WO2014086083A1 - 双向变流拓扑 - Google Patents
双向变流拓扑 Download PDFInfo
- Publication number
- WO2014086083A1 WO2014086083A1 PCT/CN2013/000260 CN2013000260W WO2014086083A1 WO 2014086083 A1 WO2014086083 A1 WO 2014086083A1 CN 2013000260 W CN2013000260 W CN 2013000260W WO 2014086083 A1 WO2014086083 A1 WO 2014086083A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switch
- bridge
- bidirectional
- inductors
- tubes
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/66—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
- H02M7/68—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
- H02M7/72—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/79—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/797—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1582—Buck-boost converters
Definitions
- Bidirectional current-converting topology TECHNICAL FIELD
- the present invention belongs to the field of electric power conversion, and realizes mutual conversion between direct current and alternating current, and can be widely applied to systems requiring AC/DC hybrid power supply, reactive power compensation, energy storage, motor drive and braking.
- AC/DC hybrid power supply systems such as new energy storage systems, intelligent microgrid systems, high voltage DC UPS systems, new energy charging power stations, new energy power systems, and motor variable frequency drives. And braking, etc.
- Such systems often require energy storage, DC power supply and AC power supply.
- the most important device in the system is the bidirectional converter.
- bidirectional inverter inverter charger, battery inverter, etc.
- Its role is to connect the AC system and the DC system to achieve energy conversion between the two systems, that is, sometimes it needs to be converted from DC to AC, and sometimes to AC to DC.
- the AC system there are separate points for single and three phases.
- high-power bidirectional converters the high power here mainly refers to more than 50KW, mainly three-phase bidirectional converters: low-power bidirectional converters, mainly single-phase electric.
- both the inverter working state and the rectifying working state require that the harmonic content of the AC side is very low, and the general requirement is within 3%.
- This requirement has high requirements for the inverter and rectification of the bidirectional converter.
- the main implementation method is to use two sets of circuits, rectification and inverter, to realize rectification and inverter respectively. This method makes the structure of the bidirectional converter very developed and costly.
- Bidirectional converters are quite emerging requirements.
- the current products have the disadvantages of complex structure, high price and low efficiency, which require continuous advancement of technology to meet industrial needs.
- SUMMARY OF THE INVENTION The present invention proposes a bidirectional converter topology, which is innovatively implemented with the same set of circuits to achieve rectification and inversion of low harmonic content, and without high frequency common mode interference can achieve transformerless isolation mode operation, achieving low Cost, efficiency, and high performance.
- the technical solution of the present invention (cf. the drawing) is:
- a switch tube is connected in series with the positive and negative terminals of the DC input and output terminals (the switch tube connected to the positive pole is S5, the switch tube connected to the negative pole is S6), and the inductors connected to the rear of the switch tubes S5 and S6 are connected to the switch S5.
- the inductance is L1, the inductance connected to the switch S6 is L2), and the rising circuit is connected between the inductors L1 and L2 and the connection side of the switches S5 and S6 (the augmentation circuit is an abbreviation for the boosting and freewheeling circuit),
- the other side of the inductor 1'1 and L2 is connected to the H-type commutating rectifier bridge (referred to as the H-type commutating rectifier bridge for the H-bridge);
- the positive direction of the switch S5 is from the positive terminal of the direct current terminal to the inductor L1, and the switch tube S6
- the positive direction is from the inductor L2 to the negative terminal of the DC terminal, the switching tubes S5 and S6 are bidirectional, or the reverse diodes are connected in parallel (D5 and D6 in the figure), or the reverse diode is integrated inside the switch tube;
- the switch tubes S5 and S6 At least the positive direction is controllable;
- the H-bridge has four switch tubes (Sl
- the contact connected to the inductor L1 is the positive contact
- the contact connected to the inductor L2 is the negative contact
- the direction of the H bridge from the positive contact to the negative contact is positive
- the switches S1, S2, S3 and S4 are bidirectional, or There are reverse diodes in parallel (Dl, D2, D3 and D4 in the figure), or reverse diodes are integrated inside the switch, they are controllable at least in the positive direction h;
- the flat-wave capacitor is connected between the midpoints of the bridge arms (here, this capacitor is C3); the midpoints of the two bridge arms of the H-bridge are connected to the AC input and output terminals.
- the EMC filter circuit is added in practical applications, and the EMC filter circuit is attached.
- the positive direction of the rise and fall circuit refers to the contact point from S5 and L1 to the junction of S6 and L2; the rise and fall circuit has two implementation topologies, one is the clampless rise and fall circuit (as shown in Figure 1).
- one is a midpoint clamp follower circuit (as shown in Figure 2); the clampless riser circuit is connected directly between the inductors L1 and L2 and the switch S5 and S6 connection points ( S7); Switch S7 is bidirectional, or has a reverse diode (D7) in parallel, or a reverse diode is integrated inside the switch, and the switch S7 is at least positively controllable; the midpoint clamp is continuous Connect two capacitors in series with the DC input and output terminals (called C10 and C11). Connect two series of switches (called S8 and S9) between the inductors 1.1 and L2 and the connection points of switches S5 and S6.
- the midpoint is connected to the midpoint between the switch tubes S8 and S9; the switch tubes S8 and S9 are bidirectional Or a reverse diode (D8 and D9) in parallel, or a reverse diode integrated in the switch tube, the switch tubes S8 and S9 are controllable at least in the positive direction; in this paper, the switch tubes S7, S8 and S9 are lift switches : Parallel capacitors are connected to the DC input and output terminals and the AC input and output terminals; the capacitor C2 is connected in parallel on the DC side of the H commutation bridge. Control circuits and peripheral protection circuits and the like are also required in practical applications, which are not shown in the drawings. The control circuit says to control the current and voltage of the main branch, and to control the switches of the respective switches.
- the invention has two working modes of inverter and rectification.
- the control circuit controls the switching tubes S5 and S6 to forward the high frequency chopping switch at the same time, and controls the S l, S2, S3 and S4 power frequency forward switches of the H bridge, when S5 and S6 are turned on. Charging the inductors L1 and L2, when the S5 and S6 are turned off, the inductor current continues to flow from the boost circuit.
- chopping switch duty cycles of S5 and S6 a continuous half cycle is formed between the positive and negative contacts of the H-bridge.
- the H-bridge is commutated at the zero point of the half-cycle sine wave, and realizes the full-cycle sine wave at the AC input and output contact; when in the rectification mode, the control circuit controls the forward direction of the switch of the follow-up circuit High-frequency switch, when the up-and-down switch is conducting, charging inductor L1 and, when the up-and-down switch is turned off, the current in inductors L1 and L2 is from switch S5 and S6 or its parallel diode D5 and Reverse flow to the DC terminal on D6 for high power factor rectification.
- the beneficial effects of the invention are:
- the same set of topology circuits is used to realize the bidirectional transformation of power.
- the DC power can be inverted into AC power, and the AC power can be converted into DC power, which is much lower than the current similar scheme.
- the invention has no high frequency common mode interference problem, ensures EMC performance, and avoids the use of transformer isolation, which reduces cost and improves efficiency.
- the topology of the present invention has low voltage tolerance requirements for the switching tube, reducing the cost of the final product.
- the topology of the present invention can realize the adjustment of the power factor and control the flow direction of the reactive power while realizing the active power conversion. By adopting the invention, the four-quadrant operation of the frequency conversion can be realized, and the variable frequency driving and braking of the motor can be conveniently realized.
- Figure 1 A bidirectional converter topology using a clamp-free riser circuit
- Figure 3 is a schematic diagram of the operation of power flowing from the DC side to the AC side;
- FIG. 4 is a schematic diagram of the operation of power flowing from the AC side to the DC side;
- FIG. 3 and FIG. 4 are schematic diagrams showing the operation of the bidirectional converter topology using the present invention.
- FIG. 3 shows the working principle of power flowing from the DC side to the AC side: At this time, switches S5 and S6 are in the high frequency chopping switch state, and S5 and S6 are turned on or off at the same time; when S5 and S6 are in the on state, The inductors L 1 and L2 are charged, and the boost circuit is in the off state; when S5 and S6 are in the off state, the currents of the inductors L1 and L2 are freewheeled through the boost circuit; the H commutation bridge is in the power frequency switch state, to the L1 And the current of L2 is commutated to realize the polarity change of the AC output; Description
- the circuit can adopt the diode freewheeling mode, that is, the freewheeling current flows from the diode in the boosting circuit, or the freewheeling mode can be used, that is, the freewheeling current flows from the bypass circuit of the rising circuit;
- the freewheeling does not need to be controlled, so the control strategy is simple, and the method of step-by-step flow is more complicated.
- the switch S7 needs to be bidirectional, but it can achieve higher efficiency under reasonable design; by controlling S5 and S6
- the duty cycle of the high frequency chopping controls the amplitude of the voltage output on the AC side; the polarity of the AC output is controlled by controlling the H bridge.
- FIG 4 shows the working principle of power flowing from the AC side to the DC side:
- the switching tube in the boost circuit (S7 in Figure 4) is in the high-frequency boost switch state; when the S7 is turned on, the inductors L1 and L2 are charged. , S5, D5 and S6, 1) 5 are in the off state.
- S7 is turned off, the currents of the inductors U and L2 are freewheeled through S5/D5 and S6/D5, and are transmitted to the DC side; the currents of the inductors L1 and L2 are freewheeling.
- diode freewheeling mode and synchronous freewheeling mode.
- the diode freewheeling mode needs to be connected to the S5 and the parallel parallel current diode, but the control is relatively simple.
- the synchronous freewheeling mode control is more complicated.
- S5 and S6 are bidirectional, but in the case of reasonable design, to achieve higher efficiency;
- H-bridge is used as a finishing bridge, there are also two ways, M-step rectification and diode rectification; by controlling the switching tube of the follow-up circuit
- the high frequency boost switch duty cycle controls the output voltage amplitude and power on the DC side.
- the flow direction control of the above two kinds of power realizes dynamic change by controlling the timing, thereby realizing flexible control of power, realizing inverter, rectification, frequency conversion, reactive power control, etc., widely used, energy storage, AC/DC hybrid system, motor drive and Brake, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Rectifiers (AREA)
- Inverter Devices (AREA)
Abstract
一种双向变流拓扑用同一个电路实现无共模干扰的直流电与交流电互相转换,在直流侧正负极上各串联一个开关管(S5、S6),开关管后各连接一个电感(L1、L2)。两个电感与两个开关管的连接处之间连接有升续电路,两个电感的另外一侧连接H桥(S1、S2、S3、S4),H桥两桥臂的中点直接连接有电容(C3),并且为交流输入输出端。该双向变流拓扑结构实现直流电交流电直接的双向流动,并实现低成本和无变压器的双向变流器,可应用于储能、交直流混合系统、无功调节、电机驱动和制动。
Description
说 明 书 双向变流拓扑 技术领域 本发明属于电力变流领域, 实现直流电与交流电互相转换, 可以广泛应用于需要交直流 混合电源、 无功补偿、 储能、 电机驱动和制动等系统中。 背景技术 随着生产力的发展对交直流混合供电系统的需要越来越多, 比如新能源储能系统、 智能 微网系统、 高压直流 UPS系统、新能源充电电站、 新能源动力系统、 电机变频驱动和制动等。 这样的系统中往往需要蓄能、 直流供电和交流供电, 系统中最重要的一个设备就是双向变流 器, 在一些场合又称之为双向逆变器、 逆变充电器、 电池逆变器等。 它的作用是连接交流系 统和直流系统, 实现两个系统之间的能源转换, 即有时需要从直流变换成交流、 有时需要从 交流变换成直流。 针对交流系统, 又有单相和三相之分。 当前大功率的双向变流器, 这里的 大功率主要指 50KW以上, 主要是三相双向变流器: 小功率的双向变流器, 以单相电为主。
双向变流器工作时, 无论是逆变工作状态还是整流工作状态, 都要求交流侧的谐波含量 很低, · -般要求在 3%之内。 这个要求使双向变流器的逆变和整流都有较高的要求。 当前单相 的双向变流器, 主要实现方法是采用整流和逆变两套电路并存, 分别实现整流和逆变。 这种 方法, 使双向变流器的结构非常发展, 成本很高。
另外, 当前的双向变流拓扑有高频共模干扰的问题, 所以为了降低共模干扰, 大部分采 用变压器隔离。 由于采用了变压器隔离, 所以增加了产品成本, 并且降低了系统效率。所以, 如果有新的拓扑结构可以实现无变压器隔离的双向变流器, 将能大大降低产品成本和提高系 统效率。
双向变流器是相当新兴的需求, 当前的产品有结构复杂、 价格高、 效率低等缺点, 需要 技术的不断进步满足产业需求。 发明内容 本发明提出了一种双向变流拓扑, 创新的用同一套电路实现了低谐波含量的整流和逆变, 并且无高频共模千扰可以实现无变压器隔离方式工作, 实现了低成本、 高效率、 高性能。 本发明的技术方案 (对照附图) 是:
直流输入输出端正负极上各串联一个开关管 (称与正极连接的开关管为 S5, 称与负极连 接的开关管为 S6), 开关管 S5和 S6后面各连接 个电感 (称与开关 S5连接的电感为 L1,称 与开关 S6连接的电感为 L2), 电感 L1和 L2与开关 S5和 S6的连接一侧之间连接有升续电路 (升续电路为升压和续流电路的简称), 电感 1'1和 L2的另一侧连接 H型换向整流桥(简称这 个 H型换向整流桥为 H桥); 开关管 S5的正方向是从直流端正极到电感 Ll, 开关管 S6的正 方向是从电感 L2到直流端负极, 开关管 S5和 S6是双向的, 或并联有反向二极管 (图中的 D5和 D6), 或开关管内部集成了反向二极管; 开关管 S5和 S6至少正方向上是可控的; H桥 有四个开关管 (图中的 Sl、 S2、 S3和 S4 ), H桥中与电感 L1连接的两个开关管为 SI和 S3, H桥中与电感 L2连接的两个开关管为 S2和 S4, S1与 S2组成一个桥臂, S3与 S4组成一个桥 臂; 称与电感 L1相连的接点为正接点, 与电感 L2相连的接点为负接点, H桥从正接点到负 接点的方向为正方向, 开关管 Sl、 S2、 S3和 S4是双向的, 或并联有反向二极管(图中的 Dl、 D2、 D3和 D4), 或开关管内部集成了反向二极管, 它们至少在正方向 h是可控的; 在 H桥两
桥臂中点之间连接平波电容(这里称这个电容为 C3 ) ; H桥的两个桥臂中点连接交流输入输 出端, 当然实际应用中还要增加 EMC滤波电路, EMC滤波电路在附图中没有画出来; 升续电 路的正方向是指从 S5与 L1的接点到 S6与 L2的接点; 升续电路有两种实现拓扑, 一种是无 箝位升续电路 (如图 1中所示), 一种是中点箝位升续电路 (如图 2中所示); 无箝位升续电 路是直接在电感 L1和 L2与开关 S5和 S6连接点之间连接一个开关管(称 S7 ) ; 开关管 S7是 双向的, 或并联有反向二极管 (D7 ), 或开关管内部集成了反向二极管, 开关管 S7至少正方 向是可控的; 中点箝位升续电路是在直流输入输出端串联两个电容 (称 C10和 C11 ) , 在电感 1.1和 L2与开关 S5和 S6连接点之间连接串联两个开关管 (称 S8和 S9), 电容 C10和 C1 1之 间的中点与开关管 S8和 S9之间的中点相连; 开关管 S8和 S9是双向的, 或并联有反向二极 管 (D8和 D9), 或开关管内部集成了反向二极管 , 开关管 S8和 S9至少正方向上是可控的; 在本文中称开关管 S7、 S8和 S9为升续开关: 在直流输入输出端和交流输入输出端都并联电 容; 在 H换向桥的直流侧并联电容 C2。 在实际应用中还需要有控制电路和外围保护电路等, 这些在附图中没有表示出来。 控制电路说控制监测主要支路的电流电压等, 并控制各个开关管 的开关。
本发明有逆变和整流两种工作模式。 当处于逆变工作模式时, 控制电路控制开关管 S5和 S6同时正向高频斩波开关, 控制 H桥的 S l、 S2、书 S3和 S4工频正向开关, 当 S5和 S6开通时 对电感 L1和 L2充电, 当 S5和 S6关断时电感电流从升续电路续流, 通过调整 S5和 S6的斩 波开关占空比, 在 H桥的正负接点之间形成连续的半周期正弦波 (俗称馒头波), H桥在半周 期正弦波的零点换向, 实现在交流输入输出接点输出全周期正弦波; 当处于整流工作模式时, 控制电路控制升续电路的开关管正向高频开关, 当升续开关正向导通时, 对电感 L1和 进 行充电, 当升续开关正向关断时, 电感 L1和 L2中的电流从开关管 S5和 S6或其并联的二极 管 D5和 D6上反向流向直流端, 实现高功率因数整流。 本发明的有益效果是:
用同一套拓扑电路实现了功率的双向变换, 可以把直流电逆变为交流电, 也可以把交流 电变换为直流电, 比当前类似的方案成本低很多。本发明没有高频共模干扰问题,保证了 EMC 性能, 还可以避免使用变压器隔离, 降低了成本, 提高了效率。 本发明的拓扑对开关管的耐 压要求低, 降低了最终产品的成本。 本发明的拓扑在实现有功功率变换的同时可以实现功率 因数的调整, 控制无功功率的流向。 采用本发明可是实现变频的四象限运行, 方便实现电机 的变频驱动和制动。 附图说明 本说明书有四个附图:
图 1, 采用无箝位升续电路的双向变流拓扑;
图 2, 采用中点箝位的双向变流拓扑;
图 3, 功率从直流侧流向交流侧的工作示意图;
图 4, 功率从交流侧流向直流侧的工作示意图; 具体实施方式 图 3、 图 4是使用本发明的双向变流拓扑的工作示意图。
图 3所示的是功率从直流侧流向交流侧的工作原理: 这时开关 S5和 S6处于高频斩波开 关状态, S5和 S6同时开通或关断; 当 S5和 S6处于开通状态时, 对电感 L 1和 L2充电, 升 续电路处于关断状态; 当 S5和 S6处于关断状态吋, 电感 L1和 L2的电流通过升续电路续流; H换向桥处于工频开关状态, 对 L1和 L2的电流进行换向, 实现交流输出的极性变换; 升续
说 明 书
电路可以采用二极管续流方式, 即续流电流从升续电路中的二极管流过, 也可以采用问步续 流方式, 即续流电流从升续电路屮的丌关管; 二极管续流的方式, 续流不需要控制, 所以控 制策略简单, 步续流的方式控制较为复杂, | j时需要开关管 S7为双向, 但在合理的设计下 可以实现更高的效率; 通过控制 S5和 S6的高频斩波的占空比控制交流侧输出的电压幅值变 化; 通过控制 H桥, 控制交流输出的极性。
图 4所示的是功率从交流侧流向直流侧的工作原理: 这时升续电路中的开关管 (图 4屮 的 S7 )处于高频升压开关状态; 当 S7开通时对电感 L1和 L2进行充电, S5、 D5和 S6、 1)5处 于关断状态, 当 S7关断时电感 U和 L2的电流通过 S5/D5和 S6/D5续流, 向直流侧输电;电 感 L1和 L2的电流续流也有两种方式, 二极管续流方式和同步续流方式, 二极管续流方式需 要在 S5和 上并联续流二极管, 但控制比较简中., 同步续流方式控制较复杂, M时^要开 关管 S5和 S6是双向的, 但在设计合理的情况下 ^以实现更高的效率; H桥作为整理桥使用, 也有两种方式, M步整流和二极管整流; 通过控制升续电路的开关管的高频升压开关占空比 控制直流侧的输出电压幅值和功率。
上述两种功率的流动方向控制通过控制时序实现动态的变化, 从而实现功率的灵活控制, 实现逆变、 整流、 变频、 无功控制等, 广泛 用 ·储能、 交直流混合系统、 电机驱动和制动 等。
Claims
1. 一种双向变流拓扑,用同一套电路实现直流电与交流电互相转换, 并且没有高频共模干扰 问题, 其特征在于直流输入输出端正负极上各串联一个开关管 S5和 S6, 开关管 S5和 S6后 面各连接一个电感(L1和 L2), 电感 L1和 L2与开关 S5和 S6的连接一侧之间连接有升续电 路, 电感 L1和 L2的另一侧连接 H型换向整流桥, 开关管 S5和 S6是双向的, 或者并联有反 向二极管 D5和 D6, 或内部内部集成了反向二极管, 开关管 S5和 S6至少正向可控的。
2. 根据权利要求 1所述的一种双向变流拓扑, 其特征在于其有逆变和整流两种工作模式,当 处于逆变工作模式时,控制电路控制开关管 S5和 S6同时正向高频斩波开关,控制 H桥的 Sl、 S2、 S3和 S4工频正向开关, 当 S5和 S6开通时对电感 L1和 L2充电, 当 S5和 S6关断时电 感电流从升续电路续流, 通过调整 S5和 S6的斩波开关占空比, 在 H桥的正负接点之间形成 连续的半周期正弦波, H桥在半周期正弦波的零点换向, 实现在交流输入输出接点输出全周 期正弦波; 当处于整流工作模式时, 控制电路控制升续电路的开关管正向高频开关, 当升续 开关正向导通时, 对电感 L1和 L2进行充电, 当升续开关正向关断时, 电感 U和 L2中的电 流从开关管 S5和 S6或其并联的二极管 D5和 D6上反向流向直流端, 实现高功率因数整流。
3. 根据权利要求 1所述的一种双向变流拓扑, 其特征在于它的 H桥有四个开关管 (Si、 S2、 S3和 S4), H桥中与电感 L1连接的两个开关管为 SI和 S3, H桥中与电感 L2连接的两个开关 管为 S2和 S4, SI与 S2组成一个桥臂, S3与 S4组成一个桥臂, 开关管 Sl、 S2、 S3和 S4是 双向的, 或并联有反向二极管, 或开关管内部集成了反向二极管, H桥两个桥臂中点连接交 流输入输出端。
4. 根据权利要求 i所述的一种双向变流拓扑, 其特征在于它的升续电路采用无箝位升续电 路, 即直接在电感 L1和 1 2与开关 S5和 S6连接点之间连接一个开关管 S7, 开关管 S7是双 向的, 或并联有反向二极管, 或开关管内部集成了反向二极管, 开关管 S7至少正向可控的。
5. 根据权利要求 1所述的一种双向变流拓扑, 其特征在于它的升续电路采中点箝位升续电 路, 即在直流输入输出端串联两个电容 C10和 C11 , 在电感 L1和 L2与开关 S5和 S6连接点 之间连接串联两个开关管 S8和 S9, 电容 C10和 Cl】之间的中点与开关管 S8和 S9之间的中 点相连, 开关管 S8和 S9是双向的, 或并联有反向二极管, 或开关管内部集成了反向二极管, 开关管 S8和 S9至少是正向可控的。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210557570.1A CN103872940A (zh) | 2012-12-07 | 2012-12-07 | 一种双向变流拓扑 |
CN201210557570.1 | 2012-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014086083A1 true WO2014086083A1 (zh) | 2014-06-12 |
Family
ID=50882801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2013/000260 WO2014086083A1 (zh) | 2012-12-07 | 2013-03-11 | 双向变流拓扑 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103872940A (zh) |
WO (1) | WO2014086083A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110045170A (zh) * | 2019-04-01 | 2019-07-23 | 漳州科华技术有限责任公司 | 一种升/降压电路的电感电流检测方法、系统及装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103888014A (zh) * | 2012-12-21 | 2014-06-25 | 丰郅(上海)新能源科技有限公司 | 双向逆变器拓扑 |
CN107482913B (zh) * | 2017-08-17 | 2019-10-25 | 深圳市泰昂能源科技股份有限公司 | 直流电压变换电路及直流电压变换器 |
TWI723491B (zh) * | 2019-08-14 | 2021-04-01 | 台達電子工業股份有限公司 | 雙向功率因數校正模組 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5932995A (en) * | 1998-03-03 | 1999-08-03 | Magnetek, Inc. | Dual buck converter with coupled inductors |
CN101728945A (zh) * | 2008-10-17 | 2010-06-09 | 盈正豫顺电子股份有限公司 | 具有中性点的双向直流/直流电压转换装置 |
CN102739087A (zh) * | 2012-06-12 | 2012-10-17 | 丰郅(上海)新能源科技有限公司 | 无共模干扰同步续流逆变器拓扑 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008015298A1 (es) * | 2006-07-31 | 2008-02-07 | Ingeteam Energy, S.A. | Circuito inversor monofásico para acondicionar y convertir energía eléctrica de corriente continua en energía eléctrica de corriente alterna |
-
2012
- 2012-12-07 CN CN201210557570.1A patent/CN103872940A/zh active Pending
-
2013
- 2013-03-11 WO PCT/CN2013/000260 patent/WO2014086083A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5932995A (en) * | 1998-03-03 | 1999-08-03 | Magnetek, Inc. | Dual buck converter with coupled inductors |
CN101728945A (zh) * | 2008-10-17 | 2010-06-09 | 盈正豫顺电子股份有限公司 | 具有中性点的双向直流/直流电压转换装置 |
CN102739087A (zh) * | 2012-06-12 | 2012-10-17 | 丰郅(上海)新能源科技有限公司 | 无共模干扰同步续流逆变器拓扑 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110045170A (zh) * | 2019-04-01 | 2019-07-23 | 漳州科华技术有限责任公司 | 一种升/降压电路的电感电流检测方法、系统及装置 |
CN110045170B (zh) * | 2019-04-01 | 2021-06-22 | 漳州科华技术有限责任公司 | 一种升/降压电路的电感电流检测方法、系统及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103872940A (zh) | 2014-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5928928B2 (ja) | 5段階電力変換器ならびにその制御方法および制御装置 | |
TWI477055B (zh) | 中壓變頻驅動系統 | |
CN102185514B (zh) | 一种单相三电平逆变器 | |
EP3337024B1 (en) | Bidirectional resonant conversion circuit and converter | |
CN111355430B (zh) | 电机控制电路、充放电方法、加热方法及车辆 | |
CN109104108B (zh) | 一种带有有源箝位的软开关型单级式高频隔离整流器 | |
WO2013056614A1 (zh) | 适合于高压应用的变流桥臂及其应用系统 | |
CN204290434U (zh) | 一种数字控制电动汽车充电机电路 | |
CN109039121B (zh) | 一种高频隔离型交直流变换电路及其控制方法 | |
CN109039205B (zh) | SiC器件电流源型双三相永磁同步电机驱动系统及方法 | |
WO2012010053A1 (zh) | 基于模块化多电平逆变器(mmc)的无变压器静止同步补偿器(statc0m)拓扑结构 | |
CN106849683A (zh) | 一种输入并联输出串联的基于推挽拓扑结构的变换器 | |
CN110492769B (zh) | 带功率因数校正功能的单级ac-dc变换器电路 | |
WO2022078121A1 (zh) | 充电装置和车辆 | |
Pandey et al. | Canonical switching cell (CSC) converter-based power factor-corrected battery charger for e-rickshaw | |
CN104201927B (zh) | 一种单级耦合电感zeta电抗源逆变器 | |
CN108448918B (zh) | 一种无变压器单相并网光伏逆变器 | |
WO2014086083A1 (zh) | 双向变流拓扑 | |
CN104796019B (zh) | 一种z源三电平pwm整流器及其控制方法 | |
CN112865560A (zh) | 一种多二极管串联型的背对背无桥三电平整流器 | |
CN103582999A (zh) | 用于控制绕线转子式感应电机中的转子电流的设备 | |
CN102403922A (zh) | Dc/ac并网逆变电路及功率因数调节方法 | |
WO2013134904A1 (zh) | 无共模干扰单相逆变器拓扑 | |
CN112072983A (zh) | 一种电机驱动电路 | |
CN109905035B (zh) | 一种能量双向流动的超低纹波电动汽车充电电源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13859727 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/08/2015) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13859727 Country of ref document: EP Kind code of ref document: A1 |