WO2014086077A1 - 一种平板太阳能集热器 - Google Patents

一种平板太阳能集热器 Download PDF

Info

Publication number
WO2014086077A1
WO2014086077A1 PCT/CN2013/000036 CN2013000036W WO2014086077A1 WO 2014086077 A1 WO2014086077 A1 WO 2014086077A1 CN 2013000036 W CN2013000036 W CN 2013000036W WO 2014086077 A1 WO2014086077 A1 WO 2014086077A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
low
layer
solar collector
emissivity
Prior art date
Application number
PCT/CN2013/000036
Other languages
English (en)
French (fr)
Inventor
陆卫
王少伟
俞立明
王晓芳
陈飞良
Original Assignee
中国科学院上海技术物理研究所
上海德福光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海技术物理研究所, 上海德福光电技术有限公司 filed Critical 中国科学院上海技术物理研究所
Publication of WO2014086077A1 publication Critical patent/WO2014086077A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/52Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/56Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by means for preventing heat loss
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/60Thermal insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the invention relates to a solar collector, in particular to a flat plate collector suitable for various high, medium and low temperature solar energy heat utilization, belonging to the technical field of solar energy.
  • the structure is mainly composed of two parts: collectors and heat accumulators.
  • the collectors are the key technology, which is directly related to the utilization efficiency, performance and normal temperature conditions of solar water heaters.
  • the solar water heaters currently widely used in daily life can be basically divided into three categories according to the different seasons of the collectors:
  • Category 1 It can only be used in summer or in hot climates. Generally there are boring and ordinary flat type.
  • the second category It can be used in spring, summer, autumn and the lowest ambient temperature above zero.
  • the main types are all-glass vacuum tube and double-layer glass plate. Such collectors must be deactivated when the temperature is below zero, otherwise it will cause freezing damage to the collector.
  • the third category can be used in any climate throughout the year, mainly heat pipe glass vacuum tube collector.
  • the solar collectors that have been widely used mainly include flat-plate solar collectors, all-glass vacuum tube solar collectors, heat pipe solar collectors, and heat pipe-vacuum tube solar collectors, in which all-glass vacuum tube solar collectors It captures most of the domestic market.
  • the average daily efficiency of flat-plate solar collectors is higher than that of vacuum tube solar collectors, and the country is vigorously promoting energy conservation and emission reduction.
  • flat-panel solar water heaters are separated from storage tanks, they are more flexible and perfect in combination with buildings. Easy to achieve integration with the building has attracted the attention of the industry. Therefore, from the development trend of solar energy concentrators, flat-panel solar water heaters have great potential for development.
  • the authoritative Swiss SPF test results for several production plants indicate (based on Aperture) that the flat solar collector efficiency curve intercept is 0.78 ⁇ 0.81, and the heat loss coefficient is 3.54 ⁇ 4.03 W/(m 2 *K);
  • the vacuum tube collector (interpolated heat pipe or U-shaped tube) is in the range of 0.53 to 0.61, and the heat loss coefficient is 1.30 to 2.22 W/(m 2 *K:).
  • the annual output of the flat solar collector is 485 ⁇ 541 W/(m 2 -K), and the annual output of the all-glass tube vacuum collector is 466 ⁇ 561. W / (m 2 , K).
  • the heat loss coefficient of the all-glass tube vacuum collector is much lower than that of the flat-plate solar collector, the intercept of the efficiency curve of the flat-plate solar collector is much higher than that of the all-glass tube vacuum collector. It should be pointed out that the all-glass vacuum tube solar collectors for SPF detection are mostly densely packed tubes. Domestic all-glass vacuum tube solar collector tube spacing is much larger, thermal efficiency Still lower.
  • flat-panel solar collectors (especially in China) have significant room for improvement and improvement.
  • the key is to improve heat collection efficiency and reduce heat loss coefficient. Since the absorption rate of the selective coating determines the heat collecting efficiency of the entire collector, the emissivity determines the heat loss coefficient. Therefore, the most important improvement method is to increase the solar absorption rate of the selective coating heat absorbing plate. And reduce the infrared emissivity.
  • the present invention discloses a flat solar collector structure that separates two key functions of infrared low emission and high solar absorption, which can be separately achieved. Best, and has relatively low cost and good weather resistance. So it can be very It can solve the problem that the existing key absorption layer can not take into account the high absorption and low emission function, and improve the solar heat collection efficiency, reduce the radiation loss, and achieve the purpose of further efficient use of solar energy.
  • the technical solution for achieving the object of the present invention is a flat solar collector, which is composed of a heat insulating layer, a working medium, a metal substrate, an absorption film and a low-emission module from the bottom layer to the top layer; the heat insulation layer is located at the bottom layer of the heat collector; The upper part of the heat insulation layer is covered with a copper medium pipe or a medium cavity for holding the working medium, and the medium pipe or the medium cavity is arranged to be welded to the lower part of the metal substrate; the absorption film is deposited on the upper part of the metal substrate, and the low-radiation module covers the upper part of the absorption film .
  • the low-radiation module is sequentially coated with a coated glass, a low emissivity film deposited on the coated glass, a hollow layer above the low emissivity film, a sealing strip supporting the hollow layer, and a hollow connected by a sealing strip.
  • the upper layer of glass above the layer is composed.
  • the basic working principle of the flat solar collector structure disclosed by the invention is that sunlight is incident on the absorption film through the low-radiation module, is absorbed by the absorption film and converted into heat, and transfers heat to the work through the metal substrate with good thermal conductivity.
  • the medium heats the working medium, and the heat is carried away by the working medium to the heat exchanger of the hot water storage tank for cyclic heat exchange, and finally the water in the water tank is heated and used.
  • Due to the highest temperature absorption film in the flat solar collector and the lower part of the working medium there is insulation layer to prevent heat from escaping from the lower part; the upper part has poor thermal conductivity glass and hollow low-radiation module, which prevents heat from being upper part. Conduction and radiation losses greatly reduce the heat loss coefficient of the product.
  • the heat insulating layer has a good heat insulating property, that is, a material having a small thermal conductivity, is not easily deformed or volatilized, does not generate toxic gas, and does not absorb, and generally requires a thermal conductivity of not more than 0.06 W/(nr ° C).
  • Available materials are: rock wool, glass wool, polyurethane, foaming agent, polystyrene, aerogel or phenolic foam. Suitable insulation materials can be selected according to the working temperature.
  • the working medium is a heat-conducting fluid.
  • the working medium is an anti-freezing liquid.
  • the pump-driven antifreeze can be used to circulate heat between the flat-plate solar collector and the heat exchanger of the hot water storage tank. Fundamentally solve the problem of freezing and freezing of water in flat solar collectors, while eliminating the flat sun It can solve the problem of water scaling in the collector.
  • the metal substrate is a substrate coated with an absorption film, and various Au, Ag, Cu, Al, Ni metals or alloys and combinations thereof having good thermal conductivity can be used as the metal substrate, and the combination thereof may be one of them.
  • Another metal film is plated on the metal substrate.
  • the low-cost A1 substrate or the low infrared emissivity Cu is used as the substrate, or the Cu film on the A1 having a low cost and low infrared emissivity is used as the substrate.
  • the absorbing film is a solar absorbing film material having no limitation on emissivity. Since the solar radiant energy is mainly distributed in 0.3-2.5 ⁇ m, a commonly used band gap is 0.5 eV (2.5 m) to 1.24 eV (1.0).
  • the semiconductors of m such as Si (l.leV), Ge (0.7eV) and PbS (0.4eV), are meaningful for the selective absorption of solar energy. Transition metals such as Fe, Co, Ni, Zn, Cr, and Mn have absorption mechanisms similar to those of semiconductors such as black chromium (CrO x ), black nickel (NiS-ZnS), and black cobalt, and NiCr.
  • a material having a high absorption rate is used as an absorption film to improve the heat collecting efficiency of the flat solar collector, such as NiO x , CrN x O y , TiN x O y , AIN x O y , AlCuFe, and the maximum absorption rate is close to 99. %.
  • the coated glass is a common glass, architectural glass or float glass which can be plated with a low emissive film and has a thickness of 2 to 20 mm.
  • float glass having a good surface flatness is used as the coated glass.
  • the low-emission film is designed to prevent the solar energy collected by the flat-plate solar collector from escaping through the absorption film from escaping in the form of radiation, so as to reduce the heat loss coefficient of the entire collector and improve the heat utilization efficiency, and the low-emission single layer can be used.
  • a film or a multilayer composite film such as a single silver film system, a double silver film system, and a triple silver film system.
  • a single silver film having an emissivity of less than 5% and a low cost is applied as a low emissive film on the coated glass.
  • the sealing strip is a weather resistant sealing strip.
  • the hollow layer is a hollow layer sealed between the coated glass and the upper glass, including air, nitrogen and inert gas helium, neon, argon, helium, neon, helium, and may also be evacuated; There are two main functions: 1) Protect the low-emission film coated on the coated glass to avoid oxidation or change. 2) to prevent heat and reduce heat loss. Preferably, the hollow layer can be evacuated to significantly reduce the heat loss coefficient of the entire collector.
  • the upper glass material may be the same as or different from the coated glass; the thickness may be the same as or different from the coated glass, and the thickness thereof may be as thin as possible to ensure the transparency of the sunlight.
  • the upper glass is made of tempered glass to improve the safety of the entire solar collector while ensuring the transmittance.
  • the theoretical calculation results based on the structure of the collector of the present invention show that when the thermal conductivity of the thermal insulation layer is 0.005 W/(m-° C), the thickness of the glass and the upper glass are both 4 mm, and the vacuum layer of the intermediate seal (or inert) The gas or air thickness is 16 mm or 20 mm, and the solar radiation power is 1000 W/m 2 (this value is generally used for solar cell simulation calculation). If all the radiation reaches the absorption layer, the air-burning temperature varies with the emissivity. The change is shown in Figure 2. When the emissivity is gradually increased, the air-burning temperature rapidly drops, and finally tends to be gentle.
  • the air-burning temperature can reach the high temperature solar heat utilization (T>400 °C) region of 471 °C; when the emissivity is between 0.02 When between ⁇ 0.10, the air-burning temperature is still at 397T: ⁇ 235 °C for medium-temperature solar heat utilization (400'C>T>100°C).
  • the emissivity of the structure between 0.01 and 0.10 can reach the medium temperature solar heat utilization (400 °C>T>100 °C) above 115 °C; when the low emission film
  • the emissivity is not higher than 0.06, only the absorption rate of the absorption film is required to reach 20%, so that the air-burning temperature can reach 102 °C required for the medium-temperature solar heat utilization. Therefore, the novel collector structure proposed by the invention can easily exceed the performance index requirements of the low-temperature solar heat utilization, achieve the performance index of the medium-temperature solar heat utilization, and greatly reduce the constraints and requirements on the materials, thereby making the improvement At the same time as performance, reduce costs.
  • the air-heating temperature of the collector can reach a high temperature solar heat utilization region of 435 ° C or higher. Very cheap and efficient.
  • the emissivity of the low emission film is between 0.01 and 0.10, and the air-burning temperature of the structure can reach the medium-temperature solar heat utilization above 115 °C (400 °C>T> 100 ° C) region;
  • the emissivity of the low emission film is not higher than 0.06, only the absorption rate of the absorption film needs to reach 20%, so that the air-burning temperature can reach the temperature required for the medium-temperature solar heat utilization, The requirements are very low.
  • the absorption rate of the absorption film is greater than 83%, so that the air-fired temperature can reach the medium-temperature solar heat utilization above 300 °C; when the absorption rate is close to 100%, as long as the emissivity is low, The module's emissivity of less than 0.02 can also make the air-burning temperature exceed 300 °C. As long as the absorption rate of the absorption film exceeds 40% and the emissivity is between 0.01 and 0.10, the air-fired temperature can still reach the area of the medium-temperature solar heat utilization (100 ° C ⁇ T ⁇ 400 ° C).
  • the novel collector structure proposed by the invention can easily exceed the performance index requirements of the low-temperature solar heat utilization, achieve the performance index of the medium-temperature solar heat utilization, and greatly reduce the constraints and requirements on the materials, thereby making the improvement At the same time, the cost is reduced, which is very beneficial for improving the performance of flat panel solar collectors, reducing costs, expanding application areas and expanding the market.
  • the air-burning temperature changes with the absorption rate as shown in Fig. 5.
  • the absorption rate is gradually increased, the air-burning temperature rises rapidly; the lower the emissivity of the low emissivity module, The greater the absorption rate of the absorbing film, the more significant the increase in the air-burning temperature. Can be achieved for a single silver film system
  • the air-cooling temperature of the collector can be made to a region where the solar thermal utilization of the medium-temperature solar energy is 100 or more, which is very inexpensive and efficient.
  • the absorption rate of the absorption film is ⁇ 45%
  • the emissivity of the low emission film is between 0.01 and 0.10, and the air-fired temperature of the structure can all reach the medium-temperature solar heat utilization of 100'C or more (100 ° C ⁇ T ⁇ 400 ° C). ) Area.
  • the present invention has the following positive effects:
  • the present invention separates the two functions of high solar absorption and low infrared emission, and can be optimized separately, and the existing one is well solved.
  • the material system cannot meet the problems of high absorption and low emission function. It can simultaneously obtain high absorption and low radiation flat solar collectors, and the absorption rate and emissivity are 99% and 1% respectively, which greatly improves the flat solar collector. Collect heat efficiency and reduce heat loss coefficient.
  • the structure of the present invention separates the absorption and emission properties, the flexibility and selection range of the product design are greatly increased, and the corresponding materials and structures can be selected for the specific market, which is advantageous for reducing the cost.
  • a hollow low-radiation module 5 is used above the absorbing membrane, and the hollow structure is composed of two glasses and a sealing strip, wherein one glass is coated with a low emissivity film, and the low emissivity film is inside the hollow structure; preferably, the low-radiation film is close to The side of the membrane is absorbing to better reduce external radiation losses.
  • the hollow structure itself can also act to insulate and reduce heat loss, minimizing the heat loss coefficient of the entire collector.
  • Figure i 1 is a schematic structural view of a high efficiency flat panel solar collector disclosed by the present invention.
  • Figure 2 shows the curve of the air-burning temperature as a function of emissivity for different absorption rates when 1000 W/m 2 irradiation can reach all the heat absorbing layers.
  • Figure 3 shows the variation of the air-burning temperature with the absorption rate for different emissivity when 1000 W/m 2 irradiation can reach all the heat absorbing layers.
  • Figure 4 assumes that only 1000% of the 1000 W/m 2 irradiation can reach the endothermic layer, and the air-burning temperature varies with emissivity under different absorption rates.
  • Figure 5 assumes a curve of the air-burning temperature as a function of absorbance at different emissivity levels when only 1000% of the 1000 W/m 2 irradiation can reach the endothermic layer.
  • Embodiment 1 Flat solar collector structure with air-fired temperature in low temperature solar heat utilization range
  • the flat solar collector structure described in this embodiment is composed of a heat insulation layer 1, a working medium 2, a metal substrate 3, an absorption film 4, and a low-emission module 5 from the bottom layer to the top layer.
  • the heat insulation layer 1 is located at the bottom layer of the heat collector; the upper layer is covered with a copper medium tube or a medium chamber containing the working medium 2, and the medium tube or the medium chamber is laid on the opposite side of the metal substrate 3; the absorption film 4 is deposited On the front side of the metal substrate 3, the low-emissivity module 5 is overlaid on the absorbing film 4.
  • the low-emissivity module 5 is sequentially from bottom to top by a coated glass 51, a low emissivity film 52 deposited on 51, a hollow layer 54 above 52, a sealing strip 53 supporting the hollow layer 54, and a connection by a sealing strip.
  • the upper layer of glass 55 above the hollow layer is composed.
  • the heat insulating layer 1 is a heat insulating layer formed by combining a polyurethane sheet with a foaming agent or a foaming agent.
  • the working medium 2 is an anti-freeze thermal fluid, which can fundamentally solve the problem of freezing and freezing of water in the flat solar collector, and at the same time eliminate the problem of water scaling in the flat solar collector.
  • the metal substrate 3 is a substrate on which an absorbing film is plated, and this embodiment employs a low-cost A1 substrate.
  • the absorbing film 4 is black chrome (CrO x ) having an absorption rate of more than 80% as an absorbing film.
  • the coated glass 51 is a 4 mm thick float glass.
  • the low-emission film 52 is deposited on the coated glass 51 as a low-emission film using a single silver film having an emissivity of 10% and a low cost, and the film structure is Glass/ZnO/Ag/ZnO/Si 3 N4.
  • the sealing strip 53 is a weather resistant sealing strip.
  • the hollow layer 54 is an air layer sealed between the coated glass 51 and the upper glass 55.
  • the upper glass 55 is a 4 mm thick float glass.
  • the theoretical air-burning temperature to reach the absorption layer with 60% energy is 170 ° C o
  • the flat panel solar collector of this embodiment is fully suitable for use in a daily solar water heater for low temperature solar heat utilization.
  • Example 2 Flat-plate solar collector structure with air-fired temperature in the middle temperature solar heat utilization range
  • the flat solar collector structure described in this embodiment is composed of a heat insulating layer 1, a working medium 2, a metal substrate 3, an absorbing film 4, and a low-emission module 5 from the bottom layer to the top layer.
  • the heat insulation layer 1 is located at the bottom layer of the heat collector; the upper layer is covered with a copper medium tube or a medium chamber containing the working medium 2, and the medium tube or The dielectric chamber is disposed on the reverse side of the metal substrate 3; the absorption film 4 is deposited on the front surface of the metal substrate 3, and the low-emissivity module 5 is overlaid on the absorption film 4.
  • the low-emissivity module 5 is sequentially from bottom to top by a coated glass 51, a low emissivity film 52 deposited on 51, a hollow layer 54 above 52, a sealing strip 53 supporting the hollow layer 54, and a connection by a sealing strip.
  • the upper layer of glass 55 above the hollow layer is composed.
  • the heat insulating layer 1 is a heat insulating layer formed by combining a polyurethane sheet with a foaming agent or a foaming agent.
  • the working medium 2 is an anti-freeze thermal fluid, which can fundamentally solve the problem of freezing and freezing of water in the flat solar collector, and at the same time eliminate the problem of water scaling in the flat solar collector.
  • the metal substrate 3 is a substrate on which an absorbing film is plated.
  • a low-cost A1 substrate is used to plate a Cu film.
  • the absorption film 4 is a blue titanium film (TiN x O y ) having an absorption rate of more than 90% as an absorption film, and the absorption rate can be up to 96%.
  • the coated glass 51 is a 4 mm thick float glass.
  • the low-emission film 52 is deposited on the coated glass 51 as a low-emission film with a low-emissivity single-silver film system having an emissivity of 5%, and the film structure is Glass/ZnO/Ag/ZnO/Si 3 N. 4 .
  • the sealing strip 53 is a weather resistant sealing strip.
  • the hollow layer 54 is a nitrogen gas layer sealed between the coated glass 51 and the upper glass 55.
  • the upper glass 55 is a 4 mm thick float glass.
  • the theoretical air-burning temperature at which 60% of energy is transmitted to the absorption layer is 230 °C.
  • the flat panel solar collector of the present embodiment is fully suitable for use in a daily solar collector for medium temperature solar heat utilization.
  • Example 3 Flat-plate solar collector structure with air-fired temperature in the middle temperature solar heat utilization range
  • the flat solar collector structure described in this embodiment is composed of a heat insulating layer 1, a working medium 2, a metal substrate 3, an absorbing film 4 and a low-emission module 5 from the bottom layer to the top layer.
  • the heat insulation layer 1 is located at the bottom layer of the heat collector; the upper layer is covered with a copper medium tube or a medium chamber containing the working medium 2, and the medium tube or the medium chamber is laid on the opposite side of the metal substrate 3; the absorption film 4 Deposited on the front surface of the metal substrate 3, the low-emissivity module 5 is overlaid on the absorbing film 4.
  • the low-emissivity module 5 is sequentially from bottom to top by a coated glass 51, a low emissivity film 52 deposited on 51, a hollow layer 54 above 52, a sealing strip 53 supporting the hollow layer 54, and a connection by a sealing strip.
  • the upper layer of glass 55 above the hollow layer is composed.
  • the heat insulating layer 1 is a heat insulating layer formed by combining a polyurethane sheet with a foaming agent or a foaming agent.
  • the working medium 2 is an anti-freeze thermal fluid, which can fundamentally solve the problem of freezing and freezing of water in the flat solar collector, and at the same time eliminate the problem of water scaling in the flat solar collector.
  • the metal substrate 3 is a substrate on which an absorbing film is plated, and in this embodiment, a Cu substrate is used.
  • the absorbing film 4 is CrN x O y having an absorption rate of 83% as an absorbing film.
  • the coated glass 51 is a 4 mm thick float glass.
  • the low emissive film 52 is deposited on the coated glass 51 as a low emissive film with a single silver film having an emissivity of 1%, and the film structure is Glass/ZnO/Ag/ZnO/Si 3 N 4 . .
  • the sealing strip 53 is a weather resistant sealing strip.
  • the hollow layer 54 is a nitrogen gas layer sealed between the coated glass 51 and the upper glass 55.
  • the upper glass 55 is a 4 mm thick float glass.
  • the theoretical air-burning temperature to reach the absorption layer with 60% energy is 315°.
  • the flat solar collector of the embodiment is completely suitable for daily use of medium temperature solar heat utilization.
  • Example 4 Flat-plate solar collector structure with air-fired temperature in the middle temperature solar heat utilization range
  • the flat solar collector structure described in this embodiment is composed of a heat insulating layer 1, a working medium 2, a metal substrate 3, an absorbing film 4 and a low-emission module 5 from the bottom layer to the top layer.
  • the heat insulation layer 1 is located at the bottom layer of the heat collector; the upper layer is covered with a copper medium tube or a medium chamber containing the working medium 2, and the medium tube or the medium chamber is laid on the opposite side of the metal substrate 3; the absorption film 4 is deposited On the front side of the metal substrate 3, the low-emissivity module 5 is overlaid on the absorbing film 4.
  • the low-emissivity module 5 is sequentially from bottom to top by a coated glass 51, a low emissivity film 52 deposited on 51, a hollow layer 54 above 52, a sealing strip 53 supporting the hollow layer 54, and a connection by a sealing strip.
  • the upper layer of glass 55 above the hollow layer is composed.
  • the heat insulating layer 1 is a heat insulating layer formed by combining a polyurethane sheet with a foaming agent or a foaming agent.
  • the working medium 2 is an anti-freeze thermal fluid, which can fundamentally solve the problem of freezing and freezing of water in the flat solar collector, and at the same time eliminate the problem of water scaling in the flat solar collector.
  • the metal substrate 3 is a substrate on which an absorbing film is plated.
  • a low-cost A1 substrate is used to plate a Cu film.
  • the absorbing film 4 is NiO x having an absorption rate of 99% as an absorbing film.
  • the coated glass 51 is a 4 mm thick float glass.
  • the low emissive film 52 is deposited on the coated glass 51 as a low emissive film with a single silver film having an emissivity of 1%, and the film structure is Glass/ZnO/Ag/ZnO/Si 3 N 4 . .
  • the sealing strip 53 is a weather resistant sealing strip.
  • the hollow layer 54 is a vacuum layer sealed between the coated glass 51 and the upper glass 55.
  • the upper glass 55 is a 4 mm thick float glass. Based on the above-described collector structural parameters, the theoretical air-burning temperature to reach the absorption layer at 60% of energy is 345. C.
  • the flat panel solar collector of this embodiment is fully suitable for use in a daily solar collector for medium temperature solar heat utilization.
  • the flat plate collector suitable for high-, medium-, and low-temperature solar heat utilization of the present invention is different from the conventional absorption-receiving film, and has high solar energy selective absorption and infrared low-radiation function, and the present invention will have high absorption. Separation from the low-radiation function eliminates the relationship between the two, so that both functions in the collector can be optimized at the same time, thereby greatly improving the heat utilization efficiency of the collector and reducing its heat loss coefficient.
  • the high-temperature solar heat utilization with the highest air-burning temperature exceeding 400 ° ⁇ significantly improves the performance and efficiency of the flat-plate solar collector, greatly expanding the application range of the flat-plate solar collector.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Building Environments (AREA)
  • Laminated Bodies (AREA)

Abstract

一种太阳能集热器,底层到顶层依次由隔热层(1)、工作介质(2)、金属基板(3)、吸收膜(4)及低辐射模块(5)构成;隔热层(1)位于集热器最底层;隔热层(1)上部包覆的是盛装工作介质(2)的铜质介质管或介质腔,介质管或介质腔则布设焊接于金属基板(3)的下部;吸收膜(4)沉积于金属基板(3)上部,低辐射模块(5)覆盖于吸收膜(4)上部。低辐射模块(5)自下而上依次由镀膜玻璃(51)、沉积在镀膜玻璃(51)上的低发射率膜(52)、位于低发射率膜(52)上方的中空层(54)、支撑中空层(54)的密封条(53),以及由密封条(53)连接的位于中空层(54)上方的上层玻璃(55)组成。

Description

一种平板太阳能集热器
本发明涉及一种太阳能集热器, 特别是一种适合于各种高、 中、 低温太阳 能热利用的平板集热器, 属于太阳能技术领域。 技术背景
能源问题是全世界范围所面临最为突出的问题之一, 而太阳能是人类取之 不尽、 用之不竭的清洁能源。 太阳能光热转换是目前世界范围内太阳能利用的 一种最普及、 最主要形式, 其中最具代表性的就是太阳能热水器。 我国己成为 世界上生产太阳能热水器最多的国家, 同时也拥有世界上最大的太阳能热水器 市场。 可以预见, 太阳能热水器将成为不可取代的太阳能利用形式。
太阳能热水器的类型很多, 其构造主要由集热器和蓄热器两大部分组成, 其中集热器是技术关键, 直接关系到太阳能热水器的利用效率、 使用性能和能 够正常运行的环境温度条件。 目前广泛应用于日常生活中的太阳能热水器根据 集热器的不同按使用季节基本上可分为三类:
第一类: 只能在夏季或炎热气候下使用。 一般有闷晒式和普通平板式。 第二类: 能在春、 夏、 秋及最低环境温度高于零度时使用, 主要类型有全 玻璃真空管式和双层玻璃平板式。 此类集热器在气温低于零度时须放水停用, 否则将造成集热器的冻伤害。
第三类: 可以在全年任何气候中使用, 主要有热管玻璃真空管式集热器。
20世纪 80年代中期, 以平板型太阳集热器为主要部件的太阳能热水器在我 国已初步形成产业, 这对于节约常规能源、 保护自然环境和改善人民生活都发 挥了积极的作用, 然而由于平板型太阳能集热器只能提供低温热水而且一般不 能全年运行, 应用范围受到限制。 为进一步提高集热器的工作温度, 拓宽太阳 能应用领域, 研究开发了全玻璃真空管式太阳能集热器及热管一真空管式太阳 能集热器。
已经大量应用的太阳能集热器主要有平板式太阳能集热器、 全玻璃真空管 式太阳能集热器、 热管式太阳能集热器、 热管一真空管式太阳能集热器, 其中 全玻璃真空管式太阳能集热器占领国内大部分市场。 但理论上平板式太阳能集 热器的日平均效率比真空管式太阳能集热器要高, 而且国家正在大力提倡节能 减排, 由于平板太阳能热水器与储水箱分离, 与建筑结合更灵活、 更完美, 容 易实现与建筑一体化, 已经引起了业界的关注。 因此, 从太阳能集能器的发展 趋势来看, 平板式太阳能热水器具有巨大的发展潜力。
20世纪 80年代曾占我国太阳能热水器统治地位的平板太阳能热水器在近 20 多年内已逐渐被全玻璃真空管太阳能热水器替代, 市场份额逐年下降, 现已降 至 15 %左右。 然而同期国外太阳能集热器市场并没有发生这样的变化, 平板太 阳能热水器在国际上仍占主流地位。 国外平板太阳能集热器的热性能与全玻璃 真空管太阳能集热器相比, 在提供家用热水时几乎没有差别。 权威的瑞士 SPF 对多家生产厂检测结果表明 (基于 Aperture), 平板太阳能集热器效率曲线截距在 0.78〜0.81, 热损系数在 3.54〜4.03 W/(m2*K); 全玻璃管真空管集热器 (内插热管 或 U形管)在 0.53〜0.61,热损系数在 1.30〜2.22 W/(m2*K:)。在提供生活用热水时, 以瑞士中部气候为例, 平板太阳能集热器全年输出为 485〜541 W/(m2-K), 全玻 璃管真空管集热器全年输出为 466〜561 W/(m2,K)。 尽管全玻璃管真空管集热器 的热损系数远低于平板太阳能集热器, 但平板太阳能集热器效率曲线的截距却 远高于全玻璃管真空管集热器。需要指出的是 SPF检测的全玻璃真空管太阳能集 热器多是密排管。 国内的全玻璃真空管太阳能集热器管间距要大得多, 热效率 还要更低一些。
虽然平板太阳能集热器理论上的日平均效率比真空管式太阳能集热器要 高, 而且国外平板太阳能集热器的热性能与全玻璃真空管太阳能集热器相比, 在提供家用热水时几乎没有差别, 仍占主流地位。 但是, 我国平板太阳能集热 器的市场份额很低, 而且效果差、 成本高。 国外的平板太阳能集热器普遍采用 性能较高的选择性镀层吸热板, 太阳光吸收率大于 90%, 红外发射率小于 6%。 而我国平板太阳能集热器的吸热板, 性能最好的红外发射率也高于 20%, 如电 化学处理的黑镍 (用于铝板) 或黑铬 (用于铜板) , 有些生产厂家还在使用性 能极差的黑漆涂料。
因此, 平板太阳能集热器 (尤其是我国的) 还有大幅改进与提高的空间, 关键在于提高集热效率和降低热损系数。 由于选择性镀层的吸收率大小决定了 整个集热器的集热效率, 其发射率则决定了热损系数的高低, 因而, 最主要的 改善途径就是提高选择性镀层吸热板的太阳光吸收率和降低红外发射率。
然而, 由于现有的技术途径是希望在同一个材料体系上实现对于太阳光的 高吸收率与中波红外的低发射率, 需要在同一材料体系同时优化好这二方面性 能是当前整个国内外产业界都在努力的方向, 同时还在成本和耐侯性方面对整 个材料体系提出了尽可能成本低、 耐侯性好的要求。 本发明专利就是针对这些 问题提出了一种新的途径。 发明内容
针对现有平板太阳能集热器技术和产品的不足,本发明公开了一种将红外 低发射与太阳光高吸收两种关键功能分离开来的平板太阳能集热器结构,二者 可以分别做到最佳, 而且具有相对较低的成本和良好的耐侯性能。 因此可以很 好地解决现有关键吸收层无法兼顾高吸收和低发射功能的难题,在提高太阳能 集热效率的同时, 降低辐射损失, 达到进一步高效利用太阳能的目的。
实现本发明目的的技术方案是一种平板太阳能集热器, 自底层到顶层依次 由隔热层、 工作介质、 金属基板、 吸收膜及低辐射模块构成; 隔热层位于集热 器最底层; 隔热层上部包覆的是盛装工作介质的铜质介质管或介质腔, 介质管 或介质腔则布设焊接于金属基板的下部; 吸收膜沉积于金属基板上部, 低辐射 模块覆盖于吸收膜上部。所述低辐射模块自下而上依次由镀膜玻璃、沉积在镀 膜玻璃上的低发射率膜、位于低发射率膜上方的中空层、支撑中空层的密封条, 以及由密封条连接的位于中空层上方的上层玻璃组成。
本发明所公开的平板太阳能集热器结构的基本工作原理是:阳光通过低辐 射模块入射到吸收膜上, 被吸收膜全部吸收后转化为热量, 通过导热性良好的 金属基板将热量传递至工作介质, 将工作介质加热, 并由工作介质将热量带走 至储热水箱的换热器进行循环换热, 最终将水箱中的水加热使用。 由于工作时 平板太阳能集热器中温度最高的吸收膜和工作介质的下部有隔热层,防止热量 由下部逃逸损失; 上部有导热性差的玻璃及中空的低辐射模块, 防止了热量由 上部的传导及辐射损失, 大大降低了产品的热损系数。
所述的隔热层采用保温性能好, 即热导率小的材料, 不易变形或挥发,不 产生有毒气体、 不吸收, 通常要求热导率不大于 0.06W/(nr°C)。 可选用的材 料有: 岩棉、 玻璃棉、 聚氨酯、 发泡剂、 聚苯乙烯、 气凝胶或酚醛泡沬。 可根 据工作温度选用合适的隔热材料。
所述的工作介质为导热流体, 优选的, 所述的工作介质为防冻液, 可使用 泵驱动防冻液在平板太阳能集热器及储热水箱的换热器间循环换热,这样可以 从根本上解决平板太阳能集热器中水的冻结与冻坏问题, 同时可消除平板太阳 能集热器中水结垢的问题。
所述的金属基板为镀制吸收膜的基板, 各种导热性能好的 Au、 Ag、 Cu、 Al、 Ni金属或它们的合金及组合都可作为金属基板,其组合方式可以是在其中 一种金属基板上镀制另一种金属膜。 优选的, 以成本低的 A1为基板、 或红外 发射率低的 Cu为基板、 或成本与红外发射率均较低的 A1上镀 Cu膜为基板。
所述的吸收膜为对发射率无限制要求的太阳光高吸收薄膜材料, 由于太阳 辐射能主要分布在 0.3-2.5μπι, 常用的有禁带宽度在 0.5eV(2.5 m)到 1.24eV(1.0 m)的半导体, 如 Si(l.leV)、 Ge(0.7eV)和 PbS(0.4eV)等, 对于太阳 能的选择性吸收才有意义。 过渡金属如 Fe、 Co、 Ni、 Zn、 Cr和 Mn等, 其吸 收机理类似于半导体, 如黑铬 (CrOx)、 黑镍 (NiS-ZnS)和黑钴等吸收膜, 以及 NiCr。优选的, 以吸收率高的材料作为吸收膜, 以提高平板太阳能集热器的集 热效率, 如 NiOx、 CrNxOy、 TiNxOy、 AINxOy、 AlCuFe, 最大吸收率接近 99%。
所述的镀膜玻璃为可镀制低发射膜的普通玻璃、 建筑玻璃或浮法玻璃,厚 度为 2〜20mm。 优选的, 以表面平整度很好的浮法玻璃作为镀膜玻璃。
所述的低发射膜是为了防止平板太阳能集热器通过吸收膜收集到的太阳 能以辐射的形式逃逸掉, 以降低整个集热器的热损系数, 提高热利用效率,可 以采用低辐射单层膜或多层复合膜, 如单银膜系、 双银膜系和三银膜系。 优选 的, 以发射率能小于 5%、 成本较低的单银膜系作为低发射膜镀制在镀膜玻璃 上。
所述的密封条是耐候的密封条。
所述的中空层是密封在镀膜玻璃和上层玻璃之间的中空层, 包括空气、氮 气和惰性气体氦气、 氖气、 氩气、 氪气、 氙气、 氡气, 也可以抽成真空; 其作 用主要有两个方面: 1 ) 保护镀膜玻璃上所镀制的低发射膜, 避免其氧化或变 性; 2) 起到隔热和降低热损失的作用。 优选的, 中空层可以抽成真空, 以显 著降低整个集热器的热损系数。
所述的上层玻璃材质可与镀膜玻璃相同, 也可不同; 厚度可以与镀膜玻璃 相同, 也可不同, 其厚度在确保足够强度的前提下尽可能薄, 以提高阳光的透 光率。 优选的, 上层玻璃采用钢化玻璃, 在保证透过率的同时, 提高整个太阳 能集热器的安全性。
基于本发明集热器结构的理论计算结果表明, 当隔热层的热导率为 0.005W/(m-°C) 玻璃和上层玻璃的厚度均为 4mm、 中间密封的真空层 (或 者为惰性气体或空气)厚度为 16 mm或 20mm,太阳能辐照地球功率为 1000 W/m2 (太阳能电池模拟计算一般采取该数值) 时, 假设辐照全部到达吸收 层, 则空烧温度随发射率的变化如图 2所示。 当发射率逐渐增大时, 空烧温 度迅速下降, 最后趋于平缓。 以部分吸收材料都能达到的 90%吸收率为例, 当发射率为 0.01时, 空烧温度可以达到 471 °C的高温太阳能热利用 (T>400 °C )区域; 当发射率介于 0.02〜0.10之间时, 空烧温度仍然处于 397T:〜 235 °C的中温太阳能热利用 (400'C>T>100°C)区域。 只要吸收率≥30%, 发射率介 于 0.01〜0.10之间结构的空烧温度全部可以达到 115 °C以上的中温太阳能热 利用 (400°C>T>100°C)区域; 当低发射膜的发射率不高于 0.06时, 只需要吸 收膜的吸收率达到 20%, 即可使空烧温度达到中温太阳能热利用所需的 102 °C。 因此, 采用本发明所提出的新型集热器结构, 可以非常容易地超出低温 太阳能热利用的性能指标要求,达到中温太阳能热利用的性能指标, 大幅降 低对材料的制约与要求, 从而使得在提高性能的同时, 降低成本。甚至可以 直接应用到高温太阳能热利用领域,对于提高平板太阳能集热器性能、降低 成本、 扩展应用领域和扩大市场非常有利。 空烧温度随吸收率的变化如图 3所示。当吸收率逐渐增大时, 空烧温度 迅速上升; 低发射率模块的发射率越低, 吸收膜的吸收率越大, 空烧温度的 提高就越显著。 对于单银膜系即可达到 0.01发射率的低发射膜而言, 只要 吸收膜的吸收率达到 80%以上, 即可使集热器的空烧温度达到 435 °C以上的 高温太阳能热利用区域,非常廉价高效。同样的,只要吸收膜的吸收率≥30%, 低发射膜的发射率介于 0.01〜0.10之间结构的空烧温度全部可以达到 115 °C 以上的中温太阳能热利用 (400°C>T>100°C )区域; 当低发射膜的发射率不高 于 0.06时, 只需要吸收膜的吸收率达到 20%, 即可使空烧温度达到中温太 阳能热利用所需的温度, 对吸收膜的要求非常低。
进一步, 考虑到实际结构的能量透过率, 以 60%的能量透过 (即只有 600 W/m2辐照到达吸收层 4) 计算, 空烧温度随发射率的变化如图 4所示。 当发射率逐渐增大时, 空烧温度迅速下降, 最后趋于平缓。 当低发射模块的 发射率为 0.01时,吸收膜的吸收率只要大于 83%, 即可使空烧温度达到 300 °C以上的中温太阳能热利用; 当吸收率接近 100%时, 只要低发射率模块的 发射率小于 0.02也可使空烧温度超过 300 °C。只要吸收膜的吸收率超过 40%, 发射率介于 0.01〜0.10之间时,空烧温度仍然可以达到中温太阳能热利用的 区域 (100°C<T<400°C ) 。 因此, 采用本发明所提出的新型集热器结构, 可 以非常容易地超出低温太阳能热利用的性能指标要求,达到中温太阳能热利 用的性能指标,大幅降低对材料的制约与要求,从而使得在提高性能的同时, 降低成本, 对于提高平板太阳能集热器性能、 降低成本、扩展应用领域和扩 大市场非常有利。
考虑到实际结构 60%能量透过率时的空烧温度随吸收率变化如图 5所 示。当吸收率逐渐增大时,空烧温度迅速上升;低发射率模块的发射率越低, 吸收膜的吸收率越大, 空烧温度的提高就越显著。 对于单银膜系即可达到
0.01发射率的低发射膜而言,只要吸收膜的吸收率达到 25%以上, 即可使集 热器的空烧温度达到中温太阳能热利用 lOO'C以上的区域, 非常廉价高效。 只要吸收膜的吸收率≥45%, 低发射膜的发射率介于 0.01〜0.10之间结构的 空烧温度全部可以达到 100'C以上的中温太阳能热利用 (100°C<T<400°C ) 区域。
采用了上述技术方案, 本发明具有以下积极的效果:
( 1 ) 相较于现行平板太阳能集热器结构, 本发明将太阳光高吸收与红外 低发射两种关键功能分离开来设计, 可以分别做到最佳, 很好地解决了现有在 同一材料体系上无法兼顾高吸收和低发射功能的难题,可以同时获得高吸收和 低辐射的平板太阳能集热器, 吸收率和发射率分别达到 99%和 1%, 大幅提高 平板太阳能集热器的集热效率和降低热损系数。
(2) 由于吸收率和发射率可以独立设计、 分别做到最好, 因此集热器的 热利用效率大幅提高, 最高空烧温度可以超过 400度, 适合于各种高、 中、低 温太阳能热利用, 极大地拓展了平板太阳能集热器的适用范围。
(3 ) 由于本发明结构将吸收与发射性能分离, 大大增加了产品设计的灵 活性和选择范围,可以针对具体市场选择相应的材料与结构,有利于降低成本。
(4) 采用低辐射中空结构设计, 大幅降低因辐射引起的热损失。
在吸收膜上方采用中空低辐射模块 5,中空结构由两块玻璃和密封条组成, 其中一块玻璃上镀制低发射率膜, 低发射率膜在中空结构的内侧; 优选的,低 辐射膜靠近吸收膜一侧, 以更好地减小对外辐射损失。 同时, 中空结构本身也 可以起到隔热和降低热损失的作用, 最大程度地降低整个集热器的热损系数。 附图 i兑明 附图 1 本发明所公开的高效平板太阳能集热器结构示意图。
附图中标号为:
1、 隔热层; 2、 工作介质; 3、 金属基板; 4、 吸收膜; 5、 低辐射模块; 51、 镀膜玻璃; 52、 低发射膜; 53、 密封条; 54、 中空层; 55、 上层玻璃。 附图 2 假设 1000 W/m2辐照能够全部到达吸热层时, 不同吸收率情况下, 空烧 温度随发射率的变化曲线。
附图 3 假设 1000 W/m2辐照能够全部到达吸热层时, 不同发射率情况下, 空烧 温度随吸收率的变化曲线。
附图 4 假设 1000 W/m2辐照只有 60%能够到达吸热层时, 不同吸收率情况下, 空烧温度随发射率的变化曲线。
附图 5 假设 1000 W/m2辐照只有 60%能够到达吸热层时, 不同发射率情况下, 空烧温度随吸收率的变化曲线。 具体实施方式
为使本发明的内容、技术方案和优点更加清楚明白, 以下结合具体实施例 进一步阐述本发明, 这些实施例仅用于说明本发明, 但本发明不仅仅限于以下 实施例。 下面结合附图对本发明的具体实施方式作详细说明- 实施例 1: 空烧温度在低温太阳能热利用范围的平板太阳能集热器结构
如图 1所示,本实施例所述的平板太阳能集热器结构自底层到顶层依次由 隔热层 1、 工作介质 2、 金属基板 3、 吸收膜 4及低辐射模块 5组成。 隔热层 1 位于集热器最底层; 其上层包覆的是盛装工作介质 2的铜质介质管或介质腔, 而介质管或介质腔则布设焊接于金属基板 3的反面;吸收膜 4沉积于金属基板 3正面上, 低辐射模块 5覆盖于吸收膜 4之上。 其中低辐射模块 5自下而上依次由镀膜玻璃 51、 沉积在 51上的低发射率 膜 52、 位于 52上方的中空层 54、 支撑中空层 54的密封条 53, 以及由密封条 连接的位于中空层上方的上层玻璃 55组成。
所述的隔热层 1为聚氨酯板材与发泡剂结合, 或发泡剂形成的隔热层。 所述的工作介质 2为防冻导热液,可以从根本上解决平板太阳能集热器中 水的冻结与冻坏问题, 同时消除平板太阳能集热器中水结垢的问题。
所述的金属基板 3为镀制吸收膜的基板,本实施例采用成本低的 A1基板。 所述的吸收膜 4为吸收率大于 80%的黑铬 (CrOx) 作为吸收膜。
所述的镀膜玻璃 51为 4mm厚的浮法玻璃。
所述的低发射膜 52是以发射率为 10%、 成本低的单银膜系作为低发射膜 镀制在镀膜玻璃 51上, 膜系结构为 Glass/ZnO/Ag/ZnO/Si3N4。
所述的密封条 53是耐候的密封条。
所述的中空层 54是密封在镀膜玻璃 51和上层玻璃 55之间的空气层。 所述的上层玻璃 55为 4mm厚的浮法玻璃。
基于上述集热器结构参数、以 60%的能量透过到达吸收层的理论空烧温度 为 170°C o
本实施例的平板太阳能集热器完全适用于低温太阳能热利用的日常太 阳能热水器中。 实施例 2: 空烧温度在中温太阳能热利用范围的平板太阳能集热器结构
本实施例所述的平板太阳能集热器结构自底层到顶层依次由隔热层 1、 工 作介质 2、 金属基板 3、 吸收膜 4及低辐射模块 5组成。 隔热层 1位于集热器 最底层; 其上层包覆的是盛装工作介质 2的铜质介质管或介质腔, 而介质管或 介质腔则布设焊接于金属基板 3的反面; 吸收膜 4沉积于金属基板 3正面上, 低辐射模块 5覆盖于吸收膜 4之上。
其中低辐射模块 5自下而上依次由镀膜玻璃 51、 沉积在 51上的低发射率 膜 52、 位于 52上方的中空层 54、 支撑中空层 54的密封条 53, 以及由密封条 连接的位于中空层上方的上层玻璃 55组成。
所述的隔热层 1为聚氨酯板材与发泡剂结合, 或发泡剂形成的隔热层。 所述的工作介质 2为防冻导热液,可以从根本上解决平板太阳能集热器中 水的冻结与冻坏问题, 同时消除平板太阳能集热器中水结垢的问题。
所述的金属基板 3为镀制吸收膜的基板, 本实施例采用成本低的 A1基板 镀 Cu膜。
所述的吸收膜 4为吸收率大于 90%的蓝钛膜(TiNxOy)作为吸收膜, 吸收 率最高能达到 96%。
所述的镀膜玻璃 51为 4mm厚的浮法玻璃。
所述的低发射膜 52是以发射率为 5 %、 成本较低的单银膜系作为低发射 膜镀制在镀膜玻璃 51上, 膜系结构为 Glass/ZnO/Ag/ZnO/Si3N4
所述的密封条 53是耐候的密封条。
所述的中空层 54是密封在镀膜玻璃 51和上层玻璃 55之间的氮气层。 所述的上层玻璃 55为 4mm厚的浮法玻璃。
基于上述集热器结构参数、以 60%的能量透过到达吸收层的理论空烧温度 为 230°C。
本实施例的平板太阳能集热器完全适用于中温太阳能热利用的日常太 阳能集热器中。 实施例 3: 空烧温度在中温太阳能热利用范围的平板太阳能集热器结构
本实施例所述的平板太阳能集热器结构自底层到顶层依次由隔热层 1、 工 作介质 2、 金属基板 3、 吸收膜 4及低辐射模块 5组成。 隔热层 1位于集热器 最底层; 其上层包覆的是盛装工作介质 2的铜质介质管或介质腔, 而介质管或 介质腔则布设悍接于金属基板 3的反面; 吸收膜 4沉积于金属基板 3正面上, 低辐射模块 5覆盖于吸收膜 4之上。
其中低辐射模块 5自下而上依次由镀膜玻璃 51、 沉积在 51上的低发射率 膜 52、 位于 52上方的中空层 54、 支撑中空层 54的密封条 53, 以及由密封条 连接的位于中空层上方的上层玻璃 55组成。
所述的隔热层 1为聚氨酯板材与发泡剂结合, 或发泡剂形成的隔热层。 所述的工作介质 2为防冻导热液,可以从根本上解决平板太阳能集热器中 水的冻结与冻坏问题, 同时消除平板太阳能集热器中水结垢的问题。
所述的金属基板 3为镀制吸收膜的基板, 本实施例采用 Cu基板。
所述的吸收膜 4为吸收率 83%的 CrNxOy作为吸收膜。
所述的镀膜玻璃 51为 4mm厚的浮法玻璃。
所述的低发射膜 52是以发射率为 1 %、 性能好的单银膜系作为低发射膜 镀制在镀膜玻璃 51上, 膜系结构为 Glass/ZnO/Ag/ZnO/Si3N4
所述的密封条 53是耐候的密封条。
所述的中空层 54是密封在镀膜玻璃 51和上层玻璃 55之间的氮气层。 所述的上层玻璃 55为 4mm厚的浮法玻璃。
基于上述集热器结构参数、以 60%的能量透过到达吸收层的理论空烧温度 为 315° ( 。
本实施例的平板太阳能集热器完全适用于中温太阳能热利用的日常太 阳能集热器中。 实施例 4: 空烧温度在中温太阳能热利用范围的平板太阳能集热器结构
本实施例所述的平板太阳能集热器结构自底层到顶层依次由隔热层 1、 工 作介质 2、 金属基板 3、 吸收膜 4及低辐射模块 5组成。 隔热层 1位于集热器 最底层; 其上层包覆的是盛装工作介质 2的铜质介质管或介质腔, 而介质管或 介质腔则布设焊接于金属基板 3的反面; 吸收膜 4沉积于金属基板 3正面上, 低辐射模块 5覆盖于吸收膜 4之上。
其中低辐射模块 5自下而上依次由镀膜玻璃 51、 沉积在 51上的低发射率 膜 52、 位于 52上方的中空层 54、 支撑中空层 54的密封条 53, 以及由密封条 连接的位于中空层上方的上层玻璃 55组成。
所述的隔热层 1为聚氨酯板材与发泡剂结合, 或发泡剂形成的隔热层。 所述的工作介质 2为防冻导热液,可以从根本上解决平板太阳能集热器中 水的冻结与冻坏问题, 同时消除平板太阳能集热器中水结垢的问题。
所述的金属基板 3为镀制吸收膜的基板, 本实施例采用成本低的 A1基板 镀 Cu膜。
所述的吸收膜 4为吸收率达到 99%的 NiOx作为吸收膜。
所述的镀膜玻璃 51为 4mm厚的浮法玻璃。
所述的低发射膜 52是以发射率为 1 %、 性能好的单银膜系作为低发射膜 镀制在镀膜玻璃 51上, 膜系结构为 Glass/ZnO/Ag/ZnO/Si3N4
所述的密封条 53是耐候的密封条。
所述的中空层 54是密封在镀膜玻璃 51和上层玻璃 55之间的真空层。 所述的上层玻璃 55为 4mm厚的浮法玻璃。 基于上述集热器结构参数、以 60%的能量透过到达吸收层的理论空烧温度 为 345。C。
本实施例的平板太阳能集热器完全适用于中温太阳能热利用的日常太 阳能集热器中。
上述实施例证明, 本发明的一种高、 中、低温太阳能热利用均适用的平板 集热器, 与传统靠吸收膜同时具备高太阳能选择性吸收与红外低辐射功能不 同, 本发明将高吸收与低辐射功能分离, 消除了二者之间相互制约的关系,使 得集热器中两种功能都可以同时达到最佳, 从而大幅提升集热器的热利用效 率、 降低其热损系数, 再加上中空的绝热设计, 使最高空烧温度能够超过 400 °〇的高温太阳能热利用, 显著提升了平板太阳能集热器的性能与效率, 极大地 拓展了平板太阳能集热器的适用范围。

Claims

权利要求
1. 一种平板太阳能集热器, 其特征在于: 自底层到顶层依次由隔热层 (1 )、 工作介质 (2)、 金属基板 (3 )、 吸收膜 (4) 及低辐射模块 (5) 构成; 隔 热层(1 )位于集热器最底层; 隔热层(1 )上部包覆的是盛装工作介质(2) 的铜质介质管或介质腔, 介质管或介质腔则布设焊接于金属基板(3 )的下 部; 吸收膜(4)沉积于金属基板(3 )上部, 低辐射模块(5)覆盖于吸收 膜 (4) 上部。
2. 根据权利要求 1所述的一种平板太阳能集热器, 其特征在于: 所述隔热层
( 1 ) 的材料是岩棉、 玻璃棉、 聚氨酯、 发泡剂、 聚苯乙烯、 气凝胶或酚醛 泡沫的任一种或多种。
3. 根据权利要求 1所述的一种平板太阳能集热器, 其特征在于: 所述工作介 质 (2) 是水、 防冻液或油类之一的导热流体。
4. 根据权利要求 1所述的一种平板太阳能集热器, 其特征在于: 所述金属基 板 (3 ) 的材料是 Au、 Ag、 Cu、 A1或 Ni金属之一, 或它们的合金, 或它 们的组合; 所述组合的方式是在其中一种金属基板上镀制另一种金属膜。
5. 根据权利要求 4所述的一种平板太阳能集热器, 其特征在于: 所述金属基 板 (3 ) 的材料是 Al、 Cu、 或 A1上镀 Cu膜。
6. 根据权利要求 1所述的一种平板太阳能集热器, 其特征在于: 所述吸收膜
(4)材料是对发射率无限制要求的太阳光高吸收薄膜材料, 根据不同的使 用温度范围,选取不同吸收率的薄膜材料;包括 Si、 Ge 、 PbS、黑铬 (CrOx)、 黑镍 (NiS-ZnS)、黑钴(CoOx)、黑铜(CuOx)、 NiCr、 NiOx、 CrNxOy、 TiNxOy、 AlNxOv, AlCuFe、 A1N-A1或 Fe304
7. 根据权利要求 6所述的一种平板太阳能集热器, 其特征在于: 以吸收率高 的材料作为吸收膜, 优选 NiOx、 CrNxOy、 TiNxOy Α1ΝχΟ或、 AlCuF
8. 根据权利要求 1所述的一种平板太阳能集热器, 其特征在于: 所述低辐射 模块 (5 ) 自下而上依次由镀膜玻璃 (51 )、 沉积在镀膜玻璃 (51 ) 上的低 发射率膜 (52)、 位于低发射率膜 (52) 上方的中空层 (54)、 支撑中空层
(54)的密封条 (53 ),以及由密封条连接的位于中空层上方的上层玻璃(55) 组成。
9. 根据权利要求 8所述的一种平板太阳能集热器, 其特征在于: 所述镀膜玻 璃 (51 ) 和上层玻璃 (55) 是厚度为 2〜20mm的普通浮法钢化玻璃。
10. 根据权利要求 8所述的一种平板太阳能集热器, 其特征在于: 所述低发 射率膜 (52) 是低辐射的单层膜或多层复合膜。
11. 根据权利要求 10所述的一种平板太阳能集热器, 其特征在于:所述低发 射率膜 (52) 是以发射率小于 5 %的单银膜系。
12. 根据权利要求 8所述的一种平板太阳能集热器, 其特征在于: 所述中空 层 (54) 密封在镀膜玻璃 (51 ) 和上层玻璃 (55 ) 之间, 所述的中空层内 填充空气、 氮气、 惰性气体或为真空。
PCT/CN2013/000036 2012-12-05 2013-01-16 一种平板太阳能集热器 WO2014086077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012105152410A CN102954603A (zh) 2012-12-05 2012-12-05 一种平板太阳能集热器
CN201210515241.0 2012-12-05

Publications (1)

Publication Number Publication Date
WO2014086077A1 true WO2014086077A1 (zh) 2014-06-12

Family

ID=47763746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000036 WO2014086077A1 (zh) 2012-12-05 2013-01-16 一种平板太阳能集热器

Country Status (2)

Country Link
CN (1) CN102954603A (zh)
WO (1) WO2014086077A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111087044A (zh) * 2019-12-11 2020-05-01 江苏大学 一种太阳能空气隙膜蒸馏海水淡化装置
CN113390360A (zh) * 2021-06-16 2021-09-14 内蒙古工业大学 一种槽式太阳能集热管形变检测方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218876B (zh) * 2013-05-30 2017-07-07 王钦戊 使用光热分离器的发电机构
CN103525377B (zh) * 2013-09-30 2017-01-04 安科智慧城市技术(中国)有限公司 集热材料的制备方法及具有该集热材料的集热板和集热器
CN104930726A (zh) * 2015-04-17 2015-09-23 中国科学院电工研究所 一种空气集热器
CN107034468A (zh) * 2017-05-23 2017-08-11 上海子创镀膜技术有限公司 一种新型太阳能吸热膜的镀膜结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101424454A (zh) * 2007-10-30 2009-05-06 李德杰 一种太阳能水箱
CN201302310Y (zh) * 2008-11-20 2009-09-02 俞祖文 真空平板式太阳能集热器
CN201412969Y (zh) * 2009-05-22 2010-02-24 上海安舒环境技术有限公司 平板型太阳能集热装置
CN101726122A (zh) * 2008-10-29 2010-06-09 深圳市拓日新能源科技股份有限公司 平板型太阳能集热器
CN201599952U (zh) * 2009-05-15 2010-10-06 马纯金 承压式保温隔热太阳能平板型集热器
CN201803486U (zh) * 2010-03-26 2011-04-20 陈旭 充填传热填料的铝翅板弹性管道吸收体平板集热器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2734709A1 (de) * 1977-08-02 1979-02-15 Bfg Glassgroup Sonnenkollektor
AUPO987697A0 (en) * 1997-10-17 1997-11-13 Gough Industries Pty Ltd Solar water heater
CN2602320Y (zh) * 2003-03-03 2004-02-04 唐健正 真空玻璃太阳能平板集热器
CN201184106Y (zh) * 2008-03-20 2009-01-21 江苏永兴多媒体有限公司 中空低辐射太阳能电池玻璃
JP2013506817A (ja) * 2009-10-05 2013-02-28 ハンター ダグラス インク 太陽エネルギー収集器、及び蓄熱装置
CN202432716U (zh) * 2011-11-28 2012-09-12 常州博士新能源科技有限公司 太阳能集热器的箱盖玻璃

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101424454A (zh) * 2007-10-30 2009-05-06 李德杰 一种太阳能水箱
CN101726122A (zh) * 2008-10-29 2010-06-09 深圳市拓日新能源科技股份有限公司 平板型太阳能集热器
CN201302310Y (zh) * 2008-11-20 2009-09-02 俞祖文 真空平板式太阳能集热器
CN201599952U (zh) * 2009-05-15 2010-10-06 马纯金 承压式保温隔热太阳能平板型集热器
CN201412969Y (zh) * 2009-05-22 2010-02-24 上海安舒环境技术有限公司 平板型太阳能集热装置
CN201803486U (zh) * 2010-03-26 2011-04-20 陈旭 充填传热填料的铝翅板弹性管道吸收体平板集热器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111087044A (zh) * 2019-12-11 2020-05-01 江苏大学 一种太阳能空气隙膜蒸馏海水淡化装置
CN111087044B (zh) * 2019-12-11 2022-03-18 江苏大学 一种太阳能空气隙膜蒸馏海水淡化装置
CN113390360A (zh) * 2021-06-16 2021-09-14 内蒙古工业大学 一种槽式太阳能集热管形变检测方法及装置

Also Published As

Publication number Publication date
CN102954603A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
WO2014086077A1 (zh) 一种平板太阳能集热器
CN109631417A (zh) 一种具有夜间辐射制冷功能的光伏光热一体化装置
CN105553408B (zh) 一种吸热板直接与玻璃盖板复合的太阳能光伏光热一体化模块
CN111006400B (zh) 一种太阳能光伏光热集热器
CN102052773A (zh) 反射槽式真空平板太阳能集热器
CN2602320Y (zh) 真空玻璃太阳能平板集热器
CN102607206B (zh) 太阳能光伏光热复合热管真空管
CN201429243Y (zh) 中温太阳能真空集热管
CN202205774U (zh) 光伏真空玻璃组件
CN102943548B (zh) 建筑幕墙式太阳能平板集热器
CN2733257Y (zh) 一种太阳能真空管集热器
CN203249398U (zh) 基于吸收颗粒的太阳能平板集热器
CN204176817U (zh) 聚光式太阳能供热供冷系统
CN202149622U (zh) 高热阻太阳能平板集热器
CN202419972U (zh) 一种方管型太阳能集热器
CN108457406B (zh) 一种基于室内外观感设计的建筑一体化光伏光热联供组件
CN205407710U (zh) 一种吸热板直接与玻璃盖板复合的太阳能光伏光热一体化模块
CN210921837U (zh) 基于微热管导热的膜式太阳能集热器
CN114607239A (zh) 一种光伏节能液流窗
CN201903193U (zh) 一种重力热管式太阳能平板集热器
CN204145411U (zh) 管板型太阳能光电光热组件
CN207797416U (zh) 一种波浪形板芯太阳能集热器
CN202562092U (zh) 热管平板太阳能集热器
CN207815746U (zh) 一种带有吸热玻璃内管的光伏太阳能真空管
WO2010072056A1 (zh) 一种真空集热板及其集热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13861414

Country of ref document: EP

Kind code of ref document: A1