WO2014087700A1 - Heat pump heat supply system - Google Patents

Heat pump heat supply system Download PDF

Info

Publication number
WO2014087700A1
WO2014087700A1 PCT/JP2013/071253 JP2013071253W WO2014087700A1 WO 2014087700 A1 WO2014087700 A1 WO 2014087700A1 JP 2013071253 W JP2013071253 W JP 2013071253W WO 2014087700 A1 WO2014087700 A1 WO 2014087700A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
hot water
heat
heat pump
temperature
Prior art date
Application number
PCT/JP2013/071253
Other languages
French (fr)
Japanese (ja)
Inventor
孝二 太田
敦史 柿内
寿洋 所
Original Assignee
シャープ株式会社
リンナイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社, リンナイ株式会社 filed Critical シャープ株式会社
Priority to CN201380062959.1A priority Critical patent/CN104823003B/en
Priority to KR1020157015134A priority patent/KR102057367B1/en
Publication of WO2014087700A1 publication Critical patent/WO2014087700A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/04Gas or oil fired boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2240/00Characterizing positions, e.g. of sensors, inlets, outlets
    • F24D2240/26Vertically distributed at fixed positions, e.g. multiple sensors distributed over the height of a tank, or a vertical inlet distribution pipe having a plurality of orifices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to a heat pump heat source system that heats hot water in a hot water storage tank and heats a heating heat medium that circulates in a heating circulation path to which a heating terminal is connected by a heat pump.
  • the present invention has been made in view of such a background, and when a heating operation and a boiling operation are requested to be executed, heat loss in the heat pump heat exchanger increases due to simultaneous operation of the heating operation and the boiling operation. It aims at providing the heat pump heat source system which suppressed doing.
  • a hot water storage tank in which a water supply pipe is connected to the lower portion and a hot water discharge pipe is connected to the upper portion and water supplied from the water supply pipe is stored, A tank circulation path connecting the lower and upper parts of the hot water storage tank; A tank circulation pump for circulating water stored in the lower part of the hot water storage tank to the upper part of the hot water storage tank through the tank circulation path; A heating circuit to which a heating terminal is connected; A heating circulation pump for circulating a heating heat medium in the heating circulation path; A heat pump having a heat pump circuit, and heating a heat pump heat medium circulating in the heat pump circuit; A heat pump heat medium that is provided in the middle of the heat pump circuit, the tank circuit, and the heating circuit, circulates in the heat pump circuit, hot water that circulates in the tank circuit, and the heating circuit A heat pump heat exchanger that exchanges heat with a circulating heating heat medium; When a predetermined heating execution condition is established, the heating circulation pump and the heat pump are operated, thereby heating the
  • a heating control unit to perform When a predetermined boiling-up execution condition is established, the tank circulation pump and the heat pump are operated to heat hot water from the hot water tank circulating in the tank circulation path to a predetermined boiling temperature.
  • the present invention relates to a heat pump heat source system including a tank control unit that performs a boiling operation.
  • a heating heat medium return temperature sensor for detecting the temperature of the heating heat medium flowing into the heat pump heat exchanger from the heating circuit;
  • a tank return temperature sensor for detecting the temperature of hot water flowing into the heat pump heat exchanger from the tank circulation path;
  • the operation control unit flows into the heat pump heat exchanger from the heating circuit.
  • the temperature difference between the temperature of the heating heat medium and the temperature of hot water flowing into the heat pump heat exchanger from the tank circulation path is smaller than a predetermined determination temperature, the heating operation and the boiling operation are simultaneously performed. Allowed.
  • the heating The operation and the boiling operation are performed simultaneously, and in the heat pump heat exchanger, heat exchange is performed between the heating heat medium in the heating circuit and hot water in the tank circuit, and in the heat pump heat exchanger An increase in heat loss can be suppressed.
  • a part of the hot water flowing out from the heat pump heat exchanger to the tank circulation path is communicated with the upstream side and the downstream side of the heat pump heat exchanger in the tank circulation path, and the heat pump heat exchange in the tank circulation path A hot water return passage returning to the upstream side of the vessel, Hot water flowing out from the hot water storage tank to the tank circulation path, and a mixing ratio changing unit for changing the mixing ratio of hot water flowing out from the hot water reflux path to the tank circulation path,
  • the operation control unit The mixing ratio changing unit changes the mixing ratio, the temperature of the heating heat medium flowing from the heating circuit into the heat pump heat exchanger, and hot water flowing into the heat pump heat exchanger from the tank circuit
  • a process for reducing the temperature difference from the temperature is performed (second invention).
  • the temperature of the heating heat medium flowing into the heat pump heat exchanger from the heating circuit is higher than the determination temperature than the temperature of hot water flowing into the heat pump heat exchanger from the tank circuit.
  • the operation control unit performs a process of reducing the difference between these temperatures. Therefore, the efficiency range of the heat pump can be prevented from being reduced, and the range in which the heating operation and the boiling operation can be performed simultaneously can be expanded.
  • the block diagram of a heat pump heat source system The flowchart of 1st Embodiment of the simultaneous operation process of heating operation and boiling operation. The flowchart of 2nd Embodiment of the simultaneous operation process of heating operation and boiling operation. Explanatory drawing of the efficiency of the heat source machine with respect to feed water temperature.
  • the heat pump heat source system of the present embodiment includes a hot water storage unit 10, a heat pump unit 50, a gas heat source unit 80, and a controller 150 that controls the overall operation of the heat pump heat source system.
  • the hot water storage unit 10 includes a hot water storage tank 11, a water supply pipe 12, a hot water discharge pipe 13, and the like.
  • the hot water storage tank 11 retains hot water therein and stores tank temperature sensors 14 to 17 at substantially equal intervals in the height direction.
  • a drain valve 18 is provided at the bottom of the hot water storage tank 11 and is opened by an operator's manual operation.
  • One end of the water supply pipe 12 is connected to a water supply (not shown) via the water supply port 30, and the other end is connected to the lower part of the hot water storage tank 11 to supply water into the hot water storage tank 11 from the lower part of the hot water storage tank 11.
  • the water supply pipe 12 allows water to flow only in the direction from the water supply pipe 12 to the hot water storage tank 11 by preventing the internal pressure of the hot water storage tank 11 from becoming excessive, and to supply water from the hot water storage tank 11.
  • a first hot water side check valve 20 is provided to prevent outflow of hot water to the pipe 12 side.
  • a water supply bypass pipe 35 branched from the water supply pipe 12 communicates with the hot water discharge pipe 13 at the connection point X via the hot water supply mixing valve 21, and hot water supplied from the hot water storage tank 11 to the hot water supply pipe 13 by the hot water supply mixing valve 21.
  • the mixing ratio of the water supplied from the feed water bypass pipe 35 to the hot water discharge pipe 13 is changed.
  • the feed water bypass pipe 35 includes a feed water temperature sensor 22 that detects the temperature of the water supplied to the feed water bypass pipe 35, a water-side flow sensor 23 that detects the flow rate of water flowing through the feed water bypass pipe 35, and a feed water bypass pipe. There is provided a water-side check valve 24 that allows water flow only in the direction from the hot water discharge pipe 13 to the hot water discharge pipe 13 and prevents outflow of hot water from the hot water discharge pipe 13 to the feed water bypass pipe 35 side.
  • the hot water discharge pipe 13 has one end connected to the hot water supply port 31 and the other end connected to the upper part of the hot water storage tank 11.
  • Hot water stored in the upper part of the hot water storage tank 11 is supplied from a hot water outlet pipe 13 to a hot water tap (not shown) (kitchen, washroom, bathroom currant, shower, etc.) via a hot water outlet 31.
  • a second hot water side check valve 25 that allows the hot water pipe 13 to pass water only in the direction from the hot water storage tank 11 to the hot water discharge pipe 13 and prevents the hot water from flowing into the hot water storage tank 11 side from the hot water storage pipe 11.
  • a hot water temperature sensor 26 for detecting the temperature of hot water in the hot water discharge pipe 13 and a hot water side flow rate sensor 27 for detecting the flow rate of hot water flowing through the hot water discharge pipe 13 are provided.
  • a gas heat source unit 80 is provided at an intermediate position downstream of the connection point X of the hot water discharge pipe 13 with the water supply bypass pipe 35, and the hot water storage unit 10 bypasses the hot water supply auxiliary heat source machine 70 of the gas heat source unit 80.
  • a hot water bypass pipe 33 that communicates the downstream hot water pipe 13 and the upstream hot water pipe 13 of the hot water supply auxiliary heat source unit 70 and a hot water bypass valve 29 that opens and closes the hot water bypass pipe 33 are provided.
  • a mixing temperature sensor 28 that detects the temperature of hot water supplied to the hot water discharge pipe 13 through the hot water supply mixing valve 21 is provided between the hot water mixing valve 21 and the branch point Y of the hot water discharge pipe 13 with the hot water supply bypass pipe 33. ing.
  • a hot water supply temperature sensor 32 that detects the temperature of hot water discharged from the hot water supply port 31 is provided between the joining point Z of the hot water supply pipe 13 and the hot water supply bypass pipe 33 and the hot water supply port 31.
  • the heating circuit 40 connected to the heat pump unit 50 and the gas heat source unit 80 includes a heating heat pump return temperature sensor 45 that detects the temperature of the hot water returning from the heating circuit 40 to the heat pump unit 50 (the heating heat medium return temperature of the present invention). And a heating heat pump forward temperature sensor 46 that detects the temperature of the hot water heated by the heat pump unit 50 and discharged to the heating circuit 40.
  • the heating circuit 30 is provided in the downstream portion of the connection point with the heating circuit 40 on the downstream side of the heat pump bypass circuit 42 that bypasses the heat pump unit 50, and the hot water from the heating circuit 40 and the heat pump A heating and mixing temperature sensor 47 that detects the temperature of the hot water mixed with the hot water from the bypass passage 42 is provided.
  • a heating side mixing valve 48 is provided for adjusting the ratio of hot water flowing to the heating circuit 40 side and hot water flowing to the heat pump bypass line 42 side.
  • the tank circulation path 41 connected to the heat pump unit 50 is provided with a tank lower temperature sensor 34 that detects the temperature of hot water supplied from the hot water storage tank 11 to the tank circulation path 41.
  • the detection signal of each sensor provided in the hot water storage unit 10 is input to the controller 150. Further, the operation of the hot water supply mixing valve 21, the hot water bypass valve 29, and the heating side mixing valve 48 is controlled by a control signal output from the controller 150.
  • the heat pump unit 50 circulates and heats hot water in the hot water storage tank 11 via the tank circulation path 41 and heats hot water flowing in the heating circulation path 40 (corresponding to the heating heat medium of the present invention). It is for heating.
  • the heat pump unit 50 includes a heat pump 51 including an evaporator 53, a compressor 54, a heat pump heat exchanger 55 (condenser), and an expansion valve 56 connected by a heat pump circuit 52.
  • the evaporator 53 is the air supplied by the rotation of the fan 60 and a heat medium that circulates in the heat pump circuit 52 (corresponding to the heat pump heat medium of the present invention, such as alternative fluorocarbons such as hydrofluorocarbon (HFC), carbon dioxide).
  • a heat medium that circulates in the heat pump circuit 52 (corresponding to the heat pump heat medium of the present invention, such as alternative fluorocarbons such as hydrofluorocarbon (HFC), carbon dioxide).
  • HFC hydrofluorocarbon
  • the expansion valve 56 releases the pressure of the heat medium pressurized by the compressor 54.
  • the defrost valve 61 is provided to bypass the expansion valve 56 and defrosts the evaporator 53 with a heat medium sent from the compressor 54.
  • Heat medium temperature sensors 62, 63 for detecting the temperature of the heat medium circulating in the heat pump circuit 52 are provided upstream and downstream of the expansion valve 56 of the heat pump circuit 52 and upstream and downstream of the compressor 54. 64 and 65 are provided, respectively.
  • the evaporator 53 is provided with an ambient temperature sensor 67 that detects the temperature of air sucked into the evaporator 53.
  • the heat pump heat exchanger 55 is connected to the tank circulation path 41, and circulates in the tank circulation path 41 by heat exchange between the high-pressure and high-temperature heat medium by the compressor 54 and hot water flowing in the tank circulation path 41. Heat the hot water.
  • the tank circulation path 41 is provided with a tank circulation pump 66 for circulating hot water in the hot water storage tank 11 through the tank circulation path 41.
  • Hot water stored in the lower part of the hot water storage tank 11 is guided to the tank circulation path 41 by the tank circulation pump 66, heated by the heat pump heat exchanger 55, and returned to the upper part of the hot water storage tank 11.
  • a tank return temperature sensor 68 that detects the temperature of hot water flowing into the heat pump heat exchanger 55 from the tank circulation path 41 is provided.
  • a tank going-out temperature sensor 69 for detecting the temperature of hot water flowing out from the heat pump heat exchanger 55 to the tank circulation path 41 is provided.
  • the heat pump heat exchanger 55 is provided with an ambient temperature sensor 57 that detects the ambient temperature inside the heat pump heat exchanger 55.
  • the tank circulation path 41 communicates the upstream side and the downstream side of the heat pump heat exchanger 55 of the tank circulation path 41, and a part of hot water flowing out from the heat pump heat exchanger 55 to the tank circulation path 41 is circulated in the tank.
  • the mixing ratio of the hot water and the hot water supplied to the tank circulation path 41 from the hot water storage tank 11 and the hot water flowing into the tank circulation path 41 from the hot water reflux path 58 is returned to the upstream side of the heat pump heat exchanger 55 in the path 41.
  • a heat pump mixing valve 59 (corresponding to the mixing ratio changing unit of the present invention) to be changed is provided.
  • the heat pump heat exchanger 55 is connected to the heating circuit 40 and exchanges heat between the heat medium that has been increased in pressure and temperature by the compressor 54 and the hot water that flows through the heating circuit 40. Heat the hot water flowing through.
  • the detection signal of each sensor provided in the heat pump unit 50 is input to the controller 150. Further, the operation of the compressor 54, the tank circulation pump 66, the fan 60, and the heat pump mixing valve 59 is controlled by a control signal output from the controller 150.
  • the gas heat source unit 80 heats hot water supplied from the hot water discharge pipe 13 and hot water flowing through the heating circuit 40.
  • the gas heat source unit 80 includes a hot water supply auxiliary burner 71 having a hot water supply burner 71 and a hot water supply heat exchanger 72 heated by the hot water supply burner 71, a heating / reheating heating burner 76, and heating heat heated by the heating burner 76.
  • a heating auxiliary heat source device 75 having an exchanger 77, a reheating heat exchanger 87, and the like are provided.
  • the hot-water supply burner 71 and the heating burner 76 are supplied with fuel gas from a gas supply pipe (not shown) and supplied with combustion air by a combustion fan (not shown).
  • the controller 150 controls the combustion amount of the hot water supply burner 71 and the heating burner 76 by adjusting the flow rates of the fuel gas and the combustion air supplied to the hot water supply burner 71 and the heating burner 76.
  • the hot water supply heat exchanger 72 is connected in the middle of the hot water discharge pipe 13, and the hot water flowing through the hot water supply heat exchanger 72 is heated by the combustion heat of the hot water supply burner 71.
  • the hot water discharge pipe 13 is provided with a water amount servo valve 93 that changes the opening degree of the hot water discharge pipe 13 and a water amount sensor 88 that detects the flow rate of hot water flowing through the hot water discharge pipe 13 in order from the upstream side.
  • the upstream side and the downstream side of the hot water supply heat exchanger 72 are connected by a heat source bypass pipe 89, and the heat source bypass pipe 89 is provided with a heat source bypass valve 90 that changes the opening degree of the heat source bypass pipe 89.
  • a heat exchanger hot water temperature sensor 91 is provided in the vicinity of the outlet of the hot water supply heat exchanger 72 of the hot water discharge pipe 13, and a heat source hot water temperature sensor 92 is provided downstream of the location where the hot water supply pipe 13 is connected to the heat source bypass pipe 89. ing.
  • the hot water discharge pipe 13 communicates with the bath circulation path 102 connected to the bathtub 101 by the hot water filling pipe 100.
  • the hot water filling pipe 100 is provided with a hot water filling valve 103 that opens and closes the hot water filling pipe 100 and a check valve 104 that prevents inflow of hot water from the bath circuit 102 to the hot water discharge pipe 13. By opening the hot water filling valve 103, hot water can be supplied from the hot water discharge pipe 13 to the bathtub 101 via the hot water filling pipe 100 and the bath circulation path 102.
  • the bath circulation path 102 is provided with a bath circulation pump 105 that circulates hot water in the bathtub 101 through the bath circulation path 102 and a reheating heat exchanger 87.
  • the follow-up heat exchanger 87 is connected to the heating circuit 40 via a follow-up outgoing pipe 107 and a follow-up return pipe 108.
  • a tracking valve 109 for opening and closing the tracking pipe 107 is provided in the tracking pipe 107.
  • the controller 150 operates the bath circulation pump 105 and opens the reheating valve 109 in a state where hot water in the bathtub 101 is circulated through the bath circulation path 102 and operates a heating circulation pump 111 described later. Then, hot water in the bathtub 101 is reclaimed by circulatingly supplying hot water from the heating circulation path 40 to the reheating heat exchanger 87 via the retrace forward pipe 107 and the retrace return pipe 108.
  • the heating heat exchanger 77 is provided in the middle of the heating circuit 40 and heats the hot water flowing through the heating circuit 40 by the combustion heat of the heating burner 76.
  • the heating circuit 40 is connected to the floor heater 200 (corresponding to the heating terminal of the present invention) and the hot air heater 210 to supply heat from the hot water.
  • the heating circulation path 40 is provided with the heat pump heat exchanger 55 and the heating heat exchanger 77 of the heating auxiliary heat source machine 75, the systern 110, and the heating circulation pump 111.
  • the heating circulation path 40 is branched into a low temperature heating path 112 and a high temperature heating path 130 at a location between the heating circulation pump 111 and the heating heat exchanger 77.
  • the hot air heater 210 is connected to the high temperature heating path 130, and the floor heater 200 is connected to the low temperature heating path 112.
  • the high temperature heating path 130 and the low temperature heating path 112 merge on the downstream side of the hot air heater 210 and the floor heater 200.
  • a heating bypass path 113 that branches from the high temperature heating path 130 and communicates with the systern 110 at a location between the connection portion of the high temperature heating path 130 and the hot air heater 210 and the heating heat exchanger 77 is provided. Is provided with a heating bypass valve 114 for changing the opening degree of the heating bypass passage 113.
  • a return hot water temperature sensor 115 that detects the temperature of the hot water sent from the heating circulation pump 111 is provided. Further, in the vicinity of the outlet of the heating heat exchanger 77 in the heating circuit 40, an outgoing hot water temperature sensor 116 for detecting the temperature of the hot water sent from the heating heat exchanger 77 is provided.
  • the low-temperature heating path 112 is connected to the floor heater 200 via the thermal valve 120, and the supply and stop of hot water from the low-temperature heating path 112 to the floor heater 200 is switched by opening and closing the thermal valve 120. .
  • the supply and stop of hot water from the high temperature heating path 130 to the hot air heater 210 is performed by opening and closing a thermal valve 211 provided in the hot air heater 210.
  • a room temperature sensor 202 that detects the temperature of the room in which the floor heater 200 is installed is connected to the floor heating remote controller 201 for operating the floor heater 200.
  • the floor heating remote controller 201 and the controller 150 are communicably connected, and the target heating temperature data set by the floor heating remote controller 201 and the temperature detected by the room temperature sensor 202 are transmitted to the controller 150.
  • the heat source remote controller 160 is communicably connected to the controller 150.
  • the heat source remote controller 160 is provided with a display 161 that displays the operating state of the heat pump heat source system, the operating condition setting state, and the like, and an operation unit 162 that sets the operating condition of the heat pump heat source system.
  • the user of the heat pump heat source system operates the operation unit 162 of the heat source remote controller 160 to instruct the boiling of hot water in the hot water storage tank 11, the hot water supply temperature from the hot water supply port 31 (set hot water supply temperature), and hot water supply to the bathtub 101. Temperature (set hot water temperature) and the like can be set.
  • the detection signal of each sensor provided in the gas heat source unit 80 is input to the controller 150. Further, according to the control signal output from the controller 150, the hot water supply burner 71, the heating burner 76, the heat source bypass valve 90, the water amount servo valve 93, the hot water filling valve 103, the bath circulation pump 105, the recirculation valve 109, the heating circulation pump 111, The operations of the heating bypass valve 114 and the thermal valve 120 are controlled.
  • the controller 150 is an electronic circuit unit configured by a CPU, a memory, and the like (not shown), and the heating control unit 151 and the tank control unit 152 are executed by the CPU executing a control program for the heat pump heat source system held in the memory. And functions as an operation control unit 153 to control the operation of the heat pump heat source system.
  • the heating control unit 151 performs a heating operation for radiating heat from the floor heater 200.
  • the tank control unit 152 performs a boiling operation for heating the hot water in the hot water storage tank 11 to a boiling temperature corresponding to a hot water supply temperature (set hot water supply temperature or set hot water temperature) set by the heat source remote controller 160.
  • the operation control unit 153 permits the simultaneous operation of the heating operation and the boiling operation when the execution condition of the heating operation (heating execution condition) and the execution condition of the boiling operation (boiling execution condition) are both established. Determine whether or not.
  • the heating control unit 151 determines whether the heating execution condition is satisfied. As the heating execution condition, for example, (1) the user has started the heating start operation of the floor heating remote control 201, (2) the timer operation start time set by the floor heating remote control 201 has been reached, Is set.
  • the process proceeds to STEP 2, and the heating control unit 151 stops the flow of hot water from the heating side mixing valve 48 to the heat pump bypass path 42 side by the heating side mixing valve 48, It is set as the circulation state which distribute
  • the heating control unit 151 turns on (starts up) the heating circulation pump 111, and turns on the heat pump 51 in STEP 4. Thereby, in the heat pump heat exchanger 55, the hot water circulating in the heating circuit 40 is heated by the heat medium circulating in the heat pump circuit 52 and supplied to the floor heater 200, and heating by the floor heater 200 is performed. Done.
  • the process branches to STEP20. Then, the heating control unit 151 turns off (stops) the heating circulation pump 111 in STEP 20, turns off the heat pump 51 in STEP 21, and returns to STEP 1.
  • STEP 5 to STEP 9 and STEP 30 are processes by the operation control unit 153.
  • the operation control unit 153 measures the temperature of warm water flowing into the heat pump heat exchanger 55 from the heating circuit 40 (hereinafter referred to as heating return temperature Thb) by the heating return temperature sensor 45 in STEP5.
  • the operation control unit 153 determines whether the boiling execution condition is satisfied.
  • the boiling-up execution condition it is set that the hot water storage tank 11 is out of hot water.
  • the hot water supply auxiliary heat source unit 70 operates, (2) the temperature detected by the tank temperature sensor 17 falls below the hot water judgment temperature (for example, the boiling temperature -5 ° C.), (3 This is determined by the fact that the temperature detected by the hot water temperature sensor 26 has dropped below the hot water determination temperature.
  • the process proceeds to STEP7, and when the boiling execution condition is not satisfied, the process returns to STEP1.
  • the operation control unit 153 measures the temperature of hot water flowing into the heat pump heat exchanger 55 from the tank circulation path 41 (hereinafter referred to as tank return temperature Ttb) by the tank return temperature sensor 68. In subsequent STEP 8, the operation control unit 153 determines whether the temperature difference (absolute value) ⁇ Tb between the heating return temperature Thb and the tank return temperature Ttb is smaller than 5 ° C. (corresponding to the predetermined determination temperature of the present invention). Determine whether.
  • the process branches to STEP 30, and the operation control unit 153 permits the simultaneous operation of the heating operation and the boiling operation and returns to STEP 1.
  • the temperature difference ⁇ Tb between the temperature Thb of hot water flowing from the heating circuit 40 into the heat pump heat exchanger 55 and the temperature Ttb of hot water flowing from the tank circuit 41 into the heat pump heat exchanger 55 is small, and heat pump heat exchange is performed.
  • the heater 55 only when the influence of the heat loss increase in the heat pump heat exchanger 55 due to heat exchange between the hot water flowing through the heating circuit 40 and the hot water flowing through the tank circuit 41 is small, Simultaneous operation of heating operation and boiling operation is permitted.
  • the process proceeds to STEP 9, and the operation control unit 153 prohibits the simultaneous operation of the heating operation and the boiling operation and returns to STEP 1.
  • the temperature difference ⁇ Tb between the temperature Thb of hot water flowing from the heating circuit 40 into the heat pump heat exchanger 55 and the temperature Ttb of hot water flowing from the tank circuit 41 into the heat pump heat exchanger 55 is large, and heat pump heat exchange is performed.
  • the influence of the increase in heat loss in the heat pump heat exchanger 55 due to the heat exchange between the hot water flowing through the heating circuit 40 and the hot water flowing through the tank circuit 41 is large in the heater 55, Simultaneous operation of boiling-up operation is prohibited.
  • FIG. 4 shows the relationship between the water supply temperature to the hot water supply auxiliary heat source unit 70 and the heating auxiliary heat source unit 75 (hereinafter collectively referred to as the heat source unit) and the thermal efficiency, and the vertical axis indicates the thermal efficiency of the heat source unit. (Primary energy efficiency,%) is set, and the horizontal axis is set to the temperature of the water supply to the heat source machine (temperature of water supplied to the heat source machine, ° C.).
  • FIG. 4 shows that the heat efficiency of the heat source device decreases as the feed water temperature to the heat source device increases.
  • the temperature of the water supply to the hot water supply auxiliary heat source device 70 is the temperature of the hot water storage tank 11.
  • the temperature of the water supply to the heating auxiliary heat source device 75 (from the heating circuit 40 to the heating auxiliary heat source device 75 is reduced while the temperature becomes low (for example, 5 ° C., for example, 25 ° C. for a latent heat recovery type heat source device) due to running out of hot water.
  • the temperature of the inflowing hot water is about 30 ° C. Therefore, the hot water supply auxiliary heat source unit 70 has higher thermal efficiency than the heating auxiliary heat source unit 75.
  • STEP 50 to STEP 53 and STEP 70 to STEP 71 are processes performed by the heating control unit 151. Since this processing is the same as the processing in STEP 1 to STEP 4 and STEP 20 to STEP 21 in the first embodiment described above, description thereof is omitted here.
  • STEP54 to STEP59, STEP80, and STEP81 are processes by the operation control unit 153.
  • the operation control unit 153 measures the heating return temperature Thb by the heating return temperature sensor 45 in STEP54.
  • the operation control unit 153 determines whether or not the boiling execution condition is satisfied. When the boiling execution condition is satisfied, the process proceeds to STEP 56, and when the boiling execution condition is not satisfied, the process returns to STEP 50.
  • the operation control unit 153 measures the tank return temperature Ttb by the tank return temperature sensor 68. In subsequent STEP 57, the operation control unit 153 determines whether or not the temperature difference (absolute value) ⁇ Tb between the heating return temperature Thb and the tank return temperature Ttb is 5 ° C. or more.
  • the process branches to STEP80, and when the temperature difference ⁇ Tb is smaller than 5 ° C., the process proceeds to STEP58.
  • the operation control unit 153 operates the tank circulation pump 66, and the heat pump mixing valve 59 supplies the flow rate of hot water supplied from the hot water storage tank 11 to the tank circulation path 41 and the hot water return path 58 to the tank circulation path 41.
  • the temperature control is performed by changing the mixing ratio with the flow rate of the hot and cold water to reduce the temperature difference ⁇ Tb, and the process proceeds to STEP58.
  • the operation control unit 153 determines whether or not the temperature difference ⁇ Tb between the heating return temperature Thb and the tank return temperature Ttb is less than 5 ° C. And when temperature difference (DELTA) Tb is less than 5 degreeC, it branches to STEP81, and the operation control part 153 permits simultaneous operation of heating operation and boiling operation, and returns to STEP50.
  • DELTA temperature difference
  • the temperature difference ⁇ Tb between the temperature Thb of hot water flowing from the heating circuit 40 into the heat pump heat exchanger 55 and the temperature Ttb of hot water flowing from the tank circuit 41 into the heat pump heat exchanger 55 is small, and heat pump heat exchange is performed.
  • the heating operation and the boiling-up are performed only when the influence of the efficiency reduction of the heat pump 51 due to the heat exchange between the hot water flowing through the heating circuit 40 and the hot water flowing through the tank circuit 41 is small. Simultaneous driving is allowed.
  • the process proceeds to STEP 59, and the operation control unit 153 prohibits the simultaneous operation of the heating operation and the boiling operation and returns to STEP 50.
  • the temperature Thb of the hot water which flows into the heat pump heat exchanger 55 from the heating circuit 40 and the temperature Ttb of the hot water which flows into the heat pump heat exchanger 55 from the tank circuit 41
  • the difference ⁇ Tb is large and the heat pump heat exchanger 55 is greatly affected by a decrease in efficiency of the heat pump 51 due to heat exchange between hot water flowing through the heating circulation path 40 and hot water flowing through the tank circulation path 41, Simultaneous operation of heating operation and boiling operation is prohibited.
  • the floor heater 200 was demonstrated to the example as a heating terminal of this invention, you may apply this invention by making the warm air heater 210 into the heating terminal of this invention.
  • the heat source machine which uses a gas burner as a heating means was shown as the hot water supply auxiliary heat source machine 70 and the heating auxiliary heat source machine 75, a heat source machine using other types of heating means such as a kerosene burner was used. Also good.

Abstract

 This heat pump heat supply system is provided with an operation control unit (153) which, when heating implementation conditions and boiling implementation conditions are both established, permits the simultaneous operation of a heating operation and a boiling operation if the temperature difference (ΔTb) between the temperature (Thb) of a heating heat medium that flows from a heating circulation path (40) to a heat pump heat exchanger (55) and the temperature (Ttb) of hot water that flows from a tank circulation path (41) to the heat pump heat exchanger (55) is below a prescribed determination temperature.

Description

ヒートポンプ熱源システムHeat pump heat source system
 本発明は、ヒートポンプによって、貯湯タンク内の湯水の加熱と、暖房端末が接続された暖房循環路内を循環する暖房熱媒体の加熱を行うヒートポンプ熱源システムに関する。 The present invention relates to a heat pump heat source system that heats hot water in a hot water storage tank and heats a heating heat medium that circulates in a heating circulation path to which a heating terminal is connected by a heat pump.
 従来より、ヒートポンプの熱媒体が循環されるヒートポンプ循環路と、貯湯タンク内の湯水が循環されるタンク循環路と、暖房端末が接続されて暖房熱媒体が循環される暖房循環路の途中に接続されて、ヒートポンプの熱媒体とタンク循環路内の湯水及び暖房循環路内の暖房熱媒体との間で熱交換を行なうヒートポンプ熱交換器を備えたヒートポンプ熱源システムが提案されている(例えば、特許文献1参照)。 Conventionally, connected to the heat pump circulation path through which the heat medium of the heat pump is circulated, the tank circulation path through which the hot water in the hot water storage tank is circulated, and the heating circulation path through which the heating terminal is connected and the heating heat medium is circulated In addition, a heat pump heat source system including a heat pump heat exchanger that performs heat exchange between the heat medium of the heat pump and the hot water in the tank circuit and the heating medium in the heating circuit has been proposed (for example, a patent) Reference 1).
 特許文献1に記載されたヒートポンプ熱源システムにおいては、貯湯タンクから給湯する給湯運転と、暖房循環路内の暖房熱媒体を循環させてヒートポンプにより加熱する暖房運転とを同時に行っているときに、貯湯タンクの湯切れが生じたときには、暖房循環路からヒートポンプ熱交換器への暖房熱媒体の流量を減少させるか、或いは暖房熱媒体の流通を停止して、タンク循環路に貯湯タンク内の湯水を循環させて貯湯タンク内の湯水を加熱する沸かし上げ運転を行うようにしている。 In the heat pump heat source system described in Patent Literature 1, when hot water supply operation for supplying hot water from a hot water storage tank and heating operation for heating by a heat pump by circulating a heating heat medium in a heating circuit are performed simultaneously, When the tank runs out of hot water, reduce the flow rate of the heating heat medium from the heating circuit to the heat pump heat exchanger, or stop the flow of the heating heat medium, and supply hot water in the hot water storage tank to the tank circuit. A boiling operation is performed to circulate and heat the hot water in the hot water storage tank.
特開2009-250481号公報JP 2009-250481 A
 上記特許文献1に記載されたヒートポンプ熱源システムにおいては、貯湯タンクの湯切れが生じたときに、ヒートポンプ熱交換器への暖房熱媒体の流通量を減少させて、沸かし上げ運転と暖房運転の同時運転を行なうか、或いは暖房運転を停止して沸かし上げ運転のみを行なうようにしている。 In the heat pump heat source system described in Patent Document 1, when the hot water storage tank runs out, the flow rate of the heating heat medium to the heat pump heat exchanger is reduced, and the boiling operation and the heating operation are performed simultaneously. The operation is performed, or the heating operation is stopped and only the boiling operation is performed.
 ここで、沸かし上げ運転又は暖房運転の単独運転を行なうときには、ヒートポンプ熱交換器において、ヒートポンプの熱媒体と、タンク循環路を流通する温水又は暖房循環路を流通する暖房熱媒体との間で熱交換が行われるが、この熱交換においてはある程度の熱損失が生じる。 Here, when the boiling operation or the heating operation is performed alone, in the heat pump heat exchanger, heat is generated between the heat medium of the heat pump and the hot water flowing through the tank circulation path or the heating heat medium flowing through the heating circulation path. Although exchange is performed, a certain amount of heat loss occurs in this heat exchange.
 また、沸かし上げ運転と暖房運転の同時運転を行なうと、ヒートポンプ熱交換器において、ヒートポンプの熱媒体と暖房熱媒体及び温水との間の熱交換に加えて、暖房熱媒体と温水との間でも熱交換が行われる場合があり、この場合には、ヒートポンプ熱交換器における熱損失が増大するという不都合がある。 In addition, when the heating operation and the heating operation are performed at the same time, in the heat pump heat exchanger, in addition to the heat exchange between the heat medium of the heat pump and the heating heat medium and the hot water, between the heating heat medium and the hot water, There is a case where heat exchange is performed. In this case, there is a disadvantage that heat loss in the heat pump heat exchanger increases.
 本発明はかかる背景に鑑みてなされたものであり、暖房運転と沸かし上げ運転の実行要求がなされているときに、暖房運転と沸かし上げ運転の同時運転により、ヒートポンプ熱交換器における熱損失が増大することを抑制したヒートポンプ熱源システムを提供することを目的とする。 The present invention has been made in view of such a background, and when a heating operation and a boiling operation are requested to be executed, heat loss in the heat pump heat exchanger increases due to simultaneous operation of the heating operation and the boiling operation. It aims at providing the heat pump heat source system which suppressed doing.
 本発明は上記目的を達成するためになされたものであり、
 下部に給水管が接続されると共に上部に出湯管が接続され、該給水管から供給される水が貯められる貯湯タンクと、
 前記貯湯タンクの下部と上部を接続したタンク循環路と、
 前記貯湯タンクの下部に貯まった水を前記タンク循環路を介して前記貯湯タンクの上部に循環させるタンク循環ポンプと、
 暖房端末が接続された暖房循環路と、
 前記暖房循環路内に暖房熱媒体を循環させる暖房循環ポンプと、
 ヒートポンプ循環路を有し、該ヒートポンプ循環路内を循環するヒートポンプ熱媒体を加熱するヒートポンプと、
 前記ヒートポンプ循環路と前記タンク循環路と前記暖房循環路の途中に設けられて、前記ヒートポンプ循環路内を循環するヒートポンプ熱媒体と、前記タンク循環路内を循環する湯水及び前記暖房循環路内を循環する暖房熱媒体との間で、熱交換を行なうヒートポンプ熱交換器と、
 所定の暖房実行条件が成立しているときに、前記暖房循環ポンプと前記ヒートポンプを作動させることにより、前記暖房循環路内を循環する暖房熱媒体を加熱して前記暖房端末から放熱する暖房運転を行なう暖房制御部と、
 所定の沸かし上げ実行条件が成立しているときに、前記タンク循環ポンプと前記ヒートポンプを作動させることにより、前記タンク循環路内を循環する前記貯湯タンクからの湯水を所定の沸かし上げ温度まで加熱する沸かし上げ運転を実行するタンク制御部とを備えたヒートポンプ熱源システムに関する。
The present invention has been made to achieve the above object,
A hot water storage tank in which a water supply pipe is connected to the lower portion and a hot water discharge pipe is connected to the upper portion and water supplied from the water supply pipe is stored,
A tank circulation path connecting the lower and upper parts of the hot water storage tank;
A tank circulation pump for circulating water stored in the lower part of the hot water storage tank to the upper part of the hot water storage tank through the tank circulation path;
A heating circuit to which a heating terminal is connected;
A heating circulation pump for circulating a heating heat medium in the heating circulation path;
A heat pump having a heat pump circuit, and heating a heat pump heat medium circulating in the heat pump circuit;
A heat pump heat medium that is provided in the middle of the heat pump circuit, the tank circuit, and the heating circuit, circulates in the heat pump circuit, hot water that circulates in the tank circuit, and the heating circuit A heat pump heat exchanger that exchanges heat with a circulating heating heat medium;
When a predetermined heating execution condition is established, the heating circulation pump and the heat pump are operated, thereby heating the heating heat medium circulating in the heating circulation path and radiating heat from the heating terminal. A heating control unit to perform,
When a predetermined boiling-up execution condition is established, the tank circulation pump and the heat pump are operated to heat hot water from the hot water tank circulating in the tank circulation path to a predetermined boiling temperature. The present invention relates to a heat pump heat source system including a tank control unit that performs a boiling operation.
 そして、前記ヒートポンプ熱源システムに、
 前記暖房循環路から前記ヒートポンプ熱交換器に流入する暖房熱媒体の温度を検出する暖房熱媒体戻り温度センサと、
 前記タンク循環路から前記ヒートポンプ熱交換器に流入する湯水の温度を検出するタンク戻り温度センサと、
 前記暖房実行条件と前記沸かし上げ実行条件が共に成立しているときに、前記暖房循環路から前記ヒートポンプ熱交換器に流入する暖房熱媒体の温度と、前記タンク循環路から前記ヒートポンプ熱交換器に流入する湯水の温度との温度差が、所定の判定温度よりも小さいときには、前記暖房運転と前記沸かし上げ運転の同時運転を許可する運転制御部とを備えたことを特徴とする(第1発明)。
And in the heat pump heat source system,
A heating heat medium return temperature sensor for detecting the temperature of the heating heat medium flowing into the heat pump heat exchanger from the heating circuit;
A tank return temperature sensor for detecting the temperature of hot water flowing into the heat pump heat exchanger from the tank circulation path;
When both the heating execution condition and the boiling execution condition are satisfied, the temperature of the heating heat medium flowing into the heat pump heat exchanger from the heating circuit and the tank circuit to the heat pump heat exchanger An operation control unit that permits simultaneous operation of the heating operation and the boiling operation when a temperature difference from the temperature of the flowing hot water is smaller than a predetermined determination temperature (first invention) ).
 第1発明によれば、前記運転制御部により、前記暖房実行条件と前記沸かし上げ実行条件が共に成立しているときに、前記暖房循環路から前記暖房循環路から前記ヒートポンプ熱交換器に流入する暖房熱媒体の温度と、前記タンク循環路から前記ヒートポンプ熱交換器に流入する湯水の温度との温度差が、所定の判定温度よりも小さいときには、前記暖房運転と前記沸かし上げ運転の同時運転が許可される。 According to the first aspect of the present invention, when both the heating execution condition and the boiling execution condition are satisfied by the operation control unit, the operation control unit flows into the heat pump heat exchanger from the heating circuit. When the temperature difference between the temperature of the heating heat medium and the temperature of hot water flowing into the heat pump heat exchanger from the tank circulation path is smaller than a predetermined determination temperature, the heating operation and the boiling operation are simultaneously performed. Allowed.
 そのため、前記暖房循環路から前記ヒートポンプ熱交換器に流入する暖房熱媒体の温度が、前記タンク循環路から前記ヒートポンプ熱交換器に流入する湯水の温度よりも前記判定温度以上高い状態で、前記暖房運転と前記沸かし上げ運転が同時に実行され、前記ヒートポンプ熱交換器において、前記暖房循環路の暖房熱媒体と前記タンク循環路の湯水との間で熱交換が行われて、前記ヒートポンプ熱交換器における熱損失が増大することを抑制することができる。 Therefore, in the state where the temperature of the heating heat medium flowing into the heat pump heat exchanger from the heating circuit is higher than the determination temperature than the temperature of hot water flowing into the heat pump heat exchanger from the tank circuit, the heating The operation and the boiling operation are performed simultaneously, and in the heat pump heat exchanger, heat exchange is performed between the heating heat medium in the heating circuit and hot water in the tank circuit, and in the heat pump heat exchanger An increase in heat loss can be suppressed.
 また、第1発明において、
 前記タンク循環路の前記ヒートポンプ熱交換器の上流側と下流側とを連通して、前記ヒートポンプ熱交換器から前記タンク循環路に流出する湯水の一部を、前記タンク循環路の前記ヒートポンプ熱交換器の上流側に戻す湯水還流路と、
 前記貯湯タンクから前記タンク循環路に流出する湯水と、前記湯水還流路から前記タンク循環路に流出する湯水の混合比を変更する混合比変更部とを備え、
 前記運転制御部は、前記暖房循環路から前記ヒートポンプ熱交換器に流入する暖房熱媒体の温度が、前記タンク循環路から前記ヒートポンプ熱交換器に流入する湯水の温度よりも前記判定温度以上高いときには、前記混合比変更部により前記混合比を変更して、前記暖房循環路から前記ヒートポンプ熱交換器に流入する暖房熱媒体の温度と、前記タンク循環路から前記ヒートポンプ熱交換器に流入する湯水の温度との温度差を減少させる処理を行うことを特徴とする(第2発明)。
In the first invention,
A part of the hot water flowing out from the heat pump heat exchanger to the tank circulation path is communicated with the upstream side and the downstream side of the heat pump heat exchanger in the tank circulation path, and the heat pump heat exchange in the tank circulation path A hot water return passage returning to the upstream side of the vessel,
Hot water flowing out from the hot water storage tank to the tank circulation path, and a mixing ratio changing unit for changing the mixing ratio of hot water flowing out from the hot water reflux path to the tank circulation path,
When the temperature of the heating heat medium flowing into the heat pump heat exchanger from the heating circuit is higher than the determination temperature than the temperature of hot water flowing into the heat pump heat exchanger from the tank circuit, the operation control unit The mixing ratio changing unit changes the mixing ratio, the temperature of the heating heat medium flowing from the heating circuit into the heat pump heat exchanger, and hot water flowing into the heat pump heat exchanger from the tank circuit A process for reducing the temperature difference from the temperature is performed (second invention).
 第2発明によれば、前記暖房循環路から前記ヒートポンプ熱交換器に流入する暖房熱媒体の温度が、前記タンク循環路から前記ヒートポンプ熱交換器に流入する湯水の温度よりも前記判定温度以上高いときには、前記運転制御部により、これらの温度の差を減少させる処理が行われる。そのため、前記ヒートポンプの効率低下を防止して、前記暖房運転と前記沸かし上げ運転の同時運転を行なうことができる状況となる範囲を拡大することができる。 According to the second invention, the temperature of the heating heat medium flowing into the heat pump heat exchanger from the heating circuit is higher than the determination temperature than the temperature of hot water flowing into the heat pump heat exchanger from the tank circuit. Sometimes, the operation control unit performs a process of reducing the difference between these temperatures. Therefore, the efficiency range of the heat pump can be prevented from being reduced, and the range in which the heating operation and the boiling operation can be performed simultaneously can be expanded.
ヒートポンプ熱源システムの構成図。The block diagram of a heat pump heat source system. 暖房運転と沸かし上げ運転の同時運転処理の第1実施形態のフローチャート。The flowchart of 1st Embodiment of the simultaneous operation process of heating operation and boiling operation. 暖房運転と沸かし上げ運転の同時運転処理の第2実施形態のフローチャート。The flowchart of 2nd Embodiment of the simultaneous operation process of heating operation and boiling operation. 給水温度に対する熱源機の効率の説明図。Explanatory drawing of the efficiency of the heat source machine with respect to feed water temperature.
 本発明の実施形態について、図1~図4を参照して説明する。図1を参照して、本実施形態のヒートポンプ熱源システムは、貯湯ユニット10、ヒートポンプユニット50、ガス熱源ユニット80、及び、ヒートポンプ熱源システムの全体的な作動を制御するコントローラ150を備えている。 Embodiments of the present invention will be described with reference to FIGS. Referring to FIG. 1, the heat pump heat source system of the present embodiment includes a hot water storage unit 10, a heat pump unit 50, a gas heat source unit 80, and a controller 150 that controls the overall operation of the heat pump heat source system.
 貯湯ユニット10は、貯湯タンク11、給水管12、出湯管13等を備えている。貯湯タンク11は内部に湯水を保温して貯め、高さ方向に略等間隔でタンク温度センサ14~17が設けられている。貯湯タンク11の底部には、作業者の手動操作により開弁される排水弁18が設けられている。 The hot water storage unit 10 includes a hot water storage tank 11, a water supply pipe 12, a hot water discharge pipe 13, and the like. The hot water storage tank 11 retains hot water therein and stores tank temperature sensors 14 to 17 at substantially equal intervals in the height direction. A drain valve 18 is provided at the bottom of the hot water storage tank 11 and is opened by an operator's manual operation.
 給水管12は、一端が給水口30を介して図示しない水道に接続され、他端が貯湯タンク11の下部に接続されて、貯湯タンク11の下部から貯湯タンク11内に水を供給する。給水管12には、貯湯タンク11の内圧が過大になることを防止するための減圧弁19と、給水管12から貯湯タンク11への方向のみの通水を可能にして、貯湯タンク11から給水管12側への湯水の流出を阻止する第1湯側逆止弁20が設けられている。 One end of the water supply pipe 12 is connected to a water supply (not shown) via the water supply port 30, and the other end is connected to the lower part of the hot water storage tank 11 to supply water into the hot water storage tank 11 from the lower part of the hot water storage tank 11. The water supply pipe 12 allows water to flow only in the direction from the water supply pipe 12 to the hot water storage tank 11 by preventing the internal pressure of the hot water storage tank 11 from becoming excessive, and to supply water from the hot water storage tank 11. A first hot water side check valve 20 is provided to prevent outflow of hot water to the pipe 12 side.
 給水管12から分岐した給水バイパス管35は、給湯混合弁21を介して接続箇所Xで出湯管13に連通しており、給湯混合弁21によって、貯湯タンク11から出湯管13に供給される湯水と給水バイパス管35から出湯管13に供給される水との混合比が変更される。 A water supply bypass pipe 35 branched from the water supply pipe 12 communicates with the hot water discharge pipe 13 at the connection point X via the hot water supply mixing valve 21, and hot water supplied from the hot water storage tank 11 to the hot water supply pipe 13 by the hot water supply mixing valve 21. The mixing ratio of the water supplied from the feed water bypass pipe 35 to the hot water discharge pipe 13 is changed.
 給水バイパス管35には、給水バイパス管35に供給される水の温度を検出する給水温度センサ22と、給水バイパス管35を流通する水の流量を検出する水側流量センサ23と、給水バイパス管35から出湯管13への方向のみの通水を可能にして、出湯管13から給水バイパス管35側への湯水の流出を阻止する水側逆止弁24とが設けられている。 The feed water bypass pipe 35 includes a feed water temperature sensor 22 that detects the temperature of the water supplied to the feed water bypass pipe 35, a water-side flow sensor 23 that detects the flow rate of water flowing through the feed water bypass pipe 35, and a feed water bypass pipe. There is provided a water-side check valve 24 that allows water flow only in the direction from the hot water discharge pipe 13 to the hot water discharge pipe 13 and prevents outflow of hot water from the hot water discharge pipe 13 to the feed water bypass pipe 35 side.
 出湯管13は、一端が給湯口31に接続され、他端が貯湯タンク11の上部に接続されている。貯湯タンク11の上部に貯められた湯水は、出湯管13から給湯口31を介して図示しない給湯栓(台所、洗面所、浴室のカランやシャワー等)に供給される。出湯管13には、貯湯タンク11から出湯管13への方向のみの通水を可能にして、出湯管13から貯湯タンク11側への湯水の流入を阻止する第2湯側逆止弁25と、出湯管13内の湯水の温度を検出する湯温度センサ26と、出湯管13を流通する湯水の流量を検出する湯側流量センサ27とが設けられている。 The hot water discharge pipe 13 has one end connected to the hot water supply port 31 and the other end connected to the upper part of the hot water storage tank 11. Hot water stored in the upper part of the hot water storage tank 11 is supplied from a hot water outlet pipe 13 to a hot water tap (not shown) (kitchen, washroom, bathroom currant, shower, etc.) via a hot water outlet 31. A second hot water side check valve 25 that allows the hot water pipe 13 to pass water only in the direction from the hot water storage tank 11 to the hot water discharge pipe 13 and prevents the hot water from flowing into the hot water storage tank 11 side from the hot water storage pipe 11. A hot water temperature sensor 26 for detecting the temperature of hot water in the hot water discharge pipe 13 and a hot water side flow rate sensor 27 for detecting the flow rate of hot water flowing through the hot water discharge pipe 13 are provided.
 出湯管13の給水バイパス管35との接続箇所Xよりも下流側の途中箇所に、ガス熱源ユニット80が設けられ、貯湯ユニット10には、ガス熱源ユニット80の給湯補助熱源機70をバイパスして、給湯補助熱源機70の下流側と上流側の出湯管13を連通する出湯バイパス管33と、出湯バイパス管33を開閉する出湯バイパス弁29とが設けられている。 A gas heat source unit 80 is provided at an intermediate position downstream of the connection point X of the hot water discharge pipe 13 with the water supply bypass pipe 35, and the hot water storage unit 10 bypasses the hot water supply auxiliary heat source machine 70 of the gas heat source unit 80. A hot water bypass pipe 33 that communicates the downstream hot water pipe 13 and the upstream hot water pipe 13 of the hot water supply auxiliary heat source unit 70 and a hot water bypass valve 29 that opens and closes the hot water bypass pipe 33 are provided.
 出湯管13の出湯バイパス管33との分岐箇所Yと給湯混合弁21との間に、給湯混合弁21を介して出湯管13に供給される湯水の温度を検出する混合温度センサ28が設けられている。出湯管13の出湯バイパス管33との合流箇所Zと給湯口31との間に、給湯口31から出湯される湯水の温度を検出する給湯温度センサ32が設けられている。 A mixing temperature sensor 28 that detects the temperature of hot water supplied to the hot water discharge pipe 13 through the hot water supply mixing valve 21 is provided between the hot water mixing valve 21 and the branch point Y of the hot water discharge pipe 13 with the hot water supply bypass pipe 33. ing. A hot water supply temperature sensor 32 that detects the temperature of hot water discharged from the hot water supply port 31 is provided between the joining point Z of the hot water supply pipe 13 and the hot water supply bypass pipe 33 and the hot water supply port 31.
 ヒートポンプユニット50及びガス熱源ユニット80と接続された暖房循環路40には、暖房循環路40からヒートポンプユニット50に戻る温水の温度を検出する暖房ヒートポンプ戻り温度センサ45(本発明の暖房熱媒体戻り温度センサに相当する)と、ヒートポンプユニット50により加熱されて暖房循環路40に出湯される温水の温度を検出する暖房ヒートポンプ往き温度センサ46とが設けられている。 The heating circuit 40 connected to the heat pump unit 50 and the gas heat source unit 80 includes a heating heat pump return temperature sensor 45 that detects the temperature of the hot water returning from the heating circuit 40 to the heat pump unit 50 (the heating heat medium return temperature of the present invention). And a heating heat pump forward temperature sensor 46 that detects the temperature of the hot water heated by the heat pump unit 50 and discharged to the heating circuit 40.
 また、暖房循環路30には、ヒートポンプユニット50をバイパスするヒートポンプバイパス路42の下流側での暖房循環路40との接続箇所の直下流部に設けられて、暖房循環路40からの温水とヒートポンプバイパス路42からの温水とが混合された温水の温度を検出する暖房混合温度センサ47が設けられている。 Further, the heating circuit 30 is provided in the downstream portion of the connection point with the heating circuit 40 on the downstream side of the heat pump bypass circuit 42 that bypasses the heat pump unit 50, and the hot water from the heating circuit 40 and the heat pump A heating and mixing temperature sensor 47 that detects the temperature of the hot water mixed with the hot water from the bypass passage 42 is provided.
 さらに、暖房循環路40側に流通する温水とヒートポンプバイパス路42側に流通する湯水の割合を調節するための暖房側混合弁48が設けられている。また、ヒートポンプユニット50と接続されたタンク循環路41には、貯湯タンク11からタンク循環路41に供給される湯水の温度を検出するタンク下温度センサ34が設けられている。 Furthermore, a heating side mixing valve 48 is provided for adjusting the ratio of hot water flowing to the heating circuit 40 side and hot water flowing to the heat pump bypass line 42 side. The tank circulation path 41 connected to the heat pump unit 50 is provided with a tank lower temperature sensor 34 that detects the temperature of hot water supplied from the hot water storage tank 11 to the tank circulation path 41.
 貯湯ユニット10に備えられた各センサの検出信号は、コントローラ150に入力される。また、コントローラ150から出力される制御信号によって、給湯混合弁21、出湯バイパス弁29、及び暖房側混合弁48の作動が制御される。 The detection signal of each sensor provided in the hot water storage unit 10 is input to the controller 150. Further, the operation of the hot water supply mixing valve 21, the hot water bypass valve 29, and the heating side mixing valve 48 is controlled by a control signal output from the controller 150.
 次に、ヒートポンプユニット50は、貯湯タンク11内の湯水をタンク循環路41を介して循環させて加熱すると共に、暖房循環路40内を流通する温水(本発明の暖房熱媒体に相当する)を加熱するものである。ヒートポンプユニット50は、ヒートポンプ循環路52により接続された蒸発器53、圧縮機54、ヒートポンプ熱交換器55(凝縮機)、及び膨張弁56により構成されたヒートポンプ51を有している。 Next, the heat pump unit 50 circulates and heats hot water in the hot water storage tank 11 via the tank circulation path 41 and heats hot water flowing in the heating circulation path 40 (corresponding to the heating heat medium of the present invention). It is for heating. The heat pump unit 50 includes a heat pump 51 including an evaporator 53, a compressor 54, a heat pump heat exchanger 55 (condenser), and an expansion valve 56 connected by a heat pump circuit 52.
 蒸発器53は、ファン60の回転により供給される空気とヒートポンプ循環路52内を流通する熱媒体(ハイドロフルオロカーボン(HFC)等の代替フロン、二酸化炭素等、本発明のヒートポンプ熱媒体に相当する)との間で熱交換を行う。圧縮機54は、蒸発器53から吐出された熱媒体を圧縮して高圧・高温とし、ヒートポンプ熱交換器55に送出する。膨張弁56は、圧縮機54で加圧された熱媒体の圧力を開放する。 The evaporator 53 is the air supplied by the rotation of the fan 60 and a heat medium that circulates in the heat pump circuit 52 (corresponding to the heat pump heat medium of the present invention, such as alternative fluorocarbons such as hydrofluorocarbon (HFC), carbon dioxide). Exchange heat with The compressor 54 compresses the heat medium discharged from the evaporator 53 to high pressure and high temperature, and sends it to the heat pump heat exchanger 55. The expansion valve 56 releases the pressure of the heat medium pressurized by the compressor 54.
 除霜弁61は膨張弁56をバイパスして設けられており、圧縮機54から送出される熱媒体により蒸発器53を除霜する。ヒートポンプ循環路52の膨張弁56の上流側及び下流側、圧縮機54の上流側及び下流側には、ヒートポンプ循環路52内を流通する熱媒体の温度を検出する熱媒体温度センサ62,63,64,65が、それぞれ設けられている。また、蒸発器53には、蒸発器53に吸入される空気の温度を検出する周囲温度センサ67が設けられている。 The defrost valve 61 is provided to bypass the expansion valve 56 and defrosts the evaporator 53 with a heat medium sent from the compressor 54. Heat medium temperature sensors 62, 63 for detecting the temperature of the heat medium circulating in the heat pump circuit 52 are provided upstream and downstream of the expansion valve 56 of the heat pump circuit 52 and upstream and downstream of the compressor 54. 64 and 65 are provided, respectively. The evaporator 53 is provided with an ambient temperature sensor 67 that detects the temperature of air sucked into the evaporator 53.
 ヒートポンプ熱交換器55はタンク循環路41と接続され、圧縮機54により高圧・高温とされた熱媒体とタンク循環路41内を流通する湯水との熱交換により、タンク循環路41内を流通する湯水を加熱する。タンク循環路41には、貯湯タンク11内の湯水をタンク循環路41を介して循環させるためのタンク循環ポンプ66が設けられている。 The heat pump heat exchanger 55 is connected to the tank circulation path 41, and circulates in the tank circulation path 41 by heat exchange between the high-pressure and high-temperature heat medium by the compressor 54 and hot water flowing in the tank circulation path 41. Heat the hot water. The tank circulation path 41 is provided with a tank circulation pump 66 for circulating hot water in the hot water storage tank 11 through the tank circulation path 41.
 貯湯タンク11内の下部に貯まった湯水は、タンク循環ポンプ66によりタンク循環路41に導かれ、ヒートポンプ熱交換器55で加熱されて貯湯タンク11の上部に戻される。タンク循環路41のヒートポンプ熱交換器55の上流側には、タンク循環路41からヒートポンプ熱交換器55に流入する湯水の温度を検出するタンク戻り温度センサ68が設けられている。 Hot water stored in the lower part of the hot water storage tank 11 is guided to the tank circulation path 41 by the tank circulation pump 66, heated by the heat pump heat exchanger 55, and returned to the upper part of the hot water storage tank 11. On the upstream side of the heat pump heat exchanger 55 in the tank circulation path 41, a tank return temperature sensor 68 that detects the temperature of hot water flowing into the heat pump heat exchanger 55 from the tank circulation path 41 is provided.
 タンク循環路41のヒートポンプ熱交換器55の下流側には、ヒートポンプ熱交換器55からタンク循環路41に流出する湯水の温度を検出するタンク往き温度センサ69が設けられている。また、ヒートポンプ熱交換器55には、その内部の雰囲気温度を検出する雰囲気温度センサ57が設けられている。 On the downstream side of the heat pump heat exchanger 55 in the tank circulation path 41, a tank going-out temperature sensor 69 for detecting the temperature of hot water flowing out from the heat pump heat exchanger 55 to the tank circulation path 41 is provided. The heat pump heat exchanger 55 is provided with an ambient temperature sensor 57 that detects the ambient temperature inside the heat pump heat exchanger 55.
 タンク循環路41には、タンク循環路41のヒートポンプ熱交換器55の上流側と下流側とを連通して、ヒートポンプ熱交換器55からタンク循環路41に流出する湯水の一部を、タンク循環路41のヒートポンプ熱交換器55の上流側に戻す湯水還流路58と、貯湯タンク11からタンク循環路41に供給される湯水と湯水還流路58からタンク循環路41に流入する湯水の混合比を変更するヒートポンプ混合弁59(本発明の混合比変更部に相当する)とが設けられている。 The tank circulation path 41 communicates the upstream side and the downstream side of the heat pump heat exchanger 55 of the tank circulation path 41, and a part of hot water flowing out from the heat pump heat exchanger 55 to the tank circulation path 41 is circulated in the tank. The mixing ratio of the hot water and the hot water supplied to the tank circulation path 41 from the hot water storage tank 11 and the hot water flowing into the tank circulation path 41 from the hot water reflux path 58 is returned to the upstream side of the heat pump heat exchanger 55 in the path 41. A heat pump mixing valve 59 (corresponding to the mixing ratio changing unit of the present invention) to be changed is provided.
 また、ヒートポンプ熱交換器55は暖房循環路40と接続され、圧縮機54により高圧・高温とされた熱媒体と、暖房循環路40内を流通する温水との熱交換により、暖房循環路40内を流通する温水を加熱する。 The heat pump heat exchanger 55 is connected to the heating circuit 40 and exchanges heat between the heat medium that has been increased in pressure and temperature by the compressor 54 and the hot water that flows through the heating circuit 40. Heat the hot water flowing through.
 ヒートポンプユニット50に備えられた各センサの検出信号は、コントローラ150に入力される。また、コントローラ150から出力される制御信号によって、圧縮機54、タンク循環ポンプ66、ファン60、及びヒートポンプ混合弁59の作動が制御される。 The detection signal of each sensor provided in the heat pump unit 50 is input to the controller 150. Further, the operation of the compressor 54, the tank circulation pump 66, the fan 60, and the heat pump mixing valve 59 is controlled by a control signal output from the controller 150.
 次に、ガス熱源ユニット80は、出湯管13から供給される湯水と、暖房循環路40内を流通する温水を加熱するものである。ガス熱源ユニット80は、給湯バーナ71と給湯バーナ71により加熱される給湯熱交換器72を有する給湯補助熱源機70と、暖房・追焚き用の暖房バーナ76と暖房バーナ76により加熱される暖房熱交換器77を有する暖房補助熱源機75と、追焚き熱交換器87等を備えている。 Next, the gas heat source unit 80 heats hot water supplied from the hot water discharge pipe 13 and hot water flowing through the heating circuit 40. The gas heat source unit 80 includes a hot water supply auxiliary burner 71 having a hot water supply burner 71 and a hot water supply heat exchanger 72 heated by the hot water supply burner 71, a heating / reheating heating burner 76, and heating heat heated by the heating burner 76. A heating auxiliary heat source device 75 having an exchanger 77, a reheating heat exchanger 87, and the like are provided.
 給湯バーナ71及び暖房バーナ76は、図示しないガス供給管から燃料ガスが供給されると共に、図示しない燃焼ファンにより燃焼用空気が供給される。コントローラ150は、給湯バーナ71及び暖房バーナ76に供給する燃料ガスと燃焼用空気の流量を調節して、給湯バーナ71及び暖房バーナ76の燃焼量を制御する。 The hot-water supply burner 71 and the heating burner 76 are supplied with fuel gas from a gas supply pipe (not shown) and supplied with combustion air by a combustion fan (not shown). The controller 150 controls the combustion amount of the hot water supply burner 71 and the heating burner 76 by adjusting the flow rates of the fuel gas and the combustion air supplied to the hot water supply burner 71 and the heating burner 76.
 給湯熱交換器72は出湯管13の途中に接続されており、給湯バーナ71の燃焼熱によって、給湯熱交換器72の内部を流通する湯水が加熱される。出湯管13には、上流側から順に、出湯管13の開度を変更する水量サーボ弁93と、出湯管13を流れる湯水の流量を検出する水量センサ88が設けられている。 The hot water supply heat exchanger 72 is connected in the middle of the hot water discharge pipe 13, and the hot water flowing through the hot water supply heat exchanger 72 is heated by the combustion heat of the hot water supply burner 71. The hot water discharge pipe 13 is provided with a water amount servo valve 93 that changes the opening degree of the hot water discharge pipe 13 and a water amount sensor 88 that detects the flow rate of hot water flowing through the hot water discharge pipe 13 in order from the upstream side.
 給湯熱交換器72の上流側と下流側は、熱源バイパス管89により連通されており、熱源バイパス管89には、熱源バイパス管89の開度を変更する熱源バイパス弁90が設けられている。出湯管13の給湯熱交換器72の出口付近には熱交出湯温度センサ91が設けられ、出湯管13の熱源バイパス管89との接続箇所の下流側には熱源出湯温度センサ92が設けられている。 The upstream side and the downstream side of the hot water supply heat exchanger 72 are connected by a heat source bypass pipe 89, and the heat source bypass pipe 89 is provided with a heat source bypass valve 90 that changes the opening degree of the heat source bypass pipe 89. A heat exchanger hot water temperature sensor 91 is provided in the vicinity of the outlet of the hot water supply heat exchanger 72 of the hot water discharge pipe 13, and a heat source hot water temperature sensor 92 is provided downstream of the location where the hot water supply pipe 13 is connected to the heat source bypass pipe 89. ing.
 この構成により、貯湯タンク11から出湯管13に供給される湯の温度が設定給湯温度よりも低いとき(湯切れ状態)に、給水バイパス管35から出湯管13に供給される水が給湯熱交換器72により加熱されて湯となり、熱源バイパス管89からの水と混合されて、設定給湯温度の湯が給湯口31から供給されるようになっている。 With this configuration, when the temperature of hot water supplied from the hot water storage tank 11 to the hot water discharge pipe 13 is lower than the set hot water supply temperature (hot water condition), the water supplied from the water supply bypass pipe 35 to the hot water discharge pipe 13 is exchanged for hot water supply. The hot water is heated by the vessel 72 to become hot water, mixed with water from the heat source bypass pipe 89, and hot water having a set hot water supply temperature is supplied from the hot water supply port 31.
 また、出湯管13は、湯張り管100により、浴槽101に接続された風呂循環路102に連通している。湯張り管100には、湯張り管100を開閉する湯張り弁103と、風呂循環路102から出湯管13への湯の流入を阻止する逆止弁104が設けられている。湯張り弁103を開弁することにより、出湯管13から湯張り管100及び風呂循環路102を介して浴槽101に湯を供給することができる。 Further, the hot water discharge pipe 13 communicates with the bath circulation path 102 connected to the bathtub 101 by the hot water filling pipe 100. The hot water filling pipe 100 is provided with a hot water filling valve 103 that opens and closes the hot water filling pipe 100 and a check valve 104 that prevents inflow of hot water from the bath circuit 102 to the hot water discharge pipe 13. By opening the hot water filling valve 103, hot water can be supplied from the hot water discharge pipe 13 to the bathtub 101 via the hot water filling pipe 100 and the bath circulation path 102.
 風呂循環路102には、浴槽101内の湯水を風呂循環路102を介して循環させる風呂循環ポンプ105と、追焚き熱交換器87とが設けられている。追焚き熱交換器87は、追焚き往管107及び追焚き戻管108を介して暖房循環路40に接続されている。追焚き往管107には、追焚き往管107を開閉する追焚き弁109が設けられている。 The bath circulation path 102 is provided with a bath circulation pump 105 that circulates hot water in the bathtub 101 through the bath circulation path 102 and a reheating heat exchanger 87. The follow-up heat exchanger 87 is connected to the heating circuit 40 via a follow-up outgoing pipe 107 and a follow-up return pipe 108. A tracking valve 109 for opening and closing the tracking pipe 107 is provided in the tracking pipe 107.
 コントローラ150は、風呂循環ポンプ105を作動させて、浴槽101内の湯水を風呂循環路102を介して循環させた状態で、追焚き弁109を開弁し、後述する暖房循環ポンプ111を作動させて暖房循環路40から追焚き往管107及び追焚き戻管108を介して追焚き熱交換器87に温水を循環供給することによって、浴槽101内の湯水を追焚きする。 The controller 150 operates the bath circulation pump 105 and opens the reheating valve 109 in a state where hot water in the bathtub 101 is circulated through the bath circulation path 102 and operates a heating circulation pump 111 described later. Then, hot water in the bathtub 101 is reclaimed by circulatingly supplying hot water from the heating circulation path 40 to the reheating heat exchanger 87 via the retrace forward pipe 107 and the retrace return pipe 108.
 暖房熱交換器77は、暖房循環路40の途中に設けられており、暖房バーナ76の燃焼熱によって、暖房循環路40内を流通する温水を加熱する。暖房循環路40は、暖房熱交換器77の他に、床暖房機200(本発明の暖房端末に相当する)及び温風暖房機210と接続されて温水による熱を供給する。 The heating heat exchanger 77 is provided in the middle of the heating circuit 40 and heats the hot water flowing through the heating circuit 40 by the combustion heat of the heating burner 76. In addition to the heating heat exchanger 77, the heating circuit 40 is connected to the floor heater 200 (corresponding to the heating terminal of the present invention) and the hot air heater 210 to supply heat from the hot water.
 暖房循環路40には、上述したヒートポンプ熱交換器55及び暖房補助熱源機75の暖房熱交換器77と、シスターン110と、暖房循環ポンプ111とが設けられている。また、暖房循環路40は、暖房循環ポンプ111と暖房熱交換器77の間の箇所で低温暖房路112と高温暖房路130とに分岐している。 The heating circulation path 40 is provided with the heat pump heat exchanger 55 and the heating heat exchanger 77 of the heating auxiliary heat source machine 75, the systern 110, and the heating circulation pump 111. The heating circulation path 40 is branched into a low temperature heating path 112 and a high temperature heating path 130 at a location between the heating circulation pump 111 and the heating heat exchanger 77.
 高温暖房路130には温風暖房機210が接続され、低温暖房路112には床暖房機200が接続されている。高温暖房路130と低温暖房路112は、温風暖房機210及び床暖房機200の下流側で合流している。高温暖房路130と温風暖房機210の接続部と暖房熱交換器77の間の箇所で高温暖房路130から分岐してシスターン110に連通する暖房バイパス路113が設けられ、暖房バイパス路113には、暖房バイパス路113の開度を変更する暖房バイパス弁114が設けられている。 The hot air heater 210 is connected to the high temperature heating path 130, and the floor heater 200 is connected to the low temperature heating path 112. The high temperature heating path 130 and the low temperature heating path 112 merge on the downstream side of the hot air heater 210 and the floor heater 200. A heating bypass path 113 that branches from the high temperature heating path 130 and communicates with the systern 110 at a location between the connection portion of the high temperature heating path 130 and the hot air heater 210 and the heating heat exchanger 77 is provided. Is provided with a heating bypass valve 114 for changing the opening degree of the heating bypass passage 113.
 暖房循環路40の暖房循環ポンプ111の出口付近には、暖房循環ポンプ111から送出される温水の温度を検出する戻り温水温度センサ115が設けられている。また、暖房循環路40の暖房熱交換器77の出口付近には、暖房熱交換器77から送出される温水の温度を検出する往き温水温度センサ116が設けられている。 Near the outlet of the heating circulation pump 111 in the heating circulation path 40, a return hot water temperature sensor 115 that detects the temperature of the hot water sent from the heating circulation pump 111 is provided. Further, in the vicinity of the outlet of the heating heat exchanger 77 in the heating circuit 40, an outgoing hot water temperature sensor 116 for detecting the temperature of the hot water sent from the heating heat exchanger 77 is provided.
 低温暖房路112は、熱動弁120を介して床暖房機200に接続されており、熱動弁120の開閉によって、低温暖房路112から床暖房機200への温水の供給と停止が切替えられる。また、高温暖房路130から温風暖房機210への温水の供給と停止は、温風暖房機210に備えられた熱動弁211の開閉により行われる。床暖房機200を操作するための床暖房リモコン201には、床暖房機200が設置された室内の温度を検出する室温センサ202が接続されている。 The low-temperature heating path 112 is connected to the floor heater 200 via the thermal valve 120, and the supply and stop of hot water from the low-temperature heating path 112 to the floor heater 200 is switched by opening and closing the thermal valve 120. . In addition, the supply and stop of hot water from the high temperature heating path 130 to the hot air heater 210 is performed by opening and closing a thermal valve 211 provided in the hot air heater 210. A room temperature sensor 202 that detects the temperature of the room in which the floor heater 200 is installed is connected to the floor heating remote controller 201 for operating the floor heater 200.
 床暖房リモコン201とコントローラ150は、通信可能に接続され、床暖房リモコン201により設定された目標暖房温度のデータと、室温センサ202による検出温度のデータが、コントローラ150に送信される。 The floor heating remote controller 201 and the controller 150 are communicably connected, and the target heating temperature data set by the floor heating remote controller 201 and the temperature detected by the room temperature sensor 202 are transmitted to the controller 150.
 熱源リモコン160は、コントローラ150と通信可能に接続されている。熱源リモコン160には、ヒートポンプ熱源システムの運転状態や運転条件の設定状態等を表示する表示器161と、ヒートポンプ熱源システムの運転条件等を設定する操作部162とが備えられている。 The heat source remote controller 160 is communicably connected to the controller 150. The heat source remote controller 160 is provided with a display 161 that displays the operating state of the heat pump heat source system, the operating condition setting state, and the like, and an operation unit 162 that sets the operating condition of the heat pump heat source system.
 ヒートポンプ熱源システムの使用者は、熱源リモコン160の操作部162を操作することによって、貯湯タンク11内の湯水の沸かし上げ指示、給湯口31からの給湯温度(設定給湯温度)、浴槽101への給湯温度(設定湯張り温度)等を設定することができる。 The user of the heat pump heat source system operates the operation unit 162 of the heat source remote controller 160 to instruct the boiling of hot water in the hot water storage tank 11, the hot water supply temperature from the hot water supply port 31 (set hot water supply temperature), and hot water supply to the bathtub 101. Temperature (set hot water temperature) and the like can be set.
 ガス熱源ユニット80に備えられた各センサの検出信号はコントローラ150に入力される。また、コントローラ150から出力される制御信号によって、給湯バーナ71、暖房バーナ76、熱源バイパス弁90、水量サーボ弁93、湯張り弁103、風呂循環ポンプ105、追焚き弁109、暖房循環ポンプ111、暖房バイパス弁114、及び熱動弁120の作動が制御される。 The detection signal of each sensor provided in the gas heat source unit 80 is input to the controller 150. Further, according to the control signal output from the controller 150, the hot water supply burner 71, the heating burner 76, the heat source bypass valve 90, the water amount servo valve 93, the hot water filling valve 103, the bath circulation pump 105, the recirculation valve 109, the heating circulation pump 111, The operations of the heating bypass valve 114 and the thermal valve 120 are controlled.
 コントローラ150は、図示しないCPU,メモリ等により構成された電子回路ユニットであり、メモリに保持されたヒートポンプ熱源システムの制御用プログラムを、CPUで実行することによって、暖房制御部151、タンク制御部152、及び運転制御部153として機能し、ヒートポンプ熱源システムの作動を制御する。 The controller 150 is an electronic circuit unit configured by a CPU, a memory, and the like (not shown), and the heating control unit 151 and the tank control unit 152 are executed by the CPU executing a control program for the heat pump heat source system held in the memory. And functions as an operation control unit 153 to control the operation of the heat pump heat source system.
 暖房制御部151は、床暖房機200から放熱する暖房運転を実行する。タンク制御部152は、貯湯タンク11内の湯水を、熱源リモコン160により設定されている給湯温度(設定給湯温度又は設定湯張り温度)に応じた沸かし上げ温度まで加熱する沸かし上げ運転を実行する。運転制御部153は、暖房運転の実行条件(暖房実行条件)と沸かし上げ運転の実行条件(沸かし上げ実行条件)が共に成立しているときに、暖房運転と沸かし上げ運転の同時運転を許可するか否かを決定する。 The heating control unit 151 performs a heating operation for radiating heat from the floor heater 200. The tank control unit 152 performs a boiling operation for heating the hot water in the hot water storage tank 11 to a boiling temperature corresponding to a hot water supply temperature (set hot water supply temperature or set hot water temperature) set by the heat source remote controller 160. The operation control unit 153 permits the simultaneous operation of the heating operation and the boiling operation when the execution condition of the heating operation (heating execution condition) and the execution condition of the boiling operation (boiling execution condition) are both established. Determine whether or not.
 次に、暖房実行条件と沸かし上げ実行条件が共に成立した場合の処理について、暖房運転の実行中に沸かし上げ実行条件が成立した場合を例として説明する。 Next, processing when both the heating execution condition and the boiling execution condition are satisfied will be described as an example where the boiling execution condition is satisfied during the heating operation.
 [同時運転処理の第1実施形態]
 先ず、図2に示したフローチャートに従って、コントローラ150による床暖房機200の暖房運転と貯湯タンク11内の湯水の沸かし上げ運転の同時運転処理の第1実施形態について説明する。
[First Embodiment of Simultaneous Operation Processing]
First, according to the flowchart shown in FIG. 2, a first embodiment of the simultaneous operation process of the heating operation of the floor heater 200 and the boiling water heating operation in the hot water storage tank 11 by the controller 150 will be described.
 図2のSTEP1~STEP4及びSTEP20~STEP21は、暖房制御部151による処理である。STEP1で、暖房制御部151は、暖房実行条件が成立しているか否かを判断する。暖房実行条件としては、例えば、(1)使用者により床暖房リモコン201の暖房開始操作がなされたこと、(2)床暖房リモコン201により設定されているタイマ運転の開始時刻になったこと、が設定されている。 2 is a process by the heating control unit 151. STEP1 to STEP4 and STEP20 to STEP21 in FIG. In STEP1, the heating control unit 151 determines whether the heating execution condition is satisfied. As the heating execution condition, for example, (1) the user has started the heating start operation of the floor heating remote control 201, (2) the timer operation start time set by the floor heating remote control 201 has been reached, Is set.
 STEP1で暖房実行条件が成立しているときはSTEP2に進み、暖房制御部151は、暖房側混合弁48により、暖房側混合弁48からヒートポンプバイパス路42側への温水の流通を停止して、ヒートポンプ熱交換器55側に温水を流通させる循環状態とする。 When the heating execution condition is established in STEP 1, the process proceeds to STEP 2, and the heating control unit 151 stops the flow of hot water from the heating side mixing valve 48 to the heat pump bypass path 42 side by the heating side mixing valve 48, It is set as the circulation state which distribute | circulates warm water to the heat pump heat exchanger 55 side.
 続くSTEP3で、暖房制御部151は、暖房循環ポンプ111をON(起動)し、STEP4でヒートポンプ51をONする。これにより、ヒートポンプ熱交換器55において、暖房循環路40内を循環する温水が、ヒートポンプ循環路52内を循環する熱媒体により加熱されて床暖房機200に供給され、床暖房機200による暖房が行なわれる。 In subsequent STEP 3, the heating control unit 151 turns on (starts up) the heating circulation pump 111, and turns on the heat pump 51 in STEP 4. Thereby, in the heat pump heat exchanger 55, the hot water circulating in the heating circuit 40 is heated by the heat medium circulating in the heat pump circuit 52 and supplied to the floor heater 200, and heating by the floor heater 200 is performed. Done.
 一方、STEP1で暖房実行条件が成立していないときにはSTEP20に分岐する。そして、暖房制御部151は、STEP20で暖房循環ポンプ111をOFF(停止)し、STEP21でヒートポンプ51をOFFして、STEP1に戻る。 On the other hand, if the heating execution condition is not satisfied in STEP1, the process branches to STEP20. Then, the heating control unit 151 turns off (stops) the heating circulation pump 111 in STEP 20, turns off the heat pump 51 in STEP 21, and returns to STEP 1.
 次に、STEP5~STEP9及びSTEP30は、運転制御部153による処理である。運転制御部153は、STEP5で、暖房循環路40からヒートポンプ熱交換器55に流入する温水の温度(以下、暖房戻り温度Thbという)を、暖房戻り温度センサ45により測定する。 Next, STEP 5 to STEP 9 and STEP 30 are processes by the operation control unit 153. The operation control unit 153 measures the temperature of warm water flowing into the heat pump heat exchanger 55 from the heating circuit 40 (hereinafter referred to as heating return temperature Thb) by the heating return temperature sensor 45 in STEP5.
 続くSTEP6で、運転制御部153は、沸かし上げ実行条件が成立しているか否かを判断する。ここで、沸かし上げ実行条件としては、貯湯タンク11が湯切れ状態となっていることが設定されている。貯湯タンク11の湯切れは、(1)給湯補助熱源機70の作動、(2)タンク温度センサ17の検出温度が湯切れ判定温度(例えば、沸かし上げ温度-5℃)以下まで低下、(3)湯温度センサ26の検出温度が湯切れ判定温度以下まで低下、等により判断される。そして、沸かし上げ実行条件が成立しているときはSTEP7に進み、沸かし上げ実行条件が成立していないときにはSTEP1に戻る。 In subsequent STEP 6, the operation control unit 153 determines whether the boiling execution condition is satisfied. Here, as the boiling-up execution condition, it is set that the hot water storage tank 11 is out of hot water. When the hot water storage tank 11 runs out, (1) the hot water supply auxiliary heat source unit 70 operates, (2) the temperature detected by the tank temperature sensor 17 falls below the hot water judgment temperature (for example, the boiling temperature -5 ° C.), (3 This is determined by the fact that the temperature detected by the hot water temperature sensor 26 has dropped below the hot water determination temperature. When the boiling execution condition is satisfied, the process proceeds to STEP7, and when the boiling execution condition is not satisfied, the process returns to STEP1.
 STEP7で、運転制御部153は、タンク循環路41からヒートポンプ熱交換器55に流入する湯水の温度(以下、タンク戻り温度Ttbという)を、タンク戻り温度センサ68により測定する。そして、続くSTEP8で、運転制御部153は、暖房戻り温度Thbとタンク戻り温度Ttbの温度差(絶対値)ΔTbが、5℃(本発明の所定の判定温度に相当する)よりも小さいか否かを判断する。 In STEP 7, the operation control unit 153 measures the temperature of hot water flowing into the heat pump heat exchanger 55 from the tank circulation path 41 (hereinafter referred to as tank return temperature Ttb) by the tank return temperature sensor 68. In subsequent STEP 8, the operation control unit 153 determines whether the temperature difference (absolute value) ΔTb between the heating return temperature Thb and the tank return temperature Ttb is smaller than 5 ° C. (corresponding to the predetermined determination temperature of the present invention). Determine whether.
 そして、温度差ΔTbが5℃よりも小さいときはSTEP30に分岐し、運転制御部153は、暖房運転と沸かし上げ運転の同時運転を許可してSTEP1に戻る。これにより、暖房循環路40からヒートポンプ熱交換器55に流入する温水の温度Thbと、タンク循環路41からヒートポンプ熱交換器55に流入する湯水の温度Ttbとの温度差ΔTbが小さく、ヒートポンプ熱交換器55において、暖房循環路40を流通する温水とタンク循環路41を流通する湯水との間での熱交換による、ヒートポンプ熱交換器55における熱損失の増大の影響が小さいときに限定して、暖房運転と沸かし上げ運転の同時運転が許可される。 When the temperature difference ΔTb is smaller than 5 ° C., the process branches to STEP 30, and the operation control unit 153 permits the simultaneous operation of the heating operation and the boiling operation and returns to STEP 1. As a result, the temperature difference ΔTb between the temperature Thb of hot water flowing from the heating circuit 40 into the heat pump heat exchanger 55 and the temperature Ttb of hot water flowing from the tank circuit 41 into the heat pump heat exchanger 55 is small, and heat pump heat exchange is performed. In the heater 55, only when the influence of the heat loss increase in the heat pump heat exchanger 55 due to heat exchange between the hot water flowing through the heating circuit 40 and the hot water flowing through the tank circuit 41 is small, Simultaneous operation of heating operation and boiling operation is permitted.
 一方、温度差ΔTbが5℃以上であるときにはSTEP9に進み、運転制御部153は、暖房運転と沸かし上げ運転の同時運転を禁止してSTEP1に戻る。これにより、暖房循環路40からヒートポンプ熱交換器55に流入する温水の温度Thbと、タンク循環路41からヒートポンプ熱交換器55に流入する湯水の温度Ttbとの温度差ΔTbが大きく、ヒートポンプ熱交換器55において、暖房循環路40を流通する温水とタンク循環路41を流通する湯水との間での熱交換による、ヒートポンプ熱交換器55における熱損失の増大の影響が大きいときに、暖房運転と沸かし上げ運転の同時運転が禁止される。 On the other hand, when the temperature difference ΔTb is 5 ° C. or more, the process proceeds to STEP 9, and the operation control unit 153 prohibits the simultaneous operation of the heating operation and the boiling operation and returns to STEP 1. As a result, the temperature difference ΔTb between the temperature Thb of hot water flowing from the heating circuit 40 into the heat pump heat exchanger 55 and the temperature Ttb of hot water flowing from the tank circuit 41 into the heat pump heat exchanger 55 is large, and heat pump heat exchange is performed. When the influence of the increase in heat loss in the heat pump heat exchanger 55 due to the heat exchange between the hot water flowing through the heating circuit 40 and the hot water flowing through the tank circuit 41 is large in the heater 55, Simultaneous operation of boiling-up operation is prohibited.
 ここで、図4は、給湯補助熱源機70及び暖房補助熱源機75(以下、まとめて熱源機という)への給水温度と熱効率との関係を示したものであり、縦軸が熱源機の熱効率(一次エネルギー効率,%)に設定され、横軸が熱源機への給水温度(熱源機に供給される水の温度、℃)に設定されている。図4は、熱源機への給水温度が高くなるに従って、熱源機の熱効率が低下することを示している。 Here, FIG. 4 shows the relationship between the water supply temperature to the hot water supply auxiliary heat source unit 70 and the heating auxiliary heat source unit 75 (hereinafter collectively referred to as the heat source unit) and the thermal efficiency, and the vertical axis indicates the thermal efficiency of the heat source unit. (Primary energy efficiency,%) is set, and the horizontal axis is set to the temperature of the water supply to the heat source machine (temperature of water supplied to the heat source machine, ° C.). FIG. 4 shows that the heat efficiency of the heat source device decreases as the feed water temperature to the heat source device increases.
 そして、暖房運転と沸かし上げ運転の同時運転を行なった場合に、給湯補助熱源機70と暖房補助熱源機75を作動させる必要があるときには、給湯補助熱源機70への給水温度は貯湯タンク11の湯切れにより低温(例えば5℃、潜熱回収タイプの熱源機であれば例えば25℃)になるのに対して、暖房補助熱源機75への給水温度(暖房循環路40から暖房補助熱源機75に流入する温水の温度)は30℃程度になる。そのため、暖房補助熱源機75よりも給湯補助熱源機70の方が、熱効率が高くなる。 When the heating operation and the boiling operation are performed at the same time, when it is necessary to operate the hot water supply auxiliary heat source device 70 and the heating auxiliary heat source device 75, the temperature of the water supply to the hot water supply auxiliary heat source device 70 is the temperature of the hot water storage tank 11. The temperature of the water supply to the heating auxiliary heat source device 75 (from the heating circuit 40 to the heating auxiliary heat source device 75 is reduced while the temperature becomes low (for example, 5 ° C., for example, 25 ° C. for a latent heat recovery type heat source device) due to running out of hot water. The temperature of the inflowing hot water is about 30 ° C. Therefore, the hot water supply auxiliary heat source unit 70 has higher thermal efficiency than the heating auxiliary heat source unit 75.
 そして、暖房運転と沸かし上げ運転の同時運転を行った場合に、ヒートポンプ熱交換器55において暖房循環路40を流通する温水とタンク循環路41を流通する湯水との間での熱交換が行われた結果、暖房補助熱源機75への給水温度が低下する。また、給湯補助熱源機70への給水温度が上昇すると、給湯補助熱源機70で使用される燃料ガスの量が減少して、暖房補助熱源機75で使用される燃料ガスの量が増加する。そのため、暖房補助熱源機75及び給湯補助熱源機70のトータルの効率が低下する。 When the heating operation and the boiling operation are performed at the same time, heat exchange is performed between the hot water flowing through the heating circuit 40 and the hot water flowing through the tank circuit 41 in the heat pump heat exchanger 55. As a result, the feed water temperature to the heating auxiliary heat source machine 75 is lowered. In addition, when the temperature of the hot water supply to the hot water supply auxiliary heat source device 70 rises, the amount of fuel gas used in the hot water supply auxiliary heat source device 70 decreases and the amount of fuel gas used in the heating auxiliary heat source device 75 increases. Therefore, the total efficiency of the heating auxiliary heat source unit 75 and the hot water supply auxiliary heat source unit 70 is lowered.
 [同時運転処理の第2実施形態]
 次に、図3に示したフローチャートに従って、コントローラ150による床暖房機200の暖房運転と貯湯タンク11内の湯水の沸かし上げ運転の同時運転処理の第2実施形態について説明する。
[Second Embodiment of Simultaneous Operation Processing]
Next, a second embodiment of the simultaneous operation process of the heating operation of the floor heater 200 and the boiling water heating operation in the hot water storage tank 11 by the controller 150 will be described according to the flowchart shown in FIG.
 図2のSTEP50~STEP53及びSTEP70~STEP71は、暖房制御部151による処理である。この処理は、上述した第1実施形態のSTEP1~STEP4及びSTEP20~STEP21の処理と同様であるので、ここでは説明を省略する。 2, STEP 50 to STEP 53 and STEP 70 to STEP 71 are processes performed by the heating control unit 151. Since this processing is the same as the processing in STEP 1 to STEP 4 and STEP 20 to STEP 21 in the first embodiment described above, description thereof is omitted here.
 次に、STEP54~STEP59及びSTEP80,STEP81は、運転制御部153による処理である。運転制御部153は、STEP54で、暖房戻り温度Thbを暖房戻り温度センサ45により測定する。 Next, STEP54 to STEP59, STEP80, and STEP81 are processes by the operation control unit 153. The operation control unit 153 measures the heating return temperature Thb by the heating return temperature sensor 45 in STEP54.
 続くSTEP55で、運転制御部153は、沸かし上げ実行条件が成立しているか否かを判断する。そして、沸かし上げ実行条件が成立しているときはSTEP56に進み、沸かし上げ実行条件が成立していないときにはSTEP50に戻る。 In subsequent STEP 55, the operation control unit 153 determines whether or not the boiling execution condition is satisfied. When the boiling execution condition is satisfied, the process proceeds to STEP 56, and when the boiling execution condition is not satisfied, the process returns to STEP 50.
 STEP56で、運転制御部153は、タンク戻り温度Ttbをタンク戻り温度センサ68により測定する。そして、続くSTEP57で、運転制御部153は、暖房戻り温度Thbとタンク戻り温度Ttbの温度差(絶対値)ΔTbが、5℃以上であるか否かを判断する。 In STEP 56, the operation control unit 153 measures the tank return temperature Ttb by the tank return temperature sensor 68. In subsequent STEP 57, the operation control unit 153 determines whether or not the temperature difference (absolute value) ΔTb between the heating return temperature Thb and the tank return temperature Ttb is 5 ° C. or more.
 そして、温度差ΔTbが5℃以上であるときはSTEP80に分岐し、温度差ΔTbが5℃よりも小さいときにはSTEP58に進む。STEP80で、運転制御部153は、タンク循環ポンプ66を作動させ、ヒートポンプ混合弁59により、貯湯タンク11からタンク循環路41に供給される湯水の流量と、湯水還流路58からタンク循環路41に環流される湯水の流量との混合比を変更して、温度差ΔTbを減少させる温調制御を行い、STEP58に進む。 When the temperature difference ΔTb is 5 ° C. or more, the process branches to STEP80, and when the temperature difference ΔTb is smaller than 5 ° C., the process proceeds to STEP58. In STEP 80, the operation control unit 153 operates the tank circulation pump 66, and the heat pump mixing valve 59 supplies the flow rate of hot water supplied from the hot water storage tank 11 to the tank circulation path 41 and the hot water return path 58 to the tank circulation path 41. The temperature control is performed by changing the mixing ratio with the flow rate of the hot and cold water to reduce the temperature difference ΔTb, and the process proceeds to STEP58.
 STEP58で、運転制御部153は、暖房戻り温度Thbとタンク戻り温度Ttbとの温度差ΔTbが5℃未満であるか否かを判断する。そして、温度差ΔTbが5℃未満であるときはSTEP81に分岐し、運転制御部153は、暖房運転と沸かし上げ運転の同時運転を許可してSTEP50に戻る。 In STEP 58, the operation control unit 153 determines whether or not the temperature difference ΔTb between the heating return temperature Thb and the tank return temperature Ttb is less than 5 ° C. And when temperature difference (DELTA) Tb is less than 5 degreeC, it branches to STEP81, and the operation control part 153 permits simultaneous operation of heating operation and boiling operation, and returns to STEP50.
 これにより、暖房循環路40からヒートポンプ熱交換器55に流入する温水の温度Thbと、タンク循環路41からヒートポンプ熱交換器55に流入する湯水の温度Ttbとの温度差ΔTbが小さく、ヒートポンプ熱交換器55において、暖房循環路40を流通する温水とタンク循環路41を流通する湯水との間での熱交換による、ヒートポンプ51の効率低下の影響が少ないときに限定して、暖房運転と沸かし上げ運転の同時運転が許可される。 As a result, the temperature difference ΔTb between the temperature Thb of hot water flowing from the heating circuit 40 into the heat pump heat exchanger 55 and the temperature Ttb of hot water flowing from the tank circuit 41 into the heat pump heat exchanger 55 is small, and heat pump heat exchange is performed. In the heater 55, the heating operation and the boiling-up are performed only when the influence of the efficiency reduction of the heat pump 51 due to the heat exchange between the hot water flowing through the heating circuit 40 and the hot water flowing through the tank circuit 41 is small. Simultaneous driving is allowed.
 一方、温度差ΔTbが5℃以上であるときにはSTEP59に進み、運転制御部153は、暖房運転と沸かし上げ運転の同時運転を禁止してSTEP50に戻る。これにより、第1実施形態と同様に、暖房循環路40からヒートポンプ熱交換器55に流入する温水の温度Thbと、タンク循環路41からヒートポンプ熱交換器55に流入する湯水の温度Ttbとの温度差ΔTbが大きく、ヒートポンプ熱交換器55において、暖房循環路40を流通する温水とタンク循環路41を流通する湯水との間での熱交換による、ヒートポンプ51の効率低下の影響が大きいときに、暖房運転と沸かし上げ運転の同時運転が禁止される。 On the other hand, when the temperature difference ΔTb is 5 ° C. or more, the process proceeds to STEP 59, and the operation control unit 153 prohibits the simultaneous operation of the heating operation and the boiling operation and returns to STEP 50. Thereby, similarly to 1st Embodiment, the temperature Thb of the hot water which flows into the heat pump heat exchanger 55 from the heating circuit 40, and the temperature Ttb of the hot water which flows into the heat pump heat exchanger 55 from the tank circuit 41 When the difference ΔTb is large and the heat pump heat exchanger 55 is greatly affected by a decrease in efficiency of the heat pump 51 due to heat exchange between hot water flowing through the heating circulation path 40 and hot water flowing through the tank circulation path 41, Simultaneous operation of heating operation and boiling operation is prohibited.
 なお、本実施形態では、本発明の暖房端末として床暖房機200を例に説明したが、温風暖房機210を本発明の暖房端末として、本発明を適用してもよい。 In addition, in this embodiment, although the floor heater 200 was demonstrated to the example as a heating terminal of this invention, you may apply this invention by making the warm air heater 210 into the heating terminal of this invention.
 また、本実施形態では、給湯補助熱源機70及び暖房補助熱源機75として、ガスバーナを加熱手段とする熱源機を示したが、灯油バーナ等の他の種類の加熱手段を用いる熱源機を用いてもよい。 Moreover, in this embodiment, although the heat source machine which uses a gas burner as a heating means was shown as the hot water supply auxiliary heat source machine 70 and the heating auxiliary heat source machine 75, a heat source machine using other types of heating means such as a kerosene burner was used. Also good.
 10…貯湯ユニット、11…貯湯タンク、40…暖房循環路、41…タンク循環路、42…ヒートポンプバイパス路、45…暖房戻り温度センサ、48…暖房側混合弁、50…ヒートポンプユニット、51…ヒートポンプ、52…ヒートポンプ循環路、55…ヒートポンプ熱交換器、58…湯水還流路、59…ヒートポンプ混合弁、68…タンク戻り温度センサ、70…給湯補助熱源機、75…暖房補助熱源機、80…ガス熱源ユニット、150…コントローラ、151…暖房制御部、152…タンク制御部、153…運転制御部、200…床暖房機。 DESCRIPTION OF SYMBOLS 10 ... Hot water storage unit, 11 ... Hot water storage tank, 40 ... Heating circulation path, 41 ... Tank circulation path, 42 ... Heat pump bypass path, 45 ... Heating return temperature sensor, 48 ... Heating side mixing valve, 50 ... Heat pump unit, 51 ... Heat pump , 52 ... Heat pump circulation path, 55 ... Heat pump heat exchanger, 58 ... Hot water reflux path, 59 ... Heat pump mixing valve, 68 ... Tank return temperature sensor, 70 ... Hot water supply auxiliary heat source machine, 75 ... Heating auxiliary heat source machine, 80 ... Gas Heat source unit, 150 ... controller, 151 ... heating control unit, 152 ... tank control unit, 153 ... operation control unit, 200 ... floor heater.

Claims (2)

  1.  下部に給水管が接続されると共に上部に出湯管が接続され、該給水管から供給される水が貯められる貯湯タンクと、
     前記貯湯タンクの下部と上部を接続したタンク循環路と、
     前記貯湯タンクの下部に貯まった水を前記タンク循環路を介して前記貯湯タンクの上部に循環させるタンク循環ポンプと、
     暖房端末が接続された暖房循環路と、
     前記暖房循環路内に暖房熱媒体を循環させる暖房循環ポンプと、
     ヒートポンプ循環路を有し、該ヒートポンプ循環路内を循環するヒートポンプ熱媒体を加熱するヒートポンプと、
     前記ヒートポンプ循環路と前記タンク循環路と前記暖房循環路の途中に設けられて、前記ヒートポンプ循環路内を循環するヒートポンプ熱媒体と、前記タンク循環路内を循環する湯水及び前記暖房循環路内を循環する暖房熱媒体との間で、熱交換を行なうヒートポンプ熱交換器と、
     所定の暖房実行条件が成立しているときに、前記暖房循環ポンプと前記ヒートポンプを作動させることにより、前記暖房循環路内を循環する暖房熱媒体を加熱して前記暖房端末から放熱する暖房運転を行なう暖房制御部と、
     所定の沸かし上げ実行条件が成立しているときに、前記タンク循環ポンプと前記ヒートポンプを作動させることにより、前記タンク循環路内を循環する前記貯湯タンクからの湯水を所定の沸かし上げ温度まで加熱する沸かし上げ運転を実行するタンク制御部と
    を備えたヒートポンプ熱源システムにおいて、
     前記暖房循環路から前記ヒートポンプ熱交換器に流入する暖房熱媒体の温度を検出する暖房熱媒体戻り温度センサと、
     前記タンク循環路から前記ヒートポンプ熱交換器に流入する湯水の温度を検出するタンク戻り温度センサと、
     前記暖房実行条件と前記沸かし上げ実行条件が共に成立しているときに、前記暖房循環路から前記ヒートポンプ熱交換器に流入する暖房熱媒体の温度と、前記タンク循環路から前記ヒートポンプ熱交換器に流入する湯水の温度との温度差が、所定の判定温度よりも小さいときには、前記暖房運転と前記沸かし上げ運転の同時運転を許可する運転制御部と
    を備えたことを特徴とするヒートポンプ熱源システム。
    A hot water storage tank in which a water supply pipe is connected to the lower portion and a hot water discharge pipe is connected to the upper portion and water supplied from the water supply pipe is stored,
    A tank circulation path connecting the lower and upper parts of the hot water storage tank;
    A tank circulation pump for circulating water stored in the lower part of the hot water storage tank to the upper part of the hot water storage tank through the tank circulation path;
    A heating circuit to which a heating terminal is connected;
    A heating circulation pump for circulating a heating heat medium in the heating circulation path;
    A heat pump having a heat pump circuit, and heating a heat pump heat medium circulating in the heat pump circuit;
    A heat pump heat medium that is provided in the middle of the heat pump circuit, the tank circuit, and the heating circuit, circulates in the heat pump circuit, hot water that circulates in the tank circuit, and the heating circuit A heat pump heat exchanger that exchanges heat with a circulating heating heat medium;
    When a predetermined heating execution condition is established, the heating circulation pump and the heat pump are operated, thereby heating the heating heat medium circulating in the heating circulation path and radiating heat from the heating terminal. A heating control unit to perform,
    When a predetermined boiling-up execution condition is established, the tank circulation pump and the heat pump are operated to heat hot water from the hot water tank circulating in the tank circulation path to a predetermined boiling temperature. In a heat pump heat source system including a tank control unit that performs boiling operation,
    A heating heat medium return temperature sensor for detecting the temperature of the heating heat medium flowing into the heat pump heat exchanger from the heating circuit;
    A tank return temperature sensor for detecting the temperature of hot water flowing into the heat pump heat exchanger from the tank circulation path;
    When both the heating execution condition and the boiling execution condition are satisfied, the temperature of the heating heat medium flowing into the heat pump heat exchanger from the heating circuit and the tank circuit to the heat pump heat exchanger A heat pump heat source system comprising: an operation control unit that permits simultaneous operation of the heating operation and the boiling operation when a temperature difference with the temperature of the flowing hot water is smaller than a predetermined determination temperature.
  2.  請求項1に記載のヒートポンプ熱源システムにおいて、
     前記タンク循環路の前記ヒートポンプ熱交換器の上流側と下流側とを連通して、前記ヒートポンプ熱交換器から前記タンク循環路に流出する湯水の一部を、前記タンク循環路の前記ヒートポンプ熱交換器の上流側に戻す湯水還流路と、
     前記貯湯タンクから前記タンク循環路に流出する湯水と、前記湯水還流路から前記タンク循環路に流出する湯水の混合比を変更する混合比変更部とを備え、
     前記運転制御部は、前記暖房循環路から前記ヒートポンプ熱交換器に流入する暖房熱媒体の温度が、前記タンク循環路から前記ヒートポンプ熱交換器に流入する湯水の温度よりも前記判定温度以上高いときには、前記混合比変更部により前記混合比を変更して、前記暖房循環路から前記ヒートポンプ熱交換器に流入する暖房熱媒体の温度と、前記タンク循環路から前記ヒートポンプ熱交換器に流入する湯水の温度との温度差を減少させる処理を行うことを特徴とするヒートポンプ熱源システム。
    The heat pump heat source system according to claim 1,
    A part of the hot water flowing out from the heat pump heat exchanger to the tank circulation path is communicated with the upstream side and the downstream side of the heat pump heat exchanger in the tank circulation path, and the heat pump heat exchange in the tank circulation path A hot water return passage returning to the upstream side of the vessel,
    Hot water flowing out from the hot water storage tank to the tank circulation path, and a mixing ratio changing unit for changing the mixing ratio of hot water flowing out from the hot water reflux path to the tank circulation path,
    When the temperature of the heating heat medium flowing into the heat pump heat exchanger from the heating circuit is higher than the determination temperature than the temperature of hot water flowing into the heat pump heat exchanger from the tank circuit, the operation control unit The mixing ratio changing unit changes the mixing ratio, the temperature of the heating heat medium flowing from the heating circuit into the heat pump heat exchanger, and hot water flowing into the heat pump heat exchanger from the tank circuit A heat pump heat source system characterized by performing a process of reducing a temperature difference from temperature.
PCT/JP2013/071253 2012-12-04 2013-08-06 Heat pump heat supply system WO2014087700A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380062959.1A CN104823003B (en) 2012-12-04 2013-08-06 Source heat pump heat system
KR1020157015134A KR102057367B1 (en) 2012-12-04 2013-08-06 Heat pump heat supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012265832A JP5712197B2 (en) 2012-12-04 2012-12-04 Heat pump heat source system
JP2012-265832 2012-12-04

Publications (1)

Publication Number Publication Date
WO2014087700A1 true WO2014087700A1 (en) 2014-06-12

Family

ID=50883132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071253 WO2014087700A1 (en) 2012-12-04 2013-08-06 Heat pump heat supply system

Country Status (4)

Country Link
JP (1) JP5712197B2 (en)
KR (1) KR102057367B1 (en)
CN (1) CN104823003B (en)
WO (1) WO2014087700A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3032181A1 (en) * 2014-12-12 2016-06-15 Vaillant GmbH Heating system with hot water preparation
FR3031575A1 (en) * 2015-01-12 2016-07-15 Lacaze Energies THERMAL TRANSFER MODULE WITH ASSOCIATED REGULATION FOR THERMODYNAMIC SYSTEM FOR HOT WATER PRODUCTION
NL2018840B1 (en) * 2017-05-03 2018-11-14 Itho Daalderop Nederland B V Combined tap water / climate heat pump system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6913555B2 (en) * 2017-08-03 2021-08-04 リンナイ株式会社 Hot water heating system
JP6913565B2 (en) * 2017-08-21 2021-08-04 リンナイ株式会社 Hot water heating system
KR102440551B1 (en) * 2017-12-21 2022-09-06 주식회사 경동나비엔 Hot water supply apparatus and Method for using waste heat thereof
JP7339135B2 (en) * 2019-11-20 2023-09-05 Ckd株式会社 temperature control system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256754A (en) * 1988-04-04 1989-10-13 Sun Wave Ind Co Ltd Cooling/heating and hot water supplying system
JP2002089867A (en) * 2000-09-11 2002-03-27 Sekisui Chem Co Ltd Hot water supplying heating system with heat pump
JP2003050050A (en) * 2001-08-03 2003-02-21 Denso Corp Heat pump type hot-water supplier
JP2009180438A (en) * 2008-01-31 2009-08-13 Sharp Corp Heat exchanger and heat pump type water heater
JP2009180436A (en) * 2008-01-31 2009-08-13 Sharp Corp Heat exchanger and heat pump water heater
JP2009250481A (en) * 2008-04-03 2009-10-29 Sharp Corp Hot water supplying heating system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4021375B2 (en) * 2003-06-03 2007-12-12 松下電器産業株式会社 Heat pump water heater
JP4215699B2 (en) * 2004-10-01 2009-01-28 三洋電機株式会社 Heat pump water heater / heater
CN100547319C (en) * 2008-05-19 2009-10-07 南京理工大学 List/single/double stage mixed composite stacking heat pump air-conditioning unit
JP5115418B2 (en) 2008-09-17 2013-01-09 株式会社デンソー Heating system
JP5580658B2 (en) * 2009-07-21 2014-08-27 大阪瓦斯株式会社 Heat medium supply device
JP5704398B2 (en) 2011-04-20 2015-04-22 株式会社ノーリツ Heat recovery device, cogeneration system, and pipe misconnection detection method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256754A (en) * 1988-04-04 1989-10-13 Sun Wave Ind Co Ltd Cooling/heating and hot water supplying system
JP2002089867A (en) * 2000-09-11 2002-03-27 Sekisui Chem Co Ltd Hot water supplying heating system with heat pump
JP2003050050A (en) * 2001-08-03 2003-02-21 Denso Corp Heat pump type hot-water supplier
JP2009180438A (en) * 2008-01-31 2009-08-13 Sharp Corp Heat exchanger and heat pump type water heater
JP2009180436A (en) * 2008-01-31 2009-08-13 Sharp Corp Heat exchanger and heat pump water heater
JP2009250481A (en) * 2008-04-03 2009-10-29 Sharp Corp Hot water supplying heating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3032181A1 (en) * 2014-12-12 2016-06-15 Vaillant GmbH Heating system with hot water preparation
FR3031575A1 (en) * 2015-01-12 2016-07-15 Lacaze Energies THERMAL TRANSFER MODULE WITH ASSOCIATED REGULATION FOR THERMODYNAMIC SYSTEM FOR HOT WATER PRODUCTION
NL2018840B1 (en) * 2017-05-03 2018-11-14 Itho Daalderop Nederland B V Combined tap water / climate heat pump system

Also Published As

Publication number Publication date
KR102057367B1 (en) 2019-12-18
JP2014109430A (en) 2014-06-12
CN104823003B (en) 2017-09-05
JP5712197B2 (en) 2015-05-07
CN104823003A (en) 2015-08-05
KR20150092160A (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5712197B2 (en) Heat pump heat source system
KR101467088B1 (en) Storage type hot water supply device
JP2013224790A (en) Storage type water heater
JP5793450B2 (en) Heat pump heat source system
JP6017837B2 (en) Hot water storage hot water supply system
KR101482847B1 (en) Hot water supply system
JP5925035B2 (en) Heat pump heat source system
JP6628643B2 (en) Hot water supply system
JP5712196B2 (en) Heat pump heating system
JP2014142112A (en) Hot water storage type water heater
JP2013257083A (en) Heating device
JP5979042B2 (en) Water heater
JP2017194219A (en) Storage water heater
JP6625813B2 (en) Hot water storage system
JP6004715B2 (en) Heat pump heat source system
JP6498133B2 (en) Hot water storage type water heater and hot water supply method with hot water storage type water heater
JP6628642B2 (en) Hot water supply system
JP2016065683A (en) Solar water heater and method of controlling solar water heater
JP2014202413A (en) Storage water heater
JP2014145498A (en) Heat pump type hot-water supply apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157015134

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13859707

Country of ref document: EP

Kind code of ref document: A1