WO2014084580A1 - 액체를 이용한 플렉서블 에너지 전환 장치 - Google Patents

액체를 이용한 플렉서블 에너지 전환 장치 Download PDF

Info

Publication number
WO2014084580A1
WO2014084580A1 PCT/KR2013/010817 KR2013010817W WO2014084580A1 WO 2014084580 A1 WO2014084580 A1 WO 2014084580A1 KR 2013010817 W KR2013010817 W KR 2013010817W WO 2014084580 A1 WO2014084580 A1 WO 2014084580A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
energy conversion
liquid
layer
conversion device
Prior art date
Application number
PCT/KR2013/010817
Other languages
English (en)
French (fr)
Inventor
권순형
김원근
한철종
이정노
박준우
김연상
Original Assignee
전자부품연구원
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원, 서울대학교 산학협력단 filed Critical 전자부품연구원
Priority to JP2015545356A priority Critical patent/JP5960928B2/ja
Priority to US14/647,851 priority patent/US10050567B2/en
Priority to EP13858215.0A priority patent/EP2927490A4/en
Publication of WO2014084580A1 publication Critical patent/WO2014084580A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/08Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching or like movements, e.g. from the vibrations of a machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/08Influence generators with conductive charge carrier, i.e. capacitor machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the present invention relates to a flexible energy conversion device using a liquid, and more particularly, to an apparatus for converting mechanical energy into electrical energy by applying the opposite phenomenon of electrowetting.
  • FIG. 1 is a conceptual diagram of an energy conversion device using a conventional fluid.
  • a conventional energy conversion device using a fluid forms electrodes in a predetermined pattern on a wall of an elongated channel, and forms a dielectric material layer on the electrode.
  • the conductive liquid and the non-conductive liquid in the form of droplets are injected into the channel, and the conductive liquid is polarized by applying a voltage from an external power source to the conductive liquid in the form of droplets.
  • a lubricating layer is required because it is difficult to reversible movement, in which a liquid liquid in the form of droplets moves in narrow narrow channels and returns to its original position when external force disappears. In some cases, channel blockage occurs easily and operation is impossible.
  • the energy conversion method and apparatus using a conventional fluid has a narrow and narrow channel structure, the two opposing electrodes must be patterned in a predetermined shape on the wall of the channel, the device configuration is complicated according to this structure, electrical energy The size of the module to produce a large size, the mass production or cost reduction was also limited.
  • Another problem is that it is harmful to the human body and the environment by using a liquid metal such as mercury or galinstan (galinstan), there is a limit that requires a separate power supply from the outside in order to polarize such a conductive liquid.
  • a liquid metal such as mercury or galinstan (galinstan)
  • the energy conversion method and apparatus using a conventional fluid is difficult to control because it requires the use of two different types of liquids that do not mix with the point of continuously implementing a reversible movement in the channel structure.
  • Another object of the present invention is to provide an efficient energy conversion method and apparatus having a simple structure and low failure rate by using an energy conversion layer.
  • the energy conversion layer is characterized in that it comprises at least one layer of an inorganic layer, an organic layer or a mixture layer of organic and inorganic.
  • the hydrophobic material layer is laminated on the energy conversion layer so that the shape of the ionic liquid or water can be restored.
  • the ionic liquid is at least one of NaCl, LiCl, NaNo3, Na2SiO3, AlCl3-NaCl, LiCl-KCl, KCL, Na, NaOH H2SO4, CH3COOH, HF, CuSO4, ethylene glycol, propylene glycol or AgCl It is characterized by including.
  • first electrode and the second electrode formed at intervals on the flexible substrate; And an energy conversion layer formed on at least one of the first electrode and the second electrode to generate electrical energy according to any one of a contact angle, a contact surface, and a contact area with a liquid. Both ends are connected to provide a flexible energy conversion device using a liquid, characterized in that the conductive liquid is located between the electrodes.
  • the energy conversion layer is characterized in that it comprises at least one layer of an inorganic layer, an organic layer or a mixture layer of organic and inorganic.
  • the hydrophilic material layer is laminated on the energy conversion layer so that the shape of the conductive liquid can be restored.
  • the hydrophilic material layer is poly (acrylic acid, PAA), acrylamides, maleic anhydride copolymers, methacrylates, ethacrylates ), Amine-Functional Polymers or Amine-Functional Polymers, Polystyrenesulfonate (PSS), Vinyl Acids, Vinyl Alcohols or- NH, -CO-, amino group -NH2, hydroxyl group -OH or carboxyl-COOH It is characterized by consisting of a material containing at least one of the functional group.
  • the conductive liquid has a specific resistance range of 1 u ⁇ / cm to 1000 u ⁇ / cm and a dielectric constant (K) of 5 or less.
  • the energy conversion layer is polymethyl methacrylate (PolyMethylMethAcrylate, PMMA), polyethylene (Polyethylene, PE), polystyrene (Polystyrene, PS), polyvinylpyrrolidone (PVP), poly4 vinyl phenol (poly (4-vinylpenol, PVP)) or polyethersulfone (PES) poly (4-methoxyphenylacrylate) (Poly (4-methoxyphenylacrylate); PMPA), poly (phenylacrylate) (Poly (phenylacrylate ); PPA), poly (2,2,2-trifluoroethyl methacrylate) (Poly (2,2,2-trifluoroethyl methacrylate); PTFMA), cyanoethylpullulan (CYEPL), polychloride Polyvinyl chloride (PVC), poly (parabanic acid) resin (PPA), poly (t-butylstyrene) (PTBS),
  • the energy conversion layer is silicon oxide (SiO 2), titanium oxide (TiO 2), aluminum oxide (Al 2 O 3), tantalum (Ta 2 O 5), tantalum pentoxide, zinc oxide (ZnO), Tantalum pentoxide (Ta2O5), yttrium oxide (Y2O3), cerium oxide (CeO2), titanium dioxide (TiO2), barium titanate (BaTiO3), barium zirconate Titanate (Barium zirconate titanate (BZT), Zirconium dioxide (ZrO2), Lanthanum oxide (L2O3), Hafnium (HfSiO4), Lanthanum Aluminate (Lanthanum Aluminate, LaAlO3 (Silicon) Nitride, Si3N4), Perovskite materials include strontium titanate (SrTiO3), barium strontium titanate (BST), lead zirconate titanate (PZT), calcium titanate (Calc
  • the non-conductive gas consisting of at least one of air, oxygen, nitrogen, argon, helium, neon, krypton, xenon or radon disposed between the electrodes; characterized in that it further comprises.
  • the energy conversion layer is characterized in that the structure for expanding the contact area with the liquid is formed.
  • the first electrode or the second electrode at least one of ITO, IGO, chromium, aluminum, Indium Zinc Oxide (IZO), Indium Gallium Zinc Oxide (IGZO), ZnO, ZnO 2 or TiO 2
  • the present invention changes the contact surface with a liquid between a pair of electrodes and utilizes the change of the contact surface with the liquid to generate electrical energy, thereby requiring channel blockage, a lubricating layer, or electrodes patterned on the channel.
  • the device has the effect of simplifying the device, reducing manufacturing costs, and implementing a low-energy energy conversion device.
  • the present invention has the advantage that efficient electrical energy conversion is possible without a separate external power supply.
  • the present invention has the effect of solving the problem that is harmful to the human body and the environment by using the ionic liquid or water.
  • FIG. 1 is a block diagram of an energy conversion device using a conventional fluid.
  • Figure 2 is a schematic diagram of a flexible energy conversion device using a liquid according to an embodiment of the present invention.
  • 3a to 3d are diagrams showing the use mode for energy conversion of the flexible energy conversion device using a liquid according to an embodiment of the present invention.
  • FIGS. 4A to 4D are side views illustrating an embodiment of an energy conversion layer of a flexible energy conversion device using a liquid according to an embodiment of the present invention.
  • FIG. 5 is a structural diagram of a flexible energy conversion device using a liquid according to another embodiment of the present invention.
  • a flexible energy conversion device using a liquid according to an embodiment of the present invention includes a flexible substrate 210; First and second electrodes 211 and 212 formed at intervals on the flexible substrate 210; And an energy conversion layer 220 formed in at least one of the first electrode 211 and the second electrode 212 to generate electrical energy according to any one of a contact angle with the liquid, a contact surface, and a contact area. 230).
  • both ends of the flexible substrate 210 have a tunnel-like shape.
  • an ionic liquid or water 250 is positioned between the first electrode 211 and the second electrode 212 generated as both ends are connected.
  • the flexible substrate 210 may be modified in various forms by an external physical force, and may be made of a material that may return to an initial state when the external physical force is removed.
  • FIGS. 3A to 3D are diagrams illustrating a usage mode for energy conversion of a flexible energy conversion device using a liquid according to an embodiment of the present invention.
  • the flexible substrate 210 is shaped by an external physical force corresponding to bending (FIG. 3A), pressing (FIG. 3B), torsion (FIG. 3C) or stretching (FIG. 3D).
  • FIG. 3A bending
  • FIG. 3B pressing
  • FIG. 3C torsion
  • FIG. 3D stretching
  • at least one of a contact surface, a contact angle, or a contact area between the first electrode 211 and the second electrode 212 and the ionic liquid or water 250 causes a change.
  • electrical energy is generated by the energy conversion layer, and repetitive electrical energy may be generated due to the characteristics of the flexible substrate 210.
  • the flexible energy conversion device using the liquid according to an embodiment of the present invention at least any one of a contact surface, a contact angle, or a contact area of the ionic liquid or water 250, the first electrode 211, and the second electrode 212 is provided. Electric energy is generated by generating a change in capacitance according to one change.
  • the energy conversion layer is formed by stacking the inorganic layer 220 and / or the organic layer 230.
  • the formation of such an energy conversion layer may be a method such as patterning, vapor deposition, or spin coating.
  • the inorganic layer 220 and the organic layer 230 may be stacked on the first electrode 211 or the second electrode 212 in any order, but should be stacked adjacent to each other.
  • the energy conversion layer may be formed as an integral layer to cover both the first electrode 211 and the second electrode 212.
  • the inorganic layer 220 and the organic layer 230 may be repeatedly overlapped when stacked on the first electrode 211 or the second electrode 212. That is, the energy conversion layer may be formed by repeatedly forming the inorganic material layer 220 and the organic material layer 230.
  • the inorganic layer 220 or the organic layer 230 is deposited to form a structure for increasing the contact area with the ionic liquid or water 250.
  • FIG. 4A to 4D are side views illustrating an embodiment of an energy conversion layer of a flexible energy conversion device using a liquid according to an embodiment of the present invention.
  • the inorganic layer 430 is deposited on the electrode 420 included in the flexible substrate 410. do.
  • the organic layer 440 is stacked on the inorganic layer 430 such that a microstructure having an uneven shape (FIG. 4A), a sharp protrusion shape (FIG. 4B), a hemisphere shape (FIG. 4C), and a blood cell shape (FIG. 4D) is formed.
  • the order of the organic material layer 440 and the inorganic material layer 430 may be changed, and it is not necessary that the organic material layer 440 is stacked to form a structure.
  • the hydrophobic material layer 450 is stacked on the organic material layer 440 stacked to form the structure so as to maintain the structure shape.
  • Such a structure shape has an effect of increasing electrical energy generation efficiency by making the change of the contact area between the electrode 420 and the ionic liquid or water larger.
  • a flexible energy conversion device using a liquid is connected in a plurality of array forms. As described above, the change in the contact area between the electrodes and the ionic liquid or water is increased to increase the electric energy generation efficiency.
  • the hydrophobic material layer 240 is stacked on the energy conversion layers 220 and 230.
  • the hydrophobic material layer 240 is changed in shape as the ionic liquid or water 250 causes a change in contact surface, contact angle, or contact area with the electrodes 211 and 212. To be restored.
  • the hydrophobic material layer 250 may be stacked on the first electrode 211 or the second electrode 212 in which the energy conversion layer is not formed.
  • the energy conversion layer is polymethyl methacrylate (PolyMethylMethAcrylate, PMMA), polyethylene (Polyethylene, PE), polystyrene (Polystyrene, PS), polyvinylpyrrolidone (PVP), Poly (4-vinylpenol, PVP) or polyethersulfone (PES) poly (4-methoxyphenylacrylate) (Poly (4-methoxyphenylacrylate); PMPA), poly (phenylacrylate) (Poly (phenylacrylate); PPA), Poly (2,2,2-trifluoroethyl methacrylate) (Poly (2,2,2-trifluoroethyl methacrylate); PTFMA), Cyanoethylpullulan; CYEPL ), Polyvinyl chloride (PVC), poly (parabanic acid) resin (PPA), poly (t-butylstyrene) (PTBS), polythieny
  • PMMA polymethyl methacrylate
  • the organic material layer 230 may be a material having a dielectric constant (K) of 4 or less, and the inorganic material layer 220 may be a material having a dielectric constant (K) of 5 or more.
  • the hydrophobic material layer 240 is a silane-based material, a fluoropolymer material, trichlorosilane, triethoxysilane, pentafluorophenylpropyl Pentafluorophenylpropyltrichlorosilane, (benzyloxy) alkyltrimethoxysilane (BSM-22), (benzyloxy) alkyltrichlorosilane (BTS), hexamethyldisilazane ( hexamethyldisilazane (HMDS), octadecyltrichlorosilane (OTS), octadecyltrimethoxysilane (OTMS), divinyltetramethyldisiloxane-bis- (benzocyclobutene) (divinyltetramethyldisiloxane-bis (benzocyclobutene); BCB) at least one of the substances
  • the first electrode 211 or the second electrode 212 is ITO, IGO, chromium, aluminum, Indium Zinc Oxide (IZO), Indium Gallium Zinc Oxide (IGZO), ZnO, ZnO 2 Or an inorganic electrode including at least one of TiO 2 or a metal electrode including at least one of platinum, gold, silver, aluminum, iron, or copper, or PEDOT (polyethylenedioxythiophene) or carbon nanotube (CNT).
  • Graphene polyacetylene, polythiophene (PT), polypyrrole, polyparaphenylene (PPV), polyaniline, polysulfuritride ), At least one of stainless steel, iron alloy containing 10% dltkd of chromium, SUS 304, SUS 316, SUS 316L, Co-Cr alloy, Ti alloy, Nitinol or polyparaphenylenevinylene It is an organic electrode including any one.
  • the ionic liquid 260 is NaCl, LiCl, NaNo3, Na2SiO3, AlCl3-NaCl, LiCl-KCl, KCL, Na, NaOH H2SO4, CH3COOH, HF, CuSO4, ethylene glycol, propylene At least one of glycol or AgCl.
  • the space between the electrodes generated by connecting both ends of the flexible substrate 210 is configured to be filled with a non-conductive gas.
  • the space is also possible in a general air environment.
  • the non-conductive gas consists of at least one of air, oxygen, nitrogen, argon, helium, neon, krypton, xenon or radon.
  • a flexible energy conversion device using a liquid according to an embodiment of the present invention includes a flexible substrate 510; First and second electrodes 511 and 512 formed on the flexible substrate 510 at intervals; And an energy conversion layer 520 formed on at least one of the first electrode 511 and the second electrode 512 by generating electrical energy according to any one of a contact angle, a contact surface, and a contact area with a liquid. 530).
  • both ends of the flexible substrate 510 have a tunnel-like shape.
  • the conductive liquid 550 is positioned between the first electrode 511 and the second electrode 512 that are generated as both ends are connected to each other.
  • the conductive liquid 550 may be used, such as mercury, lithium, gallium, potassium, NaK, bismuth, tin, sodium, sodium-potassium alloy, the specific resistance range of 1u ⁇ / cm to 1000u ⁇ / cm, and the dielectric constant (K) is preferably 5 or less.
  • the hydrophilic material layer 540 is stacked on the energy conversion layers 520, 530.
  • the hydrophilic material layer 540 is changed in shape as the conductive liquid 550 changes the contact surface, contact angle or contact area with the electrodes 511, 512, the shape change is to be restored to the original shape Laminated to make it possible.
  • the hydrophilic material layer 540 may be formed of polyacrylic acid (PAA), acrylamides, maleic anhydride copolymers, and methacrylates.
  • PAA polyacrylic acid
  • Ethacrylate Amine-Functional Polymers or Amine-Functional Polymers
  • PSS Polystyrenesulfonate
  • Vinyl Acids Vinyl alcohols (Vinyl Alcohols)
  • -NH2, a hydroxyl group, -OH, a carboxyl group and -COOH consisting of a material containing at least one functional group.
  • the features and structure of the electrode, inorganic layer 520, organic layer 530 constituting the first electrode 511 or the second electrode 512, the energy of the present invention may be configured according to an embodiment using an ionic liquid or water or the contents described with reference to FIGS. 2, 3A to 3D, and 4A to 4D. Is omitted.
  • the present invention can prevent the blockage and mixing in the channel as compared with the conventional use of two or more kinds of heterogeneous liquids, and also does not require a lubricating layer.
  • the prior art limits the structure of the electrode insulating film to one layer of self assembly molecular monolayer, one layer of dielectric layer or more non-conductive layer, or various combinations thereof.
  • the present invention proposes a structure for optimizing the energy conversion efficiency.
  • the electrode / inorganic layer / organic layer / selected according to the type of liquid in the hydrophobic material layer or the hydrophilic material layer
  • the electrode / organic layer / Inorganic layer / (hydrophobic material layer, hydrophilic material layer is selected according to the type of liquid) to have a configuration
  • the electrode / inorganic layer / organic layer / (hydrophobic) to both the first electrode and the second electrode
  • the material layer, the hydrophilic material layer is selected according to the type of liquid) or the electrode / organic layer / inorganic layer / (hydrophobic material layer, the hydrophilic material layer may be selected according to the type of liquid) can be modified.
  • the present invention does not require the external power supply because the energy conversion layer plays a role of polarizing the ionic liquid.
  • the present invention is the contact surface of the flexible substrate and the liquid inside the flexible substrate, the contact angle by bending, stretching, twisting, pressing, etc. of the flexible substrate In addition, at least one of the contact areas is generated to generate electrical energy.
  • the shape formed by connecting both ends of the flexible substrate may be various shapes such as a circle, a rectangle, a triangle, a pentagon, a hexagon, and an octagon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 액체를 이용한 플렉서블 에너지 전환 장치에 관한 것으로, 보다 상세하게는 전기습윤(electrowetting)현상의 반대현상을 응용하여 기계적 에너지를 전기 에너지로 전환시키는 방법 및 장치에 관한 것으로 한쌍의 전극사이에서 액체와의 접촉면을 변화시키고, 그에 따른 액체와의 접촉면 변화를 전기에너지 생성에 활용하여, 채널 막힘현상이나 윤활층, 혹은 채널상에 복잡하게 패터닝된 전극들을 필요로 하지 않도록 하므로써 장치의 단순화, 제조원가 절감과 함께 고장이 적은 에너지 전환장치를 구현한다는 효과가 있다.

Description

액체를 이용한 플렉서블 에너지 전환 장치
본 발명은 액체를 이용한 플렉서블 에너지 전환 장치에 관한 것으로, 보다 상세하게는 전기습윤(electrowetting)현상의 반대현상을 응용하여 기계적 에너지를 전기 에너지로 전환시키는 장치에 관한 것이다.
종래의 유체를 이용하여 기계적 에너지를 전기적 에너지로 변환하는 기술들은 유전물질과 접하고 있는 액체금속의 접촉면적을 시간의 흐름에 따라 변화시켜 유전물질 아래 위치하는 전극에 전기용량(capacitance)을 발생시키는 원리를 이용한다.
종래의 유체를 이용한 에너지 전환 방법 및 장치는 미국등록특허 7,898,096호에서 개시하고 있다.
도 1은 종래의 유체를 이용한 에너지 전환 장치의 개념도이다. 도 1을 참조하면, 종래의 유체를 이용한 에너지 전환 장치는 가늘고 긴 형상의 채널의 벽에 일정한 패턴으로 전극을 형성하고, 전극의 상부에는 유전물질층을 형성시킨다. 그리고 채널의 내부에는 작은 물방울 형태의 전도성 액체와 비전도성 액체를 주입하고, 이러한 물방울 형태의 전도성 액체에 외부전원으로부터 전압을 인가하여 전도성 액체를 분극시킨다.
이 상태에서 채널과 연결되어 있는 소정의 부분(미도시)에 물리적인 압력을 가하게 되면 분극된 물방울 형태의 전도성 액체는 채널을 따라 이동하게 되고, 이 과정에서 일정한 패턴으로 형성되어 있는 다수의 전극은 이동하는 다수의 전도성 액체 방울과 접촉하는 면적이 시간에 따라 계속적으로 변화하게 되어, 그 결과 전기용량이 변화하여 전기 에너지가 생성된다.
그러나, 종래의 유체를 이용한 에너지 전환 방법 및 장치는 실용화를 위해서는 다양한 문제점들을 가지고 있었다.
먼저, 좁고 가는 채널 내에서 방울형태의 액체금속이 이동하였다가 외부의 힘이 사라지면 다시 원래의 위치로 복귀하는, 가역가능한(reversible)움직임이 어려워 윤활층(lubricating layer)이 별도로 필요하다는 한계점이 있고, 채널 막힘현상이 쉽게 발생하여 동작이 불가능한 경우가 발생한다.
또한, 종래의 유체를 이용한 에너지 전환 방법 및 장치는 좁고 가는 채널 구조를 채용하고 있어, 대향하는 두 전극이 채널의 벽에 일정한 모양으로 패턴되어야 하며, 이러한 구조에 따라 장치구성이 복잡해지고, 전기에너지를 생산하는 모듈의 크기가 커지며, 대량생산이나 원가절감에도 한계가 많았다.
또 다른 문제점으로는 수은 또는 갈린스탄(galinstan)과 같은 액체금속을 사용하여 인체 및 환경에 유해하며, 이러한 전도성 액체를 분극시키기 위해서는 외부로부터 별도의 전원 인가가 필요한 한계점이 있다.
그리고, 종래의 유체를 이용한 에너지 전환 방법 및 장치는 채널구조에서 가역가능한(reversible)한 움직임을 계속적으로 구현해야 하는 점과 섞이지 않는 상이한 두 종류의 액체를 사용해야하기 때문에 제어의 어려움이 있다.
본 발명의 목적은 전극에 접촉하는 액체와의 접촉면을 변화시켜 전기 에너지를 생성하는 액체를 이용한 에너지 전환 방법 및 장치를 제공하는 것이다.
또한 본 발명의 다른 목적은 에너지 전환층을 이용하여 구조가 간단하며 고장이 적은 효율적인 에너지 전환 방법 및 장치를 제공하는 것이다.
상기의 목적을 달성하기 위하여 플렉서블 기판 상에 간격을 두고 형성되는 제1전극 및 제2전극; 및 액체와의 접촉각, 접촉면, 접촉면적 중 어느 하나의 변화에 따라 전기 에너지를 생성하는 상기 제1전극 또는 제2전극 중 적어도 어느 하나 상에 형성되는 에너지전환층;을 포함하되, 상기 플렉서블 기판의 양 끝단이 연결되어, 상기 전극들 사이에 이온성 액체 또는 물이 위치하는 것을 특징으로 하는 액체를 이용한 플렉서블 에너지 전환 장치가 제공된다.
바람직하게는, 상기 에너지 전환층은 무기물층, 유기물층 또는 유기물과 무기물의 혼합물층 중 적어도 어느 하나의 층을 포함하는 것을 특징으로 한다.
바람직하게는, 상기 에너지 전환층 상에 상기 이온성 액체 또는 물의 형상이 복원될 수 있도록 소수성 물질층이 적층되는 것을 특징으로 한다.
바람직하게는, 상기 이온성 액체는 NaCl, LiCl, NaNo3, Na2SiO3, AlCl3-NaCl, LiCl-KCl, KCL, Na,NaOH H2SO4, CH3COOH, HF, CuSO4, 에틸렌글리콜, 프로필렌글리콜 또는 AgCl 중 적어도 어느 하나를 포함하는 것을 특징으로 한다.
또한, 플렉서블 기판 상에 간격을 두고 형성되는 제1전극 및 제2전극; 및 액체와의 접촉각, 접촉면, 접촉면적 중 어느 하나의 변화에 따라 전기 에너지를 생성하는 상기 제1전극 또는 제2전극 중 적어도 어느 하나 상에 형성되는 에너지전환층;을 포함하되, 상기 플렉서블 기판의 양 끝단이 연결되어, 상기 전극들 사이에 전도성 액체가 위치하는 것을 특징으로 하는 액체를 이용한 플렉서블 에너지 전환 장치가 제공된다.
바람직하게는, 상기 에너지 전환층은 무기물층, 유기물층 또는 유기물과 무기물의 혼합물층 중 적어도 어느 하나의 층을 포함하는 것을 특징으로 한다.
바람직하게는, 상기 에너지 전환층 상에 상기 전도성 액체의 형상이 복원될 수 있도록 친수성 물질층이 적층되는 것을 특징으로 한다.
바람직하게는, 상기 친수성 물질층은 폴리아크릴산(Poly(acrylic acid), PAA), 아크릴아미드(Acrylamides), 말레산 무수물 공중합체(Maleic Anhydride Copolymers), 메타크릴레이트(Methacrylate), 에타크릴레이트(Ethacrylate), 아민 작용성 중합체(Amine-Functional Polymers) or 아민-관능기를 갖는 중합체(Amine-Functional Polymers), 폴리스티렌설포네이트(Polystyrenesulfonate, PSS), 비닐산(Vinyl Acids), 비닐알코올(Vinyl Alcohols) 또는 -NH, -CO-, 아미노기 -NH2, 수산기 -OH 또는 카르복실시 -COOH 의 기능기 중 적어도 어느 하나를 포함하는 물질로 이루어진 것을 특징으로 한다.
바람직하게는, 상기 전도성 액체는 비저항범위가 1uΩ/cm 내지 1000uΩ/cm이며, 유전상수(dielectric constant, K)가 5이하인 것을 특징으로 한다.
바람직하게는, 상기 에너지 전환층은, 폴리메틸메타크릴레이트(PolyMethylMethAcrylate, PMMA), 폴리에틸렌(Polyethylene, PE), 폴리스티렌(Polystyrene, PS), 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP), 폴리4비닐페놀(poly(4-vinylpenol, PVP)) 또는 폴리이서술폰(polyethersulfone, PES) 폴리(4-메톡시페닐아크릴레이트) (Poly(4-methoxyphenylacrylate); PMPA), 폴리(페닐아크릴레이트) (Poly(phenylacrylate); PPA), 폴리(2,2,2-트리플로로에틸 메타아크릴레이트) (Poly(2,2,2-trifluoroethyl methacrylate); PTFMA), 사이아노에틸풀루란 (Cyanoethylpullulan; CYEPL), 폴리염화비닐 (polyvinyl chloride; PVC), 폴리(파라반사) 수지 (Poly (parabanic acid) resin; PPA), 폴리(t-부틸스티렌) (Poly(t-butylstyrene); PTBS), 폴리티에닐렌비닐렌 (Polythienylenevinylene; PTV), 폴리비닐아세테이트 (Polyvinylacetate; PVA), 폴리(비닐 알코올) (Poly(vinyl alcohol); PVA), 폴리(R메틸스티렌) (Poly(Rmethylstyrene); PAMS), 폴리(비닐 알코올)-코-폴리(비닐 아세테이트)-코-폴리(이타콘산) (Poly(vinyl alcohol)-co-poly(vinyl acetate)-co-poly(itaconic acid); PVAIA), 폴리올레핀 (Polyolefin), 폴리아크릴레이트 (Polyacrylate), 파릴렌-C (Parylene-C), 폴리이미드 (Polyimide), 옥타데실트리클로로실란 (Octadecyltrichlorosilane; OTS), 폴리(트리아릴아민) (Poly(triarylamine); PTTA), 폴리-3-헥실티오펜 (Poly-3-hexylthiophene; P3HT), 가교 결합된 폴리-4-비닐페놀 (cross-linked Poly-4-vinylphenol; cross-linked PVP), 폴리(퍼플로로알케닐비닐 에테르) (Poly(perfluoroalkenylvinyl ether)), 나일론-6 (Nylon-6), n-옥타데실포스포닉 산 (n-Octadecylphosphonic acid; ODPA), 폴리테트라플루오르에틸렌(Polytetrafluoroethylene, PTFE), 실리콘(silicone), 폴리우레탄(polyurethane), 라텍스(latex), 초산셀룰로오스(cellulose acetate), PHEMA(poly(hydroxy ethyl methacrylate)), 폴리락타이드(polylactide, PLA), PGA(폴리글리콜라이드, polyglycolide), 또는 PGLA (Polyglycolide-co-Lactide ) 중 적어도 어느 하나의 물질을 포함하는 유기물층;을 포함하는 것을 특징으로 한다.
바람직하게는, 상기 에너지 전환층은, 산화실리콘(SiO2), 산화티타늄(TiO2), 산화알루미늄(Al2O3),탄탈(Ta2O5), 오산화 탄탈럼(Tantalum Pentoxide), 산화아연(Zinc oxide, ZnO), , 산화탄탈륨(Tantalum pentoxide, Ta2O5), 산화이트륨(Yttrium oxide, Y2O3), 산화세륨(Cerium oxide, CeO2), 이산화타이타늄(titanium dioxide, TiO2), 티탄산바륨(Barium titanate, BaTiO3), 바륨 지르코네이트 티타네이트(Barium zirconate titanate, BZT), 이산화지르코늄(Zirconium dioxide, ZrO2), 산화란탄륨(Lanthanum oxide, La2O3), 하프늄실리케이트(Hafnon, HfSiO4), 란타늄 알루미네이트(Lanthanum Aluminate, LaAlO3), 질화규소(Silicon nitride, Si3N4), Perovskite 물질로는, 스트론튬 티타네이트(Strontium titanate, SrTiO3), 바륨 스트론튬 티타네이트(barium strontium titanate, BST), 티탄산 지르콘산 연(Lead zirconate titanate, PZT), 티탄산칼슘구리(Calcium copper titanate,CCTO), 산화하프늄(HfO2), 아파타이트(A10(MO4)6(X)2), 수산화인회석(Ca10(PO4)6(OH)2), 인산3칼슘(Ca3(PO42)), Na2O-CaO-SiO2, 또는 바이오글라스(CaO-SiO2-P2O5) 중 적어도 어느 하나의 물질을 포함한 무기물층을 포함하는 것을 특징으로 한다.
바람직하게는, 상기 전극들 사이에 배치된 공기, 산소, 질소, 아르곤, 헬륨, 네온, 크립톤, 크세논 또는 라돈 중 적어도 어느 하나로 이루어진 비전도성 가스;를 더 포함하는 것을 특징으로 한다.
바람직하게는, 상기 에너지 전환층은 액체와의 접촉면적을 넓히기 위한 구조물이 형성된 것을 특징으로 한다.
바람직하게는, 상기 제1전극 또는 상기 제2전극은, ITO, IGO, 크롬, 알루미늄, IZO(Indium Zinc Oxide), IGZO(Indium Gallium Zinc Oxide), ZnO, ZnO2 또는 TiO2 중 적어도 어느 하나를 포함하는 무기전극이거나 백금, 금, 은, 알루미늄, 철 또는 구리 중 적어도 어느 하나를 포함하는 금속전극이거나 페돗(PEDOT, polyethylenedioxythiophene), 탄소나노튜브(CNT, Carbon nano tube), 그래핀(graphene), 폴리아세틸렌(polyacetylene), 폴리티오펜(Polythiophene, PT), 폴리피롤(Polypyrrole), 폴리파라페닐렌(polyparaphenylene, PPV), 폴리아닐린(Polyaniline), 폴리설퍼니트리드(poly sulfur nitride), 스테인레스 스틸, 크롬을 10%dltkd 함유한 철합금, SUS 304, SUS 316, SUS 316L, Co-Cr 합금, Ti 합금, 니티놀(Ni-Ti) 또는 폴리파라페닐렌비닐렌(polyparaphenylenevinylene) 중 적어도 어느 하나를 포함하는 유기전극인 것을 특징으로 한다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명은 한쌍의 전극사이에서 액체와의 접촉면을 변화시키고, 그에 따른 액체와의 접촉면 변화를 전기에너지 생성에 활용하여, 채널 막힘현상이나 윤활층, 혹은 채널상에 복잡하게 패터닝된 전극들을 필요로 하지 않도록 하므로써 장치의 단순화, 제조원가 절감과 함께 고장이 적은 에너지 전환장치를 구현한다는 효과가 있다.
또한, 본 발명은 별도의 외부 전원인가 없이도 효율적인 전기에너지 전환이 가능하다는 장점이 있다.
그리고, 본 발명은 이온성 액체 또는 물을 사용함에 따라 인체 및 환경에 유해한 문제점을 해결한 효과가 있다.
도 1은 종래의 유체를 이용한 에너지 전환 장치의 블록도.
도 2는 본 발명의 일 실시예에 따른 액체를 이용한 플렉서블 에너지 전환 장치의 개략도.
도 3a 내지 도 3d는 본 발명의 일 실시예에 따른 액체를 이용한 플렉서블 에너지 전환 장치의 에너지 전환을 위한 사용태양을 나타낸 도면.
도 4a 내지 도 4d는 본 발명의 일 실시예에 따른 액체를 이용한 플렉서블 에너지 전환 장치의 에너지 전환층의 실시예를 나타낸 측면도.
도 5는 본 발명의 다른 실시예에 따른 액체를 이용한 플렉서블 에너지 전환 장치의 구조도.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
도 2는 본 발명의 일 실시예에 따른 액체를 이용한 플렉서블 에너지 전환 장치의 개략도이다. 도 2를 참조하면, 본 발명의 일 실시예에 따른 액체를 이용한 플렉서블 에너지 전환 장치는 플렉서블 기판(210); 플럭서블 기판(210) 상에 간격을 두고 형성되는 제1전극(211) 및 제2전극(212); 및 액체와의 접촉각, 접촉면, 접촉면적 중 어느 하나의 변화에 따라 전기에너지를 생성하고, 제1전극(211) 또는 제2전극(212) 중 적어도 어느 하나 이상에 형성되는 에너지전환층(220, 230)을 포함한다.
또한, 도 2의 왼쪽 그림과 같이 플렉서블 기판(210)은 양 끝단이 연결되어 터널과 같은 형상을 가진다.
그리고, 양 끝단이 연결됨에 따라 발생하는 제1전극(211)과 제2전극(212) 사이에 이온성 액체 또는 물(250)이 위치한다.
바람직하게는, 플렉서블 기판(210)은 외부의 물리적인 힘에 의하여 다양한 형태의 변형이 가능하며, 외부의 물리적인 힘이 제거되었을 때 초기 상태로 복귀 가능한 재질로 이루어진다.
도 3a 내지 도 3d는 본 발명의 일 실시예에 따른 액체를 이용한 플렉서블 에너지 전환 장치의 에너지 전환을 위한 사용태양을 나타낸 도면이다. 도 3a 내지 도 3d를 참조하면, 플렉서블 기판(210)은 휨(도 3a), 눌림(도 3b), 비틀림(도 3c) 또는 늘림(도 3d)에 상응하는 외부의 물리적인 힘에 의하여 그 형태가 변화하게 되어, 이러한 변화에 따라 제1전극(211) 및 제2전극(212)과 이온성 액체 또는 물(250)과의 접촉면, 접촉각 또는 접촉면적 중 적어도 어느하나가 변화를 발생시킨다. 이로 인하여, 에너지 전환층에 의한 전기에너지가 발생하게 되며, 플렉서블 기판(210)의 특성으로 인하여 반복적인 전기에너지 발생이 가능하다.
즉, 본 발명의 일 실시예에 따른 액체를 이용한 플렉서블 에너지 전환 장치는 이온성 액체 또는 물(250)과 제1전극(211) 및 제2전극(212)의 접촉면, 접촉각 또는 접촉면적 중 적어도 어느 하나의 변화에 따라 전기용량 변화를 발생시켜 전기에너지가 발생한다.
다시 도 2를 참조하면, 본 발명의 바람직한 일 실시예에 따르면, 에너지 전환층은 무기물층(220) 및/또는 유기물층(230)이 적층되어 구성된다. 바람직하게는, 이러한 에너지 전환층의 형성은 패터닝이나 증착, 또는 스핀코팅과 같은 방법이 이용될 수 있다.
무기물층(220)과 유기물층(230)은 제1전극(211) 또는 제2전극(212) 상에 적층됨에 순서는 상관없으나, 인접하여 적층되어야 한다.
또한, 바람직하게는, 에너지 전환층은 제1전극(211)과 제2전극(212)을 모두 덮도록 일체의 층으로 형성될 수 있다.
바람직하게는, 무기물층(220)과 유기물층(230)은 제1전극(211) 또는 제2전극(212) 상에 적층될 때 반복 중첩될 수 있다. 즉, 에너지 전환층은 무기물층(220)과 유기물층(230)의 적층 형태가 반복적으로 이루어져서 형성될 수 있다.
본 발명의 바람직한 일 실시예에 따르면, 무기물층(220) 또는 유기물층(230)은 상기 이온성 액체 또는 물(250)과의 접촉면적을 넓히기 위한 구조물이 형성되도록 증착된다.
도 4a 내지 도 4d는 본 발명의 일 실시예에 따른 액체를 이용한 플렉서블 에너지 전환 장치의 에너지 전환층의 실시예를 나타낸 측면도이다. 도 4a 내지 도 4d를 참조하면, 본 발명의 일 실시예에 따른 액체를 이용한 플렉서블 에너지 전환 장치의 에너지 전환층은 플렉서블 기판(410)에 포함된 전극(420) 상에 무기물층(430)이 증착된다. 유기물층(440)은 무기물층(430) 상에 요철 형상(도 4a), 뾰족 돌기 형상(도 4b), 반구 형상(도 4c), 구혈 형상(도 4d)인 미세구조물이 형성되도록 적층된다. 바람직하게는, 유기물층(440)과 무기물층(430)의 순서가 바뀌어도 되며, 구조물이 형성되도록 적층되는 것이 반드시 유기물층(440)이어야 하는 것은 아니다.
바람직하게는, 구조물이 형성되도록 적층된 유기물층(440) 상에 상기 구조물 형상이 유지되도록 소수성 물질층(450)이 적층된다.
이러한 구조물 형상은 상기 전극(420)과 이온성 액체 또는 물의 접촉면적 변화가 보다 커지도록 하여 전기에너지 발생효율을 높이는 효과가 있다.
다시 도 2를 참조하면, 본 발명의 바람직한 일 실시예에 따르면, 액체를 이용한 플렉서블 에너지 전환 장치가 복수로 어레이 형태로 연결된다. 앞서 설명한 바와 같이, 전극들과 이온성 액체 또는 물의 접촉면적 변화가 보다 커지도록 하여 전기에너지 발생효율을 높이기 위함이다.
본 발명의 바람직한 일 실시예에 따르면, 소수성 물질층(240)은 에너지 전환층(220, 230) 상에 적층된다. 이러한 소수성 물질층(240)은 이온성 액체 또는 물(250)이 전극들(211, 212)과의 접촉면, 접촉각 또는 접촉면적 변화를 일으킴에 따라 형상이 변화하게 되는데, 이러한 형상 변화가 원래의 형태로 복원될 수 있도록 하기 위하여 적층된다.
바람직하게는, 소수성 물질층(250)은 에너지 전환층이 형성되지 않은 제1전극(211) 또는 제2전극(212) 상에 적층될 수 있다.
본 발명의 바람직한 일 실시예에 따르면, 에너지 전환층은 폴리메틸메타크릴레이트(PolyMethylMethAcrylate, PMMA), 폴리에틸렌(Polyethylene, PE), 폴리스티렌(Polystyrene, PS), 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP), 폴리4비닐페놀(poly(4-vinylpenol, PVP)) 또는 폴리이서술폰(polyethersulfone, PES) 폴리(4-메톡시페닐아크릴레이트) (Poly(4-methoxyphenylacrylate); PMPA), 폴리(페닐아크릴레이트) (Poly(phenylacrylate); PPA), 폴리(2,2,2-트리플로로에틸 메타아크릴레이트) (Poly(2,2,2-trifluoroethyl methacrylate); PTFMA), 사이아노에틸풀루란 (Cyanoethylpullulan; CYEPL), 폴리염화비닐 (polyvinyl chloride; PVC), 폴리(파라반사) 수지 (Poly (parabanic acid) resin; PPA), 폴리(t-부틸스티렌) (Poly(t-butylstyrene); PTBS), 폴리티에닐렌비닐렌 (Polythienylenevinylene; PTV), 폴리비닐아세테이트 (Polyvinylacetate; PVA), 폴리(비닐 알코올) (Poly(vinyl alcohol); PVA), 폴리(R메틸스티렌) (Poly(Rmethylstyrene); PAMS), 폴리(비닐 알코올)-코-폴리(비닐 아세테이트)-코-폴리(이타콘산) (Poly(vinyl alcohol)-co-poly(vinyl acetate)-co-poly(itaconic acid); PVAIA), 폴리올레핀 (Polyolefin), 폴리아크릴레이트 (Polyacrylate), 파릴렌-C (Parylene-C), 폴리이미드 (Polyimide), 옥타데실트리클로로실란 (Octadecyltrichlorosilane; OTS), 폴리(트리아릴아민) (Poly(triarylamine); PTTA), 폴리-3-헥실티오펜 (Poly-3-hexylthiophene; P3HT), 가교 결합된 폴리-4-비닐페놀 (cross-linked Poly-4-vinylphenol; cross-linked PVP), 폴리(퍼플로로알케닐비닐 에테르) (Poly(perfluoroalkenylvinyl ether)), 나일론-6 (Nylon-6), n-옥타데실포스포닉 산 (n-Octadecylphosphonic acid; ODPA), 폴리테트라플루오르에틸렌(Polytetrafluoroethylene, PTFE), 실리콘(silicone), 폴리우레탄(polyurethane), 라텍스(latex), 초산셀룰로오스(cellulose acetate), PHEMA(poly(hydroxy ethyl methacrylate)), 폴리락타이드(polylactide, PLA), PGA(폴리글리콜라이드, polyglycolide), 또는 PGLA (Polyglycolide-co-Lactide ) 중 적어도 어느 하나의 물질을 포함한 유기물층(230); 및 산화실리콘(SiO2), 산화티타늄(TiO2), 산화알루미늄(Al2O3),탄탈(Ta2O5), 오산화 탄탈럼(Tantalum Pentoxide), 산화아연(Zinc oxide, ZnO), , 산화탄탈륨(Tantalum pentoxide, Ta2O5), 산화이트륨(Yttrium oxide, Y2O3), 산화세륨(Cerium oxide, CeO2), 이산화타이타늄(titanium dioxide, TiO2), 티탄산바륨(Barium titanate, BaTiO3), 바륨 지르코네이트 티타네이트(Barium zirconate titanate, BZT), 이산화지르코늄(Zirconium dioxide, ZrO2), 산화란탄륨(Lanthanum oxide, La2O3), 하프늄실리케이트(Hafnon, HfSiO4), 란타늄 알루미네이트(Lanthanum Aluminate, LaAlO3), 질화규소(Silicon nitride, Si3N4), Perovskite 물질로는, 스트론튬 티타네이트(Strontium titanate, SrTiO3), 바륨 스트론튬 티타네이트(barium strontium titanate, BST), 티탄산 지르콘산 연(Lead zirconate titanate, PZT), 티탄산칼슘구리(Calcium copper titanate,CCTO), 산화하프늄(HfO2), 아파타이트(A10(MO4)6(X)2), 수산화인회석(Ca10(PO4)6(OH)2), 인산3칼슘(Ca3(PO42)), Na2O-CaO-SiO2, 또는 바이오글라스(CaO-SiO2-P2O5) 중 적어도 어느 하나의 물질을 포함한 무기물층(220)을 포함한다.
바람직하게는, 유기물층(230)은 유전상수(dielectric constant, K)가 4이하의 물질이 사용될 수 있고, 무기물층(220)은 유전상수(dielectric constant, K)가 5이상의 물질이 사용될 수 있다.
본 발명의 바람직한 일 실시예에 따르면, 소수성 물질층(240)은 실란(silane)계 물질, 플루오르중합체(fluoropolymer) 물질, 트리클로로실란(Trichlorosilane), 트리에톡시실란(Trimethoxysilane), 펜타플루오르페닐프로필트리클로로실란(Pentafluorophenylpropyltrichlorosilane), (벤질옥시)알킬트리메톡시실란 ((benzyloxy)alkyltrimethoxysilane; BSM-22), (벤질옥시)알킬트리클로로실란 ((benzyloxy)alkyltrichlorosilane; BTS), 헥사메틸디실라잔 (hexamethyldisilazane; HMDS), 옥타데실트리클로로실란 (octadecyltrichlorosilane; OTS), 옥타데실트리메톡시실란 (octadecyltrimethoxysilane; OTMS), 디비닐테트라메틸디실록산-비스-(벤조시클로부텐) (divinyltetramethyldisiloxane-bis(benzocyclobutene); BCB) 중 적어도 어느 하나의 물질 또는 이들 물질의 혼합물로 이루어진다.
본 발명의 바람직한 일 실시예에 따르면, 제1전극(211) 또는 제2전극(212)은 ITO, IGO, 크롬, 알루미늄, IZO(Indium Zinc Oxide), IGZO(Indium Gallium Zinc Oxide), ZnO, ZnO2 또는 TiO2 중 적어도 어느 하나를 포함하는 무기전극이거나 백금, 금, 은, 알루미늄, 철 또는 구리 중 적어도 어느 하나를 포함하는 금속전극이거나 페돗(PEDOT, polyethylenedioxythiophene), 탄소나노튜브(CNT, Carbon nano tube), 그래핀(graphene), 폴리아세틸렌(polyacetylene), 폴리티오펜(Polythiophene, PT), 폴리피롤(Polypyrrole), 폴리파라페닐렌(polyparaphenylene, PPV), 폴리아닐린(Polyaniline), 폴리설퍼니트리드(poly sulfur nitride), 스테인레스 스틸, 크롬을 10%dltkd 함유한 철합금, SUS 304, SUS 316, SUS 316L, Co-Cr 합금, Ti 합금, 니티놀(Ni-Ti) 또는 폴리파라페닐렌비닐렌(polyparaphenylenevinylene) 중 적어도 어느 하나를 포함하는 유기전극이다.
본 발명의 바람직한 일 실시예에 따르면, 이온성 액체(260)는 NaCl, LiCl, NaNo3, Na2SiO3, AlCl3-NaCl, LiCl-KCl, KCL, Na,NaOH H2SO4, CH3COOH, HF, CuSO4, 에틸렌글리콜, 프로필렌글리콜 또는 AgCl 중 적어도 어느 하나를 포함한다.
본 발명의 바람직한 일 실시예에 따르면, 플렉서블 기판(210)의 양 끝단이 연결됨으로써 발생하는 전극들 사이의 공간은 비전도성 가스로 채워지도록 구성된다. 일반적으로는 상기 공간은 일반 공기 환경으로도 가능하다.
본 발명의 바람직한 일 실시예에 따르면, 비전도성 가스는 공기, 산소, 질소, 아르곤, 헬륨, 네온, 크립톤, 크세논 또는 라돈 중 적어도 어느 하나로 이루어진다.
도 5는 본 발명의 다른 실시예에 따른 액체를 이용한 플렉서블 에너지 전환 장치의 구조도이다. 도 5를 참조하면, 본 발명의 일 실시예에 따른 액체를 이용한 플렉서블 에너지 전환 장치는 플렉서블 기판(510); 플럭서블 기판(510) 상에 간격을 두고 형성되는 제1전극(511) 및 제2전극(512); 및 액체와의 접촉각, 접촉면, 접촉면적 중 어느 하나의 변화에 따라 전기에너지를 생성하고, 제1전극(511) 또는 제2전극(512) 중 적어도 어느 하나 이상에 형성되는 에너지전환층(520, 530)을 포함한다.
또한, 도 2의 왼쪽 그림과 같이 플렉서블 기판(510)은 양 끝단이 연결되어 터널과 같은 형상을 가진다.
그리고, 양 끝단이 연결됨에 따라 발생하는 제1전극(511)과 제2전극(512) 사이에 전도성 액체(550)가 위치한다.
본 발명의 바람직한 일 실시예에 따르면, 전도성 액체(550)는 수은, 리튬, 갈륨, 칼륨, NaK, 비스무트, 주석, 나트륨, 나트륨-칼륨 alloy 등이 사용될 수 있으며, 비저항범위가 1uΩ/cm 내지 1000uΩ/cm이며, 유전상수(dielectric constant, K)가 5이하인 것이 바람직하다.
본 발명의 바람직한 일 실시예에 따르면, 친수성 물질층(540)은 에너지 전환층(520, 530) 상에 적층된다. 이러한 친수성 물질층(540)은 전도성 액체(550)가 전극들(511, 512)과의 접촉면, 접촉각 또는 접촉면적 변화를 일으킴에 따라 형상이 변화하게 되는데, 이러한 형상 변화가 원래의 형태로 복원될 수 있도록 하기 위하여 적층된다.
본 발명의 바람직한 일 실시예에 따르면, 친수성 물질층(540)은 폴리아크릴산(Poly(acrylic acid), PAA), 아크릴아미드(Acrylamides), 말레산 무수물 공중합체(Maleic Anhydride Copolymers), 메타크릴레이트(Methacrylate), 에타크릴레이트(Ethacrylate), 아민 작용성 중합체(Amine-Functional Polymers) or 아민-관능기를 갖는 중합체(Amine-Functional Polymers), 폴리스티렌설포네이트(Polystyrenesulfonate, PSS), 비닐산(Vinyl Acids), 비닐알코올(Vinyl Alcohols), -NH, -CO-, 아미노기, -NH2, 수산기, -OH, 카르복실기 및 -COOH, 중 적어도 어느 하나의 기능기를 포함하는 물질로 이루어진다.
이 외에, 전도성 액체를 이용하는 상기 실시예에 있어서, 제1전극(511) 또는 제2전극(512)을 구성하는 전극, 무기물층(520), 유기물층(530)의 특징과 구조, 본 발명의 에너지 전환장치를 복수로 사용하는 것 등에 관련된 기술적 사항은 앞서 이온성 액체 또는 물을 사용한 실시예 혹은 도 2, 도 3a 내지 도 3d 및 도 4a 내지 도 4d에서 설명된 내용에 따라 구성될 수 있어 자세한 내용은 생략한다.
본 발명은 앞서 살펴본 바와 같이 이종 액체를 두 종류 이상 사용하는 종래에 비하여 채널내 막힘현상, 섞임현상을 막을 수 있고, 윤활층(lubricating layer) 또한 필요하지 않게 된다.
또한, 종래의 기술은 전극 절연막의 구조를 1층의 자기집함 분자 단층(self assembly molecular monolayer)와 1층의 유전층(dielectric layer) 또는 그 이상의 절연층(non conductive layer) 또는 이들의 다양한 조합을 제한하고 있으나, 본 발명은 에너지 전환효율 최적을 위한 구조를 제안한다. 즉, 제1전극 또는 제2전극 중 적어도 한 쪽의 기판에 (적층 순서에 따라) 전극/무기물층/유기물층/(소수성물질층, 친수성물질층 중 액체의 종류에 따라 선택됨) 또는 전극/유기물층/무기물층/(소수성물질층, 친수성물질층 중 액체의 종류에 따라 선택됨)의 구성을 가지도록 하며, 제1전극 및 제2전극 모두에 (적층 순서에 따라) 전극/무기물층/유기물층/(소수성물질층, 친수성물질층 중 액체의 종류에 따라 선택됨) 또는 전극/유기물층/무기물층/(소수성물질층, 친수성물질층 중 액체의 종류에 따라 선택됨)의 구성을 가지도록 변결될 수 있다.
그리고, 종래의 기술은 전도성 액체를 이용함에 있어서 분극을 위한 외부전원 인가를 필요로 하였으나, 본 발명은 에너지 전환층이 이온성 액체를 분극하는 역할을 수행하여 외부전원 인가가 불요하다.
또한, 종래의 유체를 이용한 에너지 전환 장치가 채널의 높이 및 체적을 고정시켰다면, 본 발명은 플렉서블 기판의 휨, 늘림, 비틀림, 눌림 등에 의하여 플렉서블 기판 내부와 플렉서블 기판 내부에 있는 액체와의 접촉면, 접촉각, 접촉면적 중 적어도 어느하나의 변화를 발생시켜 전기에너지를 발생시킨다.
바람직하게는, 플렉서블 기판의 양 끝단이 연결됨으로써 형성되는 형태는 원형, 사각형, 삼각형, 오각형, 육각형, 팔각형 등의 다양한 형태가 가능하다.
이상에서는 본 발명의 바람직한 실시예 및 응용예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예 및 응용예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.
(부호의 설명)
210 : 플렉서블 기판, 211 : 제1전극
212 : 제2전극, 220 : 무기물층
230 : 유기물층, 240 : 소수성물질층
250 : 이온성 액체 또는 물

Claims (14)

  1. 플렉서블 기판 상에 간격을 두고 형성되는 제1전극 및 제2전극; 및
    액체와의 접촉각, 접촉면, 접촉면적 중 어느 하나의 변화에 따라 전기 에너지를 생성하는 상기 제1전극 또는 제2전극 중 적어도 어느 하나 상에 형성되는 에너지전환층;을 포함하되,
    상기 플렉서블 기판의 양 끝단이 연결되어, 상기 전극들 사이에 이온성 액체 또는 물이 위치하는 것
    을 특징으로 하는 액체를 이용한 플렉서블 에너지 전환 장치.
  2. 제1항에 있어서,
    상기 에너지 전환층은 무기물층, 유기물층 또는 유기물과 무기물의 혼합물층 중 적어도 어느 하나의 층을 포함하는 것을 특징으로 하는 액체를 이용한 플렉서블 에너지 전환 장치.
  3. 제2항에 있어서,
    상기 에너지 전환층 상에 상기 이온성 액체 또는 물의 형상이 복원될 수 있도록 소수성 물질층이 적층되는 것을 특징으로 하는 액체를 이용한 플렉서블 에너지 전환 장치.
  4. 제1항에 있어서,
    상기 이온성 액체는 NaCl, LiCl, NaNo3, Na2SiO3, AlCl3-NaCl, LiCl-KCl, KCL, Na,NaOH H2SO4, CH3COOH, HF, CuSO4, 에틸렌글리콜, 프로필렌글리콜 또는 AgCl 중 적어도 어느 하나를 포함하는 것을 특징으로 하는 액체를 이용한 플렉서블 에너지 전환 장치.
  5. 플렉서블 기판 상에 간격을 두고 형성되는 제1전극 및 제2전극; 및
    액체와의 접촉각, 접촉면, 접촉면적 중 어느 하나의 변화에 따라 전기 에너지를 생성하는 상기 제1전극 또는 제2전극 중 적어도 어느 하나 상에 형성되는 에너지전환층;을 포함하되,
    상기 플렉서블 기판의 양 끝단이 연결되어, 상기 전극들 사이에 전도성 액체가 위치하는 것
    을 특징으로 하는 액체를 이용한 플렉서블 에너지 전환 장치.
  6. 제5항에 있어서,
    상기 에너지 전환층은 무기물층, 유기물층 또는 유기물과 무기물의 혼합물층 중 적어도 어느 하나의 층을 포함하는 것을 특징으로 하는 액체를 이용한 에너지 전환 장치.
  7. 제6항에 있어서,
    상기 에너지 전환층 상에 상기 전도성 액체의 형상이 복원될 수 있도록 친수성 물질층이 적층되는 것을 특징으로 하는 액체를 이용한 플렉서블 에너지 전환 장치.
  8. 제7항에 있어서,
    상기 친수성 물질층은 폴리아크릴산(Poly(acrylic acid), PAA), 아크릴아미드(Acrylamides), 말레산 무수물 공중합체(Maleic Anhydride Copolymers), 메타크릴레이트(Methacrylate), 에타크릴레이트(Ethacrylate), 아민 작용성 중합체(Amine-Functional Polymers) or 아민-관능기를 갖는 중합체(Amine-Functional Polymers), 폴리스티렌설포네이트(Polystyrenesulfonate, PSS), 비닐산(Vinyl Acids), 비닐알코올(Vinyl Alcohols) 또는 -NH, -CO-, 아미노기 -NH2, 수산기 -OH 또는 카르복실시 -COOH 의 기능기 중 적어도 어느 하나를 포함하는 물질로 이루어진 것을 특징으로 하는 액체를 이용한 플렉서블 에너지 전환 장치.
  9. 제5항에 있어서,
    상기 전도성 액체는 비저항범위가 1uΩ/cm 내지 1000uΩ/cm이며, 유전상수(dielectric constant, K)가 5이하인 것을 특징으로 하는 액체를 이용한 플렉서블 에너지 전환 장치.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 에너지 전환층은,
    폴리메틸메타크릴레이트(PolyMethylMethAcrylate, PMMA), 폴리에틸렌(Polyethylene, PE), 폴리스티렌(Polystyrene, PS), 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP), 폴리4비닐페놀(poly(4-vinylpenol, PVP)) 또는 폴리이서술폰(polyethersulfone, PES) 폴리(4-메톡시페닐아크릴레이트) (Poly(4-methoxyphenylacrylate); PMPA), 폴리(페닐아크릴레이트) (Poly(phenylacrylate); PPA), 폴리(2,2,2-트리플로로에틸 메타아크릴레이트) (Poly(2,2,2-trifluoroethyl methacrylate); PTFMA), 사이아노에틸풀루란 (Cyanoethylpullulan; CYEPL), 폴리염화비닐 (polyvinyl chloride; PVC), 폴리(파라반사) 수지 (Poly (parabanic acid) resin; PPA), 폴리(t-부틸스티렌) (Poly(t-butylstyrene); PTBS), 폴리티에닐렌비닐렌 (Polythienylenevinylene; PTV), 폴리비닐아세테이트 (Polyvinylacetate; PVA), 폴리(비닐 알코올) (Poly(vinyl alcohol); PVA), 폴리(R메틸스티렌) (Poly(Rmethylstyrene); PAMS), 폴리(비닐 알코올)-코-폴리(비닐 아세테이트)-코-폴리(이타콘산) (Poly(vinyl alcohol)-co-poly(vinyl acetate)-co-poly(itaconic acid); PVAIA), 폴리올레핀 (Polyolefin), 폴리아크릴레이트 (Polyacrylate), 파릴렌-C (Parylene-C), 폴리이미드 (Polyimide), 옥타데실트리클로로실란 (Octadecyltrichlorosilane; OTS), 폴리(트리아릴아민) (Poly(triarylamine); PTTA), 폴리-3-헥실티오펜 (Poly-3-hexylthiophene; P3HT), 가교 결합된 폴리-4-비닐페놀 (cross-linked Poly-4-vinylphenol; cross-linked PVP), 폴리(퍼플로로알케닐비닐 에테르) (Poly(perfluoroalkenylvinyl ether)), 나일론-6 (Nylon-6), n-옥타데실포스포닉 산 (n-Octadecylphosphonic acid; ODPA), 폴리테트라플루오르에틸렌(Polytetrafluoroethylene, PTFE), 실리콘(silicone), 폴리우레탄(polyurethane), 라텍스(latex), 초산셀룰로오스(cellulose acetate), PHEMA(poly(hydroxy ethyl methacrylate)), 폴리락타이드(polylactide, PLA), PGA(폴리글리콜라이드, polyglycolide), 또는 PGLA (Polyglycolide-co-Lactide ) 중 적어도 어느 하나의 물질을 포함하는 유기물층;을 포함하는 것을 특징으로 하는 액체를 이용한 플렉서블 에너지 전환 장치.
  11. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 에너지 전환층은,
    산화실리콘(SiO2), 산화티타늄(TiO2), 산화알루미늄(Al2O3),탄탈(Ta2O5), 오산화 탄탈럼(Tantalum Pentoxide), 산화아연(Zinc oxide, ZnO), , 산화탄탈륨(Tantalum pentoxide, Ta2O5), 산화이트륨(Yttrium oxide, Y2O3), 산화세륨(Cerium oxide, CeO2), 이산화타이타늄(titanium dioxide, TiO2), 티탄산바륨(Barium titanate, BaTiO3), 바륨 지르코네이트 티타네이트(Barium zirconate titanate, BZT), 이산화지르코늄(Zirconium dioxide, ZrO2), 산화란탄륨(Lanthanum oxide, La2O3), 하프늄실리케이트(Hafnon, HfSiO4), 란타늄 알루미네이트(Lanthanum Aluminate, LaAlO3), 질화규소(Silicon nitride, Si3N4), Perovskite 물질로는, 스트론튬 티타네이트(Strontium titanate, SrTiO3), 바륨 스트론튬 티타네이트(barium strontium titanate, BST), 티탄산 지르콘산 연(Lead zirconate titanate, PZT), 티탄산칼슘구리(Calcium copper titanate,CCTO), 산화하프늄(HfO2), 아파타이트(A10(MO4)6(X)2), 수산화인회석(Ca10(PO4)6(OH)2), 인산3칼슘(Ca3(PO42)), Na2O-CaO-SiO2, 또는 바이오글라스(CaO-SiO2-P2O5) 중 적어도 어느 하나의 물질을 포함한 무기물층을 포함하는 것을 특징으로 하는 액체를 이용한 플렉서블 에너지 전환 장치.
  12. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 전극들 사이에 배치된 공기, 산소, 질소, 아르곤, 헬륨, 네온, 크립톤, 크세논 또는 라돈 중 적어도 어느 하나로 이루어진 비전도성 가스;를 더 포함하는 것을 특징으로 하는 액체를 이용한 플렉서블 에너지 전환 장치.
  13. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 에너지 전환층은 액체와의 접촉면적을 넓히기 위한 구조물이 형성된 것을 특징으로 하는 액체를 이용한 플렉서블 에너지 전환 장치.
  14. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 제1전극 또는 상기 제2전극은,
    ITO, IGO, 크롬, 알루미늄, IZO(Indium Zinc Oxide), IGZO(Indium Gallium Zinc Oxide), ZnO, ZnO2 또는 TiO2 중 적어도 어느 하나를 포함하는 무기전극이거나 백금, 금, 은, 알루미늄, 철 또는 구리 중 적어도 어느 하나를 포함하는 금속전극이거나 페돗(PEDOT, polyethylenedioxythiophene), 탄소나노튜브(CNT, Carbon nano tube), 그래핀(graphene), 폴리아세틸렌(polyacetylene), 폴리티오펜(Polythiophene, PT), 폴리피롤(Polypyrrole), 폴리파라페닐렌(polyparaphenylene, PPV), 폴리아닐린(Polyaniline), 폴리설퍼니트리드(poly sulfur nitride), 스테인레스 스틸, 크롬을 10%dltkd 함유한 철합금, SUS 304, SUS 316, SUS 316L, Co-Cr 합금, Ti 합금, 니티놀(Ni-Ti) 또는 폴리파라페닐렌비닐렌(polyparaphenylenevinylene) 중 적어도 어느 하나를 포함하는 유기전극인 것을 특징으로 하는 액체를 이용한 플렉서블 에너지 전환 장치.
PCT/KR2013/010817 2012-11-29 2013-11-27 액체를 이용한 플렉서블 에너지 전환 장치 WO2014084580A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015545356A JP5960928B2 (ja) 2012-11-29 2013-11-27 液体を利用したフレキシブルエネルギー変換装置
US14/647,851 US10050567B2 (en) 2012-11-29 2013-11-27 Flexible energy conversion device using liquid
EP13858215.0A EP2927490A4 (en) 2012-11-29 2013-11-27 FLEXIBLE ENERGY CONVERTING DEVICE USING A LIQUID

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120136893A KR101435502B1 (ko) 2012-11-29 2012-11-29 액체를 이용한 플렉서블 에너지 전환 장치
KR10-2012-0136893 2012-11-29

Publications (1)

Publication Number Publication Date
WO2014084580A1 true WO2014084580A1 (ko) 2014-06-05

Family

ID=50828143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010817 WO2014084580A1 (ko) 2012-11-29 2013-11-27 액체를 이용한 플렉서블 에너지 전환 장치

Country Status (5)

Country Link
US (1) US10050567B2 (ko)
EP (1) EP2927490A4 (ko)
JP (1) JP5960928B2 (ko)
KR (1) KR101435502B1 (ko)
WO (1) WO2014084580A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101358286B1 (ko) * 2012-11-26 2014-02-12 서울대학교산학협력단 액체와의 접촉면 변화를 이용한 에너지 전환 장치
US10250163B2 (en) * 2016-04-29 2019-04-02 Stmicroelectronics S.R.L. Inverse electrowetting energy harvesting and scavenging methods, circuits and systems
KR101886501B1 (ko) * 2016-08-10 2018-08-08 울산대학교 산학협력단 유체를 이용한 마찰전기 기반의 발전소자
US10302460B2 (en) 2016-10-28 2019-05-28 Microsoft Technology Licensing, Llc Liquid metal sensor
KR101875325B1 (ko) * 2017-04-07 2018-08-03 인천대학교 산학협력단 고분자 코팅을 통한 리튬이차전지용 양극의 표면 후처리 방법
US10868479B2 (en) 2018-10-04 2020-12-15 Stmicroelectronics S.R.L. Inverse electrowetting and magnetic energy harvesting and scavenging methods, circuits and systems
KR102585756B1 (ko) * 2018-11-12 2023-10-11 현대자동차주식회사 역전기습윤 에너지 수확장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7898096B1 (en) 2007-08-22 2011-03-01 Thomas Nikita Krupenkin Method and apparatus for energy harvesting using microfluidics
JP2011507479A (ja) * 2007-12-21 2011-03-03 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 液状電極を有するエネルギー回復装置
KR101146564B1 (ko) * 2010-12-16 2012-05-25 국방과학연구소 유전 중합체 발전 유닛, 이를 구비하는 관절 부착용 자가 발전 장치 및 중량체 부착용 자가 발전 장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775356A (ja) 1993-09-02 1995-03-17 Olympus Optical Co Ltd メカノケミカルアクチュエータ
JPH09257822A (ja) * 1996-03-26 1997-10-03 Zexel Corp 流速計
US6467879B1 (en) 2000-10-16 2002-10-22 Xerox Corporation Method and apparatus for preventing degradation of electrostatically actuated devices
US7446450B2 (en) * 2004-06-07 2008-11-04 California Institute Of Technology Method and system using liquid dielectric for electrostatic power generation
US7834527B2 (en) * 2005-05-05 2010-11-16 SmartMotion Technologies, Inc. Dielectric elastomer fiber transducers
EP2400573A1 (de) * 2010-06-23 2011-12-28 Bayer MaterialScience AG Elektromechanischer Wandler, Verfahren zu dessen Herstellung und Verwendung desselben
KR101769459B1 (ko) * 2011-08-10 2017-08-21 삼성전자주식회사 나노 발전 소자 및 그 제조 방법
KR101358291B1 (ko) * 2012-10-31 2014-02-12 서울대학교산학협력단 액체의 접촉각 및 접촉면적의 변화를 이용한 에너지 전환 장치
KR101358286B1 (ko) * 2012-11-26 2014-02-12 서울대학교산학협력단 액체와의 접촉면 변화를 이용한 에너지 전환 장치
KR101407489B1 (ko) * 2012-11-29 2014-06-13 서울대학교산학협력단 액체를 이용한 에너지 전환 장치
KR101358295B1 (ko) * 2012-12-21 2014-02-05 서울대학교산학협력단 액체를 이용한 에너지 전환 기판
KR20150107815A (ko) * 2013-01-16 2015-09-23 바이엘 머티리얼사이언스 아게 다층 전기기계 변환기의 제조 방법
WO2014152889A1 (en) * 2013-03-14 2014-09-25 Erickson Michael J Roadway renewable energy generation system and method
KR20170032100A (ko) * 2015-09-14 2017-03-22 삼성전자주식회사 에너지 회수장치 및 이를 구비하는 전자기기

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7898096B1 (en) 2007-08-22 2011-03-01 Thomas Nikita Krupenkin Method and apparatus for energy harvesting using microfluidics
JP2011507479A (ja) * 2007-12-21 2011-03-03 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 液状電極を有するエネルギー回復装置
KR101146564B1 (ko) * 2010-12-16 2012-05-25 국방과학연구소 유전 중합체 발전 유닛, 이를 구비하는 관절 부착용 자가 발전 장치 및 중량체 부착용 자가 발전 장치

Also Published As

Publication number Publication date
KR101435502B1 (ko) 2014-09-02
US20150340970A1 (en) 2015-11-26
EP2927490A1 (en) 2015-10-07
KR20140069537A (ko) 2014-06-10
US10050567B2 (en) 2018-08-14
JP2016502394A (ja) 2016-01-21
JP5960928B2 (ja) 2016-08-02
EP2927490A4 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
WO2014098485A1 (ko) 액체를 이용한 에너지 전환 기판
WO2014084580A1 (ko) 액체를 이용한 플렉서블 에너지 전환 장치
WO2014084581A1 (ko) 액체를 이용한 에너지 전환 장치
WO2014081256A1 (ko) 액체와의 접촉면 변화를 이용한 에너지 전환 장치
WO2014069894A1 (ko) 액체의 접촉각 및 접촉면적의 변화를 이용한 에너지 전환 장치
KR101411337B1 (ko) 적층구조를 가지는 액체를 이용한 에너지 전환 장치
WO2014193182A1 (ko) 마찰전기 발생장치
WO2014084582A1 (ko) 액체를 이용한 회전형 에너지 전환 장치
WO2016010263A1 (ko) 액체를 이용한 전극 적층 구조 에너지 전환 장치
KR101403017B1 (ko) 관통홀을 가지는 액체를 이용한 에너지 전환 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015545356

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14647851

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013858215

Country of ref document: EP