movement stroke of the injection plunger 7 are provided. In the hot chamber die casting machine, the gooseneck 3 which is an injection part is submerged in the molten metal 2 of the melting pot 1 and the molten metal in the mold 9 (for example, an alloy such as zinc, aluminum, magnesium, copper, etc.) Is press-fitted.
The injection cylinder 20 is extended, contracted, and stopped by a command from the controller 40. For example, by supplying the fluid pressure of the fluid pressure source 21 of air or oil to the expansion chamber 23 and the contraction chamber 24 by switching the valve 22, the expansion operation and the contraction operation are performed. The valve 22 is switched by a command from the controller 40. It is done.
When the injection cylinder 20 is extended, the injection plunger 7 is moved downward, and is moved upward by being contracted.
The stroke detection means 30 is a sensor using, for example, a laser, and the detected stroke value is sent to the controller 40.
 前記射出プランジャ7は後述するように上下に移動するが、そのように射出プランジャ7の移動速度を制御するには、流体圧源21の単位時間当りの供給量を増減したり、流体圧源21と射出シリンダ20との接続回路に絞りを設けたり、バルブ22の開口面積を変えることで、射出シリンダ20の伸び室23、縮み室24に単位時間当りに供給する流体圧の量を増減すれば良い。 The injection plunger 7 moves up and down as will be described later. In order to control the movement speed of the injection plunger 7 as described later, the supply amount of the fluid pressure source 21 per unit time is increased or decreased, or the fluid pressure source 21 is moved. The amount of fluid pressure supplied per unit time to the expansion chamber 23 and the contraction chamber 24 of the injection cylinder 20 can be increased or decreased by providing a throttle in the connection circuit between the injection cylinder 20 and the opening area of the valve 22. good.
 次に、本発明の動作方法の一例を説明する。
 長期停止後や金型交換後の最初の射出成形動作開始時、つまり第1回目の射出成形動作開始時には、図1に示す状態となる。
 すなわち、金型9は型閉じされ、グースネック3の湯道6内の金属溶湯は、湯道6の途中までの高さで、その湯面2bはポット湯面2aと同一高さで、ノズル8内、またはノズル8内と湯道6の先端部分に亘って連続して形成される空間10、つまりノズル側部分に形成される空間10の大きさは、従来の図10に示す状態と同じである。
Next, an example of the operation method of the present invention will be described.
The state shown in FIG. 1 is obtained when the first injection molding operation starts after the long-term stop or after the mold replacement, that is, when the first injection molding operation starts.
That is, the mold 9 is closed, and the molten metal in the runner 6 of the gooseneck 3 is at a height up to the middle of the runner 6, and its molten metal surface 2 b is the same height as the pot molten metal surface 2 a, and the nozzle 8 The space 10 formed continuously inside the nozzle 8 or the tip of the runner 6, that is, the size of the space 10 formed in the nozzle side portion is the same as the state shown in FIG. is there.
 第1回目の射出成形動作は次のようである。
 図1に示す、第1回目の射出成形動作開始状態から、射出シリンダ20を伸び動作し、射出プランジャ7を下方に移動して射出チャンバー5内の金属溶湯を金型9のキャビティ9a内に射出し、射出プランジャ7が図2に示す射出完了位置となることで射出成形品11を成形する。
The first injection molding operation is as follows.
1, the injection cylinder 20 is extended from the state where the first injection molding operation is started, and the injection plunger 7 is moved downward to inject the molten metal in the injection chamber 5 into the cavity 9a of the mold 9. Then, the injection molded product 11 is molded by the injection plunger 7 being at the injection completion position shown in FIG.
 図2に示す射出完了状態のときの射出プランジャ7の射出完了位置は、射出プランジャ7の押し下げ力(射出シリンダ20の伸び推力)と金型9のキャビティ9aの容積により決定される。
 つまり、金型9のキャビティ9a内に金属溶湯2が所定圧力で充填されると、それ以上射出プランジャ7は下方に移動しないと共に、図1に示すように射出プランジャ7の射出成形動作開始時の上部の給湯位置は常に同一(例えば、上死点)であるから、射出プランジャ7の射出完了位置は前述のように決定される。
The injection completion position of the injection plunger 7 in the injection completion state shown in FIG. 2 is determined by the pressing force of the injection plunger 7 (extension thrust of the injection cylinder 20) and the volume of the cavity 9a of the mold 9.
That is, when the molten metal 2 is filled in the cavity 9a of the mold 9 at a predetermined pressure, the injection plunger 7 does not move any further, and as shown in FIG. Since the upper hot water supply position is always the same (for example, top dead center), the injection completion position of the injection plunger 7 is determined as described above.
 射出完了後の復帰動作は次のようである。
 前記射出完了状態から射出シリンダ20を縮み作動し、射出プランジャ7を上方に移動して復帰動作し、図3に示すように、ノズル8先端の金属溶湯を金型9と切り離し、湯道6内の金属溶湯の湯面2bが順次下がり、ノズル側部分に負圧の空間10が生じる。
 さらに、射出プランジャ7を上方に移動して図4に示す給湯位置とする。
 前述の動作が第1の工程である。
The return operation after the completion of injection is as follows.
The injection cylinder 20 is contracted and operated from the injection completion state, and the injection plunger 7 is moved upward to return. As shown in FIG. 3, the molten metal at the tip of the nozzle 8 is separated from the mold 9, and the inside of the runner 6 The molten metal surface 2b of the molten metal gradually falls, and a negative pressure space 10 is generated at the nozzle side portion.
Further, the injection plunger 7 is moved upward to the hot water supply position shown in FIG.
The above-described operation is the first step.
 前記射出プランジャ7が図4に示す給湯位置(上死点)まで上方に移動すると、給湯口4が開放し、その給湯口4で射出チャンバー5とメルティングポット1内が連通し、メルティングポット1内の金属溶湯2が給湯口4から射出チャンバー5内に給湯され、湯道6内の湯面2bが時間の経過とともに順次上昇する。つまり、給湯状態となる。 When the injection plunger 7 moves upward to the hot water supply position (top dead center) shown in FIG. 4, the hot water supply port 4 is opened, and the injection chamber 5 and the inside of the melting pot 1 communicate with each other through the hot water supply port 4. The molten metal 2 in 1 is supplied into the injection chamber 5 from the hot water supply port 4, and the molten metal surface 2b in the runner 6 rises sequentially as time passes. That is, it becomes a hot water supply state.
 前記射出プランジャ7を給湯位置で、前記ノズル側部分に空間10が形成されるように設定時間待機する。つまり、長い時間給湯位置で待機すると空間10に金属溶湯が充填されてしまう。
 そして、設定時間が経過した後に、射出プランジャ7を再度下方に移動して図5に示すように、給湯口4を閉じる設定位置で停止する。
 この設定位置は、図2に示す射出完了位置よりも上部である。
 前述の動作がノズル側部分に空間10を形成する第2の工程である。
The injection plunger 7 is waited at a hot water supply position for a set time so that a space 10 is formed in the nozzle side portion. That is, when waiting at the hot water supply position for a long time, the space 10 is filled with the molten metal.
Then, after the set time has elapsed, the injection plunger 7 is moved downward again to stop at the set position where the hot water supply port 4 is closed as shown in FIG.
This set position is above the injection completion position shown in FIG.
The above-described operation is the second step of forming the space 10 in the nozzle side portion.
 これによって、射出チャンバー5内にメルティングポット1内の金属溶湯2が給湯されなくなり、ノズル側部分に空間10が形成される。
 つまり、前述の給湯状態が長い時間続けば、ノズル8内まで金属溶湯が充填し、ノズル側部分に空間10が形成されないが、その給湯状態の時間を制御することでノズル側部分(ノズル8内と湯道6の先端部分)に充填される金属溶湯の量を調整できるから、給湯状態の時間(つまり、射出プランジャ7を給湯位置で待機する時間)を設定時間とすることで、ノズル側部分に空間10を形成できる。
As a result, the molten metal 2 in the melting pot 1 is not supplied into the injection chamber 5 and a space 10 is formed in the nozzle side portion.
That is, if the aforementioned hot water supply state continues for a long time, the molten metal fills the nozzle 8 and the space 10 is not formed in the nozzle side portion, but the nozzle side portion (inside the nozzle 8 is controlled by controlling the time of the hot water supply state. Since the amount of the molten metal filled in the top of the runner 6) can be adjusted, the time of the hot water supply state (that is, the time of waiting the injection plunger 7 at the hot water supply position) is set as the set time, so that the nozzle side portion A space 10 can be formed.
 例えば、給湯状態のときに給湯口4から射出チャンバー5内に給湯する単位時間当りの湯量と、湯道6の容積、ノズル8の容積とから、単位時間当りに変化する空間10の大きさが演算できる。
 しかも、射出プランジャ7が図4に示す給湯位置に移動して給湯口4から射出チャンバー5内に給湯を開始する給湯開始のときの空間10の大きさは、射出チャンバー5の容積、湯道6の容積、ノズル8の容積と、射出プランジャ7の射出完了位置から給湯位置までの移動ストロークによって演算できる。
For example, in the hot water supply state, the size of the space 10 that changes per unit time depends on the amount of hot water supplied from the hot water supply port 4 into the injection chamber 5 per unit time, the volume of the runner 6, and the volume of the nozzle 8. Can be calculated.
Moreover, the size of the space 10 when the injection plunger 7 moves to the hot water supply position shown in FIG. 4 and starts hot water supply from the hot water inlet 4 into the injection chamber 5 is the volume of the injection chamber 5 and the runner 6. And the volume of the nozzle 8 and the movement stroke of the injection plunger 7 from the injection completion position to the hot water supply position.
 このことから、給湯開始時の空間10の大きさと単位時間当りに変化する空間10の大きさから、空間10を形成できる給湯状態で待機する時間を演算することができ、その演算した時間をコントローラ40に入力しておき、図4に示す給湯状態となった後に前記入力した時間が経過したら、コントローラ40がバルブ22を切り換えて射出シリンダ20を伸び動作して射出プランジャ7を下方に移動開始して設定位置とする。 From this, from the size of the space 10 at the start of hot water supply and the size of the space 10 that changes per unit time, it is possible to calculate the waiting time in the hot water supply state that can form the space 10, and the calculated time When the input time has elapsed after the hot water supply state shown in FIG. 4 has been entered, the controller 40 switches the valve 22 to extend the injection cylinder 20 and starts to move the injection plunger 7 downward. To set position.
 前述した空間10の大きさは、図5に示すように、ノズル8内の金属溶湯が金型9、例えば、キャビティ9a内の射出成形品11と接触しない状態とすることが好ましい。
 このようにすれば、金型9のキャビティ9a内の射出成形品11を冷却するための冷却熱により、ノズル8内の金属溶湯が冷却されにくく、後述の射出成形動作がやり易い。
As shown in FIG. 5, the size of the space 10 described above is preferably such that the molten metal in the nozzle 8 is not in contact with the mold 9, for example, the injection molded product 11 in the cavity 9a.
In this way, the molten metal in the nozzle 8 is not easily cooled by the cooling heat for cooling the injection molded product 11 in the cavity 9a of the mold 9, and the injection molding operation described later is easy to perform.
 前記射出プランジャ7を前述の設定位置(図5に示す射出プランジ7が給湯口4を閉じる位置)で停止する動作は次のようにして行うことができる。
 前記設定位置は、図4に示された給湯位置を基準としてあらかじめ設定してコントローラ40に入力する。
 前記ストローク検出手段30で射出プランジャ7の給湯位置からの移動ストロークを検出し、その検出したストロークで射出プランジャ7の位置を求める。
 この射出プランジャ7の位置が設定位置と合致したらバルブ22を中立位置として射出シリンダ20を停止し、射出プランジャ7を図5に示す設定位置とする。
The operation of stopping the injection plunger 7 at the aforementioned set position (position where the injection plunge 7 shown in FIG. 5 closes the hot water supply port 4) can be performed as follows.
The set position is set in advance with reference to the hot water supply position shown in FIG.
The stroke detecting means 30 detects the movement stroke of the injection plunger 7 from the hot water supply position, and obtains the position of the injection plunger 7 from the detected stroke.
When the position of the injection plunger 7 matches the set position, the injection cylinder 20 is stopped using the valve 22 as a neutral position, and the injection plunger 7 is set to the set position shown in FIG.
 例えば、前記射出プランジャ7の給湯位置と設定位置をあらかじめ設定し、その給湯位置と設定位置との位置の差(高さの差)を演算や実測によって求め、コントローラ40に入力する。
 その射出プランジャ7が給湯位置から下方に移動した移動ストロークをストローク検出手段30で検出し、その移動ストロークが前述の位置の差となったときにコントローラ40はバルブ22を中立位置とし、射出シリンダ20を停止することで、射出プランジャ7を設定位置に停止する。
 なお、射出プランジャ7の移動ストロークは、射出シリンダ20のストローク、つまり供給する流体圧の流量で検出できるので、単位時間当りの供給量を一定とし、バルブ22を流体圧供給位置とする時間を制御することで射出プランジャ7を設定位置とすることができる。
For example, a hot water supply position and a set position of the injection plunger 7 are set in advance, and a position difference (height difference) between the hot water supply position and the set position is obtained by calculation or actual measurement and input to the controller 40.
The stroke detecting means 30 detects the movement stroke in which the injection plunger 7 has moved downward from the hot water supply position, and when the movement stroke becomes the difference between the aforementioned positions, the controller 40 sets the valve 22 to the neutral position, and the injection cylinder 20 To stop the injection plunger 7 at the set position.
Since the movement stroke of the injection plunger 7 can be detected by the stroke of the injection cylinder 20, that is, the flow rate of the fluid pressure to be supplied, the supply amount per unit time is constant and the time for which the valve 22 is set to the fluid pressure supply position is controlled. By doing so, the injection plunger 7 can be set to the set position.
 前述のように、射出プランジャ7が設定位置で停止した後に、前述の空間10内に金属溶湯を充填する。
 この動作は次のようである。
 前記射出シリンダ20を伸び動作して射出プランジャ7を下方に移動し、射出チャンバー5内の金属溶湯を、前記空間10内に順次送り、充填する。
 前記空間10内に金属溶湯が充填されると、その後は金属溶湯が加圧されて射出プランジャ7は図6に示す充填完了位置で停止する。この動作が第3の工程である。
 前述の動作のときに、金型9のキャビティ9a内には射出成形品11が存在するので、金属溶湯は金型9のキャビティ9a内に射出されることはない。
As described above, after the injection plunger 7 stops at the set position, the molten metal is filled into the space 10 described above.
This operation is as follows.
The injection cylinder 20 is extended to move the injection plunger 7 downward, and the molten metal in the injection chamber 5 is sequentially fed into the space 10 and filled.
When the molten metal is filled into the space 10, the molten metal is pressurized and the injection plunger 7 stops at the filling completion position shown in FIG. This operation is the third step.
At the time of the above-described operation, since the injection molded product 11 exists in the cavity 9a of the mold 9, the molten metal is not injected into the cavity 9a of the mold 9.
 前記射出プランジャ7の充填完了位置が検出され、コントローラ40に入力される。
 例えば、射出プランジャ7が設定位置から下方に移動して停止するまでの移動ストロークを前記ストローク検出手段30で検出し、その検出した移動ストロークにより前記設定位置を基準として充填完了位置を検出する。
The filling completion position of the injection plunger 7 is detected and input to the controller 40.
For example, the stroke detecting means 30 detects a movement stroke until the injection plunger 7 moves downward from the set position and stops, and the filling completion position is detected based on the set position based on the detected movement stroke.
 前述した射出プランジャ7の充填完了位置が目標とする位置と異なると正確な射出成形動作を実施できないので、充填完了位置が目標位置であるかを確認できるようにしてある。
 例えば、前述した射出プランジャ7の充填完了位置は、図5に示す設定位置のときの空間10の大きさによって決まり、空間10が目標とする充填完了位置に見合う大きさであれば実際の充填完了位置が目標とする充填完了位置と一致するが、空間10の大きさが前述の大きさと異なると実際の充填完了位置が目標とする充填完了位置と異なる。
 つまり、射出プランジャ7の図5に示す設定位置は常時一定であるから、空間10の大きさが目標とする充填完了位置に見合う大きさよりも大きい場合には射出プランジャ7の下方への移動ストロークが長くなり、充填完了位置が目標とする位置よりも下部寄りとなり、小さい場合には射出プランジャ7の下方への移動ストロークが短く、充填完了位置が目標とする位置よりも上部寄りとなる。
If the above-described filling completion position of the injection plunger 7 is different from the target position, an accurate injection molding operation cannot be performed, so that it can be confirmed whether the filling completion position is the target position.
For example, the filling completion position of the injection plunger 7 described above is determined by the size of the space 10 at the set position shown in FIG. 5, and the actual filling is completed if the space 10 has a size that matches the target filling completion position. Although the position coincides with the target filling completion position, if the size of the space 10 is different from the above-described size, the actual filling completion position differs from the target filling completion position.
That is, since the setting position of the injection plunger 7 shown in FIG. 5 is always constant, if the size of the space 10 is larger than the size corresponding to the target filling completion position, the downward movement stroke of the injection plunger 7 is increased. It becomes longer, the filling completion position is closer to the lower part than the target position, and if it is smaller, the downward movement stroke of the injection plunger 7 is shorter, and the filling completion position is closer to the upper part than the target position.
 このことに着目し、空間10の大きさが目標とする大きさのときの充填完了位置を演算や実測で求め、その位置を目標位置としてコントローラ40に入力する。
 この目標位置と検出した充填完了位置を比較し、同じであれば充填完了位置が目標位置であり、異なる場合には充填完了位置が目標位置と異なる。
 そして、充填完了位置が目標位置でない場合には、次回の射出成形動作時に、前述の給湯状態で待機する時間を制御して充填完了位置を目標位置とする。
 例えば、目標位置と検出した充填完了位置との差と、射出プランジャ7の単位ストローク当りの容積に基づき空間10に充填する金属溶湯の誤差を演算し、その誤差分だけ給湯動作状態の時間(給湯時間)を増減することで充填完了位置を補正する。
Paying attention to this, the filling completion position when the size of the space 10 is the target size is obtained by calculation or measurement, and that position is input to the controller 40 as the target position.
This target position is compared with the detected filling completion position. If they are the same, the filling completion position is the target position. If they are different, the filling completion position is different from the target position.
Then, when the filling completion position is not the target position, the filling completion position is set as the target position by controlling the waiting time in the hot water supply state during the next injection molding operation.
For example, an error of the molten metal to be filled in the space 10 is calculated based on the difference between the target position and the detected filling completion position and the volume per unit stroke of the injection plunger 7, and the time of the hot water supply operation state (hot water supply) by the error. The filling completion position is corrected by increasing or decreasing (time).
 前述した射出プランジャ7が充填完了位置まで移動した後に、金型9を型開きしても良いが、図6に示すようにノズル8内に金属溶湯が充填している状態で金型9を型開きすると、たれ(ドローリング)と呼ばれる現象、つまりノズル8内の金属溶湯が流れ落ちることがあるので、たれ(ドローリング)防止動作を実施してから金型9を型開きする。
 すなわち、図6に示すようにノズル8内は横向きで、固定金型9bの湯入口9dも横向きであるから、ノズル8内に金属溶湯が充填した状態で金型9が型開きすると、固定金型9bの湯入口9dを通して金属溶湯が流れ落ちることがある。
The mold 9 may be opened after the injection plunger 7 has been moved to the filling completion position. However, the mold 9 is molded in a state where the molten metal is filled in the nozzle 8 as shown in FIG. When opened, a phenomenon called dripping (drawing), that is, the molten metal in the nozzle 8 may flow down, so that the mold 9 is opened after performing the dripping (drawing) preventing operation.
That is, as shown in FIG. 6, since the inside of the nozzle 8 is sideways and the hot water inlet 9d of the fixed mold 9b is also sideways, when the mold 9 is opened with the molten metal filled in the nozzle 8, the fixed mold The molten metal may flow down through the hot water inlet 9d of the mold 9b.
 前述のたれ(ドローリング)防止動作は次のようである。
 前記射出プランジャ7を図6に示す充填完了位置から数mmだけ上方に移動し、図7に示すたれ(ドローリング)防止位置とする。
 これによって、射出チャンバー5内の空間10が負圧となり、射出チャンバー5内に金属溶湯が引き戻しされ、図7に示すように、ノズル側部分に空間10が形成され、ノズル8内の金属溶湯の湯面2bを、ノズル8の出口の下部周縁よりも低い位置または同一位置とし、金型9が型開きしてもノズル8内の金属溶湯が固定金型9の湯入口9dに流れ落ちることがないようにする。
The aforementioned sagging (drawing) prevention operation is as follows.
The injection plunger 7 is moved upward by a few millimeters from the filling completion position shown in FIG. 6 to obtain a sagging (drawing) prevention position shown in FIG.
As a result, the space 10 in the injection chamber 5 has a negative pressure, and the molten metal is drawn back into the injection chamber 5. As shown in FIG. 7, the space 10 is formed in the nozzle side portion, and the molten metal in the nozzle 8 Even when the mold 9 is opened, the molten metal in the nozzle 8 does not flow down to the hot water inlet 9d of the fixed mold 9 with the molten metal surface 2b positioned lower than or at the same position as the lower peripheral edge of the outlet of the nozzle 8. Like that.
 例えば、射出プランジャ7の充填完了位置からの上方への移動ストロークをストローク検出手段30で検出し、その検出したストロークがあらかじめ設定してある数mmの引き上げストローク(設定ストローク)と一致したときに射出プランジャ7を停止する。
 この引き上げストロークは、前述の空間10の大きさと射出プランジャ7の単位ストローク当りの金属溶湯の移動量によって決定される。
For example, an upward movement stroke from the filling completion position of the injection plunger 7 is detected by the stroke detection means 30, and the injection is performed when the detected stroke matches a preset lifting stroke (set stroke) of several mm. The plunger 7 is stopped.
The pulling stroke is determined by the size of the space 10 and the amount of movement of the molten metal per unit stroke of the injection plunger 7.
 前述のたれ(ドローリング)防止動作が完了したら金型9の型開き動作をし、図8に示すように、固定金型9bと可動金型9cを離隔してノズル8内を大気に連通する。
 前記金型9は、その固定金型9bの湯入口9dがノズル8に接触したままで、可動金型9cを移動して型閉じ、型開きするので、固定金型9bが移動しないから、その湯入口9dとノズル8が接離を繰り返すことがなく、湯入口9dとノズル8との間に隙間が生じ、金属溶湯が漏れることがない。
When the above-described sagging (drawing) prevention operation is completed, the mold 9 is opened, and as shown in FIG. 8, the fixed mold 9b and the movable mold 9c are separated from each other and the inside of the nozzle 8 is communicated with the atmosphere. .
Since the mold 9 is moved and closed by moving the movable mold 9c while the hot water inlet 9d of the fixed mold 9b is in contact with the nozzle 8, the fixed mold 9b does not move. The hot water inlet 9d and the nozzle 8 do not repeat contact and separation, and a gap is formed between the hot water inlet 9d and the nozzle 8, so that the molten metal does not leak.
 前述の状態で、空間10の大きさ設定動作を行う。
 この空間10の大きさ設定動作は次のようである。
 前記射出プランジャ7がたれ(ドローリング)防止位置まで移動した後に、その射出プランジャ7を上方に移動し、ノズル側部分の湯面高さ2bを順次低下して空間10の大きさを順次大きくする。
 この空間10の大きさが設定の大きさとなったら射出プランジャ7を停止し、図8に示すようにノズル側部分に設定の大きさの空間10を形成する。
 この動作が第4の工程である。
In the state described above, the size setting operation of the space 10 is performed.
The size setting operation of the space 10 is as follows.
After the injection plunger 7 has moved to the sagging (drawing) prevention position, the injection plunger 7 is moved upward, and the molten metal surface height 2b of the nozzle side portion is sequentially decreased to sequentially increase the size of the space 10. .
When the size of the space 10 reaches the set size, the injection plunger 7 is stopped, and the set size space 10 is formed in the nozzle side portion as shown in FIG.
This operation is the fourth step.
 前述のように射出プランジャ7が停止した位置が射出成形開始位置で、この射出成形開始位置は充填完了位置を基準としてあらかじめ設定し、ストローク検出手段30が検出したストロークで射出プランジャ7の位置を求め、その射出プランジャ7の位置が設定した射出成形開始位置となったら射出プランジャ7を停止する。 As described above, the position where the injection plunger 7 is stopped is the injection molding start position. This injection molding start position is set in advance with reference to the filling completion position, and the position of the injection plunger 7 is obtained by the stroke detected by the stroke detection means 30. When the position of the injection plunger 7 reaches the set injection molding start position, the injection plunger 7 is stopped.
 つまり、射出プランジャ7の充填完了位置(たれ(ドローリング)防止位置)からの上方への移動ストロークで空間10の大きさが決定されるので、その空間10の設定の大きさと、射出プランジャ7の単位移動距離による金属溶湯の変化量に基づき、射出プランジャ7の充填完了位置またはたれ(ドローリング)防止位置からの上方への移動ストロークを演算して求め、そのストロークをコントローラ40に入力する。
 そして、ストローク検出手段30で検出したストロークが前述の設定したストロークに合致したときにコントローラ40がバルブ22を中立位置に切り換え、射出シリンダ20を停止することで射出プランジャ7を図8に示す射出成形開始位置とし、ノズル側部分の空間10の大きさを設定の大きさとする。
That is, the size of the space 10 is determined by the upward movement stroke from the filling completion position (sagging (drawing) prevention position) of the injection plunger 7. Based on the amount of change in the molten metal due to the unit movement distance, the upward movement stroke from the filling completion position or the dripping (drawing) prevention position of the injection plunger 7 is calculated and obtained, and the stroke is input to the controller 40.
When the stroke detected by the stroke detection means 30 matches the stroke set above, the controller 40 switches the valve 22 to the neutral position, and stops the injection cylinder 20 so that the injection plunger 7 is injection molded as shown in FIG. The start position is set, and the size of the space 10 on the nozzle side portion is set as a set size.
 この射出プランジャ7を射出成形開始位置で停止する動作は、射出プランジャ7を移動する時間で制御しても良い。
 例えば、バルブ22を流体圧供給位置に切り換える時間を、射出プランジャ7が充填完了位置(たれ(ドローリング)防止位置)から射出成形開始位置までの移動に要する時間とし、その時間が経過したらバルブ22を中立位置とする。
The operation of stopping the injection plunger 7 at the injection molding start position may be controlled by the time for moving the injection plunger 7.
For example, the time for switching the valve 22 to the fluid pressure supply position is the time required for the injection plunger 7 to move from the filling completion position (sagging (drawing) prevention position) to the injection molding start position. Is the neutral position.
 前述した動作の際に金型9から射出成形品11を取り出し、図9に示すように金型9を型閉じする。
 この動作が第5の工程である。
 前述の型閉じをして型締め完了した後に、射出プランジャ7を高速で下方に移動し、図2に示すように射出完了位置とすることで、第2回目の射出成形動作が完了する。
In the operation described above, the injection molded product 11 is taken out from the mold 9 and the mold 9 is closed as shown in FIG.
This operation is the fifth step.
After the above-described mold closing and mold clamping are completed, the injection plunger 7 is moved downward at a high speed to reach the injection completion position as shown in FIG. 2, thereby completing the second injection molding operation.
 前述のようにして射出成形動作する際に、射出成形品11を十分に冷却できない場合には、射出プランジャ7を任意の位置で停止して射出成形開始から射出成形品の取り出しまでの時間を長くすることで、射出成形品11を十分に冷却できるようにする。 When the injection molded product 11 cannot be sufficiently cooled during the injection molding operation as described above, the injection plunger 7 is stopped at an arbitrary position to increase the time from the start of injection molding to the removal of the injection molded product. By doing so, the injection molded article 11 can be sufficiently cooled.
 また、空間10の大きさを設定する動作は、前述した金型9を型開きする以前に実施しても良い。
 例えば、図6に示すようにプランジャ7が充填完了位置まで移動したら、前述の空間10の大きさを設定する動作を行う。
 そして、その後に型開きして射出成形品11を取り出しする。
The operation for setting the size of the space 10 may be performed before the mold 9 is opened.
For example, as shown in FIG. 6, when the plunger 7 moves to the filling completion position, the operation of setting the size of the space 10 is performed.
Then, the mold is opened and the injection molded product 11 is taken out.
 この後に、図3~図9、図2に示す動作を繰り返して第3回目以降の射出成形動作を実施する。
 このとき、前回の射出成形動作時に充填完了位置が目標位置とずれた場合には、図4に示す給湯状態の時間(射出プランジャ7を給湯位置で待機する時間)を制御して目標とする充填完了位置となるようにする。
Thereafter, the operations shown in FIGS. 3 to 9 and 2 are repeated to perform the third and subsequent injection molding operations.
At this time, if the filling completion position deviates from the target position during the previous injection molding operation, the target filling is performed by controlling the time of the hot water supply state shown in FIG. 4 (time for waiting the injection plunger 7 at the hot water supply position). Try to be the completion position.
 前述のようにして射出成形動作を複数回繰り返したら、射出プランジャ7の設定位置を変更する。
 このようにすることで、射出プランジャ7が射出チャンバー5の全域に亘って移動するから、射出チャンバー5内全域を有効利用できる。
When the injection molding operation is repeated a plurality of times as described above, the setting position of the injection plunger 7 is changed.
By doing in this way, since the injection plunger 7 moves over the whole region of the injection chamber 5, the whole region in the injection chamber 5 can be used effectively.
 前述の説明においては、射出プランジャ7が給湯位置のときの給湯口4の開口面積は一定としたが、その給湯口4の開口面積を調整し、メルティングポット1内の金属溶湯2を、給湯口4から射出チャンバー5内に単位時間当りに給湯する流量を増減できるようにしても良い。
 例えば、給湯口4を円形や長円形、またはスリット形状とし、その給湯口4の上下方向中間に射出プランジャ7の下端面を位置させて給湯位置とし、その射出プランジャ7の下端面の位置を上下に変更することで給湯口4の開口面積を調整できるようにする。
In the above description, the opening area of the hot water supply port 4 when the injection plunger 7 is at the hot water supply position is constant. However, the opening area of the hot water supply port 4 is adjusted, and the molten metal 2 in the melting pot 1 is replaced with hot water supply. The flow rate of hot water supplied from the port 4 into the injection chamber 5 per unit time may be increased or decreased.
For example, the hot water supply port 4 has a circular shape, an oval shape, or a slit shape, the lower end surface of the injection plunger 7 is positioned in the middle of the hot water supply port 4 in the vertical direction, and the lower end surface of the injection plunger 7 is moved vertically. By changing to, the opening area of the hot water supply port 4 can be adjusted.
 1…メルティングポット、2…金属溶湯、3…グースネック、4…給湯口、5…射出チャンバー、6…湯道、7…射出プランジャ、8…ノズル、9…金型、9a…キャビティ、9b…固定金型、9c…可動金型、9d…湯入口、10…空間、11…射出成形品、20…射出シリンダ、21…流体圧源、22…バルブ、30…ストローク検出手段、40…コントローラ。 DESCRIPTION OF SYMBOLS 1 ... Melting pot, 2 ... Molten metal, 3 ... Gooseneck, 4 ... Hot water inlet, 5 ... Injection chamber, 6 ... Runway, 7 ... Injection plunger, 8 ... Nozzle, 9 ... Mold, 9a ... Cavity, 9b ... Fixed mold, 9c ... movable mold, 9d ... hot water inlet, 10 ... space, 11 ... injection molded product, 20 ... injection cylinder, 21 ... fluid pressure source, 22 ... valve, 30 ... stroke detection means, 40 ... controller.

Claims (9)

  1.  メルティングポット(1)内の金属溶湯(2)を、グースネック(3)の射出プランジャ(7)を上下に移動することにより、給油口(4)、射出チャンバー(5)、湯道(6)、ノズル(8)を経て金型(9)のキャビティ(9a)内に射出して射出成形品(11)を射出成形するホットチャンバーダイキャストマシンの動作方法であって、
     前記金型(9)を型閉じした状態で射出プランジャ(7)を射出成形開始位置から最も下の射出完了位置まで下方に移動して射出チャンバー(5)内の金属溶湯を、金型(9)のキャビティ(9a)内に射出した後に、前記射出チャンバー(5)とメルティングポット(1)を連通する給湯口(4)を開放する最も上の給湯位置まで射出プランジャ(7)を上方に移動する第1の工程と、
     前記射出プランジャ(7)を前記給湯位置で設定時間待機した後に前記給湯位置よりも下で給湯口(4)を閉じる設定位置まで下方に移動することで、ノズル側部分に空間(10)を形成する第2の工程と、
     前記射出プランジャ(7)を前記設定位置から金型(9)のキャビティ(9a)に射出成形品(11)が存在する状態で、前記設定位置よりも下で、前記空間(10)内に金属溶湯を充填して空間(10)をなくす充填完了位置まで下方に移動する第3の工程と、
     前記射出プランジャ(7)を充填完了位置から、当該充填完了位置よりも上で前記給油口(4)を閉じる前記射出成形開始位置まで上方に移動してノズル側部分に設定空間(10)を形成する第4の工程と、
     前記金型(9)から射出成形品(11)を取り出した後に、金型(9)を型閉じする第5の工程を有することを特徴とするホットチャンバーダイキャストマシンの動作方法。
    By moving the molten metal (2) in the melting pot (1) up and down the injection plunger (7) of the gooseneck (3), the filler port (4), injection chamber (5), runner (6) , An operation method of a hot chamber die cast machine for injecting an injection molded product (11) by injection into a cavity (9a) of a mold (9) through a nozzle (8),
    With the mold (9) closed, the injection plunger (7) is moved downward from the injection molding start position to the lowest injection completion position, and the molten metal in the injection chamber (5) is moved to the mold (9 ) Is injected into the cavity (9a), and the injection plunger (7) is moved upward to the uppermost hot water supply position for opening the hot water supply port (4) communicating with the injection chamber (5) and the melting pot (1). A first step of moving;
    The injection plunger (7) waits for a set time at the hot water supply position and then moves downward to the set position for closing the hot water supply port (4) below the hot water supply position, thereby forming a space (10) in the nozzle side portion. A second step of:
    The injection plunger (7) is moved from the set position into the cavity (9a) of the mold (9) with the injection molded product (11) in the space (10) below the set position. A third step of filling the molten metal and moving downward to a filling completion position to eliminate the space (10);
    The injection plunger (7) is moved upward from the filling completion position to the injection molding start position for closing the fuel filler opening (4) above the filling completion position to form a setting space (10) in the nozzle side portion. A fourth step of
    A method of operating a hot chamber die casting machine, comprising: a fifth step of closing the mold (9) after taking out the injection molded product (11) from the mold (9).
  2.  前記第3の工程において、射出プランジャ(7)を設定位置から下方に移動して空間(10)内に金属溶湯が充填されることで、射出プランジャ(7)が充填完了位置で停止し、
     前記第4の工程において、射出プランジャ(7)を充填完了位置から設定したストロークだけ上方に移動して射出成形開始位置とするようにした請求項1記載のホットチャンバーダイキャストマシンの動作方法。
    In the third step, the injection plunger (7) is moved downward from the set position and the molten metal is filled into the space (10), so that the injection plunger (7) stops at the filling completion position,
    The operation method of the hot chamber die-casting machine according to claim 1, wherein in the fourth step, the injection plunger (7) is moved upward by a set stroke from a filling completion position to be an injection molding start position.
  3.  前記射出プランジャ(7)の移動ストロークを検出するストローク検出手段(30)で射出プランジャ(7)が充填完了位置から上方に移動したストロークを検出し、その検出したストロークが設定したストロークのときに射出プランジャ(7)を停止して射出成形開始位置とする請求項2記載のホットチャンバーダイキャストマシンの動作方法。 The stroke detecting means (30) for detecting the movement stroke of the injection plunger (7) detects the stroke in which the injection plunger (7) has moved upward from the filling completion position, and the injection is performed when the detected stroke is the set stroke. The operation method of the hot chamber die-casting machine according to claim 2, wherein the plunger (7) is stopped to be an injection molding start position.
  4.  前記射出プランジャ(7)の設定位置は、この射出プランジャ(7)の位置をストローク検出手段(30)が検出した射出プランジャ(7)の移動ストロークに基づいて検出し、その検出した位置によって射出プランジャ(7)を移動制御して設定位置とする請求項1~3いずれか1項記載のホットチャンバーダイキャストマシンの動作方法。 The setting position of the injection plunger (7) is detected based on the movement stroke of the injection plunger (7) detected by the stroke detection means (30), and the injection plunger is determined by the detected position. The method of operating a hot chamber die cast machine according to any one of claims 1 to 3, wherein (7) is controlled to move to a set position.
  5.  前記第3の工程において、射出プランジャ(7)の充填完了位置を目標位置として設定し、この設定した目標位置と実際の充填完了位置が異なる場合には、次回の射出成形動作時に第2工程における待機時間を増減することで充填完了位置を補正するようにした請求項1~4いずれか1項記載のホットチャンバーダイキャストマシンの動作方法。 In the third step, the filling completion position of the injection plunger (7) is set as a target position, and when the set target position is different from the actual filling completion position, the second step is performed during the next injection molding operation. The operation method of a hot chamber die cast machine according to any one of claims 1 to 4, wherein the filling completion position is corrected by increasing or decreasing the waiting time.
  6.  前記射出プランジャ(7)を充填完了位置からたれ防止位置まで移動してノズル側部分に空間(10)を形成し、その後に金型(9)を型開きするようにした請求項1~5いずれか1項記載のホットチャンバーダイキャストマシンの動作方法。 The injection plunger (7) is moved from a filling completion position to a sagging prevention position to form a space (10) in the nozzle side portion, and then the mold (9) is opened. A method of operating the hot chamber die cast machine according to claim 1.
  7.  前記第2の工程でノズル側部分に形成した空間(10)の大きさは、ノズル(8)内の金属溶湯が金型(9)と離れる大きさとした請求項1~6いずれか1項記載のホットチャンバーダイキャストマシンの動作方法。 The space (10) formed in the nozzle side portion in the second step is sized so that the molten metal in the nozzle (8) is separated from the mold (9). Method of hot chamber die casting machine.
  8.  前記金型(9)の固定金型(9b)は、その湯入口(9d)がノズル(8)と常時接触し、可動金型(9c)を移動して型閉じ、型開きするようにした請求項1~7いずれか1項記載のホットチャンバーダイキャストマシンの動作方法。 The fixed mold (9b) of the mold (9) has its hot water inlet (9d) always in contact with the nozzle (8), moves the movable mold (9c), closes the mold, and opens the mold. The operation method of a hot chamber die cast machine according to any one of claims 1 to 7.
  9.  複数回射出成形動作した後に、前記射出プランジャ(7)の設定位置を変更するようにした請求項1~8いずれか1項記載のホットチャンバーダイキャストマシンの動作方法。 The operation method of the hot chamber die cast machine according to any one of claims 1 to 8, wherein the setting position of the injection plunger (7) is changed after performing the injection molding operation a plurality of times.
PCT/JP2012/081904 2012-12-10 2012-12-10 Method for operating hot chamber die casting machine WO2014091532A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2012/081904 WO2014091532A1 (en) 2012-12-10 2012-12-10 Method for operating hot chamber die casting machine
CN201280075351.8A CN104870122B (en) 2012-12-10 2012-12-10 The method of operating of hot chamber machine
TW102142748A TWI519363B (en) 2012-12-10 2013-11-25 Operating method of hot chamber diecasting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081904 WO2014091532A1 (en) 2012-12-10 2012-12-10 Method for operating hot chamber die casting machine

Publications (1)

Publication Number Publication Date
WO2014091532A1 true WO2014091532A1 (en) 2014-06-19

Family

ID=50933861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081904 WO2014091532A1 (en) 2012-12-10 2012-12-10 Method for operating hot chamber die casting machine

Country Status (3)

Country Link
CN (1) CN104870122B (en)
TW (1) TWI519363B (en)
WO (1) WO2014091532A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735200B (en) * 2020-01-17 2021-08-01 日商Ykk股份有限公司 Die casting device
US20210394260A1 (en) * 2020-06-22 2021-12-23 Oskar Frech Gmbh + Co. Kg Die-Casting Machine and Operating Method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02241650A (en) * 1989-03-15 1990-09-26 Meichiyuu Seiki Kk Apparatus for pouring molten metal
JPH10235463A (en) * 1997-02-25 1998-09-08 Ykk Corp Injection molding machine and injection molding method
JP2010058130A (en) * 2008-09-01 2010-03-18 Gundai Kk Hot chamber die casting machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3770688B2 (en) * 1997-02-25 2006-04-26 Ykk株式会社 Injection molding machine
JPH10235462A (en) * 1997-02-27 1998-09-08 Ykk Corp Injection molding machine and injection molding method
EP1407843A4 (en) * 2001-06-06 2006-06-07 Kubota Kk Molten metal feeder
JP2010214448A (en) * 2009-03-18 2010-09-30 Kikuchiseisakusho Co Ltd Hot chamber type die casting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02241650A (en) * 1989-03-15 1990-09-26 Meichiyuu Seiki Kk Apparatus for pouring molten metal
JPH10235463A (en) * 1997-02-25 1998-09-08 Ykk Corp Injection molding machine and injection molding method
JP2010058130A (en) * 2008-09-01 2010-03-18 Gundai Kk Hot chamber die casting machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735200B (en) * 2020-01-17 2021-08-01 日商Ykk股份有限公司 Die casting device
US20210394260A1 (en) * 2020-06-22 2021-12-23 Oskar Frech Gmbh + Co. Kg Die-Casting Machine and Operating Method
US11819911B2 (en) * 2020-06-22 2023-11-21 Oskar Frech Gmbh + Co. Kg Die-casting machine and operating method

Also Published As

Publication number Publication date
CN104870122B (en) 2016-10-12
TW201422338A (en) 2014-06-16
CN104870122A (en) 2015-08-26
TWI519363B (en) 2016-02-01

Similar Documents

Publication Publication Date Title
US8460586B2 (en) Injection molding method and apparatus for controlling a mold temperature and displacement of an injection screw
JP4520211B2 (en) Metal part manufacturing method and apparatus by die casting method
US10272488B2 (en) Low-pressure casting device and low-pressure casting method
JP2011131225A (en) Injection device and injection controlling method of die casting machine
JPH08257736A (en) Method and device for controlling injection in die casting machine
WO2020170490A1 (en) Die casting machine, die casting machine with die, control device for die casting machine, and die casting method
CN104608351B (en) Method and molding machine for determining a setpoint value for a control variable
WO2014091532A1 (en) Method for operating hot chamber die casting machine
KR101854968B1 (en) Hot chamber caster for aluminum alloy
CN216502263U (en) Magnesium alloy casting and filling device
JP2009107010A (en) Injection apparatus in die casting machine and control method thereof
JP5084789B2 (en) Pressure casting method
JP5381161B2 (en) Die casting machine and die casting method
JP5754700B2 (en) Molding machine
JP2008207235A (en) Diecasting device and diecasting method
JPWO2008088064A1 (en) Casting method and die casting machine
JP6170820B2 (en) Reactive gas supply device, non-porous die casting system, and non-porous die-cast product manufacturing method
JP2020189298A (en) Die cast machine
JPH07155924A (en) Method for supplying molten metal in die casting machine
JP2020062671A (en) Die casting machine
JP2022191650A (en) Molten metal supply device of die-casting machine and casting method
JP2021169111A (en) Die cast production method and device
JP2866215B2 (en) Die casting machine
JP2019025537A (en) Injection speed control method for injection device and control device therefor
JP2005334977A (en) Method for controlling drive of locally pressing pin

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889785

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015/06953

Country of ref document: TR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP