WO2014086191A1 - 超声系统及其检测信息的关联方法和装置 - Google Patents

超声系统及其检测信息的关联方法和装置 Download PDF

Info

Publication number
WO2014086191A1
WO2014086191A1 PCT/CN2013/083882 CN2013083882W WO2014086191A1 WO 2014086191 A1 WO2014086191 A1 WO 2014086191A1 CN 2013083882 W CN2013083882 W CN 2013083882W WO 2014086191 A1 WO2014086191 A1 WO 2014086191A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
image
segment
quantitative parameter
ultrasound system
Prior art date
Application number
PCT/CN2013/083882
Other languages
English (en)
French (fr)
Inventor
金蒙
丛龙飞
陈小萍
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Publication of WO2014086191A1 publication Critical patent/WO2014086191A1/zh
Priority to US14/730,035 priority Critical patent/US10799215B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B8/469Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means for selection of a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/464Displaying means of special interest involving a plurality of displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/523Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for generating planar views from image data in a user selectable plane not corresponding to the acquisition plane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • A61B8/5276Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts due to motion

Definitions

  • the present application relates to the field of medical imaging, and in particular to an ultrasound system and associated method and apparatus for detecting information.
  • the ultrasound system can be used for the acquisition of cardiac motion images and parameters. During the cardiogram acquisition process, it is not necessary to inject contrast agents, isotopes or other dyes. Patients and doctors are not exposed to radioactive materials. The method is simple and can be repeated many times. Performing, each heart chamber can be examined by multi-planar, multi-directional ultrasound imaging.
  • the commonly used echocardiographic examination modes include B-Mode mode and tissue Doppler mode (TDI).
  • the B-Mode mode is used to obtain dynamic anatomical information of the heart, and the doctor can analyze the heart motion according to the movie file obtained in the B-Mode mode.
  • speckle tracking technology Simkle Tracking
  • Speckle The Tracking technique obtains the positional relationship of the corresponding tissue by tracking the position of the ultrasound scattering spot in the B-mode ultrasound image in the ultrasound image.
  • the obtained information can be displayed on the display screen.
  • different images, charts and texts can be used for information display, and the text is often used to describe the image or the chart.
  • the text is often used to describe the image or the chart. For example, indicating the type of image, in the case where the amount of information displayed is large, it may make the text difficult to be observed by the user.
  • the present application provides an association method and apparatus for detecting information of an ultrasound system, and displays information acquired by the ultrasound system on a display screen in a more intuitive manner.
  • a method for correlating detection information of an ultrasound system including the following steps:
  • Tracking the control points to obtain tracking information the tracking information includes position information of the control points in each frame view and quantitative parameter information related to the view, and the quantitative parameter information includes quantitative parameter values;
  • An image model corresponding to the ultrasound system detection image is selected according to the image display type, and the image model is configured to be displayed in the third display area of the display.
  • a detection information correlation apparatus for an ultrasound system includes:
  • a motion tracking unit configured to receive a selected region of interest and an image display type selected by the operator on the ultrasound system detection image, discretely separate the control region from the control region, and perform motion tracking on the control point;
  • the tracking result calculation unit obtains position information of the control point in each frame view from the motion tracking unit, and calculates quantitative parameter information related to the view, wherein the quantitative parameter information includes the quantitative parameter value;
  • a display configuration unit configured to configure the image detected by the ultrasound system and the position information of the control point to be displayed to the first display area of the display for display, and configure the quantitative parameter information related to the view to the second display area of the display for display, according to the image
  • the display type selects an image model corresponding to the ultrasound system detection image, and configures the image model to the third display area of the display for display.
  • an ultrasound system comprising:
  • An image acquisition module includes a transmitting module for transmitting ultrasonic waves through an ultrasonic probe, and a receiving module for receiving an echo signal;
  • a beamforming module for processing an echo signal to obtain a B-Mode ultrasound image
  • the above-described detection information associating device is for performing association processing on the detection information based on the B-Mode ultrasound image.
  • the present application uses the icon of the model to identify the current display content, which can help the user to intuitively understand the content displayed by the current image, and reduces the possibility of difficulty in finding and misunderstanding caused by other methods such as text.
  • FIG. 1 is a structural view of an ultrasound system according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a method for associating detection information of an ultrasound system according to an embodiment of the present application
  • FIG. 3 is a view showing a type of a cut view of a heart view in an application example of the present application
  • FIG. 4 is a schematic view showing different display forms of the heart four-chamber heart section segment model of FIG. 3;
  • FIG. 5 is a schematic diagram of whether the tracking result of a certain segment is tracked by the heart segment model in the application example of the present application.
  • the ultrasound system includes an ultrasound probe 1, an image acquisition module 2, a beam synthesis module 3, a processor 4, and a display 5.
  • the image acquisition module 2 includes a transmitting module 21 and a receiving module 22, and the transmitting module 21 drives the ultrasonic probe 1 (transducer) to emit an ultrasonic beam according to a selected transmission mode.
  • the probe has a plurality of array elements, and each array element can emit ultrasonic waves. bundle. When an examinee (for example, a patient) is inspected, the surface of the probe contacts the skin of the examinee, and the array element of the probe emits an ultrasonic beam to the inside of the examinee.
  • the ultrasonic wave emitted by the ultrasonic probe enters the detected tissue, is reflected by the tissue, and generates an echo returning to the ultrasonic probe, and the echo is received by the receiving module 22, and is processed and supplied to the beam.
  • the processor 4 processes the ultrasound image, and the display 5 is used to display ultrasound images and other information associated with the images.
  • the echo is processed by the beam synthesis module 3 to obtain a B-Mode ultrasound image.
  • the processor 4 needs to perform motion tracking on the B-Mode ultrasound image and perform information correlation.
  • the processor 4 includes a motion tracking pre-processing section 41 and a motion tracking post-processing section 42.
  • the B-Mode ultrasound image is displayed on the display 5 after passing through the motion tracking pre-processing section 41, and the user can access the B-Mode.
  • the ultrasound image is manipulated, controlled, such as selecting and/or adjusting the ROI region.
  • the motion tracking post-processing unit 42 performs motion tracking based on the selected ROI region, calculates relevant parameters based on the results of the motion tracking, and associates the relevant parameters with the displayed ultrasound image. The user can select the quantitative parameter to display on the display interface.
  • the motion tracking post-processing unit 42 includes a detection information associating device 421.
  • the detection information associating means 421 correlates the detected information based on the motion tracking result of the B-Mode ultrasonic image, and displays the processing result on different display areas of the display 5.
  • the detection information associating device 421 can also read the ultrasonic image from the storage medium to perform correlation processing and display the processing result on different display areas of the display 5.
  • the detection information associating device 421 includes a motion tracking unit 4211, a tracking result calculation unit 4212, and a display configuration unit 4213.
  • the motion tracking unit 4211 is configured to receive a control region selected by an operator on the ultrasound system detection image and an image display type, and discretely separate the region of interest from the control point, and perform motion tracking on the control point, wherein the selected sense
  • the boundary of the region of interest can be manually traced by the operator on the first frame or frame of the ultrasound system detection image, and the shape, size and position of the region of interest can be adjusted according to the needs of the operator.
  • the tracking result calculation unit 4212 obtains the position information of the control point in each frame view from the motion tracking unit 4211, and calculates the quantitative parameter information related to the view, and the quantitative parameter information includes the quantitative parameter value.
  • the display configuration unit 4213 is configured to configure the image detected by the ultrasound system and the position information of the control point to the first display area 51 of the display 5 for display, and configure the quantitative parameter information related to the view to the second display area 52 of the display 5. Displaying, selecting an image model corresponding to the ultrasound system detection image according to the image display type, and configuring the image model to the third display area 53 of the display 5 for display, wherein the display configuration unit 4213 configures the quantitative parameter information related to the view Displaying to the second display area 52 of the display 5 is to calculate a quantitative parameter value of each segment of the region of interest based on the preset segment, and then generate according to the quantitative parameter value of each segment and the detection time of the corresponding view frame thereof.
  • the quantitative parameter value of each segment is equal to a weighted sum or average value of the quantitative parameter values of the control points included in the segment, and the display configuration unit 4213 is based on the preset when displaying the image model
  • the number of segments divides the image model into segments, and the segments in the image model are colored differently.
  • the display configuration unit 4213 may highlight or hide the segment selected by the operator on the display 5, and also highlight or hide the quantitative parameter curve corresponding to the selected segment; or may not select the selected segment The segment is hidden, and the quantitative parameter curve corresponding to the segment that is not selected is also hidden. Finally, the display configuration unit 4213 displays the marker corresponding to the determination result of the tracking result of each segment on the corresponding segment of the image model. .
  • the third display area 53 is closer to the first display area 51 field or closer to the second display area 52.
  • the detection information associating means 421 may be an integrated chip or a plurality of integrated chips on which a program for realizing the above functions is recorded.
  • an associated method for detecting information of an ultrasound system based on the above ultrasound system includes the following steps:
  • Step 100 receiving a region of interest and an image display type.
  • the receiving operator selects the region of interest and the image display type based on the ultrasound image displayed on the display.
  • the boundary of the selected region of interest can be manually traced by the operator on the first frame or a certain frame of the ultrasound system detection image, and the shape, size and position of the region of interest can be adjusted according to the needs of the operator.
  • the ultrasound system detection image can be acquired by the image acquisition module or can be read from the storage medium.
  • the ultrasound system detection image is a B-Mode ultrasound image acquired by the image acquisition module.
  • the image display type may appear as an icon on the display interface or in the form of a pull-down menu on the display interface. The user selects the image display type of the B-Mode ultrasound image according to the need, and the B-Mode ultrasound image according to the selected image display type. Perform the corresponding form display.
  • step 101 the region of interest is discretely separated from the control points.
  • Step 102 Obtain tracking information of the control point.
  • Motion tracking of the control points can be performed by block matching method to obtain tracking information.
  • the tracking information includes the position information of the control points in each frame view and the quantitative parameter information related to the view.
  • the quantitative parameter information can be interested.
  • Regional motion related parameters such as velocity and displacement, can also be parameters related to the region of interest itself, such as strain and strain rate.
  • the quantitative parameter information may include a parameter value of a certain quantitative parameter and its detection time information, and may also include position information of the control point.
  • the position information of the control point can be used to determine the segment to which the control point belongs.
  • Step 103 Display the image detected by the ultrasound system and the position information of the control point.
  • the image detected by the ultrasound system and the position information of the control point are configured to be displayed in the first display area of the display.
  • Step 104 Display quantitative parameter information related to the view.
  • the quantitative parameter information related to the view is configured to be displayed in the second display area of the display. Specifically, the quantitative parameter value and the time for measuring the value are expressed in a two-dimensional coordinate system, and a quantitative parameter curve is generated that changes with time.
  • Step 105 displaying the selected image model.
  • An image model corresponding to the ultrasound system detection image is selected in the image model library according to the image display type, and the image model is configured to be displayed in the third display area of the display.
  • the steps 103, 104, and 105 are not necessarily in the above order, and may be displayed at the same time, or may be displayed in sequence, or the image model may be displayed first, and then the quantitative parameter curve may be displayed.
  • This embodiment provides a user-friendly user interface, and the image display type is visually represented on the display screen by the model diagram.
  • the user can know the display type of the ultrasound image according to the model, and does not need to search for a large number of information on the display interface.
  • the text description of the display type does not need to find the text to understand the meaning of the text.
  • the ultrasound image is divided into segments according to a preset setting, and each segment is associated with a corresponding quantitative parameter curve
  • the step of generating the quantitative parameter curve includes: The segment calculates the quantitative parameter value of each segment of the region of interest, and generates a quantitative parameter curve corresponding to the segment according to the quantitative parameter value of each segment and the detection time of the corresponding view frame.
  • the image model can also be divided into segments based on the preset number of segments in the display image model.
  • each segment in the image model is filled with different colors when the image model is displayed, and each segment is generated when the quantitative parameter curve is generated.
  • the corresponding quantitative parameter curve is color coded, and the color of the quantitative parameter curve is consistent with the color of the corresponding segment.
  • the third display area is closer to the first display area or closer to the second display area.
  • the detection information associating device of the present application may highlight or hide the segment selected by the operator, and also perform the quantitative parameter curve corresponding to the selected segment. Highlight or hide; you can also hide unselected segments and hide the quantitative parameter curves corresponding to the segments that are not selected.
  • the detection information associating device may also obtain a judgment result of the tracking result of each segment, and display a mark corresponding to the judgment result on the corresponding segment of the image model.
  • the following is an example of tracking cardiac motion using the above-described apparatus and method.
  • the ultrasound system obtains a B-Mode cardiac motion ultrasound image by means of an image acquisition module or a method of reading from a storage medium, and the motion tracking pre-processing unit in the processor processes the cardiac motion ultrasound image and displays it on the display.
  • the heart view view type of the currently loaded image is selected by the view face type identification button on the display interface of the display, thereby completing the image display type selection, and then inputting in the first frame or a frame of the loaded image.
  • the ROI of the motion tracking (ie, the region of interest), the input method may be to manually trace the boundary of the ROI, and then the system generates an ROI according to the user input; after the ROI is generated, the user may adjust the ROI, and the adjustment of the ROI may include The ROI shape, position, size, etc. are adjusted; after completing the input and adjustment of the ROI, the user clicks the start tracking button, and the motion tracking of the system processor begins to automatically identify and track the motion of the ROI, and the tracking method may be Discretize the ROI into several control points, and block matching the motion of the control points The method performs tracking to obtain the position of the control point on each frame of the image. During the tracking process, the system displays the current tracking progress bar.
  • the system plays the tracking result, and the tracking result is deformed according to the position of the control point on each frame of the image. Reconstruction with displacement, etc., and display the reconstruction result on the corresponding image.
  • the user can visually check the accuracy of the tracking results.
  • the system automatically enters the quantitative parameter display interface, and the quantitative parameter may be a parameter related to the ROI motion, such as speed, displacement, or a parameter related to the ROI itself, such as strain and strain rate; The user needs to make a judgment on whether the tracking result of the previous playback is accurate.
  • the system allows the user to reload other view images, or re-enter and adjust the ROI on the currently loaded image; if the user tracks the result In the case of approval, the system allows the user to play back the tracking results to observe the motion of the ROI.
  • the user can select the quantitative parameters of the user's interest on the parameter display interface for display, and the system can further allow the user to record the relevant quantitative parameter information.
  • a related report is generated based on the view type information, the quantitative parameter result, and the result of the bull's eye diagram.
  • the display of the system may further include a current frame image display window and a plurality of sliders, pull-down menus, selection buttons, and the like; the current frame display window is used to display the current frame image.
  • the current frame display window is used to display the current frame image.
  • the user can select the corresponding facet type name according to the image slice type displayed in the current frame in the pull-down menu, the selection button, and the like.
  • a heart segment model is displayed in the current frame image display window to indicate the type of facet.
  • the user can trace the boundary of the ROI on the current frame (ie, the current ultrasound image) display window by using an input device such as a mouse or a trackball.
  • the system After the trace is completed, the system generates an ROI according to the user input.
  • the user can adjust the shape, size and position of the ROI, and the adjustment method can be performed by dragging the boundary of the ROI and the ROI by using the input device such as a mouse or a trackball, or by using buttons, sliders, etc. on the display interface.
  • the user can click the Start Tracking button and the system enters the ROI motion tracking process. During the tracking process, the system displays a tracking progress bar. After the tracking process is completed, the system plays the tracking motion result.
  • the system displays the calculation result on the relevant area on the display, and the display interface includes at least one tracking result display area, that is, the first display area, and a quantitative parameter curve display area, that is, the second display.
  • the area and the third display area may also include a comprehensive information display area.
  • the tracking result display area is used to display the results of the selected ROI motion tracking in the images at different times.
  • the ROI area is divided into small areas or segments to indicate different areas that distinguish the heart.
  • the tracking result display area may include an area for displaying an electrocardiographic signal for identifying time information of the current frame image.
  • the resulting display area can dynamically replay the results of motion tracking showing the heart image and ROI.
  • the quantitative parameter display area should contain at least one quantitative parameter curve (displayed in the second display area) associated with the current view, the quantitative parameter name displayed by the curve, and a cardiac segment model schematic (displayed in the third display area).
  • the heart segment model map can be located anywhere in the display window, such as within the current frame image display area.
  • the quantitative parameter display area can be displayed graphically, where one axis represents the time and the other axis represents the numerical value of the quantitative parameter.
  • the graph can represent the size of the quantitative parameter at each moment in the graph; the quantitative parameter display
  • the region may also contain time nodes for identifying the phase of the heart, such as the location identification of the peak of the ECG signal R.
  • the integrated information display area can display global information related to the currently displayed aspect view, such as the ejection fraction.
  • the heart segment model diagram should clearly identify the current type of view of the heart section and identify different segments of the heart with different colors.
  • the segment distribution corresponds to the segment display on the heart image in the image area.
  • the quantitative parameter curve color of a segment in the quantitative parameter curve display area should be consistent with the segment color in the corresponding cardiac segment model.
  • the heart segment model diagram not only establishes a one-to-one correspondence between the quantitative curve and the upper segment of the cardiac image ROI, but also gives a dominant display of the heart slice currently being analyzed.
  • the schematic diagram of the heart segment model is generated according to the user selecting the currently loaded view face type identification button on the operation interface.
  • the size and shape of the heart segment model schematic diagram may be preset in the system.
  • the schematic diagram of the segmental model of the preset cardiac section displayed in the quantitative parameter display area can be as shown in FIG. 3 for different cardiac section types.
  • the heart segment model diagram should be able to directly identify the current view of the heart section view, as shown in Figure 3 (a) identifies the heart four-chamber view, and Figure 3 (b) identifies the heart two-chamber view, Figure 3 (c The image of the long-axis view of the heart is identified, Figure 3(d) identifies the planar image of the mitral valve, Figure 3(e) identifies the planar image of the cardiac papillary muscle, and Figure 3(f) identifies the planar image of the apex of the heart. A clear distinction can be seen between the different cardiac segment model diagrams.
  • the position of the right ventricular wall 301 can be used to distinguish the current view from the heart to the four-chamber view; in Figure 3(b), The current view can be distinguished as a long axis view of the heart; in FIG. 3(c), the position of the right ventricular wall 302 can be utilized to distinguish the current view type from a two-chamber view of the heart;
  • the feature of the identification shackle 303 can be used to distinguish the current view from the horizontal view of the short axis of the heart; in Figure 3(e), the feature identifying the papillary muscle 304 can be used to distinguish the current view from the heart.
  • a horizontal view of the short-axis papillary muscle; in Figure 3(f), the current view can be distinguished as a short-axis apical plan view of the heart.
  • the common name of the section type represented by the section model schematic can be used to identify it.
  • the heart segment model diagram can be segmented into segments according to the heart 17 segment model or according to the heart 16 segment model, and the myocardial segments are identified by different colors.
  • the color of different heart segments can be preset by the system or manually input by the user. The color between different heart segments should be significantly different.
  • the color on each segment or segments of the cardiac segment model map should be consistent with the color of the quantitative parameter curve of the corresponding cardiac segment in the cardiac motion tracking quantitative parameter curve.
  • Different cardiac segments can be labeled with their common names in the heart segment model diagram.
  • the schematic diagram of the segmental model of the heart slice displayed in the quantitative parameter display area can also take other forms.
  • the left ventricle of the heart contains the myocardial wall and the interventricular septum 403.
  • the myocardial wall and the interventricular septum according to the 17-segment model of the heart, it can be divided into 7 segments. It can also be divided into 6 segments according to the heart 16 segment model, and different myocardial segments are marked with different colors. There should be a significant difference in color between different heart segments.
  • the cardiac four-chamber heart segment model may further include a right ventricular wall of the heart, and the position of the right ventricular wall of the heart may identify that the current view type is a cardiac four-chamber view, and the cardiac four-chamber cardiac segment model may further include a mitral valve 402, a cusp The position of the valve 402 identifies the location of the mitral valve plane of the heart.
  • the schematic diagram of the segmental model of the heart section can also have other forms, and Fig.
  • FIG. 4(b) is a schematic diagram of a segmental model of another heart four-chamber heart section.
  • the left ventricular septum and ventricular wall of the heart can be identified by a simple curved shape 404 or other shape, and the current cut type is labeled with the common name that can be used for the current cut.
  • the left ventricle of the heart contains myocardial wall and interventricular septum. In the myocardial wall and interventricular septum, it can be divided into 7 segments according to the 17-segment model of the heart. It can also be divided into 6 segments according to the 16-segment model of the heart. Segments can be identified by different colors, or they can be identified by their common names, or both.
  • the schematic diagram of the segmental model of the cardiac slice displayed in the quantitative parameter display area can also be generated according to the shape, size and the like of the ROI on the tracking result display interface.
  • the schematic diagram of the segmental model of the heart section may be the reduction, stretching or other deformation of the ROI on the current image.
  • the segmental model diagram of the heart section can be divided into several segments according to the heart 17 segment model, or divided into several segments according to the heart 16 segment model. Different heart segments can be identified by different colors, or It is identified by its common name, or both.
  • the segment model map of the heart slice can be consistent with the ROI on the current image displayed in the tracking result display area.
  • the schematic diagram of the cardiac segment model may be based on the type of the face selected by the user to load the preset image of the system, or may be generated according to the shape and size of the ROI on the tracking result display interface.
  • the heart segment model map can be used to display the real-time distribution of quantitative parameters within the ROI on the current display interface in real time.
  • the real-time display of the current quantitative parameter on the ROI distribution model may be: according to the quantitative parameter value of a certain point in the ROI, find the corresponding color in the corresponding color table, and then fill the color into the heart segment. The corresponding position of the model diagram goes up.
  • the cardiac segment model map can also be used to display the quantitative parameter distribution of the myocardial segments on the current display interface in real time.
  • the method for real-time display of the quantitative parameter distribution of the myocardial segment on the current display interface may be: searching for the corresponding color in the corresponding color table according to the quantitative parameter value of the myocardial segment, and then filling the color Go to the corresponding segment of the heart segment model diagram.
  • the heart segment model map displayed in the quantitative parameter display area can also be used to identify whether the tracking result of a certain segment in the cardiac motion tracking is valid.
  • the method of identifying whether the heart segmental motion tracking is successful may be to use obvious markings such as identifying the wrong symbol "X" as shown in Figure 5(a), or indicating incorrect text such as "WRONG", “UNACCEPTABLE”, or using pre-
  • the color is set to black, which identifies the segment where the heart motion tracking fails. It can also hide the segment where the heart motion tracking fails, and only display the segment where the system or the user determines to track successfully, as shown in Figure 5(b). It can also be that other linear lines such as dashed lines depict the boundaries of the heart segment that track the error. As shown in Figure 5 (c).
  • the heart segment model diagram allows the user to drag, zoom, stretch, etc. within the display interface.
  • the user can drag the heart segment model schematic to any position on the display interface to achieve the most satisfactory display.
  • the user can also zoom in and out on the heart segment model schematic to facilitate the user to observe the details of myocardial motion changes.
  • the user can also perform a stretching operation on the heart model schematic, which has achieved satisfactory results.
  • the cardiac segment model schematic allows the user to select the displayed heart segment.
  • the user can choose to display one or several heart segments to hide other heart segments.
  • the quantitative parameter display window can display or hide the quantitative parameters of the corresponding heart segment according to the user's selection.
  • the information acquired by the ultrasound system is displayed on the display screen in an intuitive manner, and the information acquired by the ultrasound system is effectively identified by using the curve and the color code to help the user understand various information and reduce the text. Other ways to bring the possibility of misperception.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声系统检测信息的关联方法,包括以下步骤:接收操作者在超声系统探测图像上选定的感兴趣区域和图像显示类型(100);将感兴趣区域离散成分立的控制点(101);对控制点进行运动跟踪,得到跟踪信息(102);将超声系统探测的图像和控制点的位置信息配置到显示器的第一显示区域进行显示(103);将与视图相关的定量参数信息配置到显示器的第二显示区域进行显示(104);根据图像显示类型选择与超声系统探测图像对应的图像模型,并将图像模型配置到显示器的第三显示区域进行显示(105)。还公开了一种超声系统检测信息的关联装置以及一种超声系统。该超声系统检测信息的关联方法和装置能将超声系统获取的信息在显示屏上以一种更直观的方式显示出来。

Description

超声系统及其检测信息的关联方法和装置 技术领域
本申请涉及医疗成像领域,尤其涉及超声系统及其检测信息的关联方法和装置。
背景技术
超声系统可用于心脏运动图像和参数的获取,在心动图获取过程中不需要注射造影剂、同位素或其它染料,病人和医生不受放射性物质辐射,方法简便,可多次重复,可在床旁进行,通过多平面、多方位超声成像可对每个心腔检查。目前常用的超声心动图检查模式有B-Mode模式、组织多普勒模式(TDI)。B-Mode模式用于获得心脏的动态解剖信息,医生可以根据B-Mode模式下获得的电影文件对心脏运动情况进行分析。近年来,基于斑点跟踪技术(Speckle Tracking)的超声图像运动跟踪技术成为一个正在快速发展的方向。Speckle Tracking技术通过跟踪超声图像中超声散射斑点在B型超声图像中的位置,从而获得对应的组织的位置变化关系。
在利用斑点跟踪技术对感兴趣区域进行跟踪后,可将获得的信息显示在显示屏上,例如可采用不同的图像、图表和文字的方式进行信息显示,文字常用来对图像或图表进行说明,例如表明图像的类型,在显示的信息量巨大的情况下,可能使得文字难于被用户观察到。
发明内容
本申请提供一种超声系统检测信息的关联方法和装置,将超声系统获取的信息在显示屏上以一种更直观地的方式显示出来。
本申请的一方面,提供一种超声系统检测信息的关联方法,包括以下步骤:
接收操作者在超声系统探测图像上选定的感兴趣区域和图像显示类型;
将感兴趣区域离散成分立的控制点;
对控制点进行运动跟踪,得到跟踪信息,跟踪信息包括控制点在每帧视图中的位置信息和与视图相关的定量参数信息,定量参数信息中包括定量参数值;
将超声系统探测的图像和控制点的位置信息配置到显示器的第一显示区域进行显示;
将与视图相关的定量参数信息配置到显示器的第二显示区域进行显示;
根据图像显示类型选择与超声系统探测图像对应的图像模型,并将图像模型配置到显示器的第三显示区域进行显示。
本申请的又一方面,提供一种用于超声系统的检测信息关联装置包括:
运动跟踪单元,用于接收操作者在超声系统探测图像上选定的感兴趣区域和图像显示类型,将感兴趣区域离散成分立的控制点,对控制点进行运动跟踪;
跟踪结果计算单元,从运动跟踪单元获得控制点在每帧视图中的位置信息,计算与视图相关的定量参数信息,定量参数信息中包括定量参数值;
显示配置单元,用于将超声系统探测的图像和控制点的位置信息配置到显示器的第一显示区域进行显示,将与视图相关的定量参数信息配置到显示器的第二显示区域进行显示,根据图像显示类型选择与超声系统探测图像对应的图像模型,并将图像模型配置到显示器的第三显示区域进行显示。
本申请的又一方面,提供一种超声系统,包括:
图像采集模块,图像采集模块包括用于通过超声探头发射超声波的发射模块,和接收回波信号的接收模块;
波束合成模块,用于对回波信号进行处理,得到B-Mode超声图像;和
上述的检测信息关联装置,其用于基于B-Mode超声图像对检测信息进行关联处理。
本申请利用模型这种图标的方式对当前显示内容进行了标识,可以帮助用户直观了解当前图像显示的内容,降低了文字等其他方式带来的查找困难和错误认知的可能性。
附图说明
图1为本申请一种实施例的超声系统结构图;
图2为本申请一种实施例的超声系统检测信息的关联方法流程图;
图3为本申请应用举例中的心脏视图切面类型图;
图4为图3中心脏四腔心切面节段模型的不同显示形式示意图;
图5为本申请应用举例中的心脏节段模型跟踪某一节段的跟踪结果是否有效标识示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
如图1所示,超声系统包括超声探头1、图像采集模块2、波束合成模块3、处理器4和显示器5。
图像采集模块2包括发射模块21和接收模块22,发射模块21驱动超声探头1(换能器)按照选定的发射模式发射超声波束,探头中具有若干阵元,每个阵元都可发射超声波束。当对被检查者(例如病人)进行检查时,探头的表面接触被检查者的皮肤,探头的阵元向被检查者体内发射超声波束。由于探头的阵元发射一定功率的超声波束,超声探头发射的超声波进入被检测组织后,被组织反射,产生返回到超声探头的回波,回波被接收模块22接收,经处理后提供给波束合成模块3,本申请实施例中,回波经波束合成模块3处理后得到超声图像。处理器4对超声图像进行处理,显示器5用于显示超声图像和其它与图像关联的信息。
以采用B-Mode模式对运动组织进行检查为例,回波经波束合成模块3处理后得到B-Mode超声图像。处理器4需要对B-Mode超声图像进行运动跟踪并进行信息关联。在一种实施例中,处理器4包括运动跟踪预处理部41和运动跟踪后处理部42,B-Mode超声图像经过运动跟踪预处理部41后显示在显示器5上,用户可以对B-Mode超声图像进行操作、控制,如选定和/或调整ROI区域。运动跟踪后处理部42根据选定的ROI区域进行运动跟踪,根据运动跟踪的结果计算相关参数并将相关参数和显示的超声图像进行关联显示。用户可以选择定量参数在显示界面进行显示。
在本发明实施例中,运动跟踪后处理部42包括检测信息关联装置421。检测信息关联装置421基于对B-Mode超声图像的运动跟踪结果,对检测的信息进行关联处理,并将处理结果显示到显示器5的不同显示区域上。当然,检测信息关联装置421也可以从存储介质中读取超声图像进行相关处理后并将处理结果显示到显示器5的不同显示区域上。
在一种实施例中,检测信息关联装置421包括:运动跟踪单元4211、跟踪结果计算单元4212和显示配置单元4213。
运动跟踪单元4211用于接收操作者在超声系统探测图像上选定的感兴趣区域和图像显示类型,将感兴趣区域离散成分立的控制点,对控制点进行运动跟踪,其中,选定的感兴趣区域的边界可以通过操作者在超声系统探测图像的第一帧或者某一帧上手动描迹得到,感兴趣区域的形状、大小和位置可根据操作者的需要进行调整。
跟踪结果计算单元4212从运动跟踪单元4211获得控制点在每帧视图中的位置信息,计算与视图相关的定量参数信息,定量参数信息中包括定量参数值。
显示配置单元4213用于将超声系统探测的图像和控制点的位置信息配置到显示器5的第一显示区域51进行显示,将与视图相关的定量参数信息配置到显示器5的第二显示区域52进行显示,根据图像显示类型选择与超声系统探测图像对应的图像模型,并将图像模型配置到显示器5的第三显示区域53进行显示,其中,显示配置单元4213在将与视图相关的定量参数信息配置到显示器5的第二显示区域52进行显示是基于预设的节段计算感兴趣区域的每节段的定量参数值,然后根据每节段的定量参数值和其对应的视图帧的检测时间生成与节段对应的定量参数曲线,每节段的定量参数值等于该节段所包含控制点的定量参数值的加权和或平均值,另外,显示配置单元4213在显示图像模型时基于预设的节段数量将图像模型划分为若干节段,对图像模型中的各节段进行不同颜色的填充,在生成定量参数曲线时对各节段对应的定量参数曲线进行颜色编码,定量参数曲线的颜色与各自对应节段的颜色一致,此外,当操作者在对图像模型的节段进行选择操作时,显示配置单元4213可以将操作者选择的节段在显示器5进行突出显示或隐藏,并将与选择的节段对应的定量参数曲线也进行突出显示或隐藏;也可以将未被选择的节段进行隐藏,并将与未被选择的节段对应的定量参数曲线也进行隐藏,最后,显示配置单元4213将与各节段跟踪结果的判断结果对应的标记显示在图像模型的对应节段上。第三显示区域53更靠近第一显示区51域或更靠近第二显示区域52。
检测信息关联装置421可以是记录有可实现上述功能的程序的一个集成芯片或多个集成芯片。
如图2所示为基于上述超声系统的一种超声系统检测信息的关联方法,包括以下步骤:
步骤100,接收感兴趣区域和图像显示类型。
接收操作者根据显示器上显示的超声图像,在其上选定的感兴趣区域和图像显示类型。其中,选定的感兴趣区域的边界可通过操作者在超声系统探测图像的第一帧或者某一帧上手动描迹得到,感兴趣区域的形状、大小和位置可根据操作者的需要进行调整。超声系统探测图像可以通过图像采集模块采集得到,也可从存储介质中读取得到,本实施中,超声系统探测图像是通过图像采集模块采集得到的B-Mode超声图像。图像显示类型可以在显示界面上以图标形式出现,也可以在显示界面上以下拉菜单形式出现,用户根据需要选择B-Mode超声图像的图像显示类型,B-Mode超声图像根据选择的图像显示类型进行相应形态显示。
步骤101,将感兴趣区域离散成分立的控制点。
步骤102,获取控制点的跟踪信息。
对控制点进行运动跟踪,可采用块匹配的方法进行跟踪,得到跟踪信息,跟踪信息包括控制点在每帧视图中的位置信息和与视图相关的定量参数信息,定量参数信息可以是与感兴趣区域运动相关的参数,如速度、位移,也可以是与感兴趣区域自身相关的参数,如应变、应变率。定量参数信息中可以包括某定量参数的参数值以及其检测时间信息,还可以包括控制点的位置信息。控制点的位置信息可用于确定控制点所属的节段。
步骤103,显示超声系统探测的图像和控制点的位置信息。
将超声系统探测的图像和控制点的位置信息配置到显示器的第一显示区域进行显示。
步骤104,显示与视图相关的定量参数信息。
将与视图相关的定量参数信息配置到显示器的第二显示区域进行显示,具体是将定量参数值和测量该值的时间表示在二维坐标系中,生成随时间变化的定量参数曲线图。
步骤105,显示选择的图像模型。
根据图像显示类型在图像模型库中选择与超声系统探测图像对应的图像模型,并将图像模型配置到显示器的第三显示区域进行显示。
本实施例中,步骤103、104和105并不一定按照上述的顺序,其可以是同时显示,也可以先后显示,也可以先显示图像模型,再显示定量参数曲线等。
根据人们的使用习惯,图形往往比文字更容易被发现和识别,图形会更直观,人们不用去过多考虑图形的含义,而人们看到文字后往往需要去理解文字所表达的含义。本实施例为用户提供了友好的使用界面,将图像显示类型用模型图直观地表示在显示屏上,用户根据模型即可知道超声图像的显示类型,不需要在显示界面上的众多信息中查找显示类型的文字说明,也不需要找到文字后去理解文字的含义。
在一种具体实施例中,按照预先的设定,将超声图像分为若干节段,对每一节段用一对应的定量参数曲线进行关联,定量参数曲线的生成步骤包括:基于预设的节段计算感兴趣区域的每节段的定量参数值,根据每节段的定量参数值和其对应的视图帧的检测时间生成与节段对应的定量参数曲线。在显示图像模型也可以基于预设的节段数量将图像模型划分为若干节段。
为突出定量参数与超声图像节段的关联性,在另一种具体实例中,在显示图像模型时对图像模型中的各节段进行不同颜色的填充,在生成定量参数曲线时对各节段对应的定量参数曲线进行颜色编码,定量参数曲线的颜色与各自对应节段的颜色一致。
根据定量参数曲线和图像模型节段的颜色一致性,可清楚地知道哪个定量参数曲线对应图像模型的哪个节段,再根据图像模型和实际显示的超声图像的节段的一致性,可清楚地知道哪个定量参数曲线对应实际显示的超声图像上的哪个节段,从而将图像信息和定量参数信息关联起来。
为了更便于用户就近观察,第三显示区域更靠近第一显示区域或更靠近第二显示区域。
当操作者在对图像模型的节段进行选择操作时,本申请的检测信息关联装置可将操作者选择的节段进行突出显示或隐藏,并将与选择的节段对应的定量参数曲线也进行突出显示或隐藏;也可以将未被选择的节段进行隐藏,并将与未被选择的节段对应的定量参数曲线也进行隐藏。
另外,检测信息关联装置还可获取对各节段跟踪结果的判断结果,将与判断结果对应的标记显示在图像模型的对应节段上。
下面以采用上述装置和方法对心脏运动进行跟踪为例进行说明。
首先,超声系统通过图像采集模块采集或者从存储介质中读取的方式,得到B-Mode心脏运动超声图像,处理器中的运动跟踪预处理部将心脏运动超声图像处理后显示在显示器上,用户根据图像的类型在显示器的操作界面上通过视图切面类型标识按钮选择当前载入图像的心脏视图切面类型,从而完成图像显示类型的选择,然后在载入图像的第一帧或者某一帧上输入运动跟踪的ROI(即感兴趣区域),输入方法可以是手动对ROI的边界进行描迹,然后系统根据用户输入生成ROI;生成ROI后,用户可以对ROI进行调整,对ROI的调整可以包括对ROI形状、位置、大小等进行调节;在完成对ROI的输入和调节后,用户点击开始跟踪按钮,系统处理器的运动跟踪后处理部开始对ROI的运动进行自动识别和跟踪,跟踪方法可以是将ROI离散成若干控制点,对控制点的运动采用块匹配的方法进行跟踪,得到每一帧图像上控制点的位置,跟踪过程中系统显示当前跟踪进度条,跟踪完成后,系统播放跟踪结果,跟踪结果根据每一帧图像上控制点的位置对ROI的形变和位移等进行重建,将重建结果显示在对应的图像上。在运动跟踪回放过程中,用户可以对跟踪结果的准确性进行目测。在跟踪结果回放完成后,系统自动进入定量参数显示界面,定量参数可以是与ROI运动相关的参数,如速度、位移,也可以是与ROI自身相关的参数,如应变、应变率;此时,用户需要对之前回放的跟踪结果是否准确做出判定,如果用户认为跟踪结果不准确,系统允许用户重新载入其他视图图像,或者在当前载入图像上重新输入并调节ROI;如果用户对跟踪结果表示认可,则系统允许用户回放跟踪结果,用以观察ROI的运动情况,另外用户可以在参数显示界面上选择用户关心的定量参数进行显示,系统可以进一步允许用户对选择的定量参数相关信息记录到牛眼图中,并根据视图类型信息、定量参数结果和牛眼图的结果生成相关报告。
系统的显示器中还可以包括一个当前帧图像显示窗口和若干个滑动条、下拉菜单、选择按钮等;当前帧显示窗口用以显示当前帧图像。正在选择图像显示类型时,用户可根据当前帧显示的图像切面类型在下拉菜单、选择按钮等选择对应的切面类型名称。选择视图切面类型后,当前帧图像显示窗口内显示一个心脏节段模型,用于标示切面类型。在选定感兴趣区域时,用户可以使用鼠标、轨迹球等输入设备在当前帧(即当前的超声图像)显示窗口上对ROI的边界进行描迹,描迹完成后,系统根据用户输入生成ROI,用户可以对ROI的形状、大小和位置等进行调节,调节方法通过用户使用鼠标、轨迹球等输入设备对ROI、ROI的边界进行拖动完成,也可以通过显示界面上的按钮、滑动条等实现相应功能对ROI进行调节。完成调节后,用户可以点击开始跟踪按钮,系统进入ROI运动跟踪过程。跟踪过程中,系统显示跟踪进度条,在完成跟踪过程,系统播放跟踪运动结果。
在完成对图像运动跟踪和定量参数计算后,系统对计算结果在显示器上的相关区域进行显示,显示界面至少包含一个跟踪结果显示区域即第一显示区域,一个定量参数曲线显示区域即第二显示区域和第三显示区域,还可以包含一个综合信息显示区域。跟踪结果显示区域用于显示不同时刻图像中选定的ROI运动跟踪的结果。ROI区域被分成若干小区域或者节段,用以标示区分心脏的不同区域。跟踪结果显示区域可以包含一个用于显示心电信号的区域,用于标识当前帧图像的时间信息。结果显示区域可以动态回放显示心脏图像和ROI的运动跟踪的结果。定量参数显示区域应当包含至少一条与当前视图相关的定量参数曲线(在第二显示区域内显示)、曲线所显示的定量参数名称、一个心脏节段模型示意图(在第三显示区域内显示)。心脏节段模型示意图可以位于显示窗口的任意位置,如位于当前帧图像显示区域内。定量参数显示区域可以用图表的方式显示,其中图表中一个坐标轴表示时间,另一个坐标轴表示定量参数的数值大小,图表中可以用曲线形式表示定量参数在每一时刻的大小;定量参数显示区域还可以包含用于标识心脏时相相关的时间节点,如心电信号R波峰所在的位置标识。综合信息显示区域可以显示与当前显示切面视图相关的全局信息,如射血分数。心脏节段模型示意图应当可以明显的标识当前心脏切面视图类型,并用不同颜色标识心脏不同节段,节段分布与图像区域中心脏图像上节段显示一一对应。定量参数曲线显示区域中某一节段的定量参数曲线颜色与对应的心脏节段模型中的节段颜色应当一致。心脏节段模型示意图不但可以建立定量曲线与心脏图像ROI上节段的一一对应关系,同时给出当前正在分析心脏切面的显性显示。
心脏节段模型示意图根据用户在操作界面上选择当前载入的视图切面类型标识按钮来生成,心脏节段模型示意图的大小、形态等可以是在系统内预设好的。在定量参数显示区域中显示的预设好的心脏切面的节段模型示意图针对不同心脏切面类型可以如图3所示。心脏节段模型示意图整体应当可以直接的标识当前心脏切面视图类型,如图3(a)标识了心脏四腔心切面图像,图3(b)标识了心脏二腔心切面图像,图3(c)标识了心脏长轴切面图像,图3(d)标识了心脏二尖瓣平面图像,图3(e)标识了心脏乳头肌平面图像,图3(f)标识了心脏心尖平面图像。不同心脏节段模型示意图之间可以看到明显的区别,例如在图3(a)中,利用右心室壁301的位置可以区别当前视图为心脏四腔心切面;在图3(b)中,可以区别当前视图为心脏长轴视图;在图3(c)中,可以利用右心室壁302的位置区别当前视图类型为心脏两腔心视图; 在图3(d)中,可以利用标识腱锁303的特征区别当前视图为心脏短轴二尖瓣水平视图;在图3(e)中,可以利用标识乳头肌304的特征区别当前视图为心脏短轴乳头肌水平视图;在图3(f)中,可以区别当前视图为心脏短轴心尖平面视图。在每一个心脏节段模型示意图中,可以用该节段模型示意图所代表的切面类型的常用名称对其进行标识。心脏节段模型示意图可以根据心脏17节段模型或者根据心脏16节段模型分割成若干个节段,并采用不同的颜色对心肌节段进行标识。不同的心脏节段的颜色可以为系统预设好的,也可以是用户手动输入的,不同心脏节段之间的颜色应当有明显的差异。当用颜色进行标识心脏节段时,心脏节段模型示意图上的每一节段或者若干节段上的颜色应当与心脏运动跟踪定量参数曲线中对应心脏节段的定量参数曲线颜色保持一致。心脏节段模型示意图中可以对不同的心脏节段用其常用名称进行标注。当用户在心脏节段模型示意图中选择某一心脏节段时,对应的心脏节段可以高亮显示,同时对应的心脏节段的定量参数也可以高亮显示。
在定量参数显示区域中显示的心脏切面的节段模型示意图还可以有其他形式。以心脏四腔心切面为例,如图4(a)所示,心脏左心室包含了心肌壁和室间隔403,在心肌壁和室间隔上,根据心脏17节段模型可以分为7个节段,也可以根据心脏16节段模型分为6个节段,不同的心肌节段上用不同的颜色标识。不同心脏节段之间的颜色应当有明显的差异。当用颜色进行标识心脏节段时,心脏节段模型示意图上的每一节段或者若干节段上的颜色应当与心脏运动跟踪定量参数曲线中对应心脏节段的定量参数曲线颜色保持一致。心脏四腔心节段模型还可以包括心脏右心室壁,心脏右心室壁的位置可以标识当前视图类型为心脏四腔心切面,心脏四腔心节段模型还可以包括二尖瓣402,二尖瓣402的位置标识了心脏二尖瓣平面的位置。心脏切面的节段模型示意图还可以有其他形式,图4(b)为另一种心脏四腔心切面的节段模型示意图。心脏左室室间隔和心室壁可以用一个简单的弧形404或者其他形状来标识,当前切面类型用可以当前切面的常用名称进行标注。心脏左心室包含了心肌壁和室间隔,在心肌壁和室间隔上,可以根据心脏17节段模型分为7个节段,也可以根据心脏16节段模型分为6个节段,不同的心脏节段可以用不同的颜色标识,也可以用其常用名称进行标识,或者同时采用两种方式进行标识。
在定量参数显示区域中显示的心脏切面的节段模型示意图还可以根据跟踪结果显示界面上的ROI的形状、大小等特征来生成。心脏切面的节段模型示意图可以是当前图像上ROI的缩小、拉伸或者其他变形。心脏切面的节段模型示意图可以根据心脏17节段模型分为若干个节段,也可以根据心脏16节段模型分为若干个节段,不同的心脏节段可以用不同的颜色标识,也可以用其常用名称进行标识,或者同时采用两种方式进行标识。心脏切面的节段模型示意图可以与跟踪结果显示区域显示的当前图像上的ROI保持一致。
心脏节段模型示意图可以是根据用户选择的切面类型载入系统预设的图像,也可以根据跟踪结果显示界面上的ROI的形状、大小等特征来生成。心脏节段模型示意图可以用于实时的显示当前显示界面上ROI内定量参数的实时分布。在心脏节段模型示意图上实时显示当前定量参数在ROI的分布方法可以是:根据ROI内某一点的定量参数数值,在对应的颜色表中查找对应的颜色,然后将该颜色填充到心脏节段模型示意图的对应位置上去。心脏节段模型示意图还可以用于实时的显示当前显示界面上心肌节段的定量参数分布。在心脏节段模型示意图上实时的显示当前显示界面上心肌节段的定量参数分布方法可以是:根据心肌节段的定量参数数值,在对应的颜色表中查找对应的颜色,然后将该颜色填充到心脏节段模型示意图的对应节段上去。
在定量参数显示区域中显示的心脏节段模型示意图还可以用于标识心脏运动跟踪中某一节段的跟踪结果是否有效。标识心脏节段运动跟踪是否成功的方法可以是用明显的标记如标识错误的符号“X”如图5(a)所示,或者表示错误的文字如“WRONG”、“UNACCEPTABLE”,或者采用预设的颜色如黑色,对心脏运动跟踪失败的节段进行标识,还可以是对心脏运动跟踪失败的节段进行隐藏,只显示系统或者用户判定跟踪成功的节段,如图5(b)所示,还可以是用其他线性如虚线描绘跟踪错误的心脏节段的边界, 如图5(c)所示。
心脏节段模型示意图可以允许用户在显示界面内进行拖动、缩放、拉伸等操作。用户可以将心脏节段模型示意图拖动到显示界面上的任意位置,以达到最满意的显示效果。用户还可以对心脏节段模型示意图进行放大、缩小等操作,方便用户观察细节的心肌运动变化情况。用户还可以对心脏模型示意图进行拉伸操作,已达到满意的效果。
心脏节段模型示意图可以允许用户选择显示的心脏节段。用户可以选择显示某一或者若干个心脏节段,隐藏其他的心脏节段。定量参数显示窗口可以根据用户的选择显示或者隐藏对应的心脏节段的定量参数。
通过上述方法和装置,将超声系统获取的信息在显示屏上以一种直观的方式显示出来,利用曲线和颜色编码对超声系统获取的信息进行标识有效的帮助用户了解各种信息,降低了文字等其他方式带来的错误认知的可能。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换。

Claims (14)

  1. 一种超声系统检测信息的关联方法,其特征在于,包括以下步骤:
    接收操作者在超声系统探测图像上选定的感兴趣区域和图像显示类型;
    将感兴趣区域离散成分立的控制点;
    对控制点进行运动跟踪,得到跟踪信息,所述跟踪信息包括控制点在每帧视图中的位置信息和与视图相关的定量参数信息,定量参数信息中包括定量参数值;
    将超声系统探测的图像和控制点的位置信息配置到显示器的第一显示区域进行显示;
    将与视图相关的定量参数信息配置到显示器的第二显示区域进行显示;
    根据图像显示类型选择与超声系统探测图像对应的图像模型,并将图像模型配置到显示器的第三显示区域进行显示。
  2. 如权利要求1所述的方法,其特征在于,所述将与视图相关的定量参数信息配置到显示器的第二显示区域进行显示包括:
    基于预设的节段计算感兴趣区域的各节段的定量参数值;
    根据每节段的定量参数值和其对应的视图帧的检测时间生成与该节段对应的定量参数曲线;
    将定量参数曲线显示在第二显示区域。
  3. 如权利要求2所述的方法,其特征在于,所述第三显示区域更靠近第一显示区域或更靠近第二显示区域。
  4. 如权利要求2或3所述的方法,其特征在于,在显示图像模型时基于预设的节段数量将图像模型划分为若干节段,对图像模型中的各节段进行不同颜色的填充,在生成定量参数曲线时对各节段对应的定量参数曲线进行颜色编码,定量参数曲线的颜色与各自对应节段的颜色一致。
  5. 如权利要求4所述的方法,其特征在于还包括,接收操作者在图像模型进行的节段选择操作,将选择的节段进行突出显示或隐藏,将与选择的节段对应的定量参数曲线也进行突出显示或隐藏;或者接收操作者在图像模型进行的节段选择操作,将未被选择的节段进行隐藏,将与未被选择的节段对应的定量参数曲线也进行隐藏。
  6. 如权利要求4所述的方法,其特征在于还包括,获取对各节段跟踪结果的判断结果,将与判断结果对应的标记显示在图像模型的对应节段上。
  7. 一种用于超声系统的检测信息关联装置,其特征在于包括:
    运动跟踪单元(4211),用于接收操作者在超声系统探测图像上选定的感兴趣区域和图像显示类型,将感兴趣区域离散成分立的控制点,对控制点进行运动跟踪;
    跟踪结果计算单元(4212),从运动跟踪单元获得控制点在每帧视图中的位置信息,计算与视图相关的定量参数信息,定量参数信息中包括定量参数值;
    显示配置单元(4213),用于将超声系统探测的图像和控制点的位置信息配置到显示器的第一显示区域(51)进行显示,将与视图相关的定量参数信息配置到显示器的第二显示区域(52)进行显示,根据图像显示类型选择与超声系统探测图像对应的图像模型,并将图像模型配置到显示器的第三显示区域(53)进行显示。
  8. 如权利要求7所述的装置,其特征在于,所述显示配置单元(4213)在将与视图相关的定量参数信息配置到显示器的第二显示区域(52)进行显示是基于预设的节段计算感兴趣区域的每节段的定量参数值,然后根据每节段的定量参数值和其对应的视图帧的检测时间生成与节段对应的定量参数曲线,将定量参数曲线显示在第二显示区域。
  9. 如权利要求8所述的装置,其特征在于,每节段的定量参数值等于该节段所包含控制点的定量参数值的加权和或平均值。
  10. 如权利要求8或9所述的装置,其特征在于,所述显示配置单元(4213)在显示图像模型时基于预设的节段数量将图像模型划分为若干节段,对图像模型中的各节段进行不同颜色的填充,在生成定量参数曲线时对各节段对应的定量参数曲线进行颜色编码,定量参数曲线的颜色与各自对应节段的颜色一致。
  11. 如权利要求10所述的装置,其特征在于还包括,所述显示配置单元(4213)基于操作者在图像模型进行的节段选择操作,将选择的节段进行突出显示或隐藏,将与选择的节段对应的定量参数曲线也进行突出显示或隐藏;或者所述显示配置单元基于操作者在图像模型进行的节段选择操作,将未被选择的节段进行隐藏,将与未被选择的节段对应的定量参数曲线也进行隐藏。
  12. 如权利要求10所述的装置,其特征在于还包括,所述显示配置单元将与各节段跟踪结果的判断结果对应的标记显示在图像模型的对应节段上。
  13. 如权利要求7所述的装置,其特征在于,超声系统探测的图像为心脏的图像,定量参数为速度、位移、应变或应变率。
  14. 一种超声系统,其特征在于包括:
    图像采集模块(2),图像采集模块包括用于通过超声探头发射超声波的发射模块,和接收回波信号的接收模块;
    波束合成模块(3),用于对回波信号进行处理,得到B-Mode超声图像;
    如权利要求7至13中任一项所述的检测信息关联装置,其用于基于B-Mode超声图像对检测信息进行关联处理。
PCT/CN2013/083882 2012-12-03 2013-09-22 超声系统及其检测信息的关联方法和装置 WO2014086191A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/730,035 US10799215B2 (en) 2012-12-03 2015-06-03 Ultrasound systems, methods and apparatus for associating detection information of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210508940.2 2012-12-03
CN201210508940.2A CN103845076B (zh) 2012-12-03 2012-12-03 超声系统及其检测信息的关联方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/730,035 Continuation US10799215B2 (en) 2012-12-03 2015-06-03 Ultrasound systems, methods and apparatus for associating detection information of the same

Publications (1)

Publication Number Publication Date
WO2014086191A1 true WO2014086191A1 (zh) 2014-06-12

Family

ID=50853503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/083882 WO2014086191A1 (zh) 2012-12-03 2013-09-22 超声系统及其检测信息的关联方法和装置

Country Status (3)

Country Link
US (1) US10799215B2 (zh)
CN (1) CN103845076B (zh)
WO (1) WO2014086191A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160046670A (ko) * 2014-10-21 2016-04-29 삼성전자주식회사 영상 진단 보조 장치 및 방법
US9721611B2 (en) * 2015-10-20 2017-08-01 Gopro, Inc. System and method of generating video from video clips based on moments of interest within the video clips
CN108701354B (zh) * 2016-05-09 2022-05-06 深圳迈瑞生物医疗电子股份有限公司 识别超声图像中感兴趣区域轮廓的方法及系统
CN105997152A (zh) * 2016-06-13 2016-10-12 杭州融超科技有限公司 一体式瞳孔测量装置、使用该装置的数据处理方法和系统
JP7080590B2 (ja) * 2016-07-19 2022-06-06 キヤノンメディカルシステムズ株式会社 医用処理装置、超音波診断装置、および医用処理プログラム
CN110114000A (zh) * 2016-12-19 2019-08-09 皇家飞利浦有限公司 可致动医学工具的超声引导
WO2018136489A1 (en) * 2017-01-17 2018-07-26 Thika Holdings Llc Method and system for data encoding from media for mechanical output
WO2020037668A1 (zh) * 2018-08-24 2020-02-27 深圳迈瑞生物医疗电子股份有限公司 超声图像处理设备及方法及计算机可读存储介质
CN116671972A (zh) * 2018-10-25 2023-09-01 深圳迈瑞生物医疗电子股份有限公司 超声诊断设备快速查找未完成切面的方法
CN110731798B (zh) * 2019-09-23 2023-02-03 苏州佳世达电通有限公司 超音波系统及超音波扫描方法
US11647988B2 (en) * 2019-11-19 2023-05-16 Siemens Medical Solutions Usa, Inc. Additional diagnostic data in parametric ultrasound medical imaging
CN112991522B (zh) * 2021-03-30 2023-03-24 华南理工大学 一种个性化二尖瓣自动建模方法、系统及设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1442118A (zh) * 2002-03-05 2003-09-17 株式会社东芝 图像处理设备和超声诊断设备
CN101066212A (zh) * 2006-05-05 2007-11-07 通用电气公司 用于标识超声系统中显示的有关信息的用户接口及方法
US20110313291A1 (en) * 2009-02-10 2011-12-22 Hitachi Medical Corporation Medical image processing device, medical image processing method, medical image diagnostic apparatus, operation method of medical image diagnostic apparatus, and medical image display method
JP2012029722A (ja) * 2010-07-28 2012-02-16 Hitachi Aloka Medical Ltd 超音波診断装置
CN102724918A (zh) * 2010-01-29 2012-10-10 株式会社日立医疗器械 超声波诊断装置及其测量点追踪方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050043609A1 (en) * 2003-01-30 2005-02-24 Gregory Murphy System and method for facilitating cardiac intervention
CN100586377C (zh) * 2003-05-20 2010-02-03 松下电器产业株式会社 超声波诊断装置
CN100457047C (zh) * 2003-09-29 2009-02-04 皇家飞利浦电子股份有限公司 心脏容积超声定量法
US20060004291A1 (en) * 2004-06-22 2006-01-05 Andreas Heimdal Methods and apparatus for visualization of quantitative data on a model
DE102004036726A1 (de) * 2004-07-29 2006-03-16 Siemens Ag Verfahren und Vorrichtung zur Visualisierung von Ablagerungen in Blutgefäßen, insbesondere in Herzkranzgefäßen
JP2008515519A (ja) * 2004-10-08 2008-05-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 身体マーカー注釈付けを用いた超音波撮像システム
US20060239527A1 (en) * 2005-04-25 2006-10-26 Sriram Krishnan Three-dimensional cardiac border delineation in medical imaging
US8081806B2 (en) * 2006-05-05 2011-12-20 General Electric Company User interface and method for displaying information in an ultrasound system
CN100448409C (zh) * 2007-02-01 2009-01-07 上海交通大学 三维超声心动图四腔切面图像自动检测的方法
WO2012174495A2 (en) * 2011-06-17 2012-12-20 Carnegie Mellon University Physics based image processing and evaluation process of perfusion images from radiology imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1442118A (zh) * 2002-03-05 2003-09-17 株式会社东芝 图像处理设备和超声诊断设备
CN101066212A (zh) * 2006-05-05 2007-11-07 通用电气公司 用于标识超声系统中显示的有关信息的用户接口及方法
US20110313291A1 (en) * 2009-02-10 2011-12-22 Hitachi Medical Corporation Medical image processing device, medical image processing method, medical image diagnostic apparatus, operation method of medical image diagnostic apparatus, and medical image display method
CN102724918A (zh) * 2010-01-29 2012-10-10 株式会社日立医疗器械 超声波诊断装置及其测量点追踪方法
JP2012029722A (ja) * 2010-07-28 2012-02-16 Hitachi Aloka Medical Ltd 超音波診断装置

Also Published As

Publication number Publication date
CN103845076B (zh) 2019-07-23
CN103845076A (zh) 2014-06-11
US20150265248A1 (en) 2015-09-24
US10799215B2 (en) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2014086191A1 (zh) 超声系统及其检测信息的关联方法和装置
US11094138B2 (en) Systems for linking features in medical images to anatomical models and methods of operation thereof
US8265366B2 (en) Generation of standard protocols for review of 3D ultrasound image data
US8777856B2 (en) Diagnostic system and method for obtaining an ultrasound image frame
US7857765B2 (en) Protocol-driven ultrasound examination
US20070259158A1 (en) User interface and method for displaying information in an ultrasound system
US20130281854A1 (en) Diagnostic system and method for obtaining data relating to a cardiac medical condition
JP2012513279A (ja) 医療異常監視システム及びその操作方法
ITMI20061817A1 (it) Valutazione della sincronia cardiaca nella diagnostica per immagini sulla base dell'orientazione
JP2005000656A (ja) 生理学的構造及び事象の標識付けの方法及びシステム
US11931201B2 (en) Device and method for obtaining anatomical measurements from an ultrasound image
CN110956076A (zh) 基于容积渲染在三维超声数据中进行结构识别的方法和系统
US20210157464A1 (en) Cardiac feature tracking
CN112447276A (zh) 用于提示数据捐赠以用于人工智能工具开发的方法和系统
CN108472016A (zh) 超声系统和方法
US7559896B2 (en) Physiological definition user interface
US11844654B2 (en) Mid-procedure view change for ultrasound diagnostics
WO2016042146A1 (en) A portable ultrasound system for use in veterinary applications
CN109584350A (zh) 医学诊断成像中的测量点确定

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 23.10.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13860176

Country of ref document: EP

Kind code of ref document: A1