WO2014084488A1 - Micro-pressure wave reduction device for railroad tunnels, and micro-pressure wave reduction hood including same - Google Patents
Micro-pressure wave reduction device for railroad tunnels, and micro-pressure wave reduction hood including same Download PDFInfo
- Publication number
- WO2014084488A1 WO2014084488A1 PCT/KR2013/008476 KR2013008476W WO2014084488A1 WO 2014084488 A1 WO2014084488 A1 WO 2014084488A1 KR 2013008476 W KR2013008476 W KR 2013008476W WO 2014084488 A1 WO2014084488 A1 WO 2014084488A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tunnel
- air
- hood
- micro
- pressure wave
- Prior art date
Links
- 238000000034 method Methods 0.000 claims description 10
- 238000007599 discharging Methods 0.000 claims description 4
- 230000002238 attenuated effect Effects 0.000 claims description 2
- 230000006835 compression Effects 0.000 abstract description 5
- 238000007906 compression Methods 0.000 abstract description 5
- 208000009205 Tinnitus Diseases 0.000 description 2
- 231100000886 tinnitus Toxicity 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 206010052137 Ear discomfort Diseases 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F1/00—Ventilation of mines or tunnels; Distribution of ventilating currents
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F17/00—Methods or devices for use in mines or tunnels, not covered elsewhere
Definitions
- the present invention provides a device capable of reducing pressure waves inside a railway tunnel and at the same time reducing micro-pressure waves at the exit of the railway tunnel. It relates to a micro-pressure wave reducing hood installed at the inlet.
- pressure waves are generated as the train traveling at high speed enters the tunnel.
- the pressure wave propagates into the tunnel and then passes through the tunnel exit.
- radiation in the form of pressure waves Since subatmospheric waves cause noise and vibration to the surroundings, it is very important to reduce the subatmospheric waves in railway tunnels.
- Republic of Korea Patent No. 10-331955 discloses a technique for installing a hood (hood) at the entrance of the tunnel in order to reduce the micro-pressure wave generated when the train enters the railway tunnel.
- 1 is a schematic view of a tunnel hood disclosed in Republic of Korea Patent No. 10-331955.
- Figure 2 is a schematic view showing another conventional tunnel hood, the conventional hood shown in Figure 2 is configured in the form of an inclined inlet.
- a hood 2 having an arcuate cross section is conventionally installed at the entrance of the tunnel, and the hood 2 has its roof portion. Multiple vents 25 were formed in or the front of the hood 2 was inclined downward.
- the hood 2 in which the ventilation pipe 25 is formed is useful for reducing the micro-pressure waves in the railway tunnel.
- the traveling speed of the train is increasing, and the length of the railway tunnel is also increasing.
- the micropressure wave increases.
- the length of the hood must be increased accordingly in order to cope with the situation in which the train traveling speed increases and the tunnel length increases.
- there are difficulties in increasing the length of the hood because many facilities such as props are arranged at the tunnel entrance.
- the thickness, rigidity, etc. of the hood must be further increased, thereby increasing the cost. Because of these problems, there is a limit to the method of reducing the micro pressure wave by lengthening the hood only.
- An object of the present invention is to provide a technique capable of reducing pressure waves inside a tunnel and at the same time reducing micro-pressure waves at the tunnel exit.
- the pressure is increased due to the air compressed when the train enters the tunnel by lowering the air pressure in the inlet or hood of the tunnel by sucking air at the inlet or the hood of the railway tunnel for the above purpose.
- the compression wave generated when entering the tunnel of the train It provides a technique to attenuate.
- a micro-pressure wave reducing device installed in the inlet, outlet or hood of the railway tunnel.
- the micro-pressure wave reducing apparatus of the present invention includes: a suction pipe installed at one end thereof so as to communicate with the inside of the inlet, the outlet, or the hood of the tunnel; An air flow passage is formed inside, and a nozzle portion formed by narrowing the inner diameter of the air flow passage is formed at a position where the other end of the suction pipe is coupled with the air flow passage, and the air flow passage supplies and discharges air.
- An air inlet pipe coupled to the inhaler to suck air through the inlet pipe;
- the air pressure reducing device of the present invention operates to lower the air pressure in the entrance or hood of the tunnel, so that the pressure does not increase due to the entry of the train. do. Therefore, it is possible to attenuate the compressed wave, and through the attenuation of the compressed wave, it is possible to greatly reduce the occurrence of micro-pressure waves at the exit of the tunnel.
- the present invention it is possible to reduce the tinnitus of the passengers in the train by reducing the micro-pressure waves, it is also possible to significantly reduce the noise and the resulting vibration at the tunnel exit.
- FIG. 1 and 2 are schematic views showing a state in which a conventional micro pressure wave reduction hood is installed at a railway tunnel entrance.
- FIG. 3 and 4 is a schematic perspective view showing a state in which a micro-pressure wave reduction apparatus according to an embodiment of the present invention is installed in the hood of the inlet of the railway tunnel, respectively.
- FIG. 5 is a schematic front view in the direction of arrow C of FIG. 3.
- FIG. 6 is a schematic enlarged view of a portion A of FIG. 4.
- FIG. 7 is a schematic cross-sectional view taken along line B-B of FIG. 6.
- the micro-pressure wave reducing device 1 of the present invention is provided with a suction pipe 10.
- the suction pipe 10 is provided so as to communicate with the inside of the hood 2 constructed at the entrance of the railway tunnel or at the exit of the railway tunnel, or at the entrance or exit of the railway tunnel.
- the micro-pressure wave reduction apparatus 1 of this invention is provided with the inhaler 11 which inhales air through the intake pipe 10. As shown in FIG.
- the hood 2 is formed at the entrance of the tunnel, and the micro-pressure wave reducing device of the present invention is installed in the hood 2, but the micro-pressure wave reducing device of the present invention is directly at the entrance of the tunnel. It may be installed. Furthermore, the micro-pressure wave reducing apparatus of the present invention may be installed at the exit of the tunnel. The hood in which the micro-pressure wave reducing apparatus of the present invention is installed may be provided at the exit of the tunnel.
- a suction hole is formed in the hood 2, and one end of the suction pipe 10 is coupled to the suction hole of the hood 2. Therefore, the air inside the hood 2 is sucked into the suction pipe 10 through the suction hole.
- the other end of the suction pipe 10 is connected to the inhaler 11.
- the inhaler 11 sucks air through the suction pipe 10.
- the inhaler 11 may be composed of a vacuum generator in the form of an ejector. 6 and 7, when the inhaler 11 is configured as an ejector-type vacuum generator, an air flow path is formed inside the inhaler 11.
- An air flow pipe for supplying and discharging air is connected to the inhaler 11 so that air can flow into the air flow passage.
- the air flow tube includes a supply pipe 13 for supplying air into the inhaler 11, and a discharge pipe 14 for discharging air supplied from the supply pipe 13 through the inhaler 11.
- the supply pipe 13 and the discharge pipe 14 are each connected to an air flow passage formed inside the inhaler 11.
- the nozzle part 15 is formed in the air flow path inside the inhaler 11.
- a portion having a narrow inner diameter in the air flow passage corresponds to the nozzle unit 15.
- a separate nozzle portion 15 is fitted in the air flow passage.
- the nozzle portion may be formed by narrowing the inner diameter of the air flow path itself. Air is supplied from the external air supply device 20 to the supply pipe 13 and enters the inhaler 11. Air introduced in this way is discharged to the discharge pipe 14 through the nozzle unit 15. In the present invention, since the nozzle portion 15 is formed in the air flow passage, the air entering the inside of the inhaler 11 is very fast flow through the nozzle portion 15.
- the other end of the suction pipe 10 is connected to the front position of the nozzle unit 15 in the inhaler 11.
- the other end of the suction pipe 10 is connected to a position where air has passed through the nozzle unit 15. Therefore, in the process of flowing air along the air flow path inside the inhaler 11, when the air passes through the nozzle portion 15 having a narrow inner diameter, the flow velocity is increased, and according to Bernoulli's theorem, in front of the nozzle portion 15 While the pressure is lowered to a substantially vacuum state, air is sucked up from the suction pipe 10 through the other end of the suction pipe 10 connected to the front of the nozzle unit 15 and discharged through the air flow passage.
- the air flows at a high flow rate, so that the air supply device 20 is configured as a compressed air reservoir so that the compressed air is supplied to the nozzle unit 15.
- One end of the suction pipe 10 is connected to the hood 2 and communicates with the inside of the hood 2. Therefore, when air is sucked out from the other end of the suction pipe 10 and discharged, the air inside the hood 2 is sucked into the suction pipe 10 through the suction pipe 10, and the air pressure inside the hood 2 is lowered accordingly. .
- the air supplied from the air supply device 20 flows through the nozzle portion 15 at a high flow rate, and thus sucks the air inside the hood 2 through the suction pipe 10, thereby internalizing the inside of the hood 2.
- the air pressure is in a lowered state. Therefore, according to the present invention, even when the train enters the hood 2, it is possible to attenuate the compressed wave, and through the attenuation of the compressed wave, it is possible to greatly reduce the occurrence of micro-pressure waves at the exit of the tunnel.
- the compressed wave in the tunnel causes an ear-discomfort for the passengers inside the train cabin, but if the compressed wave is attenuated by the present invention, the tinnitus of the passengers in the train can also be reduced.
- the noise at the exit of the tunnel and the resulting vibrations can also be greatly reduced.
- the present invention is very useful for reducing micro-pressure waves in a long tunnel.
- the micro-pressure wave reducing apparatus 1 of the present invention can be operated only when it is recognized that the train passes by a motion sensor or a speedometer that can sense that the train passes through the tunnel. That is, the micro-pressure wave reducing apparatus 1 of the present invention includes a sensor for detecting the passage of a train, and may be configured to start operation only when a signal indicating that the train passes through the tunnel is received through the sensor. For example, when the micro pneumatic wave reducing device 1 is installed at the entrance of the tunnel, or when the hood 2 having the micro pneumatic wave reducing device 1 is built at the entrance of the tunnel, the train is mounted on the hood 2. Alternatively, the micro-pressure wave reducing device 1 can be operated only when the sensor recognizes that the tunnel entrance is entered.
- the senor when the micro pressure wave reducing device 1 is installed at the exit of the tunnel, or when the hood 2 having the micro pressure wave reducing device 1 is constructed at the tunnel exit, the sensor is placed inside the tunnel or in the tunnel. By installing just before the exit of the train, the state of the train passing through the tunnel by the sensor can be operated so that the micro-pressure wave reducing device (1).
- the sensor may be formed of a known motion sensor, a sensor installed on a rail of a railway, or the like.
- the micro-pressure wave reducing device 1 of the present invention includes a plurality of suction pipes 10 and a plurality of suction pipes 11, and when viewed from the front of the tunnel, the plurality of suction pipes 10 are formed around the circumference of the hood 2. It may have a form that is coupled at intervals along the.
- an air flow pipe that supplies air to the inhaler 11 and allows air to escape from the inhaler 11. May be sequentially continued to the plurality of inhalers 11, but in order to maintain a high flow rate of air, it is preferable that the air flow pipes individually coupled to each inhaler 11 are connected to the air supply device 20, respectively. Do. In other words, a plurality of air flow pipes are extended from the air supply station 20, and each air flow pipe can be individually connected to the inhaler 11.
- the micro-pressure wave reducing device 1 of the present invention may have a configuration capable of producing electric power by using the air discharged from the inhaler (11). That is, the micro-pressure wave reducing apparatus 1 of the present invention is further provided with an aerodynamic generator 30 connected to the air flow pipe (specifically, the discharge pipe 14) through which the air is discharged from the inhaler 11, thereby providing an inhaler 11.
- the aerodynamic generator 30 may be configured to produce electrical energy by the air discharged from the).
- Reference numeral 31 is a charging battery 31 for storing electricity produced by being connected to the aeroelectric generator 30, and reference numeral 25 is a ventilation pipe 25.
- the micro-pressure wave reduction device 1 of the present invention has been described as being installed in the hood 2, but the micro-pressure wave reduction device 1 of the present invention may be installed at the entrance of the tunnel, It may be installed at the outlet.
- the hood 2, on which the micro-pressure wave reducing device 1 of the present invention is installed may be constructed at the entrance of the tunnel, but may also be constructed at the exit of the tunnel.
- the hood 2, in which the micro-pressure wave reduction device 1 of the present invention is installed is constructed at the exit of the tunnel, or the micro-pressure wave reduction device 1 of the present invention is installed at the exit of the occupation tunnel, that is, at the end region of the tunnel without the hood.
- the micro-pressure wave reducing apparatus 1 sucks the compressed wave propagated in the tunnel in the longitudinal direction of the tunnel, thereby reducing the micro-pressure wave at the exit of the tunnel.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Abstract
A micro-pressure wave reduction device includes: an intake pipe (10); and an intake unit (11) which intakes air. When a train moves into the entrance of a railroad tunnel or a hood (2), the air at the entrance of the tunnel or in the hood (2) is taken in through the intake pipe (10), and the internal pressure at the entrance of the tunnel or in the hood (2) is lowered so that a compression wave resulting from the movement of the train is reduced and a micro-pressure wave resulting from the compression wave is reduced.
Description
본 발명은 철도용 터널 내부의 압력파를 저감함과 동시에 철도용 터널의 출구에서의 미기압파(micro-pressure wave)를 저감할 수 있는 장치, 및 이러한 장치를 구비한 상태로 철도용 터널의 입구에 설치되는 미기압파 저감형 후드에 관한 것이다. The present invention provides a device capable of reducing pressure waves inside a railway tunnel and at the same time reducing micro-pressure waves at the exit of the railway tunnel. It relates to a micro-pressure wave reducing hood installed at the inlet.
열차가 지나가는 철도용 터널의 경우, 고속으로 주행하던 열차가 터널 내부로 진입하면서 압력파가 형성되는데, 압력파(pressure wave)는 터널내부로 전파된 후, 터널출구를 통해 미기압파(micro-pressure wave)의 형태로 방사된다. 미기압파는 소음 및 주변에 대한 진동을 유발하기 때문에, 철도용 터널에서 미기압파를 저감하는 것이 매우 중요하다. In the railway tunnel where the train passes, pressure waves are generated as the train traveling at high speed enters the tunnel. The pressure wave propagates into the tunnel and then passes through the tunnel exit. radiation in the form of pressure waves). Since subatmospheric waves cause noise and vibration to the surroundings, it is very important to reduce the subatmospheric waves in railway tunnels.
대한민국 등록특허 제10-331955호에는 열차가 철도용 터널에 진입할 때 발생하는 미기압파를 저감시키기 위하여, 터널의 입구에 후드(hood)를 설치하는 기술이 개시되어 있다. 도 1에는 대한민국 등록특허 제10-331955호에 개시된 터널 후드의 개략도가 도시되어 있다. 도 2에는 또다른 종래의 터널 후드를 보여주는 개략도가 도시되어 있는데, 도 2에 도시된 종래의 후드는 입구가 경사진 형태로 구성되어 있다. Republic of Korea Patent No. 10-331955 discloses a technique for installing a hood (hood) at the entrance of the tunnel in order to reduce the micro-pressure wave generated when the train enters the railway tunnel. 1 is a schematic view of a tunnel hood disclosed in Republic of Korea Patent No. 10-331955. Figure 2 is a schematic view showing another conventional tunnel hood, the conventional hood shown in Figure 2 is configured in the form of an inclined inlet.
도 1 및 도 2에 도시된 것처럼, 철도용 터널에서 발생하는 미기압파를 저감하기 위하여, 종래에는 터널 입구에 아치형 단면을 가지는 후드(2)를 설치하고, 상기 후드(2)에는 그 지붕부분에 다수개의 통풍관(25)을 형성하거나 또는 후드(2)의 전방을 하향경사지게 만들었다. 통풍관(25)이 형성된 후드(2)는 철도용 터널의 미기압파를 저감하는데 유용하다. 1 and 2, in order to reduce the micro-pressure waves generated in the railway tunnel, a hood 2 having an arcuate cross section is conventionally installed at the entrance of the tunnel, and the hood 2 has its roof portion. Multiple vents 25 were formed in or the front of the hood 2 was inclined downward. The hood 2 in which the ventilation pipe 25 is formed is useful for reducing the micro-pressure waves in the railway tunnel.
최근에는 열차의 주행속도가 빨라지고 있으며, 철도용 터널의 길이도 더욱 증가하고 있다. 터널이 길어질수록 미기압파는 증가하게 된다. 터널의 입구에 후드를 설치하는 종래기술에 의하여, 위와 같은 열차 주행속도가 증가하고 터널 길이가 증가하는 상황에 대응하려면, 그만큼 후드의 길이도 길어져야 한다. 그런데 터널입구에는 지주 등의 시설물들이 많이 배치되어 있기 때문에 후드 길이를 증가시키는 데는 애로사항이 있다. 또한 후드의 길이가 커지게 되면 후드의 두께, 강성 등도 더욱 증가되어야 하기 때문에 그만큼 비용도 증가된다. 이러한 문제들 때문에, 후드의 길이만을 길게 하여 미기압파를 저감하는 방안으로는 한계가 있다. In recent years, the traveling speed of the train is increasing, and the length of the railway tunnel is also increasing. As the tunnel gets longer, the micropressure wave increases. According to the prior art in which the hood is installed at the entrance of the tunnel, the length of the hood must be increased accordingly in order to cope with the situation in which the train traveling speed increases and the tunnel length increases. However, there are difficulties in increasing the length of the hood because many facilities such as props are arranged at the tunnel entrance. In addition, as the length of the hood increases, the thickness, rigidity, etc. of the hood must be further increased, thereby increasing the cost. Because of these problems, there is a limit to the method of reducing the micro pressure wave by lengthening the hood only.
본 발명의 목적은, 터널 내부의 압력파를 저감함과 동시에 터널 출구에서의 미기압파를 저감할 수 있는 기술을 제공하는 것이다. An object of the present invention is to provide a technique capable of reducing pressure waves inside a tunnel and at the same time reducing micro-pressure waves at the tunnel exit.
본 발명에서는 상기한 목적을 위하여, 철도용 터널의 입구에서 또는 후드 내부에서 공기를 흡입하여 터널의 입구 또는 후드 내부의 기압을 낮춤으로써 열차가 터널에 진입할 때 압축되는 공기로 인하여 압력이 높아지는 것을 방지하는 기술을 제공한다. In the present invention, the pressure is increased due to the air compressed when the train enters the tunnel by lowering the air pressure in the inlet or hood of the tunnel by sucking air at the inlet or the hood of the railway tunnel for the above purpose. Provide technology to prevent
특히, 본 발명의 목적은, 후드 길이를 증가시키지 않고서도 터널의 미기압파를 효과적으로 저감시킬 수 있는 기술을 제공하는 것이다. In particular, it is an object of the present invention to provide a technique capable of effectively reducing the micro-pressure waves in a tunnel without increasing the hood length.
본 발명에서는 상기한 목적을 위하여, 철도용 터널의 입구에 부가적인 기계장치를 더 설치하거나 또는 철도용 터널의 입구에 구축된 후드에 기계장치를 더 설치하여, 열차의 터널진입 때 발생하는 압축파를 감쇄시키는 기술을 제공한다. In the present invention, for the above purpose, by installing an additional mechanical device at the entrance of the railway tunnel or by further installing a mechanical device at the hood constructed at the entrance of the railway tunnel, the compression wave generated when entering the tunnel of the train It provides a technique to attenuate.
본 발명에서는 철도용 터널의 입구, 출구 또는 후드에 설치되는 미기압파 저감장치가 제공된다. In the present invention, there is provided a micro-pressure wave reducing device installed in the inlet, outlet or hood of the railway tunnel.
본 발명의 미기압파 저감장치는, 일단이 터널의 입구, 출구 또는 후드의 내부와 연통되도록 설치되는 흡입관과; 내부에는 공기흐름통로가 형성되어 있고, 흡입관의 타단이 상기 공기흐름통로와 결합되는 위치에는 공기흐름통로의 내경이 좁아져서 만들어지는 노즐부가 형성되어 있으며, 상기 공기흐름통로에는 공기를 공급하고 배출하는 공기흐름관이 결합되어 있어서 상기 흡입관을 통해서 공기를 흡입하는 흡입기를 포함하며; 철도터널의 입구 또는 후드 내로 열차가 진입할 때, 공기흐름관을 통해 공급된 공기가 상기 노즐부를 지나가면서 흡입관을 통해서 터널의 입구 또는 후드 내부의 공기가 흡입됨으로써, 터널의 입구 또는 후드의 내부 기압을 낮추어서, 열차의 진입으로 인한 압축파를 감쇄시키고, 압축파로 인한 미기압파를 감소시키게 되는 구성을 가진다. The micro-pressure wave reducing apparatus of the present invention includes: a suction pipe installed at one end thereof so as to communicate with the inside of the inlet, the outlet, or the hood of the tunnel; An air flow passage is formed inside, and a nozzle portion formed by narrowing the inner diameter of the air flow passage is formed at a position where the other end of the suction pipe is coupled with the air flow passage, and the air flow passage supplies and discharges air. An air inlet pipe coupled to the inhaler to suck air through the inlet pipe; When the train enters the inlet or hood of the railway tunnel, the air supplied through the air flow pipe passes through the nozzle part, and the air in the inlet or hood of the tunnel is sucked in through the suction pipe, whereby the internal air pressure of the inlet or hood of the tunnel By lowering the compression wave due to entering the train, and has a configuration to reduce the micro-pressure wave due to the compression wave.
본 발명에 의하면, 터널의 입구 또는 후드 내로 열차가 진입하더라도, 본 발명의 미기압파 저감장치가 작동하여 터널의 입구 또는 후드 내부의 기압이 낮아진 상태이므로, 열차의 진입에 의해 압력이 높아지지 않게 된다. 따라서 압축파를 감쇄시킬 수 있게 되며, 압축파의 감쇄를 통해서 터널 출구에서의 미기압파 발생을 크게 저감할 수 있게 된다. According to the present invention, even if the train enters the entrance or hood of the tunnel, the air pressure reducing device of the present invention operates to lower the air pressure in the entrance or hood of the tunnel, so that the pressure does not increase due to the entry of the train. do. Therefore, it is possible to attenuate the compressed wave, and through the attenuation of the compressed wave, it is possible to greatly reduce the occurrence of micro-pressure waves at the exit of the tunnel.
본 발명에 의하면, 미기압파의 저감을 통해 열차 내의 승객의 이명감도 줄일 수 있으며, 터널 출구에서의 소음 및 그에 따른 진동발생도 크게 줄일 수 있게 된다. 또한 본 발명에 의하면, 후드의 길이를 더 늘이지 않고서도 장대터널에서의 미기압파 발생으로 인한 문제를 해소할 수 있게 된다. According to the present invention, it is possible to reduce the tinnitus of the passengers in the train by reducing the micro-pressure waves, it is also possible to significantly reduce the noise and the resulting vibration at the tunnel exit. In addition, according to the present invention, it is possible to solve the problem caused by the micro-pressure wave in the long tunnel without further extending the length of the hood.
도 1 및 도 2는 각각 종래의 미기압파 저감용 후드가 철도용 터널 입구에 설치된 상태를 보여주는 개략도이다. 1 and 2 are schematic views showing a state in which a conventional micro pressure wave reduction hood is installed at a railway tunnel entrance.
도 3 및 도 4는 각각 철도용 터널의 입구의 후드에 본 발명의 일실시예에 따른 미기압파 저감장치가 설치되어 있는 상태를 보여주는 개략적인 사시도이다. 3 and 4 is a schematic perspective view showing a state in which a micro-pressure wave reduction apparatus according to an embodiment of the present invention is installed in the hood of the inlet of the railway tunnel, respectively.
도 5는 도 3의 화살표 C 방향으로의 개략적인 정면도이다. FIG. 5 is a schematic front view in the direction of arrow C of FIG. 3.
도 6은 도 4의 원 A부분의 개략적인 확대도이다. FIG. 6 is a schematic enlarged view of a portion A of FIG. 4.
도 7은 도 6의 선 B-B에 따른 개략적인 단면도이다. FIG. 7 is a schematic cross-sectional view taken along line B-B of FIG. 6.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 설명한다. 본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 하나의 실시예로서 설명되는 것이며, 이것에 의해 본 발명의 기술적 사상과 그 핵심 구성 및 작용이 제한되지 않는다. Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described. Although the present invention has been described with reference to the embodiments shown in the drawings, this is described as one embodiment, whereby the technical spirit of the present invention and its core configuration and operation are not limited.
도 3 내지 도 5에 도시된 것처럼, 본 발명의 미기압파 저감장치(1)는 흡입관(10)을 구비하고 있다. 상기 흡입관(10)은, 철도용 터널의 입구, 또는 철도용 터널의 출구, 또는 철도용 터널의 입구나 출구에 구축된 후드(2)의 내부와 연통되도록 설치된다. 또한 본 발명의 미기압파 저감장치(1)는, 흡입관(10)을 통해서 공기를 흡입하는 흡입기(11)를 구비하고 있다. As shown in Fig. 3 to Fig. 5, the micro-pressure wave reducing device 1 of the present invention is provided with a suction pipe 10. The suction pipe 10 is provided so as to communicate with the inside of the hood 2 constructed at the entrance of the railway tunnel or at the exit of the railway tunnel, or at the entrance or exit of the railway tunnel. Moreover, the micro-pressure wave reduction apparatus 1 of this invention is provided with the inhaler 11 which inhales air through the intake pipe 10. As shown in FIG.
도면의 실시예에서는 터널의 입구에 후드(2)가 형성되어 있고, 본 발명의 미기압파 저감장치가 후드(2)에 설치되어 있지만, 본 발명의 미기압파 저감장치가 터널의 입구에 직접 설치될 수도 있다. 더 나아가 본 발명의 미기압파 저감장치는 터널의 출구에 설치될 수도 있다. 본 발명의 미기압파 저감장치가 설치되는 후드는, 터널의 출구에 구비될 수도 있다. In the embodiment of the figure, the hood 2 is formed at the entrance of the tunnel, and the micro-pressure wave reducing device of the present invention is installed in the hood 2, but the micro-pressure wave reducing device of the present invention is directly at the entrance of the tunnel. It may be installed. Furthermore, the micro-pressure wave reducing apparatus of the present invention may be installed at the exit of the tunnel. The hood in which the micro-pressure wave reducing apparatus of the present invention is installed may be provided at the exit of the tunnel.
도면에 도시된 본 실시예에서, 후드(2)에는 흡입공이 형성되어 있고, 흡입관(10)의 일단은 후드(2)의 상기 흡입공에 결합된다. 따라서 후드(2) 내부의 공기는 흡입공을 통해서 흡입관(10)으로 흡입된다. 흡입관(10)의 타단에는 흡입기(11)가 연결되어 있다. 흡입기(11)는 흡입관(10)을 통해서 공기를 빨아드리는 것이다. 흡입기(11)는 이젝터 형태의 진공발생기로 이루어질 수도 있다. 도 6 및 도 7에 도시된 것처럼 흡입기(11)가 이젝터 형태의 진공발생기로 구성된 경우, 흡입기(11)의 내부에는 공기흐름통로가 형성되어 있다. 공기가 공기흐름통로로 흘러갈 수 있도록, 공기를 공급하고 또 배출하는 공기흐름관이, 흡입기(11)에 연결되어 있다. 공기흐름관은, 흡입기(11)의 내부로 공기를 공급하는 공급관(13)과, 공급관(13)으로부터 공급되는 공기가 흡입기(11)의 통과하여 배출되도록 하는 배출관(14)으로 이루어져 있다. 공급관(13)과 배출관(14)은 각각 흡입기(11)의 내부에 형성된 공기흐름통로에 연결된다. In the present embodiment shown in the figure, a suction hole is formed in the hood 2, and one end of the suction pipe 10 is coupled to the suction hole of the hood 2. Therefore, the air inside the hood 2 is sucked into the suction pipe 10 through the suction hole. The other end of the suction pipe 10 is connected to the inhaler 11. The inhaler 11 sucks air through the suction pipe 10. The inhaler 11 may be composed of a vacuum generator in the form of an ejector. 6 and 7, when the inhaler 11 is configured as an ejector-type vacuum generator, an air flow path is formed inside the inhaler 11. An air flow pipe for supplying and discharging air is connected to the inhaler 11 so that air can flow into the air flow passage. The air flow tube includes a supply pipe 13 for supplying air into the inhaler 11, and a discharge pipe 14 for discharging air supplied from the supply pipe 13 through the inhaler 11. The supply pipe 13 and the discharge pipe 14 are each connected to an air flow passage formed inside the inhaler 11.
흡입기(11) 내부의 공기흐름통로에는 노즐부(15)가 형성되어 있다. 공기흐름통로에서 좁은 내경을 가지고 있는 부분이 노즐부(15)에 해당한다. 도면에 도시된 실시예의 경우, 공기흐름통로에는 별도의 노즐부(15)가 끼워져 있다. 그러나 공기흐름통로 자체의 내경을 좁게 만들어서 노즐부를 형성할 수도 있다. 공기는 외부의 공기공급장치(20)로부터 공급관(13)으로 공급되어 흡입기(11)의 내부로 들어온다. 이렇게 유입된 공기는 노즐부(15)를 지나 배출관(14)으로 배출된다. 본 발명에서는 공기흐름통로에 노즐부(15)가 형성되어 있으므로, 흡입기(11)의 내부로 들어온 공기는 노즐부(15)를 거치면서 유속이 매우 빨라지게 된다. The nozzle part 15 is formed in the air flow path inside the inhaler 11. A portion having a narrow inner diameter in the air flow passage corresponds to the nozzle unit 15. In the embodiment shown in the figure, a separate nozzle portion 15 is fitted in the air flow passage. However, the nozzle portion may be formed by narrowing the inner diameter of the air flow path itself. Air is supplied from the external air supply device 20 to the supply pipe 13 and enters the inhaler 11. Air introduced in this way is discharged to the discharge pipe 14 through the nozzle unit 15. In the present invention, since the nozzle portion 15 is formed in the air flow passage, the air entering the inside of the inhaler 11 is very fast flow through the nozzle portion 15.
흡입관(10)의 타단은 흡입기(11) 내부에서 상기 노즐부(15)의 전방 위치에 연결되어 있다. 즉, 흡입관(10)의 타단은 공기가 노즐부(15)를 통과한 위치에 연결되어 있는 것이다. 따라서 흡입기(11) 내부의 공기흐름통로를 따라 공기가 흐르는 과정에서, 공기가 좁은 내경의 노즐부(15)를 지날 때에는 유속이 빨라지게 되고, 베르누이의 정리에 따라 노즐부(15)의 전방에서는 압력이 거의 진공상태로 낮아지면서 노즐부(15)의 전방에 연결된 흡입관(10)의 타단을 통해서 흡입관(10)으로부터 공기가 빨려 올라와서 공기흐름통로를 통해서 배출된다. 노즐부(15)에서는 공기가 빠른 유속으로 흐르는 것이 바람직하기 때문에, 공기공급장치(20)는 압축공기 저장소로 구성되어, 압축공기가 노즐부(15)로 공급되도록 하는 것도 바람직하다. The other end of the suction pipe 10 is connected to the front position of the nozzle unit 15 in the inhaler 11. In other words, the other end of the suction pipe 10 is connected to a position where air has passed through the nozzle unit 15. Therefore, in the process of flowing air along the air flow path inside the inhaler 11, when the air passes through the nozzle portion 15 having a narrow inner diameter, the flow velocity is increased, and according to Bernoulli's theorem, in front of the nozzle portion 15 While the pressure is lowered to a substantially vacuum state, air is sucked up from the suction pipe 10 through the other end of the suction pipe 10 connected to the front of the nozzle unit 15 and discharged through the air flow passage. In the nozzle unit 15, it is preferable that the air flows at a high flow rate, so that the air supply device 20 is configured as a compressed air reservoir so that the compressed air is supplied to the nozzle unit 15.
흡입관(10)의 일단은 후드(2)에 연결되어 후드(2)의 내부와 연통되어 있다. 따라서 흡입관(10)의 타단으로부터 공기가 빨려나가 배출되면, 흡입관(10)을 통해서 후드(2) 내부의 공기가 흡입관(10)으로 흡입되고, 그에 따라 후드(2) 내부의 기압이 낮아지게 된다. One end of the suction pipe 10 is connected to the hood 2 and communicates with the inside of the hood 2. Therefore, when air is sucked out from the other end of the suction pipe 10 and discharged, the air inside the hood 2 is sucked into the suction pipe 10 through the suction pipe 10, and the air pressure inside the hood 2 is lowered accordingly. .
종래기술에서, 열차가 터널의 입구 또는 후드(2) 내로 진입할 경우, 철도터널 입구의 공기 또는 후드(2) 내부의 공기 가 압축되면서 압축파가 발생하게 되고, 그로 인하여 터널 출구에서 미기압파가 발생하게 된다. 그러나 본 발명에서는 열차가 후드(2)를 거쳐 터널에 진입할 때, 미기압파 저감장치(1)의 작동으로 인하여 후드(2)의 내부 기압이 낮아진 상태이므로, 열차가 후드(2)로 진입하더라도 압력이 높아지지 않게 된다. In the prior art, when a train enters the inlet or hood 2 of a tunnel, a compressed wave is generated while the air at the inlet of the railway tunnel or the air inside the hood 2 is compressed, thereby causing a micro-pressure wave at the exit of the tunnel. Will occur. However, in the present invention, when the train enters the tunnel through the hood 2, since the internal air pressure of the hood 2 is lowered due to the operation of the micro-pressure wave reducing device 1, the train enters the hood 2 Even if the pressure does not rise.
공기공급장치(20)로부터 공급된 공기가 노즐부(15)를 지나면서 빠른 유속으로 흘러가고, 그에 따라 흡입관(10)을 통해서 후드(2) 내부의 공기를 흡입함으로써, 후드(2)의 내부 기압은 낮아진 상태가 되어 있는 것이다. 따라서 본 발명에 의하면, 열차가 후드(2)로 진입하더라도, 압축파를 감쇄시킬 수 있게 되며, 압축파의 감쇄를 통해서 터널 출구에서의 미기압파 발생을 크게 저감할 수 있게 된다. 특히, 터널 내에서의 압축파는 열차 객실 내부의 승객에 대해 이명감(ear-discomfort)을 야기하게 되지만, 본 발명을 통해서 압축파를 감쇄시키게 되면 열차 내의 승객의 이명감도 줄일 수 있으며, 미기압파로 인한 터널 출구에서의 소음 및 그에 따른 진동발생도 크게 줄일 수 있게 된다. 특히, 본 발명은 장대터널에서의 미기압파 저감에 매우 유용하다. The air supplied from the air supply device 20 flows through the nozzle portion 15 at a high flow rate, and thus sucks the air inside the hood 2 through the suction pipe 10, thereby internalizing the inside of the hood 2. The air pressure is in a lowered state. Therefore, according to the present invention, even when the train enters the hood 2, it is possible to attenuate the compressed wave, and through the attenuation of the compressed wave, it is possible to greatly reduce the occurrence of micro-pressure waves at the exit of the tunnel. In particular, the compressed wave in the tunnel causes an ear-discomfort for the passengers inside the train cabin, but if the compressed wave is attenuated by the present invention, the tinnitus of the passengers in the train can also be reduced. The noise at the exit of the tunnel and the resulting vibrations can also be greatly reduced. In particular, the present invention is very useful for reducing micro-pressure waves in a long tunnel.
한편, 본 발명의 미기압파 저감장치(1)는, 열차가 터널을 통과하는 것을 감지할 수 있는 동작 센서 또는 속도계 등에 의해 열차가 통과하는 것을 인지하였을 때만 작동하도록 할 수 있다. 즉, 본 발명의 미기압파 저감장치(1)에는, 열차 통과를 감지하는 센서를 구비하고 있어서, 센서를 통해서 열차가 터널을 통과한다는 신호를 수신하였을 때만 작동을 개시하도록 구성될 수 있는 것이다. 예를 들어, 미기압파 저감장치(1)가 터널의 입구에 설치되어 있거나, 또는 미기압파 저감장치(1)를 구비한 후드(2)가 터널 입구에 구축된 경우, 열차가 후드(2) 또는 터널 입구로 진입한다는 것을 센서가 인지할 경우에만 미기압파 저감장치(1)가 작동하도록 할 수 있는 것이다. 더 나아가, 미기압파 저감장치(1)가 터널의 출구에 설치되어 있거나, 또는 미기압파 저감장치(1)를 구비한 후드(2)가 터널 출구에 구축된 경우, 센서를 터널 내부 또는 터널의 출구 직전에 설치하여, 열차가 터널을 통과하는 상태를 센서로 인지하여 미기압파 저감장치(1)가 작동하도록 할 수 있는 것이다. 상기 센서는 공지의 모션센서나, 철도의 레일에 설치되는 센서 등으로 이루어질 수 있다. On the other hand, the micro-pressure wave reducing apparatus 1 of the present invention can be operated only when it is recognized that the train passes by a motion sensor or a speedometer that can sense that the train passes through the tunnel. That is, the micro-pressure wave reducing apparatus 1 of the present invention includes a sensor for detecting the passage of a train, and may be configured to start operation only when a signal indicating that the train passes through the tunnel is received through the sensor. For example, when the micro pneumatic wave reducing device 1 is installed at the entrance of the tunnel, or when the hood 2 having the micro pneumatic wave reducing device 1 is built at the entrance of the tunnel, the train is mounted on the hood 2. Alternatively, the micro-pressure wave reducing device 1 can be operated only when the sensor recognizes that the tunnel entrance is entered. Furthermore, when the micro pressure wave reducing device 1 is installed at the exit of the tunnel, or when the hood 2 having the micro pressure wave reducing device 1 is constructed at the tunnel exit, the sensor is placed inside the tunnel or in the tunnel. By installing just before the exit of the train, the state of the train passing through the tunnel by the sensor can be operated so that the micro-pressure wave reducing device (1). The sensor may be formed of a known motion sensor, a sensor installed on a rail of a railway, or the like.
본 발명의 미기압파 저감장치(1)는 복수개의 흡입관(10)과 복수개의 흡입기(11)를 구비하고 있어서, 터널의 정면에서 볼 때, 복수개의 흡입관(10)이 후드(2)의 원주를 따라 간격을 두고 결합되는 형태를 가질 수 있다. 미기압파 저감장치(1)가 복수개의 흡입관(10)과 복수개의 흡입기(11)로 이루어진 실시예에서, 흡입기(11)로 공기를 공급하고 흡입기(11)로부터 공기가 빠져나가게 되는 공기흐름관은 복수개의 흡입기(11)에 순차적으로 연속될 수도 있지만, 공기의 빠른 유속을 유지하기 위해서는 각각의 흡입기(11)에 개별적으로 결합된 공기흐름관이 각각 공기공급장치(20)에 연결되는 것이 바람직하다. 즉, 공기공급장(20)로부터 복수개의 공기흐름관이 연장되어, 각각의 공기흐름관이 개별적으로 흡입기(11)에 연결될 수 있는 것이다. The micro-pressure wave reducing device 1 of the present invention includes a plurality of suction pipes 10 and a plurality of suction pipes 11, and when viewed from the front of the tunnel, the plurality of suction pipes 10 are formed around the circumference of the hood 2. It may have a form that is coupled at intervals along the. In the embodiment in which the micro-pressure wave reducing device 1 includes a plurality of suction pipes 10 and a plurality of inhalers 11, an air flow pipe that supplies air to the inhaler 11 and allows air to escape from the inhaler 11. May be sequentially continued to the plurality of inhalers 11, but in order to maintain a high flow rate of air, it is preferable that the air flow pipes individually coupled to each inhaler 11 are connected to the air supply device 20, respectively. Do. In other words, a plurality of air flow pipes are extended from the air supply station 20, and each air flow pipe can be individually connected to the inhaler 11.
한편, 본 발명의 미기압파 저감장치(1)는 흡입기(11)로부터 배출되는 공기를 이용하여 전력을 생산할 수 있는 구성을 가질 수도 있다. 즉, 본 발명의 미기압파 저감장치(1)에는 흡입기(11)로부터 공기가 배출되는 공기흐름관(구체적으로는 배출관(14))과 연결된 공력 발전기(30)가 더 구비됨으로써, 흡입기(11)로부터 배출되어 버려지는 공기에 의해 공력 발전기(30)가 전기에너지를 생산하도록 구성할 수도 있는 것이다. 도면부호 31은 상기 공력발전기(30)와 연결되어 생산된 전기를 저장하는 충전배터리(31)이며, 도면부호 25는 통풍관(25)이다. On the other hand, the micro-pressure wave reducing device 1 of the present invention may have a configuration capable of producing electric power by using the air discharged from the inhaler (11). That is, the micro-pressure wave reducing apparatus 1 of the present invention is further provided with an aerodynamic generator 30 connected to the air flow pipe (specifically, the discharge pipe 14) through which the air is discharged from the inhaler 11, thereby providing an inhaler 11. The aerodynamic generator 30 may be configured to produce electrical energy by the air discharged from the). Reference numeral 31 is a charging battery 31 for storing electricity produced by being connected to the aeroelectric generator 30, and reference numeral 25 is a ventilation pipe 25.
위의 설명에서는 본 발명의 미기압파 저감장치(1)가 후드(2)에 설치된 것으로 설명하였으나, 본 발명의 미기압파 저감장치(1)는 터널의 입구에 설치될 수도 있고, 또한 터널의 출구에 설치될 수도 있다. 한편, 본 발명의 미기압파 저감장치(1)가 설치되는 후드(2)는 터널의 입구에 구축될 수도 있지만, 터널의 출구에 구축될 수도 있다. 본 발명의 미기압파 저감장치(1)가 설치된 후드(2)가 터널의 출구에 구축되거나 또는 본 발명의 미기압파 저감장치(1)가 후드 없이 직업 터널의 출구 즉, 터널의 끝단 영역에 설치될 경우, 터널 내부에서 터널의 길이방향으로 전파되어온 압축파를 미기압파 저감장치(1)가 흡입하게 되어, 터널 출구에서의 미기압파를 저감시킬 수 있게 된다. In the above description, the micro-pressure wave reduction device 1 of the present invention has been described as being installed in the hood 2, but the micro-pressure wave reduction device 1 of the present invention may be installed at the entrance of the tunnel, It may be installed at the outlet. On the other hand, the hood 2, on which the micro-pressure wave reducing device 1 of the present invention is installed, may be constructed at the entrance of the tunnel, but may also be constructed at the exit of the tunnel. The hood 2, in which the micro-pressure wave reduction device 1 of the present invention is installed, is constructed at the exit of the tunnel, or the micro-pressure wave reduction device 1 of the present invention is installed at the exit of the occupation tunnel, that is, at the end region of the tunnel without the hood. When installed, the micro-pressure wave reducing apparatus 1 sucks the compressed wave propagated in the tunnel in the longitudinal direction of the tunnel, thereby reducing the micro-pressure wave at the exit of the tunnel.
Claims (6)
- 철도용 터널의 입구, 철도용 터널의 출구, 또는 후드(2)에 설치되는 미기압파 저감장치(1)로서, As a micro-pressure wave reducing device 1 installed at an entrance of a railway tunnel, an exit of a railway tunnel, or a hood 2,일단이 터널의 입구, 터널의 출구, 또는 후드(2)의 내부와 연통되도록 설치되는 흡입관(10)과; A suction pipe (10), one end of which is installed to communicate with the entrance of the tunnel, the exit of the tunnel, or the inside of the hood (2);내부에는 공기흐름통로가 형성되어 있고, 흡입관(10)의 타단이 상기 공기흐름통로와 결합되는 위치에는 공기흐름통로의 내경이 좁아져 있는 노즐부(15)가 형성되어 있으며, 상기 공기흐름통로에는 공기를 공급하고 배출하는 공기흐름관이 결합되어 있어서 상기 흡입관(10)을 통해서 공기를 흡입하는 흡입기(11)를 포함하며; An air flow passage is formed therein, and a nozzle portion 15 having an inner diameter of the air flow passage is narrowed at a position where the other end of the suction pipe 10 is coupled to the air flow passage, and in the air flow passage An air inlet pipe for supplying and discharging air, the inhaler 11 for sucking air through the inlet pipe 10;열차가 터널을 통과할 때, 공기흐름관을 통해 공급된 공기가 상기 노즐부(15)를 지나가면서 흡입관(10)을 통해서 터널의 내부 또는 후드(2) 내부의 공기를 흡입함으로써, 터널의 내부 또는 후드(2)의 내부 기압을 낮추어서, 열차의 진입으로 인한 압축파를 감쇄시키고, 압축파로 인한 미기압파를 감소시키게 되는 것을 특징으로 하는 미기압파 저감장치. When the train passes through the tunnel, the air supplied through the air flow pipe passes through the nozzle part 15 and sucks the air in the inside of the tunnel or the hood 2 through the suction pipe 10, thereby allowing the inside of the tunnel. Or by lowering the internal air pressure of the hood (2), attenuated compressed wave due to the entry of the train, micro-pressure wave reduction device, characterized in that to reduce the micro-pressure wave due to the compressed wave.
- 제1항에 있어서, The method of claim 1,상기 흡입관(10)과 상기 흡입기(11)는 복수개로 구비되며, 터널의 종방향으로 바라 볼 때, 복수개의 흡입관(10)은 터널의 입구, 터널의 출구 또는 후드(2)의 원주를 따라 간격을 두고 설치되어 있는 것을 특징으로 하는 미기압파 저감장치. The suction pipe 10 and the suction device 11 are provided in plurality, and when viewed in the longitudinal direction of the tunnel, the plurality of suction pipes 10 are spaced along the circumference of the inlet of the tunnel, the exit of the tunnel, or the hood 2. Micro-pressure wave reduction device, characterized in that installed in the place.
- 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,흡입기(11)로부터 공기가 배출되는 공기흐름관과 연결된 공력 발전기(30)가 더 구비됨으로써, 흡입기(11)로부터 배출되는 공기에 의해 공력 발전기(30)가 전기에너지를 생산하도록 구성되어 있는 것을 특징으로 하는 미기압파 저감장치. It is further provided with an aerodynamic generator 30 connected to the air flow pipe from which the air is discharged from the inhaler 11, characterized in that the aerodynamic generator 30 is configured to produce electrical energy by the air discharged from the inhaler 11. Micro-pressure wave reducing device
- 제1항 또는 제2항에 있어서, The method according to claim 1 or 2,열차가 터널을 통과하는 감지하는 센서를 구비하고 있어서, 상기 센서를 통해서 열차가 터널을 통과한다는 신호를 수신하였을 때만 작동을 개시하도록 구성되어 있는 것을 특징으로 하는 미기압파 저감장치. And a sensor for detecting the train passing through the tunnel, and configured to start operation only when the train receives a signal indicating that the train passes through the tunnel.
- 철도용 터널의 입구 또는 철도용 터널의 출구에 설치되는 후드(2)로서, As a hood (2) installed at the entrance of a railway tunnel or at the exit of a railway tunnel,일단이 후드(2)의 내부와 연통되도록 설치되는 흡입관(10)과; 내부에는 공기흐름통로가 형성되어 있고, 흡입관(10)의 타단이 상기 공기흐름통로와 결합되는 위치에는 공기흐름통로의 내경이 좁아져 있는 노즐부(15)가 형성되어 있으며, 상기 공기흐름통로에는 공기를 공급하고 배출하는 공기흐름관이 결합되어 있어서 상기 흡입관(10)을 통해서 공기를 흡입하는 흡입기(11)를 포함하여 구성되는 미기압파 저감장치(1)가 설치되어, A suction pipe 10 having one end installed in communication with the inside of the hood 2; An air flow passage is formed therein, and a nozzle portion 15 having an inner diameter of the air flow passage is narrowed at a position where the other end of the suction pipe 10 is coupled to the air flow passage, and in the air flow passage An air pressure reducing device (1) comprising an inhaler (11) for sucking air through the suction pipe (10) is provided with an air flow pipe for supplying and discharging air,열차가 후드(2)를 통과할 때, 공기흐름관을 통해 공급된 공기가 상기 노즐부(15)를 지나가면서 흡입관(10)을 통해서 터널의 입구 또는 후드(2) 내부의 공기가 흡입됨으로써, 후드(2)의 내부 기압을 낮추어서, 열차의 통과로 인한 압축파를 감쇄시키고, 압축파로 인한 미기압파를 감소시키게 되는 것을 특징으로 하는 미기압파 저감형 후드. When the train passes through the hood (2), the air supplied through the air flow pipe passes through the nozzle unit 15, the air intake of the tunnel or the air in the hood (2) through the suction pipe 10, By reducing the internal air pressure of the hood (2), attenuation of the compressed wave due to the passage of the train, the micro-pressure wave reduced type hood, characterized in that to reduce the micro-pressure wave due to the compressed wave.
- 제5항에 있어서, The method of claim 5,상기 흡입관(10)과 상기 흡입기(11)는 복수개로 구비되며, 터널의 종방향으로 바라볼 때, 복수개의 흡입관(10)이 후드(2)의 원주를 따라 간격을 두고 설치되어 있는 것을 특징으로 하는 미기압파 저감형 후드. The suction pipe 10 and the inhaler 11 is provided in plurality, and when viewed in the longitudinal direction of the tunnel, a plurality of suction pipe 10 is provided at intervals along the circumference of the hood (2) Micro-pressure wave reduction type hood to say.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2012-0135232 | 2012-11-27 | ||
KR1020120135232A KR101394980B1 (en) | 2012-11-27 | 2012-11-27 | Apparatus and hood of train tunnel for reduction of wind pressure |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014084488A1 true WO2014084488A1 (en) | 2014-06-05 |
Family
ID=50828083
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2013/008476 WO2014084488A1 (en) | 2012-11-27 | 2013-09-23 | Micro-pressure wave reduction device for railroad tunnels, and micro-pressure wave reduction hood including same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101394980B1 (en) |
WO (1) | WO2014084488A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101445251B1 (en) * | 2013-10-21 | 2014-09-29 | 한국철도기술연구원 | Structure for reducing tunel micro pressure wave including air pipe parrarel to advancing direction of train |
KR101533730B1 (en) * | 2014-09-26 | 2015-07-06 | (주)평화엔지니어링 | Intake structures mounted at the exit of the tunnel |
KR101752180B1 (en) * | 2014-10-15 | 2017-07-05 | (주)평화엔지니어링 | High-efficiency energy-saving intake system mounted at the exit of the tunnel |
CN114139255B (en) * | 2021-11-25 | 2024-06-07 | 天津大学 | Calculation method for middle wind well position of entrance section of high-speed subway tunnel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04102699A (en) * | 1990-08-20 | 1992-04-03 | Mitsubishi Heavy Ind Ltd | Tunnel for railroad |
JPH11226449A (en) * | 1998-02-17 | 1999-08-24 | Aiken Kogyo Kk | Non-blower type air purifier in tunnel |
KR200160590Y1 (en) * | 1995-10-21 | 1999-11-15 | 이경일 | Vacuum suction type air venting device |
JP2005155129A (en) * | 2003-11-25 | 2005-06-16 | East Japan Railway Co | Tunnel shock absorbing work |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090044166A (en) * | 2007-10-31 | 2009-05-07 | 한국철도기술연구원 | Hood for reducing a micro-pressure wave on high-speed railway tunnel |
-
2012
- 2012-11-27 KR KR1020120135232A patent/KR101394980B1/en active IP Right Grant
-
2013
- 2013-09-23 WO PCT/KR2013/008476 patent/WO2014084488A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04102699A (en) * | 1990-08-20 | 1992-04-03 | Mitsubishi Heavy Ind Ltd | Tunnel for railroad |
KR200160590Y1 (en) * | 1995-10-21 | 1999-11-15 | 이경일 | Vacuum suction type air venting device |
JPH11226449A (en) * | 1998-02-17 | 1999-08-24 | Aiken Kogyo Kk | Non-blower type air purifier in tunnel |
JP2005155129A (en) * | 2003-11-25 | 2005-06-16 | East Japan Railway Co | Tunnel shock absorbing work |
Also Published As
Publication number | Publication date |
---|---|
KR101394980B1 (en) | 2014-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014084488A1 (en) | Micro-pressure wave reduction device for railroad tunnels, and micro-pressure wave reduction hood including same | |
KR101144821B1 (en) | Gas type fire-fighting apparatus for a ship with double detective function | |
CN102966367B (en) | Roadway construction equipment and dust removing device thereof | |
CN105422516B (en) | A kind of suspension type ventilating apparatus for tunnels with silencing means | |
CN107630713A (en) | A kind of shield tunnel lower floor fire escape of growing up ensures the method for ventilation of malleation | |
CN206851152U (en) | A kind of efficient circuits plate production system | |
JP2021110226A (en) | Ventilation and smoke exhaustion device and method on fire for tunnel with long and huge section in underground railway penetrating rive or sea | |
CN203155665U (en) | Uniformly blowing and sucking type harmful gas collection device | |
KR101455761B1 (en) | Hood structure and system for reducing tunnel micro pressure wave using the same | |
CN111852536B (en) | Negative pressure blocking tunnel pressure wave retarding system and method | |
CN106016322B (en) | flue gas desulfurization device | |
US20150377192A1 (en) | Exhaust ejector tube for engine system | |
KR101455757B1 (en) | Hood structure having longitudinal type air tube | |
KR101455764B1 (en) | System for reducing tunel micro pressure wave and method for reducing tunel micro pressure wave using the same | |
JP2014141908A (en) | Intake system of engine | |
KR101404032B1 (en) | Apparatus for detecting smoke and smoke detecting method | |
JPH0559900A (en) | Tunnel | |
KR20110040373A (en) | System for tunnel ventilation | |
KR20130006233U (en) | Closing prevention device for duct-line of the dust disposal system | |
CN210714756U (en) | Tunnel ventilation mechanism | |
CN204754964U (en) | Highway tunnel's waste gas discharge structure | |
CN204754938U (en) | Safety of easily discharging fume tunnel that is open to traffic | |
CN205746939U (en) | Flue gas desulfurization device | |
CN107757931A (en) | Airborne vehicle discharges tubing string | |
KR20160028863A (en) | Exhaust Gas Guiding Device Using Ducted Fan |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13859535 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13859535 Country of ref document: EP Kind code of ref document: A1 |