WO2014087307A2 - Compositions et procédés pour le traitement du syndrome métabolique et du diabète - Google Patents

Compositions et procédés pour le traitement du syndrome métabolique et du diabète Download PDF

Info

Publication number
WO2014087307A2
WO2014087307A2 PCT/IB2013/060502 IB2013060502W WO2014087307A2 WO 2014087307 A2 WO2014087307 A2 WO 2014087307A2 IB 2013060502 W IB2013060502 W IB 2013060502W WO 2014087307 A2 WO2014087307 A2 WO 2014087307A2
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
acid
dihydroxy
metformin
molecular conjugate
Prior art date
Application number
PCT/IB2013/060502
Other languages
English (en)
Other versions
WO2014087307A3 (fr
Inventor
Mahesh Kandula
Original Assignee
Mahesh Kandula
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahesh Kandula filed Critical Mahesh Kandula
Publication of WO2014087307A2 publication Critical patent/WO2014087307A2/fr
Publication of WO2014087307A3 publication Critical patent/WO2014087307A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/80Acids; Esters in position 3
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/542Carboxylic acids, e.g. a fatty acid or an amino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/545Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/203Monocyclic carbocyclic rings other than cyclohexane rings; Bicyclic carbocyclic ring systems

Definitions

  • This disclosure generally relates to compounds and compositions for the treatment of Metabolic syndrome and Diabetes. More particularly, this invention relates to treating subjects with a pharmaceutically acceptable dose of compounds, crystals, solvates, enantiomer, stereoisomer, esters, salts, hydrates, prodrugs, or mixtures thereof.
  • the multifaceted metabolic syndrome is defined as a number of major metabolic disorders that enhances the risk of cardiovascular disease (CVD) - still the most important cause of death in the Western world - and type 2 diabetes mellitus. It is also known as the insulin resistance syndrome, syndrome X, dysmetabolic syndrome, or the deadly quartet, and is characterized by aberrations in a wide variety of metabolic risk markers such as hyperinsulinemia, impaired glucose metabolism, elevated plasma levels of triglycerides, decreased levels of high-density lipoprotein cholesterol (HDL-C), raised blood pressure, centrally distributed obesity, impaired endothelial and haemostatic function, and a low-grade inflammatory state.
  • CVD cardiovascular disease
  • Type 2 Diabetes Mellitus is characterized by fasting and postprandial hyperglycemia and relative insulin insufficiency. If left untreated, then hyperglycemia may cause long term microvascular and macrovascular complications, such as nephropathy, neuropathy, retinopathy, and atherosclerosis. This disease causes significant morbidity and mortality at considerable expense to patients, their families and society.
  • T2DM is now increasing at more rapid rates in Africa, Asia and South America than in Europe or the U.S. Thus, T2DM is now considered worldwide epidemic.
  • Fish oil is obtained in the human diet by eating oily fish, such as herring, mackerel, salmon, albacore tuna, and sardines, or by consuming fish oil supplements or cod liver oil.
  • oily fish such as herring, mackerel, salmon, albacore tuna, and sardines
  • fish do not naturally produce these oils, but obtain them through the ocean food chain from the marine microorganisms that are the original source of the omega-3 polyunsaturated fatty acids (Omega-3 PUFA) found in fish oils.
  • CV cardiovascular
  • MI myocardial infarction
  • SCD sudden cardiac death
  • CHD coronary heart disease
  • AF atrial fibrillation
  • HF heart failure
  • Omega-3 PUFA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • ALA alpha- linolenic acid
  • AHA American Heart Association
  • Omega-3 PUFA has currently endorsed the use of Omega-3 PUFA at a dose of approximately 1 g/day of combined DHA and EPA, either in the form of fatty fish or fish oil supplements (in capsules or liquid form) in patients with documented CHD.
  • the health benefits of these long chain fatty acids are numerous and remain an active area of research.
  • Panthothenic acid is a water soluble vitamin and is an essential nutrient. It is used in the synthesis of co-enzyme A. It is considered to have hypolipidemic effects and also improves the lipid profile in the blood and liver.
  • the present invention provides compounds, compositions containing these compounds and methods for using the same to treat, prevent and/or ameliorate the effects of the conditions such as metabolic syndrome and diabetes.
  • compositions comprising of formula I or pharmaceutical acceptable salts thereof.
  • the invention also provides pharmaceutical compositions comprising one or more compounds of formula I or intermediates thereof and one or more of pharmaceutically acceptable carriers, vehicles or diluents. These compositions may be used in the treatment of metabolic syndrome and diabetes and its associated complications.
  • the present invention relates to the compounds and compositions of formula I, or pharmaceutically acceptable salts thereof,
  • R 2 independently represents CH 3 CO, CD 3 CO, D,
  • each e is independently 1, 2 or 6;
  • each c and d are each independently H, D, -OH, -OD, Ci-C 6 -alkyl, -NH 2 or -COC3 ⁇ 4;
  • R independently represents null, H, D,
  • the present invention relates to the compounds and compositions of formula II, or pharmaceutically acceptable salts thereof are described:
  • each n is independently 1, 2, 3, 4 or 5;
  • each a is independently 2,3 or 7;
  • each b is independently 3, 5 or 6;
  • each e is independently 1, 2 or 6;
  • each c and d are each independently H, D, -OH, -OD, Ci-C 6 -alkyl, -NH 2 or -COC3 ⁇ 4;
  • R independently represents null, H, D,
  • kits comprising any of the pharmaceutical compositions disclosed herein.
  • the kit may comprise instructions for use in the treatment of metabolic syndrome and diabetes or its related complications.
  • the application also discloses a pharmaceutical composition
  • a pharmaceutical composition comprising a pharmaceutically acceptable carrier and any of the compositions herein.
  • the pharmaceutical composition is formulated for systemic administration, oral administration, sustained release, parenteral administration, injection, subdermal administration, or transdermal administration.
  • kits comprising the pharmaceutical compositions described herein.
  • the kits may further comprise instructions for use in the treatment of metabolic syndrome and diabetes or its related complications.
  • compositions described herein have several uses.
  • the present application provides, for example, methods of treating a patient suffering from metabolic syndrome and diabetes or its related complications manifested from metabolic or genetic conditions or disorders, metabolic syndrome and diabetes, chronic diseases or disorders; neurodegenerative disorders, Hepatology, Cancer, Respiratory, Hematological, Orthopedic, Cardiovascular, Renal, Skin, Vascular or Ocular complications.
  • the compounds of the present invention can be present in the form of pharmaceutically acceptable salts.
  • the compounds of the present invention can also be present in the form of pharmaceutically acceptable esters (i.e., the methyl and ethyl esters of the acids of formula I and formula II to be used as prodrugs).
  • the compounds of the present invention can also be solvated, i.e. hydrated. The solvation can be affected in the course of the manufacturing process or can take place i.e. as a consequence of hygroscopic properties of an initially anhydrous compound of formula I and formula II (hydration).
  • isomers Compounds that have the same molecular formula but differ in the nature or sequence of bonding of their atoms or the arrangement of their atoms in space are termed “isomers.” Isomers that differ in the arrangement of their atoms in space are termed “stereoisomers.” Diastereomers are stereoisomers with opposite configuration at one or more chiral centers which are not enantiomers. Stereoisomers bearing one or more asymmetric centers that are non- superimposable mirror images of each other are termed "enantiomers.” When a compound has an asymmetric center, for example, if a carbon atom is bonded to four different groups, a pair of enantiomers is possible.
  • An enantiomer can be characterized by the absolute configuration of its asymmetric center or centers and is described by the R- and S- sequencing rules of Cahn, lngold and Prelog, or by the manner in which the molecule rotates the plane of polarized light and designated as dextrorotatory or levorotatory (i.e., as (+) or (- )-isomers respectively).
  • a chiral compound can exist as either individual enantiomer or as a mixture thereof. A mixture containing equal proportions of the enantiomers is called a "racemic mixture".
  • metabolic condition refers to an Inborn errors of metabolism (or genetic metabolic conditions) are genetic disorders that result from a defect in one or more metabolic pathways; specifically, the function of an enzyme is affected and is either deficient or completely absent.
  • polymorph as used herein is art-recognized and refers to one crystal structure of a given compound.
  • parenteral administration and “administered parenterally” as used herein refer to modes of administration other than enteral and topical administration, such as injections, and include without limitation intravenous, intramuscular, intrapleural, intravascular, intrapericardial, intraarterial, intrathecal, intracapsular, intraorbital, intracardiac, intradennal, intraperitoneal, transtracheal, subcutaneous, subcuticular, intraarticular, subcapsular, subarachnoid, intraspinal and intrastemal injection and infusion.
  • a "patient,” “subject,” or “host” to be treated by the subject method may mean either a human or non-human animal, such as primates, mammals, and vertebrates.
  • compositions, polymers and other materials and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of mammals, human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
  • phrases "pharmaceutically acceptable carrier” is art-recognized, and includes, for example, pharmaceutically acceptable materials, compositions or vehicles, such as a liquid or solid filler, diluent, solvent or encapsulating material involved in carrying or transporting any subject composition, from one organ, or portion of the body, to another organ, or portion of the body.
  • a pharmaceutically acceptable carrier is non-pyrogenic.
  • materials which may serve as pharmaceutically acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16)
  • prodrug is intended to encompass compounds that, under physiological conditions, are converted into the therapeutically active agents of the present invention.
  • a common method for making a prodrug is to include selected moieties that are hydrolyzed under physiological conditions to reveal the desired molecule.
  • the prodrug is converted by an enzymatic activity of the host animal.
  • prophylactic or therapeutic treatment is art-recognized and includes administration to the host of one or more of the subject compositions. If it is administered prior to clinical manifestation of the unwanted condition (e.g., disease or other unwanted state of the host animal) then the treatment is prophylactic, i.e., it protects the host against developing the unwanted condition, whereas if it is administered after manifestation of the unwanted condition, the treatment is therapeutic, (i.e., it is intended to diminish, ameliorate, or stabilize the existing unwanted condition or side effects thereof).
  • the unwanted condition e.g., disease or other unwanted state of the host animal
  • the term "predicting" as used herein refers to assessing the probability related diseases patient will suffer from abnormalities or complication and/or terminal platelet aggregation or failure and/or death (i.e. mortality) within a defined time window (predictive window) in the future.
  • the mortality may be caused by the central nervous system or complication.
  • the predictive window is an interval in which the subject will develop one or more of the said complications according to the predicted probability.
  • the predictive window may be the entire remaining lifespan of the subject upon analysis by the method of the present invention.
  • treating includes preventing a disease, disorder or condition from occurring in an animal which may be predisposed to the disease, disorder and/or condition but has not yet been diagnosed as having it; inhibiting the disease, disorder or condition, e.g., impeding its progress; and relieving the disease, disorder, or condition, e.g., causing regression of the disease, disorder and/or condition.
  • Treating the disease or condition includes ameliorating at least one symptom of the particular disease or condition, even if the underlying pathophysiology is not affected, such as metabolic syndrome and diabetes related disorders includes such as diabetes, insulin resistance, hyperglycemia, liver disorders, neurological diseases such as Alzheimers disease, Parkinson's disease, Huntington's disease, hepatitis, lipid disorders such as hypertriglyceridemia, arthritis, autoimmune diseases, pain, chronic pain, acute inflammation, chronic Aneurysm, Low HDL, Lipid Diseases, Angina, Atherosclerosis, Cerebrovascular Accident (Stroke), Cerebrovascular disease, Congestive Heart Failure, Coronary Artery Disease, Myocardial infarction (Heart Attack), Peripheral vascular disease, Aortic Dissection, Aortic Stenosis, Arrhythmia (Irregular Heartbeat), Atrial Fibrillation, Cardiomyopathy, Chest Pain, Claudication, Congenital Heart Disease, Congestive Heart Failure, Deep Vein Thrombosis, Edema
  • terapéuticaally effective amount is an art-recognized term.
  • the term refers to an amount of a salt or composition disclosed herein that produces some desired effect at a reasonable benefit/risk ratio applicable to any medical treatment.
  • the term refers to that amount necessary or sufficient to eliminate or reduce medical symptoms for a period of time.
  • the effective amount may vary depending on such factors as the disease or condition being treated, the particular targeted constructs being administered, the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art may empirically determine the effective amount of a particular composition without necessitating undue experimentation.
  • the pharmaceutical compositions described herein are formulated in a manner such that said compositions will be delivered to a patient in a therapeutically effective amount, as part of a prophylactic or therapeutic treatment.
  • the desired amount of the composition to be administered to a patient will depend on absorption, inactivation, and excretion rates of the drug as well as the delivery rate of the salts and compositions from the subject compositions. It is to be noted that dosage values may also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions. Typically, dosing will be determined using techniques known to one skilled in the art.
  • the optimal concentration and/or quantities or amounts of any particular salt or composition may be adjusted to accommodate variations in the treatment parameters.
  • treatment parameters include the clinical use to which the preparation is put, e.g., the site treated, the type of patient, e.g., human or non-human, adult or child, and the nature of the disease or condition.
  • the dosage of the subject compositions provided herein may be determined by reference to the plasma concentrations of the therapeutic composition or other encapsulated materials.
  • the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve from time 0 to infinity may be used.
  • Cmax maximum plasma concentration
  • the area under the plasma concentration-time curve from time 0 to infinity may be used.
  • sustained release is art-recognized.
  • a subject composition which releases a substance over time may exhibit sustained release characteristics, in contrast to a bolus type administration in which the entire amount of the substance is made biologically available at one time.
  • one or more of the pharmaceutically acceptable excipients may undergo gradual or delayed degradation (e.g., through hydrolysis) with concomitant release of any material incorporated therein, e.g., an therapeutic and/or biologically active salt and/or composition, for a sustained or extended period (as compared to the release from a bolus).
  • This release may result in prolonged delivery of therapeutically effective amounts of any of the therapeutic agents disclosed herein.
  • systemic administration means administration of a subject composition, therapeutic or other material at a site remote from the disease being treated.
  • Administration of an agent for the disease being treated may be termed “local” or “topical” or “regional” administration, other than directly into the central nervous system, e.g., by subcutaneous administration, such that it enters the patient's system and, thus, is subject to metabolism and other like processes.
  • the phrase "therapeutically effective amount" is an art-recognized term.
  • the term refers to an amount of a salt or composition disclosed herein that produces some desired effect at a reasonable benefit/risk ratio applicable to any medical treatment.
  • the term refers to that amount necessary or sufficient to eliminate or reduce medical symptoms for a period of time.
  • the effective amount may vary depending on such factors as the disease or condition being treated, the particular targeted constructs being administered, the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art may empirically determine the effective amount of a particular composition without necessitating undue experimentation.
  • the present disclosure also contemplates prodrugs of the compositions disclosed herein, as well as pharmaceutically acceptable salts of said prodrugs.
  • This application also discloses a pharmaceutical composition
  • a pharmaceutical composition comprising a pharmaceutically acceptable carrier and the composition of a compound of Formula I and formula II may be formulated for systemic or topical or oral administration.
  • the pharmaceutical composition may be also formulated for oral administration, oral solution, injection, subdermal administration, or transdermal administration.
  • the pharmaceutical composition may further comprise at least one of a pharmaceutically acceptable stabilizer, diluent, surfactant, filler, binder, and lubricant.
  • the pharmaceutical compositions described herein will incorporate the disclosed compounds and compositions (Formula I and formula II) to be delivered in an amount sufficient to deliver to a patient a therapeutically effective amount of a compound of formula I and formula II or composition as part of a prophylactic or therapeutic treatment.
  • the desired concentration of formula I and formula II or its pharmaceutical acceptable salts will depend on absorption, inactivation, and excretion rates of the drug as well as the delivery rate of the salts and compositions from the subject compositions. It is to be noted that dosage values may also vary with the severity of the condition to be alleviated.
  • the optimal concentration and/or quantities or amounts of any particular compound of formula I and formula II may be adjusted to accommodate variations in the treatment parameters.
  • treatment parameters include the clinical use to which the preparation is put, e.g., the site treated, the type of patient, e.g., human or non-human, adult or child, and the nature of the disease or condition.
  • concentration and/or amount of any compound of formula I and formula II may be readily identified by routine screening in animals, e.g., rats, by screening a range of concentration and/or amounts of the material in question using appropriate assays. Known methods are also available to assay local tissue concentrations, diffusion rates of the salts or compositions, and local blood flow before and after administration of therapeutic formulations disclosed herein.
  • microdialysis as reviewed by T. E. Robinson et al., 1991, microdialysis in the neurosciences, Techniques, volume 7, Chapter 1.
  • the methods reviewed by Robinson may be applied, in brief, as follows.
  • a microdialysis loop is placed in situ in a test animal.
  • Dialysis fluid is pumped through the loop.
  • compounds with formula I and formula II such as those disclosed herein are injected adjacent to the loop, released drugs are collected in the dialysate in proportion to their local tissue concentrations.
  • the progress of diffusion of the salts or compositions may be determined thereby with suitable calibration procedures using known concentrations of salts or compositions.
  • the dosage of the subject compounds of formula I and formula II provided herein may be determined by reference to the plasma concentrations of the therapeutic composition or other encapsulated materials.
  • the maximum plasma concentration (Cmax) and the area under the plasma concentration-time curve from time 0 to infinity may be used.
  • an effective dosage for the compounds of Formulas I is in the range of about 0.01 mg/kg/day to about 100 mg/kg/day in single or divided doses, for instance 0.01 mg/kg/day to about 50 mg/kg/day in single or divided doses.
  • the compounds of Formulas I may be administered at a dose of, for example, less than 0.2 mg/kg/day, 0.5 mg/kg/day, 1.0 mg/kg/day, 5 mg/kg/day, 10 mg/kg/day, 20 mg/kg/day, 30 mg/kg/day, or 40 mg/kg/day.
  • Compounds of Formula I and formula II may also be administered to a human patient at a dose of, for example, between 0.1 mg and 1000 mg, between 5 mg and 80 mg, or less than 1.0, 9.0, 12.0, 20.0, 50.0, 75.0, 100, 300, 400, 500, 800, 1000, 2000, 5000 mg per day.
  • the compositions herein are administered at an amount that is less than 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, or 10% of the compound of formula I and formula II required for the same therapeutic benefit.
  • An effective amount of the compounds of formula I and formula II described herein refers to the amount of one of said salts or compositions which is capable of inhibiting or preventing a disease.
  • An effective amount may be sufficient to prohibit, treat, alleviate, ameliorate, halt, restrain, slow or reverse the progression, or reduce the severity of a complication resulting from nerve damage or demyelization and/or elevated reactive oxidative- nitrosative species and/or abnormalities in physiological homeostasis's, in patients who are at risk for such complications.
  • these methods include both medical therapeutic (acute) and/or prophylactic (prevention) administration as appropriate.
  • the amount and timing of compositions administered will, of course, be dependent on the subject being treated, on the severity of the affliction, on the manner of administration and on the judgment of the prescribing physician.
  • the dosages given above are a guideline and the physician may titrate doses of the drug to achieve the treatment that the physician considers appropriate for the patient.
  • the physician must balance a variety of factors such as age of the patient, presence of preexisting disease, as well as presence of other diseases.
  • compositions provided by this application may be administered to a subject in need of treatment by a variety of conventional routes of administration, including orally, topically, parenterally, e.g., intravenously, subcutaneously or intramedullary. Further, the compositions may be administered intranasally, as a rectal suppository, or using a "flash" formulation, i.e., allowing the medication to dissolve in the mouth without the need to use water. Furthermore, the compositions may be administered to a subject in need of treatment by controlled release dosage forms, site specific drug delivery, transdermal drug delivery, patch (active/passive) mediated drug delivery, by stereotactic injection, or in nanoparticles.
  • compositions may be administered alone or in combination with pharmaceutically acceptable carriers, vehicles or diluents, in either single or multiple doses.
  • suitable pharmaceutical carriers, vehicles and diluents include inert solid diluents or fillers, sterile aqueous solutions and various organic solvents.
  • the pharmaceutical compositions formed by combining the compositions and the pharmaceutically acceptable carriers, vehicles or diluents are then readily administered in a variety of dosage forms such as tablets, powders, lozenges, syrups, injectable solutions and the like.
  • These pharmaceutical compositions can, if desired, contain additional ingredients such as flavorings, binders, excipients and the like.
  • tablets containing various excipients such as L-arginine, sodium citrate, calcium carbonate and calcium phosphate may be employed along with various disintegrates such as starch, alginic acid and certain complex silicates, together with binding agents such as polyvinylpyrrolidone, sucrose, gelatin and acacia.
  • binding agents such as polyvinylpyrrolidone, sucrose, gelatin and acacia.
  • lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often useful for tabletting purposes.
  • Solid compositions of a similar type may also be employed as fillers in soft and hard filled gelatin capsules. Appropriate materials for this include lactose or milk sugar and high molecular weight polyethylene glycols.
  • the essential active ingredient therein may be combined with various sweetening or flavoring agents, coloring matter or dyes and, if desired, emulsifying or suspending agents, together with diluents such as water, ethanol, propylene glycol, glycerin and combinations thereof.
  • diluents such as water, ethanol, propylene glycol, glycerin and combinations thereof.
  • the compounds of formula I and formula II may also comprise enterically coated comprising of various excipients, as is well known in the pharmaceutical art.
  • solutions of the compositions may be prepared in (for example) sesame or peanut oil, aqueous propylene glycol, or in sterile aqueous solutions may be employed.
  • aqueous solutions should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose.
  • these particular aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration.
  • the sterile aqueous media employed are all readily available by standard techniques known to those skilled in the art.
  • the formulations for instance tablets, may contain e.g. 10 to 100, 50 to 250, 150 to 500 mg, or 350 to 800 mg e.g. 10, 50, 100, 300, 500, 700, 800 mg of the compounds of formula I and formula II disclosed herein, for instance, compounds of formula I and formula II or pharmaceutical acceptable salts of a compounds of Formula I and formula II.
  • a composition as described herein may be administered orally, or parenterally (e.g., intravenous, intramuscular, subcutaneous or intramedullary). Topical administration may also be indicated, for example, where the patient is suffering from gastrointestinal disorder that prevent oral administration, or whenever the medication is best applied to the surface of a tissue or organ as determined by the attending physician. Localized administration may also be indicated, for example, when a high dose is desired at the target tissue or organ.
  • the active composition may take the form of tablets or lozenges formulated in a conventional manner.
  • the dosage administered will be dependent upon the identity of the metabolic disease; the type of host involved, including its age, health and weight; the kind of concurrent treatment, if any; the frequency of treatment and therapeutic ratio.
  • dosage levels of the administered active ingredients are: intravenous, 0.1 to about 200 mg/kg; intramuscular, 1 to about 500 mg/kg; orally, 5 to about 1000 mg/kg; intranasal instillation, 5 to about 1000 mg/kg; and aerosol, 5 to about 1000 mg/kg of host body weight.
  • an active ingredient can be present in the compositions of the present invention for localized use about the cutis, intranasally, pharyngolaryngeally, bronchially, intravaginally, rectally, or ocularly in a concentration of from about 0.01 to about 50% w/w of the composition; preferably about 1 to about 20% w/w of the composition; and for parenteral use in a concentration of from about 0.05 to about 50% w/v of the composition and preferably from about 5 to about 20% w/v.
  • compositions of the present invention are preferably presented for administration to humans and animals in unit dosage forms, such as tablets, capsules, pills, powders, granules, suppositories, sterile parenteral solutions or suspensions, sterile non-parenteral solutions of suspensions, and oral solutions or suspensions and the like, containing suitable quantities of an active ingredient.
  • unit dosage forms such as tablets, capsules, pills, powders, granules, suppositories, sterile parenteral solutions or suspensions, sterile non-parenteral solutions of suspensions, and oral solutions or suspensions and the like, containing suitable quantities of an active ingredient.
  • unit dosage forms such as tablets, capsules, pills, powders, granules, suppositories, sterile parenteral solutions or suspensions, sterile non-parenteral solutions of suspensions, and oral solutions or suspensions and the like, containing suitable quantities of an active ingredient.
  • the tablet core contains one or more hydrophilic polymers.
  • Suitable hydrophilic polymers include, but are not limited to, water swellable cellulose derivatives, polyalkylene glycols, thermoplastic polyalkylene oxides, acrylic polymers, hydrocolloids, clays, gelling starches, swelling cross-linked polymers, and mixtures thereof.
  • suitable water swellable cellulose derivatives include, but are not limited to, sodium carboxymethylcellulose, cross-linked hydroxypropylcellulose, hydroxypropyl cellulose (HPC), hydroxypropylmethylcellulose (HPMC), hydroxyisopropylcellulose, hydroxybutylcellulose, hydroxyphenylcellulose, hydroxyethylcellulose (HEC), hydroxypentylcellulose, hydroxypropylethylcellulose, hydroxypropylbutylcellulose, and hydroxypropylethylcellulose, and mixtures thereof.
  • suitable polyalkylene glycols include, but are not limited to, polyethylene glycol.
  • suitable thermoplastic polyalkylene oxides include, but are not limited to, poly(ethylene oxide).
  • acrylic polymers examples include, but are not limited to, potassium methacrylatedivinylbenzene copolymer, polymethylmethacrylate, high-molecular weight crosslinked acrylic acid homopolymers and copolymers such as those commercially available from Noveon Chemicals under the tradename CARBOPOLTM.
  • hydrocolloids include, but are not limited to, alginates, agar, guar gum, locust bean gum, kappa carrageenan, iota carrageenan, tara, gum arabic, tragacanth, pectin, xanthan gum, gellan gum, maltodextrin, galactomannan, pusstulan, laminarin, scleroglucan, gum arabic, inulin, pectin, gelatin, whelan, rhamsan, zooglan, methylan, chitin, cyclodextrin, chitosan, and mixtures thereof.
  • Suitable clays include, but are not limited to, smectites such as bentonite, kaolin, and laponite; magnesium trisilicate; magnesium aluminum silicate; and mixtures thereof.
  • suitable gelling starches include, but are not limited to, acid hydrolyzed starches, swelling starches such as sodium starch glycolate and derivatives thereof, and mixtures thereof.
  • suitable swelling cross-linked polymers include, but are not limited to, cross-linked polyvinyl pyrrolidone, cross-linked agar, and cross-linked carboxymethylcellulose sodium, and mixtures thereof.
  • the carrier may contain one or more suitable excipients for the formulation of tablets.
  • suitable excipients include, but are not limited to, fillers, adsorbents, binders, disintegrants, lubricants, glidants, release-modifying excipients, superdisintegrants, antioxidants, and mixtures thereof.
  • Suitable binders include, but are not limited to, dry binders such as polyvinyl pyrrolidone and hydroxypropylmethylcellulose; wet binders such as water-soluble polymers, including hydrocolloids such as acacia, alginates, agar, guar gum, locust bean, carrageenan, carboxymethylcellulose, tara, gum arabic, tragacanth, pectin, xanthan, gellan, gelatin, maltodextrin, galactomannan, pusstulan, laminarin, scleroglucan, inulin, whelan, rhamsan, zooglan, methylan, chitin, cyclodextrin, chitosan, polyvinyl pyrrolidone, cellulosics, sucrose, and starches; and mixtures thereof.
  • Suitable disintegrants include, but are not limited to, sodium starch glycolate, cross-linked polyvinylpyrroli
  • Suitable lubricants include, but are not limited to, long chain fatty acids and their salts, such as magnesium stearate and stearic acid, talc, glycerides waxes, and mixtures thereof.
  • Suitable glidants include, but are not limited to, colloidal silicon dioxide.
  • Suitable release-modifying excipients include, but are not limited to, insoluble edible materials, pH- dependent polymers, and mixtures thereof.
  • Suitable insoluble edible materials for use as release-modifying excipients include, but are not limited to, water-insoluble polymers and low-melting hydrophobic materials, copolymers thereof, and mixtures thereof.
  • suitable water-insoluble polymers include, but are not limited to, ethylcellulose, polyvinyl alcohols, polyvinyl acetate, polycaprolactones, cellulose acetate and its derivatives, acrylates, methacrylates, acrylic acid copolymers, copolymers thereof, and mixtures thereof.
  • Suitable low-melting hydrophobic materials include, but are not limited to, fats, fatty acid esters, phospholipids, waxes, and mixtures thereof.
  • suitable fats include, but are not limited to, hydrogenated vegetable oils such as for example cocoa butter, hydrogenated palm kernel oil, hydrogenated cottonseed oil, hydrogenated sunflower oil, and hydrogenated soybean oil, free fatty acids and their salts, and mixtures thereof.
  • suitable fatty acid esters include, but are not limited to, sucrose fatty acid esters, mono-, di-, and triglycerides, glyceryl behenate, glyceryl palmitostearate, glyceryl monostearate, glyceryl tristearate, glyceryl trilaurylate, glyceryl myristate, GlycoWax-932, lauroyl macrogol-32 glycerides, stearoyl macrogol-32 glycerides, and mixtures thereof.
  • Suitable phospholipids include phosphotidyl choline, phosphotidyl serene, phosphotidyl enositol, phosphotidic acid, and mixtures thereof.
  • suitable waxes include, but are not limited to, carnauba wax, spermaceti wax, beeswax, candelilla wax, shellac wax, microcrystalline wax, and paraffin wax; fat-containing mixtures such as chocolate, and mixtures thereof.
  • super disintegrants include, but are not limited to, croscarmellose sodium, sodium starch glycolate and cross-linked povidone (crospovidone). In one embodiment the tablet core contains up to about 5 percent by weight of such super disintegrant.
  • antioxidants include, but are not limited to, tocopherols, ascorbic acid, sodium pyrosulfite, butylhydroxytoluene, butylated hydroxyanisole, edetic acid, and edetate salts, and mixtures thereof.
  • preservatives include, but are not limited to, citric acid, tartaric acid, lactic acid, malic acid, acetic acid, benzoic acid, and sorbic acid, and mixtures thereof.
  • the immediate release coating has an average thickness of at least 50 microns, such as from about 50 microns to about 2500 microns; e.g., from about 250 microns to about 1000 microns.
  • the immediate release coating is typically compressed at a density of more than about 0.9 g/cc, as measured by the weight and volume of that specific layer.
  • the immediate release coating contains a first portion and a second portion, wherein at least one of the portions contains the second pharmaceutically active agent.
  • the portions contact each other at a center axis of the tablet.
  • the first portion includes the first pharmaceutically active agent and the second portion includes the second pharmaceutically active agent.
  • the first portion contains the first pharmaceutically active agent and the second portion contains the second pharmaceutically active agent. In one embodiment, one of the portions contains a third pharmaceutically active agent. In one embodiment one of the portions contains a second immediate release portion of the same pharmaceutically active agent as that contained in the tablet core.
  • the outer coating portion is prepared as a dry blend of materials prior to addition to the coated tablet core. In another embodiment the outer coating portion is included of a dried granulation including the pharmaceutically active agent.
  • Formulations with different drug release mechanisms described above could be combined in a final dosage form containing single or multiple units.
  • multiple units include multilayer tablets, capsules containing tablets, beads, or granules in a solid or liquid form.
  • Typical, immediate release formulations include compressed tablets, gels, films, coatings, liquids and particles that can be encapsulated, for example, in a gelatin capsule. Many methods for preparing coatings, covering or incorporating drugs, are known in the art.
  • the immediate release dosage, unit of the dosage form i.e., a tablet, a plurality of drug-containing beads, granules or particles, or an outer layer of a coated core dosage form, contains a therapeutically effective quantity of the active agent with conventional pharmaceutical excipients.
  • the immediate release dosage unit may or may not be coated, and may or may not be admixed with the delayed release dosage unit or units (as in an encapsulated mixture of immediate release drug-containing granules, particles or beads and delayed release drug-containing granules or beads).
  • Extended release formulations are generally prepared as diffusion or osmotic systems, for example, as described in "Remington— The Science and Practice of Pharmacy", 20th. Ed., Lippincott Williams & Wilkins, Baltimore, Md., 2000).
  • a diffusion system typically consists of one of two types of devices, reservoir and matrix, which are wellknown and described in die art.
  • the matrix devices are generally prepared by compressing the drug with a slowly dissolving polymer carrier into a tablet form.
  • An immediate release portion can be added to the extended release system by means of either applying an immediate release layer on top of the extended release core; using coating or compression processes or in a multiple unit system such as a capsule containing extended and immediate release beads.
  • Delayed release dosage formulations are created by coating a solid dosage form with a film of a polymer which is insoluble in the acid environment of the stomach, but soluble in the neutral environment of small intestines.
  • the delayed release dosage units can be prepared, for example, by coating a drug or a drug-containing composition with a selected coating material.
  • the drug-containing composition may be a tablet for incorporation into a capsule, a tablet for use as an inner core in a "coated core" dosage form, or a plurality of drug-containing beads, particles or granules, for incorporation into either a tablet or capsule.
  • a pulsed release dosage form is one that mimics a multiple dosing profile without repeated dosing and typically allows at least a twofold reduction in dosing frequency as compared to the drug presented as a conventional dosage form (e.g., as a solution or prompt drug-releasing, conventional solid dosage form).
  • a pulsed release profile is characterized by a time period of no release (lag time) or reduced release followed by rapid drug release.
  • Each dosage form contains a therapeutically effective amount of active agent.
  • approximately 30 wt. % to 70 wt. , preferably 40 wt. % to 60 wt. , of the total amount of active agent in the dosage form is released in the initial pulse, and, correspondingly approximately 70 wt. % to 3.0 wt. , preferably 60 wt. % to 40 wt. , of the total amount of active agent in the dosage form is released in the second pulse.
  • the second pulse is preferably released approximately 3 hours to less than 14 hours, and more preferably approximately 5 hours to 12 hours, following administration.
  • Another dosage form contains a compressed tablet or a capsule having a drug- containing immediate release dosage unit, a delayed release dosage unit and an optional second delayed release dosage unit.
  • the immediate release dosage unit contains a plurality of beads, granules particles that release drug substantially immediately following oral administration to provide an initial dose.
  • the delayed release dosage unit contains a plurality of coated beads or granules, which release drug approximately 3 hours to 14 hours following oral administration to provide a second dose.
  • dilute sterile, aqueous or partially aqueous solutions (usually in about 0.1% to 5% concentration), otherwise similar to the above parenteral solutions, may be prepared.
  • subject compositions of the present application maybe lyophilized or subjected to another appropriate drying technique such as spray drying.
  • the subject compositions may be administered once, or may be divided into a number of smaller doses to be administered at varying intervals of time, depending in part on the release rate of the compositions and the desired dosage.
  • Formulations useful in the methods provided herein include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal, aerosol and/or parenteral administration.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy.
  • the amount of a subject composition which may be combined with a carrier material to produce a single dose may vary depending upon the subject being treated, and the particular mode of administration.
  • Methods of preparing these formulations or compositions include the step of bringing into association subject compositions with the carrier and, optionally, one or more accessory ingredients.
  • the formulations are prepared by uniformly and intimately bringing into association a subject composition with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
  • the compounds of formula I and formula II described herein may be administered in inhalant or aerosol formulations.
  • the inhalant or aerosol formulations may comprise one or more agents, such as adjuvants, diagnostic agents, imaging agents, or therapeutic agents useful in inhalation therapy.
  • the final aerosol formulation may for example contain 0.005- 90% w/w, for instance 0.005-50%, 0.005-5% w/w, or 0.01-1.0% w/w, of medicament relative to the total weight of the formulation.
  • the subject composition is mixed with one or more pharmaceutically acceptable carriers and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, acetyl alcohol and glycerol monostea
  • compositions may also comprise buffering agents.
  • Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
  • Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
  • the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, corn, peanut, sunflower, soybean, olive, castor, and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emuls
  • Suspensions in addition to the subject compositions, may contain suspending agents such as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol, and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
  • suspending agents such as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol, and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
  • Formulations for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing a subject composition with one or more suitable non-irritating carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax, or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the appropriate body cavity and release the encapsulated compound(s) and composition(s).
  • suitable non-irritating carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax, or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the appropriate body cavity and release the encapsulated compound(s) and composition(s).
  • Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams, or spray formulations containing such carriers as are known in the art to be appropriate.
  • Dosage forms for transdermal administration include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches, and inhalants.
  • a subject composition may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants that may be required.
  • the complexes may include lipophilic and hydrophilic groups to achieve the desired water solubility and transport properties.
  • the ointments, pastes, creams and gels may contain, in addition to subject compositions, other carriers, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
  • Powders and sprays may contain, in addition to a subject composition, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of such substances.
  • Sprays may additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
  • a transdermal patch may comprise: a substrate sheet comprising a composite film formed of a resin composition comprising 100 parts by weight of a polyvinyl chloride-polyurethane composite and 2-10 parts by weight of a styrene- ethylene-butylene-styrene copolymer, a first adhesive layer on the one side of the composite film, and a polyalkylene terephthalate film adhered to the one side of the composite film by means of the first adhesive layer, a primer layer which comprises a saturated polyester resin and is formed on the surface of the polyalkylene terephthalate film; and a second adhesive layer comprising a styrene-diene-styrene block copolymer containing a pharmaceutical agent layered on the primer layer.
  • a method for the manufacture of the above-mentioned substrate sheet comprises preparing the above resin composition molding the resin composition into a composite film by a calendar process, and then adhering a polyalkylene terephthalate film on one side of the composite film by means of an adhesive layer thereby forming the substrate sheet, and forming a primer layer comprising a saturated polyester resin on the outer surface of the polyalkylene terephthalate film.
  • Another type of patch comprises incorporating the drug directly in a pharmaceutically acceptable adhesive and laminating the drug-containing adhesive onto a suitable backing member, e.g. a polyester backing membrane.
  • the drug should be present at a concentration which will not affect the adhesive properties, and at the same time deliver the required clinical dose.
  • Transdermal patches may be passive or active. Passive transdermal drug delivery systems currently available, such as the nicotine, estrogen and nitroglycerine patches, deliver small-molecule drugs. Many of the newly developed proteins and peptide drugs are too large to be delivered through passive transdermal patches and may be delivered using technology such as electrical assist (iontophoresis) for large-molecule drugs.
  • Iontophoresis is a technique employed for enhancing the flux of ionized substances through membranes by application of electric current.
  • An iontophoretic membrane is given in U.S. Pat. No. 5,080,646 to Theeuwes.
  • the principal mechanisms by which iontophoresis enhances molecular transport across the skin are (a) repelling a charged ion from an electrode of the same charge, (b) electroosmosis, the convective movement of solvent that occurs through a charged pore in response the preferential passage of counter- ions when an electric field is applied or (c) increase skin permeability due to application of electrical current.
  • kits may comprise a container for containing the separate compositions such as a divided bottle or a divided foil packet.
  • the kit comprises directions for the administration of the separate components.
  • the kit form is particularly advantageous when the separate components are preferably administered in different dosage forms (e.g., oral and parenteral), are administered at different dosage intervals, or when titration of the individual components of the combination is desired by the prescribing physician.
  • An example of such a kit is a so-called blister pack.
  • Blister packs are well known in the packaging industry and are widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material covered with a foil of a plastic material that may be transparent.
  • Methods and compositions for the treatment of metabolic syndrome and diabetes comprising administering to a patient in need thereof a therapeutically effective amount of compound of Formula I:
  • each n is independently 1, 2, 3, 4 or 5;
  • each a is independently 2,3 or 7;
  • each b is independently 3, 5 or 6;
  • each e is independently 1, 2 or 6;
  • each c and d are each independently H, D, -OH, -OD, Ci-C 6 -alkyl, -NH 2 or -COC3 ⁇ 4;
  • R independently represents null, H, D,
  • Methods and compositions for the treatment of metabolic syndrome and diabetes comprising administering to a patient in need thereof a therapeutically effective amount of compound of Formula II:
  • R 2 independently represents CH 3 CO, CD 3 CO, D,
  • each n is independently 1, 2, 3, 4 or 5;
  • each a is independently 2,3 or 7;
  • each b is independently 3, 5 or 6;
  • each e is independently 1, 2 or 6;
  • each c and d are each independently H, D, -OH, -OD, Ci-C 6 -alkyl, -NH 2 or -COC3 ⁇ 4;
  • R 3 independently represents null, H, D,
  • the invention also includes methods for treating metabolic syndrome and diabetes related disorders includes such as diabetes, insulin resistance, hyperglycemia, liver disorders, neurological diseases such as alzheimers disease, parkinson's disease, huntington's disease, hepatitis, lipid disorders such as hypertriglyceridemia, arthritis, autoimmune diseases, pain, chronic pain, acute inflammation, chronic aneurysm, low hdl, lipid diseases, angina, atherosclerosis, cerebrovascular accident (stroke), cerebrovascular disease, congestive heart failure, coronary artery disease, myocardial infarction (heart attack), peripheral vascular disease, aortic dissection, aortic stenosis, arrhythmia (irregular heartbeat), atrial fibrillation, cardiomyopathy, chest pain, claudication, congenital heart disease, congestive heart failure, deep vein thrombosis, edema, endocarditis, fainting, fitness: exercise for a healthy heart, heart attack, heart attack and athe
  • sample refers to a sample of a body fluid, to a sample of separated cells or to a sample from a tissue or an organ.
  • Samples of body fluids can be obtained by well known techniques and include, preferably, samples of blood, plasma, serum, or urine, more preferably, samples of blood, plasma or serum.
  • Tissue or organ samples may be obtained from any tissue or organ by, e.g., biopsy.
  • compositions and methods for treating metabolic syndrome and diabetes and their complications are provided among other things compositions and methods for treating metabolic syndrome and diabetes and their complications. While specific embodiments of the subject disclosure have been discussed, the above specification is illustrative and not restrictive. Many variations of the systems and methods herein will become apparent to those skilled in the art upon review of this specification. The full scope of the claimed systems and methods should be determined by reference to the claims, along with their full scope of equivalents, and the specification, along with such variations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

L'invention concerne des composés de formule I et de formule II ou leurs sels pharmaceutiquement acceptables, ainsi que des polymorphes, des solvates, des énantiomères, des stéréo-isomères et des hydrates de ceux-ci. Les compositions pharmaceutiques comprennent une quantité efficace de composés de formule I ou de formule II; et des procédés de traitement ou de prévention du syndrome métabolique et du diabète peuvent être formulés pour une administration orale, buccale, rectale, topique, transdermique, transmucosale, intraveineuse, parentérale, un sirop ou une injection. De telles compositions peuvent être utilisées pour le traitement du diabète sucré, de l'obésité, de troubles lipidiques, de l'hypertriglycéridémie, de l'hyperglycémie, de l'hyperinsulinémie et de l'insulino-résistance.
PCT/IB2013/060502 2012-12-04 2013-11-29 Compositions et procédés pour le traitement du syndrome métabolique et du diabète WO2014087307A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN5060/CHE/2012 2012-12-04
IN5060CH2012 2012-12-04

Publications (2)

Publication Number Publication Date
WO2014087307A2 true WO2014087307A2 (fr) 2014-06-12
WO2014087307A3 WO2014087307A3 (fr) 2014-07-31

Family

ID=50884094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2013/060502 WO2014087307A2 (fr) 2012-12-04 2013-11-29 Compositions et procédés pour le traitement du syndrome métabolique et du diabète

Country Status (1)

Country Link
WO (1) WO2014087307A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014106804A3 (fr) * 2013-01-04 2017-04-13 Cellixbio Private Limited Compositions et procédés de traitement du syndrome métabolique et du diabète
WO2017161318A1 (fr) 2016-03-17 2017-09-21 Thiogenesis Therapeutics, Inc. Compositions servant à la libération contrôlée de cystéamine et traitement systémique de troubles sensibles à la cystéamine
WO2019060634A1 (fr) * 2017-09-20 2019-03-28 Thiogenesis Therapeutics, Inc. Méthodes de traitement des troubles sensibles à la cystéamine
US11020334B2 (en) * 2017-02-17 2021-06-01 Illustris Pharmaceuticals, Inc. Compounds, compositions and use thereof
EP3867228A4 (fr) * 2018-11-16 2022-08-17 Incilia Therapeutics Private Limited Acides pyridinecarboxyliques substitués, leur procédé de préparation et compositions associées
CN115433144A (zh) * 2022-10-09 2022-12-06 燃点(南京)生物医药科技有限公司 一种脂肪酸酯类化合物及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0131995A1 (fr) * 1983-07-19 1985-01-23 Maggioni-Winthrop S.P.A. Composés à activité hypolipémique
US5120738A (en) * 1989-10-06 1992-06-09 Fujirebio Inc. Pantothenic acid derivatives
US20010002404A1 (en) * 1996-05-22 2001-05-31 Webb Nigel L. Fatty acid-pharmaceutical agent conjugates
US20100184730A1 (en) * 2008-07-08 2010-07-22 Vu Chi B Fatty Acid Acylated Salicylates and Their Uses
WO2011106688A1 (fr) * 2010-02-26 2011-09-01 Catabasis Pharmaceuticals, Inc. Conjugués de bis-acide gras et leurs utilisations
US20120184585A1 (en) * 2009-09-01 2012-07-19 Catabasis Pharmaceuticals, Inc. Fatty acid niacin conjugates and their uses
WO2012149352A1 (fr) * 2011-04-29 2012-11-01 Catabasis Pharmaceuticals, Inc. Dérivés de guanidine d'acide gras et de guanidine de salicylate et leurs utilisations
WO2014068463A2 (fr) * 2012-11-03 2014-05-08 Mahesh Kandula Compositions et procédés de traitement d'une inflammation et de troubles métaboliques

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0131995A1 (fr) * 1983-07-19 1985-01-23 Maggioni-Winthrop S.P.A. Composés à activité hypolipémique
US5120738A (en) * 1989-10-06 1992-06-09 Fujirebio Inc. Pantothenic acid derivatives
US20010002404A1 (en) * 1996-05-22 2001-05-31 Webb Nigel L. Fatty acid-pharmaceutical agent conjugates
US20100184730A1 (en) * 2008-07-08 2010-07-22 Vu Chi B Fatty Acid Acylated Salicylates and Their Uses
US20120184585A1 (en) * 2009-09-01 2012-07-19 Catabasis Pharmaceuticals, Inc. Fatty acid niacin conjugates and their uses
WO2011106688A1 (fr) * 2010-02-26 2011-09-01 Catabasis Pharmaceuticals, Inc. Conjugués de bis-acide gras et leurs utilisations
WO2012149352A1 (fr) * 2011-04-29 2012-11-01 Catabasis Pharmaceuticals, Inc. Dérivés de guanidine d'acide gras et de guanidine de salicylate et leurs utilisations
WO2014068463A2 (fr) * 2012-11-03 2014-05-08 Mahesh Kandula Compositions et procédés de traitement d'une inflammation et de troubles métaboliques

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014106804A3 (fr) * 2013-01-04 2017-04-13 Cellixbio Private Limited Compositions et procédés de traitement du syndrome métabolique et du diabète
AU2017235631B2 (en) * 2016-03-17 2023-03-02 Thiogenesis Therapeutics, Inc. Compositions for controlled release of cysteamine and systemic treatment of cysteamine sensitive disorders
WO2017161318A1 (fr) 2016-03-17 2017-09-21 Thiogenesis Therapeutics, Inc. Compositions servant à la libération contrôlée de cystéamine et traitement systémique de troubles sensibles à la cystéamine
CN109310653A (zh) * 2016-03-17 2019-02-05 硫创治疗公司 用于控制释放半胱胺和系统治疗半胱胺敏感性病症的组合物
JP7418958B2 (ja) 2016-03-17 2024-01-22 チオジェネシス セラピューティクス, インコーポレイテッド システアミンの制御放出のための組成物及びシステアミン感受性障害の全身治療
JP2019512510A (ja) * 2016-03-17 2019-05-16 チオジェネシス セラピューティクス, インコーポレイテッド システアミンの制御放出のための組成物及びシステアミン感受性障害の全身治療
EP3429573A4 (fr) * 2016-03-17 2019-10-30 Thiogenesis Therapeutics, Inc. Compositions servant à la libération contrôlée de cystéamine et traitement systémique de troubles sensibles à la cystéamine
US11786491B2 (en) 2016-03-17 2023-10-17 Thiogenesis Therapeutics, Inc. Compositions for controlled release of cysteamine and systemic treatment of cysteamine sensitive disorders
IL261756B1 (en) * 2016-03-17 2023-07-01 Thiogenesis Therapeutics Inc Preparations for the controlled release of cysteamine and systemic treatment of disorders sensitive to cysteamine
US11173135B2 (en) 2016-03-17 2021-11-16 Thiogenesis Therapeutics, Inc. Compositions for controlled release of cysteamine and systemic treatment of cysteamine sensitive disorders
US11020334B2 (en) * 2017-02-17 2021-06-01 Illustris Pharmaceuticals, Inc. Compounds, compositions and use thereof
JP7208982B2 (ja) 2017-09-20 2023-01-19 チオジェネシス セラピューティクス, インコーポレイテッド システアミン感受性障害の治療方法
US11612576B2 (en) 2017-09-20 2023-03-28 Thiogenesis Therapeutics, Inc. Methods for the treatment of cysteamine sensitive disorders
JP2020535133A (ja) * 2017-09-20 2020-12-03 チオジェネシス セラピューティクス, インコーポレイテッド システアミン感受性障害の治療方法
CN111683684A (zh) * 2017-09-20 2020-09-18 硫创治疗公司 用于治疗半胱胺敏感性病症的方法
WO2019060634A1 (fr) * 2017-09-20 2019-03-28 Thiogenesis Therapeutics, Inc. Méthodes de traitement des troubles sensibles à la cystéamine
EP3867228A4 (fr) * 2018-11-16 2022-08-17 Incilia Therapeutics Private Limited Acides pyridinecarboxyliques substitués, leur procédé de préparation et compositions associées
CN115433144A (zh) * 2022-10-09 2022-12-06 燃点(南京)生物医药科技有限公司 一种脂肪酸酯类化合物及其制备方法和应用
CN115433144B (zh) * 2022-10-09 2023-09-19 燃点(南京)生物医药科技有限公司 一种脂肪酸酯类化合物及其制备方法和应用

Also Published As

Publication number Publication date
WO2014087307A3 (fr) 2014-07-31

Similar Documents

Publication Publication Date Title
US8952068B2 (en) Compositions for the treatment of diabetes and pre-diabetes
WO2014087307A2 (fr) Compositions et procédés pour le traitement du syndrome métabolique et du diabète
WO2014068463A2 (fr) Compositions et procédés de traitement d'une inflammation et de troubles métaboliques
WO2014080307A2 (fr) Compositions et procédés pour le traitement du diabète et du pré-diabète
WO2014106804A2 (fr) Compositions et procédés de traitement du syndrome métabolique et du diabète
WO2014087323A2 (fr) Compositions et procédés pour le traitement de maladies auto-immunes et métaboliques chroniques
WO2014068506A2 (fr) Compositions et procédés pour le traitement de maladies autoimmunes
WO2014195810A2 (fr) Compositions et méthodes pour le traitement du diabète et du prédiabète
WO2014053962A2 (fr) Compositions et méthodes de traitement du diabète et du prédiabète
WO2014057439A2 (fr) Compositions et procédés de traitement de maladies neurologiques et des complications associées
WO2014068461A2 (fr) Compositions et méthodes de traitement d'une inflammation aiguë
US9624168B2 (en) Compositions and methods for the treatment inflammation and lipid disorders
US9309233B2 (en) Compositions and methods for the treatment of blood clotting disorders
US9670153B2 (en) Compositions and methods for the treatment of inflammation and lipid disorders
WO2014122575A2 (fr) Conjugués d'acide gras pour le traitement d'inflammations et de maladies métaboliques
WO2016046679A1 (fr) Compositions et procédés de traitement du diabète et du pré-diabète
WO2015022613A1 (fr) Compositions et méthodes pour le traitement du diabète et du pré-diabète
US9321716B1 (en) Compositions and methods for the treatment of metabolic syndrome
WO2015028956A1 (fr) Compositions et méthodes de traitement de troubles de l'oxydation des acides gras
US9266823B2 (en) Compositions and methods for the treatment of parkinson's disease
WO2014118649A2 (fr) Compositions et méthodes pour le traitement de maladies cardiovasculaires
WO2014147541A2 (fr) Compositions et méthodes pour le traitement des ulcères gastro-duodénaux et des maladies gastro-intestinales
US20150141513A1 (en) Compositions and methods for the treatment of neurological degenerative disorders and neurological diseases
WO2014091465A2 (fr) Compositions et méthodes pour le traitement du syndrome métabolique et de troubles lipidiques
WO2014106805A2 (fr) Conjugués d'acides gras et leurs utilisations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860578

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 13860578

Country of ref document: EP

Kind code of ref document: A2