WO2014089977A1 - 0.2Ss级特种高压计量电流互感器 - Google Patents

0.2Ss级特种高压计量电流互感器 Download PDF

Info

Publication number
WO2014089977A1
WO2014089977A1 PCT/CN2013/080675 CN2013080675W WO2014089977A1 WO 2014089977 A1 WO2014089977 A1 WO 2014089977A1 CN 2013080675 W CN2013080675 W CN 2013080675W WO 2014089977 A1 WO2014089977 A1 WO 2014089977A1
Authority
WO
WIPO (PCT)
Prior art keywords
permalloy
winding
core
silicon steel
level
Prior art date
Application number
PCT/CN2013/080675
Other languages
English (en)
French (fr)
Other versions
WO2014089977A8 (zh
Inventor
赵世祥
敖明
周力威
杨建荣
才文战
冯忠宝
任萍
赵俊新
夏志
Original Assignee
吉林省电力有限公司电力科学研究院
吉林省电力科学研究院有限公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林省电力有限公司电力科学研究院, 吉林省电力科学研究院有限公司, 国家电网公司 filed Critical 吉林省电力有限公司电力科学研究院
Priority to US14/649,294 priority Critical patent/US9431170B2/en
Publication of WO2014089977A1 publication Critical patent/WO2014089977A1/zh
Publication of WO2014089977A8 publication Critical patent/WO2014089977A8/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • G01R15/183Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core
    • G01R15/185Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using transformers with a magnetic core with compensation or feedback windings or interacting coils, e.g. 0-flux sensors

Definitions

  • the invention belongs to a special high-voltage metering current transformer.
  • This weak current is generally in the thousands of segments of the rated current of the transformer, which mainly forms the following three problems: a) The traditional high-voltage transformer has the measurement performance in the percentage of the rated current, although the error is large, for example, 0.2S class More than two-tenths of the transformers can reach ⁇ 0.2%, and the percentage is ⁇ 0.3 ⁇ ⁇ 0.8%; b) by changing the ratio does not help, such as the 600/5A transformer even becomes 100/5A, The weak current of 1.2A can only be 2% of the original. I N becomes 1. 2% I N , which is impossible to change the measurement performance of the weak magnetic field. It is a glass of water to change the measurement accuracy. cM ⁇ is a primary device running on a high-voltage line, and the high-voltage transformer is 600. /5A is reduced to 100/5A, and from a protection point of view, it is impossible to be allowed. Summary of the invention
  • the invention provides a 0.2SS class special high-voltage metering current transformer, so as to solve a lot of lines of a substation often operating under a weak current-weak magnetic field condition, and the current high-voltage transformers cannot be measured under this working condition, resulting in Class trade meter, monitoring instrument, monitoring computer can not work properly.
  • the technical solution adopted by the present invention is:
  • the iron core is composed of two “L” shaped chips of the same size, and the ratio of the long side to the short side of the "L” shaped chip is 3:2; one of the "L”
  • the shape chip is a permalloy material chip, and the other "L” shape chip is a cold rolled silicon steel material chip.
  • the specific combination structure is: assembling a piece of permalloy piece and a piece of cold rolled silicon steel piece into a " ⁇ " shape as a core
  • the base layer of each layer, and then the odd base layer and the even base layer are stacked.
  • the spacer stacking method is that each odd base layer is the same, each even base layer is the same, and the even base layer is Obtained after the odd base layer is turned 180 degrees around the horizontal center transverse axis;
  • 5P grade relay protection winding 1 and 5P grade relay protection winding 2 are wound on the long side of the cold rolled silicon steel sheet core; 3P or 5P level relay protection windings are wound on the two short sides of the iron core respectively And 4P or 5P relay protection windings IV.
  • the permalloy is an iron-nickel alloy having a nickel content of 70% to 81%.
  • the invention has the advantages that the structure is novel, and some of the core chips are made of magnetic conductive material _ _ 70% to 81% of permalloy containing nickel: expanding the new performance of the iron core, achieving special purposes; designing a clever iron Core-stacked structure, fully considering structural toughness, expansion performance, winding use, technical indicators, forming a unique core design process concept; designing a unique coil winding method, making full use of the characteristics of the core structure to form different windings
  • the "iron core + coil” error compensation method that is, skillfully using the structural features formed by different material cores, forms the fractional number of coils to compensate, thus achieving the purpose of accurate measurement.
  • Figure 1 is a schematic view of the structure of the present invention
  • FIG. 2 is a schematic structural view of a "L"-shaped permalloy material chip of the present invention
  • FIG. 3 is a schematic structural view of a "L"-shaped cold-rolled silicon steel material chip of the present invention
  • FIG. 4 is a base layer of each layer of the iron core in which a piece of permalloy sheet and a piece of cold-rolled silicon steel sheet are assembled into a " ⁇ " shape. Schematic diagram of the structure;
  • Figure 5 is a schematic view showing the structure of the iron core of the present invention.
  • the 3P-level relay protection winding and the 5P-level relay protection winding of the present invention are well known in the art.
  • the iron core is composed of two "L” shaped chips of the same size.
  • the "L” shaped chip has a ratio of long side to short side of 3:2; one of the “L” shaped chips is a permalloy chip. 1, another "L” shape chip is cold rolled silicon
  • the steel chip 2 the specific combination structure is: a piece of permalloy piece and a piece of cold-rolled silicon steel piece are assembled into a "D" shape as a base layer of each layer of the iron core, and then the odd base layer and the even base layer are spaced Stacking, the spacer stacking method is that each of the odd base layers is the same, and the even base layers are the same, and the even base layer is obtained by flipping the odd base layer by 180 degrees around the horizontal central axis;
  • 5P grade relay protection windings 5th and 5P grade relay protection windings 6 are wound on the long side of the cold rolled silicon steel sheet core; 3P or 5 P grade relay protection is wound on the two short sides of the iron core Winding three 7 and 3P or 5P relay protection windings four 8.
  • the permalloy is an iron-nickel alloy containing 70% of nickel.
  • the permalloy is an iron-nickel alloy containing 75% of nickel, and the rest of the structure is the same as in the first embodiment.
  • the permalloy is an iron-nickel alloy containing 81% of nickel, and the rest of the structure is the same as in the first embodiment.
  • FIG. 2 and Figure 3 illustrate the performance of two material chips and their simple process:
  • the core of the high-voltage transformer has been stacked with cold-rolled silicon steel sheets, but it has almost no magnetic permeability at the rated current of several thousand segments; _ _
  • the measurement performance of the high-voltage current transformer under weak magnetic field conditions requires the use of permalloy to make the iron core, but the permalloy is not only very expensive, but also the anti-saturation performance of the winding for making the iron core is very bad. Therefore, the core of the high-voltage transformer cannot be made of expensive permalloy, and the permalloy should not be used for the anti-saturation of the relay protection winding.
  • the present invention uses a permalloy sheet and a cold-rolled silicon steel sheet to be cleverly stacked, so that different sections of the same complete core of the high-voltage transformer are made of different materials, exhibiting different magnetic permeability and measurement performance.
  • the two materials are made in the same size, which is conducive to uniform manufacturing process, and also facilitates stacking and small gaps.
  • the ratio of the long side to the short side of the two "L" shaped chips is 3:2, so that the height of the iron core after stacking is slightly larger than the width, which is in line with the general idea of making the iron core, which makes the coil wire the most economical.
  • Figure 4 and Figure 5 illustrate the stacking method and core structure of different material chips: a piece of permalloy sheet and a piece of cold-rolled silicon steel sheet are assembled into the structure shown in Figure 4, as the first and third of the iron core.
  • the five-layer chip (odd layer), the second, fourth ... layer (even layer) are all flipped 180 degrees around the horizontal axis of the chip like the first layer, and then the odd-numbered layer and the even-numbered layer are stacked vertically;
  • the stacked core structure shown in Fig. 5 is formed.
  • the iron core structure thus formed by the stacking cleverly solves the following problems: (1) Four right angles are made of two kinds of material chips. Interval stacking, one layer is a whole right angle formed by the same material chip, and one layer is assembled with right angles of different material chips, which are laminated on each other, so that different material chips are stacked into one unified high-voltage transformer core, and insulated. Paper and coils will not "scatter" under the entanglement.
  • Figure 1 illustrates the structure and winding winding method of the present invention and its compensation method:
  • the stacked iron core has two slightly longer sides, which are purely formed by superposition of permalloy sheets or cold-rolled silicon steel sheets, even at the corners.
  • the axial direction of the core section is also laminated by permalloy sheets or cold-rolled silicon steel sheets, so that the magnetic permeability can be made uniform and maximized.
  • the "electric energy metering winding" and the “monitoring winding” are wound around the edge of the permalloy sheet core. The last one turn is wound from the adjacent core side, and the magnetic permeability of the two adjacent cores is reduced by about half because they are Different material chips are stacked at intervals, which is equivalent to the punching and threading effect of the same material core.
  • the compensation method of the "iron core + coil” is used to compensate the fractional number.
  • the two windings are rated “0. 2Ss", “0.2Ss or 0.5Ss", and the energy metering winding fully meets the requirements for high accuracy (0.22S) measurement under weak magnetic conditions.
  • the monitoring winding can be made according to the user's needs, 0. 2Ss level or 0.
  • the winding can fully meet the measurement of the telecontrol analog-to-digital conversion measurement module, the operation monitoring microcomputer, the AC sampling and measuring device under the weak magnetic field condition.
  • Input accuracy requirements enable new energy users to accurately measure the magnitude of the operating current under weak magnetic field conditions, which facilitates operational monitoring.
  • a pair of 5P-level relay protection windings are wound on the edge of the cold-rolled silicon steel sheet core, which is no different from the 5P-level relay protection winding in the conventional high-voltage transformer. It is mainly used for main transformer double protection or bus double protection.
  • the other two cores are stacked with permalloy sheets and cold-rolled silicon steel sheets.
  • the magnetic permeability under weak magnetic field conditions is between pure permalloy core and pure cold rolled silicon steel.
  • a set of 3P or 5P relay protection windings can be wound, and such a pair can be used for double-protected windings, which can improve measurement accuracy and measurement performance.
  • the rated current percentage is widened to thousands of segments.
  • the effect of winding the relay protection winding on the iron core which is stacked by the permalloy and the cold-rolled silicon steel sheet is to extend the measurement and control range of the relay protection from the original (1 %I N ⁇ I N ) extends to (0.1 %I N ⁇ IN).
  • the effect of winding the energy metering winding on the iron core stacked from pure permalloy sheets is to expand the meter
  • the measurement range of the current is extended from the original (1 %I N ⁇ I N ) to (0.1 %I N ⁇ IN).
  • the purpose of winding a circle from the short side is to increase the measurement accuracy from the original 3% or 5% (both on the permalloy) to 0.2%.
  • the relay protection winding can be wound on the right long side (stacked from pure cold-rolled silicon steel sheet) or on the upper and lower short sides.
  • the thickness of the core and the number of coils determine the accuracy of the measurement and control of the current on the right upper winding. (Sensitivity) is 3% or 5%; similarly, the thickness of the mixed material on the short side plus the number of coils determines that the accuracy of the current control winding on the upper and lower sides is 3% or 5%.
  • the measurement and control range of the relay protection winding on the upper and lower sides is wider than that on the right side, and it can measure and control the thousand segments of the rated current.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transformers For Measuring Instruments (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

一种0.2Ss级特种高压计量电流互感器,属于电流互感器。铁芯由两种同样尺寸的"L"形状芯片组合而成,该"L"形状芯片的长边与短边比例为3:2;其中一种"L"形状芯片是坡莫合金材质芯片(1),另一种"L"形状芯片是冷轧硅钢材质芯片(2),在铁芯的各边上缠绕所需绕组。该电流互感器铁芯的部分芯片采用坡莫合金,部分芯片采用冷轧硅钢,拓展了铁芯性能,利用不同材质铁芯的结构特点,形成线圈的分数匝数补偿,从而达到精确计量的目的。

Description

技术领域
本发明属于一种特种高压计量电流互感器。
背景技术
变电站很多线路常常运行在弱小电流一一弱磁场工况下, 而现用高压互感器在此工况 下测量不出来, 造成各类贸易计量表计、 监测仪表、 监控微机无法正常工作。
这种弱小电流一般在互感器额定电流的千分段, 从而主要形成下列三方面问题: a)传统 高压互感器在额定电流的百分段才有测量性能, 虽然误差较大, 例如 0.2S级互感器在十分 之二以上才能达到 ± 0.2%, 而百分段为 ± 0.3〜士 0. 8%; b)靠改变变比无济于事, 如 600/5A 的互感器即使变为 100/5A, 1.2A的弱小电流只能由原来的 2%。 IN变成 1. 2% IN, 以此来改变 弱磁场测量性能根本不可能, 靠此改变测量准确度更是杯水车薪; cM乍为运行在高压线路上 的一次设备, 将高压互感器由 600/5A降为 100/5A, 从保护角度出发, 根本不可能被允许。 发明内容
本发明提供一种 0.2SS级特种高压计量电流互感器, 以解决变电站很多线路常常运行 在弱小电流——弱磁场工况下, 而现用高压互感器在此工况下测量不出来, 造成各类贸易 计量表计、 监测仪表、 监控微机无法正常工作问题。
本发明采取的技术方案是: 铁芯由两种同样尺寸的 "L"形状芯片组合而成的, 该 "L" 形状芯片的长边与短边比例为 3 : 2; 其中一种 "L"形状芯片是坡莫合金材质芯片, 另一种 "L"形状芯片是冷轧硅钢材质芯片, 具体组合结构是: 将一片坡莫合金片和一片冷轧硅钢 片拼装成 "□"形状作为铁芯每一层的基础层, 然后将奇数基础层和偶数基础层进行间隔式 叠装, 所述间隔式叠装方式是各奇数基础层都相同, 各偶数基础层都相同, 所述偶数基础 层是把奇数基础层绕水平中心横向轴线翻转 180度后得到的;
在坡莫合金片铁芯长边上缠绕电能计量绕组和监测绕组, 最后 1圈都从比邻的铁芯边 绕出来;
在冷轧硅钢片铁芯长边上缠绕 5P级的继电保护绕组一和 5P级的继电保护绕组二; 在铁芯的两个短边分别缠绕 3P级或 5P级的继电保护绕组三和 3P级或 5P级的继电保 护绕组四。
本发明一种实施方式是所述坡莫合金为含镍量 70%〜81%的铁镍合金。 本发明的优点是结构新颖, 铁芯的部分芯片采用导磁材质材料 _ _含镍 70%〜81%的坡 莫合金: 扩展了铁芯的新性能、 实现了特种目的; 设计出巧妙的铁芯叠装结构, 充分考虑 结构韧性、 扩展性能、 绕组用途、 技术指标, 形成独特的铁芯设计工艺理念; 设计出独特 的线圈绕制方式, 充分利用铁芯结构形成的特点, 形成不同绕组的 "铁芯 +线圈"误差补偿 方法, 即巧妙地利用不同材质铁芯形成的结构特点, 形成线圈的分数匝数补偿, 从而达到 精确计量的目的。
本专利的主要技术指标:
a)—次电压: 220/110/66/35 kV;
b)额定电流比: 600/300/150/5 A; 2000/1000/1 A;
c)级次组合: 0.2Ss, 0.2Ss ( 0.5Ss), 3 ( 5 ) P, 3 ( 5 ) P, 5P, 5P;
d)产品特点: 在额定电流的千分段就有准确的测量性能、误差可以达到 ± 0.2%, 即自额 定电流的千分段开始, 就能准确地贸易计量、 正常地监测、 可靠地保护控制。
附图说明
图 1是本发明的结构示意图;
图 2是本发明 "L"形坡莫合金材质芯片的结构示意图;
图 3是本发明 "L"形冷轧硅钢材质芯片的结构示意图; 图 4 是本发明一片坡莫合金片和一片冷轧硅钢片拼装成 "□"形状, 作为铁芯每一层 的基础层的结构示意图;
图 5是本发明铁芯的结构示意图。
具体实施方式
本发明所涉及的名词解释: "0.2Ss级" 的含义: "0.2S " 的含义表明其测量准确度达到 了 0.2S级高压互感器的规程要求, 而第二个 "s"说明此高压互感器可以准确地测量到额定 电流的千分段。
本发明以下的实施例是以五片基础层为例来举例说明的, 但本发明基础层不仅限于五 片。
本发明所述 3P级的继电保护绕组和 5P级的继电保护绕组为本领域公识技术。
实施例 1
铁芯由两种同样尺寸的 " L "形状芯片组合而成的, 该 "L "形状芯片的长边与短边比 例为 3 : 2; 其中一种 "L"形状芯片是坡莫合金材质芯片 1, 另一种 "L"形状芯片是冷轧硅 钢材质芯片 2, 具体组合结构是: 将一片坡莫合金片和一片冷轧硅钢片拼装成 "D"形状作 为铁芯每一层的基础层, 然后将奇数基础层和偶数基础层进行间隔式叠装, 所述间隔式叠 装方法是各奇数基础层都相同, 各偶数基础层都相同, 所述偶数基础层是把奇数基础层绕 水平中心横向轴线翻转 180度后得到的;
在坡莫合金片铁芯长边上缠绕电能计量绕组 3和监测绕组 4,最后 1圈都从比邻的铁芯 边绕出来;
在冷轧硅钢片铁芯长边上缠绕 5P级的继电保护绕组一 5和 5P级的继电保护绕组二 6; 在铁芯的两个短边分别缠绕 3P或 5 P级的继电保护绕组三 7和 3P级或 5P级的继电保 护绕组四 8。
本实施例中所述坡莫合金为含镍量 70%的铁镍合金。
实施例 2
本实施例中所述坡莫合金为含镍量 75%的铁镍合金, 其余结构同实施例 1。
实施例 3
本实施例中所述坡莫合金为含镍量 81%的铁镍合金, 其余结构同实施例 1。
下面结合附图对发明作进一步说明。
图 2和图 3说明两种材质芯片的性能及其简单工艺: 高压互感器的铁芯一直采用冷轧 硅钢片叠装, 但它在额定电流千分段几乎没有导磁性能; 为了实现弱小电流 _ _弱磁场工 况下高压电流互感器的测量性能, 需要采用坡莫合金制作铁芯, 但坡莫合金不仅非常昂贵, 而且以其制作铁芯的绕组抗饱和性能也非常不好。 所以, 制作高压互感器的铁芯不能都采 用昂贵的坡莫合金, 同时为了继电保护绕组的抗饱和性能也不该都采用坡莫合金。
故此, 本发明采用坡莫合金片和冷轧硅钢片进行巧妙地叠装, 使高压互感器的同一个 完整铁芯的不同区段为不同材质、 发挥不同的导磁性能和测量性能。 两种材质芯片制作成 一样尺寸, 有利于统一制作工艺, 也有利于叠装、 使空隙很小。 两种 "L"形状芯片的长边 与短边比例为 3 : 2, 这样叠装成铁芯后高度比宽度略大一些, 符合制作铁芯的一般理念, 可 以使线圈导线最省。
图 4和图 5说明不同材质芯片的叠装方式及铁芯结构特点: 将一片坡莫合金片和一片 冷轧硅钢片拼装成如图 4所示的结构, 作为铁芯的第一、 三、 五层芯片 (奇数层), 第二、 四……层 (偶数层) 都是将像第一层的芯片绕水平轴翻转 180 度, 然后进行奇数层和偶数 层的间隔式叠装; 这样, 就形成了图 5所示的叠装铁芯结构。
如此叠装形成的铁芯结构, 巧妙地解决了如下问题: (1 ) 4个直角采用两种材质芯片的 间隔叠装, 一层是同一材质芯片构筑的整体直角、 一层是不同材质芯片拼装的构筑直角, 互相叠压, 从而使不同材质芯片叠装成统一的 1 个高压互感器铁芯, 在绝缘纸和线圈的缠 绕下不会 "散架"。 ( 2 ) 形成 1个通长都是坡莫合金的铁芯边供电能计量绕组和监测仪表绕 组使用, 在直角处不会被 "不同材质结构"而削弱导磁性能; 也形成了另 1 个通长都是冷 轧硅钢片的铁芯边供一对继电保护 5P绕组使用(一般都是双保护), 在直角处也不会被"不 同材质结构"而增强导磁性能、 从而也就保证了其很高的抗饱和性能; (3 ) 其它 2 个铁芯 边均为间隔的坡莫合金片和冷轧硅钢片叠装而成, 其弱磁场的导磁性能介于坡莫合金铁芯 边和冷轧硅钢片铁芯边之间, 可以制作成一对 3P或 5P的继电保护绕组, 这样的一对可以 用于双保护的绕组, 还可以提高测量准确度, 又可以使测量性能从额定电流百分段调宽到 千分段。
图 1 说明本发明结构及绕组缠绕方式及其补偿方法: 叠装成的铁芯有两个稍长的边, 分别纯由坡莫合金片或冷轧硅钢片叠加而成, 即使在拐角处沿着铁芯截面轴方向也是由坡 莫合金片或冷轧硅钢片叠装而成, 这样可以使其导磁率一致、 而且最大化。
坡莫合金片铁芯边上缠绕 "电能计量绕组"和 "监测绕组", 最后 1圈都从比邻的铁芯 边绕出来, 借用这两个比邻铁芯边导磁率降低一半左右, 因为它们由不同材质芯片间隔叠 装而成, 相当于相同材质铁芯中间打孔穿线效果的特点, 巧妙地利用 "铁芯 +线圈" 的误差 补偿方法完成了分数匝数补偿工作。两个绕组的等级分别为 " 0. 2Ss级"、 " 0. 2Ss级或 0. 5Ss 级", 电能计量绕组完全满足了弱磁场工况下的高准确度(0. 2S级)计量的要求; 监测绕组 可以根据用户需要, 制成 0. 2Ss级或 0. 5Ss级的, 该绕组完全能够满足弱磁场工况下的远 动模数转换测量模块、 运行监控微机、 交流采样测量装置的测量输入准确度要求, 使新能 源用户在弱磁场工况下也能够准确地测量到运行电流的大小, 利于运行监控。
冷轧硅钢片铁芯边上缠绕一对 5P级的继电保护绕组, 和传统高压互感器中的 5P级继 电保护绕组没有什么不同, 主要用于主变双保护或母线双保护等。
其它两个铁芯边都是用坡莫合金片和冷轧硅钢片间隔叠装而成的, 其弱磁场工况下的 导磁性能介于纯坡莫合金铁芯边和纯冷轧硅钢片铁芯边的导磁性能之间, 可以各绕制一组 3P或 5P的继电保护绕组, 这样的一对可以用于双保护的绕组, 即可以提高测量准确度, 又 可以使测量性能从额定电流百分段调宽到千分段。
在短边: 由坡莫合金和冷轧硅钢片间隔叠装成的铁芯上绕制继电保护绕组的效果是使 扩展了继电保护的测控范围, 由原来的 ( 1 %IN~IN)扩展到 (0.1 %IN~IN)。
同样在长边: 由纯坡莫合金片叠装成的铁芯上绕制电能计量绕组的效果是使扩展了计 量电流的测量范围, 由原来的 (1 %IN~IN)扩展到 (0.1 %IN~IN)。 而从短边绕制一圈 (相当于传统 的半匝补偿)的目的就是把测量准确度由原来的 3%或 5% (都在坡莫合金上缠绕)提高到 0.2%。 相比原来在冷轧硅钢铁芯上绕线圈, 一是额定电流的千分段它根本就不测量, 二是 测量准确度只能是 5%, 靠多缠细线并增粗铁芯的办法测量准确度也只能到 3%。
在右长边 (由纯冷轧硅钢片叠装)或上下短边上都可绕制继电保护绕组, 由铁芯粗细和线 圈的多少共同决定了右边上继保绕组对电流的测控准确度 (灵敏度)是 3%或 5%;同样地, 由 短边上混合材质的粗细加上线圈的多少共同决定了上下边上继电保护绕组对电流的测控准 确度是 3%或 5%。 但需重申: 上下边上继电保护绕组的测控范围比右边的宽, 能测控到额 定电流的千分段。

Claims

权 利 要 求 书
1、 一种 0.2Ss级特种高压计量电流互感器, 其特征在于: 铁芯由两种同样尺寸的 " L" 形状芯片组合而成的, 该 "L"形状芯片的长边与短边比例为 3 : 2 ; 其中一种 "L"形状芯片 是坡莫合金材质芯片, 另一种 "L"形状芯片是冷轧硅钢材质芯片, 具体组合结构是: 将一 片坡莫合金片和一片冷轧硅钢片拼装成 "□"形状作为铁芯每一层的基础层, 然后将奇数基 础层和偶数基础层进行间隔式叠装, 所述间隔式叠装方式是各奇数基础层都相同, 各偶数基 础层都相同, 所述偶数基础层是把奇数基础层绕水平中心横向轴线翻转 180度后得到的; 在坡莫合金片铁芯长边上缠绕电能计量绕组和监测绕组,最后 1圈都从比邻的铁芯边绕 出来;
在冷轧硅钢片铁芯长边上缠绕 5P级的继电保护绕组一和 5P级的继电保护绕组二; 在铁芯的两个短边分别缠绕 3P级或 5P级的继电保护绕组三和 3P级或 5P级的继电保护 绕组四。
2、 根据权利要求 1所述的一种 0.2SS级特种高压计量电流互感器, 其特征在于: 所述 坡莫合金为含镍量 70%〜81%的铁镍合金。
PCT/CN2013/080675 2012-12-11 2013-08-02 0.2Ss级特种高压计量电流互感器 WO2014089977A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/649,294 US9431170B2 (en) 2012-12-11 2013-08-02 0.2Ss class special-type high-voltage measuring current transformer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210533061.5 2012-12-11
CN201210533061.5A CN102969138B (zh) 2012-12-11 2012-12-11 0.2Ss级特种高压计量电流互感器

Publications (2)

Publication Number Publication Date
WO2014089977A1 true WO2014089977A1 (zh) 2014-06-19
WO2014089977A8 WO2014089977A8 (zh) 2015-05-28

Family

ID=47799220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080675 WO2014089977A1 (zh) 2012-12-11 2013-08-02 0.2Ss级特种高压计量电流互感器

Country Status (3)

Country Link
US (1) US9431170B2 (zh)
CN (1) CN102969138B (zh)
WO (1) WO2014089977A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969138B (zh) 2012-12-11 2014-10-15 吉林省电力有限公司电力科学研究院 0.2Ss级特种高压计量电流互感器
CN105826067B (zh) * 2016-05-19 2023-12-26 中国电力科学研究院 电流互感器
CN107516582B (zh) * 2017-10-11 2024-02-06 国网辽宁省电力有限公司鞍山供电公司 一种使用坡莫合金为材料的梯形多线圈组取能互感器
CN108732450B (zh) * 2018-04-02 2019-06-04 西南交通大学 大型变压器卷铁心片间短路的检测方法
JP2020136456A (ja) * 2019-02-19 2020-08-31 三菱電機株式会社 カレントトランス及びカレントトランス装置
CN111929736B (zh) * 2020-09-14 2021-01-19 北京唯智佳辰科技发展有限责任公司 一种测量交变磁场的不对称分数匝线圈缠绕方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0077487A1 (de) * 1981-10-16 1983-04-27 Transformatoren Union Aktiengesellschaft Eisenkern für Transformatoren
CN2069607U (zh) * 1990-06-13 1991-01-16 湖北省宜昌市变压器厂 双0.2准确级次电流互感器
US5371486A (en) * 1990-09-07 1994-12-06 Kabushiki Kaisha Toshiba Transformer core
CN202585088U (zh) * 2012-05-09 2012-12-05 广东四会互感器厂有限公司 一种保护测量共用的电流互感器
CN102969138A (zh) * 2012-12-11 2013-03-13 吉林省电力有限公司电力科学研究院 0﹒2Ss级特种高压计量电流互感器
CN203085347U (zh) * 2012-12-11 2013-07-24 吉林省电力有限公司电力科学研究院 0.2Ss级特种高压计量电流互感器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992012432A1 (en) * 1990-12-28 1992-07-23 Liaisons Electroniques-Mecaniques Lem S.A. A current sensor device
JPH09162050A (ja) * 1995-12-13 1997-06-20 Fuji Electric Co Ltd 変流器
CN201196897Y (zh) * 2008-04-25 2009-02-18 刘义平 一种改进型变压器
JP5285357B2 (ja) * 2008-08-29 2013-09-11 ミドリ安全株式会社 変流器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0077487A1 (de) * 1981-10-16 1983-04-27 Transformatoren Union Aktiengesellschaft Eisenkern für Transformatoren
CN2069607U (zh) * 1990-06-13 1991-01-16 湖北省宜昌市变压器厂 双0.2准确级次电流互感器
US5371486A (en) * 1990-09-07 1994-12-06 Kabushiki Kaisha Toshiba Transformer core
CN202585088U (zh) * 2012-05-09 2012-12-05 广东四会互感器厂有限公司 一种保护测量共用的电流互感器
CN102969138A (zh) * 2012-12-11 2013-03-13 吉林省电力有限公司电力科学研究院 0﹒2Ss级特种高压计量电流互感器
CN203085347U (zh) * 2012-12-11 2013-07-24 吉林省电力有限公司电力科学研究院 0.2Ss级特种高压计量电流互感器

Also Published As

Publication number Publication date
CN102969138A (zh) 2013-03-13
CN102969138B (zh) 2014-10-15
WO2014089977A8 (zh) 2015-05-28
US9431170B2 (en) 2016-08-30
US20150348704A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
WO2014089977A1 (zh) 0.2Ss级特种高压计量电流互感器
CN102360857B (zh) 一种带误差补偿互感器的一体化配网变压器
CN101206951B (zh) 节能电流互感器
WO2014201937A1 (zh) 一种pcb罗氏线圈
WO2021088200A1 (zh) 双级励磁高电压比例标准装置及误差补偿方法
CN102426909A (zh) 一种基于复合磁芯的抗直流电流互感器及其制造方法
CN202189670U (zh) 组合式电流变换器
CN102360891B (zh) 一种多变比电流互感器
CN203085347U (zh) 0.2Ss级特种高压计量电流互感器
CN203312022U (zh) 一种低压耐直流电流互感器
CN201036148Y (zh) 螺旋管型空心线圈电流传感器
CN205789476U (zh) 电流互感器
CN101562074A (zh) 螺圈式电流互感器
CN205666125U (zh) 抗直流测量用电流互感器
CN202142406U (zh) 一种带误差补偿互感器的一体化配网变压器
CN204464038U (zh) 基于正交坐标系变换输出的三相组合式互感器
CN202614828U (zh) 三相零序组合式电流传感装置
CN202695070U (zh) 一种三铁芯柱硅钢丝变压器铁芯
CN107192974B (zh) 一体化电压电流标准互感器
CN201185125Y (zh) 变压器及其绕线架
CN201130580Y (zh) 一种高磁导率Rogowski线圈
CN104764918B (zh) 基于正交坐标系变换输出的三相组合式互感器
CN219778684U (zh) 一种宽量程双级电流互感器
CN215218904U (zh) 一种具有特宽量程组合式电流互感器的计量箱
CN204228792U (zh) 一种改进的多盘感应分流器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13863307

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14649294

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13863307

Country of ref document: EP

Kind code of ref document: A1