WO2014086087A1 - 一种架空输电线路巡线机器人系统 - Google Patents

一种架空输电线路巡线机器人系统 Download PDF

Info

Publication number
WO2014086087A1
WO2014086087A1 PCT/CN2013/000976 CN2013000976W WO2014086087A1 WO 2014086087 A1 WO2014086087 A1 WO 2014086087A1 CN 2013000976 W CN2013000976 W CN 2013000976W WO 2014086087 A1 WO2014086087 A1 WO 2014086087A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
driving
rotating
control
robot
Prior art date
Application number
PCT/CN2013/000976
Other languages
English (en)
French (fr)
Inventor
张峰
曹雷
郭锐
仲亮
贾娟
贾永刚
Original Assignee
国网山东省电力公司电力科学研究院
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210512481.5A external-priority patent/CN102975191B/zh
Priority claimed from CN 201220659399 external-priority patent/CN202910857U/zh
Application filed by 国网山东省电力公司电力科学研究院, 国家电网公司 filed Critical 国网山东省电力公司电力科学研究院
Publication of WO2014086087A1 publication Critical patent/WO2014086087A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/028Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members having wheels and mechanical legs

Definitions

  • the invention relates to a robot system, in particular to an overhead transmission line inspection working robot system for walking, detecting and working along a wire.
  • the ultra-high voltage transmission line is an important part of the high-voltage power grid. In order to ensure its safety and stability during operation, it is necessary to carry out regular inspection work. Because the transmission line has many distribution points, it is far away from the town, the terrain is complex, and the wire is violent. Leaking in the wild, long-term wind and rain, and subject to continuous mechanical tension, electrical flashing, material aging, easy to cause wear, broken strands, corrosion and other damage, if not repaired and replaced in time, easy to cause serious accidents, resulting in Large-scale power outages and economic property losses. Therefore, regular inspections of transmission lines must be carried out to keep abreast of and understand the safe operation of transmission lines so that hidden dangers can be detected and eliminated in time to prevent accidents.
  • Chinese patent ZL200410061316. 8 discloses a robot traveling along an overhead high-voltage transmission line, comprising a pair of arm robot mechanisms moving along a power line, and the lower ends of the two arm robots are respectively coupled to one to change the relative distance of the two armes.
  • each arm has 4 degrees of freedom
  • the upper arm is an end actuator.
  • the end actuator has a driving wheel and its first driving mechanism and a driven wheel hanging on the power line. And a clamping mechanism that grips the power line.
  • this patent mainly has the following disadvantages:
  • the front and rear two armes are alternated with each other through the sliding table at the bottom to realize the function of the obstacle.
  • This type of forearm becomes the rear arm
  • the rear arm becomes the forearm
  • the form of the obstacle crossing is extremely low.
  • the end effect mechanism The curse requirement is higher.
  • Chinese Patent 201010525761. 0 discloses a suspension type patrol robot which comprises two parts, a walking and a nacelle.
  • the walking portion consists of two torso and three driving wheels.
  • the two-section torso has a double parallelogram structure, ensuring that the three drive wheels are oriented in the same direction.
  • the five motors on the torso drive the trunk to swing, yaw and telescopic, so that each obstacle drive wheel can achieve three degrees of freedom. line.
  • Each drive pawl includes a drive wheel and a clamping device, and the motor drives the drive wheel to make the machine The person moves online.
  • a clamping device consisting of a motor, a ball screw pair, a spring and a clamping wheel ensures sufficient friction between the drive wheel and the wire.
  • the pod and the walking section are connected by two steel strips, and the two motors on the pod adjust their position relative to the center of gravity of the torso through the steel strip to ensure flexibility of the mechanism across the obstacle.
  • This patent has the following disadvantages:
  • the patented robot drive part requires five motors to drive the pitch, yaw and telescopic on the torso.
  • the mechanical structure of the trunk is complex and difficult to control.
  • it is necessary to pass the steel during the obstacle crossing process.
  • the belt is driven to adjust the center of gravity of the entire robot. This method can easily lead to overturning of the robot during the center of gravity adjustment, and the control is complicated.
  • the object of the present invention is to overcome the above-mentioned deficiencies of the prior art and provide an overhead transmission line inspection robot system, which has a simple and compact structure and strong interchangeability, and can be spanned on a single strand of a ground wire or a split wire. Operation, can cross the various obstacles on the transmission line (anti-vibration hammer, spacer, suspension insulator string, etc.), carry cameras, infrared detectors and other equipment to detect faults on wires, fittings, iron towers, etc.
  • the present invention employs the following technical solutions.
  • An overhead transmission line inspection robot system includes a plurality of structurally identical driving arms, a coupling plate and a control box, wherein the driving arm comprises a driving wheel mechanism, an lifting joint and a rotating joint; the driving wheel mechanism comprises a driving wheel, and the driving arm Distributed on one side of the robot, the driving arm is suspended on the split wire by the driving wheel, the lower end of the driving wheel mechanism is connected with the lifting joint through the rotating joint, and the lifting joint and the control box are fixed on the connecting plate.
  • the control box includes a lithium battery pack and a robot control system
  • the robot control system includes a data receiving board, a motion control board, a pan/tilt board, an error detecting board, a video recorder, a motor driver, and a visual inspection camera;
  • a motor driver is disposed on the rotating joint, and the video recorder and the visual inspection camera are connected to the CAN bus through the pan/tilt and the pan/tilt driver, and the data receiving board, the motion control board, the pan/tilt board, the error detecting board, and the motor
  • the drivers are connected to the CAN bus, and the coordinated control of each part is realized by the CANopen protocol.
  • the distributed control system based on CAN bus is formed.
  • the system divides all control functions into data transmission, motion control, detection control and error detection.
  • the function part realizes the data transmission, motion control, detection control and error detection functions of the robot respectively.
  • Each part is functionally independent of each other, connected through the CAN bus, and can realize information interaction and realize overall unification.
  • the driving wheel mechanism includes a driving motor, a driving wheel, a driving shaft, a transmission device and a fixing plate; one end of the fixing plate is connected to the lifting joint through a rotating joint, and the other end is hinged to the driving shaft;
  • the wheel and the transmission device are hinged with the fixed plate;
  • the transmission device may be a gear transmission or a synchronous belt transmission or a worm gear transmission; and the drive motor is fixedly connected with the transmission device.
  • the lifting joint comprises a bottom plate, a lead screw, a screw nut, a linear guide, a slider, a DC motor, a connecting plate, a limit switch and a bearing seat;
  • the lead screw is connected to the bottom plate through the bearing seat, and one end of the screw and the direct current Motor connected, set on the lead screw a screw nut;
  • the linear guide rail is fixed on the bottom plate, parallel to the lead screw, the linear guide rail is provided with a slidable slider, the connecting plate fixes the screw nut and the slider together, and the connecting plate connects the rotating joint;
  • the bottom of the screw is fixed at a limited position to control the extreme position of the lower end of the lifting joint.
  • the rotary joint includes a rotary bearing seat, a rotating shaft, a u-shaped connecting member and a rotating electrical machine; both ends of the rotating shaft are mounted on two rotating bearing seats, and the rotating bearing seat is connected with a connecting plate of the lifting joint; A u-shaped connecting member is fixed in the middle of the shaft, and the u-shaped connecting member is connected to the fixing plate of the driving wheel mechanism; one end of the rotating shaft is connected to the rotating electric machine.
  • the drive arms are distributed on one side of the robot, and the effective distance between the drive arms is slightly larger than the length of the largest obstacle on the power line.
  • the invention is mainly composed of a plurality of driving arms distributed on the same side, each driving arm can provide driving force for the robot, and each driving arm includes the same driving wheel mechanism, lifting joint and rotating joint; the driving wheel mechanism Both are connected to the lifting joint by a rotating joint.
  • the invention can be operated on a single-strand wire of a ground wire and a split wire, and each of the driving arms can provide a driving force for the robot, and can be pressed without the obstacle action when the robot encounters the shock-proof hammer.
  • the driving arm of the front end starts to move beyond the obstacle, and the DC motor of the lifting joint drives the screw to rotate, and the driving wheel mechanism is driven to rise by the linear guide and the slider, and after the driving wheel is disengaged from the wire,
  • the lifting joint stops moving; then, the rotating motor on the rotating joint rotates forward, and the rotating shaft drives the outer side of the guide line of the driving wheel mechanism to swing the driving wheel and the obstacle.
  • the two driving arms of the middle and the rear of the robot drive the robot forward. After the two driving arms of the front end cross the obstacle, the robot stops moving forward, and the rotating motor on the rotating joint reverses. The angle of rotation is the same as that of the forward rotation. Then, the lifting joint on the front drive arm begins to descend, causing the drive wheel to descend, causing the drive wheel to ride on the wire again.
  • the invention has the beneficial effects that the invention adopts several structurally identical driving arms, has a simple and compact structure, and is highly interchangeable, and can be operated on a single-stranded grounding wire, spanning various obstacles on the transmission line (anti-vibration hammer, spacing) Rod, hanging insulator string, etc.). Since each arm has the same structure, the path planning is relatively simple and operability in the event of obstacle crossing, and there is no need to manually control the device during the process of crossing the obstacle.
  • the control system adopts a distributed control structure based on CAN bus, which divides all control functions into four functional parts: data transmission, motion control, detection control, and error detection.
  • This structure reduces the main controller compared with the master-slave structure. The burden, while distracting system risks, helps to improve system reliability.
  • each function module is relatively independent and complete.
  • the motion control function includes all the main controllers, joint drives, position sensors, etc. related to the robot obstacle control. Point, easy to implement the functions in the program, easy to control.
  • Figure 1 is a schematic perspective view of the present invention.
  • FIG. 2 is a schematic structural view of a driving arm and a driving wheel mechanism according to the present invention.
  • Figure 3 is a schematic view showing the structure of the lifting joint of the present invention.
  • Figure 4 is a schematic view showing the structure of a rotary joint of the present invention.
  • FIG. 5 is a structural diagram of the control system of the present invention.
  • Figure 6 is a flow chart of the control program of the present invention.
  • the invention is operable on a ground wire, a single-strand wire, as shown in Figs. 1 and 2, comprising three drive arms 1, a link 2 and a control box 3 of the same structure, wherein each drive arm comprises the same structure.
  • FIG. 1 As shown in FIG.
  • the driving wheel mechanism includes a transmission device 4, a driving motor 5, a driving wheel 6, a driving shaft 7 and a fixing plate 8; wherein the driving shaft 7 is respectively provided with a driving wheel 6 and a transmission device 4, and is hinged
  • the transmission 4 is disposed on the fixed plate 8
  • the drive motor 5 is disposed on the outer casing of the transmission 4; the lower end of the fixed plate 8 is connected to the rotary joint 9.
  • the lifting joint 10 includes a bearing housing 11, a lead screw 12, a bottom plate 13, a screw nut 14, a connecting plate 15, a limit switch 16, a DC motor 17, a linear guide 18, and a slider 19;
  • the two ends of the bar 12 are fixed on the bottom plate 13 through the bearing housing 11, and the lead screw 12 end is connected to the DC motor 17 through the bearing housing 11;
  • the linear guide rail 18 is arranged in parallel on the side of the screw shaft 12, and the linear guide rail 18 is freely movable up and down.
  • a sliding slider 19 the slider 19 and the screw nut 14 disposed on the lead screw 12 are connected and fixed by a connecting plate 15, and a rotating joint 9 is fixed on the connecting plate 15;
  • the limit switch 16 is used to control the extreme position of the lower end of the lifting joint 10.
  • the rotary joint 9 includes a first rotary bearing housing 20, a U-shaped connecting member 21, a second rotary bearing housing 22, a rotary electric motor 23, and a rotating shaft 24, and both ends of the rotating shaft 24 are erected on the first rotary bearing.
  • a U-shaped connecting member 21 is fixed in the middle of the rotating shaft 24, and the rotating shaft 24-end is connected to the rotary electric machine 23.
  • the control system structure diagram is as shown in FIG. 5.
  • the control box 3 includes a lithium battery pack and a robot control system, and the robot control system includes a wireless data receiving board 25, a motion control board 26, a pan/tilt board 27, and an error detecting board.
  • a motor driver 30 is disposed on the lifting joint 10 and the rotary joint 9, and the video recorder 29 and the visual inspection camera 31 pass through the pan/tilt head 32 and the pan/tilt head drive.
  • 33 is connected to the CAN bus 34, and the video recorder 29 is also connected to the wireless video transmission device 36.
  • the wireless data receiving board 25, the motion control board 26, the pan/tilt control board 27, the error detecting board 28, and the motor driver 30 are all connected to the CAN bus. 34 connection, CAN bus 34 is also connected with position sensor 35, through the CANopen protocol to achieve coordinated control of each part, constitutes a distributed control system based on CAN bus 34, the system divides all control functions into data transmission, motion control , detection control, error detection, four functional parts, respectively, implement the machine Human data transmission, motion control, detection control and error detection functions, each part is functionally independent of each other, connected through the CAN bus, and can realize information interaction and achieve overall unification.
  • the data transmission function is implemented by the wireless data receiving node and the ground remote controller, and is used for receiving the control command from the remote controller, parsing the command and sending it to the corresponding control module, and feeding back the state information of the robot, such as the remaining battery power, the robot motion Status, warnings and errors, etc., for system debugging.
  • Motion control functions include motion control nodes, joint drive nodes, and sensor nodes associated with motion control, and coordinate joints to achieve robotic obstacle control. Other control functions, including PTZ control, line detection, and video control, are listed as detection and control functions, and are implemented by PTZ control nodes, PTZ drive nodes, and video control nodes.
  • the error detection function is implemented by the error detection node. It acts as the main node of the CAN network, monitors the CAN network status, receives error messages, and processes them accordingly to ensure the safe operation of the robot.
  • the structure of the control program is shown in Figure 6.
  • the main controller When the main controller is powered on, it checks the status of other nodes in the function group to ensure that all nodes are connected properly after the system is powered on, and sends the query result to the error detection board 28. After completing the self-test and initialization tasks in the group, the main controller enters its own function control loop. Once an error occurs in the function control, it can be immediately sent to the error detection board 28 through an error message, and the error detection board 28 can pass the status indicator. And provide feedback information to the remote control and other feedback error messages.
  • each DC brushless motor has many connections, the wiring is complicated, and the signal is susceptible to interference.
  • each joint drive node and the claw drive node are used in the vicinity of the corresponding joint motor. The way to avoid long-distance transmission of motor signals.
  • Each drive node is connected in series only through the CAN bus 34 and the power line, and the connection is simple. Increased reliability.
  • the motor driver 30 (or drive board) is miniaturized and embedded in the arm that does not affect the mechanical layout.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

本发明公开了一种架空输电线路巡线机器人系统,包括若干个结构相同的驱动臂、联板及控制箱,其中驱动臂包括驱动轮机构、升降关节及旋转关节;驱动轮机构包括驱动轮,所述驱动臂分布在机器人一侧,驱动臂通过驱动轮悬挂在分裂导线上,所述驱动轮机构下端通过旋转关节与升降关节连接,升降关节和控制箱固定在联板上。本发明可在越障时路径规划相对简单,可操作性强,无需在跨越障碍的过程中手动对设备进行控制。本发明减轻了主控制器的负担,同时分散了系统风险,有利于提高系统可靠性。同时各功能模块相对独立且完整,如运动控制功能中包含了机器人越障控制相关的主控制器,关节驱动器,位置传感器等全部节点,便于程序中的功能实现,控制方便。

Description

一种架空输电线路巡线机器人系统 技术领域
本发明涉及一种机器人系统, 尤其是沿导线行走、 进行检测、 作业的架空输电线路巡检 作业机器人系统。
背景技术
超高压输电线路是高压电网的重要组成部分, 为保证其在运行过程中的安全性和稳定 性, 需要定期的开展巡检工作; 由于输电线路分布点多, 远离城镇, 地形复杂, 并且导线暴 漏在野外, 长期风吹雨淋, 且受到持续的机械张力, 电气闪烙, 材料老化的影响, 容易引起 磨损, 断股, 腐蚀等损伤, 若不及时修复更换, 易引起严重的事故, 造成大面积停电及经济 财产损失。 所以, 必须对输电线路进行定期的巡视检查, 随时掌握和了解输电线路的安全运 行情况, 以便及时发现和消除隐患, 预防事故的发生。
长期以来, 我国对输电线路的巡检主要依靠人工, 或望远镜, 或红外热成像仪, 边走边 看, 一些特殊的巡检还需要电力工人攀上高压线路进行检査, 费时费力, 危险性极大, 有些 原始森林、 山崖线路人工根本无法巡检。 利用机器人带电巡检和维护超高压输电网络, 不但 可以减轻工人千里巡线和带电作业的劳动强度, 而且可提高检测精度和检测效率, 取代人直 接工作在高危险的场合, 同时大大减少人力资源, 对提高电网自动化作业水平、 保障电网安 全运行具有重要意义。
中国专利 ZL200410061316. 8 公开了一种沿架空高压输电线路行驶的机器人, 包括一对 沿输电线运动的小臂机械手机构, 二个小臂机械手的下端分别联接在一个能改变二个小臂相 对距离的大臂的传动机构上, 各小臂分别具有 4个自由度, 小臂上方为末端执行机构, 该末 端执行机构具有一个挂在输电线上的驱动轮及其第一驱动机构、 一个从动轮和一个可抓握输 电线的夹紧机构。 综合分析, 此专利主要有如下缺点: 该专利机器人在遇到防震锤或者绝缘 子串时, 通过底部的滑台将前后两个小臂相互交替, 来实现越障的功能。 这种前臂变后臂, 后臂变前臂, 交替越障的形式, 越障效率非常低, 特别是在跨越绝缘子串时, 耗时较长, 再 者, 在越障过程中, 对末端执行机构的加持力要求较高。
中国专利 201010525761. 0 公开了一种悬挂型巡线机器人, 它由, 包括行走和吊舱两部 分。 行走部分由两节躯干和三个驱动轮爪组成。 两节型躯干成双平行四边形结构, 保证三个 驱动轮爪朝向相同, 躯干上的 5 台电机驱动躯干纵摆、 横摆和伸缩, 使每一个越障驱动轮 可以实现三自由度平动上下线。 每个驱动轮爪包含驱动轮和夹紧装置, 电机带动驱动轮使机 器人在线上移动。 由电机、 滚珠丝杆副、 弹簧以及夹紧轮等构成的夹紧装置保证驱动轮与线 之间有足够的摩擦力。 吊舱与行走部分通过两条钢带连接, 吊舱上的两台电机通过钢带调整 自身相对于躯干的重心位置, 以保证跨越障碍时机构的灵活性。 综合分析, 此专利主要有如 下缺点: 该专利机器人驱动部分的躯干上需要 5 台电机来驱动纵摆、 横摆和伸縮, 躯干机 械结构复杂, 不易控制; 同时, 在越障过程中需要通过钢带带动吊舱来调整整个机器人的重 心位置, 这种方式极易导致机器人在重心调整过程中发生倾覆, 控制复杂。
发明内容
本发明的目的是为克服上述现有技术的不足, 提供一种架空输电线路巡线机器人系统, 其结构简单紧凑, 可互换性强, 能够横跨在地线、 分裂导线等单股导线上运行, 可跨越输电 导线上各种障碍物 (防震锤、 间隔棒、 悬垂绝缘子串等), 携带摄像头、 红外检测仪等设备 对导线、 金具、 铁塔等进行故障检测。
为实现上述目的, 本发明釆用下述技术方案。
一种架空输电线路巡线机器人系统, 包括若干个结构相同的驱动臂、 联板及控制箱, 其 中驱动臂包括驱动轮机构、 升降关节及旋转关节; 驱动轮机构包括驱动轮, 所述驱动臂分布 在机器人一侧, 驱动臂通过驱动轮悬挂在分裂导线上, 所述驱动轮机构下端通过旋转关节与 升降关节连接, 升降关节和控制箱固定在联板上。
所述控制箱包含锂电池组和机器人控制系统, 所述机器人控制系统包括数据接收板、 运 动控制板、 云台控制板、 错误检测板、 视频录像机、 电机驱动器、 视觉检测摄像机; 所述升 降关节及旋转关节上均设有电机驱动器, 所述视频录像机和视觉检测摄像机通过云台和云台 驱动器与 CAN总线连接, 所述数据接收板、 运动控制板、 云台控制板、 错误检测板、 电机驱 动器均与 CAN总线连接, 通过 CANopen协议实现对各部分的协调控制, 组成了基于 CAN总线 的分布式控制系统, 该系统将所有控制功能分为数据传输、 运动控制、 检测控制、 错误检测 四个功能部分, 分别实现机器人的数据传输、 运动控制、 检测控制和错误检测功能, 各部分 功能上相互独立, 通过 CAN总线连接在一起, 又可以实现信息交互, 实现整体统一。
所述驱动轮机构包括驱动电机、 驱动轮、 驱动轴、 传动装置及固定板; 所述固定板一端 通过旋转关节与升降关节连接, 另一端铰接驱动轴; 所述驱动轴两端分别设有驱动轮及传动 装置, 并与固定板铰接; 传动装置可以是齿轮传动或者同步带传动或者涡轮蜗杆传动等; 驱 动电机与传动装置连接固定。
所述升降关节包括底板、 丝杠、 丝杠螺母、 直线导轨、 滑块、 直流电机、 连接板、 限位 开关及轴承座; 所述丝杠通过轴承座与底板相连,, 丝杠一端与直流电机相连, 丝杠上设置 有丝杠螺母; 所述直线导轨固定在底板上, 与丝杠平行, 直线导轨上设置有可自由滑动的滑 块, 连接板将丝杠螺母和滑块固定在一起, 连接板连接旋转关节; 丝杠底部固定有限位幵 关, 用于控制升降关节下端的极限位置。
所述旋转关节包括旋转轴承座、 旋转轴、 u 型连接件及旋转电机; 所述旋转轴的两端架 设在两个旋转轴承座上, 所述旋转轴承座与升降关节的连接板相连; 旋转轴中间固定有 u型 连接件, u型连接件与驱动轮机构的固定板相连; 旋转轴一端与旋转电机相连。
所述驱动臂分布在机器人一侧, 驱动臂间的有效距离稍大于输电线上最大障碍物的长 度。
本发明主要由分布在同侧的若干个驱动臂构成, 每个驱动臂都可以为机器人提供驱动 力, 并且每个驱动臂都包括结构相同的驱动轮机构、 升降关节及旋转关节; 驱动轮机构都通 过旋转关节与升降关节相连。
本发明的工作原理:
本发明可在地线、 分裂导线的单股导线上运行, 每个驱动臂都能为机器人提供驱动力, 在机器人遇到防震锤时无需做越障动作即可压过。
在机器人接近间隔棒、 悬垂绝缘子串时, 首先前端的驱动臂开始进行越障动作, 升降关 节的直流电机驱动丝杠转动, 通过直线导轨和滑块带动驱动轮机构上升, 驱动轮脱离导线 后, 升降关节停止动作; 然后, 旋转关节上的旋转电机正转, 通过旋转轴带动驱动轮机构向 导线外侧摆动, 从而使驱动轮摆开导线及障碍物。
在控制系统协调控制下机器人中间和后端两个驱动臂带动机器人前进, 待前端两个驱动 臂越过障碍物后机器人停止前进, 旋转关节上的旋转电机反转, 所转角度与正转时相同, 然 后, 前端驱动臂上的升降关节开始下降, 带动驱动轮下降, 使驱动轮重新骑在导线上。
之后, 机器人中间及后端的驱动臂都以前端驱动臂相同的方式越过障碍物。
本发明的有益效果是, 本发明由于采用若干个结构相同驱动臂, 结构简单紧凑, 互换性 强, 可在单股导地线上运行, 跨越输电导线上各种障碍物 (防震锤、 间隔棒、 悬垂绝缘子串 等)。 由于每个臂的结构都相同, 在越障时路径规划相对简单, 可操作性强, 无需在跨越障 碍的过程中手动对设备进行控制。
控制系统采用基于 CAN 总线的分布式控制结构, 将所有控制功能分为数据传输、 运动 控制、 检测控制、 错误检测四个功能部分, 这种结构与主从式结构相比, 减轻了主控制器的 负担, 同时分散了系统风险, 有利于提高系统可靠性。 同时各功能模块相对独立且完整, 如 运动控制功能中包含了机器人越障控制相关的主控制器, 关节驱动器, 位置传感器等全部节 点, 便于程序中的功能实现, 控制方便。
附图说明
图 1为本发明的立体结构示意图。
图 2为本发明驱动臂及驱动轮机构结构示意图。
图 3为本发明升降关节结构示意图。
4为本发明旋转关节结构示意图。
图 5为本发明控制系统结构图。
图 6为本发明控制程序流程图。
其中: 1、 驱动臂, 2、 联板, 3、 控制箱, 4、 传动装置, 5、 驱动电机, 6、 驱动轮, 7、 驱动轴, 8、 固定板, 9、 旋转关节, 10、 升降关节, 11、 轴承座, 12、 丝杠, 13、 底 板, 14、 丝杠螺母, 15、 连接板, 16、 限位开关, 17、 直流电机, 18、 直线导轨, 19、 滑 块, 20、 第一旋转轴承座, 21、 U 型连接件, 22、 第二旋转轴承座, 23、 旋转电机, 24、 旋 转轴, 25、 无线数据接收板, 26、 运动控制板, 27、 云台控制板, 28、 错误检测板, 29、 视 频录像机, 30、 电机驱动器, 31、 视觉检测摄像机, 32、 云台, 33、 云台驱动器, 34、 CAN 总线, 35、 位置传感器, 36、 无线视频传输装置。 具体实施方式 下面结合附图和实施例对本发明进一步说明。
本发明在可在地线、 单股导线上运行, 如图 1、 2 所示, 包括三个结构相同的驱动臂 1、 联板 2及控制箱 3, 其中每个驱动臂都包括结构相同的驱动轮机构、 升降关节 10及旋转 关节 9; 驱动臂 1通过驱动轮 6悬挂在分裂导线上, 驱动轮机构下端通过旋转关节 9与升降 关节 10连接, 升降关节 9固定在联板 2上。 如图 2所示, 驱动轮机构包括传动装置 4、 驱动电机 5、 驱动轮 6、 驱动轴 7及固定板 8; 其中, 驱动轴 7两端分别设有驱动轮 6及传动装置 4, 并铰接在固定板 8上, 传动装置 4 设置在固定板 8上, 驱动电机 5设置在传动装置 4外壳上; 固定板 8下端与旋转关节 9相 连。
如图 3所示, 升降关节 10包括轴承座 11、 丝杠 12、 底板 13、 丝杠螺母 14、 连接板 15、 限位开关 16、 直流电机 17、 直线导轨 18及滑块 19; 其中, 丝杠 12两端通过轴承座 11 固定在底板 13上, 丝杠 12—端通过轴承座 11与直流电机 17相连; 在丝杠 12—侧平行设 置有直线导轨 18, 直线导轨 18上有可上下自由滑动的滑块 19, 滑块 19与设置在丝杠 12上 的丝杠螺母 14通过连接板 15连接固定, 在连接板 15上固定有旋转关节 9; 丝杠 12底部固 定有限位开关 16, 用于控制升降关节 10下端的极限位置。
如图 4 所示, 旋转关节 9 包括第一旋转轴承座 20、 U 型连接件 21、 第二旋转轴承座 22、 旋转电机 23及旋转轴 24, 旋转轴 24的两端架设在第一旋转轴承座 20和第二旋转轴承 座上, 旋转轴 24中间固定有 U型连接件 21, 旋转轴 24—端与旋转电机 23相连。
控制系统结构图如图 5所示, 所述控制箱 3包含锂电池组和机器人控制系统, 所述机器 人控制系统包括无线数据接收板 25、 运动控制板 26、 云台控制板 27、 错误检测板 28、 视频 录像机 29、 电机驱动器 30、 视觉检测摄像机 31 ; 所述升降关节 10及旋转关节 9上均设有 电机驱动器 30, 所述视频录像机 29和视觉检测摄像机 31通过云台 32和云台驱动器 33与 CAN 总线 34 连接, 视频录像机 29 还与无线视频传输装置 36 连接, 所述无线数据接收板 25、 运动控制板 26、 云台控制板 27、 错误检测板 28、 电机驱动器 30均与 CAN总线 34连 接, CAN总线 34上还连有位置传感器 35, 通过 CANopen协议实现对各部分的协调控制, 组 成了基于 CAN 总线 34 的分布式控制系统, 该系统将所有控制功能分为数据传输、 运动控 制、 检测控制、 错误检测四个功能部分, 分别实现机器人的数据传输、 运动控制、 检测控制 和错误检测功能, 各部分功能上相互独立, 通过 CAN 总线连接在一起, 又可以实现信息交 互, 实现整体统一。
其中数据传输功能由无线数据接收节点和地面遥控器实现, 用于接收来自遥控器的控制 指令, 进行指令解析并发送给相应的控制模块, 同时反馈机器人的状态信息, 如电池剩余电 量, 机器人运动状态, 警告与错误等, 便于系统调试。 运动控制功能包括运动控制节点、 关 节驱动节点和与运动控制相关的传感器节点, 协调各关节实现机器人越障控制。 其他控制功 能包括云台控制、 线路检测、 视频控制等均列为检测控制功能, 通过云台控制节点、 云台驱 动节点、 视频控制节点等实现。 错误检测功能由错误检测节点实现, 它作为 CAN 网络主节 点, 监控 CAN网络状态, 接收错误消息, 并进行相应处理, 保证机器人运行安全。
控制程序结构如图 6所示, 各主控制器在上电自检时, 查询功能组内其他节点状态, 确 保系统上电后所有节点连接正常, 并将査询结果发送给错误检测板 28。 主控制器在完成组 内自检与初始化任务后, 进入各自的功能控制循环, 在功能控制中一旦出现错误, 可立即通 过错误消息发送给错误检测板 28, 错误检测板 28可通过状态指示灯和反馈错误信息给遥控 器等方式提供调试信息。
由于每个直流无刷电机连线较多, 走线复杂, 并且信号易受干扰, 在各 CAN节点的安装 布局上, 各关节驱动节点及手爪驱动节点等均釆用在相应关节电机附近安装的方式, 避免了 电机信号长距离传输。 各驱动节点之间仅通过 CAN总线 34和电源线串联连接, 连线简单, 可靠性增加。 电机驱动器 30 (或驱动电路板) 均采用微型化设计, 嵌入越障臂内, 不影响 机械布局。
上述虽然结合附图对本发明的具体实施方式进行了描述, 但并非对本发明保护范围的限制, 所属领域技术人员应该明白, 在本发明的技术方案的基础上, 本领域技术人员不需要付出创 造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims

权 利 要 求 书
1. 一种架空输电线路巡线机器人系统, 其特征是, 包括若干个结构相同的驱动 臂、 联板及控制箱, 其中驱动臂包括驱动轮机构、 升降关节及旋转关节; 驱动轮 机构包括驱动轮,所述驱动臂分布在机器人一侧,驱动臂通过驱动轮悬挂在分裂 导线上,所述驱动轮机构下端通过旋转关节与升降关节连接, 升降关节和控制箱 固定在联板上; 所述控制箱包含锂电池组和机器人控制系统,所述机器人控制系 统包括数据接收板、 运动控制板、 云台控制板、 错误检测板、 视频录像机、 电机 驱动器、视觉检测摄像机; 所述升降关节及旋转关节上均设有电机驱动器, 所述 视频录像机和视觉检测摄像机通过云台和云台驱动器与 CAN总线连接,所述数据 接收板、运动控制板、云台控制板、错误检测板、电机驱动器均与 CAN总线连接。
2. 如权利要求 1所述的架空输电线路巡线机器人系统, 其特征是, 所述驱动轮 机构包括驱动电机、 驱动轮、 驱动轴、 传动装置及固定板; 所述固定板一端通过 旋转关节与升降关节连接, 另一端铰接驱动轴; 所述驱动轴两端分别设有驱动轮 及传动装置; 驱动电机与传动装置连接固定。
3. 如权利要求 1所述的架空输电线路巡线机器人系统, 其特征是, 所述升降关 节包括底板、 丝杠、 丝杠螺母、 直线导轨、 滑块、 直流电机、 连接板、 限位开关 及轴承座; 所述丝杠通过轴承座与底板相连, 丝杠一端与直流电机相连, 丝杠上 设置有丝杠螺母; 所述直线导轨固定在底板上, 与丝杠平行, 直线导轨上设置有 能自由滑动的滑块,连接板将丝杠螺母和滑块固定在一起;连接板连接旋转关节; 丝杠底部固定有限位开关。
4. 如权利要求 1所述的架空输电线路巡线机器人系统, 其特征是, 所述旋转关 节包括旋转轴承座、 旋转轴、 U型连接件及旋转电机; 所述旋转轴的两端架设在 两个旋转轴承座上,所述旋转轴承座与升降关节的连接板相连; 旋转轴中间固定 有 U型连接件, U型连接件与驱动轮机构的固定板相连; 旋转轴一端与旋转电机 相连。
PCT/CN2013/000976 2012-12-05 2013-08-21 一种架空输电线路巡线机器人系统 WO2014086087A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210512481.5A CN102975191B (zh) 2012-12-05 2012-12-05 一种架空输电线路巡线机器人系统
CN201210512481.5 2012-12-05
CN 201220659399 CN202910857U (zh) 2012-12-05 2012-12-05 一种架空输电线路巡线机器人系统
CN201220659399.0 2012-12-05

Publications (1)

Publication Number Publication Date
WO2014086087A1 true WO2014086087A1 (zh) 2014-06-12

Family

ID=50882804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000976 WO2014086087A1 (zh) 2012-12-05 2013-08-21 一种架空输电线路巡线机器人系统

Country Status (1)

Country Link
WO (1) WO2014086087A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110977996A (zh) * 2019-11-18 2020-04-10 南京信息职业技术学院 一种改进型输电线路多功能维护机器人

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247030A (zh) * 2007-08-01 2008-08-20 北京深浪电子技术有限公司 架空线路越障巡检机器人及其越障控制方法
US20110040427A1 (en) * 2007-10-31 2011-02-17 Pinhas Ben-Tzvi Hybrid mobile robot
CN102975191A (zh) * 2012-12-05 2013-03-20 山东电力集团公司电力科学研究院 一种架空输电线路巡线机器人系统
CN202910857U (zh) * 2012-12-05 2013-05-01 山东电力集团公司电力科学研究院 一种架空输电线路巡线机器人系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247030A (zh) * 2007-08-01 2008-08-20 北京深浪电子技术有限公司 架空线路越障巡检机器人及其越障控制方法
US20110040427A1 (en) * 2007-10-31 2011-02-17 Pinhas Ben-Tzvi Hybrid mobile robot
CN102975191A (zh) * 2012-12-05 2013-03-20 山东电力集团公司电力科学研究院 一种架空输电线路巡线机器人系统
CN202910857U (zh) * 2012-12-05 2013-05-01 山东电力集团公司电力科学研究院 一种架空输电线路巡线机器人系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110977996A (zh) * 2019-11-18 2020-04-10 南京信息职业技术学院 一种改进型输电线路多功能维护机器人
CN110977996B (zh) * 2019-11-18 2022-08-30 南京信息职业技术学院 一种改进型输电线路多功能维护机器人

Similar Documents

Publication Publication Date Title
CN106786136B (zh) 行星轮式变胞移动机构
CN102975191B (zh) 一种架空输电线路巡线机器人系统
CN202910857U (zh) 一种架空输电线路巡线机器人系统
CN203839819U (zh) 一种适用于输电线路巡检机器人的越障机械臂
CN101513733B (zh) 架空线路清障检测机器人
CN101794974B (zh) 手爪式智能输电线路清障机器人
CN103972816A (zh) 一种适用于输电线路巡检机器人的越障机械臂
KR20170087573A (ko) 가변형 비행로봇
CN109367639B (zh) 一种爬杆机器人及其应用方法
CN109591906B (zh) 一种输电杆塔攀爬机器人控制系统及控制方法
Hongguang et al. Research of power transmission line maintenance robots in SIACAS
CN102938544B (zh) 一种输电线路自主越障巡线机器人
CN102941567B (zh) 高压输电线路巡线及作业机器人驱动臂
CN103001151A (zh) 具有越障功能的线路机器人驱动臂
CN203929915U (zh) 输电线路零值绝缘子带电检测机器人
CN105244808A (zh) 一种输电线路在线监测用线缆攀爬机器人
CN103926489B (zh) 输电线路零值绝缘子带电检测机器人
CN102941570A (zh) 一种输电线路巡线机器人
CN103128738A (zh) 蠕动式绝缘子串智能检测机器人
CN102922529B (zh) 一种沿分裂导线的巡检作业机器人系统
CN208923715U (zh) 架空输电线路自动越障巡线机器人
CN202917899U (zh) 具有越障功能的线路机器人驱动臂
CN103594967A (zh) 翻转越障式架空线路作业机器人
CN202763841U (zh) 适用于狭窄巡检工作空间的巡检机器人机构
CN114029964A (zh) 深井移动轨道式巡检机器人及其跨绳越障方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861265

Country of ref document: EP

Kind code of ref document: A1