WO2014087710A1 - 試験装置 - Google Patents

試験装置 Download PDF

Info

Publication number
WO2014087710A1
WO2014087710A1 PCT/JP2013/073901 JP2013073901W WO2014087710A1 WO 2014087710 A1 WO2014087710 A1 WO 2014087710A1 JP 2013073901 W JP2013073901 W JP 2013073901W WO 2014087710 A1 WO2014087710 A1 WO 2014087710A1
Authority
WO
WIPO (PCT)
Prior art keywords
sliding floor
base plate
test apparatus
air bearing
magnetizing
Prior art date
Application number
PCT/JP2013/073901
Other languages
English (en)
French (fr)
Inventor
栄生 伊
良太郎 増山
Original Assignee
株式会社鷺宮製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社鷺宮製作所 filed Critical 株式会社鷺宮製作所
Priority to KR1020157012310A priority Critical patent/KR101726301B1/ko
Priority to ES13860648T priority patent/ES2780676T3/es
Priority to CN201380061767.9A priority patent/CN104813154B/zh
Priority to US14/647,203 priority patent/US9666093B2/en
Priority to EP13860648.8A priority patent/EP2930491B8/en
Priority to PL13860648T priority patent/PL2930491T3/pl
Priority to JP2014550949A priority patent/JP5916893B2/ja
Publication of WO2014087710A1 publication Critical patent/WO2014087710A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/04Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/022Vibration control arrangements, e.g. for generating random vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/027Specimen mounting arrangements, e.g. table head adapters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/06Multidirectional test stands
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/08Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
    • G09B9/12Motion systems for aircraft simulators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/08Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer
    • G09B9/12Motion systems for aircraft simulators
    • G09B9/14Motion systems for aircraft simulators controlled by fluid actuated piston or cylinder ram

Definitions

  • the present invention includes, for example, transportation equipment such as automobiles, motorcycles, trains, airplanes, ships, structures such as bridges, buildings, houses, and buildings, and structures to be tested such as these parts (hereinafter collectively referred to as “general names”).
  • transportation equipment such as automobiles, motorcycles, trains, airplanes, ships
  • structures such as bridges, buildings, houses, and buildings, and structures to be tested such as these parts
  • structure under test a load test performed by applying an external force
  • vibration test performed by applying vibration
  • the present invention relates to a test apparatus for performing various tests such as tests (hereinafter collectively referred to simply as “tests”).
  • a test apparatus there are an excitation test apparatus and a load test apparatus for the purpose of research and development of these structures to be tested.
  • a driving simulation device (hereinafter also simply referred to as “driving simulator”) for simulating the driving state according to the driving operation of the operator. )
  • the driving simulation device employs a 6-degree-of-freedom parallel mechanism called a so-called “Stewart platform (also called a hexapod)”, for example, and six telescopic links connected in parallel operate in cooperation. It is connected by a motion connecting mechanism that performs positioning with six degrees of freedom, and includes a platform on which a driven part such as a vehicle model is provided.
  • Step platform also called a hexapod
  • a rotational motion around each axis is added, that is, the front-rear direction, the left-right direction, the up-down direction, the roll ( It is configured to simulate the driving state according to the driving operation of the operator by reproducing the tilt motion of 6 degrees of freedom composed of six types of movements of Roll, Pitch, and Yaw. .
  • Small amplitude motion at relatively high frequencies is reproduced by the Stewart platform, and large amplitude motion at relatively low frequencies is reproduced by the planar movement mechanism.
  • Patent Document 1 Japanese Patent No. 4736592
  • Patent Document 1 Japanese Patent No. 4736592
  • a dome 108 having a vehicle model is provided on a platform 106 connected to a base 104 by a motion connecting mechanism 102 that performs positioning with six degrees of freedom. ing.
  • a plurality of X-axis direction rails 110 arranged in the X-axis direction and a pair of Y-axis direction rails 112 movable in the X-axis direction on the X-axis direction rail 110 and arranged in the Y-axis direction are provided.
  • a base 104 is arranged on the Y-axis direction rail 112 so as to be movable in the Y-axis direction.
  • a so-called “linear guide” is formed, and the dome 108 equipped with the vehicle model is configured to be movable in the XY directions.
  • Patent Document 2 Japanese Patent No. 3915122 discloses a driving simulator 200 as shown in FIG.
  • a dome 208 having a vehicle model is provided on a platform 206 connected to a base 204 by a motion connecting mechanism 202 that performs positioning with six degrees of freedom.
  • a plurality of air bearings 212 are provided on the lower surface of the base 204 so as to face the sliding surface 210.
  • the base 204 can be moved in the X-axis direction by an X-axis direction moving device including a linear guide (not shown), and a Y-axis direction moving device (not shown)
  • the base 204 is configured to be movable in the Y axis direction.
  • the above-mentioned test apparatus gives horizontal motion (displacement, velocity, acceleration) to the structure under test, and simulates the actual usage status of these structures under test and vibrations during earthquakes and transportation. , For testing its performance and durability.
  • FIG. 25 is a perspective view showing an outline of a vibration test apparatus as the conventional test apparatus 300 configured as described above.
  • the test apparatus 300 includes a gantry 302, and a plurality of X-axis direction rails 304 are provided on the upper surface of the gantry 302.
  • the X-axis direction bases 308 and 314 are connected to the X-axis direction actuator 312, guided by the X-axis direction rail 304, and movable in the X-axis direction by the operation of the X-axis direction actuator 312. It has.
  • a plurality of Y-axis direction rails 310 are provided on the upper surface of the X-axis direction base 308. Then, the Y-axis direction actuator 306 is connected to the Y-axis direction rail 310, and the Y-axis direction actuator 306 is operated to move in the Y-axis direction.
  • Y-axis direction base 314 is provided.
  • test device can be used according to the driving operation of the operator for the purpose of research and development of transportation equipment such as automobiles, motorcycles, trains, airplanes, ships, etc. and the improvement of the driving ability of those who drive the transportation equipment. It is used as a driving simulator for simulating driving conditions, vibration tests, acceleration tests, and the like, and as a component of the driving simulator.
  • the operation simulation test apparatus 100 of Patent Document 1 requires the X-axis direction rail 110 and the Y-axis direction rail 112 that are orthogonal to each other, and requires a large installation space for the apparatus. Further, the height of the apparatus increases, the mass of the platform 106 that is a movable part increases, and a large drive device is required, resulting in an increase in size.
  • the base 104 is configured to be movable in the XY direction, but the base 104 rotates (Yaw motion) around the Z axis (vertical axis). It has a structure that can not be. For this reason, since it is necessary to reproduce all the operations required when the transportation device is turning on the 6-degree-of-freedom platform of the movable part, the platform further increases in size.
  • the driving simulation test apparatus 100 of Patent Document 1 requires a large installation space and a driving device, and the cost increases. Further, it is impossible to reproduce high-frequency acceleration during the actual driving state, and it is impossible to simulate the driving state according to the actual driving operation of the operator.
  • the frequency range that can be reproduced is 1 to 3 Hz even though the mass of the platform 206 that is a movable part is large, and vibration cannot be suppressed at a high frequency, so a heavier base Is required.
  • the driving simulator 200 of Patent Document 2 requires a highly accurate slip surface as the surface of the slip surface 210, which increases the cost.
  • the conventional test apparatus 300 as shown in FIG. 25 also requires the X-axis direction rail 304 and the Y-axis direction rail 310 which are orthogonal to each other, and requires a large installation space for the apparatus.
  • the height of the device is increased, the mass of the movable part is increased, a large drive device is required and the size is increased, and high-frequency operation cannot be performed at high speed.
  • the conventional test apparatus 300 as shown in FIG. 25 is configured to move in the XY direction, but the base rotates around the Z axis (vertical axis) (Yaw motion). It has a structure that can not be.
  • the use of a linear guide has the disadvantages that noise is loud during high-speed movement and is easily worn at fine amplitudes.
  • an object of the present invention is to provide a test apparatus capable of simulating a driving state according to an actual driving operation of an operator and testing an acceleration or the like according to the actual driving state. .
  • the object of the present invention is that the platform, which is a movable part, is light in weight, has high rigidity, and can realize stable movement with a light base, and can perform simulation up to a high frequency with small power and small space.
  • the object is to provide an inexpensive and compact test apparatus.
  • the object of the present invention is that the weight of the base plate on which the structure to be tested, which is a movable part, is placed is light and rigid, and that a stable movement can be realized with a light base, which is high with small power and small space.
  • An object of the present invention is to provide an inexpensive and compact test apparatus capable of testing up to a frequency.
  • test apparatus of the present invention comprises: A test device for simulating the driving state according to the driving operation of the operator, A base plate that can be moved in the XY direction by air bearings on the sliding floor, and can be freely moved so that it can rotate around the Z axis; A platform connected by a motion connecting mechanism on the base plate and provided with a driven part; A magnetic adhesion device arranged on the lower surface of the base plate so as to face the sliding floor, and capable of changing a magnetic adhesion force on the sliding floor; In the operating state in which the air pressure of the air bearing is high, the magnetizing force on the sliding floor of the magnetizing device is strong, The non-operating state in which the air pressure of the air bearing is low is configured such that the magnetic adhesion force of the magnetic adhesion device to the sliding floor is weak.
  • a platform provided with a driven part such as a vehicle model is connected to the base plate by a motion connecting mechanism that performs positioning with six degrees of freedom.
  • the base plate is arranged so as to be freely movable so as to be able to move in the XY direction on the sliding floor by an air bearing and to rotate around the Z axis (Yaw motion).
  • the base plate floats due to the air pressure of the air bearing, and an air layer is formed between the base plate and the platform connected to the base plate by the motion connection mechanism, and the platform can move on the slide floor with a minimum frictional force.
  • the base plate is provided on the lower surface of the base plate so as to be opposed to the sliding floor, and is equipped with a magnetic adhesion device capable of changing the magnetic adhesion force to the sliding floor. It is comprised so that the magnetic adhesion force with respect to a sliding floor may be in a strong state.
  • the magnetic force (magnetizing force) by the magnetizing device and the weight of the platform are combined, so that the air bearing is preloaded in the vertical direction, and the vertical reaction force / moment is taken into account, enabling stable simulation and testing.
  • the platform is light in weight, rigid and stable with a light base, enabling simulation and testing up to high frequencies with small power and small space.
  • the state is detected by the pressure sensor and the test apparatus is stopped, but the base plate moves a certain distance until the stop due to the influence of inertia.
  • the magnetizing force of the magnetizing apparatus on the sliding floor is weak, the magnetic force does not act, the frictional force can be reduced, the wear can be reduced, and the maintenance cycle of the test apparatus can be extended.
  • the test apparatus of the present invention is A test apparatus for performing various tests by applying an external force to a structure under test,
  • a base plate provided with a structure to be tested, which can be moved in the X and Y directions by an air bearing on the sliding floor and is freely movable so as to be able to rotate around the Z axis;
  • a magnetic adhesion device arranged on the lower surface of the base plate so as to face the sliding floor, and capable of changing a magnetic adhesion force on the sliding floor;
  • the non-operating state in which the air pressure of the air bearing is low is configured such that the magnetic adhesion force of the magnetic adhesion device to the sliding floor is weak.
  • a base plate on which a structure to be tested such as a house is placed can be moved on the sliding floor in the XY direction by an air bearing and rotated around the Z axis (Yaw motion). ) It is arranged to be freely movable so that it can.
  • the base plate is provided on the lower surface of the base plate so as to be opposed to the sliding floor, and is equipped with a magnetic adhesion device capable of changing the magnetic adhesion force to the sliding floor. It is comprised so that the magnetic adhesion force with respect to a sliding floor may be in a strong state.
  • the magnetic force (magnetization force) of the magnetizing device and the weight of the base plate and the structure under test on the base plate are combined, and the air bearing is preloaded in the vertical direction. Testing is possible.
  • the weight of the base plate is light, the rigidity is high, and stable movement can be realized with a light base, and tests up to a high frequency are possible with a small power and a small space.
  • the state is detected by the pressure sensor and the test apparatus is stopped, but the base plate moves a certain distance until the stop due to the influence of inertia.
  • the magnetizing force of the magnetizing apparatus on the sliding floor is weak, the magnetic force does not act, the frictional force can be reduced, the wear can be reduced, and the maintenance cycle of the test apparatus can be extended.
  • test apparatus of the present invention is characterized in that the magnetic adhesion device is configured to be able to be separated from and connected to a sliding floor, and the strength of the magnetic adhesion force to the sliding floor is configured to be switchable.
  • test apparatus of the present invention is characterized in that the magnetizing apparatus includes a magnet member configured to be able to be separated from and attached to the sliding floor.
  • the magnetic force suitable for the test apparatus can be adjusted by adjusting the gap between the magnet member and the sliding floor.
  • the device is stopped when the air pressure of the air bearing is low, but the base plate moves a certain distance until it stops due to inertia.
  • the magnet member which is a magnetizing device, moves in a direction away from the sliding floor, so that the magnetizing force on the sliding floor becomes weak, so that the magnetic force does not act, and between the sliding floor and the magnet member Since the distance is separated, the frictional force can be reduced, the wear can be reduced, and the maintenance cycle of the test apparatus can be extended.
  • test apparatus of the present invention is characterized in that the magnet member is composed of a permanent magnet.
  • the magnet member is composed of a permanent magnet
  • an inexpensive permanent magnet can be used as the magnet member of the magnetizing apparatus, and the cost can be reduced.
  • no power is required to generate a magnetic force, energy consumption is reduced.
  • the magnetizing apparatus can include a magnet member composed of an electromagnet.
  • the magnitude of the magnetic force can be changed by changing the magnitude of the current to the electromagnet, and the control becomes easy.
  • the magnet member is composed of a plurality of magnet members, and these magnet members are arranged so that the directions of the poles are perpendicular to each other. .
  • the magnet members are arranged so that the directions of the poles are perpendicular to each other, the resistance due to the eddy current in each movement direction (XY direction, Yaw rotation) can be made the same. Accurate, simulation and testing can be carried out.
  • a plurality of air bearings are provided on the lower surface of the base plate via a spherical seat, A plurality of magnetizing devices are provided corresponding to the plurality of air bearings.
  • the entire base plate is even, and the air pressure of the air bearing causes the base plate to float and create an air layer between it and the sliding floor.
  • the platform connected to the base plate by the motion connecting mechanism can move on the sliding floor with a minimum frictional force.
  • the preload state in the vertical direction of the air bearing in which the magnetic force (magnetizing force) by the magnetizing device and the weight of the platform are combined It becomes uniform over the entire base plate and handles reaction forces and moments in the vertical direction, enabling more stable simulations and tests.
  • test apparatus is characterized in that a friction reducing process is performed on at least one of the surface of the air bearing facing the sliding floor or the upper surface of the sliding floor.
  • polytetrafluoroethylene resin PTFE
  • tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin PFA
  • tetrafluoroethylene-hexafluoropropylene copolymer resin FEP
  • polychlorotriethylene Fluoroethylene copolymer resin tetrafluoroethylene-ethylene copolymer resin, chlorotrifluoroethylene-ethylene copolymer resin
  • polyvinylidene fluoride resin polyvinyl fluoride resin
  • tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl Paste a sheet made of fluorine resin such as “vinyl ether copolymer resin”, polyimide resin (PI), polyamide 6 resin (PA6), polyamideimide resin (PAI), peak resin (PEEK), etc.
  • PI polyimide resin
  • PA6 polyamide 6 resin
  • PAI polyamideimide resin
  • PEEK peak resin
  • a platform provided with a driven part such as a vehicle model is connected to the base plate by, for example, a motion connecting mechanism that performs positioning with six degrees of freedom.
  • the base plate is arranged to be freely movable so that it can be moved in the XY direction and rotated around the Z axis (Yaw motion) by an air bearing connected via a spherical seat on the sliding floor. ing.
  • the base plate floats due to the air pressure of the air bearing, and an air layer is formed between the base plate and the platform connected to the base plate by the motion connection mechanism, and the platform can move on the slide floor with a minimum frictional force.
  • the base plate is provided on the lower surface of the base plate so as to be opposed to the sliding floor, and is equipped with a magnetic adhesion device capable of changing the magnetic adhesion force to the sliding floor. It is comprised so that the magnetic adhesion force with respect to a sliding floor may be in a strong state.
  • the magnetic force (magnetizing force) by the magnetizing device and the weight of the platform are combined, so that the air bearing is preloaded in the vertical direction, and the vertical reaction force / moment is taken into account, enabling stable simulation and testing.
  • the platform is light in weight, rigid and stable with a light base, enabling simulation and testing up to high frequencies with small power and small space.
  • a base plate on which a structure to be tested such as a house is placed can move in the XY direction on a sliding floor by an air bearing and can rotate (Yaw motion) around the Z axis. It is arranged so that it can move freely.
  • the base plate is provided on the lower surface of the base plate so as to be opposed to the sliding floor, and is equipped with a magnetic adhesion device capable of changing the magnetic adhesion force to the sliding floor. It is comprised so that the magnetic adhesion force with respect to a sliding floor may be in a strong state.
  • the magnetic force (magnetization force) by the magnetizing device, the base plate weight, and the weight of the structure under test on the base plate are combined to create a preload state in the up and down direction of the air bearing. A stable test is possible.
  • the weight of the base plate is light, the rigidity is high, and stable movement can be realized with a light base, and tests up to a high frequency are possible with a small power and a small space.
  • the device is stopped when the air pressure of the air bearing is low, but the base plate moves by a certain distance until it stops due to the influence of inertia.
  • the magnetizing force of the magnetizing apparatus on the sliding floor is weak, the magnetic force does not act, the frictional force can be reduced, the wear can be reduced, and the maintenance cycle of the test apparatus can be extended.
  • FIG. 1 is a top view of a test apparatus to which the test apparatus of the present invention is applied as a simulation apparatus.
  • FIG. 2 is a partially enlarged view of FIG.
  • FIG. 3 is a front view seen from the direction A of FIG.
  • FIG. 4 is a view obtained by rotating the side view of FIG. 1 viewed from the direction B to the right by 90 degrees.
  • FIG. 5 is a top view of the base plate portion of FIG.
  • FIG. 6 is a top view in which a part of the motion coupling mechanism of the base plate portion is omitted in FIG.
  • FIG. 7 is a view obtained by rotating the rear view of FIG. 6 right by 180 degrees.
  • FIG. 8 is a view obtained by rotating the side view in the C direction of FIG. 6 to the right by 90 degrees.
  • FIG. 1 is a top view of a test apparatus to which the test apparatus of the present invention is applied as a simulation apparatus.
  • FIG. 2 is a partially enlarged view of FIG.
  • FIG. 3 is
  • FIG. 9 is an enlarged view of an operating state in which the air pressure of the air bearing and the magnetic bonding apparatus in FIG. 7 is high.
  • FIG. 10 is an enlarged view of a non-actuated state in which the air pressure of the air bearing and the air bearing unit in FIG. 7 is low.
  • FIG. 11 is a top view of a portion of the air bearing and magnetizing apparatus of FIG.
  • FIG. 12 is a top view illustrating a state in which the base plate rotates on the sliding floor in the XY direction and around the Z axis.
  • FIG. 13 is a top view for explaining a state in which the base plate rotates on the sliding floor around the Z axis in the XY direction.
  • FIG. 14 is a top view for explaining a state in which the base plate rotates on the sliding floor around the Z axis in the XY direction.
  • FIG. 15 is a top view for explaining a state in which the base plate rotates on the sliding floor in the XY direction and around the Z axis.
  • FIG. 16 is a top view for explaining a state in which the base plate rotates on the sliding floor in the XY direction and around the Z axis.
  • FIG. 17 is a top view similar to FIG. 1 of a test apparatus according to another embodiment of the present invention.
  • FIG. 18 is a top view similar to FIG. 2 of a test apparatus according to still another embodiment of the present invention.
  • 19 is a front view similar to FIG. 3 in the direction D of FIG. FIG.
  • FIG. 20 is a front view similar to FIG. 19 of a test apparatus according to yet another embodiment of the present invention.
  • FIG. 21 is a front view similar to FIG. 19 of a test apparatus according to yet another embodiment of the present invention.
  • FIG. 22 is a schematic view taken along line FF in FIG.
  • FIG. 23 is a perspective view of a conventional driving simulation test apparatus 100.
  • FIG. 24 is a partially enlarged side view of a conventional driving simulator 200.
  • FIG. 25 is a perspective view showing an outline of a vibration test apparatus as a conventional test apparatus 300.
  • FIG. 1 is a top view of a test apparatus to which the test apparatus of the present invention is applied as a simulation apparatus
  • FIG. 2 is a partially enlarged view of FIG. 1
  • FIG. 3 is a front view as viewed from the direction A in FIG. 1 is a diagram in which the side view viewed from the direction B in FIG. 1 is rotated 90 degrees to the right
  • FIG. 5 is a top view of the base plate portion in FIG. 1
  • FIG. 7 is a diagram obtained by rotating the rear view of FIG. 6 to the right by 180 degrees
  • FIG. 8 is a diagram in which the side view in the direction C of FIG. 6 is rotated by 90 degrees to the right
  • FIG. 10 is an enlarged view of an operating state in which the air pressure of the air bearing and the magnetizing apparatus is high, and FIG. 10 is a non-operating state in which the air pressure of the air bearing and the magnetizing apparatus is low in FIG.
  • FIG. 11 is an enlarged view
  • FIG. 11 is a top view of the air bearing and magnetizing apparatus portion of FIG. 2 to 16
  • the base plate is slid on the floor
  • X-Y-direction is a top view illustrating a state of rotational movement about the Z axis.
  • reference numeral 10 indicates a test apparatus to which the test apparatus of the present invention is applied as a simulation apparatus as a whole.
  • test apparatus 10 of this embodiment as shown in FIG. 1, an embodiment applied to a test apparatus for simulating a driving state according to the driving operation of an operator is shown.
  • an automobile is illustrated as an example of a vehicle device.
  • a screen or the like is provided around the test apparatus 10 as necessary, and the driving state is visually simulated according to the driving operation of the operator S. It is configured to be able to. Therefore, for example, when only a test such as an acceleration test is performed, such a screen may not be provided.
  • the test apparatus 10 of the present invention includes a sliding floor 12, and the upper surface of the sliding floor 12 can move in the XY direction, as will be described later.
  • a substantially triangular base plate 14 is disposed in a top view so as to be freely movable so that it can rotate around the Z axis (Yaw motion).
  • the base plate 14 is provided with a motion connecting mechanism 16, and the motion connecting mechanism 16 connects a platform 18 constituting a substantially triangular movable part in a top view. Yes.
  • the platform 18 is constituted by a so-called truss-structured pipe for weight reduction.
  • the motion connecting mechanism 16 employs a 6-degree-of-freedom parallel mechanism called “Stewart platform (also called a hexapod)”, and is connected in parallel.
  • Step platform also called a hexapod
  • the six links 16a to 16f that expand and contract are formed.
  • the platform 18 can move in the X, Y, and Z directions, and around the X axis (Roll) and Y It is configured to be freely movable so that it can rotate around the axis (Pitch) and around the Z axis (Yaw motion).
  • each of the links 16a to 16f has a structure in which the piston / cylinder mechanism is operated to expand and contract by operating electric or hydraulic (the figure shows an example of electricity) driving devices 20a to 20f. Further, as shown in FIG. 7, the lower ends of these links 16a to 16f are respectively connected to brackets 24a to 24f formed at three corners of the base plate 14 via pivot shafts 22a to 22f. It is linked movably.
  • a driven part that constitutes a transportation device such as a cockpit, a half car model, etc., in this embodiment, a vehicle of an automobile 30 is provided. Except for FIGS. 3 to 4, the driven part (vehicle) 30 is omitted for convenience of explanation.
  • a plurality of air bearing units 32 are provided on the lower surface of the base plate 14 so as to face the upper surface of the sliding floor 12, that is, in this embodiment. Then, as shown in FIGS. 5 to 6, the base plate 14 is formed at three corners.
  • the air bearing unit 32 is arranged on the lower surface of the base plate 14 so as to be opposed to the upper surface of the sliding floor 12 and spaced apart by a predetermined distance.
  • a single air bearing 34 is provided.
  • Each of these air bearings 34 is mounted on a spherical seat 36 fixed to the lower surface of the base plate 14 so as to be freely rotatable by a mounting portion 38. Absorbs errors in the surface accuracy of the sliding floor 12 and the parallelism of the mounting portion.
  • a magnetizing device 40 capable of changing the magnetizing force on the sliding floor is provided on the lower surface of the base plate 14 and on the upper surface of the sliding floor 12. It arrange
  • the magnetic adhesion apparatus 40 includes a piston cylinder mechanism 42, and a base plate 46 is fixed to the lower end of the piston 44 of the piston cylinder mechanism 42.
  • a magnet member 48 made of, for example, a permanent magnet is disposed on the lower surface of the base plate 46.
  • the magnet member 48 is comprised from a permanent magnet in this way, an inexpensive permanent magnet can be used as the magnet member 48 of the magnetizing apparatus 40, cost can be reduced, and power can be reduced. It is not necessary and energy saving effect can be expected.
  • spring members 45 are interposed between the base plate 46 and the flanges 41a at the base end portions of the four guide members 41 provided around the piston 44, respectively.
  • the air bearing unit 32 configured in this manner is not shown in an operation state in which the air pressure of the air bearing 34 is high, the base plate 14 is floated by the air pressure of the air bearing 34, and the air between the upper surface of the sliding floor 12 Layers can be made.
  • the platform 18 connected to the base plate 14 by the motion connecting mechanism 16 can move on the upper surface of the sliding floor 12 with a minimum frictional force.
  • the preload state becomes uniform over the entire base plate 14 and takes up reaction forces and moments in the vertical direction, enabling more stable simulation and testing.
  • the air bearing unit 32 is configured so that the magnetizing force of the magnetizing device 40 on the sliding floor 12 is strong when the air pressure of the air bearing 34 is high.
  • the base plate 46 fixed to the lower end of the piston 44 moves downward toward the upper surface of the sliding floor 12.
  • the distance between the magnet member 48 disposed on the lower surface of the base plate 46 and the upper surface of the sliding floor 12 becomes closer, and the magnetic adhesion force of the magnetic deposition apparatus 40 to the sliding floor 12 becomes strong.
  • the load capacity in the vertical direction of the platform 18 can be increased by preloading with the air bearing 34 and the magnetizing device 40.
  • the magnetic force (magnetization force) by the magnetizing device 40 and the weight of the platform 18 are combined, and the air bearing 34 is preloaded in the vertical direction, and is responsible for the vertical reaction force / moment, enabling stable simulation and testing. It becomes.
  • the weight of the platform 18 is light, the rigidity is high, and a stable motion can be realized with a light base, and simulation up to a high frequency is possible with a small power and a small space.
  • the number of air bearings 34, the number of magnetizing devices 40, the arrangement position on the base plate 14 and the like are not particularly limited and can be changed as appropriate.
  • the air bearing unit 32 is configured such that when the air pressure of the air bearing 34 is low and in an inoperative state, the magnetizing force of the magnetizing apparatus 40 on the sliding floor 12 is weak.
  • the base plate 46 fixed to the lower end of the piston 44 moves upward in a direction away from the upper surface of the sliding floor 12.
  • the distance between the magnet member 48 arranged on the lower surface of the base plate 46 and the upper surface of the sliding floor 12 is increased, and the magnetic adhesion force of the magnetic deposition apparatus 40 to the sliding floor 12 is weakened.
  • the pressure sensor detects the state and the test apparatus 10 is stopped. However, due to inertia, the base plate 14 moves a certain distance until the stop. Become.
  • the magnetizing force of the magnetizing apparatus 40 on the sliding floor 12 is weak, that is, in this embodiment, the distance between the magnet member 48 arranged on the lower surface of the base plate 46 and the upper surface of the sliding floor 12 is as follows.
  • the magnetic force does not act, the friction force between the magnet member 48 and the upper surface of the sliding floor 12 can be reduced, the wear can be reduced, and the maintenance cycle of the test apparatus 10 can be lengthened.
  • the friction reduction process may be performed on at least one surface of the surface facing the sliding floor 12 of the air bearing 34 or the upper surface of the sliding floor 12.
  • FIG. 7 shows a state where the friction reduction process 11 is performed on the upper surface of the sliding floor 12.
  • polytetrafluoroethylene resin PTFE
  • tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin PFA
  • tetrafluoroethylene-hexafluoropropylene copolymer resin FEP
  • polychlorotriethylene Fluoroethylene copolymer resin tetrafluoroethylene-ethylene copolymer resin, chlorotrifluoroethylene-ethylene copolymer resin
  • polyvinylidene fluoride resin polyvinyl fluoride resin
  • tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl Paste a sheet made of fluorine resin such as “vinyl ether copolymer resin”, polyimide resin (PI), polyamide 6 resin (PA6), polyamideimide resin (PAI), peak resin (PEEK), etc.
  • PI polyimide resin
  • PA6 polyamide 6 resin
  • PAI polyamideimide resin
  • PEEK peak resin
  • the air bearing 34 can be prevented from being damaged even if the air bearing 34 and the upper surface of the sliding floor 12 are slightly in contact with each other. Since the accuracy of the surface of the upper surface of the floor 12 can be somewhat lowered, the cost can be reduced.
  • the magnet member 48 arranged on the lower surface of the base plate 46 of the magnetizing apparatus 40 includes a plurality of magnet members 48, and these magnet members 48 are You may arrange
  • the magnet members 48 are arranged so that the directions of the poles are perpendicular to each other, the resistance due to the eddy current in each motion direction (XY direction, Yaw rotation) can be made the same. And perform accurate simulations and tests.
  • the base plate 14 can be freely moved so that the upper surface of the sliding floor 12 can be moved in the XY direction and can be rotated around the Z axis (Yaw motion).
  • An enabling moving mechanism 50 is connected.
  • the moving mechanism 50 includes moving drive devices 52a, 52b composed of three piston cylinder mechanisms arranged so that the center angle ⁇ is separated from each other by an angle of 120 °. 52c.
  • Each of these movement drive devices 52a, 52b, 52c has three fixed brackets 54a, the base ends of which are fixed to the upper surface of the sliding floor 12 so that the center angle ⁇ is separated from each other by an angle of 120 °.
  • 54b and 54c are pivotally connected by pivots 56a, 56b and 56c.
  • the movement driving devices 52a, 52b, and 52c have the tips of the pistons 58a, 58b, and 58c in the state shown in FIG. 1, that is, in a top view, as shown by the dotted lines in FIG. Are provided on the base plate 14 so that the center angles ⁇ form 120 ° to each other along the circular circle C when they are substantially at the center position on the upper surface of the sliding floor 12 (in the initial position state).
  • the three fixed brackets 60a, 60b, and 60c are rotatably connected by pivots 62a, 62b, and 62c.
  • extension lines at the ends of the pistons 58a, 58b, and 58c are substantially the same as the upper surface of the sliding floor 12 in the state of FIG.
  • the pistons 58a, 58b, 58c are provided so as to be in contact with the circular circle C or at an angle close to that in contact with the circular circle C when in the center position (when in the initial position state).
  • movement drive devices 52a, 52b, and 52c are respectively provided with electric or hydraulic (the figure shows an example of electricity) drive devices 64a, 64b, and 64c for operating the piston / cylinder mechanism at their base end portions. ing.
  • the moving mechanism 50 configured as described above is controlled by a control device (not shown) according to the driving operation of the operator S, and the base plate 14 is operated by the air pressure of the air bearing 34 in an operating state where the air pressure of the air bearing 34 is high. Floats and an air layer is formed between the upper surface of the sliding floor 12 and the magnetic adhesion force of the magnetic deposition apparatus 40 to the sliding floor 12 becomes strong, resulting in a preload state.
  • the base plate 14 can move in the XY direction from the state where the base plate 14 shown in FIG. It is configured to be freely movable so that it can rotate around the axis (Yaw motion).
  • the pistons 58a, 58b, and 58c are in contact with the circular circle C in the state shown in FIG. 1, that is, when the base plate 14 is substantially at the center position on the upper surface of the sliding floor 12 in the top view. Or, it is provided so as to have an angle close to the state in contact with the circular circle C, so that the necessary speed and acceleration of the vibrator are reduced when rotating around the Z axis (Yaw motion). Can do.
  • the extension lines at the tips of the pistons 58a, 58b, and 58c are in the state shown in FIG.
  • the pistons 58a, 58b, 58c are provided so as to be in contact with the circular circle C or at an angle close to the state of contact with the circular circle C when the pistons 58a, 58b, 58c are in the initial position state.
  • the extension line of the tip of the base plate 14 is shifted from the center O of the base plate 14.
  • the base plate 14 when the base plate 14 is moved from the state shown in FIG. 1, that is, from the state where the base plate 14 is substantially at the center position on the upper surface of the sliding floor 12 (the state where the base plate 14 is in the initial position state), the base plate 14 is moved with necessary torque. Can do.
  • the distance between the axis of the piston cylinder mechanism of the movement drive devices 52a, 52b, and 52c, which are actuators, and the rotation center can be increased, and the operation range of the movement drive devices 52a, 52b, and 52c is maximized.
  • the movement drive devices 52a, 52b and 52c which are actuators are arranged.
  • the space required for mounting the moving drive devices 52a, 52b, and 52c, which are actuators, is reduced, and the test apparatus 10 can be downsized.
  • the piston cylinder mechanism of the movement drive devices 52a, 52b, 52c which are actuators, is installed on the base plate 14 to prevent interference generated in the movement drive devices 52a, 52b, 52c with a limit switch. You can also
  • FIG. 17 is a top view similar to FIG. 1 of a test apparatus according to another embodiment of the present invention.
  • the test apparatus 10 of this embodiment has basically the same configuration as that of the test apparatus 10 shown in the first embodiment, and the same reference numerals are given to the same components, and a detailed description thereof will be given. Omitted.
  • the base plate 14 is substantially at the center of the upper surface of the sliding floor 12 in the state of FIG.
  • the movement drive devices 52a, 52b, 52c have their base ends spaced apart from each other at an angle of 120 ° with respect to the upper surface of the sliding floor 12 along the large circular circle D.
  • the three fixed brackets 54a, 54b, and 54c fixed in this manner are rotatably connected by pivots 56a, 56b, and 56c.
  • the extension lines of the tips of the pistons 58a, 58b, 58c are in the state of FIG. 17, as shown by the one-dot chain line D of FIG.
  • the extension lines at the tips of the pistons 58 a, 58 b, 58 c are arranged at positions toward the center O of the base plate 14 when they are substantially at the center position on the upper surface of the sliding floor 12 (when in the initial position state).
  • the tips of the pistons 58a, 58b, and 58c are arranged at the three corners of the base plate 14, respectively.
  • the angle and speed range in the Yaw direction are small, the torque in the Yaw direction is small, the acceleration range is small, and particularly in the initial position, Since no torque is generated, movement in the Yaw direction is not possible.
  • the required space is large, there is no interference between the movement drive devices 52a, 52b, 52c, which are actuators, and the base plate 14, and it can be used for movement in two directions of X and Y.
  • the base plate 14 is moved in the Yaw direction from the state shown in FIG. When doing this, torque is required.
  • the movement in the XY direction can be performed as compared with the test apparatus 10 of Example 1, but the movement in the Yaw direction is limited. In particular, in the initial position, no torque in the Yaw direction is generated. The movement is only in the direction.
  • FIG. 18 is a top view similar to FIG. 2 of a test apparatus of still another embodiment of the present invention
  • FIG. 19 is a front view similar to FIG. 3 in the direction D of FIG.
  • the test apparatus 10 of this embodiment has basically the same configuration as that of the test apparatus 10 shown in the first embodiment, and the same reference numerals are given to the same components, and a detailed description thereof will be given. Omitted.
  • the test apparatus 10 of the first embodiment includes the motion connecting mechanism 16 on the base plate 14 as shown in FIGS.
  • the mechanism 16 connects a platform 18 that forms a substantially triangular movable part in a top view.
  • a structure to be tested E such as a house is placed on the base plate 14 that functions as a vibration table.
  • the base plate 14 that functions as a vibration table.
  • it is provided to be fixed by a conventionally known appropriate fixing means, and the motion connecting mechanism 16 is not provided.
  • the base plate 14 is a substantially triangular base plate 14 in a top view.
  • the base plate 14 is a substantially rectangular base plate 14 as shown in FIG.
  • the moving mechanism 50 includes three moving mechanisms arranged so that the center angle ⁇ is separated from each other by an angle of 120 °. It is comprised from the movement drive apparatus 52a, 52b, 52c comprised from a piston cylinder mechanism.
  • the movement drive devices 52a and 52b are arranged so that the piston cylinder mechanism expands and contracts in the X-axis direction. .
  • the movement drive devices 52a and 52b are connected to one end face 14a in the X-axis direction so as to be separated from each other in the Y-axis direction. Further, the movement drive device 52c is connected to one end face 14b in the Y-axis direction.
  • the lower surface of the base plate 14 is in relation to the upper surface of the sliding floor 12 as shown in FIGS.
  • a plurality of air bearing units 32 are provided so as to face each other, and are formed at three corners of the base plate 14.
  • a plurality of air bearing units 32 are provided on the lower surface of the base plate 14 so as to face the upper surface of the sliding floor 12. And formed at four corners of the base plate 14.
  • the air bearing units 32 may be provided at three or more locations, and the number is not limited at all.
  • the moving mechanism 50 is applied as a test apparatus capable of performing a vibration test in the X-axis, Y-axis, and Z-axis rotation directions on the horizontal plane.
  • a test apparatus capable of performing a vibration test in the X-axis, Y-axis, and Z-axis rotation directions on the horizontal plane.
  • it can be used for an on-ground vibration test of an earthquake, an earthquake resistance test of a structure under test E, and a life performance test.
  • the conventional horizontal biaxial vibration test apparatus requires two layers of linear guides, requires a large actuator, and at the same time, is not applicable to high frequency and small amplitude due to fretting wear of the linear guides. There is.
  • the combined use of the magnetic force (magnetizing force) by the air bearing 34 and the magnetizing device 40 reduces the frictional force and makes the base plate 14 that is a vibration table light. For this reason, the capacity
  • FIG. 20 is a front view similar to FIG. 19 of a test apparatus of still another embodiment of the present invention.
  • the test apparatus 10 of this embodiment has basically the same configuration as that of the test apparatus 10 shown in the third embodiment, and the same reference numerals are given to the same components, and the detailed description thereof will be given. Omitted.
  • test apparatus 10 of the above-described third embodiment a structure to be tested E such as a house is placed on the base plate 14.
  • a cockpit 70 of a vehicle such as an automobile is placed as the structure E to be tested.
  • the test apparatus 10 of this embodiment is applied as a three-degree-of-freedom vehicle simulation apparatus that can move in the X-axis direction and the Y-axis direction and rotate (Yaw motion) around the Z-axis (vertical axis). be able to.
  • FIG. 21 is a front view similar to FIG. 19 of a test apparatus of still another embodiment of the present invention
  • FIG. 22 is a schematic view taken along line FF of FIG.
  • the test apparatus 10 of this embodiment has basically the same configuration as that of the test apparatus 10 shown in the third embodiment, and the same reference numerals are given to the same components, and the detailed description thereof will be given. Omitted.
  • a plurality of air bearing units 32 are provided on the lower surface of the base plate 14 so as to face the upper surface of the sliding floor 12.
  • the base plate 14 is formed at four corners.
  • the magnetizing apparatus 40 is disposed between the two air bearings 34 in the air bearing unit 32 on the lower surface of the base plate 14. Are arranged on the lower surface of the base plate 14 so as to face the upper surface of the sliding floor 12.
  • two magnetizing apparatuses 40 are arranged on the lower surface of the base plate 14 so as to be separated from each other on the central axis G.
  • the sliding floor 12 is disposed so as to face the upper surface.
  • three air bearings 34 are separated from each other at a central angle 120 in the lower right corner, as shown in FIG. Arranged in an arc.
  • the number, arrangement position, and shape of the air bearing 34 and the arrangement position of the magnetizing apparatus 40 are appropriately combined depending on the shape of the base plate 14 and the structure E to be tested.
  • the selection is not particularly limited.
  • the present invention is not limited to this, and in the above-described embodiment, as the motion coupling mechanism 16, a so-called “Stewart platform (also referred to as a hexapod)” is used. Although a 6-degree-of-freedom parallel mechanism called “is employed, other motion coupling mechanisms 16 may be employed.
  • Step platform also referred to as a hexapod
  • 6-degree-of-freedom parallel mechanism is employed, other motion coupling mechanisms 16 may be employed.
  • the magnetic attachment apparatus 40 is provided with the magnet member 48 comprised from an electromagnet. May be.
  • the magnetizing apparatus 40 is composed of an electromagnet
  • the magnitude of the magnetic force can be changed by changing the magnitude of the current to the electromagnet, and control is easy. Become.
  • the piston / cylinder mechanism is used as the movement drive devices 52a, 52b, and 52c, which are actuators, but other actuators may be used.
  • test apparatus 10 of the present invention is a test apparatus, for example, for machine parts such as automobile parts (such as drive parts, undercarriage metal parts, rubber parts, shock absorbers, etc.), and finished products such as finished automobiles.
  • machine parts such as automobile parts (such as drive parts, undercarriage metal parts, rubber parts, shock absorbers, etc.)
  • finished products such as finished automobiles.
  • civil engineering-related structures such as bridge girders, bridges and seismic isolation rubber for buildings
  • material testing equipment, vibration testing equipment, etc. for conducting material tests, vibration tests, fatigue tests, property tests, etc.
  • the present invention can be applied to various test apparatuses such as a fatigue test apparatus and an operation simulation apparatus.
  • the test apparatus 10 of the present invention is configured by a combination of one base plate 14 and the moving mechanism 50.
  • a combination of a plurality of combinations of the one base plate 14 and the moving mechanism 50 is 1
  • two test devices 10 In this case, different types of structures to be tested or the same type of structures to be tested are provided on the plurality of base plates 14, or one structure to be tested is provided on the plurality of base plates 14.
  • Various modifications can be made without departing from the object of the present invention.
  • the present invention applies external force to, for example, transportation equipment such as automobiles, motorcycles, trains, airplanes, ships, structures such as bridges, buildings, houses, buildings, and structures under test such as these parts. It can be applied to test equipment for performing various tests such as loading tests performed in addition, vibration tests performed by applying vibration, and simulation tests such as driving conditions according to the driving operation of the operator. .
  • Test apparatus 12 Sliding floor 14 Base plate 14a, 14b End surface 16 Motion coupling mechanism 16a-16f Link 18 Platform 20a-20f Drive apparatus 22a-22f Pivot shaft 24a-24f Bracket 26a-26f Pivot shaft 28a-28f Support part 30 Vehicle (covered) Driving department) 32 Air bearing unit 34 Air bearing 36 Spherical seat 38 Mounting portion 40 Magnetic attachment device 41 Guide member 41a Flange 42 Piston cylinder mechanism 44 Piston 45 Spring member 46 Base plate 48 Magnet member 50 Moving mechanisms 52a to 52c Moving drive devices 54a to 54c Fixed Brackets 56a to 56c Pivots 58a to 58c Pistons 60a to 60c Fixed brackets 62a to 62c Pivots 64a to 64c Drive device 70 Cockpit 100 Operation simulation test device 102 Motion coupling mechanism 104 Base 106 Platform 108 Dome 110 X axis direction rail 112 Y axis direction rail 200 Driving simulator 202 Motion coupling mechanism 204 Base 206 Platform 206 Platform

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

(課題)プラットフォームの重量が軽く、剛性が高く、しかも、軽いベースで安定した運動を実現でき、小さい動力と少ないスペースで、高い周波数までのシミュレーションや試験が可能な試験装置を提供する。 (解決手段)ベースプレート14上に、運動連結機構16によって連結され、被運転部30が設けられたプラットフォーム18と、ベースプレート14の下面にすべり床12に対して対峙するように配置され、すべり床12に対する磁着力を変更可能な磁着装置40とを備え、エアベアリング34のエア圧力が高い作動状態では、磁着装置40のすべり床12に対する磁着力が強い状態となり、エアベアリング34のエア圧力が低い非作動状態では、40のすべり床12に対する磁着力が弱い状態となるように構成されている。

Description

試験装置
 本発明は、例えば、自動車・バイク・電車・航空機・船舶などの運輸機器や、橋梁・ビル・住宅・建築物などの構造物や、これらの部品などの被試験構造物(以下、これらを総称して、単に「被試験構造物」と言う)に対して、外力を付加して行う載荷試験や、振動を与えて行う加振試験や、操作者の運転操作に応じた運転状態などのシミュレーション試験などの各種の試験(以下、これらを総称して、単に「試験」と言う)を行うための試験装置に関する。
 従来、このような試験装置としては、これらの被試験構造物の研究開発を目的とする加振試験装置や載荷試験装置がある。また、運輸機器の研究開発や、運転者の運転能力の向上などを目的として、操作者の運転操作に応じた運転状態などをシミュレーションするための運転シミュレーション装置(以下、単に「運転シミュレータ」とも言う)がある。
 このような試験装置のうち、運転シミュレーション装置を例に説明する。運転シミュレーション装置は、例えば、いわゆる「スチュワート・プラットフォーム(ヘキサポッドとも呼ばれる)」と呼ばれる6自由度パラレルメカニズムを採用し、並列に連結された6本の伸縮するリンクが協調して動作することにより、6自由度の位置決めを行う運動連結機構によって連結され、車両モデルなどの被運転部が設けられたプラットフォームを備えている。
 また、このようなパラレル6自由度プラットフォームは、運動可能範囲が限られるため、運輸機器の前進方向・横方向・旋回において比較的低い周波数で大振幅の動作を再現するため、平面上(X,Y,Yaw方向)に移動できる機構の上に設置されるケースがある。
 これにより、操作者の運転操作に応じて、X、Y、Zの3方向の並進運動の他に、各軸回りの回転運動を加えた、すなわち、前後方向、左右方向、上下方向、ロール(Roll)、ピッチ(Pitch)、ヨー(Yaw)の6種類の動きからなる6自由度のチルト運動を再現することによって、操作者の運転操作に応じて運転状態をシミュレーションするように構成されている。
 比較的高い周波数で小振幅の動作は、スチュワート・プラットフォームにより再現され、比較的低い周波数で大振幅の動作は、平面移動機構により再現される。
 このように構成される従来の運転シミュレーション装置として、例えば、特許文献1(特許第4736592号公報)に開示される運転模擬試験装置が提案されている。
 この運転模擬試験装置100では、図23に示したように、6自由度の位置決めを行う運動連結機構102によって、ベース104に連結されたプラットフォーム106上に、車両モデルを備えたドーム108が設けられている。
 そして、X軸方向に配置された複数のX軸方向レール110と、X軸方向レール110上をX軸方向に移動可能で、Y軸方向に配置された一対のY軸方向レール112とを備えている。このY軸方向レール112上を、Y軸方向に移動可能にベース104が配置されている。
 これによって、いわゆる「リニアガイド」(Linear Guide)を構成しており、車両モデルを備えたドーム108が、X-Y方向に移動できるように構成されている。
 また、特許文献2(特許第3915122号公報)には、図24に示したように、運転シミュレータ200が開示されている。
 この運転シミュレータ200では、図24に示したように、6自由度の位置決めを行う運動連結機構202によってベース204に連結されたプラットフォーム206上に、車両モデルを備えたドーム208が設けられている。そして、ベース204の下面に、すべり面210に対峙するように、複数のエアベアリング212が設けられている。
 さらに、特許文献2の運転シミュレータ200では、図24には、図示しないリニアガイドからなるX軸方向移動装置によって、ベース204が、X軸方向に移動できるとともに、図示しないY軸方向移動装置によって、ベース204が、Y軸方向に移動できるように構成されている。
 一方、前述した試験装置は、被試験構造物に水平方向の運動(変位、速度、加速度)を与え、これら被試験構造物の実際の使用状況や、地震時、輸送時などの振動を模擬し、その性能や耐久性を試験するためのものである。
 このため、このような試験装置では、上下方向(Z軸方向)の動きを拘束するため、リニアガイドを使用することが一般的である。図25は、このように構成される従来の試験装置300として、振動試験装置の概略を示す斜視図である。
 すなわち、この試験装置300は、架台302を備えており、この架台302の上面には、複数のX軸方向レール304が設けられている。そして、X軸方向アクチュエータ312に連結されるとともに、このX軸方向レール304に案内されて、X軸方向アクチュエータ312の作動により、X軸方向に移動可能に構成されたX軸方向ベース308および314を備えている。
 また、X軸方向ベース308上面には、複数のY軸方向レール310が設けられている。そして、Y軸方向アクチュエータ306に連結されるとともに、このY軸方向レール310に案内されて、Y軸方向アクチュエータ306の作動により、Y軸方向に移動可能に構成され、被試験構造物を載置するY軸方向ベース314を備えている。
 このように従来の試験装置300では、X軸方向とY軸方向の両方向への移動を可能にするため、図25に示したように、リニアガイドを2層に構成することが必要である。
 また、このような試験装置は、自動車・バイク・電車・航空機・船舶などの運輸機器の研究開発や、運輸機器を運転する者の運転能力向上などを目的として、操作者の運転操作に応じた運転状態、加振試験、加速度試験などを模擬する運転シミュレータや、運転シミュレータの構成部として使用される。
特許第4736592号公報 特許第3915122号公報
 しかしながら、特許文献1の運転模擬試験装置100では、相互に直交するX軸方向レール110とY軸方向レール112が必要であり、装置の設置スペースが大きく必要である。また、装置の高さが高くなり、可動部であるプラットフォーム106の質量が大きくなり、大きな駆動装置が必要となって大型化してしまうことになる。
 また、特許文献1の運転模擬試験装置100では、ベース104がX-Y方向に移動できるように構成されているが、ベース104がZ軸(上下軸)の周りに回転(Yaw運動)することができない構造となっている。
 このため、運輸機器が旋回時必要な動作は、すべて可動部の6自由度プラットフォームで再現させる必要性があるため、プラットフォームがさらに大型化する。
 従って、特許文献1の運転模擬試験装置100では、大きな設置スペースと駆動装置が必要で、コストが高くなる。また、実際の運転状態時の高い周波数の加速度の再現ができず、操作者の実際の運転操作に応じた運転状態をシミュレーションすることもできないことになる。
 一方、特許文献2の運転シミュレータ200では、6自由度プラットフォームはエアベアリング212により支持され、上下方向が拘束されないので、振動を抑えるため、重たいベース204が必要であり、特許文献1の運転模擬試験装置100と同様に、装置の設置スペースが大きく必要である。また、装置の高さが高くなり、可動部であるプラットフォーム206の質量が大きくなり、大きな駆動装置が必要となって大型化してしまうことになる。
 また、特許文献2の運転シミュレータ200では、可動部であるプラットフォーム206の質量が大きいにもかかわらず、再現できる周波数範囲は1~3Hzで、高い周波数では、振動を抑えきれなくなるので、もっと重たいベースが必要になる。実際の運転状態に応じた加速度などの試験のために、6自由度プラットフォームの上にさらに3自由度の機構を設ける必要があり、複雑で大型化する。
 さらに、特許文献2の運転シミュレータ200では、すべり面210の表面として、非常に精度の高いすべり面が必要で、コストが高くつくことにもなる。
 このように特許文献1の運転模擬試験装置100、特許文献2の運転シミュレータ200のいずれの場合においても、大きな駆動装置が必要となって大型化してしまうことになり、高速で高周波の動作ができなくなる。
 一方、図25に示したような従来の試験装置300においても、相互に直交するX軸方向レール304とY軸方向レール310が必要であり、装置の設置スペースが大きく必要である。また、装置の高さが高くなり、可動部の質量が大きくなり、大きな駆動装置が必要となって大型化してしまうことになり、高速で高周波の動作ができなくなる。
 また、図25に示したような従来の試験装置300においても、X-Y方向に移動できるように構成されているが、ベースがZ軸(上下軸)の周りに回転(Yaw運動)することができない構造となっている。
 従って、特許文献1の運転模擬試験装置100、特許文献2の運転シミュレータ200、図25に示したような従来の試験装置300のいずれの場合においても、被試験構造物に回転方向の振動を与えて試験することや、運輸機器が旋回時必要な動作を与えることができない。
 さらに、いずれの場合においても、リニアガイドを用いると、高速移動時は騒音が大きく、微振幅では摩耗されやすいという欠点がある。
 従って、本発明の目的は、操作者の実際の運転操作に応じた運転状態をシミュレーションすることができ、実際の運転状態に応じた加速度などの試験ができる試験装置を提供することを目的とする。
 また、本発明の目的は、可動部であるプラットフォームの重量が軽く、剛性が高く、しかも、軽いベースで安定した運動を実現でき、小さい動力と少ないスペースで、高い周波数までのシミュレーションが可能な、安価でコンパクトな試験装置を提供することを目的とするものである。
 また、本発明の目的は、可動部である被試験構造物を載置したベースプレートの重量が軽く、剛性が高く、しかも、軽いベースで安定した運動を実現でき、小さい動力と少ないスペースで、高い周波数までの試験が可能な、安価でコンパクトな試験装置を提供することを目的とするものである。
 本発明は、前述した従来技術における課題及び目的を達成するために発明されたものであって、本発明の試験装置は、
 操作者の運転操作に応じて運転状態をシミュレーションするための試験装置であって、
 すべり床上をエアベアリングによって、X-Y方向に移動できるとともに、Z軸の周りに回転できるように自由に移動可能に配置されたベースプレートと、
 前記ベースプレート上に、運動連結機構によって連結され、被運転部が設けられたプラットフォームと、
 前記ベースプレートの下面にすべり床に対して対峙するように配置され、前記すべり床に対する磁着力を変更可能な磁着装置とを備え、
 前記エアベアリングのエア圧力が高い作動状態では、前記磁着装置のすべり床に対する磁着力が強い状態となり、
 前記エアベアリングのエア圧力が低い非作動状態では、前記磁着装置のすべり床に対する磁着力が弱い状態となるように構成されていることを特徴とする。
 このように構成することによって、例えば、車両モデルなどの被運転部が設けられたプラットフォームが、6自由度の位置決めを行う運動連結機構によってベースプレートに連結されている。そして、このベースプレートが、すべり床上をエアベアリングによって、X-Y方向に移動できるとともに、Z軸の周りに回転(Yaw運動)できるように自由に移動可能に配置されている。
 これにより、エアベアリングの空気圧により、ベースプレートが浮き、すべり床との間にエア層ができ、ベースプレート上に運動連結機構によって連結されたプラットフォームが、すべり床上を最小の摩擦力で移動することができる。
 従って、小さい動力と少ないスペースで、操作者の実際の運転操作に応じた運転状態をシミュレーションすることができ、実際の運転状態に応じた加速度などの試験ができる。
 また、ベースプレートの下面にすべり床に対して対峙するように配置され、すべり床に対する磁着力を変更可能な磁着装置を備えており、エアベアリングのエア圧力が高い作動状態では、磁着装置のすべり床に対する磁着力が強い状態となるように構成されている。
 これにより、エアベアリングと磁着装置によるプリーロード(Pre‐Load)で、プラットフォームの上下方向の負荷容量を増やすことができる。
 すなわち、磁着装置による磁力(磁着力)とプラットフォームの重量が合わさって、エアベアリングの上下方向のプリーロード状態となり、上下方向の反力・モーメントを受け持ち、安定したシミュレーションや試験が可能となる。
 その結果、プラットフォームの重量が軽く、剛性が高く、しかも、軽いベースで安定した運動を実現でき、小さい動力と少ないスペースで、高い周波数までのシミュレーションや試験が可能である。
 さらに、エアベアリングのエア圧力が低い非作動状態では、磁着装置のすべり床に対する磁着力が弱い状態となるように構成されている。
 従って、エアベアリングのエア圧力が低い非作動状態では圧力センサーでその状態が検出され、試験装置が停止されるが、慣性の影響で停止までベースプレートが一定の距離移動することになる。この場合、磁着装置のすべり床に対する磁着力が弱い状態となるので磁力が作用しなくなり、摩擦力を低減でき、摩耗を減らし、試験装置のメンテナンス周期を長くすることが可能となる。
 また、本発明の試験装置は、
 被試験構造物に対して外力を負荷して各種の試験を行うための試験装置であって、
 すべり床上をエアベアリングによって、X-Y方向に移動できるとともに、Z軸の周りに回転できるように自由に移動可能に配置され、被試験構造物が設けられたベースプレートと、
 前記ベースプレートの下面にすべり床に対して対峙するように配置され、前記すべり床に対する磁着力を変更可能な磁着装置とを備え、
 前記エアベアリングのエア圧力が高い作動状態では、前記磁着装置のすべり床に対する磁着力が強い状態となり、
 前記エアベアリングのエア圧力が低い非作動状態では、前記磁着装置のすべり床に対する磁着力が弱い状態となるように構成されていることを特徴とする。
 このように構成することによって、例えば、住宅などの被試験構造物が載置されたベースプレートが、すべり床上をエアベアリングによって、X-Y方向に移動できるとともに、Z軸の周りに回転(Yaw運動)できるように自由に移動可能に配置されている。
 これにより、エアベアリングの空気圧により、ベースプレートが浮き、すべり床との間にエア層ができ、ベースプレート上の被試験構造物が、すべり床上を最小の摩擦力で移動することができる。
 従って、小さい動力と少ないスペースで、ベースプレート上の被試験構造物に対して、例えば、地震の台上振動試験や、寿命性能試験や、運転シミュレーション試験などの各種試験を行うことができ、実際の状態に応じた試験が可能である。
 また、ベースプレートの下面にすべり床に対して対峙するように配置され、すべり床に対する磁着力を変更可能な磁着装置を備えており、エアベアリングのエア圧力が高い作動状態では、磁着装置のすべり床に対する磁着力が強い状態となるように構成されている。
 これにより、エアベアリングと磁着装置によるプリーロード(Pre‐Load)で、ベースプレートの上下方向の負荷容量を増やすことができる。
 すなわち、磁着装置による磁力(磁着力)と、ベースプレートとベースプレート上の被試験構造物の重量が合わさって、エアベアリングの上下方向のプリーロード状態となり、上下方向の反力・モーメントを受け持ち、安定した試験が可能となる。
 その結果、ベースプレートの重量が軽く、剛性が高く、しかも、軽いベースで安定した運動を実現でき、小さい動力と少ないスペースで、高い周波数までの試験が可能である。
 さらに、エアベアリングのエア圧力が低い非作動状態では、磁着装置のすべり床に対する磁着力が弱い状態となるように構成されている。
 従って、エアベアリングのエア圧力が低い非作動状態では、圧力センサーでその状態が検出され、試験装置が停止されるが、慣性の影響で停止までベースプレートが一定の距離移動することになる。この場合、磁着装置のすべり床に対する磁着力が弱い状態となるので磁力が作用しなくなり、摩擦力を低減でき、摩耗を減らし、試験装置のメンテナンス周期を長くすることが可能となる。
 また、本発明の試験装置は、前記磁着装置が、すべり床に対して離接可能に構成され、前記すべり床に対する磁着力の強弱が切替え可能に構成されていることを特徴とする。
 このように構成することによって、磁着装置のすべり床に対する距離を変更することによって、すべり床に対する磁着力の強弱が切替えできるので、試験装置に合った磁力の調整が可能である。
 また、本発明の試験装置は、前記磁着装置が、すべり床に対して離接可能に構成された磁石部材を備えることを特徴とする。
 このように構成することによって、磁石部材とすべり床との間の隙間を調整することにより、試験装置に合った磁力の調整が可能である。
 また、エアベアリングのエア圧力が低い非作動状態では装置が停止されるが、慣性の影響で停止までベースプレートが一定の距離移動することになる。この場合、磁着装置である磁石部材がすべり床から離間する方向に移動して、すべり床に対する磁着力が弱い状態となるので磁力が作用しなくなり、しかも、すべり床と磁石部材との間の距離が離間しているので摩擦力を低減でき、摩耗を減らし、試験装置のメンテナンス周期を長くすることが可能となる。
 また、本発明の試験装置は、前記磁石部材が、永久磁石から構成されていることを特徴とする。
 このように、磁石部材が永久磁石から構成されていれば、安価な永久磁石を磁着装置の磁石部材として用いることができ、コストを低減することができる。また、磁力を発生させるため動力を必要としないので、エネルギーの消費が低減される。
 また、本発明の試験装置では、前記磁着装置が、電磁石から構成される磁石部材を備えていることも可能である。
 このように、磁着装置が電磁石から構成されていれば、電磁石への電流の大きさを変更することによって、磁力(磁着力)の大きさを変更することができ、制御が容易になる。
 また、本発明の試験装置は、前記磁石部材が、複数の磁石部材から構成され、これらの磁石部材が、相互に極の向きが直角の位置となるように配置されていることを特徴とする。
 このように磁石部材が、相互に極の向きが直角の位置となるように配置されているので、各運動方向(X-Y方向、Yaw回転)における渦電流による抵抗を同一にすることができ、正確な、シミュレーションや試験を実施することができる。
 また、本発明の試験装置は、前記ベースプレートの下面に球面座を介して複数のエアベアリングが設けられ、
 前記複数のエアベアリングに対応して、複数の磁着装置が設けられていることを特徴とする。
 このようにベースプレートの下面に球面座を介して、複数のエアベアリングが設けられているので、ベースプレート全体が均一に、エアベアリングの空気圧により、ベースプレートが浮き、すべり床との間にエア層ができ、ベースプレート上に運動連結機構によって連結されたプラットフォームが、すべり床上を最小の摩擦力で移動することができる。
 従って、小さい動力と少ないスペースで、操作者の実際の運転操作に応じた運転状態をシミュレーションすることができ、実際の運転状態に応じた加速度などの試験もできる。
 また、複数のエアベアリングに対応して、複数の磁着装置が設けられているので、磁着装置による磁力(磁着力)とプラットフォームの重量が合わさったエアベアリングの上下方向のプリーロード状態が、ベースプレート全体において均一になり、上下方向の反力・モーメントを受け持ち、より安定したシミュレーションや試験が可能となる。
 また、本発明の試験装置は、前記エアベアリングのすべり床に対峙する面、または、前記すべり床の上面のうち少なくとも一方の表面に、摩擦低減処理が施されていることを特徴とする。
 このように、例えば、「ポリテトラフルオロエチレン樹脂(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体樹脂(PFA)、テトラフ
ルオロエチレン-ヘキサフルオロプロピレン共重合体樹脂(FEP)、ポリクロロトリフルオロエチレン共重合体樹脂、テトラフルオロエチレン-エチレン共重合体樹脂、クロロトリフルオロエチレン-エチレン共重合体樹脂、ポリビニリデンフルオライド樹脂、ポリビニルフルオライド樹脂、テトラフルオロエチレン-ヘキサフルオロプロピレン-パーフルオロアルキルビニルエーテル共重合体樹脂」などのフッ素系樹脂や、ポリイミド樹脂(PI)、ポリアミド6樹脂(PA6)、ポリアミドイミド樹脂(PAI)、ピーク樹脂(PEEK)などからなるシートを貼着したり、これらの樹脂単体および混合体を焼付コーティングしたりすることによって、エアベアリングのすべり床に対峙する面、または、すべり床の上面のうち少なくとも一方の表面に摩擦低減処理を施している。
 これにより、非常停止などの場合、また、作動中に想定よりも大きい負荷がかかった場合において、エアベアリングがすべり床と接触した際に、エアベアリングが損傷するのを防止することができ、装置の寿命が長くなる。
 また、このような摩擦低減処理が施されているので、エアベアリングとすべり床との間が、多少接触してもエアベアリングが損傷するのを防止することができるので、すべり床の面の精度を多少下げることができるので、コストを低減することができる。
 本発明によれば、例えば、車両モデルなどの被運転部が設けられたプラットフォームが、例えば、6自由度の位置決めを行う運動連結機構によってベースプレートに連結されている。そして、このベースプレートが、すべり床上を球面座を介して接続されるエアベアリングによって、X-Y方向に移動できるとともに、Z軸の周りに回転(Yaw運動)できるように自由に移動可能に配置されている。
 これにより、エアベアリングの空気圧により、ベースプレートが浮き、すべり床との間にエア層ができ、ベースプレート上に運動連結機構によって連結されたプラットフォームが、すべり床上を最小の摩擦力で移動することができる。
 従って、小さい動力と少ないスペースで、操作者の実際の運転操作に応じた運転状態をシミュレーションすることができ、実際の運転状態に応じた加速度などの試験ができる。
 また、ベースプレートの下面にすべり床に対して対峙するように配置され、すべり床に対する磁着力を変更可能な磁着装置を備えており、エアベアリングのエア圧力が高い作動状態では、磁着装置のすべり床に対する磁着力が強い状態となるように構成されている。
 これにより、エアベアリングと磁着装置によるプリーロードで、プラットフォームの上下方向の負荷容量を増やすことができる。
 すなわち、磁着装置による磁力(磁着力)とプラットフォームの重量が合わさって、エアベアリングの上下方向のプリーロード状態となり、上下方向の反力・モーメントを受け持ち、安定したシミュレーションや試験が可能となる。
 その結果、プラットフォームの重量が軽く、剛性が高く、しかも、軽いベースで安定した運動を実現でき、小さい動力と少ないスペースで、高い周波数までのシミュレーションや試験が可能である。
 本発明によれば、例えば、住宅などの被試験構造物が載置されたベースプレートが、すべり床上をエアベアリングによって、X-Y方向に移動できるとともに、Z軸の周りに回転(Yaw運動)できるように自由に移動可能に配置されている。
 これにより、エアベアリングの空気圧により、ベースプレートが浮き、すべり床との間にエア層ができ、ベースプレート上の被試験構造物が、すべり床上を最小の摩擦力で移動することができる。
 従って、小さい動力と少ないスペースで、ベースプレート上の被試験構造物に対して、例えば、地震の台上振動試験や、寿命性能試験や、運転シミュレーション試験などの各種試験を行うことができ、実際の状態に応じた試験が可能である。
 また、ベースプレートの下面にすべり床に対して対峙するように配置され、すべり床に対する磁着力を変更可能な磁着装置を備えており、エアベアリングのエア圧力が高い作動状態では、磁着装置のすべり床に対する磁着力が強い状態となるように構成されている。
 これにより、エアベアリングと磁着装置によるプリーロード(Pre‐Load)で、ベースプレートの上下方向の負荷容量を増やすことができる。
 すなわち、磁着装置による磁力(磁着力)と、ベースプレート重量と、ベースプレート上の被試験構造物の重量とが合わさって、エアベアリングの上下方向のプリーロード状態となり、上下方向の反力・モーメントを受け持ち、安定した試験が可能となる。
 その結果、ベースプレートの重量が軽く、剛性が高く、しかも、軽いベースで安定した運動を実現でき、小さい動力と少ないスペースで、高い周波数までの試験が可能である。
 さらに、エアベアリングのエア圧力が低い非作動状態では、磁着装置のすべり床に対する磁着力が弱い状態となるように構成されている。
 従って、エアベアリングのエア圧力が低い非作動状態では、装置が停止されるが、慣性の影響で、停止までベースプレートが一定の距離移動することになる。この場合、磁着装置のすべり床に対する磁着力が弱い状態となるので、磁力が作用しなくなり、摩擦力を低減でき、摩耗を減らし、試験装置のメンテナンス周期を長くすることが可能となる。
図1は、本発明の試験装置をシミュレーション装置として適用した試験装置の上面図である。 図2は、図1の部分拡大図である。 図3は、図1のA方向から見た正面図である。 図4は、図1のB方向から見た側面図を90度右回転させた図である。 図5は、図1のベースプレート部分の上面図である。 図6は、図5においてベースプレート部分の運動連結機構の一部を省略した上面図である。 図7は、図6の背面図を180度右回転させた図である。 図8は、図6のC方向の側面図を90度右回転させた図である。 図9は、図7のエアベアリングと磁着装置の部分のエアベアリングのエア圧力が高い作動状態の拡大図である。 図10は、図7のエアベアリングと磁着装置の部分のエアベアリングのエア圧力が低い非作動状態の拡大図である。 図11は、図7のエアベアリングと磁着装置の部分の上面図である。 図12は、ベースプレートがすべり床の上をX-Y方向、Z軸の周りに回転移動する状態を説明する上面図である。 図13は、ベースプレートがすべり床の上をX-Y方向、Z軸の周りに回転移動する状態を説明する上面図である。 図14は、ベースプレートがすべり床の上をX-Y方向、Z軸の周りに回転移動する状態を説明する上面図である。 図15は、ベースプレートがすべり床の上をX-Y方向、Z軸の周りに回転移動する状態を説明する上面図である。 図16は、ベースプレートがすべり床の上をX-Y方向、Z軸の周りに回転移動する状態を説明する上面図である。 図17は、本発明の別の実施例の試験装置の図1と同様な上面図である。 図18は、本発明のさらに別の実施例の試験装置の図2と同様な上面図である。 図19は、図18のD方向の図3と同様な正面図である。 図20は、本発明のさらに別の実施例の試験装置の図19と同様な正面図である。 図21は、本発明のさらに別の実施例の試験装置の図19と同様な正面図である。 図22は、図21のF-F線での概略図である。 図23は、従来の運転模擬試験装置100の斜視図である。 図24は、従来の運転シミュレータ200の部分拡大側面図である。 図25は、従来の試験装置300として、振動試験装置の概略を示す斜視図である。
 以下、本発明の実施の形態(実施例)を図面に基づいてより詳細に説明する。
 図1は、本発明の試験装置をシミュレーション装置として適用した試験装置の上面図、図2は、図1の部分拡大図、図3は、図1のA方向から見た正面図、図4は、図1のB方向から見た側面図を90度右回転させた図、図5は、図1のベースプレート部分の上面図、図6は、図5においてベースプレート部分の運動連結機構の一部を省略した上面図、図7は、図6の背面図を180度右回転させた図、図8は、図6のC方向の側面図を90度右回転させた図、図9は、図7のエアベアリングと磁着装置の部分のエアベアリングのエア圧力が高い作動状態の拡大図、図10は、図7のエアベアリングと磁着装置の部分のエアベアリングのエア圧力が低い非作動状態の拡大図、図11は、図7のエアベアリングと磁着装置の部分の上面図、図12~図16は、ベースプレートがすべり床の上をX-Y方向、Z軸の周りに回転移動する状態を説明する上面図である。
 図1において、符号10は、全体で本発明の試験装置をシミュレーション装置として適用した試験装置を示している。
 この実施例の試験装置10では、図1に示したように、操作者の運転操作に応じて運転状態をシミュレーションするための試験装置に適用した実施例を示している。
 すなわち、例えば、自動車・バイク・電車・航空機・船舶などの運輸機器において、これらの運輸機器の研究開発や、運輸機器の運転者の運転能力の向上などを目的として、操作者の運転操作に応じた運転状態などをシミュレーションするためのものである。
 なお、この実施例では、車両機器の一例として、自動車の場合を図示している。また、図示しないが、本発明の試験装置10では、必要に応じて、試験装置10の周囲にスクリーンなどが設けられており、操作者Sの運転操作に応じて運転状態を視覚的にシミュレーションすることができるように構成されている。従って、例えば、加速度試験などの試験のみを実施する場合などにおいては、このようなスクリーンを設けないこともある。
 図1~図4に示したように、本発明の試験装置10では、すべり床12を備えており、このすべり床12の上面には、後述するように、X-Y方向に移動できるとともに、Z軸の周りに回転(Yaw運動)できるように自由に移動可能に、上面視で略三角形のベースプレート14が配置されている。
 このベースプレート14上には、図5~図7に示したように、運動連結機構16を備えており、運動連結機構16によって、上面視で略三角形の可動部を構成するプラットフォーム18が連結されている。なお、図5~図6に示したように、プラットフォーム18は、軽量化のために、いわゆるトラス構造のパイプによって構成されている。
 図5~図8に示したように、運動連結機構16は、この実施例では、いわゆる「スチュワート・プラットフォーム(ヘキサポッドとも呼ばれる)」と呼ばれる6自由度パラレルメカニズムを採用しており、並列に連結された6本の伸縮するリンク16a~16fから構成されている。
 そして、これらの6本の伸縮するリンク16a~16fが協調して動作することによって、図示しないが、プラットフォーム18が、X-Y-Z方向に移動できるとともに、X軸のまわり(Roll)、Y軸のまわり(Pitch)、Z軸の周りに(Yaw運動)回転できるように自由に移動可能となるように構成されている。
 すなわち、これらのリンク16a~16fはそれぞれ、電気または油圧(図は電気の例を示す)駆動装置20a~20fを作動することによって、ピストンシリンダー機構が作動して伸縮する構造となっている。また、これらのリンク16a~16fの下端は、図7に示したように、ピボット軸22a~22fを介して、ベースプレート14の3か所の角部に形成されたブラケット24a~24fに、それぞれ回動可能に連結されている。
 一方、これらのリンク16a~16fの上端は、図7に示したように、ピボット軸26a~26fを介して、プラットフォーム18の3か所の角部に設けられた支持部28a~28fに、それぞれ回動可能に連結されている。
 また、図3~図4に示したように、プラットフォーム18上には、運輸機器を構成する、例えば、コックピット、ハーフカーモデルなどからなる被運転部、この実施例の場合には、自動車の車両30が設けられている。なお、図3~図4を除いて、説明の便宜上、被運転部(車両)30を省略して示している。
 一方、図5~図7に示したように、ベースプレート14の下面には、すべり床12の上面に対して対峙するように、複数のエアベアリングユニット32が設けられている、すなわち、この実施例では、図5~図6に示したように、ベースプレート14の3か所の角部に形成されている。
 また、図7、図9~図11に示したように、エアベアリングユニット32は、すべり床12の上面に対して対峙するように、ベースプレート14の下面に、一定間隔離間して配置された2個のエアベアリング34を備えている。これらのエアベアリング34は、それぞれ、ベースプレート14の下面に固定された球面座36に、装着部38によって自由に回動できるように装着されている。すべり床12の面精度や、取付け部の平行度の誤差を吸収する。
 そして、これらの2個のエアベアリング34の間に、図9~10に示したように、すべり床に対する磁着力を変更可能な磁着装置40が、ベースプレート14の下面に、すべり床12の上面に対して対峙するように配置されている。
 この磁着装置40は、図9~図11に示したように、ピストンシリンダー機構42を備えており、このピストンシリンダー機構42のピストン44の下端には、ベース板46が固定されている。このベース板46の下面には、例えば、永久磁石からなる磁石部材48が配置されている。
 なお、このように、磁石部材48が、永久磁石から構成されていれば、安価な永久磁石を磁着装置40の磁石部材48として用いることができ、コストを低減することができるとともに、動力を必要とせず、省エネ効果が期待できる。
 また、ベース板46とピストン44の周囲に設けられた4個のガイド部材41の基端部のフランジ41aとの間には、それぞれバネ部材45が介装されている。
 このように構成されるエアベアリングユニット32は、エアベアリング34のエア圧力が高い作動状態では、図示しないが、エアベアリング34の空気圧により、ベースプレート14が浮き、すべり床12の上面との間にエア層ができるようになっている。
 これにより、ベースプレート14上に運動連結機構16によって連結されたプラットフォーム18が、すべり床12の上面を最小の摩擦力で移動することができるようになっている。
 この場合、複数のエアベアリング34に対応して、複数の磁着装置40が設けられているので、磁着装置40による磁力(磁着力)とプラットフォーム18の重量が合わさったエアベアリング34の上下方向のプリーロード状態が、ベースプレート14全体において均一になり、上下方向の反力・モーメントを受け持ち、より安定したシミュレーション、試験が可能となる。
 また、エアベアリングユニット32は、エアベアリング34のエア圧力が高い作動状態では、磁着装置40のすべり床12に対する磁着力が強い状態となるように構成されている。
 すなわち、この実施例では、図9に示したように、エアベアリング34のエア圧力が高い作動状態では、ピストンシリンダー機構42が作動して、バネ部材45の付勢力に抗して、ピストン44が下方に向かって伸張する。
 これにより、ピストン44の下端に固定されたベース板46が、すべり床12の上面に向かって下方に移動する。その結果、ベース板46下面に配置された磁石部材48と、すべり床12の上面との間の距離が近くなり、磁着装置40のすべり床12に対する磁着力が強い状態となる。
 従って、エアベアリング34と磁着装置40によるプリーロードで、プラットフォーム18の上下方向の負荷容量を増やすことができる。
 すなわち、磁着装置40による磁力(磁着力)とプラットフォーム18の重量が合わさって、エアベアリング34の上下方向のプリーロード状態となり、上下方向の反力・モーメントを受け持ち、安定したシミュレーションや試験が可能となる。
 その結果、プラットフォーム18の重量が軽く、剛性が高く、しかも、軽いベースで安定した運動を実現でき、小さい動力と少ないスペースで、高い周波数までのシミュレーションが可能である。
 この場合、複数のエアベアリング34に対応して、複数の磁着装置40が設けられているので、磁着装置40による磁力(磁着力)とプラットフォーム18の重量が合わさったエアベアリング34の上下方向のプリーロード状態が、ベースプレート14全体において均一になり、上下方向の反力・モーメントを受け持ち、より安定したシミュレーションや試験が可能となる。
 なお、この場合、エアベアリング34、磁着装置40の数、ベースプレート14での配置位置などは特に限定されるものではなく、適宜変更可能である。
 一方、エアベアリングユニット32は、エアベアリング34のエア圧力が低い非作動状態では、磁着装置40のすべり床12に対する磁着力が弱い状態となるように構成されている。
 すなわち、この実施例では、図10に示したように、エアベアリング34のエア圧力が低い非作動状態では、ピストンシリンダー機構42の作動が停止して、バネ部材45の付勢力によって、ピストン44が上方に向かって後退する。
 これにより、ピストン44の下端に固定されたベース板46が、すべり床12の上面から離間する方向に上方に移動する。その結果、ベース板46下面に配置された磁石部材48と、すべり床12の上面との間の距離が大きくなり、磁着装置40のすべり床12に対する磁着力が弱い状態となる。
 従って、エアベアリング34のエア圧力が低い非作動状態では、圧力センサーでその状態が検出され、試験装置10が停止されるが、慣性の影響で、停止までベースプレート14が一定の距離移動することになる。
 この場合、磁着装置40のすべり床12に対する磁着力が弱い状態、すなわち、この実施例では、ベース板46の下面に配置された磁石部材48と、すべり床12の上面との間の距離が大きくなり、磁力が作用しなくなり、磁石部材48と、すべり床12の上面との間の摩擦力を低減でき、摩耗を減らし、試験装置10のメンテナンス周期を長くすることが可能となる。
 このように構成することによって、磁着装置40のすべり床12に対する距離を変更することによって、すべり床12に対する磁着力の強弱が切替えできるので、試験装置10に合った磁力の調整が可能である。
 なお、エアベアリング34のすべり床12に対峙する面、または、すべり床12の上面のうち少なくとも一方の表面に、摩擦低減処理が施されていても良い。図7では、すべり床12の上面に摩擦低減処理11を施している状態を示している。
 このように、例えば、「ポリテトラフルオロエチレン樹脂(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体樹脂(PFA)、テトラフ
ルオロエチレン-ヘキサフルオロプロピレン共重合体樹脂(FEP)、ポリクロロトリフルオロエチレン共重合体樹脂、テトラフルオロエチレン-エチレン共重合体樹脂、クロロトリフルオロエチレン-エチレン共重合体樹脂、ポリビニリデンフルオライド樹脂、ポリビニルフルオライド樹脂、テトラフルオロエチレン-ヘキサフルオロプロピレン-パーフルオロアルキルビニルエーテル共重合体樹脂」などのフッ素系樹脂や、ポリイミド樹脂(PI)、ポリアミド6樹脂(PA6)、ポリアミドイミド樹脂(PAI)、ピーク樹脂(PEEK)などからなるシートを貼着したり、これらの樹脂単体および混合体を焼付コーティングしたりすることによって、エアベアリング34のすべり床12に対峙する面、または、すべり床12の上面のうち少なくとも一方の表面に摩擦低減処理を施しても良い。
 これにより、非常停止などの場合、また、作動中に想定よりも大きい負荷がかかった場合において、エアベアリング34がすべり床12の上面と接触した際に、エアベアリング34が損傷するのを防止することができ、装置の寿命が長くなる。
 また、このような摩擦低減処理が施されているので、エアベアリング34とすべり床12の上面との間が、多少接触してもエアベアリング34が損傷するのを防止することができるので、すべり床12の上面の面の精度を多少下げることができるので、コストを低減することができる。
 さらに、磁着装置40のベース板46の下面に配置された磁石部材48は、図12に示したように、磁石部材48が、複数の磁石部材48から構成され、これらの磁石部材48が、相互に極の向きが直角の位置となるように配置されていても良い。
 このように磁石部材48が、相互に極の向きが直角の位置となるように配置されているので、各運動方向(X-Y方向、Yaw回転)における渦電流による抵抗を同一にすることができ、正確な、シミュレーションや試験を実施することができる。
 一方、図1~図4に示したように、ベースプレート14には、すべり床12の上面を、X-Y方向に移動できるとともに、Z軸の周りに回転(Yaw運動)できるように自由に移動可能とする移動機構50が連結されている。
 すなわち、移動機構50は、図1に示したように、相互に中心角度αが120°の角度で離間するように配置された3個のピストンシリンダー機構から構成される移動駆動装置52a、52b、52cから構成されている。
 これらの移動駆動装置52a、52b、52cは、それぞれその基端部が、すべり床12の上面に相互に中心角度αが120°の角度で離間するように固定された3個の固定ブラケット54a、54b、54cに、ピボット56a、56b、56cによって回動可能に連結されている。
 また、これらの移動駆動装置52a、52b、52cは、それぞれそのピストン58a、58b、58cの先端が、図1の点線で示したように、図1の状態で、すなわち、上面視で、ベースプレート14がすべり床12の上面の略中心位置にある際(初期位置状態にある際)に、円形サークルCに沿って、相互に中心角度βが120°を形成するように、ベースプレート14上に設けられた3個の固定ブラケット60a、60b、60cに、ピボット62a、62b、62cによって回動可能に連結されている。
 また、これらのピストン58a、58b、58cの先端の延長線が、図1の一点鎖線で示したように、図1の状態で、すなわち、上面視で、ベースプレート14がすべり床12の上面の略中心位置にある際(初期位置状態にある際)に、ピストン58a、58b、58cが、円形サークルCに接するか、または、円形サークルCに接する状態に近い角度になるように設けられている。
 さらに、移動駆動装置52a、52b、52cは、それぞれその基端部には、ピストンシリンダー機構を作動するための電気または油圧(図は電気の例を示す)駆動装置64a、64b、64cが設けられている。
 このように構成される移動機構50は、操作者Sの運転操作に応じて、図示しない制御装置の制御によって、エアベアリング34のエア圧力が高い作動状態では、エアベアリング34の空気圧により、ベースプレート14が浮き、すべり床12の上面との間にエア層ができ、磁着装置40のすべり床12に対する磁着力が強い状態となり、プリーロード状態となる。
 この状態で、操作者Sの運転操作に応じて、電気または油圧(図は電気の例を示す)駆動装置64a、64b、64cの作動を制御することによって、移動駆動装置52a、52b、52cのピストンシリンダー機構のピストン58a、58b、58cの伸張度が調整される。
 これにより、図1に示したベースプレート14がすべり床12の上面の略中心位置にある状態から、図12~図16に示したように、ベースプレート14が、X-Y方向に移動できるとともに、Z軸の周りに回転(Yaw運動)できるように自由に移動可能となるように構成されている。
 なお、図12~図16は、あくまでも、X-Y方向の移動、Z軸の周りに回転(Yaw運動)の一例を示したものであって、その他の位置の組み合わせも自由であることはもちろんである。
 このように構成することによって、図1の状態で、すなわち、上面視で、ベースプレート14がすべり床12の上面の略中心位置にある際に、ピストン58a、58b、58cが、円形サークルCに接するか、または、円形サークルCに接する状態に近い角度になるように設けられているので、Z軸の周りに回転(Yaw運動)の際に、必要な加振機の速度、加速度を小さくすることができる。
 ピストン58a、58b、58cの先端の延長線が、図2の一点鎖線で示したように、図1の状態で、すなわち、上面視で、ベースプレート14がすべり床12の上面の略中心位置にある際(初期位置状態にある際)に、ピストン58a、58b、58cが、円形サークルCに接するか、または、円形サークルCに接する状態に近い角度になるように設けられ、ピストン58a、58b、58cの先端の延長線がベースプレート14の中心Oからずれた位置になっている。
 これにより、図1の状態、すなわち、上面視で、ベースプレート14がすべり床12の上面の略中心位置にある状態(初期位置状態にある状態)から移動させる際に、必要なトルクで移動させることができる。
 また、円形サークルCの直径が比較的小さいため、Yaw運動の際に必要な、アクチュエータである移動駆動装置52a、52b、52cのピストンシリンダー機構のストロークと速度が小さくなり、よりハイパフォーマンスなシミュレータの提供が可能になる。
 さらに、アクチュエータである移動駆動装置52a、52b、52cのピストンシリンダー機構の加速度も小さくなるので、アクチュエータの等価質量に必要なトルクが減り、ベースプレート14へのYaw方向のトルクが増え、効率が良くなる。
 また、アクチュエータである移動駆動装置52a、52b、52cのピストンシリンダー機構の軸線と、回転中心の距離を大きく取れ、しかも、移動駆動装置52a、52b、52cの動作範囲が最大になるような角度で、アクチュエータである移動駆動装置52a、52b、52cを配置している。
 従って、アクチュエータである移動駆動装置52a、52b、52cを取り付けるのに必要なスペースが小さくなり、試験装置10を小型化することができる。
 さらに、X-Y方向の移動、Z軸の周りに回転(Yaw運動)による複合運動の可動範囲が大きくなる。
 なお、図示しないが、アクチュエータである移動駆動装置52a、52b、52cのピストンシリンダー機構を、ベースプレート14上に設置することにより、移動駆動装置52a、52b、52cにおいて発生する干渉をリミットスイッチで防止することもできる。
 図17は、本発明の別の実施例の試験装置の図1と同様な上面図である。
 この実施例の試験装置10は、実施例1に示した試験装置10と基本的には同様な構成であり、同一の構成部材には、同一の参照番号を付して、その詳細な説明を省略する。
 この実施例の試験装置10では、図17に示したように、図17の点線で示したように、図17の状態で、すなわち、上面視で、ベースプレート14がすべり床12の上面の略中心位置にある際に、移動駆動装置52a、52b、52cは、それぞれその基端部が、大きい円形サークルDに沿って、すべり床12の上面に相互に中心角度αが120°の角度で離間するように固定された3個の固定ブラケット54a、54b、54cに、ピボット56a、56b、56cによって回動可能に連結されている。
 また、図17に示したように、ピストン58a、58b、58cの先端の延長線が、図17の一点鎖線Dで示したように、図17の状態で、すなわち、上面視で、ベースプレート14がすべり床12の上面の略中心位置にある際(初期位置状態にある際)に、ピストン58a、58b、58cの先端の延長線がベースプレート14の中心Oに向かう位置に配置されている。
 すなわち、図17に示したように、ピストン58a、58b、58cの先端が、ベースプレート14の3個の角部にそれぞれ配置されている。
 この実施例の試験装置10では、実施例1の試験装置10に比較して、Yaw方向の角度、速度範囲が小さく、Yaw方向のトルクが小さく、加速度範囲が小さく、特に初期位置にある場合、トルクが発生しないので、Yaw方向の移動ができない。必要なスペースが大きいが、アクチュエータである移動駆動装置52a、52b、52cとベースプレート14の干渉がなく、XとYの2方向の運動に使用することができる。
 すなわち、この実施例の試験装置10では、図17の状態、すなわち、上面視で、ベースプレート14がすべり床12の上面の略中心位置にある状態(初期位置状態にある状態)からYaw方向に移動させる際に、トルクが必要となる。
 従って、実施例1の試験装置10に比較して、X-Y方向の運動ができるが、Yaw方向の運動が制限され、特に、初期位置では、Yaw方向のトルクが発生しないため、X-Y方向のみの運動となる。
 図18は、本発明のさらに別の実施例の試験装置の図2と同様な上面図、図19は、図18のD方向の図3と同様な正面図である。
 この実施例の試験装置10は、実施例1に示した試験装置10と基本的には同様な構成であり、同一の構成部材には、同一の参照番号を付して、その詳細な説明を省略する。
 図1~図16に示したように、上記の実施例1の試験装置10では、ベースプレート14上には、図5~図7に示したように、運動連結機構16を備えており、運動連結機構16によって、上面視で略三角形の可動部を構成するプラットフォーム18が連結されている。
 これに対して、この実施例の試験装置10では、図18、図19に示したように、振動台として機能するベースプレート14上には、例えば、住宅などの被試験構造物Eが、載置するなど従来公知の適当な固定手段で固定するように設けられており、運動連結機構16を備えていない。
 また、図1~図2に示したように、上記の実施例1の試験装置10では、ベースプレート14が、上面視で略三角形のベースプレート14である。これに対して、この実施例の試験装置10では、図18に示したように、ベースプレート14が、略矩形のベースプレート14である。
 また、図1~図2に示したように、上記の実施例1の試験装置10では、移動機構50は、相互に中心角度αが120°の角度で離間するように配置された3個のピストンシリンダー機構から構成される移動駆動装置52a、52b、52cから構成されている。
 これに対して、この実施例の試験装置10では、図18、図19に示したように、移動駆動装置52a、52bが、そのピストンシリンダー機構がX軸方向に伸縮するように配置されている。
 そして、移動駆動装置52aと52bとが、相互にY軸方向に離間するように、X軸方向の一方の端面14aに連結されている。また、移動駆動装置52cが、Y軸方向の一方の端面14bに連結されている。
 また、図1~図2に示したように、上記の実施例1の試験装置10では、図5~図7に示したように、ベースプレート14の下面には、すべり床12の上面に対して対峙するように、複数のエアベアリングユニット32が設けられ、ベースプレート14の3か所の角部に形成されている。
 これに対して、この実施例の試験装置10では、図19に示したように、ベースプレート14の下面には、すべり床12の上面に対して対峙するように、複数のエアベアリングユニット32が設けられ、ベースプレート14の4か所の隅角部に形成されている。
 なお、このエアベアリングユニット32は、3か所以上設ければよく、その数は、何ら限定されるものではない。
 このように構成される実施例の試験装置10では、移動機構50によって、水平面で、X、Y方向の2軸、および、Z軸方向の回転方向の振動試験が可能な試験装置として適用することができる。
 例えば、地震の台上振動試験や、被試験構造物Eの耐震性試験、寿命性能試験に用いることが可能である。
 すなわち、従来の水平2軸振動試験装置は、2層のリニアガイドが必要で、大きなアクチュエータが必要と同時に、高周波で微小振幅の場合、リニアガイドのフレッティング(fretting)摩耗のため、適用できない問題がある。
 これに対して、この実施例の試験装置10では、エアベアリング34と磁着装置40による磁力(磁着力)の併用により、摩擦力が小さく、振動台であるベースプレート14が軽くなる。
 このため、アクチュエータである移動駆動装置52a、52b、52cの容量が小さくなり、高い周波数における高性能の振動試験が可能となる。
 図20は、本発明のさらに別の実施例の試験装置の図19と同様な正面図である。
 この実施例の試験装置10は、実施例3に示した試験装置10と基本的には同様な構成であり、同一の構成部材には、同一の参照番号を付して、その詳細な説明を省略する。
 図18~図19示したように、上記の実施例3の試験装置10では、ベースプレート14の上には、例えば、住宅などの被試験構造物Eが載置されている。
 これに対して、この実施例の試験装置10では、被試験構造物Eとして、自動車などの車輛のコクピット70が載置されている。
 これにより、この実施例の試験装置10は、X軸方向、Y軸方向の移動、および、Z軸(上下軸)の周りに回転(Yaw運動)できる3自由度の車輛のシミュレーション装置として適用することができる。
 図21は、本発明のさらに別の実施例の試験装置の図19と同様な正面図、図22は、図21のF-F線での概略図である。
 この実施例の試験装置10は、実施例3に示した試験装置10と基本的には同様な構成であり、同一の構成部材には、同一の参照番号を付して、その詳細な説明を省略する。
 図18~図19示したように、上記の実施例3の試験装置10では、ベースプレート14の下面には、すべり床12の上面に対して対峙するように、複数のエアベアリングユニット32が設けられ、ベースプレート14の4か所の隅角部に形成されている。
 これに対して、この実施例の試験装置10では、図21、図22において、左側の2つの隅角部には、図22に示したように、それぞれ2個のエアベアリング34が配置されている。
 また、図18~図19示したように、上記の実施例3の試験装置10では、ベースプレート14の下面には、エアベアリングユニット32において、2個のエアベアリング34の間に、磁着装置40が、ベースプレート14の下面に、すべり床12の上面に対して対峙するように配置されている。
 これに対して、この実施例の試験装置10では、図21、図22に示したように、中心軸G上に相互に離間して、2個の磁着装置40が、ベースプレート14の下面に、すべり床12の上面に対して対峙するように配置されている。
 また、この実施例の試験装置10では、図22において、右下側の隅角部には、図22に示したように、それぞれ3個のエアベアリング34が、中心角度120で離間して円弧状に配置されている。
 さらに、この実施例の試験装置10では、図21において、右上側の隅角部には、図21に示したように、それぞれ3個の円形のエアベアリング34が、中心角度120で離間して配置されている。
 従って、この実施例の試験装置10に示したように、エアベアリング34の数、配置位置、形状、および、磁着装置40の配置位置は、ベースプレート14、被試験構造物Eの形状により適宜組み合わせて選択すれば良く、特に限定されるものではない。
 以上、本発明の好ましい実施の態様を説明してきたが、本発明はこれに限定されることはなく、上記の実施例において、運動連結機構16として、いわゆる「スチュワート・プラットフォーム(ヘキサポッドとも呼ばれる)」と呼ばれる6自由度パラレルメカニズムを採用したが、その他の運動連結機構16を採用することも可能である。
 また、上記実施例では、磁着装置40のベース板46の下面に配置された磁石部材48として、永久磁石を用いたが、磁着装置40が、電磁石から構成される磁石部材48を備えていても良い。
 このように、磁着装置40が、電磁石から構成されていれば、電磁石への電流の大きさを変更することによって、磁力(磁着力)の大きさを変更することができ、制御が容易になる。
 さらに、上記実施例では、アクチュエータである移動駆動装置52a、52b、52cとしてピストンシリンダー機構を用いたが、その他のアクチュエータを用いることも可能である。
 また、本発明の試験装置10は、試験装置として、例えば、自動車部品(駆動系や足回りの金属部品やゴム部品、ショックアブソーバなど)などの機械部品について、これらの自動車完成品などの完成品について、さらに、土木関係(橋桁、橋梁や建物用の免震ゴムなど)の構造物について、材料試験・振動試験・疲労試験・特性試験などを行うための材料試験装置や、振動試験装置や、疲労試験装置や、運転シミュレーション装置など各種の試験装置に適用することが可能である。
 さらに、上記実施例では、本発明の試験装置10を、1つのベースプレート14と移動機構50の組み合わせから構成したが、図示しないが、1つのベースプレート14と移動機構50の組み合わせを複数組み合わせて、1つの試験装置10とすることも可能である。この場合、複数のベースプレート14上に、異なる種類の被試験構造物、または同じ種類の被試験構造物を設けて試験を行ったり、複数のベースプレート14上にわたって1つの被試験構造物を設けて試験を行うことも可能であるなど本発明の目的を逸脱しない範囲で種々の変更が可能である。
 本発明は、例えば、自動車・バイク・電車・航空機・船舶などの運輸機器や、橋梁・ビル・住宅・建築物などの構造物や、これらの部品などの被試験構造物に対して、外力を付加して行う載荷試験や、振動を与えて行う加振試験や、操作者の運転操作に応じた運転状態などのシュミュレーション試験などの各種の試験を行うための試験装置に適用することができる。
10  試験装置
12  すべり床
14  ベースプレート
14a、14b  端面
16  運動連結機構
16a~16f  リンク
18  プラットフォーム
20a~20f  駆動装置
22a~22f  ピボット軸
24a~24f  ブラケット
26a~26f  ピボット軸
28a~28f  支持部
30  車両(被運転部)
32  エアベアリングユニット
34  エアベアリング
36  球面座
38  装着部
40  磁着装置
41  ガイド部材
41a  フランジ
42  ピストンシリンダー機構
44  ピストン
45  バネ部材
46  ベース板
48  磁石部材
50  移動機構
52a~52c  移動駆動装置
54a~54c  固定ブラケット
56a~56c  ピボット
58a~58c  ピストン
60a~60c  固定ブラケット
62a~62c  ピボット
64a~64c  駆動装置
70  コックピット
100  運転模擬試験装置
102  運動連結機構
104  ベース
106  プラットフォーム
108  ドーム
110  X軸方向レール
112  Y軸方向レール
200  運転シミュレータ
202  運動連結機構
204  ベース
206  プラットフォーム
208  ドーム
210  すべり面
212  エアベアリング
300  試験装置
302  架台
304  X軸方向レール
306  Y軸方向アクチュエータ
308  X軸方向ベース
310  Y軸方向レール
312  X軸方向アクチュエータ
314  X,Y軸両方向ベース
C  円形サークル
D  円形サークル
E  被試験構造物
G  中心軸
O  中心
S  操作者
α  中心角度
β  中心角度

Claims (9)

  1.  操作者の運転操作に応じて運転状態をシミュレーションするための試験装置であって、
     すべり床上をエアベアリングによって、X-Y方向に移動できるとともに、Z軸の周りに回転できるように自由に移動可能に配置されたベースプレートと、
     前記ベースプレート上に、運動連結機構によって連結され、被運転部が設けられたプラットフォームと、
     前記ベースプレートの下面にすべり床に対して対峙するように配置され、前記すべり床に対する磁着力を変更可能な磁着装置とを備え、
     前記エアベアリングのエア圧力が高い作動状態では、前記磁着装置のすべり床に対する磁着力が強い状態となり、
     前記エアベアリングのエア圧力が低い非作動状態では、前記磁着装置のすべり床に対する磁着力が弱い状態となるように構成されていることを特徴とする試験装置。
  2.  被試験構造物に対して外力を負荷して各種の試験を行うための試験装置であって、
     すべり床上をエアベアリングによって、X-Y方向に移動できるとともに、Z軸の周りに回転できるように自由に移動可能に配置され、被試験構造物が設けられたベースプレートと、
     前記ベースプレートの下面にすべり床に対して対峙するように配置され、前記すべり床に対する磁着力を変更可能な磁着装置とを備え、
     前記エアベアリングのエア圧力が高い作動状態では、前記磁着装置のすべり床に対する磁着力が強い状態となり、
     前記エアベアリングのエア圧力が低い非作動状態では、前記磁着装置のすべり床に対する磁着力が弱い状態となるように構成されていることを特徴とする試験装置。
  3.  前記磁着装置が、すべり床に対して離接可能に構成され、前記すべり床に対する磁着力の強弱が切替え可能に構成されていることを特徴とする請求項1または2のいずれかに記載の試験装置。
  4.  前記磁着装置が、すべり床に対して離接可能に構成された磁石部材を備えることを特徴とする請求項3に記載の試験装置。
  5.  前記磁石部材が、永久磁石から構成されていることを特徴とする請求項4に記載の試験装置。
  6.  前記磁着装置が、電磁石から構成される磁石部材を備えていることを特徴とする請求項1から4のいずれかに記載の試験装置。
  7.  前記磁石部材が、複数の磁石部材から構成され、これらの磁石部材が、相互に極の向きが直角の位置となるように配置されていることを特徴とする請求項4から6のいずれかに記載の試験装置。
  8.  前記ベースプレートの下面に球面座を介して複数のエアベアリングが設けられ、
     前記複数のエアベアリングに対応して、複数の磁着装置が設けられていることを特徴とする請求項1から7のいずれかに記載の試験装置。
  9.  前記エアベアリングのベースプレートに対峙する面、または、前記すべり床の上面のうち少なくとも一方の表面に、摩擦低減処理が施されていることを特徴とする請求項1から8のいずれかに記載の試験装置。
PCT/JP2013/073901 2012-12-04 2013-09-05 試験装置 WO2014087710A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020157012310A KR101726301B1 (ko) 2012-12-04 2013-09-05 시험 장치
ES13860648T ES2780676T3 (es) 2012-12-04 2013-09-05 Dispositivo de ensayo
CN201380061767.9A CN104813154B (zh) 2012-12-04 2013-09-05 试验装置
US14/647,203 US9666093B2 (en) 2012-12-04 2013-09-05 Test device
EP13860648.8A EP2930491B8 (en) 2012-12-04 2013-09-05 Test device
PL13860648T PL2930491T3 (pl) 2012-12-04 2013-09-05 Urządzenie testowe
JP2014550949A JP5916893B2 (ja) 2012-12-04 2013-09-05 試験装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012265763 2012-12-04
JP2012-265763 2012-12-04

Publications (1)

Publication Number Publication Date
WO2014087710A1 true WO2014087710A1 (ja) 2014-06-12

Family

ID=50883140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073901 WO2014087710A1 (ja) 2012-12-04 2013-09-05 試験装置

Country Status (8)

Country Link
US (1) US9666093B2 (ja)
EP (1) EP2930491B8 (ja)
JP (1) JP5916893B2 (ja)
KR (1) KR101726301B1 (ja)
CN (1) CN104813154B (ja)
ES (1) ES2780676T3 (ja)
PL (1) PL2930491T3 (ja)
WO (1) WO2014087710A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200658A (zh) * 2016-07-21 2016-12-07 华中科技大学 一种可变结构多旋翼无人机实验平台
JP2017009295A (ja) * 2015-06-16 2017-01-12 一般財団法人電力中央研究所 遠心力載荷装置用3次元6自由度振動台装置
WO2017060558A1 (en) * 2015-10-08 2017-04-13 Wärtsilä Finland Oy Method and arrangement for testing earthquake resistance of an engine
CN107132036A (zh) * 2017-06-05 2017-09-05 西安航空制动科技有限公司 一种起落架刚度模拟装置及模拟方法
USD969646S1 (en) 2020-01-21 2022-11-15 Saginomiya Seisakusho, Inc. Vibration test device for simulator

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101726301B1 (ko) * 2012-12-04 2017-04-12 가부시키가이샤 사기노미야세이사쿠쇼 시험 장치
US9579786B2 (en) * 2013-09-26 2017-02-28 Wen-Der TRUI Spherical coordinates manipulating mechanism
WO2016149649A1 (en) * 2015-03-18 2016-09-22 Michigan Scientific Corporation Transducer calibration apparatus
US9863839B2 (en) * 2015-11-18 2018-01-09 The Boeing Company Positioner for electrodynamic shaker
TWI623345B (zh) * 2016-01-15 2018-05-11 崔文德 弧桿組合機構
KR101656087B1 (ko) * 2016-03-24 2016-09-08 엘아이지넥스원 주식회사 착용형 근력증강로봇의 기동시험장치
CN106695759B (zh) * 2016-12-13 2023-04-11 九江精密测试技术研究所 一种具有对称混联分支的三自由度并联稳定平台
CN107471169A (zh) * 2017-09-21 2017-12-15 北京仿真中心 一种用于飞行模拟转台的被试件安装定位装置
KR101929480B1 (ko) * 2017-10-18 2019-03-12 주식회사 요트북 요트 글램핑 체험 시스템 및 이의 구동방법
KR102420900B1 (ko) * 2017-12-18 2022-07-15 대우조선해양 주식회사 트러스 구조물을 포함한 모노레일 하중 테스트 장치
US10767725B2 (en) * 2018-07-25 2020-09-08 Denso International America, Inc. Amplitude-modulating vibrator for predictive maintenance modeling
KR102136166B1 (ko) * 2018-08-09 2020-07-21 재단법인한국조선해양기자재연구원 Lng 벙커링 기자재 시험평가 설비
CN109655222B (zh) * 2019-02-02 2024-04-12 北京思齐致新科技有限公司 新型振动台
CN109900498B (zh) * 2019-04-22 2020-11-06 东北大学 汽车整车可靠性试验台及使用方法
CN110136532A (zh) * 2019-06-12 2019-08-16 山东远大朗威教育科技股份有限公司 地震模拟平台
JP6866430B2 (ja) 2019-07-31 2021-04-28 本田技研工業株式会社 位置変更装置
WO2021101818A1 (en) * 2019-11-19 2021-05-27 Moog Inc. Motion simulator fault tolerant load carrying pivot connection
RU2730881C1 (ru) * 2020-02-17 2020-08-26 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ виброиспытаний крупногабаритных объектов и установка для его осуществления
CN111413063B (zh) * 2020-03-05 2022-06-03 长春理工大学 涵道风扇多自由度测试装置及其方法
CN111551329B (zh) * 2020-05-21 2021-07-23 北京航宇振控科技有限责任公司 一种二级Stewart机构并联构型六自由度振动激励系统
JP7297151B2 (ja) * 2020-07-03 2023-06-23 深▲せん▼怡豊自動化科技有限公司 Agv娯楽運輸工具及び接続組立体
AT524637B1 (de) * 2020-12-15 2023-02-15 Avl List Gmbh Set aus Prüfständen für zumindest eine Komponente eines Kraftfahrzeugs
CN112730032A (zh) * 2021-01-11 2021-04-30 大连理工大学 考虑真实复杂边界条件的结构多维加载试验系统
CN114414250B (zh) * 2021-12-14 2024-04-09 北京动力机械研究所 一种吊耳式安装结构的加速度试验模拟方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862083A (ja) * 1994-08-22 1996-03-08 Toyota Motor Corp 慣性モーメント計測装置
JPH10332520A (ja) * 1997-05-29 1998-12-18 Toyota Motor Corp 主軸方向慣性モーメント測定装置
JP2005505783A (ja) * 2001-10-11 2005-02-24 ダイムラークライスラー・アクチェンゲゼルシャフト 運転シミュレータ
JP2007033563A (ja) * 2005-07-22 2007-02-08 Toyota Motor Corp 運転模擬試験装置
JP2007198830A (ja) * 2006-01-25 2007-08-09 Mitsubishi Heavy Ind Ltd 車両衝突試験装置、切換台車装置及び昇降架台装置
JP2008151509A (ja) * 2006-12-14 2008-07-03 Iyasaka Seiki Kk 車輌検査用エアフローティング装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2279316B (en) * 1993-06-08 1997-03-26 Compacific Engineering Pte Lim Multi-tier jack motion system
US5752834A (en) * 1995-11-27 1998-05-19 Ling; Shou Hung Motion/force simulators with six or three degrees of freedom
US6431872B1 (en) * 1998-12-25 2002-08-13 Honda Kigen Kogyo Kabushiki Kaisha Drive simulation apparatus
DE10308059B3 (de) 2003-02-26 2004-04-29 Daimlerchrysler Ag Linearverschiebesystem für einen Fahrsimulator
CN100535960C (zh) * 2007-01-24 2009-09-02 李椒良 机动车辆仿真驾驶磁悬浮力平衡动感平台
CN101136144B (zh) * 2007-08-20 2010-06-02 苏卫东 交通工具模拟器
JP5963883B2 (ja) * 2012-12-04 2016-08-03 株式会社鷺宮製作所 試験装置
KR101726301B1 (ko) * 2012-12-04 2017-04-12 가부시키가이샤 사기노미야세이사쿠쇼 시험 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862083A (ja) * 1994-08-22 1996-03-08 Toyota Motor Corp 慣性モーメント計測装置
JPH10332520A (ja) * 1997-05-29 1998-12-18 Toyota Motor Corp 主軸方向慣性モーメント測定装置
JP2005505783A (ja) * 2001-10-11 2005-02-24 ダイムラークライスラー・アクチェンゲゼルシャフト 運転シミュレータ
JP3915122B2 (ja) 2001-10-11 2007-05-16 ダイムラークライスラー・アクチェンゲゼルシャフト 運転シミュレータ
JP2007033563A (ja) * 2005-07-22 2007-02-08 Toyota Motor Corp 運転模擬試験装置
JP4736592B2 (ja) 2005-07-22 2011-07-27 トヨタ自動車株式会社 運転模擬試験装置
JP2007198830A (ja) * 2006-01-25 2007-08-09 Mitsubishi Heavy Ind Ltd 車両衝突試験装置、切換台車装置及び昇降架台装置
JP2008151509A (ja) * 2006-12-14 2008-07-03 Iyasaka Seiki Kk 車輌検査用エアフローティング装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009295A (ja) * 2015-06-16 2017-01-12 一般財団法人電力中央研究所 遠心力載荷装置用3次元6自由度振動台装置
WO2017060558A1 (en) * 2015-10-08 2017-04-13 Wärtsilä Finland Oy Method and arrangement for testing earthquake resistance of an engine
CN106200658A (zh) * 2016-07-21 2016-12-07 华中科技大学 一种可变结构多旋翼无人机实验平台
CN107132036A (zh) * 2017-06-05 2017-09-05 西安航空制动科技有限公司 一种起落架刚度模拟装置及模拟方法
USD969646S1 (en) 2020-01-21 2022-11-15 Saginomiya Seisakusho, Inc. Vibration test device for simulator

Also Published As

Publication number Publication date
US20150323414A1 (en) 2015-11-12
PL2930491T3 (pl) 2020-06-15
US9666093B2 (en) 2017-05-30
ES2780676T3 (es) 2020-08-26
CN104813154A (zh) 2015-07-29
JPWO2014087710A1 (ja) 2017-01-05
KR101726301B1 (ko) 2017-04-12
EP2930491B8 (en) 2020-04-29
EP2930491B1 (en) 2020-02-26
KR20150067763A (ko) 2015-06-18
JP5916893B2 (ja) 2016-05-11
EP2930491A1 (en) 2015-10-14
EP2930491A4 (en) 2016-07-06
CN104813154B (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
JP5916893B2 (ja) 試験装置
JP5963883B2 (ja) 試験装置
KR102275786B1 (ko) 베어링 시험기
JP3915122B2 (ja) 運転シミュレータ
JP2009192269A (ja) 連接車両試験装置
KR20150107740A (ko) 시뮬레이터
US20220252210A1 (en) Actuator and Tripod Structure Equipped Therewith
JP2024522527A (ja) 運動発生器
GB2538366A (en) Motion arrangement
EP4179516B1 (en) Apparatus for simulating driving a land vehicle
CN112525458A (zh) 一种倾斜摇摆和三向振动复合试验平台
WO2021039176A1 (ja) アクチュエータ、および、アクチュエータを備えたトライポッド構造体
NL2023724B1 (en) Driving simulator
JP2023004919A (ja) 運動模倣装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550949

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157012310

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013860648

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14647203

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE