WO2014089999A1 - 天线信号的发送方法、装置及设备 - Google Patents

天线信号的发送方法、装置及设备 Download PDF

Info

Publication number
WO2014089999A1
WO2014089999A1 PCT/CN2013/083385 CN2013083385W WO2014089999A1 WO 2014089999 A1 WO2014089999 A1 WO 2014089999A1 CN 2013083385 W CN2013083385 W CN 2013083385W WO 2014089999 A1 WO2014089999 A1 WO 2014089999A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
polarized antenna
antenna signal
transmitting
circularly polarized
Prior art date
Application number
PCT/CN2013/083385
Other languages
English (en)
French (fr)
Inventor
陈霖
田晓光
禹忠
支周
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014089999A1 publication Critical patent/WO2014089999A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters

Definitions

  • the present invention relates to the field of communications, and in particular to a method, device, and device for transmitting an antenna signal.
  • BACKGROUND OF THE INVENTION With the demand for high-speed and high-quality wireless communication services, the transmission rate in wireless technology has been developed from the initial Kbps to Mbps, and the transmission technology with higher rate and more stable links is a trend of wireless communication.
  • mainstream wireless communication technologies such as Ultra Wide Band (UWB) and Wi-Fi standard (IEEE 802.1 ⁇ )
  • UWB Ultra Wide Band
  • Wi-Fi standard IEEE 802.1 ⁇
  • Business such as the high-definition video wireless display and other business development needs.
  • the spectrum used by existing wireless communication technologies is mainly concentrated in the low frequency band below 5 GHz.
  • cellular communication systems eg, GSM, WCDMA, LTE
  • Wi-Fi UWB etc.
  • a wireless communication system makes spectrum resources in the frequency band below 5 GHz more and more crowded, and inter-system interference becomes more and more serious. Spectrum resources are a key factor limiting the performance of low-band wireless communication technologies.
  • 60 GHz communication is a technology for wireless communication using radio frequency resources located near 60 GHz.
  • the available working bandwidth of this band is up to 5 GHz, and this band is industrial, scientific and medical (Intelligent, Scientific, Medial, ISM for short). ) Frequency band.
  • 60 GHz wireless communication technology can provide speeds of up to several gigabits, making it one of the most promising alternative technologies for wireless technology in the future.
  • the 60 GHz technology has very high requirements on the processing technology of the device and the reliability and maturity of the device. It was originally used in the military field. As the level of device manufacturing has increased and the process has matured, 60 GHz wireless communication technology has gradually moved into the practical application of civil communication. Since the electromagnetic spectrum is a strong absorption peak at 60 GHz, the electromagnetic wave propagation attenuation in this frequency range is very large, so the typical transmission distance of 60 GHz communication technology is no more than 10 meters. This electromagnetic propagation characteristic not only defines the application scenario of the 60 GHz communication technology mainly for the indoor environment, but also makes space division multiplexing possible. Currently, 60 GHz standard development is also accelerating, and several standards organizations have developed their own technical specifications for 60 GHz communications.
  • the 60 GHz technology which are mainly derived from the 60 GHz electromagnetic wave propagation characteristics and the spatial channel characteristics determined by them.
  • electromagnetic wave propagation is more manifested as a photo-like propagation, that is, a 60 GHz antenna is mainly a directional antenna, and if such a target device does not fall in the direction of the current device antenna pattern
  • the MAC layer In order to solve this problem, in addition to adjusting the antenna pointing, the MAC layer must be designed for the directional antenna, which affects the efficiency of the MAC layer to a certain extent, and reduces the effective efficiency. Data transfer data.
  • 60 GHz communication technology In order to effectively counter the additional fading caused by path fading and shadow occlusion, 60 GHz communication technology generally uses an antenna array at the transmitting and receiving ends and uses advanced signal processing techniques to enhance the strength of the received signal.
  • p PGG ⁇ - ⁇
  • Friis electromagnetic wave free space propagation formula RTTR WTT 2 R 2 (where A is the wavelength, R is the distance between the transmitting and receiving ends, G T, respectively the transmitting antenna gain and the receiving antenna gain, is the transmitting power, is Receive power) It can be known that, under the premise that the transmitted signal power is constant, the strength of the received signal is proportional to the product of the transmit and receive antenna gains. Therefore, the strength of the received signal can be improved by increasing the gain of the transmit and receive antennas. Effective against the path fading. It can be known from the basic principle of the antenna that by reducing the beam width of the antenna, the electromagnetic energy emitted by the antenna is more concentrated, which can effectively improve the antenna gain.
  • Array antennas can be easily beamformed (Beam Forming, BF for short) to achieve narrow beam, high gain antennas.
  • the transmitting and receiving antennas simultaneously perform beamforming and beam alignment, so that the high gain of the transmitting antenna and the receiving antenna can be realized at the same time, so that the antenna gain of the entire transmission channel, that is, the above Fries formula ⁇
  • the 3 ⁇ 4 product is increased to effectively combat high path fading.
  • the characteristics of 60 GHz electromagnetic wave propagation determine that the direct path (Line of Sight, LOS for short) and the non-linear Sight (NLOS) have a great influence on the signal strength, when occlusion occurs. The signal propagates through NLOS.
  • the present invention provides a method, an apparatus, and a device for transmitting an antenna signal, so as to at least solve the related art, in the case where the electromagnetic wave propagation path is changed, only the original antenna signal can be continuously transmitted, and the transmission cannot be transmitted according to the path.
  • the proper antenna signal causes a problem of a sharp drop in the data transmission rate.
  • a transmitting device for an antenna signal comprising: an array antenna configured to transmit a circularly polarized antenna signal and/or a linearly polarized antenna signal; and an execution module configured to receive a feedback signal according to the received signal Determining that the array antenna transmits a circularly polarized antenna signal or a linearly polarized antenna signal again, wherein the feedback signal is used to feed back a current channel transmission path.
  • the array antenna comprises: a dual-polarized antenna having a circular polarization mode and a linear polarization mode.
  • the device further includes: a control module, configured to send a command, where the command is used to indicate that the dual-polarized antenna is in a circular polarization mode or a linear polarization mode;
  • the command of the control module is accepted to operate in the circular polarization mode or the linear polarization mode to transmit an antenna signal.
  • the array antenna comprises: a circularly polarized antenna and a linearly polarized antenna.
  • a method for transmitting an antenna signal including: separately transmitting a circularly polarized antenna signal and a linearly polarized antenna signal, wherein the circularly polarized antenna signal and the linearly polarized antenna
  • the signal carries a test signal for determining a channel path, and determines to retransmit the circularly polarized antenna signal or the linearly polarized antenna signal according to the received feedback signal, where the feedback signal is used to feed back a current channel transmission. path.
  • the method further includes: determining, by the receiving end, whether a difference between the signal strength of the linearly polarized antenna and the signal strength of the circularly polarized antenna is greater than a preset The signal strength value; if yes, the acknowledgment of the non-direct path ACK_NLOS signal is sent back to the transmitting end; if not, the direct path ACK_LOS signal is fed back to the transmitting end.
  • determining to retransmit the circularly polarized antenna signal or the linearly polarized antenna signal according to the feedback signal of the receiving end comprises: sending the line to the receiving end again if the feedback signal is an ACK_NLOS signal Polarizing the antenna signal; and transmitting the circularly polarized antenna signal to the receiving end if the feedback signal is an ACK_LOS signal.
  • respectively transmitting the circularly polarized antenna signal and the linearly polarized antenna signal comprises: adding a test signal with a time stamp to the circularly polarized antenna signal to be transmitted and the linearly polarized antenna signal; The circularly polarized antenna signal of the test signal and the linearly polarized antenna signal are separately transmitted through the array antenna.
  • transmitting the circularly polarized antenna signal and the linearly polarized antenna signal added to the test signal through the array antenna respectively comprises: transmitting the circularly polarized antenna signal through a dual-polarized antenna according to a time division manner And the linearly polarized antenna signal; or the circularly polarized antenna signal and the linearly polarized antenna signal are respectively transmitted through a circularly polarized antenna and a linearly polarized antenna according to a frequency division manner.
  • the method further includes: determining, by the transmitting end, whether the control signaling of the received upper layer test packet changes, wherein the control command is used to indicate whether to send The test signal; if yes, acknowledges sending a test signal with a time stamp.
  • the method further includes: determining, if the control signaling does not change, whether the receiving end successfully receives the antenna signal sent last time; No, it is confirmed to send a test signal with a time stamp.
  • an apparatus for transmitting an antenna signal including: a transmitting module, configured to separately transmit a circularly polarized antenna signal and a linearly polarized antenna signal, wherein the circularly polarized antenna signal and the The linearly polarized antenna signals each carry a test signal for determining a channel path; and the determining module is configured to determine to retransmit the circularly polarized antenna signal or the linearly polarized antenna signal according to the received feedback signal, where The feedback signal is used to feed back the current channel transmission path.
  • the determining module includes: a first determining unit, configured to determine, when the feedback signal is a acknowledgment non-direct path ACK_NLOS signal, to retransmit the linearly polarized antenna signal to the receiving end; And a determining unit, configured to determine to transmit the circularly polarized antenna signal to the receiving end again if the feedback signal is an acknowledged direct path ACK_LOS signal.
  • the present invention adopts the following method: An array antenna configured to transmit a circularly polarized antenna signal and/or a linearly polarized antenna signal is configured, and the type of the antenna signal to be transmitted next is determined according to the current channel transmission path fed back by the feedback signal.
  • FIG. 1 is a schematic structural diagram 1 of an apparatus for transmitting an antenna signal according to an embodiment of the present invention
  • FIG. 2 is a second schematic structural diagram of an apparatus for transmitting an antenna signal according to an embodiment of the present invention
  • FIG. 4 is a block diagram showing a structure of a transmitting apparatus for an antenna signal according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing a structure of a determining module of an apparatus for transmitting an antenna signal according to an embodiment of the present invention
  • 6 is a structural block diagram of a receiving apparatus for an antenna signal according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a communication system according to an embodiment of the present invention
  • FIG. 8 is a transmitting end determining a transmitting antenna signal according to a preferred embodiment of the present invention.
  • FIG. 9 is a flowchart of determining a feedback channel transmission path by a receiving end according to a preferred embodiment 3 of the present invention.
  • the present invention provides a transmitting device for an antenna signal.
  • the schematic structural diagram of the device is as shown in FIG. 1 , including: an array antenna 1 configured to transmit a circularly polarized antenna signal and/or a linear polarization.
  • the antenna module is configured to determine, according to the received feedback signal, that the array antenna retransmits the circularly polarized antenna signal or the linearly polarized antenna signal, wherein the feedback signal is used to feed back the current channel transmission path.
  • the following method is adopted: an array antenna configured to transmit a circularly polarized antenna signal and/or a linearly polarized antenna signal is configured, and the type of the antenna signal to be transmitted next is determined according to the current channel transmission path fed back by the feedback signal. .
  • the current channel transmission path determines which antenna signal is transmitted, and increases the data transmission rate.
  • the form of the array antenna 1 can be divided into various types, for example, a dual-polarized antenna having a circular polarization mode and a linear polarization mode. Such an antenna can be switched to a circularly polarized antenna or a linearly polarized antenna in a circular polarization mode and a linear polarization mode as needed.
  • the transmitting device of the antenna signal may also be as shown in FIG.
  • the antenna 4 (the dual-polarized antenna 4 at this time, that is, the array antenna 1) is capable of accepting the command of the control module 3, and operates in a circular polarization mode or a linear polarization mode to transmit an antenna signal.
  • the array antenna 1 may also include a separate circularly polarized antenna and a linearly polarized antenna.
  • the circularly polarized antenna and the linearly polarized antenna are respectively disposed on the transmitting device, and when the antenna signal is transmitted, the circularly polarized antenna signal and the linearly polarized antenna signal can be simultaneously transmitted, that is, a frequency division is adopted.
  • the embodiment of the present invention further provides a method for transmitting an antenna signal. The flow of the method is as shown in FIG.
  • Step S302 respectively transmitting a circularly polarized antenna signal and a linearly polarized antenna signal, wherein the circularly polarized antenna signal and the linearly polarized antenna signal both carry a test signal for determining a channel path; and in step S304, determining to retransmit the circularly polarized antenna signal or linear polarization according to the feedback signal at the receiving end An antenna signal, wherein the feedback signal is used to feed back a current channel transmission path.
  • the transmitting end determines whether the control signaling of the received upper layer test packet changes, wherein the control command is used to indicate whether to send the test signal; If the change occurs, it is confirmed that the test signal with time stamp is sent to the receiving end, and the receiving end performs testing according to the test signal to determine the comparability of the two antenna signals transmitted, and further determines the current channel transmission path. If the control signaling does not change, it is further determined whether the receiving end device successfully receives the antenna signal transmitted last time. If the two antenna signals sent last time are not successfully received, it is determined whether the timing time has not ended.
  • the process is stopped, that is, the method for transmitting the antenna signal provided in this embodiment is not executed.
  • the circularly polarized antenna signal and the linearly polarized antenna signal are respectively sent, and in implementation, in the circularly polarized antenna signal and the linearly polarized antenna signal to be transmitted.
  • a time-stamped test signal is added so that the receiving end compares the two antenna signals it receives. Then, the circularly polarized antenna signal and the linearly polarized antenna signal to which the test signal is added are respectively transmitted through the array antenna.
  • the antenna signal can be transmitted in the time division and the frequency division mentioned in the above embodiments, and the antenna signal can be selected in other manners according to actual needs. If two antenna signals are selected to be transmitted in a time division manner, the circularly polarized antenna signal and the linearly polarized antenna signal are separately transmitted through the dual polarized antenna, and the two antenna signals form a misaligned relationship in time, but the frequency can be If the two antenna signals are selected to be transmitted in a frequency division manner, the circularly polarized antenna signal and the linearly polarized antenna signal may be respectively transmitted through the circularly polarized antenna and the linearly polarized antenna, and the two antenna signals are formed on the frequency. A misalignment, but can be synchronized in time.
  • the receiving end After transmitting the circularly polarized antenna signal and the linearly polarized antenna signal by any means, the receiving end processes the measurement signal carried by the antenna signal for determining the channel transmission path, and further compares the linear polarization antenna signal strength with the circular pole. Whether the difference in the signal strength of the antenna (the value of RL-RC) is greater than the preset signal strength value. If the RL-RC is greater than the preset signal strength value, the ACK_NLOS signal is fed back to the transmitting end; otherwise, the ACK LOS signal is fed back to the transmitting end.
  • An embodiment of the present invention further provides an apparatus for transmitting an antenna signal.
  • the structural block diagram of the apparatus may be as shown in FIG. 4, including: a sending module 10 configured to separately transmit a circularly polarized antenna signal and a linearly polarized antenna signal, where The circularly polarized antenna signal and the linearly polarized antenna signal both carry a test signal for determining a channel path.
  • the determining module 20 is coupled to the transmitting module 10 and configured to determine to retransmit the circularly polarized antenna signal or line according to the feedback signal of the receiving end.
  • the polarized antenna signal wherein the feedback signal is used to feed back the current channel transmission path.
  • the determining module 20 is further as shown in FIG. 5, including: a first determining unit 202, configured to determine to retransmit the linearly polarized antenna to the receiving end if the feedback signal is to confirm the non-direct path ACK_NLOS signal
  • the second determining unit 204 is configured to determine to transmit the circularly polarized antenna signal to the receiving end again if the feedback signal is the acknowledged direct path ACK_LOS signal.
  • the sending module 10 may further include: a unit configured to add a time-stamped test signal to the circularly polarized antenna signal and the linearly polarized antenna signal to be transmitted; and set to a circle to which the test signal is to be added
  • a receiving device for an antenna signal is provided, and a structural block diagram of the device is provided. The structural block diagram of the device is as shown in FIG. 6, and includes: a determining module 30, configured to determine whether the RL-RC is greater than a preset signal.
  • the first feedback module 40 is coupled to the determining module 30, and configured to feed back the ACK_NLOS signal to the transmitting end when the RL-RC is greater than the preset signal strength value;
  • the second feedback module 50 is coupled to the determining module 30, When the RL-RC is not greater than the preset signal strength value, the ACK_LOS signal is fed back to the transmitting end;
  • the third feedback module 60 is configured to: when the circularly polarized antenna and the linearly polarized antenna are not received, The transmitter shown returns a non-acknowledgment NACK signal.
  • the sending device may separately transmit the circularly polarized antenna signal and the linearly polarized antenna signal through the dual-polarized antenna according to a time division manner; or, according to the frequency division
  • the method transmits a circularly polarized antenna signal and a linearly polarized antenna signal through a circularly polarized antenna and a linearly polarized antenna, respectively.
  • the embodiment may further include a communication system, including the above-mentioned antenna signal transmitting device and receiving device, and the structure thereof may be as shown in FIG. 7.
  • the characteristics of 60 GHz electromagnetic wave propagation determine that LOS and NLOS have a great influence on signal strength.
  • the signal propagates through NLOS. At this time, the strength of the signal is rapidly weakened, which causes the data transmission rate to drop sharply.
  • the fast detection finds that the transmission is mainly through the NLOS channel, which will facilitate automatic beam switching and minimize the impact on the transmission rate.
  • the difference between the reflection effects of different polarized electromagnetic waves by the LOS and NLOS paths and the requirements of different polarized electromagnetic waves on the receiving antenna are used to quickly detect whether the propagation path is an LOS path or an NLOS path, and then feed back to the transmitting device, so that The transmitting device can transmit an appropriate antenna signal according to different path conditions, thereby improving the data transmission rate, and the method is simple in implementation and reliable in results.
  • Preferred Embodiment 1 This embodiment mainly uses two kinds of polarized antennas, one is a linearly polarized antenna, and the other is a circularly polarized antenna, which transmits a probe signal with the same power and a certain time stamp, and compares two at the receiving end.
  • the power difference of the antenna transmitting signals is used to determine whether the current transmission channel is LOS or NLOS, and then transmit appropriate antenna signals according to different channels.
  • the basic principle is as follows: For the LOS channel, the signal propagation loss is mainly free space loss, which is independent of the signal polarization mode. Therefore, the signal strengths transmitted by the two antennas received at the receiving end are not much different; In the case of the NLOS channel, due to the signal transmission, for the circularly polarized signal, the transmission causes the polarization to be reversed, resulting in a "polarization mismatch" between the receiving antenna and the received signal, which will result in a received signal.
  • the intensity drops significantly, close to zero (ideally, when the polarization mismatch occurs, the mismatch signal is not received); for the linearly polarized antenna, although the signal strength also decreases, the degree is far less than With a circularly polarized signal.
  • the preferred embodiment provides a 60 GHz communication terminal device equipped with two types of polarized antennas.
  • the device needs a terminal device supporting short-range wireless communication of 60 GHz, and the device is configured to support linear polarization and circular polarization.
  • Two types of polarization antennas wherein both polarized antennas can transmit and receive 60 GHz signals; when both antennas transmit, they transmit time-stamped test signals (TEST).
  • TEST time-stamped test signals
  • the received signals can be RL and RC respectively.
  • the receiving end can compare the received signals. If the threshold of RL-RC ⁇ ;3 ⁇ 4 is set, ACK_NLOS is fed back, and conversely, the ACK_LOS signal is fed back. If the receiving end does not receive the two polarized signals, the NACK signal is fed back.
  • the transmitting end After receiving the path of the above feedback, the transmitting end sends a corresponding antenna signal according to the feedback path.
  • Preferred Embodiment 2 The transmitting end and the receiving end of the communication system provided by the embodiment are configured with a dual-polarized antenna supporting both linear polarization and circular polarization, and the dual-polarized antenna can be configured as a linear polarization working mode or a circular pole. Working mode.
  • the detection signal can be transmitted in a time division manner, and the linear polarization detection signal and the circular polarization detection signal are respectively transmitted in sequence.
  • the transmitting end periodically sends a channel sounding signal to detect a channel condition.
  • the flow of the transmitting method may be as shown in FIG. 8, and includes steps S802 to S820.
  • Step S802 the system is initialized.
  • Step S804 receiving a data packet sent by the upper layer, and determining whether the control signaling of the data packet changes. When implemented, it is possible to determine whether to send a test signal based on the control signal.
  • the data packet may be a time-stamped test signal or may not include a test signal, but must contain a control signal. If yes, go to step S810, otherwise, go to step S806.
  • Step S806 determining whether the opposite end of the data packet sent by the previous antenna signal is successfully received. If yes, go to step S820, otherwise go to step S808. In step S808, it is determined whether the timing is over. If yes, go to step S820, otherwise go to step S810.
  • Step S810 starting to send a new test package.
  • the transmission is performed twice, using a linearly polarized antenna and a circularly polarized antenna, respectively (adjusting the dual-polarized antenna to operate in the online polarization mode and the circular polarization mode, respectively).
  • Step S812 determining whether an acknowledgment signal of the opposite end (receiving end) is received. If not, it returns to step S802; otherwise, it proceeds to step S814.
  • step S814 it is determined whether the received acknowledgment signal is ACK_LOS. If yes, step S816 is performed, otherwise step S818 is performed. Step S816, transmitting in a circular polarization mode, or maintaining an existing transmission state.
  • step S8108 if it is determined to be the ACK_NLOS signal, the transmission is performed using the linear polarization mode, or beam switching or other next operations are performed.
  • step S820 the process ends.
  • the receiving end also detects the received antenna signal from the initial state. Determine if two signals are received. If two signals are not received, the NACK signal is fed back, and then it is judged whether or not the timing of receiving the two signals ends. If not, the process returns to the initial state, and if it is finished, it goes to the end. If two signals are received to the IJ, the timestamp is compared.
  • the signal strength is compared to determine whether the RL-RC is greater than the preset threshold. If the RL-R threshold, ACK_NLOS is fed back, otherwise, ACK_LOS is fed back. If it is not the same timestamp, it is further determined whether the timing time is over. If it is not finished, it will continue to return to the initial state, and if it is finished, it will go to the end.
  • Preferred Embodiment 3 In this embodiment, two antennas are configured on the transmitting end, and two antennas are also configured on the receiving end, one is a linear polarized antenna, and one is a circularly polarized antenna. The two antennas can adopt different frequencies and transmit the detection signal at the same time.
  • the two detection signals are received and compared at the receiving end.
  • the processes of the transmitting end and the receiving end are as follows: For the transmitting end, starting from the initial state, the upper layer sends data. Packet, the packet may be a time-stamped test signal or may not contain, but contains control signals.
  • the transmitting end determines whether to send a test signal according to whether the control signal packet changes. If there is no change, it is judged whether the previous packet is successfully received. If it succeeds, it goes to the end. If it is not successful, it determines whether the timing is over. If it is over, go to the end, otherwise go to send a new test package. If a change occurs, start sending a new test package.
  • the ACK or NACK signal is detected by the receiving end. If it is a NACK signal, it goes to the initial state. If it is a NACK signal, it is further determined whether it is an LOS or an NLOS signal. If it is an ACK_LOS signal, it uses the circular polarization mode for transmission, or maintains the existing transmission state; if it is the ACK_NLOS signal, it uses the linear polarization mode to transmit, or performs beam switching or other next operations. Eventually go to the end state. For the receiving end, the operation flow is as shown in FIG. 9, and includes steps S902 to S920. Step S902, the system is initialized.
  • Step S904 detecting whether two signals of different frequency and different polarization modes are received. If yes, step S906 is performed, otherwise step S908 is performed. Step S906, comparing whether the time stamps are the same. If yes, step S912 is performed. Otherwise, perform the steps
  • Step S908 feeding back a NACK signal.
  • Step S910 determining whether the timing is over. If yes, go to step S920, otherwise go back to step S902.
  • step S912 signal strength comparison is performed.
  • Step S914 determining whether the RL-RO preset threshold. If yes, go to step S916, otherwise go to step S918.
  • step S916 ACK_NLOS is fed back.
  • Step S920 ending the flow 'main c' From the above description, it can be seen that the present invention achieves the following technical effects: By applying the embodiment of the present invention, it is solved that in the case where the electromagnetic wave propagation path is changed, the original transmission can only be continued.
  • the antenna signal cannot transmit an appropriate antenna signal according to the path change, resulting in a sharp drop in the data transmission rate. Further, it can determine which antenna signal is transmitted through the current channel transmission path, thereby improving the data transmission rate.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种天线信号的发送方法、装置及设备,其中,该设备包括:阵列天线,设置为发送圆极化天线信号和/或线极化天线信号;执行模块,设置为根据接收到的反馈信号确定阵列天线再次发射圆极化天线信号或线极化天线信号,其中,反馈信号用于反馈当前的信道发送路径。通过运用本发明,解决了在电磁波传播路径发生改变的情况下,只能持续发送原来的天线信号,无法根据路径的变换发送适当的天线信号,导致数据传输速率急剧下降的问题,进而可以通过当前的信道发送路径确定发送何种天线信号,提高了数据的传输速率。

Description

天线信号的发送方法、 装置及设备
技术领域 本发明涉及通信领域, 具体而言, 涉及一种天线信号的发送方法、 装置及设备。 背景技术 随着人们对高速高质量的无线通信服务的需求, 无线技术中的传输速率已经从最 初的 Kbps发展到 Mbps, 速率更高、 链接更稳定的传输技术是无线通信发展的趋势。 目前, 主流的无线通信技术, 例如, 超宽带无线技术(Ultra Wide Band, 简称为 UWB) 和 Wi-Fi标准 (IEEE 802.1η) 最高只能提供数百 Mbps的速率, 已经不能满足目前的 无线数据业务, 如高清视频的无线显示等业务发展的需求。 此外, 现有的无线通信技 术使用的频谱主要集中在 5GHz以下的低频段, 在这段有限的频带内, 聚集着蜂窝网 通信系统 (例如, GSM、 WCDMA、 LTE)、 Wi-Fi UWB等多种无线通信制式, 使得 5GHz 以下频段的频谱资源越来越拥挤, 系统间干扰也越来越严重。 频谱资源是制约 低频段无线通信技术性能的一个关键性因素。
60GHz通信是采用位于 60GHz附近的无线电频率资源进行无线通信的技术,该频 段可用的工作带宽可达 5GHz, 而且该频段是免授权使用的工业、 科学和医疗 (Industrial, Scientific, Medial, 简称为 ISM)频段。 在这么宽的工作带宽上, 60GHz 无线通信技术能够提供高达数吉比特的速率, 成为未来无线技术的最具潜力的备选技 术之一。
60GHz技术对器件加工工艺以及器件的可靠性、 成熟度具有非常高的要求, 最初 多用在军用领域。 随着器件制造水平的提升, 工艺不断成熟, 60GHz无线通信技术逐 渐走向民用通信的实际应用中。 由于电磁频谱在 60GHz附加是一个强烈的吸收峰, 这 个频率范围内的电磁波传播衰减非常大, 因此, 60GHz通信技术的典型传输距离不超 过 10米。 这一电磁传播特性既限定了 60GHz通信技术的应用场景主要为室内环境, 同时也使得空分复用成为可能。 当前, 60GHz的标准制订也在加速进行中, 有多个标 准组织制订了各自 60GHz通信的技术规范。 虽然已经制定了一些 60GHz的标准, 但 60GHz技术依然存在一些技术困难, 其 主要源自 60GHz电磁波传播特性以及由其决定的空间信道特征。 例如, 在 60GHz频 段, 电磁波传播更多地表现为一种似光性传播, 也就是说, 60GHz天线主要是定向型 天线, 使用此类天线, 如果目标设备不落在当前设备天线方向图的指向范围内, 则无 法找到目标设备, 产生所谓的"阴影现象"为了解决这一问题, 除了调整天线指向外, 还必须针对定向型天线对 MAC层进行设计, 这在一定程度上会影响 MAC层的效率, 降低有效数据的传输数据。 为了有效地对抗路径衰落和阴影遮挡形成的附加衰落, 60GHz通信技术一般在发 射、 接收端同时采用天线阵列并采用先进的信号处理技术来增强接收信号的强度。 由 p = P G G ~ - ~
弗里斯(Friis) 电磁波自由空间传播公式 R T T R WTT2R2 (其中 A是波长, R是发 射-接收端之间的距离, GT、 分别是发射天线增益和接收天线增益, 是发射功率, 是接收功率)可以知道, 在发射信号功率一定的前提下, 接收信号的强度正比与发 射、 接收天线增益的乘积, 因此可以通过提升发射、 接收天线增益的方法, 来提高接 收信号的强度, 从而达到有效对抗路径衰落的作用。 由天线基本原理可以知道, 通过 降低天线波束宽度,使天线发射的电磁能量更加汇聚在一起,可以有效提高天线增益。 阵列天线可以很方便地进行波束形成(Beam Forming, 简称为 BF), 从而实现窄波束, 高增益天线。 除此之外, 发射、 接收端天线同时进行波束形成, 并进行波束对准, 则 可以同时实现发射天线和接收天线的高增益, 使整个传输通道的天线增益, 即上述弗 里斯公式中 ^^¾乘积, 增大, 从而有效对抗高路径衰落。 另一方面, 60GHz电磁波传播的特性决定了直射路径(Line of Sight,简称为 LOS ) 和非直射路径 (Non-Line of Sight, 简称为 NLOS ) 对信号强度的影响非常大, 当发生 遮挡的时候, 信号通过 NLOS进行传播, 此时信号的强度快速减弱会导致数据传输速 率急剧下降。 相关技术中, 在电磁波传播路径发生改变的情况下, 只能持续发送原来的天线信 号, 无法根据路径的变换发送适当的天线信号, 导致数据传输速率急剧下降。 发明内容 本发明提供了一种天线信号的发送方法、 装置及设备, 以至少解决相关技术中, 在电磁波传播路径发生改变的情况下, 只能持续发送原来的天线信号, 无法根据路径 的变换发送适当的天线信号, 导致数据传输速率急剧下降的问题。 根据本发明的一个方面, 提供了一种天线信号的发送设备, 包括: 阵列天线, 设 置为发送圆极化天线信号和 /或线极化天线信号; 执行模块, 设置为根据接收到的反馈 信号确定所述阵列天线再次发射圆极化天线信号或线极化天线信号, 其中, 所述反馈 信号用于反馈当前的信道发送路径。 优选地, 所述阵列天线包括: 具有圆极化模式和线极化模式的双极化天线。 优选地, 所述设备还包括: 控制模块, 设置为发送命令, 其中, 所述命令用于指 示所述双极化天线处于圆极化模式或线极化模式; 所述双极化天线, 能够接受所述控 制模块的命令, 工作在所述圆极化模式或所述线极化模式发送天线信号。 优选地, 所述阵列天线包括: 圆极化天线和线极化天线。 根据本发明的另一个方面, 提供了一种天线信号的发送方法, 包括: 分别发送圆 极化天线信号和线极化天线信号, 其中, 所述圆极化天线信号和所述线极化天线信号 都携带有用于确定信道路径的测试信号; 根据接收到的反馈信号确定再次发送所述圆 极化天线信号或所述线极化天线信号, 其中, 所述反馈信号用于反馈当前的信道发送 路径。 优选地, 分别发送圆极化天线信号和线极化天线信号之后, 还包括: 所述接收端 判断所述线极化天线信号强度与所述圆极化天线信号强度的差值是否大于预设信号强 度值; 如果是, 则向所述发射端反馈确认非直射路径 ACK_NLOS信号; 如果否, 则 向所述发射端反馈确认直射路径 ACK_LOS信号。 优选地, 根据接收端的反馈信号确定再次发送所述圆极化天线信号或所述线极化 天线信号包括: 在所述反馈信号为 ACK_NLOS信号的情况下, 向所述接收端再次发 送所述线极化天线信号; 在所述反馈信号为 ACK_LOS信号的情况下, 向所述接收端 再次发送所述圆极化天线信号。 优选地, 分别发送圆极化天线信号和线极化天线信号包括: 在待发送的所述圆极 化天线信号和所述线极化天线信号中加入具有时间戳的测试信号; 将加入所述测试信 号的所述圆极化天线信号和所述线极化天线信号通过阵列天线分别进行发送。 优选地, 将加入所述测试信号的所述圆极化天线信号和所述线极化天线信号通过 阵列天线分别进行发送包括: 按照时分方式通过双极化天线分别发送所述圆极化天线 信号和所述线极化天线信号; 或者, 按照频分方式分别通过圆极化天线和线极化天线 发送所述圆极化天线信号和所述线极化天线信号。 优选地, 分别发送圆极化天线信号和线极化天线信号之前, 还包括: 所述发射端 判断接收的上层测试包的控制信令是否发生变化, 其中, 所述控制命令用于指示是否 发送所述测试信号; 如果是, 则确认发送具有时间戳的测试信号。 优选地, 所述发射端判断上层测试包的控制信令是否发生变化之后, 还包括: 在 所述控制信令未发生变化的情况下,判断接收端是否成功接收上一次发送的天线信号; 如果否, 则确认发送具有时间戳的测试信号。 根据本发明的又一方面, 提供了一种天线信号的发送装置, 包括: 发送模块, 设 置为分别发送圆极化天线信号和线极化天线信号, 其中, 所述圆极化天线信号和所述 线极化天线信号都携带有用于确定信道路径的测试信号; 确定模块, 设置为根据接收 到的反馈信号确定再次发送所述圆极化天线信号或所述线极化天线信号, 其中, 所述 反馈信号用于反馈当前的信道发送路径。 优选地, 所示确定模块包括: 第一确定单元, 设置为在所述反馈信号为确认非直 射路径 ACK_NLOS信号的情况下, 确定向所述接收端再次发送所述线极化天线信号; 第二确定单元, 设置为在所反馈信号为确认直射路径 ACK_LOS信号的情况下, 确定 向所述接收端再次发送所述圆极化天线信号。 本发明采用了如下方法: 配置了设置为发送圆极化天线信号和 /或线极化天线信号 的阵列天线, 并根据反馈信号反馈的当前的信道发送路径确定下一次发送的天线信号 的类型。 通过运用本发明, 解决了在电磁波传播路径发生改变的情况下, 只能持续发 送原来的天线信号, 无法根据路径的变换发送适当的天线信号, 导致数据传输速率急 剧下降的问题, 进而可以通过当前的信道发送路径确定发送何种天线信号, 提高了数 据的传输速率。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是根据本发明实施例的天线信号的发送设备的结构示意图一; 图 2是根据本发明实施例的天线信号的发送设备的结构示意图二; 图 3是根据本发明实施例的天线信号的发送方法的流程图; 图 4是根据本发明实施例的天线信号的发送装置的结构框图; 图 5是根据本发明实施例的天线信号的发送装置的确定模块的结构框图; 图 6是根据本发明实施例的天线信号的接收装置的结构框图; 图 7是根据本发明实施例的通信系统的结构示意图; 图 8是根据本发明优选实施例二的发射端确定发送天线信号的流程图; 图 9是根据本发明优选实施例三的接收端确定反馈信道发送路径的流程图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 由于不同传播路径适宜发送不同的天线信号, 但相关技术中, 在电磁波传播路径 发生改变的情况下, 只能持续发送原来的天线信号, 无法根据路径的变换发送适当的 天线信号, 导致数据传输速率急剧下降的问题, 本发明实施例提供了一种天线信号的 发送设备, 该设备的结构示意图如图 1所示, 包括- 阵列天线 1, 设置为发送圆极化天线信号和 /或线极化天线信号; 执行模块 2, 设置为根据接收到的反馈信号确定阵列天线再次发射圆极化天线信 号或线极化天线信号, 其中, 反馈信号用于反馈当前的信道发送路径。 本实施例采用了如下方法: 配置了设置为发送圆极化天线信号和 /或线极化天线信 号的阵列天线, 并根据反馈信号反馈的当前的信道发送路径确定下一次发送的天线信 号的类型。 通过运用本实施例, 解决了在电磁波传播路径发生改变的情况下, 只能持 续发送原来的天线信号, 无法根据路径的变换发送适当的天线信号, 导致数据传输速 率急剧下降的问题, 进而可以通过当前的信道发送路径确定发送何种天线信号, 提高 了数据的传输速率。 其中, 阵列天线 1的形式可以分为多种, 例如, 具有圆极化模式和线极化模式的 双极化天线。 此种天线可以根据需要在圆极化模式和线极化模式进行切换而成为圆极 化天线或线极化天线。 则上述天线信号的发送设备还可以如图 2所示, 包括: 控制模块 3, 设置为发送 命令, 其中, 命令用于指示双极化天线处于圆极化模式或线极化模式; 双极化天线 4 (此时的双极化天线 4也就是阵列天线 1 ), 能够接受控制模块 3的命令, 工作在圆极 化模式或线极化模式发送天线信号。 阵列天线 1, 还可以包括单独的圆极化天线和线极化天线。 则此时的圆极化天线 与线极化天线是分别设置在发送设备上的, 发送天线信号时, 可以是圆极化天线信号 和线极化天线信号同时进行发送, 即采取一种频分的方式进行发送。 基于上述的天线信号发送设备, 本实施例还提供了一种天线信号的发送方法, 该 方法的流程如图 3所示, 包括步骤 S302至步骤 S304: 步骤 S302, 分别发送圆极化天线信号和线极化天线信号, 其中, 圆极化天线信号 和线极化天线信号都携带有用于确定信道路径的测试信号; 步骤 S304,根据接收端的反馈信号确定再次发送圆极化天线信号或线极化天线信 号, 其中, 反馈信号用于反馈当前的信道发送路径。 通过运用上述发送方法发送天线信号, 可以在不同的信道发送路径下发送适当的 天线信号, 提高了数据的传输速率。 实施时, 在分别发送圆极化天线信号和线极化天线信号之前, 发射端判断接收的 上层测试包的控制信令是否发生变化, 其中, 控制命令用于指示是否发送测试信号; 如果控制信令发生了变化, 则确认向接收端发送具有时间戳的测试信号, 让接收端根 据该测试信号进行测试, 以确定发送的两种天线信号的可比较性, 并进一步确定当前 的信道发送路径。 如果控制信令未发生变化, 则进一步判断接收端设备是否成功接收上一次发送的 天线信号。 如果未成功接收上一次发送的两种天线信号, 则再判断是否定时时间也未 结束, 如果此时定时时间还未结束, 则确认发送具有时间戳的测试信号。 如果已经成 功接收上一次发送的两种天线信号或者定时时间也已经结束, 则都停止继续该流程, 即不再执行本实施例提供的天线信号的发送方法。 在确定了需要执行本实施例提供的天线信号的发送方法后, 分别发送圆极化天线 信号和线极化天线信号, 实施时, 在待发送的圆极化天线信号和线极化天线信号中加 入具有时间戳的测试信号, 以便接收端对其接收到的两种天线信号进行比较。 再将加 入测试信号的圆极化天线信号和线极化天线信号通过阵列天线分别进行发送。 此时, 可以选择上述实施例中提到的时分和频分两种方式发送天线信号, 根据实际需要, 也 可以选择其他的方式发送天线信号。 如果选择按照时分方式发送两种天线信号, 则通过双极化天线分别发送圆极化天 线信号和线极化天线信号, 两种天线信号在时间上形成一种错位的关系, 但频率可以 使相同的; 如果选择按照频分方式发送两种天线信号, 则可以分别通过圆极化天线和 线极化天线发送圆极化天线信号和线极化天线信号, 两种天线信号在频率上形成一种 错位关系, 但时间上可以是同步的。 采取任何一种方式发送圆极化天线信号和线极化天线信号之后, 接收端对天线信 号携带的用于确定信道发送路径的测设信号进行处理, 进一步比较线极化天线信号强 度与圆极化天线信号强度的差值 (RL-RC之值)是否大于预设信号强度值。如果 RL-RC 大于预设信号强度值, 则向发射端反馈 ACK_NLOS 信号; 否则就向发射端反馈 ACK LOS信号。 发射端天线在接收到的反馈信号为 ACK_NLOS 的情况下, 下一次向接收端发送 线极化天线信号; 发射端天线在接收到的反馈信号为 ACK_LOS的情况下, 下一次向 接收端再次发送圆极化天线信号。 本发明实施例还提供了一种天线信号的发送装置, 该装置的结构框图可以如图 4 所示, 包括: 发送模块 10, 设置为分别发送圆极化天线信号和线极化天线信号, 其中, 圆极化天线信号和线极化天线信号都携带有用于确定信道路径的测试信号; 确定模块 20, 与发送模块 10耦合, 设置为根据接收端的反馈信号确定再次发送圆极化天线信号 或线极化天线信号, 其中, 反馈信号用于反馈当前的信道发送路径。 优选的, 所示确定模块 20还可以如图 5所示, 包括: 第一确定单元 202, 设置为 在反馈信号为确认非直射路径 ACK_NLOS信号的情况下, 确定向接收端再次发送线 极化天线信号; 第二确定单元 204, 设置为在所反馈信号为确认直射路径 ACK_LOS 信号的情况下, 确定向接收端再次发送圆极化天线信号。 在一个优选实施例中, 发送模块 10还可以包括: 设置为在待发送的圆极化天线信 号和线极化天线信号中加入具有时间戳的测试信号的单元; 设置为将加入测试信号的 圆极化天线信号和线极化天线信号通过阵列天线分别进行发送的单元。 相对于上述的天线信号的发送装置, 还提供了一种天线信号的接收装置, 该装置 的结构框图可以如图 6所示, 包括: 判断模块 30, 设置为判断 RL-RC是否大于预设 信号强度值; 第一反馈模块 40, 与判断模块 30耦合, 设置为在 RL-RC大于预设信号 强度值的情况下, 向发射端反馈 ACK_NLOS信号; 第二反馈模块 50, 与判断模块 30 耦合, 设置为在 RL-RC不大于预设信号强度值的情况下, 向发射端反馈 ACK_LOS信 号; 第三反馈模块 60, 设置为在未收到圆极化天线和线极化天线的情况下, 向所示发 射端反馈非确认 NACK信号。 在接收装置的第一反馈模块 40或第二反馈模块 50反馈的信息后, 发送装置可以 按照时分方式通过双极化天线分别发送圆极化天线信号和线极化天线信号; 或者, 按 照频分方式分别通过圆极化天线和线极化天线发送圆极化天线信号和线极化天线信 号。 本实施例还可以包括一种通信系统,包括上述的天线信号的发送装置及接收装置, 其结构示意可以如图 7所示。
60GHz电磁波传播的特性决定了 LOS和 NLOS对信号强度的影响非常大, 当发 生遮挡的时候, 信号通过 NLOS进行传播, 此时信号的强度快速减弱会导致数据传输 速率急剧下降。 在遮挡发生时, 在高层发现数据传输速率明显下降之前, 快速检测发 现传输主要通过 NLOS信道进行, 将有助于进行自动波束切换, 以及尽可能地减少对 传输速率的影响。 本实施例通过 LOS、 NLOS路径对不同极化电磁波反射效应的不同, 以及不同极 化电磁波对接收天线要求的不同, 来快速检测传播路径是 LOS路径还是 NLOS路径, 进而反馈给发射端设备,让发射端设备可以根据不同的路径情况发送适宜的天线信号, 提升了数据的传输速率, 该方法实现简单, 结果可靠。 优选实施例一 本实施例主要使用两种极化的天线, 一种是线极化天线, 一种是圆极化天线, 其 发送相同功率、 具有一定时间戳的探测信号, 在接收端比较两种天线发射信号的功率 差,来判别当前传输通道是 LOS还是 NLOS,进而根据不同信道发送适宜的天线信号。 实现时, 其基本原理如下: 对于 LOS信道来说, 信号传播损耗主要是自由空间损耗, 与信号极化方式无关, 因此在接收端收到的, 两种天线发射的信号强度相差不大; 对于 NLOS信道来说, 由 于发生了信号发射, 对于圆极化信号来说, 发射导致极化发生反向, 导致接收天线与 接收信号之间出现"极化失配"现象, 该现象将导致接收信号强度显著下降, 接近于零 (理想情况下, 发生极化失配发生时是接收不到失配信号的); 而对线极化天线来说, 虽然信号强度也有下降, 但程度远远小于失配的圆极化信号。 本优选实施例提供一种配有两种极化天线的 60GHz通信终端设备, 首先, 该设备 需要支持 60GHz短距离无线通信的终端设备, 且该设备上配置有支持线极化、 圆极化 的两种极化方式的天线, 其中, 两种极化的天线都可以发射和接收 60GHz信号; 两种 天线在发射时, 分别发射加有时间戳的测试信号 (TEST)。 对于线极化信号和圆极化信号,可以令其接收信号分别为 RL与 RC,由上面 LOS、 NLOS信道对线极化信号、 圆极化信号的不同"过滤"效果可知, 如果 RL与 RC之间的 差值大于预设的阈值, 则可以判定信号主要是通过 NLOS路径传播来的, 否则是通过 LOS路径。 基于上述原理, 接收端在接收到上述两种天线的信号后, 可以对接收到的信号进 行比较。 如果 RL-RC ^;¾设的阈值, 则反馈 ACK_NLOS, 反之, 反馈 ACK_LOS信号。 如 果接收端没有接收到两种极化的信号, 则反馈 NACK信号。 发射端在接收到上述反馈的路径后, 根据反馈的路径发送对应的天线信号。 优选实施例二 本实施例提供的通信系统的发射端、 接收端配置有同时支持线极化和圆极化的双 极化天线, 该双极化天线可以配置为线极化工作模式或圆极化工作模式。 发射探测信 号可以采用时分的方式进行, 依次分别发送线极化探测信号和圆极化探测信号。 发射端定时发送信道探测信号, 以检测信道状况, 执行时, 该发射方法的流程可 以如图 8所示, 包括步骤 S802至步骤 S820。 步骤 S802, 系统初始化。 步骤 S804, 接收上层发来数据包, 判断该数据包的控制信令是否发生变化。 实现 时, 可以根据控制信号, 判断是否发送测试信号。 其中, 该数据包可能是打有时间戳 的测试信号,也可能不包含测试信号,但一定包含控制信号。如果是,则执行步骤 S810, 否则, 执行步骤 S806。 步骤 S806, 判断上一个天线信号发送的数据包对端是否成功接收。 如是, 则转到 步骤 S820, 否则执行步骤 S808。 步骤 S808, 判断定时是否结束。 如果是, 则转到步骤 S820, 否则执行步骤 S810。 步骤 S810, 开始发送新的测试包。 分两次发送, 分别使用线极化天线和圆极化天 线发送 (调整双极化天线, 使其分别工作在线极化模式和圆极化模式下)。 步骤 S812, 判断是否收到对端 (接收端) 的确认信号。 如果未接收到, 则返回步 骤 S802; 否则, 执行步骤 S814。 步骤 S814,判断接收到的确认信号是否为 ACK_LOS。如果是,则执行步骤 S816, 否则执行步骤 S818。 步骤 S816, 使用圆极化模式进行发射, 或保持现有发送状态。 步骤 S818, 确定是 ACK_NLOS信号的情况下, 使用线极化模式发射, 或进行波 束切换或其它的下一步操作。 步骤 S820, 结束流程。 在上述发射端执行上述过程中, 接收端的流程如下: 接收端也从初始状态开始, 检测接收到的天线信号。 判断是否接收到两个信号。 如果没有接收到两个信号, 则反馈 NACK信号, 然后判断确定接收两个信号的定时时 间是否结束, 如果未结束, 则继续返回初始状态, 如果结束, 则转到结束。 如果接收 至 IJ了两个信号,则比较时间戳,如果是同一个时间的,则进行信号强度比较,判断 RL-RC 是否大于预设阈值。 如果 RL-R 阈值, 则反馈 ACK_NLOS, 否则, 反馈 ACK_LOS。 如果不是同一个时间戳, 则进一步判断定时时间是否结束。 如果未结束, 则继续返回 初始状态, 如果结束, 则转到结束。 优选实施例三 本实施例采用发射端配置两根天线, 且接收端也配置两根天线, 一根为线极化天 线, 一根为圆极化天线。 两根天线可采用不同的频率, 同时发送探测信号, 在接收端 对两个探测信号进行接收和比较, 其发射端、 接收端流程分别如下: 对于发射端, 由初始状态开始, 上层发来数据包, 该数据包可能是打有时间戳的 测试信号, 也可能不包含, 但包含控制信号。 发射端根据控制信号数据包是否发生变 化判断是否发送测试信号。如果未发生变化, 则判断上一个包是否成功接收, 如成功, 则转到结束, 如未成功, 则判断定时是否结束。 如果结束, 则转到结束, 否则转到发 送新的测试包。 如果发生变化则开始发送新的测试包。 使用线极化天线和圆极化天线在不同频率 上进行同时发送; 检测接收端反馈的是 ACK还是 NACK信号。 如果是 NACK信号, 则转到初始状态。 如果是 NACK信号, 则进一步判断是 LOS还是 NLOS信号。 如果 是 ACK_LOS 信号, 则使用圆极化模式进行发射, 或保持现有发送状态; 如是 ACK_NLOS信号, 则使用线极化模式发射, 或进行波束切换或其它的下一步操作。最 终转到结束状态。 对于接收端, 其操作流程如图 9所示, 包括步骤 S902至步骤 S920。 步骤 S902, 系统初始化。 步骤 S904, 检测是否接收到两个不同频, 不同极化方式的两个信号。 如果是, 则 执行步骤 S906, 否则执行步骤 S908。 步骤 S906, 比较时间戳是否相同。 如果是, 则执行步骤 S912。 否则, 执行步骤
步骤 S908, 反馈 NACK信号。 步骤 S910, 判断定时是否结束。 如果是, 则执行步骤 S920, 否则返回步骤 S902。 步骤 S912, 进行信号强度比较。 步骤 S914, 判断是否 RL-RO预设阈值。 如果是, 则执行步骤 S916, 否则执行步 骤 S918。 步骤 S916, 反馈 ACK_NLOS。 步骤 S918, 反馈 ACK LOS。 步骤 S920, 结束流 '主 c 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 通过运用本发明实施例, 解决了在电磁波传播路径发生改变的情况下, 只能持续 发送原来的天线信号, 无法根据路径的变换发送适当的天线信号, 导致数据传输速率 急剧下降的问题, 进而可以通过当前的信道发送路径确定发送何种天线信号, 提高了 数据的传输速率。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种天线信号的发送设备, 包括- 阵列天线, 设置为发送圆极化天线信号和 /或线极化天线信号; 执行模块, 设置为根据接收到的反馈信号确定所述阵列天线再次发射圆极 化天线信号或线极化天线信号, 其中, 所述反馈信号用于反馈当前的信道发送 路径。
2. 根据权利要求 1所述的发送设备, 其中, 所述阵列天线包括: 具有圆极化模式 和线极化模式的双极化天线。
3. 根据权利要求 2所述的发送设备, 其中, 还包括: 控制模块, 设置为发送命令, 其中, 所述命令用于指示所述双极化天线处 于圆极化模式或线极化模式;
所述双极化天线, 能够接受所述控制模块的命令, 工作在所述圆极化模式 或所述线极化模式发送天线信号。
4. 根据权利要求 1所述的发送设备, 其中, 所述阵列天线包括: 圆极化天线和线 极化天线。
5. 一种天线信号的发送方法, 包括:
分别发送圆极化天线信号和线极化天线信号, 其中, 所述圆极化天线信号 和所述线极化天线信号都携带有用于确定信道路径的测试信号;
根据接收到的反馈信号确定再次发送所述圆极化天线信号或所述线极化天 线信号, 其中, 所述反馈信号用于反馈当前的信道发送路径。
6. 根据权利要求 5所述的方法, 其中, 分别发送圆极化天线信号和线极化天线信 号之后, 还包括:
所述接收端判断所述线极化天线信号强度与所述圆极化天线信号强度的差 值是否大于预设信号强度值;
如果是, 则向所述发射端反馈确认非直射路径 ACK_NLOS信号; 如果否, 则向所述发射端反馈确认直射路径 ACK_LOS信号。
7. 根据权利要求 6所述的方法, 其中, 根据接收端的反馈信号确定再次发送所述 圆极化天线信号或所述线极化天线信号包括:
在所述反馈信号为 ACK_NLOS信号的情况下, 向所述接收端再次发送所 述线极化天线信号;
在所述反馈信号为 ACK_LOS信号的情况下, 向所述接收端再次发送所述 圆极化天线信号。
8. 根据权利要求 5所述的方法, 其中, 分别发送圆极化天线信号和线极化天线信 号包括- 在待发送的所述圆极化天线信号和所述线极化天线信号中加入具有时间戳 的测试信号;
将加入所述测试信号的所述圆极化天线信号和所述线极化天线信号通过阵 列天线分别进行发送。
9. 根据权利要求 8所述的方法, 其中, 将加入所述测试信号的所述圆极化天线信 号和所述线极化天线信号通过阵列天线分别进行发送包括:
按照时分方式通过双极化天线分别发送所述圆极化天线信号和所述线极化 天线信号; 或者,
按照频分方式分别通过圆极化天线和线极化天线发送所述圆极化天线信号 和所述线极化天线信号。
10. 根据权利要求 5至 9中任一项所述的方法, 其中, 分别发送圆极化天线信号和 线极化天线信号之前, 还包括:
所述发射端判断接收的上层测试包的控制信令是否发生变化, 其中, 所述 控制命令用于指示是否发送所述测试信号;
如果是, 则确认发送具有时间戳的测试信号。
11. 根据权利要求 10所述的方法,其中,所述发射端判断上层测试包的控制信令是 否发生变化之后, 还包括:
在所述控制信令未发生变化的情况下, 判断接收端是否成功接收上一次发 送的天线信号;
如果否, 则确认发送具有时间戳的测试信号。
12. 一种天线信号的发送装置, 包括:
发送模块, 设置为分别发送圆极化天线信号和线极化天线信号, 其中, 所 述圆极化天线信号和所述线极化天线信号都携带有用于确定信道路径的测试信 号;
确定模块, 设置为根据接收到的反馈信号确定再次发送所述圆极化天线信 号或所述线极化天线信号,其中,所述反馈信号用于反馈当前的信道发送路径。
13. 根据权利要求 12所述的装置, 其中, 所示确定模块包括:
第一确定单元, 设置为在所述反馈信号为确认非直射路径 ACK_NLOS信 号的情况下, 确定向所述接收端再次发送所述线极化天线信号;
第二确定单元, 设置为在所反馈信号为确认直射路径 ACK_LOS信号的情 况下, 确定向所述接收端再次发送所述圆极化天线信号。
PCT/CN2013/083385 2012-12-11 2013-09-12 天线信号的发送方法、装置及设备 WO2014089999A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210531717.X 2012-12-11
CN201210531717.XA CN103873122B (zh) 2012-12-11 2012-12-11 天线信号的发送方法、装置及设备

Publications (1)

Publication Number Publication Date
WO2014089999A1 true WO2014089999A1 (zh) 2014-06-19

Family

ID=50911291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083385 WO2014089999A1 (zh) 2012-12-11 2013-09-12 天线信号的发送方法、装置及设备

Country Status (2)

Country Link
CN (1) CN103873122B (zh)
WO (1) WO2014089999A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980203A (zh) * 2015-06-16 2015-10-14 山东大学 共享式全双工大规模天线阵列及自干扰的隔离和抑制方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10020577B2 (en) * 2014-11-25 2018-07-10 Qualcomm Incorporated Technique for detection of line-of-sight transmissions using millimeter wave communication devices
US10630370B2 (en) 2016-05-10 2020-04-21 Hitachi, Ltd. Transmitter and receiver
CN108111234B (zh) * 2016-11-25 2020-11-17 中国移动通信有限公司研究院 检测双极化天线失配度的装置、方法、天线模组及系统
CN108271245B (zh) * 2016-12-28 2020-09-11 华为技术有限公司 一种直射径判断方法及装置
CN108809377B (zh) * 2018-05-23 2021-04-27 中国传媒大学 一种基于波束对准的mimo天线阵列
CN112684421A (zh) * 2019-10-17 2021-04-20 零八一电子集团有限公司 线性调频连续波雷达相参标校源系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090274225A1 (en) * 2008-05-02 2009-11-05 Nes Laboratories America, Inc. Multi-resolution precoding codebook
CN101577610A (zh) * 2008-05-09 2009-11-11 上海贝尔阿尔卡特股份有限公司 无线通信系统中选择天线极化和编码方式的方法和装置
CN102291189A (zh) * 2011-08-12 2011-12-21 电信科学技术研究院 天线校准方法和设备
CN102742177A (zh) * 2010-02-05 2012-10-17 高通股份有限公司 闭环发射分集系统中的天线切换

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4308541A (en) * 1979-12-21 1981-12-29 Nasa Antenna feed system for receiving circular polarization and transmitting linear polarization
EP1460713B1 (en) * 2003-03-18 2008-01-23 Sony Ericsson Mobile Communications AB Compact diversity antenna
CN101635393A (zh) * 2008-07-23 2010-01-27 公安部第三研究所 一种用于rfid技术管理领域的圆极化mimo天线系统
CN102386488B (zh) * 2011-09-21 2014-01-01 上海科世达-华阳汽车电器有限公司 可切换电波极化方向的天线和电路及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090274225A1 (en) * 2008-05-02 2009-11-05 Nes Laboratories America, Inc. Multi-resolution precoding codebook
CN101577610A (zh) * 2008-05-09 2009-11-11 上海贝尔阿尔卡特股份有限公司 无线通信系统中选择天线极化和编码方式的方法和装置
CN102742177A (zh) * 2010-02-05 2012-10-17 高通股份有限公司 闭环发射分集系统中的天线切换
CN102291189A (zh) * 2011-08-12 2011-12-21 电信科学技术研究院 天线校准方法和设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980203A (zh) * 2015-06-16 2015-10-14 山东大学 共享式全双工大规模天线阵列及自干扰的隔离和抑制方法
CN104980203B (zh) * 2015-06-16 2018-05-01 山东大学 共享式全双工大规模天线阵列及自干扰的隔离和抑制方法

Also Published As

Publication number Publication date
CN103873122A (zh) 2014-06-18
CN103873122B (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
WO2014089999A1 (zh) 天线信号的发送方法、装置及设备
US10686638B2 (en) Wireless communication system to communicate using different beamwidths
US9692459B2 (en) Using multiple frequency bands with beamforming assistance in a wireless network
US7720036B2 (en) Communication within a wireless network using multiple frequency bands
US8340071B2 (en) Systems for communicating using multiple frequency bands in a wireless network
EP2832015B1 (en) Systems for communicating using multiple frequency bands in a wireless network
US9094073B2 (en) Communication device, communication control method and communication system
US9450661B2 (en) Method and apparatus for beam tracking in wireless communication system
US9985707B2 (en) Multiple beamforming training
US20070099669A1 (en) Communication signaling using multiple frequency bands in a wireless network
CN105790886A (zh) 数据包发送、接收方法、装置、基站及终端
US8649747B1 (en) Dynamically adjusting antenna polarization in a wireless communication system
CN102326339A (zh) 通信装置和通信方法、计算机程序和通信系统
JP2005318627A (ja) 全二重無線通信におけるコヒーレント・ビーム形成のための周波数帯切り替え
WO2013178132A1 (zh) 天线波束对准方法及装置
WO2022062511A1 (zh) 射频收发电路、切换方法、终端设备和存储介质
CN106888076B (zh) 一种波束训练中实现同步的方法及装置
Yamada et al. Highly-reliable rotating polarization wave transceiver with optimal polarization selection
CN101494483B (zh) 一种射频系统的通信方法以及实现该方法的装置和系统
Yildirim et al. Directional mac for 60 ghz using polarization diversity extension (dmac-pdx)
RU2725130C2 (ru) Способ беспроводной передачи и приёма данных
Flores et al. Spoofing uplink spatial multiplexing with diverse spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861960

Country of ref document: EP

Kind code of ref document: A1