WO2014089912A1 - 分别控制各气缸燃烧要素的方法和内燃机 - Google Patents

分别控制各气缸燃烧要素的方法和内燃机 Download PDF

Info

Publication number
WO2014089912A1
WO2014089912A1 PCT/CN2013/001550 CN2013001550W WO2014089912A1 WO 2014089912 A1 WO2014089912 A1 WO 2014089912A1 CN 2013001550 W CN2013001550 W CN 2013001550W WO 2014089912 A1 WO2014089912 A1 WO 2014089912A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
ignition
cylinders
internal combustion
combustion engine
Prior art date
Application number
PCT/CN2013/001550
Other languages
English (en)
French (fr)
Inventor
周向进
Original Assignee
Zhou Xiangjin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhou Xiangjin filed Critical Zhou Xiangjin
Publication of WO2014089912A1 publication Critical patent/WO2014089912A1/zh
Priority to US14/737,589 priority Critical patent/US10648412B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0082Controlling each cylinder individually per groups or banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • Ignition gasoline engines generally use a throttle to control the ratio of air to fuel (air-fuel ratio). Ideally, the air-fuel ratio is generally considered to be around 14.7. Diesel engines generally do not use throttle valves to maximize inflation efficiency.
  • a typical internal combustion engine has only one combustion control mode, either ignited or compression-ignited.
  • Today's internal combustion engines generally have only one throttle or no throttle. There is no spark plug for the diesel engine, and the spark plug is for the gasoline engine, but the spark plug control (ignition phase angle, ignition timing) of each cylinder is the same. The injection quantity, injection phase angle, and injection number of each cylinder of the same internal combustion engine are the same.
  • a typical internal combustion engine cylinder is not equipped with a pressure sensor and/or a temperature sensor, but only detects air pressure at the intake manifold.
  • Modern internal combustion engine technology has the practice of grouping cylinders. By controlling the switching time of the intake valves and controlling the solenoid valves of the injectors, one of the cylinders is controlled to be inoperative. For the cylinders that are not working, no fuel is injected or aired.
  • Compression ignition here refers to heterogeneous compression ignition.
  • This new type of gasoline engine with two ignition control methods of compression ignition and spark plug ignition spark plug ignition in the cold start phase, compression ignition in the hot car running phase and hot start phase, using low-energy gasoline
  • a throttle to control the appropriate air-fuel ratio (generally around 14.7), so that the engine runs stably during the ignition operation phase.
  • the compression ignition control mode is adopted as much as possible to improve the charging efficiency of the internal combustion engine and improve the efficiency of the internal combustion engine. ,Energy conservation.
  • the invention realizes a control mode of the internal combustion engine, that is, the internal combustion engine can be in a complete operation cycle (taking a four-stroke internal combustion engine as an example, the crankshaft is rotated for two weeks), and the existing cylinder adopts a ignited combustion control mode and a cylinder.
  • the compression ignition combustion control mode is adopted.
  • two or more throttle valves are used in the same internal combustion engine to control the intake pressure of different cylinders (or different cylinder groups), sp, using a throttle valve to supply air to one cylinder (per 1 cylinder corresponds to 1 throttle), or a throttle is used to supply air to two cylinders (for example: 4, 6, 8, 10, 12 cylinders, 2, 3, 4, 5, 6 throttles) , etc., or the like, or use a throttle to supply air to multiple cylinders (for example: 4, 6, 8, 10, 12 cylinders with 2 throttles; 12 cylinders, 3 Or 4 throttles, etc., various combinations, and so on.
  • Each of the two cylinders or a plurality of cylinders is a group), but the same internal combustion engine has at least two or more cylinders, and the intake pressures are different from each other.
  • an internal combustion engine with two or more cylinders is equipped with at least two or more throttle valves, and different throttle valves use different control methods (ie, the same time, different throttle opening degrees are different), according to the combustion control method. Different needs can make the intake pressure of different cylinders different.
  • Each cylinder is equipped with a spark plug electronic ignition system.
  • the spark ignition electronic ignition system (control loop) corresponding to each cylinder is independent of each other, and the control command and ignition operation are different, that is, the electronic ignition phase angle (ignition time) and ignition
  • the extension time is independent, that is, the ignition phase angle and the ignition extension time of each spark plug may be different from each other in a complete working cycle, or may be the same, and may be arbitrarily and independently set according to the needs of combustion control.
  • the injection amount, the injection phase angle, and the injection delay time of each cylinder are independent of each other. These control parameters can be different or the same.
  • each cylinder is all in an ignition combustion control mode, or all in a compression ignition control mode.
  • the fuel injection quantity of each cylinder changes when the load changes.
  • the driving computer requires the single cylinder injection quantity to increase from 8 thousand micrograms/time to 12 kilograms/time
  • the cylinders of the internal combustion engine The amount of fuel injected will vary with the timing of the arrival of the command, and which cylinder will take the new parameters from which cylinder, or follow the new instructions in the order of cylinder operation.
  • Control method of the invention and the above control The difference in the method is:
  • the control of the amount of fuel injected by each cylinder is specific to the cylinder, and is controlled according to the combustion control method of each cylinder.
  • control method of the present invention is different from this control method in that the existing control method is only one of the numerous control schemes of the control method of the present invention, that is, only one group of cylinders work and another group of cylinders do not work. , such a state of control.
  • the working mode of the cylinder has the difference between the compression ignition type combustion control mode and the ignition type combustion control mode, the cylinder has the difference of not being controlled separately, and the difference of the throttle valve , and many more.
  • the control method of the present invention controls the injection phase angles to be relatively different while controlling the different injection capacities of the respective cylinders.
  • Equipped with a pressure sensor and/or a temperature sensor for each cylinder by analyzing the temperature, pressure and its changing law of the cylinder at different positions of the piston in each stroke (especially in the power stroke), analyzing the ignition point of the fuel, Data such as combustion speed is used as the basis for optimizing and selecting the combustion control parameters of the internal combustion engine.
  • This control method allows individual cylinders to be pre-mixed with fuel and air, and then uses spark-ignition ignition control method. At the same time, other cylinders have high intake pressure, and after the air is fully compressed, the fuel is injected. Cylinder, using high temperature of compressed air to ignite fuel (ie, compression ignition combustion control method; also known as: compression ignition combustion control mode; or: compression ignition ignition method); such compression ignition combustion control method also includes Part of the fuel is premixed with air (a small amount of fuel is injected into the intake stroke to mix the fuel with the air. This part of the fuel competes with nitrogen for oxygen under the high temperature and high pressure conditions of the work stroke, reducing the amount of nitrogen oxides produced.
  • compression ignition combustion control method also known as: compression ignition combustion control mode; or: compression ignition ignition method
  • Part of the fuel is premixed with air (a small amount of fuel is injected into the intake stroke to mix the fuel with the air. This part of the fuel competes with nitrogen for oxygen under the high temperature and high pressure conditions of the work stroke,
  • the fuel produces a small amount of hydrocarbon components that can react with the nitrogen oxides and carbon monoxide in the three-way catalytic system of the exhaust gas treatment system to produce carbon dioxide, nitrogen and water, which emit heat, and most of the fuel is then injected.
  • Compression ignition control method for high pressure compressed air As a result of this control, in a complete working cycle of the internal combustion engine, both the cylinder is in the compression ignition combustion mode and the cylinder is in the ignition combustion mode, and the adaptability of the internal combustion engine to the fuel is fully enhanced.
  • any gasoline can be used in the internal combustion engine of the present invention.
  • g[3 The internal combustion engine using this control method can adapt to any light oil with a Xin Xin value. Even with naphtha (or straight gasoline), this internal combustion engine works well and provides the highest heat transfer efficiency of the fuel used.
  • all cylinders can be ignited to test the fuel's ignition point. After the load is increased, the fuel is judged to be under specific operating conditions (water tank temperature, depending on the intake pressure and the occurrence of knocking). Ambient temperature, intake pressure, intake air temperature, compression ratio, etc.) Is there a compression ignition ignition work bar? Or; reduce the opening degree of some throttles, let the cylinders corresponding to these throttles adopt the ignition working mode, and increase the opening degree of other throttles (the throttle of these throttles can reach the maximum, full opening degree), The cylinders corresponding to these throttles have higher intake pressure and may have the intake pressure conditions required for the compression ignition mode.
  • the ignition combustion control mode is activated or the ignition mode is low-load operation, and the engine will not be knocked because the air-fuel ratio is strictly controlled at about 14.7.
  • the intake pressure is low, and the intake air amount is small. If there is knocking or severe knocking, the combustion control mode is changed to the compression ignition mode in time.
  • Cylinders with low intake pressure are generally ignited by homogeneous oil-gas mixture.
  • the air-fuel ratio is calculated according to 14.7 or 14.6.
  • Cylinders with high intake pressure generally adopt non-homogeneous compression-combustion combustion control method to achieve stratified combustion and thinning. combustion.
  • the compression ignition control mode increases the combustion control method using spark plug assisted ignition.
  • the spark plug is ignited 2 °C before the compression stroke piston reaches the top dead center, and the ignition in the compression ignition control mode is prevented (the ignition ignition is unsuccessful). If the cylinder detects knock, it is burned according to the ignition. Control mode control method, gradually delay spark plug ignition time.
  • the engine has a function of detecting the fuel imaginary value index.
  • the engine controller or Called the driving computer, ECU.
  • the combustion engine is in the ignited combustion control mode during the actual operation of the internal combustion engine, if knocking is detected, the spark plug ignition time is postponed according to the conventional control method, and the cylinder is operated according to the occurrence of knocking.
  • Load Fuel injection quantity, intake pressure, intake air temperature (ambient temperature), rotation speed, spark plug ignition phase angle (ignition time), torque output and other parameters.
  • the octane value of the fuel used by the engine can be preliminarily judged. And in some subsequent uses, the engine is instructed to select a combustion control mode for compression or ignition. At the same time, continue to detect the cylinder operating in the ignition control mode (detecting knock, as well as ignition phase, intake pressure, intake air temperature, ambient temperature, tank temperature, oil temperature, fuel injection quantity, speed, torque output, etc. ), increasing the statistical probability of the parameter that determines the basis of the fuel imaginary value.
  • the internal combustion engine has a self-learning function.
  • the working state is relatively stable (generally the fuel injection quantity remains unchanged)
  • the cylinder of the combustion control mode is ignited, and the ignition timing (try) of the spark plug is gradually moved forward to improve the power output and torque output of the internal combustion engine. Improve the efficiency of thermal power conversion.
  • knocking occurs, it is gradually moved backward (postponed) when the spark plug is ignited. Between. Then, a relatively stable ignition time with a higher heat transfer efficiency and a suitable injection amount and load is selected.
  • This attempt and learning process based on the database parameters derived from the bench test, is used to adjust the small amplitude control parameters. As for the frequency and magnitude of specific adjustments, they are different according to different control concepts and are the existing technologies mastered by the industry.
  • a three-cylinder internal combustion engine can use three throttle valves, respectively, with three (or two) different control strategies; or two throttles.
  • the combustion (ignition) control mode is controlled separately for one cylinder, and the other two cylinders use the same combustion (ignition) control mode as a group; for example, a single-cylinder is used in a compression-ignition combustion control mode, and the other two cylinders are ignited.
  • the combustion control mode or the opposite control strategy based on conditions (inlet pressure, intake flow, ambient temperature, tank temperature, etc.). For the number of cylinders 5, 7, 9, 11 and so on, different combinations of compression ignition and ignition control modes can be designed according to the arrangement of the arrays.
  • the invention adopts a control method of parallel or multiple throttles, that is, two independent throttles are connected in parallel on one throttle product, or a plurality of independent throttles are connected in parallel on one throttle product, these throttles
  • the switch and opening are independently controlled to operate and control the intake pressure and intake air volume of different cylinders (or different cylinder banks).
  • each throttle product having two or more throttles that are independently controlled and actuated from each other.
  • the inlets of these throttles can be distributed from the same pipe with the same air pressure; the outlets lead to the respective cylinders or cylinder groups, and the intake pressure and intake flow of these cylinders are adjusted by the change in the opening of the throttle.
  • the compression ratio of the internal combustion engine can be selected within the range of 9 to 22.
  • the compression ratio can be appropriately reduced, and the compression is better.
  • the ratio is between 12 and 20, and the typical compression ratio is 15.
  • the cylinder in the compression ignition combustion mode is rotated in rotation with the cylinder in the ignition combustion mode.
  • the control method can reduce the spark plug and cylinder carbon deposit.
  • some cylinders can be turned off (closing the throttle and stopping the fuel injection; or stopping the fuel injection without closing the throttle or closing the small throttle, using the residual heat to do work), Reduce fuel consumption.
  • Combustion elements of the cylinder include but are not limited to: intake pressure (intake air amount), intake air temperature (ambient temperature), water tank temperature, oil temperature, rotational speed, spark plug ignition phase angle (ignition time), fuel injection amount, injection pressure , injection phase angle, compression ratio. Some parameters are controllable and some are uncontrollable. The present invention controls the parameters that can be controlled for different cylinders.
  • a full duty cycle of a four-stroke internal combustion engine is equivalent to two weeks of crankshaft rotation of the internal combustion engine.
  • a full duty cycle of a two-stroke internal combustion engine is equivalent to one revolution of the internal combustion engine crankshaft.
  • a complete duty cycle of a six-stroke internal combustion engine is equivalent to three weeks of crankshaft rotation of the internal combustion engine.
  • each of the two cylinders corresponds to one throttle valve, and three sets of cylinders are obtained (the preferred cylinder combination method is based on the order of work performed by the cylinders, and is combined according to the sequence number interval 2.
  • the cylinders of the work order 1 and 4 are a group, 2, 5 are a group, 3 and 6 are a group), wherein one group of cylinders is controlled according to the ignition combustion mode, and the driving computer controls the throttle opening and the injection of the injectors.
  • the air-fuel ratio is pre-mixed with air according to 14.7.
  • the ignition phase angle of the spark plug is as usual, around 12 degrees before top dead center, and according to the speed and knock detection results (and the temperature and pressure detection results in the cylinder and the corresponding Piston position), 12 degrees in front of the above dead center, plus or minus 30 degrees or more (the calculation method of this larger range of specific parameters, for the current internal combustion engine and automotive industry professionals Well known); the other two cylinders are controlled according to the compression ignition mode, the injection phase angle is near 16 degrees before top dead center, and according to the speed and load
  • the working conditions such as intake pressure are centered at 16 degrees before the above stop, positive 120 degrees (advanced) negative 20 degrees (delayed) range or larger (the calculation method of this larger range of specific parameters is Now well known to the professional technicians in the internal combustion engine and the automotive industry, it can also be obtained through bench tests without the need for creative labor.
  • the turbocharger begins to supply high pressure air to the cylinder (via the throttle) using the drive of the exhaust of the internal combustion engine.
  • the fully open throttle will make the cylinder's intake pressure corresponding to it Increased, it is possible to have the intake pressure conditions required for the compression ignition control mode.
  • the partially opened throttle reduces the intake air flow and the intake pressure of the corresponding cylinder, so that more air enters the cylinder of the compression ignition working state (the corresponding throttle is fully open, or the opening degree is greater than 50%).
  • the two groups of cylinders adopt the ignition combustion control mode, and the one group of cylinders adopts the compression ignition combustion control mode.
  • the "consideration” here is the process by which the driving computer continuously collects relevant data and makes judgments. Determine whether there are cylinders (including how many cylinders) that have the conditions of the compression ignition control mode, which of the (or groups of) cylinders are assigned to operate in the compression ignition combustion control mode, while the other cylinders operate in the ignition ignition control mode. .
  • the igniting combustion control mode is used as the bottoming measure for the internal combustion engine to adapt to different fuel performance (octane number); if conditions permit, try to make more cylinders work in the compression ignition control mode. Improve the efficiency of internal combustion engines.
  • the internal combustion engine In order to reduce the time for more cylinders to operate in the ignition control mode during the start-up phase, it is a method to equip the internal combustion engine with a supercharger.
  • This method allows the internal combustion engine to obtain an intake pressure of more than 1 atmosphere during the start-up phase, which is beneficial to the internal combustion engine as soon as possible. And use as many cylinders as possible with compression ignition control mode.
  • the supercharger can be operated continuously during the operation of the internal combustion engine or only during the start-up phase.
  • the supercharger can be used with the turbocharger to stop working after the turbocharger starts working.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

分别控制各气缸燃烧要素的方法,为每一个气缸配备一个节气门,或者采用多联节气门分别为不同气缸或者气缸组供气,使得不同气缸具有不同的进气压力和进气流量,并控制使得各气缸具有不同的火花塞点火时间、喷油时间以及喷油量,从而使得内燃机可以在一个完整的工作周期内既有气缸处于压燃工作模式,又有气缸处于点燃工作模式。在具备压燃工作模式所需要的条件下,各气缸尽量采用压燃工作模式以提高内燃机的热功效率。还公开了采用该方法的内燃机或者汽车,可以使用各种辛烷值的汽油,增强了对燃点不同的燃料的适应性。

Description

分别控制各气缸燃烧要素的方法和内燃机 技术领域
汽车和内燃机。
背景技术
内燃机一般分为点燃式汽油机和压燃式柴油机。点燃式汽油机一般采用节气门控 制空气与燃料比例 (空燃比), 理想说的空燃比一般认为在 14.7左右。 柴油机一般不采 用节气门, 最大限度地提高充气效率。
一般的内燃机只有一种燃烧控制模式, 要么点燃式, 要么压燃式。
现在的内燃机, 一般只有一个节气门, 或者没有节气门。 柴油机没有火花塞, 汽 油机有火花塞, 但是各个气缸的火花塞的控制 (点火相位角、 点火时间)相同。 同一 台内燃机各个气缸的喷油量、 喷油相位角、 喷油次数相同。 一般的内燃机气缸不配备 压力传感器和 (或者) 温度传感器, 只是在进气总管检测空气压力。
现代的内燃机技术有气缸分组的做法,通过控制进气门的开关时间和控制喷油嘴 的电磁阀, 控制其中一组气缸不工作, 针对不工作的气缸组, 不喷油也不进气。
最现代的内燃机可以在不同时间段分别采用点燃式燃烧控制模式,或者压燃式燃 烧控制模式。 这里的压燃, 指的是非均质压燃。 这种同时具有压燃式点火和火花塞点 火的两种点火控制方法的新型汽油机(冷车启动阶段采用火花塞点火, 热车运行阶段 以及热车启动阶段采用压燃点火, 使用低辛垸值汽油), 需要采用节气门控制适当的 空燃比 (一般在 14.7左右), 使得发动机在点燃运行阶段运行稳定。 在进气压力、 进 气流量、 环境温度、 水箱温度、 压縮比等条件满足燃料可以被压燃点火的条件时, 尽 可能采用压燃燃烧控制模式, 以提高内燃机的充气效率,提高内燃机效率,节能减排。
到现在, 没有内燃机可以在一个完整运行周期, 既有气缸采用点燃式燃烧控制模 式, 又有气缸采用压燃式燃烧控制模式。
发明内容
本发明实现了这样一种内燃机的控制模式, 即, 内燃机可以在一个完整的运行周 期内 (以四冲程内燃机为例, 曲轴转动两周), 既有气缸采用点燃式燃烧控制模式, 又有气缸采用压燃式燃烧控制模式。 针对气缸数量在 2以上的内燃机, 在同一台内燃机采用两个或者多个节气门, 分 别控制不同气缸(或者不同气缸组) 的进气压力, sp, 采用一个节气门为一个气缸供 气 (每 1个气缸对应 1个节气门), 或者采用一个节气门为两个气缸供气 (例如: 气 缸数为 4、 6、 8、 10、 12, 采用 2、 3、 4、 5、 6个节气门, 等等, 依此类推), 或者 采用一个节气门为多个气缸供气 (例如: 气缸数为 4、 6、 8、 10、 12 , 采用 2个节气 门; 气缸数为 12, 采用 3个或者 4个节气门, 等等, 各种排列组合, 依此类推。 每 两个气缸或者多个气缸为一组), 但是同一台内燃机至少具有两组以上的气缸, 彼此 进气压力不同。换句话说,一台具有两缸或者多缸的内燃机至少配备两个或者两个以 上节气门, 不同节气门采用不同控制方法 (即相同时间, 不同节气门的开度不同), 根据燃烧控制方法不同的需要, 可以使得不同气缸的进气压力不同。
每一个气缸配备一套火花塞电子点火系统, 同时, 每一个气缸所对应的火花塞电 子点火系统(控制回路)彼此独立, 控制指令和点火操作情况不同, 即, 电子点火相 位角 (点火时间)和点火延长时间独立, 即, 内燃机在一个完整的工作周期内, 每一 个火花塞的点火相位角和点火延长时间可以彼此不同, 也可以相同, 可以根据燃烧控 制的需要任意和独立设定。
气缸与气缸之间, 每一个气缸的喷油量、 喷油相位角、 喷油延长时间彼此独立。 这些控制参数可以不同, 也可以相同。
现在的内燃机, 虽然点火时间 (相位角)、 喷油量、 喷油相位角、 进气压力、 进 气量等参数不完全相同 (有少量差异), 在一个完整的工作周期, 每一个气缸的各种 控制参数也是不同的, 但是其控制主观是相同的, 没有独立控制的主观意图, 这种不 同只是随内燃机工况的波动产生的小幅度差异, 或者是机械和电子器件质量、性能差 异造成的小的差异 (偏差)。 这种 "不同"或者 "差异" 区别于本发明主观发出的、 目的明确的差别化控制, 其参数的差异性幅度也很大。 根据本发明控制方法, 气缸之 间, 各种类型的控制参数, 多数情况下 (多数时间) 是不同的, 但是, 根据内燃机工 作状态控制的需要, 少数时间是可以相同的。 例如, 各个气缸全部处于点燃燃烧控制 模式, 或者全部处于压燃燃烧控制模式。
举例说明: 现在的内燃机, 在负荷变化时, 各个气缸的喷油量是变化的, 当行车 电脑要求单缸喷油量从 8千微克 /次增加到 12千微克 /次时,内燃机各个气缸的喷油量 会伴随指令到达的时间产生变化和不同,轮到哪个气缸就从哪个气缸开始采用新的参 数, 或者按照气缸工作的先后顺序依次按照新指令执行。 本发明的控制方法与上述控 制方法的不同之处在于: 对各个气缸喷油量多少的控制是针对具体气缸的, 是根据各 个气缸的燃烧控制方法不同, 有目的控制的。
现在也有少量内燃机的控制方法会在一定条件下要求个别气缸停止喷油,而另外 一些气缸继续工作。例如技术背景中介绍到的气缸分组和分别控制的技术。本发明的 控制方法与这种控制方法的不同之处在于:现有的这种控制方法只是本发明控制方法 众多控制方案中的一种情况, 仅仅是一组气缸工作和另外一组气缸不工作, 这样一种 控制状态。 本发明除了气缸分组, 一部分气缸工作另外一部分气缸不工作外, 气缸的 工作方式有压燃式燃烧控制模式和点燃式燃烧控制模式的区别,气缸有不分组单独控 制的区别, 以及节气门的区别, 等等。 一般情况下本发明控制方法在控制各个气缸喷 油量不同的同时, 控制喷油相位角相对不同。
为每一个气缸配备一个压力传感器和(或者)一个温度传感器, 通过检测气缸在 各个行程(尤其是在做功行程)活塞所处不同位置所对应的温度、压力及其变化规律, 分析燃料的燃点、 燃烧速度等数据, 作为优化和选择内燃机燃烧控制参数的依据。
这种控制方法, 使得个别气缸可以采用燃料与空气预混合, 然后采用火花塞点火 的点燃式燃烧控制方法; 同时, 另外的一些气缸进气压力很高, 待空气经过充分压缩 后, 再喷射燃料进入气缸, 利用压缩空气的高温去点燃燃料(即, 压燃式燃烧控制方 法; 又称为: 压燃式燃烧控制模式; 或者: 压燃式点火方法); 这种压燃式燃烧控制 方法还包括部分燃料与空气预混合(在进气行程喷入少量燃料, 使燃料充分与空气混 合, 这部分燃料会在做功行程的高温高压条件下与氮气争夺氧气, 减少氮氧化合物的 生成量。这部分燃料会产生少量碳氢组分, 这部分碳氢组分可以在尾气处理系统的三 元催化系统与氮氧化合物和一氧化碳一起反应,生成二氧化碳、氮气和水,放出热量), 大部分燃料然后喷射入高压压缩空气的压燃式燃烧控制方法。这样控制的结果是, 在 内燃机的一个完整工作周期内, 既有气缸处于压燃燃烧工作模式, 又有气缸处于点燃 燃烧工作模式, 内燃机对燃料的适应性得到充分强化。 不论辛烷值高低, 任何汽油都 可以在本发明这种内燃机使用。 g[3, 采用这种控制方法的内燃机可以适应任何辛垸值 指标的轻质油。 哪怕是使用石脑油 (或者直溜汽油), 这种内燃机也可以顺利工作, 并且提供所使用燃料的最高的热功转换效率。
在内燃机启动阶段, 各气缸可以全部采用点燃式工作模式, 以试探燃料的燃点, 负荷提升之后, 依据进气压力和产生爆震的情况, 判断这种燃料在特定的工作条件下 (水箱温度、 环境温度、 进气压力、 进气温度、 压缩比等) 是否具备压燃点火工作条 件; 或者, 减小部分节气门的开度, 让这些节气门对应的气缸采用点燃工作模式, 增 加另外一些节气门的开度 (这些节气门的幵度可以到达最大, 全开的程度), 使得这 些节气门所对应的气缸进气压力更高, 可能具备压燃工作模式所需要的进气压力条 件。
在发动机被预热后 (热车), 即使具备压燃点火启动的条件, 采用点燃燃烧控制 模式启动或者点燃模式低负荷运行, 发动机也不会出现爆震, 因为空燃比被严格控制 在 14.7左右, 进气压力较低, 进气量较少如果出现爆震或者出现严重的爆震, 则及 时将燃烧控制模式转变为压燃模式。
进气压力低的气缸一般采用均质油气混合气点燃的燃烧控制方法, 空燃比按照 14.7或者 14.6执行, 进气压力高的气缸一般采用非均质压燃燃烧控制方法, 实现分 层燃烧和稀薄燃烧。
针对燃料辛烷值的不确定的情况,压燃控制模式增加采用火花塞辅助点火的燃烧 控制方法。 在压燃燃烧控制模式运行阶段, 火花塞在压缩行程活塞到达上止点之前 2°C点火, 防备压燃燃烧控制模式失火(压燃点火不成功), 如果气缸检测到爆震, 则 按照点燃燃烧控制模式的控制方法, 逐步推迟火花塞点火时间。
按照本发明的控制方法, 发动机具有对燃料辛垸值指标的检测功能。通过台架试 验, 检测某种确定型号发动机使用各种不同辛烷值燃料时, 在各种工作状态发生爆震 的条件、 环境、 爆震烈度得参数, 建立数据库存放在发动机控制器(或者被称为行车 电脑、 ECU )。 当内燃机实际应用的运行过程中, 某一个或者某一组气缸按照点燃燃 烧控制模式运行时, 如果检测到爆震, 则按照常规控制方法推迟火花塞点火时间, 同 时根据爆震出现时该气缸的工作负荷: 喷油量、 进气压力、 进气温度 (环境温度)、 转速、 火花塞点火相位角 (点火时间)、 扭矩输出等参数, 对照数据库资料, 可以初 步判断发动机所使用燃料的辛烷值,并在后续的使用过程中指导发动机的某些气缸选 择压燃或者点燃的燃烧控制模式。 同时, 继续通过对点燃燃烧控制模式运行的气缸进 行检测 (检测爆震, 以及点火相位、 进气压力、 进气温度、 环境温度、 水箱温度、 机 油温度、 喷油量、 转速、 扭矩输出, 等), 增加判断燃料辛垸值的依据的参数的统计 概率。
内燃机具有自我学习功能, 在工作状态相对平稳(一般为喷油量保持不变)的阶 段, 点燃燃烧控制模式的气缸, 火花塞点火时间 (尝试)逐步前移, 以提高内燃机功 率输出和扭矩输出, 提高热功转换效率。 产生爆震则逐步后移(推迟)火花塞点火时 间。然后选定相对稳定的热功转换效率较高的与喷油量和负荷相适应的点火时间。这 个尝试和学习过程, 以台架试验得出的数据库参数为基础和依据, 进行小幅度控制参 数调整。 至于具体调整的频度和幅度, 根据不同的控制理念有所不同, 是业内人士所 掌握的现有技术。
对于气缸数为单数的内燃机, 控制原理 (方法) 也是一样的, 例如, 3缸内燃机 可以采用 3个节气门, 分别采取 3种(或者 2种)不同的控制策略; 或者采用两个节 气门, 对一个气缸单独控制它的燃烧(点火)控制模式, 另外两个气缸作为一组采用 相同的燃烧(点火)控制模式; 例如, 对单一的气缸采用压燃燃烧控制模式, 另外两 个气缸采用点燃燃烧控制模式, 或者根据条件(进气压力、 进气流量、 环境温度、 水 箱温度等)采用相反的控制策略。 对于气缸数为 5、 7、 9、 11等等情况, 按照排列组 合的方法, 可以设计出不同的压燃和点燃控制模式组合。
本发明采用并联或者多联节气门的控制方法,即在一只节气门产品上并联两个彼 此独立的节气门, 或者在一只节气门产品上并联多个彼此独立的节气门, 这些节气门 的开关和开度是独立控制的, 分别操作和控制不同气缸(或者不同气缸组)的进气压 力和进气量。
并联的或者多联的节气门产品,每一台节气门产品具有两个或者多个彼此独立控 制和动作的节气门。这些节气门的入口,可以从同一根管道分配进来,空气压力相同; 出口则通向各自的气缸或者气缸组, 通过节气门的开度变化, 调节这些气缸的进气压 力和进气流量。
内燃机的压缩比可以在 9〜22范围内选择, 对于进气压力比较高内燃机, 例如, 配备了机械增压装置和 (或者)涡轮增压装置的内燃机, 压缩比可以适当降低, 比较 好的压缩比范围在 12〜20之间, 典型压缩比为 15。
对于压缩比为 15的内燃机, 当进气压力为 200千帕 (相当于 2个大气压) 时, 压缩行程末端燃烧室温度, 与压缩比为 25〜28的内燃机采用自然吸气方式进气时压 缩行程末端的燃烧室温度相当。 这个温度可以比较容易地点燃燃点相对较高的燃料。 尤其是在发动机经过预热 (热车) 的情况下, 压缩比在 19-21的情况下, 进气压力在 240-300千帕的情况下, 气缸压缩行程末端的压缩空气几乎可以将辛垸值在 90-95以 下的所有轻质油 (研究法, RON ) 点燃, 实现压燃。 无法压燃的高辛烷值汽油, 则采 用点燃燃烧的控制模式。
将处于压燃燃烧工作模式的气缸与处于点燃燃烧工作模式的气缸轮换工作,这种 控制方法, 可以降低火花塞和气缸积碳。
低负荷 (例如汽车怠速, 或者待档怠速, 或者匀速运动时) 时, 可以关闭部分气 缸 (关闭节气门和停止燃料喷射; 或者停止燃料喷射不关闭节气门或者关小节气门, 利用余热做功), 降低燃料消耗。
气缸的燃烧要素包括但是不仅限于:进气压力(进气量)、进气温度(环境温度)、 水箱温度、 机油温度、 转速、 火花塞点火相位角 (点火时间)、 喷油量、 喷油压力、 喷油相位角、 压缩比。 有些参数是可以控制的, 有些是无法控制的。 本发明对可以控 制的参数, 针对不同气缸, 分别控制。
本说明书所述 "供气", 表示供应空气。 一般情况下, 四冲程内燃机的一个完整 工作周期相当于内燃机曲轴转动 2周。二冲程内燃机的一个完整工作周期相当于内燃 机曲轴转动 1周。 六冲程内燃机的一个完整工作周期相当于内燃机曲轴转动 3周。
本说明书关于内燃机和汽车的有关控制参数的选择 (根据相关条件的变化情况) 和选择方法, 是相关专业技术人员所熟知的, 是现有技术, 不需要创造性劳动即可获 得。
具体实施方法
以一台气缸数为 6的内燃机为例,每 2个气缸对应 1个节气门,得到 3组气缸(比 较好的气缸组合方法是按照气缸做功的次序, 按照序号间隔 2作组合依据。例如, 做 功次序 1、 4的气缸为一组, 2、 5为一组, 3、 6为一组), 其中 1组气缸按照点燃燃 烧模式控制, 行车电脑控制节气门开度和喷油嘴的喷油量, 使得空燃比按照 14.7, 燃 料与空气预混合, 火花塞点火相位角按照常规, 在上止点前 12度附近, 并且根据转 速、 爆震检测结果 (以及气缸内温度、 压力检测结果和所对应的活塞位置), 在以上 止点前 12度为中心, 正负 30度范围或者更大范围内调整(这种更大范围的具体参数 的计算方法, 为现在内燃机和汽车行业的专业技术人员所熟知); 另外两组气缸按照 压燃燃烧模式控制, 喷油相位角在上止点前 16度附近, 并且根据转速、 负荷、 进气 压力等工况, 在以上止点前 16度为中心, 正 120度 (提前) 负 20度 (推迟) 范围或 者更大范围内调整(这种更大范围的具体参数的计算方法, 为现在内燃机和汽车行业 的专业技术人员所熟知), 也可以通过台架试验得到, 不需要创造性劳动。
内燃机启动阶段, 首先考虑 3组气缸全部采用点燃燃烧控制模式, 保证内燃机正 常启动和正常运行。随着内燃机正常启动, 涡轮增压器利用内燃机尾气的驱动开始向 气缸(经过节气门)供应高压空气。 全开的节气门将使得与之对应得气缸的进气压力 升高, 有可能具备压燃燃烧控制模式所需要的进气压力条件。 同时, 部分开启的节气 门减少了与之对应的气缸的进气流量和进气压力,使得更多空气进入压燃工作状态的 气缸 (对应的节气门全开, 或者开度大于 50%)。
此时, 可以先考虑 2组气缸采用点燃燃烧控制模式, 1组气缸采用压燃燃烧控制 模式。然后再考虑 1组气缸采用点燃燃烧控制模式, 2组气缸采用压燃燃烧控制模式。 这里的 "考虑 "是行车电脑不断采集有关数据和做出判断的过程。判断是否有气缸(包 括有多少气缸)具备压燃燃烧控制模式的条件, 分配哪几个(或者那几组)气缸按照 压燃式燃烧控制模式运行, 而另外一些气缸按照点燃式燃烧控制模式运行。
当进气压力、 进气流量、 环境温度不能满足两组 (4个) 气缸处于压燃燃烧控制 模式时 (压燃不能正常着火; 或者根据条件变化趋势作出预测部具备压燃条件的), 则改为 1组气缸压燃, 2组气缸点燃的燃烧控制模式。 或者全部改为按照点燃式燃烧 控制模式运行。
当水箱温度升高, 进气压力、环境温度和进气流量满足 6个气缸全部采用压燃燃 烧控制模式时, 则全部 6个气缸全部采用压燃燃烧控制模式工作。
总体控制策略: 以点燃燃烧控制模式作为内燃机适应不同燃料性能(辛烷值)而 能够正常运行的保底措施; 在条件允许的情况下, 尽量使得更多的气缸采用压燃燃烧 控制模式工作, 以提高内燃机效率。
为了减少启动阶段更多气缸采用点燃燃烧控制模式工作的时间,为内燃机配备机 械增压装置是一个方法,这个方法可以使得内燃机在启动阶段即获得超过 1个大气压 的进气压力, 有利于内燃机尽快和有尽量多的气缸采用压燃燃烧控制模式。机械增压 装置可以在内燃机工作期间一直工作, 也可以仅仅在启动阶段工作。机械增压装置可 以与涡轮增压器配合, 在涡轮增压器开始工作之后停止工作。

Claims

权 利 要 求 书
1. 针对气缸数量大于等于 2 的内燃机, 在同一台内燃机采用两个或者多个节气 门, 分别控制不同气缸或者不同气缸组的进气压力和进气量, 即, 采用一个节气门为 一个气缸供气的方法, 各气缸的进气压力和进气量由不同的节气门分别控制; 或者采 用一个节气门为两个气缸供气, 或者一个节气门为多个气缸供气, 每两个气缸或者多 个气缸为一组, 但是同一台内燃机至少具有两组或者两组以上的气缸, 各组气缸的进 气压力和进气量由不同的节气门分别控制;
每一个气缸配备一套火花塞电子点火系统, 并且, 每一个气缸所对应的火花塞电 子点火系统彼此独立, 也就是点火线圈的控制回路彼此独立, 控制指令和点火操作情 况各不相同, 即, 各个气缸或者气缸组的电子点火相位角, 点火时间和点火延长时间 独立, 内燃机在一个完整的工作周期内, 每一个火花塞的点火相位角和点火延长时间 彼此独立, 根据燃烧控制的需要, 任意设定, 单独设定;
每一个气缸的喷油量、喷油相位角、喷油延长时间彼此独立,操作参数单独控制; 每一个气缸配备一个压力传感器或者一个温度传感器,或者同时配备一个压力传 感器和一个温度传感器; 如果节气门的配置已经将气缸分组, 则每组气缸选择一个气 缸配备一个压力传感器或者一个温度传感器,或者同时配备一个压力传感器和一个温 度传感器;
根据以上控制方法, 个别气缸采用燃料与空气预混合, 然后采用火花塞点火的点 燃式燃烧控制方法; 同时, 另外的一些气缸进气压力很高, 进气量很大, 待空气在气 缸经过充分压缩后, 再喷射燃料进入气缸, 利用压缩空气的高温点燃燃料, 即, 采用 压燃式燃烧控制方法;这种压燃式燃烧控制方法还包括部分燃料在进气冲程喷射进入 气缸与空气充分预混合,大部分燃料在压缩冲程再喷射进入气缸中的高压压缩空气的 压燃式燃烧控制方法;
根据以上控制方法, 在内燃机的一个完整工作周期内, 既有气缸处于压燃燃烧工 作模式, 又有气缸处于点燃燃烧工作模式, 内燃机对燃料的适应性得到充分强化, 可 以使用任何辛垸值的汽油。
2. 根据权利要求 1 所述的控制方法, 一种并联的或者多联的节气门产品, 将两 个节气门或者多个节气门的物理结构或者机械结构并联在一起,每一个节气门的开关 和开度是独立控制的, 分别操作和控制不同气缸或者不同气缸组的进气压力和进气
3.根据权利要求 1 所述的控制方法, 一种新的内燃机产品, 其特征是在内燃机 的一个完整工作周期内, 既有气缸处于压燃燃烧工作模式, 又有气缸处于点燃燃烧工 作模式, 这种内燃机可以使用任何辛垸值的汽油。
PCT/CN2013/001550 2012-12-13 2013-12-11 分别控制各气缸燃烧要素的方法和内燃机 WO2014089912A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/737,589 US10648412B2 (en) 2012-12-13 2015-06-12 Control method of internal combustion engine and internal combustion engine applying the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210537438.4A CN103867322B (zh) 2012-12-13 2012-12-13 汽车及内燃机的一种控制方法
CN201210537438.4 2012-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/737,589 Continuation-In-Part US10648412B2 (en) 2012-12-13 2015-06-12 Control method of internal combustion engine and internal combustion engine applying the same

Publications (1)

Publication Number Publication Date
WO2014089912A1 true WO2014089912A1 (zh) 2014-06-19

Family

ID=50906242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001550 WO2014089912A1 (zh) 2012-12-13 2013-12-11 分别控制各气缸燃烧要素的方法和内燃机

Country Status (4)

Country Link
US (1) US10648412B2 (zh)
CN (1) CN103867322B (zh)
TW (1) TW201425717A (zh)
WO (1) WO2014089912A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016211438A (ja) * 2015-05-08 2016-12-15 本田技研工業株式会社 内燃機関の制御装置
US9863305B1 (en) * 2016-09-20 2018-01-09 Delphi Technologies, Inc. Low-cost high-efficiency GDCI engines for low octane fuels
CN106777821B (zh) * 2017-01-23 2020-09-18 中国航发沈阳发动机研究所 一种航空涡扇发动机高原起动点火供油量计算方法
CN110296011B (zh) * 2019-07-17 2022-02-22 杜福银 一种高效率发动机及控制方法
DE102019125570B4 (de) 2019-09-24 2023-12-07 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Erfassung der Oktanzahl eines in einem Ottomotor verwendeten Kraftstoffs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101016868A (zh) * 2006-04-03 2007-08-15 天津大学 基于全可变气门机构节能超低排放双模式均质压燃发动机
CN101070791A (zh) * 2007-06-13 2007-11-14 天津大学 Hcci/si双模式均质压燃发动机的控制系统和方法
JP2009097416A (ja) * 2007-10-16 2009-05-07 Toyota Industries Corp 予混合圧縮自着火機関
CN101675231A (zh) * 2007-05-01 2010-03-17 通用汽车环球科技运作公司 直喷汽油机中控制hcci与si燃烧之间的转换的方法和设备
CN101915175A (zh) * 2009-03-02 2010-12-15 通用汽车环球科技运作公司 调整喷射和火花正时扩展hcci运转高负载极限的方法
CN102720597A (zh) * 2012-05-31 2012-10-10 天津大学 发动机均质压燃与传统燃烧联合运行装置及方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346763A1 (de) * 2003-10-06 2005-05-19 Mann + Hummel Gmbh Saugmodul insbesondere für Brennkraftmaschinen
US7278388B2 (en) * 2005-05-12 2007-10-09 Ford Global Technologies, Llc Engine starting for engine having adjustable valve operation
US7448359B2 (en) * 2006-08-10 2008-11-11 Ford Global Technologies, Llc Multi-mode internal combustion engine
DE102007026408B4 (de) * 2007-06-06 2010-02-11 Continental Automotive Gmbh Verfahren zum Wechsel des Betriebsmodus eines Verbrennungsmotors
WO2009102744A1 (en) * 2008-02-15 2009-08-20 Gm Global Technology Operations, Inc. Method for controlling a spark-ignition direct-injection internal combustion engine at low loads
WO2009134854A2 (en) * 2008-05-02 2009-11-05 Gm Global Technology Operations, Inc. Extension of the application of multiple injection hcci combustion strategy from idle to medium load
US8055432B2 (en) * 2008-08-07 2011-11-08 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Method and system of transient control for homogeneous charge compression ignition (HCCI) engines
US8603200B2 (en) 2009-06-22 2013-12-10 Afton Chemical Corporation Compositions comprising combustion improvers and methods of use thereof
CN102312719B (zh) * 2010-07-07 2013-08-28 周向进 一种压燃式低辛烷值汽油发动机
US8666637B2 (en) * 2011-08-03 2014-03-04 Ford Global Technologies, Llc Method and system for pre-ignition control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101016868A (zh) * 2006-04-03 2007-08-15 天津大学 基于全可变气门机构节能超低排放双模式均质压燃发动机
CN101675231A (zh) * 2007-05-01 2010-03-17 通用汽车环球科技运作公司 直喷汽油机中控制hcci与si燃烧之间的转换的方法和设备
CN101070791A (zh) * 2007-06-13 2007-11-14 天津大学 Hcci/si双模式均质压燃发动机的控制系统和方法
JP2009097416A (ja) * 2007-10-16 2009-05-07 Toyota Industries Corp 予混合圧縮自着火機関
CN101915175A (zh) * 2009-03-02 2010-12-15 通用汽车环球科技运作公司 调整喷射和火花正时扩展hcci运转高负载极限的方法
CN102720597A (zh) * 2012-05-31 2012-10-10 天津大学 发动机均质压燃与传统燃烧联合运行装置及方法

Also Published As

Publication number Publication date
CN103867322B (zh) 2019-07-05
US10648412B2 (en) 2020-05-12
US20150300280A1 (en) 2015-10-22
CN103867322A (zh) 2014-06-18
TW201425717A (zh) 2014-07-01

Similar Documents

Publication Publication Date Title
US6619242B2 (en) Combustion control apparatus for engine
CA2799952C (en) Mid-cycle fuel injection strategies
US6516774B2 (en) Premixed charge compression ignition engine with variable speed SOC control and method of operation
US9097190B2 (en) Combustion control apparatus for an internal combustion engine
EP1925802B1 (en) Quick restart HCCI internal combustion engine
WO1998010179A2 (en) Homogeneous charge compression ignition engine with optimal combustion control
US7822531B2 (en) Stratified charge gasoline direct injection systems using exhaust gas recirculation
WO2014089912A1 (zh) 分别控制各气缸燃烧要素的方法和内燃机
EP3299608A2 (en) Gasoline direct-injection compression-ignition engine for low octane fuels
WO2013159695A1 (zh) 内燃机混合燃烧控制方法及其控制器、内燃机和汽车
JP4054711B2 (ja) 可変動弁式内燃機関
US20190226419A1 (en) Hybrid combustion mode of internal combustion engine and controller thereof, internal combustion engine, and automobile
JP5002034B2 (ja) 内燃機関の燃料制御装置
JP4180995B2 (ja) 圧縮着火内燃機関の制御装置
US6910459B2 (en) HCCI engine with combustion-tailoring chamber
US20200325841A1 (en) Method and device for controlling internal combustion engine
CN111997738A (zh) 一种具有火花控制的压燃式内燃机及其控制方法
JP4102268B2 (ja) 圧縮着火内燃機関
CN111173635B (zh) 改善汽油压燃小负荷工况燃烧稳定性的控制方法及系统
US7917280B2 (en) Method and device for operating an internal combustion engine
US8251041B2 (en) Accelerated compression ignition engine for HCCI
Attard et al. The Feasibility of Downsizing a 1.25 Liter Normally Aspirated Engine to a 0.43 Liter Highly Turbocharged Engine
JP4464901B2 (ja) 圧縮着火内燃機関の制御装置
JP2000314341A (ja) 内燃機関の点火制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13862231

Country of ref document: EP

Kind code of ref document: A1