WO2014090909A1 - Couche résistante à l'usure et procédé de fabrication d'une couche résistante à l'usure - Google Patents

Couche résistante à l'usure et procédé de fabrication d'une couche résistante à l'usure Download PDF

Info

Publication number
WO2014090909A1
WO2014090909A1 PCT/EP2013/076297 EP2013076297W WO2014090909A1 WO 2014090909 A1 WO2014090909 A1 WO 2014090909A1 EP 2013076297 W EP2013076297 W EP 2013076297W WO 2014090909 A1 WO2014090909 A1 WO 2014090909A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insert material
wear
blade
hardness
Prior art date
Application number
PCT/EP2013/076297
Other languages
German (de)
English (en)
Inventor
Stephan Siegmann
Andrew R. Nicoll
Original Assignee
Nova Werke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nova Werke Ag filed Critical Nova Werke Ag
Priority to DE112013005937.1T priority Critical patent/DE112013005937B4/de
Priority to CN201380064474.6A priority patent/CN105026601A/zh
Priority to JP2015547009A priority patent/JP6038349B2/ja
Priority to KR1020157009967A priority patent/KR101587391B1/ko
Publication of WO2014090909A1 publication Critical patent/WO2014090909A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process

Definitions

  • the invention relates to a wear-resistant layer according to the preamble of claim 1 and to a method for producing a wear-resistant layer according to claim 11.
  • thermal spraying The preparation of coatings by thermal spraying is known from the prior art.
  • the methods of thermal spraying are classified in standards EN657 and ISO 14917.
  • thermally conductive or heat insulating Provides protection against, for example, wear or corrosion with layers of refractory metals or ceramics.
  • thermally heavily loaded components can by means of thermal spraying with thermally conductive or heat insulating
  • Powder mold can be produced, for example, in EN 1274, or those which are producible in wire
  • Coating materials are supplied during thermal spraying of a high-energy heat source and melted.
  • the heat source may be a fuel gas-oxygen flame, a
  • Arc or a plasma of a noble gas, such as argon,
  • the fused or melted particles are in the direction of the workpiece accelerates and bounces there at high speed, that is, at a speed of about 40 m / s up to and including 600 m / s. After heat transfer to the base material they solidify and form a layer by layer.
  • EP 1 291 449 A2 discloses a process for coating a friction-prone base material with a protective layer by means of a thermal spraying process.
  • M0S12 which is supplied in powder form to an injection nozzle and applied to the friable base material. After this process step is a
  • Diffusion heat treatment is performed and before or after the diffusion heat treatment, the frictional areas of the applied protective layer are cut in a serrated or pointed shape.
  • the diffusion heat treatment is carried out for the example mentioned in EP 1 291 449 A2 at 1150 ° C. in 1 to 10 hours. It serves for improved durability of the
  • This intermediate layer is an MCrAlY having one of the following compositions: (1) 15-30% Cr, 5-10% Al, 0.3-1.2% Y, 0.1-1.2% Si, 0-2% others and the balance Ni, Co, (2) 35-39% Co, 18-24% Cr, 7 - 9% Al, 0.3 - 0.8% Y, 0.1 - 1% Si, 0-2% others and the rest Ni, (3) 18-26% Cr, 5-8% Al, 0.3-1.2% Y, 0.1-1.2% Si, 0-2% others and the remainder Ni, Co (all figures in weight percent).
  • These intermediate layers are optimized for LMF, since the ⁇ -phase initially forms on solidification from the melting phase and this epitaxially solidifies on the base body of the turbine blade.
  • an abrasive layer is also applied using LMF.
  • the abrasive layer contains a binder material of the same composition as the intermediate layer and an abrasive material.
  • the abrasive material is completely embedded in the binder material, which extends the useful life of the abrasive layer at high service temperatures.
  • an eptitaktische connection is advantageous, as this is in minimal risk of defect formation.
  • the object of the invention is to provide a wear-resistant layer of higher durability. Another object of the invention is to make the wear-resistant layer faster and cheaper.
  • the object is achieved by a wear-resistant layer according to claim 1, which is prepared by a method according to claim 1 1.
  • the inventive wear-resistant layer for a component contains an insert material and a binder material, wherein the
  • Binder material contains a metallic matrix and the
  • Insert material contains an oxide ceramic compound.
  • the metallic matrix forms a hard matrix with a hardness of 400 HVO. l up to 850 HVO. l, preferably with a hardness of 600 HVO. l up to 850 HV0.1 and the insert material has a hardness of 1400 HVO. l up to 1800 HVO. l on.
  • the wear-resistant layer may in particular be used as an abrasive protective layer for a component friction surface or contact surface
  • One function of the abrasive protective layer may be, inter alia, impurities on the
  • Rotary movement executes, strip.
  • the component can be any suitable material
  • a turbine blade for example a
  • Turbine blade of a radial turbine of a turbocharger Turbine blade of a radial turbine of a turbocharger.
  • the insert material contains a compound of Al2O3 - ZrO2 or Al2O3 -T1O2. From CN 101580938 it is known to apply Al 2 O 3 p in a metallic matrix of NiCrBSi by means of plasma spraying in order to obtain an erosion-resistant coating of a low-alloy C-steel. This layer combination is called
  • Valve seat surface used which must be erosion resistant, but not abrasion resistant. That is, this layer must have a high hardness, which is achieved by the use of AI2O3P. It is known from the publication "Fracture Toughness Measurement of Plasma Sprayed Ceramic Coatings" by F. Beltzung et al., Thin Solid Films, 181 (1989) 407-415, that sintered Al 2 O 3 is significantly higher in comparison with plasma sprayed Al 2 O 3
  • Fracture toughness of AI2O3 can be increased if one
  • AI2O3 - T1O2 layer The observed behavior of the AI2O3 - T1O2 layer is likely to occur only after the addition of 40% T1O2 through the resulting phase transformation. It follows that AI2O3 - T1O2 layers with up to 40% T1O2 can be used as wear layers, if a
  • Phase transformation is prevented by the process management.
  • the wear resistance is increased in particular with an addition of 20-40% ZrO2, and increased at an addition of up to 40% T1O2, preferably from 1% up to 40% T1O2, in particular 3% up to 20% TiO 2 .
  • Turbine blade tip comes into contact with this Abst Anlagen or deposits in the housing, with part of the Abrasive layer or the deposits from the blade tip is scraped off. This can be for the
  • Toughness is due to a microstructure
  • the porosity of the wear-resistant layer can be at most 5%, preferably at most 3%.
  • the binder material may contain NiCrBSi or CoCrNiBSi, in particular CoCrNiMoWBSi.
  • the layer consists of one
  • a metallic matrix of a self-fluxing alloy of the type NiCrBSi or CoCrNiBSi material class 2, i.e. 2.1 to 2.21 according to standard EN 1274,
  • Insert material of AI2O3 with ZrO2 or AI2O3 with T1O2 contains.
  • ZI should be used to denote the usual contaminants, such as
  • Y1 can be 3% or 13%.
  • the indication of the grain size for Ni-15Cr-5Si-4B has the meaning that 90% of the particles have a particle size of less than or equal to 63 ⁇ and 10% of the particles have a particle size less than or equal to 16 ⁇ .
  • a grain size of F24 to F220 is used for an Al2O3 - ZrO2 layer or Al2O3 - T1O2 layer.
  • Grain size classification is based on a standard prepared by FEPA (Federation Europeenne of the Manufacturers Abrasifs or Federation of European manufacturers of abrasive products and their Trade Associations). The classification indicates the number of stitches per 1 inch (25.4 mm) of the sieve used for the different grain sizes. This is what happens
  • Grit 150 for example, has just a sieve with 150 meshes per inch in length.
  • the particle size distribution based on those used in this document
  • F36 425-600 ⁇
  • F40 355-500 ⁇
  • F46 300-425 ⁇
  • F54 250-355 ⁇
  • F60 212-300 ⁇
  • F70 180-250 ⁇
  • F80 150-212 ⁇
  • F 90 125-180 ⁇
  • F100 106-150 ⁇
  • F120 90-125 ⁇
  • F150 63-106 ⁇
  • F180 53-90 ⁇
  • F220 45-75 ⁇
  • F230 34-82 ⁇
  • F240 28-70 ⁇
  • F280 22-59 ⁇ .
  • the metallic matrix may contain at least one of the following compounds: NiCuBSi 76 20 with a hardness HRC of 35-40, containing max. 0.05% C, 19-21% Cu, max. 0.5% Fe, 0.9-1.3% B, 1.8-2.0% Si, balance Ni or NiBSi 96 with a hardness HRC of 15-30, containing max. 0.2% C, max.
  • B 4.0-5.0% Si
  • Ni or NiCrBSi 65 25 with a hardness HRC greater than or equal to 60, containing 0.8- 1.0% C, 24-26% Cr, max. 1% Fe, 3.0-3.8%
  • B, 4.0-4.6% Si balance Ni or NiCrBSi 82 7 with a hardness HRC greater than or equal to 60, containing a maximum of 0.06%
  • CoCrNiMoBSi 40 18 27 5 with a hardness HRC of 55-60, containing max. 0.2% C, 26-28% Ni, 18-20% Cr, 4-6% Mo, max. 2.6% Fe, 3.0-3.6% B, 3.0-3.6% Si remainder Co, or CoCrNiMoBSi 50 18 17 6 with a hardness HRC of 30-40, containing 0.1-0.3% C, 17-19% Ni, 18-20% Cr, 6-8% Mo, max. 2.5% Fe, 2.8-3.2% B, 3.3-3.7% Si, balance Co or CoCrNiWBSi 53 20 13 7 with a hardness HRC of 40-50, containing 0.7-1.1% C, 13-16% Ni, 18-21% Cr, 6-10% W, max.
  • Layer composition is characterized by a higher matrix hardness for coatings, a good bond of the
  • the binder material may thus contain NiCrBSi or CoCrNiBSi.
  • the binder material may consist of NiCrBSi.
  • the binder material may also consist of CoCrNiBSi.
  • the proportion of boron may be for each of those mentioned in the preceding sentences Alternatives are at least 0.8 up to and including 4% by weight.
  • the proportion of silicon may be at least 1.8 to 5% by weight.
  • the insert material can have a volume fraction of at least 10% up to 40%. In comparison to the prior art, a higher volume fraction can be achieved with the method according to the invention.
  • the insert material used is in particular a powder which has an average particle size of at least 50 ⁇ m.
  • the powder may have an average particle size of 70 ⁇ to 200 ⁇ .
  • the powder may have a mean particle size of 70 to 100 ⁇ .
  • a component comprises a substrate and a wear-resistant layer according to one of the preceding embodiments.
  • the component may be, for example, a blade, in particular a blade tip for a turbine, for example, for a radial turbine for a turbocharger.
  • a blade is particularly suitable for the operation of a rotating turbine
  • peripheral speeds can be up to 500 m / s, for example, for two-stroke engines for marine use.
  • the blade tips are in frictional contact with static components, such as housing elements, which have deposits through which the blade tips can rub against the static components.
  • static components such as housing elements, which have deposits through which the blade tips can rub against the static components.
  • an abrasive wear protection layer according to one of the preceding embodiments is required.
  • a powder containing an insert material and a binder material is supplied to a device for thermal spraying in a first step.
  • Binder material contains a metallic matrix and the
  • Insert material contains an oxide ceramic compound.
  • the powder is applied by thermal spraying on the component, whereby a wear-resistant layer is produced.
  • the metallic matrix forms a hard matrix with a hardness of 400 HV0.1 up to 850 HV0.1, preferably 400 HV0.1 up to 750 HV0.1, and the insert material has a hardness of 1400 HV0.1 - 1800 HV0.1 ,
  • insert materials and / or binder materials can be used for the process, wherein the insert materials and / or
  • Binder materials contain components according to at least one of the preceding embodiments.
  • one of the thermal spraying methods mentioned below is used: a plasma spraying method or a flame spraying method.
  • the coating is applied to a turbine blade.
  • the turbine blade has a front side (suction side) and a rear side (pressure side).
  • a compressible, in particular gaseous, fluid flows, which is guided from an inlet edge to an outlet edge.
  • the leading edge forms the fluid inlet-side boundary of the front side of the turbine blade.
  • the exit edge forms the fluid outlet-side boundary of the front side of the turbine blade.
  • the leading edge defines the blade tip toward the suction side, wherein the coating according to an embodiment is applied such that in the vicinity of the blade tip (blade outer side) on the front side
  • the blade ground can not be coated, that is, the blade ground has no coating.
  • the front side is also referred to as the vane suction side.
  • the coating is thus applied primarily on the front edge or suction side, but similar to a snow plow close to the edge on the leading blade surface, that is, the blade tip.
  • the leading edge or suction side or pressure side provided with a layer is referred to as a coated blade surface.
  • the layer can be a variable along the coated blade surface Have layer thickness. In particular, the layer thickness may decrease from the blade tip in the direction of the blade root.
  • the ceramic and metal components may either be premixed in their composition, or during the process in
  • Process step namely by means of thermal spraying, is applied to the base body or the substrate:
  • the porosity of the binder material forming the metallic matrix is low and closed.
  • the average hardness of 750 HV0.1 is surprisingly well above the
  • Hardnesses typically achieved by laser deposition welding which are 420 HV0.1.
  • the liner material may have hardnesses in the range of 1400 to 1800 HV0.1.
  • the insert material may contain particles of different particle size distribution, because the particle size distribution of the insert material has little influence on the porosity, since the melting of the binder material can be a good integration of the particles of the insert material, whereby a good wetting and a good anchoring of the particles can be achieved.
  • the proportion of insert material can also be surprisingly up to about 40 for the reasons mentioned above Vol.% Be increased.
  • Fig. 5 shows the structure of a layer with AI2O3 insert material
  • Fig. 6 shows the structure of a layer with Al2O3 with ZrO2
  • Fig. 7 shows the microstructure of the insert material AI2O3 / ZrO 2 of
  • a wear-resistant layer for a component was produced.
  • the wear-resistant layer contains a
  • the binder material is a self-flowing material with high flowability.
  • Insert material contains an oxide-ceramic compound of hard oxide particles of Al 2 O 3 - ZrO 2, or of Al 2 O 3 -T1O 2.
  • the metallic matrix forms a hard matrix with a hardness of 400 HV0.1 up to 750 HV0.1, and the insert material has a hardness of 1400 HV0.1 up to 1800 HV0.1.
  • Einlagematerials are sharp-edged grains having a grain size of at least 100 ⁇ .
  • FIG. 1 shows a view of a front side 2 of a component
  • a blade 1 for example a turbine blade, which can be used for a turbine of a turbocharger.
  • a wear-resistant layer is applied, which is also referred to as a front layer.
  • the suction side 2 and the pressure side 3 are bounded from the outside by the blade tip 6.
  • the blade tip 6 forms with the suction side 2 the
  • the suction side 2 is bounded by the leading edge 7, the trailing edge 8, the blade tip 6 and the blade root 5. In the operating state, along the suction side 2, a compressible, in particular gaseous, fluid flows, which is guided from an inlet edge 7 to an outlet edge 8.
  • the leading edge 7 forms the fluid inlet-side boundary of
  • the exit edge 8 forms the fluid outlet-side boundary of the leading edge 4 of the turbine blade.
  • Fig. 2 shows a detail of the layer in a section which runs along the sectional plane I-I, which extends substantially normal to the front.
  • the porosity of the layer is about 2.3%.
  • the hard phase, ie the insert material has a porosity of 15%. From this it can be concluded that the grains of Al 2 O 3 - ZrO 2 are embedded almost completely in the binder material and that due to the self-flowing properties of the binder material a very good binding of the liner material in the binder material on the one hand and on the other hand a very good bonding of the layer takes place to the base material ,
  • Fig. 3 is an illustration of the insert material AI2O3.
  • Fig. 4 is a picture of the insert material AI2O3 - ZrO2 in 50-fold
  • the insert material AI2O3 - ZrO2 according to FIG. 4 is present as bulk material with sharp-edged particles which consist of a fine-grained structure.
  • the microstructure of Al2O3 - ZrO2 one has a higher toughness than an insert material consisting of Al2O3.
  • the insert material has a similar microstructure, which has also been measured for insert materials of the type AI2O3-ZrO2 used in the sandblasting process.
  • the binder material has only a low porosity. The drop boundaries, which provide for the formation of lamellae when using Al 2 O 3, as shown in FIG. 5, are no longer visible for Al 2 O 3 - ZrO 2 in FIG. 6, since the binder material is completely melted.
  • FIG. 7 shows a detail view from FIG. 6.
  • the figure shows a section of an Al 2 O 3 -ZrO 2 particle in which a microstructure is visible, which shows the good bonding of the hard oxide phase.
  • Ni-15Cr-5Si-4B is replaced with a
  • the fine-grained material is preferred because it must be melted within a single process step.
  • the powder with the selected composition is a self-flowing material, which at the same time a metallic bond with the
  • the Vickers hardness HV0.3 of the binder material as a metallic matrix measured after the thermal spraying process had an average value of 747 HV0.1.
  • the insert material used was either Al 2 O 3 with ZrO 2 or only Al 2 O 3.
  • the particles are usually produced by melting together and then broken to have a sharp-edged surface. It has been found that the layer in which Al 2 O 3 is used with ZrO 2 as the insert material, compared to the layer in which only Al 2 O 3 is used as the insert material, has a lifetime increased by a factor of 2.
  • Figure 8 shows a comparison of the wear resistance of a powdered AI2O3 - ZrO2 abrasive compared to AI2O3 abrasives 11, 12 and an Al2O3 - T1O2 abrasive 13
  • Abrasive was carried out a wear test. In such a wear test, resistance of the abrasive to cracks and crushing by breakage is determined.
  • the vertical axis contains the proportion of whole grains in the abrasive, the horizontal axis the number of wear events.
  • Wear resistance is defined as the number of entire grains of abrasive present after a number of impacts. Abrasive 13 shows the lowest
  • the abrasive 10 consists of eA ⁇ 3 - Zr ⁇ 2.
  • the abrasives 1 1, 12, 13 are powders consisting either of Al 2 O 3 (abrasive 12, high-grade corundum), a mixture of Al 2 O 3 - ZrO 2 and ceramics (abrasive 1 1) or have a proportion of T1O2 (abrasive 13, brown Corundum).
  • Abrasives and in particular Al2O3 - T1O2 abrasives in comparison to Al2O3 - ZrO2 abrasives whose grain size is subject to wear test has proven to be most resistant to cracking, breakage or crushing. It is also known (see for example
  • an AI2O3 abrasive has higher hardness and lower fracture toughness than an AI2O3-T1O2 abrasive, with the AI2O3 abrasive being characterized by higher purity, better cutting properties, a capability the abrasive for self-sharpening, a lower heat, higher thermal stability and higher resistance to acids and bases has.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

L'invention porte sur une couche résistante à l'usure pour un composant qui contient un matériau d'inclusion et un matériau liant. Le matériau liant contient une matrice métallique et le matériau d'inclusion contient un composé céramique oxyde qui comprend de l'Al2O3 ‑ ZrO2 ou de l'Al2O3 ‑ TiO2. La matrice métallique forme une matrice dure ayant une dureté de 400 HV0.1 à 850 HV0.1. Le matériau d'inclusion présente une dureté de 1400 HV0.1 à 1800 HV0.1.
PCT/EP2013/076297 2012-12-12 2013-12-11 Couche résistante à l'usure et procédé de fabrication d'une couche résistante à l'usure WO2014090909A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112013005937.1T DE112013005937B4 (de) 2012-12-12 2013-12-11 Verschleissbeständige Schicht und Verfahren zur Herstellung einer verschleissbeständigen Schicht
CN201380064474.6A CN105026601A (zh) 2012-12-12 2013-12-11 耐磨层和制造耐磨层的方法
JP2015547009A JP6038349B2 (ja) 2012-12-12 2013-12-11 耐摩耗性層および耐摩耗性層の製造方法
KR1020157009967A KR101587391B1 (ko) 2012-12-12 2013-12-11 내마모성 층, 및 내마모성 층을 제조하기 위한 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12196715 2012-12-12
EP12196715.2 2012-12-12

Publications (1)

Publication Number Publication Date
WO2014090909A1 true WO2014090909A1 (fr) 2014-06-19

Family

ID=47602893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/076297 WO2014090909A1 (fr) 2012-12-12 2013-12-11 Couche résistante à l'usure et procédé de fabrication d'une couche résistante à l'usure

Country Status (5)

Country Link
JP (1) JP6038349B2 (fr)
KR (1) KR101587391B1 (fr)
CN (1) CN105026601A (fr)
DE (1) DE112013005937B4 (fr)
WO (1) WO2014090909A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105316619A (zh) * 2015-10-29 2016-02-10 中国科学院宁波材料技术与工程研究所 一种利用热喷涂技术制备耐磨超疏水陶瓷涂层的方法及其产品
US20210053311A1 (en) * 2018-03-26 2021-02-25 Ganzhou En Chuang Technology Company Limited Creping blade and method for manufacturing same
CN115233142A (zh) * 2022-07-27 2022-10-25 重庆川仪调节阀有限公司 一种钛合金表面耐腐蚀耐磨损复合硬质涂层的制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555149A (zh) * 2016-11-18 2017-04-05 无锡明盛纺织机械有限公司 一种循环流化床锅炉耐高温抗磨蚀梯度涂层的制备方法
KR101965782B1 (ko) * 2018-06-07 2019-04-08 주식회사 하나웰텍 에지테이터 블레이드 및 그 제조방법
CN112410712B (zh) * 2020-10-30 2022-05-17 中国航发北京航空材料研究院 一种钛合金叶片凸肩耐磨涂层修复方法
CN115142005A (zh) * 2021-04-15 2022-10-04 浙江福腾宝家居用品有限公司 烹饪器具及其制备方法
CN115354261B (zh) * 2022-09-01 2024-01-23 天津华能杨柳青热电有限责任公司 一种防结焦耐磨损耐腐蚀梯度复合材料及其制备方法
KR102528201B1 (ko) 2023-03-30 2023-05-03 드림산업(주) 오배자 분말과 들깨잎 추출물이 함유된 항균성 포도 봉지의 제조방법 및 이로써 제조된 항균성 포도 봉지
KR102561959B1 (ko) 2023-03-30 2023-08-01 드림산업(주) 황의 성분이 함유된 항균성 포도 봉지의 제조방법 및 이로써 제조된 항균성 포도 봉지

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180622A (en) * 1977-09-07 1979-12-25 Swiss Aluminium Ltd. Wear resistant coating for the working face of disc-shape machine parts made of aluminum or aluminum alloys
US4492766A (en) * 1982-06-11 1985-01-08 Ceskoslovenska Akademie Ved Spray-coating material
WO2002024970A2 (fr) * 2000-09-21 2002-03-28 Federal-Mogul Burscheid Gmbh Revetement applique par voie thermique, destine a des segments de piston et constitue de poudres alliees mecaniquement
WO2004097272A1 (fr) * 2003-04-28 2004-11-11 Man B & W Diesel A/S Piston destine a un gros moteur et procede de production d'une couche de protection contre l'usure sur ce piston
WO2009112368A2 (fr) * 2008-03-04 2009-09-17 Coatec Gesellschaft für Oberflächenveredelung mbH Revêtement d'un corps en acier ou en un matériau cfk, et procédé de production d'un tel revêtement
CN101580938A (zh) * 2009-06-19 2009-11-18 吉林大学 一种氧化铝陶瓷颗粒增强金属基复合材料涂层制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48102741A (fr) * 1972-04-08 1973-12-24
JPS5925058A (ja) * 1982-08-04 1984-02-08 Toyota Motor Corp 内燃機関用シリンダ
JPS59122869U (ja) * 1983-02-07 1984-08-18 手嶋 立男 アルミナ・ジルコニアコ−テイングの利器
JP3042966B2 (ja) * 1994-06-10 2000-05-22 日本鋼管株式会社 耐摩耗性を有する制振合金鋼部材およびその製造方法
JPH09143670A (ja) * 1995-11-21 1997-06-03 Mitsubishi Materials Corp 酸化物系セラミックスコーティングディスクローター
JP2000054104A (ja) * 1998-08-10 2000-02-22 Nippon Piston Ring Co Ltd 耐摩耗性摺動部材
PT1507020E (pt) * 1999-01-19 2007-07-13 Sulzer Metco Ag Camada aplicada por projecção por plasma para superfícies de deslizamento de cilindros de blocos de motor e processo para a sua produção
EP1291449B1 (fr) 2001-08-03 2014-12-03 Alstom Technology Ltd Procédé de revêtement et substrat revêtu sujet à la friction
JP3649210B2 (ja) * 2002-06-07 2005-05-18 株式会社日本セラテック 耐食性部材
EP1710216B8 (fr) * 2005-04-07 2016-03-02 Oerlikon Metco AG, Wohlen Compresseur avec une couche de surface d'un matériau céramique et sa méthode de production
JP4653721B2 (ja) * 2006-11-07 2011-03-16 住友金属鉱山株式会社 溶射用Ni基自溶合金粉末およびその製造方法と、該粉末を用いて得られる自溶合金溶射皮膜
DE102009008105B4 (de) * 2009-02-09 2017-02-09 Daimler Ag Bremsscheibe für ein Fahrzeug

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180622A (en) * 1977-09-07 1979-12-25 Swiss Aluminium Ltd. Wear resistant coating for the working face of disc-shape machine parts made of aluminum or aluminum alloys
US4492766A (en) * 1982-06-11 1985-01-08 Ceskoslovenska Akademie Ved Spray-coating material
WO2002024970A2 (fr) * 2000-09-21 2002-03-28 Federal-Mogul Burscheid Gmbh Revetement applique par voie thermique, destine a des segments de piston et constitue de poudres alliees mecaniquement
WO2004097272A1 (fr) * 2003-04-28 2004-11-11 Man B & W Diesel A/S Piston destine a un gros moteur et procede de production d'une couche de protection contre l'usure sur ce piston
WO2009112368A2 (fr) * 2008-03-04 2009-09-17 Coatec Gesellschaft für Oberflächenveredelung mbH Revêtement d'un corps en acier ou en un matériau cfk, et procédé de production d'un tel revêtement
CN101580938A (zh) * 2009-06-19 2009-11-18 吉林大学 一种氧化铝陶瓷颗粒增强金属基复合材料涂层制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105316619A (zh) * 2015-10-29 2016-02-10 中国科学院宁波材料技术与工程研究所 一种利用热喷涂技术制备耐磨超疏水陶瓷涂层的方法及其产品
US20210053311A1 (en) * 2018-03-26 2021-02-25 Ganzhou En Chuang Technology Company Limited Creping blade and method for manufacturing same
US11951708B2 (en) * 2018-03-26 2024-04-09 Ganzhou En Chuang Technology Company Limited Creping blade and method for manufacturing same
CN115233142A (zh) * 2022-07-27 2022-10-25 重庆川仪调节阀有限公司 一种钛合金表面耐腐蚀耐磨损复合硬质涂层的制备方法

Also Published As

Publication number Publication date
DE112013005937B4 (de) 2022-06-09
KR101587391B1 (ko) 2016-01-20
KR20150047644A (ko) 2015-05-04
CN105026601A (zh) 2015-11-04
JP6038349B2 (ja) 2016-12-07
DE112013005937A5 (de) 2015-09-10
JP2016503125A (ja) 2016-02-01

Similar Documents

Publication Publication Date Title
DE112013005937B4 (de) Verschleissbeständige Schicht und Verfahren zur Herstellung einer verschleissbeständigen Schicht
DE2829369C3 (de) Verfahren zum Ausbilden von harten, verschleißfestenMetallkarbide enthaltenden Überzügen
EP1322794B1 (fr) Revetement applique par voie thermique, destine a des segments de piston et constitue de poudres alliees mecaniquement
EP2317078B1 (fr) Aube de turbine abrasive monocristalline
DE69732046T2 (de) Schutzbeschichtung für hochtemperatur
CH653375A5 (de) Beschichtungsmaterial.
EP1980773B1 (fr) Procédé de projection thermique destiné à recouvrir une gorge annulaire, utilisation d'un fil de projection tout comme piston doté d'un revêtement thermique
EP0598762A1 (fr) Outil a tranchant resistant a l'usure en nitrure de bore cubique ou en nitrure de bore cubique polycristallin, procede de fabrication et utilisation.
DE3224305A1 (de) Verfahren zur herstellung einer spannungsunempfindlichen keramischen thermischen sperrschicht auf einem metallsubstrat
CH695689A5 (de) Verfahren zum Erzeugen eines wärmedämmenden Schichtsystems auf einem metallischen Substrat.
DE102016114533A1 (de) Eisenbasierte Legierung zur Herstellung thermisch gespritzter Verschleißschutzschichten
DE4126852A1 (de) Werkzeug mit verschleissfester diamantschneide, verfahren zu dessen herstellung sowie dessen verwendung
EP1291449A2 (fr) Procédé de revêtement et substrat revêtu sujet à la friction
EP2630270B1 (fr) Cible pour procédé à l'arc électrique
WO2009144105A1 (fr) Procédé pour déposer une couche de base adhésive
EP1670964A2 (fr) Sieges de soupape rapportes en prealliages co ou co/mo et leur production
DE10332938B4 (de) Thermisch belastetes Bauteil einer Gasturbine
DE10308561B4 (de) Verschleißschutzbeschichtung, ihre Verwendung auf einem Kolben oder Kolbenring und ihr Herstellungsverfahren
DE19733506B4 (de) Verbundwerkstoff für thermisches Spritzen und daraus gebildete Beschichtung
DE102004060538B3 (de) Verfahren zur Bildung von Hartmetallschichten und Zylinderkopf für Brennkraftmaschinen mit Ventilsitzringen aus Hartmetall
DD224057A1 (de) Beschichtungspulver auf der basis von titancarbid
DE102006033162A1 (de) Verfahren zur Herstellung verschleiß- und korrosionsbeständiger Schutzschichten nach dem Auftragsschweißverfahren
DE10029686A1 (de) Schneide mit thermisch gespritzter Beschichtung und Verfahren zur Herstellung der Beschichtung
Zhang et al. Microstructure and properties of thermal-sprayed NiCrWRE coatings
DE3317094C2 (fr)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380064474.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13805347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157009967

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015547009

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120130059371

Country of ref document: DE

Ref document number: 112013005937

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112013005937

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13805347

Country of ref document: EP

Kind code of ref document: A1