WO2014084429A1 - Method for preparing barium titanate, and barium titanate prepared by same - Google Patents

Method for preparing barium titanate, and barium titanate prepared by same Download PDF

Info

Publication number
WO2014084429A1
WO2014084429A1 PCT/KR2012/010349 KR2012010349W WO2014084429A1 WO 2014084429 A1 WO2014084429 A1 WO 2014084429A1 KR 2012010349 W KR2012010349 W KR 2012010349W WO 2014084429 A1 WO2014084429 A1 WO 2014084429A1
Authority
WO
WIPO (PCT)
Prior art keywords
barium
barium titanate
titanyl oxalate
chloride
titanyl
Prior art date
Application number
PCT/KR2012/010349
Other languages
French (fr)
Korean (ko)
Inventor
전보연
박지호
최연규
Original Assignee
삼성정밀화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성정밀화학 주식회사 filed Critical 삼성정밀화학 주식회사
Priority to CN201810988353.5A priority Critical patent/CN108675785A/en
Priority to CN201280077177.0A priority patent/CN104797543A/en
Priority to PCT/KR2012/010349 priority patent/WO2014084429A1/en
Publication of WO2014084429A1 publication Critical patent/WO2014084429A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates

Definitions

  • the present invention relates to a method for producing barium titanate, and to barium titanate prepared thereby, and more particularly, to prepare barium titanyl oxalate powder having a high specific surface area by adjusting synthetic conditions such as dropping temperature and concentration of a reactant. And a method for producing barium titanate having a Ba / Ti molar ratio of 0.999 to 1.001.
  • Barium titanate is widely used as a raw material for multilayer ceramic capacitors, static ceramic capacitors, and piezoelectric materials.
  • Barium titanate was conventionally manufactured by sintering titanium dioxide (TiO 2 ) and barium carbonate (BaCO 3 ) at a high temperature by a solid phase reaction, but in recent years, small-capacity large-capacity of MLCC (Multi Layer Ceramic Capacitor), high dielectric constant, dielectric thinning High lamination, low temperature firing, high frequency and high performance, high purity / composition uniformity, fine grain / particle uniformity, non-aggregation / high dispersibility, etc. are required. It is increasing.
  • As the liquid phase synthesis method for example, hydrothermal synthesis method, coprecipitation method (oxalate method), alkoxide method and the like have been developed, and the use thereof is rapidly increasing.
  • the oxalate method is a method of preparing barium titanate powder by adding a mixed solution containing Ba and Ti ions to oxalic acid, precipitating it with a barium titanyl oxalate compound, and drying and calcining it.
  • Barium titanyl oxalate (BaTiO (C 2 O 4 ) 2 .4H 2 O) is a precursor of barium titanate (BaTiO 3 ).
  • Oxalate process one of the conventional methods for producing barium titanate, was grown to particles of about 200 ⁇ m through aging of barium titanyl oxalate, which is a precursor for the synthesis of barium titanate, in order to stabilize product properties and increase yield. .
  • barium titanyl oxalate having a large particle size is heat-treated to produce barium titanate, there is a problem in that excessive aggregates are formed during the heat treatment to deteriorate the quality of the final product of barium titanate.
  • barium titanyl oxalate (3-7 m 2 / g) having a high specific surface area is prepared by adjusting synthesis conditions such as dropping temperature and concentration of raw materials, and barium titanate having a Ba / Ti molar ratio of 0.999 to 1.001 is obtained. It is intended to provide a method of preparation.
  • a first embodiment of the present invention comprises the steps of preparing a barium chloride (BaCl 2 ) aqueous solution and titanyl chloride (TiOCl 2 ) aqueous solution (stock preparation step); Adding an aqueous barium chloride solution and the titanyl chloride solution to an oxalic acid solution to form a barium titanyl oxalate precipitate (dropping step); Aging the solution comprising the barium titanyl oxalate precipitate (aging step); Washing and drying the barium titanyl oxalate precipitate (recovery step); And pulverizing the recovered barium titanyl oxalate precipitate to obtain a barium titanyl oxalate powder (grinding step), wherein the specific surface area of barium titanyl oxalate recovered in the recovery step is controlled by adjusting the synthetic conditions.
  • the dropping step may be performed at a temperature of 30 ⁇ 50 °C.
  • the grinding step may be performed by ball milling.
  • the grinding step may be performed until the specific surface area of the barium titanyl oxalate powder is 10 m 2 / g.
  • the concentration of the aqueous solution of barium chloride (BaCl 2 ) is 0.84 to 1.05 mol / l
  • the concentration of the titanyl chloride (TiOCl 2 ) is 0.8 to 1.0 mol / l
  • the oxalic acid (Oxalic Acid) concentration may be 1.9 ⁇ 2.3 mol / L.
  • the grinding step may be performed by ball milling.
  • the grinding step may be performed until the specific surface area of the barium titanyl oxalate powder is 10 m 2 / g.
  • the second embodiment of the present invention may be barium titanyl oxalate prepared according to the first embodiment.
  • the third embodiment of the present invention may be a method for producing barium titanate for calcining barium titanyl oxalate of the second embodiment to produce barium titanate, and the calcination may be performed at 800 to 1000 ° C.
  • the fourth embodiment of the present invention may be barium titanate prepared according to the third embodiment, and the Ba / Ti molar ratio may be 0.999 to 1.001.
  • barium titanyl oxalate powder having a high specific surface area (3 to 7 m 2 / g) can be prepared by adjusting the synthesis conditions such as the dropping temperature and the concentration of the reactant, and the Ba / Ti molar ratio of 0.999 Barium titanate having a particle distribution of 1.00.001 and uniform particle distribution.
  • FIG. 1 is a flowchart of a method for producing barium titanyl oxalate powder according to one embodiment of the present invention.
  • FIG. 2 is a scanning electron micrograph of the barium titanyl oxalate powder after synthesis according to Example 1.
  • Example 3 is a scanning micrograph of the barium titanyl oxalate powder after milling according to Example 1.
  • FIG. 4 is an X-ray diffraction pattern for barium titanate according to Example 1.
  • Example 5 is a scanning electron micrograph of barium titanate according to Example 1.
  • FIG. 6 is a scanning electron micrograph of the barium titanyl oxalate powder after synthesis according to Example 7.
  • FIG. 6 is a scanning electron micrograph of the barium titanyl oxalate powder after synthesis according to Example 7.
  • the first embodiment of the present invention comprises the steps of preparing a barium chloride (BaCl 2 ) aqueous solution and titanyl chloride (TiOCl 2 ) aqueous solution (stock preparation step); Adding an aqueous barium chloride solution and the titanyl chloride solution to an oxalic acid solution to form a barium titanyl oxalate precipitate (dropping step); Aging the solution comprising barium titanyl oxalate precipitate (aging step); Washing and drying the barium titanyl oxalate precipitate (recovery step); And pulverizing the recovered barium titanyl oxalate precipitate to obtain barium titanyl oxalate powder (milling step), wherein the specific surface area of barium titanyl oxalate recovered in the step of recovering by adjusting the synthesis conditions is 3 ⁇ 7 m 2 / g, the Ba / Ti molar ratio of barium titanate prepared by calcining barium titan
  • the first aspect of this embodiment relates to the range of synthesis temperatures.
  • a barium chloride (BaCl 2 ) solution and a titanyl chloride (TiOCl 2 ) solution may be prepared (raw material preparation step).
  • the barium chloride (BaCl 2 ) solution and titanyl chloride (TiOCl 2 ) solution may be an aqueous solution using water as a solvent.
  • Aqueous solution of barium chloride can usually be used by dissolving BaCl 2 ⁇ 2H 2 O in water.
  • the concentration range may be 0.2 to 2.0 mol / l.
  • concentration of the barium chloride solution is less than 0.2 mol / l, the productivity of barium titanate is low relative to the volume of the barium chloride solution, and when the concentration exceeds 2.0 mol / l, barium chloride is out of the solubility range of barium chloride in water. Can be precipitated.
  • the titanyl chloride aqueous solution is prepared by diluting titanium tetrachloride (TiCl 4 ) in water and then stabilizing by adding hydrochloric acid (HCl), and the concentration range may be 0.2 to 2.0 mol / l. At this time, if the temperature is higher than 40 °C titanyl chloride may be precipitated as a solid titanium oxide to reduce the Ba / Ti molar ratio of barium titanate should be maintained at a temperature lower than 40 °C.
  • TiCl 4 titanium tetrachloride
  • HCl hydrochloric acid
  • barium chloride (BaCl 2 ) solution and a titanyl chloride (TiOCl 2 ) solution were added dropwise to the oxalic acid solution to form barium titanyl oxalate (BTO: BaTiO (C 2 O 4 ) 2 4H 2 O) May form precipitates.
  • barium titanyl oxalate a precursor of barium titanate, may be synthesized.
  • the barium chloride solution and titanylchloride solution can be added dropwise to the oxalic acid solution simultaneously.
  • a mixed solution of an aqueous barium chloride solution and a titanyl chloride solution may be added dropwise to an aqueous oxalic acid (H 2 C 2 O 4 ) solution using a high-speed jet nozzle.
  • the raw material solution can be mixed, for example, in a batch reactor.
  • the solution may continue to stir during the dropping step. Through agitation, barium chloride and titanyl chloride can be induced to react uniformly with oxalic acid.
  • the dropping step may be performed at a temperature of 30 ° C ⁇ 50 ° C.
  • the dropping temperature means the temperature of the oxalic acid aqueous solution.
  • the dropping temperature is lower than 30 ° C., the reaction of barium chloride and titanyl chloride with oxalic acid may not be performed.
  • the dropping temperature is higher than 50 ° C., the oxalic acid is decomposed, rather barium chloride and titanyl The reaction of chloride with oxalic acid may be lowered.
  • the mixed solution of the barium chloride solution and titanyl chloride solution should be kept below 30 °C to prevent precipitation.
  • Synthesis time can be controlled by adjusting the rate at which the raw material solution is added to the reactor, for example, the dropwise addition of the barium chloride aqueous solution and titanyl chloride aqueous solution to the oxalic acid aqueous solution.
  • the mixed solution of the barium chloride aqueous solution and the titanyl chloride aqueous solution is nozzle-dropped into the oxalic acid aqueous solution to be added dropwise to 1 to 3 hours. This dropping time can be achieved by adjusting the injection speed of the nozzle.
  • a process of generating barium titanyl oxalate (BaTiO (C 2 O 4 ) 2 .4H 2 O) by dropwise adding an aqueous barium chloride solution and a titanyl chloride solution to an aqueous oxalic acid solution may be represented by the following Scheme 1.
  • the molar ratio of barium chloride, titanyl chloride and oxalic acid is 1: 1: 2, but in practice it is possible to further add amounts of barium chloride and oxalic acid.
  • Barium chloride may be added in consideration of this point because the reaction rate is slow.
  • oxalic acid some of the oxalic acid may be decomposed, and thus it may be added in consideration of this.
  • an aqueous solution of oxalic acid may be used in an amount larger than that of an aqueous solution of barium chloride or an aqueous solution of titanyl chloride.
  • the mixed solution containing the barium titanyl oxalate precipitate can be aged (aging step).
  • Barium titanyl oxalate may be formed by reaction of barium ions and titanium ions with oxalic acid. However, there may be barium ions and titanium ions that do not participate in the reaction with oxalic acid. By continuing to stir for a certain time, the ions that do not participate in the reaction may participate in the reaction.
  • Aging can be carried out at 70 ° C or lower.
  • the temperature may be increased to perform aging, because if the aging temperature is higher than 70 ° C., the oxalic acid may be decomposed and the reaction may be lowered.
  • the aging time has little effect on the Ba / Ti molar ratio of barium titanate, and therefore, after the aging temperature is determined, it may be advantageous for productivity to carry out aging for as short a time as possible.
  • the barium titanyl oxalate precipitate can then be washed and dried (recovery step).
  • the recovery step refers to a process of separating only solid barium titanyl oxalate precipitate. Recovery may be accomplished by separating solid barium titanyl oxalate crystal mass from the barium titanyl oxalate containing slurry using a centrifuge or a filter press. The recovered barium titanyl oxalate precipitate can wash the filtered barium titanyl oxalate with excess water.
  • the washed barium titanyl oxalate may be dried at a temperature of 400 ° C. or lower to remove the washing liquid.
  • There are various methods of drying such as oven drying, vacuum drying and freeze drying, and it may be advantageous to dry for a short time at the lowest temperature possible to obtain a small particle size and uniform particle size distribution.
  • the specific surface area of the barium titanyl oxalate precipitate may be 3-7 m 2 / g. Preferably it may be 4-6 m 2 / g. If the specific surface area of the barium titanyl oxalate precipitate is less than 3 m 2 / g, the Ba / Ti mole ratio of barium titanate may be less than 0.999. If the specific surface area is greater than 7 m 2 / g, the Ba / Ti mole ratio of barium titanate is more than 1.001. Can be large. When the Ba / Ti molar ratio of barium titanate is outside the range of 0.999 to 1.001, dielectric properties of electronic products manufactured using barium titanate may be reduced.
  • the recovered barium titanyl oxalate precipitate may be pulverized to obtain a barium titanyl oxalate powder (milling step). It is possible to obtain a barium titanyl oxalate powder having particles of a desired size by a top down method.
  • wet grinding refers to a method in which barium titanyl oxalate is added to a wet mill such as beads mills, ball mills, and attrition mills together with a predetermined medium to grind.
  • the grinding time needs to be appropriately controlled due to the difference in grinding force according to the grinding equipment, and can adjust the particle size by adjusting the grinding time.
  • an organic medium such as alcohol or water such as deionized water may be used.
  • organic media is advantageous in terms of crushing efficiency and particle size, but it can increase costs.
  • the use of water can simplify the process and reduce costs.
  • the amount of water to be used may be 1 to 10 parts by weight based on 1 part by weight of barium titanyl oxalate.
  • the amount of water used is less than 1 part by weight, the viscosity may be large and there may be no grinding effect.
  • the productivity of barium titanyl oxalate may be low compared to the amount of water used.
  • the wet milled barium titanyl oxalate may be dried at a temperature below 400 ° C. to remove the used medium. There is no particular limitation on the drying temperature, but may be above the boiling point of the medium to evaporate and remove the medium used. Thereby, barium titanyl oxalate powder can be obtained.
  • the specific surface area of the barium titanyl oxalate powder obtained after the grinding step may be 10 m 2 / g or more.
  • the first aspect of this embodiment relates to the synthesis temperature range of titanylbarium oxalate, while the second aspect of this embodiment relates to the concentration range of the raw material regardless of the synthesis temperature range.
  • the concentration of the aqueous solution of barium clath (BaCl 2 ) is 0.84 ⁇ 1.05 mol / L
  • the concentration of the titanyl chloride (TiOCl 2 ) is 0.8 ⁇ 1.0 mol / L
  • the concentration of the oxalic acid (Oxalic Acid) is 1.9 ⁇ 2.3 mol / l.
  • the concentrations of barium chloride, titanyl chloride and oxalic acid may be 0.735 mol / l, 0.7 mol / l and 1.6 mol / l, respectively.
  • the present invention is not limited thereto, and the concentration of the raw material may be increased. When the concentration of each raw material is increased, the reaction starting point between the raw materials increases by that much, thereby improving the reaction speed, which has the advantage of shortening the process time.
  • the concentration of barium clath (BaCl 2 ) may be 1.05 mol / l or less
  • the concentration of titanyl chloride (TiOCl 2 ) may be 1.0 mol / l or less
  • the concentration of oxalic acid (Oxalic Acid) may be 2.3 mol / l or less.
  • Another embodiment of the present invention may be a method for producing barium titanate, which calcinates barium titanyl oxalate powder prepared according to the previous embodiment to produce barium titanate.
  • Sagger or Tray can be used as a heating furnace for calcining the dried barium titanyl oxalate powder.
  • 'Sagger' means a refractory soil container, and may be, for example, a cube-shaped container having a bottom surface of a square shape.
  • the calcination temperature may be 800-1000 ° C. Barium titanate is hardly produced when the calcination temperature is lower than 800 ° C., and excessive growth of barium titanate particles may occur when it exceeds 1000 ° C.
  • the temperature increase rate may be 0.5 ⁇ 10 °C / min. If the temperature increase rate is less than 0.5 °C / min, the process time is long, the productivity can be lowered, and if it exceeds 10 °C / min, the temperature distribution is not uniform depending on the position, which may result in uneven particle size of barium titanate.
  • calcination is preferably performed at 950 ° C. for 2 hours.
  • barium titanate may be produced and impurities contained in the barium titanyl oxalate powder may be separated and removed. That is, it is possible to remove excess water and excess carbon dioxide gas as crystal water inside the barium titanyl oxalate crystal, and the barium titanate powder may be formed through the following reaction.
  • Barium titanate prepared by calcining may have a Ba / Ti molar ratio of 0.999 to 1.001. If the Ba / Ti molar ratio is less than 0.999 or greater than 1.001, the characteristics of the electronic component such as a laminated ceramic capacitor manufactured using barium titanate may be deteriorated.
  • Barium titanate prepared by calcining may be present by agglomeration caused by necking between particles. Barium titanate may be milled to separate such aggregated powders. Grinding includes wet grinding using a mill such as beads mills, attrition mills, and ball mills with a predetermined medium, jet mills and disk mills. Dry grinding using the friction between the raw materials or the crusher without using a medium, such as) can be used.
  • the pulverization step is for resolving agglomeration between the particles of barium titanate, and after the wet pulverization, a drying process may be additionally required. If not necessary, the grinding step may be omitted.
  • the barium titanate particles may be destroyed to generate a large amount of fine powder, which may lower particle size distribution and crystallinity.
  • the particle diameter thereof is very small compared to the conventional one, and the amount of aggregates is significantly reduced to lower the grinding strength, thereby making the precursor particles uniform and finely powdered, thereby improving the properties. have.
  • Another embodiment of the present invention may be barium titanate prepared in the above method, the Ba / Ti molar ratio of barium titanate may be 0.999 ⁇ 1.001.
  • the Ba / Ti molar ratio is within the above range, it is possible to meet the performance of the multilayer ceramic capacitor manufactured using barium titanate.
  • the synthesis temperature, aging temperature and Changed the time In order to determine the effects of synthesis temperature, aging temperature and aging time on the specific surface area of barium titanyl oxalate and the Ba / Ti molar ratio of barium titanate after synthesis, the synthesis temperature, aging temperature and Changed the time.
  • aqueous barium chloride solution and titanyl chloride solution were mixed well in a 4M 3 glass-lined reactor to prepare a mixed aqueous solution.
  • an oxalic acid aqueous solution was prepared in a 6M3 reactor.
  • the mixed aqueous solution was sprayed on the oxalic acid solution at a rate of 2.5 L / min using a nozzle of a full con type.
  • a diaphragm pump was used for the supply of the mixed aqueous solution during the nozzle spraying.
  • the oxalic acid solution was sprayed while stirring with a stirrer, the stirring speed of the stirrer was maintained at 150rpm.
  • the mixed aqueous solution was added dropwise for 2 hours.
  • the barium titanyl oxalate slurry was then filtered through a centrifuge and washed with excess water to a pH of 4 wash.
  • the barium titanyl oxalate thus obtained was dried in an oven at a temperature of 200 ° C. for 12 hours to obtain a solid barium titanyl oxalate.
  • the synthesized barium titanyl oxalate was wet milled using a ball mill.
  • the ball was used as a ceramic ball of 3mm, water was used as the medium, the rotation speed is 100rpm, the ball mill was carried out for 24 hours.
  • the barium titanyl oxalate slurry thus obtained was dried in an oven at a temperature of 200 ° C. for 12 hours to obtain a barium titanyl oxalate powder.
  • the prepared barium titanyl oxalate powder was calcined at 970 ° C. for 7 hours in an air atmosphere to obtain a barium titanate powder.
  • the specific surface area of the prepared barium titanyl oxalate powder was measured, and the molar ratio (Ba / Ti) of the barium atoms to the titanium atoms of the barium titanate powder obtained by calcining the barium titanyl oxalate powder was measured.
  • the results are shown in Table 1.
  • the specific surface area refers to the surface area per unit weight of barium titanate powder, which was measured by BET method using ASmeri2010 of Micromeritics.
  • Ba / Ti values were measured using an X-ray fluorescence spectrometer (XRF) from Philips.
  • XRF X-ray fluorescence spectrometer
  • Comparative Example 1 is a case where the dropping temperature is 70 ° C
  • Examples 1 to 3 and Comparative Examples 2 and 3 are cases where the dropping temperature is changed from 20 ° C to 80 ° C.
  • the dropping temperature is 30 to 50 ° C.
  • the specific surface area of barium titanyl oxalate is in the range of 3 to 6 m 2 / g
  • the Ba / Ti molar ratio is in the range of 0.999 to 1.001.
  • Ba / Ti molar ratio is less than 0.999, because the dropping temperature is too low to 20 °C barium and titanium ions and oxalic acid was not properly reacted.
  • the Ba / Ti molar ratio is less than 0.999, because the dropping temperature is too high to decompose oxalic acid and the reaction of barium ions and titanium ions with oxalic acid is reduced.
  • FIG. 2 is a scanning electron micrograph of the barium titanyl oxalate powder after synthesis according to Example 1.
  • FIG. 3 is a scanning electron micrograph of the barium titanyl oxalate powder after milling according to Example 1.
  • FIG. 4 is an X-ray diffraction pattern for barium titanate according to Example 1.
  • FIG. 5 is a scanning electron micrograph of barium titanate according to Example 1; 6 is a scanning electron micrograph of the barium titanyl oxalate powder after synthesis according to Comparative Example 1.
  • 7 is a scanning electron micrograph of the barium titanyl oxalate powder after grinding according to Comparative Example 1.
  • Barium titanyl oxalate and barium titanate were synthesized with varying concentrations of the raw materials (barium chloride, titanyl chloride), and evaluation was carried out as in the case of the influence of the synthesis temperature.
  • Table 2 shows the synthesis conditions and the evaluation results.
  • Comparative Examples 4 and 5 have lower concentrations of barium chloride and titanyl chloride compared to Comparative Example 1, and have a specific surface area of barium titanyl oxalate smaller than 3 m 2 / g after synthesis. This is because barium ions and titanium ions do not react properly with oxalic acid.
  • Examples 6 and 7 show a case where the concentration of barium chloride is 0.84 to 1.05 mol, the concentration of titanyl chloride is 0.8 to 1.0 mol, and the concentration of oxalic acid is 1.9 to 2.3 mol, and after the synthesis of barium titanyl oxalate
  • the specific surface area is in the range of 3 to 7 m 2 / g, and the Ba / Ti molar ratio of barium titanate is in the range of 0.999 to 1.001.
  • 8 is a scanning electron micrograph of the barium titanyl oxalate powder after synthesis according to Example 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The present invention relates to a method for preparing barium titanyl oxalate, to a method for preparing barium titanate comprising same, and to barium titanyl oxalate and barium titanate prepared by said methods. The present invention is characterized in that synthesis conditions such as the synthesis temperature and the concentration of a material can be adjusted in the process of synthesizing barium titanyl oxalate, wherein the process is performed by the dropwise addition of an aqueous solution of barium chloride and an aqueous solution of titanyl chloride to an aqueous solution of oxalic acid. According to the present invention, barium titanyl oxalate having a large specific surface area can be prepared after the synthesis, and barium titanate having Ba/Ti mole ratio of 0.999 to 1.001 can be prepared.

Description

티탄산바륨의 제조방법, 및 이에 의하여 제조된 티탄산바륨Method for producing barium titanate, and barium titanate produced thereby
본 발명은 티탄산바륨의 제조방법, 및 이에 의하여 제조된 티탄산바륨에 관한 것으로, 보다 상세하게는 적가 온도, 반응물질의 농도 등의 합성 조건을 조절하여 비표면적이 높은 바륨티타닐옥살레이트 분말을 제조하고, Ba/Ti 몰비가 0.999~1.001인 티탄산바륨을 제조하는 방법에 관한 것이다. The present invention relates to a method for producing barium titanate, and to barium titanate prepared thereby, and more particularly, to prepare barium titanyl oxalate powder having a high specific surface area by adjusting synthetic conditions such as dropping temperature and concentration of a reactant. And a method for producing barium titanate having a Ba / Ti molar ratio of 0.999 to 1.001.
티탄산바륨은 적층 세라믹 콘덴서(Multi Layer Ceramic Capaicitor), 정특성 세라믹 콘덴서(PTC) 및 압전체 등의 원료로 광범위하게 사용되고 있다. 티탄산바륨은 종래에는 이산화티탄(TiO2)과 탄산바륨(BaCO3)을 고상반응에 의해 고온에서 소결하여 제조하였지만, 최근 MLCC(Multi Layer Ceramic Capacitor)의 소형 대용량화(고유전율조성, 유전체 박층화 및 고적층화), 저온소성화, 고주파 및 고성능화 등에 따라, 고순도/조성균일성, 미립/입도균일성, 비응집성/고분산성 등이 요구되고 있으며, 이러한 특성을 만족할 수 있는 제조방법으로 액상합성법의 수요가 증가하고 있다. 상기 액상합성법으로 예를 들면 수열합성법, 공침법(옥살레이트법), 알콕사이드법등이 개발되어 그 사용이 급증하고 있다.Barium titanate is widely used as a raw material for multilayer ceramic capacitors, static ceramic capacitors, and piezoelectric materials. Barium titanate was conventionally manufactured by sintering titanium dioxide (TiO 2 ) and barium carbonate (BaCO 3 ) at a high temperature by a solid phase reaction, but in recent years, small-capacity large-capacity of MLCC (Multi Layer Ceramic Capacitor), high dielectric constant, dielectric thinning High lamination, low temperature firing, high frequency and high performance, high purity / composition uniformity, fine grain / particle uniformity, non-aggregation / high dispersibility, etc. are required. It is increasing. As the liquid phase synthesis method, for example, hydrothermal synthesis method, coprecipitation method (oxalate method), alkoxide method and the like have been developed, and the use thereof is rapidly increasing.
액상합성법중에서 옥살레이트법은 Ba와 Ti이온이 함유된 혼합용액을 옥살산에 첨가하여 바륨티타닐옥살레이트 화합물로 침전시킨 후 이것을 건조 및 하소하여 티탄산바륨 분말을 제조하는 방법이다. 바륨티타닐옥살레이트 (BaTiO(C2O4)2ㆍ4H2O)는 티탄산바륨(BaTiO3)의 전구체이다. In the liquid phase synthesis method, the oxalate method is a method of preparing barium titanate powder by adding a mixed solution containing Ba and Ti ions to oxalic acid, precipitating it with a barium titanyl oxalate compound, and drying and calcining it. Barium titanyl oxalate (BaTiO (C 2 O 4 ) 2 .4H 2 O) is a precursor of barium titanate (BaTiO 3 ).
종래의 티탄산바륨의 제조방법 중 하나인 옥살레이트 공정은 제품의 특성을 안정화시키고 수율을 높이기 위하여 티탄산바륨의 합성시 전구체인 바륨티타닐옥살레이트의 숙성과정을 거쳐 약 200㎛ 크기의 입자로 성장시켰다. 그러나, 이와 같이 입자크기가 큰 바륨티타닐옥살레이트를 열처리하여 티탄산바륨을 제조할 경우에는, 열처리 과정에서 과도한 응집체가 형성되어 최종 제품인 티탄산바륨의 품질이 저하되는 문제점이 있다.Oxalate process, one of the conventional methods for producing barium titanate, was grown to particles of about 200 μm through aging of barium titanyl oxalate, which is a precursor for the synthesis of barium titanate, in order to stabilize product properties and increase yield. . However, when barium titanyl oxalate having a large particle size is heat-treated to produce barium titanate, there is a problem in that excessive aggregates are formed during the heat treatment to deteriorate the quality of the final product of barium titanate.
본 발명은 적가 온도, 원료물질의 농도 등의 합성 조건을 조절하여 비표면적이 높은바륨티타닐옥살레이트(3~7㎡/g)를 제조하고, Ba/Ti 몰비가 0.999~1.001인 티탄산바륨을 제조하는 방법을 제공하고자 한다. According to the present invention, barium titanyl oxalate (3-7 m 2 / g) having a high specific surface area is prepared by adjusting synthesis conditions such as dropping temperature and concentration of raw materials, and barium titanate having a Ba / Ti molar ratio of 0.999 to 1.001 is obtained. It is intended to provide a method of preparation.
본 발명의 제1 실시형태는 바륨클로라이드(BaCl2) 수용액 및 티타닐클로라이드(TiOCl2) 수용액을 마련하는 단계(원료준비 단계); 상기 바륨클로라이드 수용액과 상기 티타닐클로라이드 수용액을 옥살산(Oxalic Acid) 용액에 적가하여 바륨티타닐옥살레이트(Barium Titanyl Oxalate) 침전물을 형성하는 단계(적가 단계); 상기 바륨티타닐옥살레이트 침전물을 포함하는 용액을 에이징 하는 단계(에이징 단계); 상기 바륨티타닐옥살레이트 침전물을 세척 및 건조하는 단계(회수 단계); 및 상기 회수된 바륨티타닐옥살레이트 침전물을 분쇄하여 바륨티타닐옥살레이트 분말을 얻는 단계(분쇄 단계)를 포함하고, 합성 조건을 조절하여 상기 회수 단계에서 회수된 바륨티타닐옥살레이트의 비표면적이 3~7㎡/g 이고, 분쇄 후 얻은 바륨티타닐옥살레이트를 하소하여 제조한 티탄산바륨의 Ba/Ti 몰비는 0.999~1.001 인 티탄산바륨의 제조방법일 수 있다. A first embodiment of the present invention comprises the steps of preparing a barium chloride (BaCl 2 ) aqueous solution and titanyl chloride (TiOCl 2 ) aqueous solution (stock preparation step); Adding an aqueous barium chloride solution and the titanyl chloride solution to an oxalic acid solution to form a barium titanyl oxalate precipitate (dropping step); Aging the solution comprising the barium titanyl oxalate precipitate (aging step); Washing and drying the barium titanyl oxalate precipitate (recovery step); And pulverizing the recovered barium titanyl oxalate precipitate to obtain a barium titanyl oxalate powder (grinding step), wherein the specific surface area of barium titanyl oxalate recovered in the recovery step is controlled by adjusting the synthetic conditions. The Ba / Ti molar ratio of 3 to 7 m 2 / g of barium titanate prepared by calcining barium titanyl oxalate obtained after grinding may be a method for preparing barium titanate of 0.999 to 1.001.
본 실시형태의 제1 측면에서, 상기 적가 단계는 30~50℃의 온도에서 수행될 수 있다. 이 경우 상기 분쇄 단계는 볼밀링에 의하여 수행될 수 있다. 또한 상기 분쇄단계는 바륨티타닐옥살레이트 분말의 비표면적이 10㎡/g 가 될 때까지 수행될 수 있다. In the first aspect of the present embodiment, the dropping step may be performed at a temperature of 30 ~ 50 ℃. In this case, the grinding step may be performed by ball milling. In addition, the grinding step may be performed until the specific surface area of the barium titanyl oxalate powder is 10 m 2 / g.
본 실시 형태의 제2 측면에서, 상기 바륨클로이드(BaCl2) 수용액의 농도는 0.84~1.05 ㏖/ℓ이고, 상기 티타닐클로라이드(TiOCl2)의 농도는 0.8~1.0 ㏖/ℓ 이고, 상기 옥살산(Oxalic Acid)의 농도는 1.9~2.3 ㏖/ℓ 일 수 있다. 이 경우 상기 분쇄 단계는 볼밀링에 의하여 수행될 수 있다. 또한 상기 분쇄단계는 바륨티타닐옥살레이트 분말의 비표면적이 10㎡/g 가 될 때까지 수행될 수 있다.In a second aspect of the present embodiment, the concentration of the aqueous solution of barium chloride (BaCl 2 ) is 0.84 to 1.05 mol / l, the concentration of the titanyl chloride (TiOCl 2 ) is 0.8 to 1.0 mol / l, and the oxalic acid (Oxalic Acid) concentration may be 1.9 ~ 2.3 mol / L. In this case, the grinding step may be performed by ball milling. In addition, the grinding step may be performed until the specific surface area of the barium titanyl oxalate powder is 10 m 2 / g.
본 발명의 제2 실시형태는 제1 실시형태에 따라 제조된 바륨티타닐옥살레이트 일 수 있다. The second embodiment of the present invention may be barium titanyl oxalate prepared according to the first embodiment.
본 발명의 제3 실시형태는 제2 실시형태의 바륨티타닐옥살레이트을 하소하여 티탄산바륨을 제조하는 티탄산바륨의 제조방법일 수 있으며, 상기 하소는 800~1000℃에서 수행될 수 있다.The third embodiment of the present invention may be a method for producing barium titanate for calcining barium titanyl oxalate of the second embodiment to produce barium titanate, and the calcination may be performed at 800 to 1000 ° C.
본 발명의 제4 실시형태는 제3 실시형태에 따라 제조된 티탄산바륨일 수 있으며, Ba/Ti 몰비가 0.999~1.001일 수 있다.The fourth embodiment of the present invention may be barium titanate prepared according to the third embodiment, and the Ba / Ti molar ratio may be 0.999 to 1.001.
본 발명에 의하면, 적가 온도, 반응물질의 농도 등의 합성 조건을 조절하여 비표면적이 높은(3~7㎡/g) 바륨티타닐옥살레이트 분말을 제조할 수 있고, 또한 Ba/Ti 몰비가 0.999~1.001이고, 입자분포가 균일한 티탄산바륨을 제조할 수 있다.According to the present invention, barium titanyl oxalate powder having a high specific surface area (3 to 7 m 2 / g) can be prepared by adjusting the synthesis conditions such as the dropping temperature and the concentration of the reactant, and the Ba / Ti molar ratio of 0.999 Barium titanate having a particle distribution of 1.00.001 and uniform particle distribution.
도 1은 본 발명의 일 실시형태에 따른 바륨티타닐옥살레이트 분말의 제조방법의 흐름도이다.1 is a flowchart of a method for producing barium titanyl oxalate powder according to one embodiment of the present invention.
도 2는 실시예 1에 따른 합성 후 바륨티타닐옥살레이트 분말에 대한 주사전자현미경 사진이다.2 is a scanning electron micrograph of the barium titanyl oxalate powder after synthesis according to Example 1. FIG.
도 3은 실시예 1에 따른 분쇄 후 바륨티타닐옥살레이트 분말에 대한 주사전미경 사진이다.3 is a scanning micrograph of the barium titanyl oxalate powder after milling according to Example 1.
도 4는 실시예 1에 따른 티탄산바륨에 대한 X-선 회절분석 패턴이다.4 is an X-ray diffraction pattern for barium titanate according to Example 1. FIG.
도 5는 실시예 1에 따른 티탄산바륨에 대한 주사전자현미경 사진이다. 5 is a scanning electron micrograph of barium titanate according to Example 1;
도 6은 실시예 7에 따른 합성 후 바륨티타닐옥살레이트 분말에 대한 주사전자현미경 사진이다. 6 is a scanning electron micrograph of the barium titanyl oxalate powder after synthesis according to Example 7. FIG.
도 7은 비교예 1에 따른 합성 후 바륨티타닐옥살레이트 분말에 대한 주사전자현미경 사진이다.7 is a scanning electron micrograph of the barium titanyl oxalate powder after synthesis according to Comparative Example 1.
도 8은 비교예 1에 따른 분쇄 후 바륨티타닐옥살레이트 분말에 대한 주사전자현미경 사진이다. 8 is a scanning electron micrograph of the barium titanyl oxalate powder after grinding according to Comparative Example 1.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 설명한다. 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시 형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. Embodiment of the present invention can be modified in various other forms, the scope of the present invention is not limited to the embodiments described below. In addition, the embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art. Accordingly, the shape and size of elements in the drawings may be exaggerated for clarity, and the elements denoted by the same reference numerals in the drawings are the same elements.
도 1을 참조하면, 본 발명의 제1 실시형태는 바륨클로라이드(BaCl2) 수용액 및 티타닐클로라이드(TiOCl2) 수용액을 마련하는 단계(원료준비 단계); 바륨클로라이드 수용액과 상기 티타닐클로라이드 수용액을 옥살산(Oxalic Acid) 용액에 적가하여 바륨티타닐옥살레이트(Barium Titanyl Oxalate) 침전물을 형성하는 단계(적가 단계); 바륨티타닐옥살레이트 침전물을 포함하는 용액을 에이징 하는 단계(에이징 단계); 바륨티타닐옥살레이트 침전물을 세척 및 건조하는 단계(회수 단계); 및 회수된 바륨티타닐옥살레이트 침전물을 분쇄하여 바륨티타닐옥살레이트 분말을 얻는 단계(분쇄 단계)를 포함하고, 합성 조건을 조절하여 상기 회수 단계에서 회수된 바륨티타닐옥살레이트의 비표면적이 3 ~ 7㎡/g 이고, 분쇄 후 얻은 바륨티타닐옥살레이트를 하소하여 제조한 티탄산바륨의 Ba/Ti 몰비는 0.999~1.001인 티탄산바륨의 제조방법일 수 있다.1, the first embodiment of the present invention comprises the steps of preparing a barium chloride (BaCl 2 ) aqueous solution and titanyl chloride (TiOCl 2 ) aqueous solution (stock preparation step); Adding an aqueous barium chloride solution and the titanyl chloride solution to an oxalic acid solution to form a barium titanyl oxalate precipitate (dropping step); Aging the solution comprising barium titanyl oxalate precipitate (aging step); Washing and drying the barium titanyl oxalate precipitate (recovery step); And pulverizing the recovered barium titanyl oxalate precipitate to obtain barium titanyl oxalate powder (milling step), wherein the specific surface area of barium titanyl oxalate recovered in the step of recovering by adjusting the synthesis conditions is 3 ˜7 m 2 / g, the Ba / Ti molar ratio of barium titanate prepared by calcining barium titanyl oxalate obtained after pulverization may be a method for producing barium titanate of 0.999 to 1.001.
이하에서는, 먼저 본 실시형태의 제1 측면에 대하여 설명한다. 본 실시형태의 제1 측면은 합성 온도의 범위에 관한 것이다.Hereinafter, first, the first aspect of the present embodiment will be described. The first aspect of this embodiment relates to the range of synthesis temperatures.
먼저, 바륨클로라이드(BaCl2) 용액과 티타닐클로라이드(TiOCl2) 용액을 마련할 수 있다(원료준비 단계). 바륨클로라이드(BaCl2) 용액 및 티타닐클로라이드(TiOCl2) 용액은 물을 용매로 사용하는 수용액일 수 있다. First, a barium chloride (BaCl 2 ) solution and a titanyl chloride (TiOCl 2 ) solution may be prepared (raw material preparation step). The barium chloride (BaCl 2 ) solution and titanyl chloride (TiOCl 2 ) solution may be an aqueous solution using water as a solvent.
바륨클로라이드 수용액은 보통 BaCl2·2H2O를 물에 녹여 사용할 수 있다. 그 농도범위는 0.2~2.0 ㏖/ℓ 일 수 있다. 바륨클로라이드 수용액의 농도가 0.2 ㏖/ℓ 미만인 경우에는 바륨클로라이드 수용액의 부피 대비 티탄산바륨의 생산성이 낮으며, 농도가 2.0 ㏖/ℓ 를 초과할 경우에는 물에 대한 바륨클로라이드의 용해도 범위를 벗어나 바륨클로라이드가 석출될 수 있다.Aqueous solution of barium chloride can usually be used by dissolving BaCl 2 · 2H 2 O in water. The concentration range may be 0.2 to 2.0 mol / l. When the concentration of the barium chloride solution is less than 0.2 mol / l, the productivity of barium titanate is low relative to the volume of the barium chloride solution, and when the concentration exceeds 2.0 mol / l, barium chloride is out of the solubility range of barium chloride in water. Can be precipitated.
티타닐클로라이드 수용액은 사염화티탄(TiCl4)를 물에 희석한 후 염산(HCl)을 넣어 안정화시켜서 제조되는데, 그 농도범위는 0.2~2.0 ㏖/ℓ일 수 있다. 이 때 온도가 40℃ 이상으로 높아지면 티타닐클로라이드가 고상의 티타늄옥사이드로 석출되어 티탄산바륨의 Ba/Ti 몰비가 작아질 수 있으므로 40℃ 보다 낮은 온도를 유지해야 한다. The titanyl chloride aqueous solution is prepared by diluting titanium tetrachloride (TiCl 4 ) in water and then stabilizing by adding hydrochloric acid (HCl), and the concentration range may be 0.2 to 2.0 mol / l. At this time, if the temperature is higher than 40 ℃ titanyl chloride may be precipitated as a solid titanium oxide to reduce the Ba / Ti molar ratio of barium titanate should be maintained at a temperature lower than 40 ℃.
다음으로, 바륨클로라이드(BaCl2) 용액과 티타닐클로라이드(TiOCl2) 용액을 옥살산(Oxalic Acid) 용액에 적가하여 바륨티타닐옥살레이트(Barium Titanyl Oxalate)(BTO: BaTiO(C2O4)2·4H2O) 침전물을 형성할 수 있다. 본 공정에서 티탄산바륨의 전구체인 바륨티타닐옥살레이트가 합성될 수 있다. 바륨클로라이드 용액 및 티타닐클로라이드 용액을 옥살산 용액에 동시에 적가할 수 있다. 구체적으로는 바륨클로라이드 수용액 및 티타닐클로라이드 수용액의 혼합용액을 고속분사 노즐을 사용하여 옥살산(H2C2O4) 수용액에 적가할 수 있다. 원료 용액은, 예를 들어, 회분식 반응기에서 혼합될 수 있다. 적가 단계 동안 계속하여 용액을 교반할 수 있다. 교반을 통하여 바륨클로라이드 및 티타닐클로라이드가 옥살산과 균일하게 반응하도록 유도할 수 있다. Next, a barium chloride (BaCl 2 ) solution and a titanyl chloride (TiOCl 2 ) solution were added dropwise to the oxalic acid solution to form barium titanyl oxalate (BTO: BaTiO (C 2 O 4 ) 2 4H 2 O) May form precipitates. In this process, barium titanyl oxalate, a precursor of barium titanate, may be synthesized. The barium chloride solution and titanylchloride solution can be added dropwise to the oxalic acid solution simultaneously. Specifically, a mixed solution of an aqueous barium chloride solution and a titanyl chloride solution may be added dropwise to an aqueous oxalic acid (H 2 C 2 O 4 ) solution using a high-speed jet nozzle. The raw material solution can be mixed, for example, in a batch reactor. The solution may continue to stir during the dropping step. Through agitation, barium chloride and titanyl chloride can be induced to react uniformly with oxalic acid.
적가 단계는 30℃~50℃의 온도에서 수행될 수 있다. 여기서 적가 온도는 옥살산 수용액의 온도를 의미한다. 적가 단계의 온도가 30℃ 보다 낮은 경우에는 바륨클로라이드 및 티타닐클로라이드와 옥살산과의 반응이 이루어지지 않을 수 있고, 적가 단계의 온도가 50℃ 보다 높은 경우에는 옥살산이 분해되어 오히려 바륨클로라이드 및 티타닐클로라이드와 옥살산과의 반응이 저하될 수 있다. 이때 바륨클로라이드 수용액, 티타닐클로라이드 수용액의 혼합용액은 석출을 막기 위해 30℃ 이하를 유지해야 한다.The dropping step may be performed at a temperature of 30 ° C ~ 50 ° C. Here, the dropping temperature means the temperature of the oxalic acid aqueous solution. When the dropping temperature is lower than 30 ° C., the reaction of barium chloride and titanyl chloride with oxalic acid may not be performed. When the dropping temperature is higher than 50 ° C., the oxalic acid is decomposed, rather barium chloride and titanyl The reaction of chloride with oxalic acid may be lowered. At this time, the mixed solution of the barium chloride solution and titanyl chloride solution should be kept below 30 ℃ to prevent precipitation.
합성시간은 원료 용액을 반응기에 투입하는 속도, 예를 들어, 바륨클로라이드 수용액 및 티타닐클로라이드 수용액을 옥살산 수용액에 적가하는 속도를 조절함으로써 제어할 수 있다. 바륨클로라이드 수용액과 티타닐클로라이드 수용액의 혼합 용액이 옥살산 수용액에 노즐 분사되어 적가되는 시간은 1~3시간일 수 있다. 이러한 적가 시간은 노즐의 분사속도를 조절함으로써 달성될 수 있다. Synthesis time can be controlled by adjusting the rate at which the raw material solution is added to the reactor, for example, the dropwise addition of the barium chloride aqueous solution and titanyl chloride aqueous solution to the oxalic acid aqueous solution. The mixed solution of the barium chloride aqueous solution and the titanyl chloride aqueous solution is nozzle-dropped into the oxalic acid aqueous solution to be added dropwise to 1 to 3 hours. This dropping time can be achieved by adjusting the injection speed of the nozzle.
바륨클로라이드 수용액과 티타닐클로라이드 수용액을 옥살산 수용액에 적가하여 바륨티타닐옥살레이트(BaTiO(C2O4)2·4H2O)를 생성하는 과정은 하기 반응식 1과 같이 표시될 수 있다.A process of generating barium titanyl oxalate (BaTiO (C 2 O 4 ) 2 .4H 2 O) by dropwise adding an aqueous barium chloride solution and a titanyl chloride solution to an aqueous oxalic acid solution may be represented by the following Scheme 1.
[반응식 1] Scheme 1
BaCl2·2H2O + TiOCl2· + 2H2C2O4·2H2O → BaTiO(C2O4)4H2O + 4HCl BaCl 2 · 2H 2 O + TiOCl 2 · + 2H 2 C 2 O 4 · 2H 2 O → BaTiO (C 2 O 4) 2 · 4H 2 O + 4HCl
반응식 1에 의하면, 바륨클로라이드, 티타닐클로라이드 및 옥살산의 몰비가 1:1:2 이지만, 실제로는 바륨클로라이드 및 옥살산의 양을 더 첨가할 수 있다. 바륨클로라이드는 반응속도가 느리기 때문에 이러한 점을 고려하여 더 첨가할 수 있다. 옥살산의 경우 일부가 분해될 수 있기 때문에 이러한 점을 고려하여 더 첨가할 수 있다. 또한, 옥살산 수용액은 바륨클로라이드 수용액이나 티타닐클로라이드 수용액 보다 많은 양이 사용될 수 있다.According to Scheme 1, the molar ratio of barium chloride, titanyl chloride and oxalic acid is 1: 1: 2, but in practice it is possible to further add amounts of barium chloride and oxalic acid. Barium chloride may be added in consideration of this point because the reaction rate is slow. In the case of oxalic acid, some of the oxalic acid may be decomposed, and thus it may be added in consideration of this. In addition, an aqueous solution of oxalic acid may be used in an amount larger than that of an aqueous solution of barium chloride or an aqueous solution of titanyl chloride.
다음으로, 바륨티타닐옥살레이트 침전물을 포함하는 혼합용액을 에이징 할 수 있다(에이징 단계).Next, the mixed solution containing the barium titanyl oxalate precipitate can be aged (aging step).
바륨티타닐옥살레이트는 바륨 이온 및 티타늄 이온이 옥살산과 반응하여 형성될 수 있다. 하지만 옥살산과의 반응에 참여하지 못한 바륨 이온 및 티타늄 이온이 존재할 수 있는데, 계속적으로 교반을 행하면서 일정 시간 유지함으로써 반응에 참여하지 못한 이온들을 반응에 참여하도록 할 수 있다. Barium titanyl oxalate may be formed by reaction of barium ions and titanium ions with oxalic acid. However, there may be barium ions and titanium ions that do not participate in the reaction with oxalic acid. By continuing to stir for a certain time, the ions that do not participate in the reaction may participate in the reaction.
에이징은 70℃ 이하에서 수행할 수 있다. 바륨티타닐옥살레이트 합성 후 일반적으로 온도를 올려 에이징을 수행할 수 있는데, 에이징 온도가 70℃ 보다 높으면 옥살산이 분해되어 오히려 반응이 저하될 수 있기 때문이다. Aging can be carried out at 70 ° C or lower. In general, after the synthesis of barium titanyl oxalate, the temperature may be increased to perform aging, because if the aging temperature is higher than 70 ° C., the oxalic acid may be decomposed and the reaction may be lowered.
반면에 에이징 시간은 티탄산바륨의 Ba/Ti 몰비에 거의 영향을 미치지 않으며, 따라서 에이징 온도를 정한 후에는 되도록이면 짧은 시간 동안 에이징을 실시하는 것이 생산성에 유리할 수 있다. On the other hand, the aging time has little effect on the Ba / Ti molar ratio of barium titanate, and therefore, after the aging temperature is determined, it may be advantageous for productivity to carry out aging for as short a time as possible.
다음으로, 바륨티타닐옥살레이트 침전물을 세척 및 건조할 수 있다(회수 단계). The barium titanyl oxalate precipitate can then be washed and dried (recovery step).
회수 단계는 고상의 바륨티타닐옥살레이트 침전물만을 분리해내는 공정을 말한다. 회수는 원심분리기 또는 필터 프레스(filter press) 등을 이용하여 바륨티타닐옥살레이트 함유 슬러리로부터 고상의 바륨티타닐옥살레이트 결정 덩어리를 분리함으로써 이루어질 수 있다. 회수된 바륨티타닐옥살레이트 침전물은 과량의 물로 여과된 바륨티타닐옥살레이트를 세척할 수 있다. The recovery step refers to a process of separating only solid barium titanyl oxalate precipitate. Recovery may be accomplished by separating solid barium titanyl oxalate crystal mass from the barium titanyl oxalate containing slurry using a centrifuge or a filter press. The recovered barium titanyl oxalate precipitate can wash the filtered barium titanyl oxalate with excess water.
세척된 바륨티타닐옥살레이트를 400℃ 이하의 온도에서 건조하여 세척액을 제거할 수 있다. 건조방법으로는 오븐건조, 진공건조 및 동결건조 등 다양한 방법이 있으며, 가능한 한 낮은 온도에서 짧은 시간 동안 건조하는 것이 작은 입자크기 및 균일한 입도분포를 얻는데 유리할 수 있다.The washed barium titanyl oxalate may be dried at a temperature of 400 ° C. or lower to remove the washing liquid. There are various methods of drying such as oven drying, vacuum drying and freeze drying, and it may be advantageous to dry for a short time at the lowest temperature possible to obtain a small particle size and uniform particle size distribution.
바륨티타닐옥살레이트 침전물의 비표면적은 3~7㎡/g 일 수 있다. 바람직하게는 4~6㎡/g 일 수 있다. 바륨티타닐옥살레이트 침전물의 비표면적이 3㎡/g 보다 작으면 티탄산바륨의 Ba/Ti 몰비가 0.999보다 작을 수 있고, 비표면적이 7㎡/g 보다 크면 티탄산바륨의 Ba/Ti 몰비가 1.001 보다 클 수 있다. 티탄산바륨의 Ba/Ti 몰비가 0.999~1.001의 범위를 벗어나는 경우 티탄산바륨을 이용하여 제조된 전자제품의 유전 특성이 저하될 수 있다.The specific surface area of the barium titanyl oxalate precipitate may be 3-7 m 2 / g. Preferably it may be 4-6 m 2 / g. If the specific surface area of the barium titanyl oxalate precipitate is less than 3 m 2 / g, the Ba / Ti mole ratio of barium titanate may be less than 0.999. If the specific surface area is greater than 7 m 2 / g, the Ba / Ti mole ratio of barium titanate is more than 1.001. Can be large. When the Ba / Ti molar ratio of barium titanate is outside the range of 0.999 to 1.001, dielectric properties of electronic products manufactured using barium titanate may be reduced.
다음으로, 회수된 바륨티타닐옥살레이트 침전물을 분쇄하여 바륨티타닐옥살레이트 분말을 얻을 수 있다(분쇄 단계). Top down 방식에 의하여 원하는 크기의 입자를 가지는 바륨티타닐옥살레이트 분말을 얻을 수 있다.Next, the recovered barium titanyl oxalate precipitate may be pulverized to obtain a barium titanyl oxalate powder (milling step). It is possible to obtain a barium titanyl oxalate powder having particles of a desired size by a top down method.
분쇄 방법으로는 습식분쇄법을 이용할 수 있다. 습식분쇄란 소정의 매질과 함께 바륨티타닐옥살레이트를 비즈밀(beads mill), 볼밀(ball mill) 및 어트리션 밀(attrition mill) 등과 같은 습식분쇄기에 투입하여 분쇄하는 방식을 말한다. 분쇄시간은 분쇄설비에 따라 분쇄력의 차이가 발생하여 적절히 제어될 필요가 있으며, 분쇄시간을 조절하여 입자 사이즈를 조절할 수 있다.As the grinding method, a wet grinding method can be used. Wet grinding refers to a method in which barium titanyl oxalate is added to a wet mill such as beads mills, ball mills, and attrition mills together with a predetermined medium to grind. The grinding time needs to be appropriately controlled due to the difference in grinding force according to the grinding equipment, and can adjust the particle size by adjusting the grinding time.
매질로는 알코올과 같은 유기매질이나 탈이온수(deionized water)와 같은 물을 사용할 수 있다. 유기매질을 사용하게 되면 분쇄효율이나 입도관리 측면에서는 유리하지만 비용이 증가할 수 있고, 물을 사용하게 되면 공정이 단순해져 비용을 절감할 수 있다. As the medium, an organic medium such as alcohol or water such as deionized water may be used. The use of organic media is advantageous in terms of crushing efficiency and particle size, but it can increase costs. The use of water can simplify the process and reduce costs.
매질로서 물을 사용하는 경우, 물의 사용량은 바륨티타닐옥살레이트 1중량부에 대하여 1~10 중량부일 수 있다. 물의 사용량이 1 중량부 미만인 경우에는 점도가 커서 분쇄 효과가 없을 수 있고, 10 중량부를 초과할 경우에는 사용하는 물의 양 대비 바륨티타닐옥살레이트의 생산성이 낮을 수 있다.When water is used as the medium, the amount of water to be used may be 1 to 10 parts by weight based on 1 part by weight of barium titanyl oxalate. When the amount of water used is less than 1 part by weight, the viscosity may be large and there may be no grinding effect. When the amount of water is greater than 10 parts by weight, the productivity of barium titanyl oxalate may be low compared to the amount of water used.
습식분쇄된 바륨티타닐옥살레이트를 400℃ 이하의 온도에서 건조하여 사용된 매질을 제거할 수 있다. 건조 온도에는 특별한 제한은 없으나, 사용된 매질을 증발시켜 제거하기 위해 매질의 끓는점 이상일 수 있다. 이로써 바륨티타닐옥살레이트 분말을 얻을 수 있다. The wet milled barium titanyl oxalate may be dried at a temperature below 400 ° C. to remove the used medium. There is no particular limitation on the drying temperature, but may be above the boiling point of the medium to evaporate and remove the medium used. Thereby, barium titanyl oxalate powder can be obtained.
분쇄단계 이후 얻은 바륨티타닐옥살레이트 분말의 비표면적은 10㎡/g 이상일 수 있다. The specific surface area of the barium titanyl oxalate powder obtained after the grinding step may be 10 m 2 / g or more.
이하에서는, 본 실시형태의 제2 측면에 대하여 설명한다. 본 실시형태의 제1 측면은 티타닐바륨옥살레이트의 합성 온도 범위에 관한 것인 반면, 본 실시형태의 제2 측면은 합성 온도 범위와 상관없이 원료물질의 농도 범위에 관한 것이다.Below, the 2nd side surface of this embodiment is demonstrated. The first aspect of this embodiment relates to the synthesis temperature range of titanylbarium oxalate, while the second aspect of this embodiment relates to the concentration range of the raw material regardless of the synthesis temperature range.
상기 바륨클로이드(BaCl2) 수용액의 농도는 0.84~1.05 ㏖/ℓ이고, 상기 티타닐클로라이드(TiOCl2)의 농도는 0.8~1.0 ㏖/ℓ 이고, 상기 옥살산(Oxalic Acid)의 농도는 1.9~2.3 ㏖/ℓ 일 수 있다. 원료물질의 농도가 상기 하한보다 작은 경우에는 농도가 낮은 만큼 반응개시점이 적게 형성되고 이로 인하여 반응이 저하될 수 있다.The concentration of the aqueous solution of barium clath (BaCl 2 ) is 0.84 ~ 1.05 mol / L, the concentration of the titanyl chloride (TiOCl 2 ) is 0.8 ~ 1.0 mol / L, the concentration of the oxalic acid (Oxalic Acid) is 1.9 ~ 2.3 mol / l. When the concentration of the raw material is less than the lower limit, as the concentration is lower, the reaction starting point is less formed, which may lower the reaction.
보통 바륨클로라이드, 티타닐클로라이드, 옥살산의 농도는 각각 0.735㏖/ℓ, 0.7㏖/ℓ, 1.6㏖/ℓ 일 수 있다. 하지만 이에 한정되는 것은 아니며, 원료의 농도를 더 진하게 할 수 있다. 각 원료물질의 농도가 증가하면, 그 만큼 원료물질 간의 반응개시점이 더 증가하고 이로 인하여 반응 속도가 향상되어 결국에는 공정시간을 단축시킬 수 있는 장점이 있다. 그렇더라도 바륨클로이드(BaCl2)의 농도는 1.05 ㏖/ℓ 이하, 티타닐클로라이드(TiOCl2)의 농도는 1.0 ㏖/ℓ 이하, 옥살산(Oxalic Acid)의 농도는 2.3 ㏖/ℓ 이하일 수 있다. 원료 물질의 농도가 상기 범위를 벗어나는 경우에는 반응물질의 농도가 너무 높아 오히려 반응이 저하될 수 있다.Usually the concentrations of barium chloride, titanyl chloride and oxalic acid may be 0.735 mol / l, 0.7 mol / l and 1.6 mol / l, respectively. However, the present invention is not limited thereto, and the concentration of the raw material may be increased. When the concentration of each raw material is increased, the reaction starting point between the raw materials increases by that much, thereby improving the reaction speed, which has the advantage of shortening the process time. Even so, the concentration of barium clath (BaCl 2 ) may be 1.05 mol / l or less, the concentration of titanyl chloride (TiOCl 2 ) may be 1.0 mol / l or less, and the concentration of oxalic acid (Oxalic Acid) may be 2.3 mol / l or less. When the concentration of the raw material is out of the above range, the concentration of the reactant is too high, rather the reaction may be lowered.
본 발명의 다른 실시형태는 앞의 실시형태에 따라 제조된 바륨티타닐옥살레이트 분말을 하소하여 티탄산바륨을 제조하는 티탄산바륨의 제조방법일 수 있다. Another embodiment of the present invention may be a method for producing barium titanate, which calcinates barium titanyl oxalate powder prepared according to the previous embodiment to produce barium titanate.
건조된 바륨티타닐옥살레이트 분말의 하소하기 위해 가열로로서 Sagger 또는 Tray를 사용할 수 있다. 여기서, 'Sagger'란 내화토(耐火土) 용기를 의미하며, 예를 들어 정사각형 형태의 밑면을 갖는 육면체 형상의 용기일 수 있다.Sagger or Tray can be used as a heating furnace for calcining the dried barium titanyl oxalate powder. Here, 'Sagger' means a refractory soil container, and may be, for example, a cube-shaped container having a bottom surface of a square shape.
하소 온도는 800~1000℃일 수 있다. 하소 온도가 800℃ 미만인 경우에는 티탄산바륨이 거의 생성되지 않고, 1000℃를 초과하는 경우에는 티탄산바륨 입자의 과대성장이 일어날 수 있다. 승온율은 0.5~10℃/min 일 수 있다. 승온율이 0.5℃/min 보다 작으면 공정 시간이 길어져 생산성이 낮아질 수 있고, 10℃/min를 초과할 경우에는 위치에 따라 온도분포가 균일하지 않고 이로 인하여 티탄산바륨의 입도가 불균일해질 수 있다. The calcination temperature may be 800-1000 ° C. Barium titanate is hardly produced when the calcination temperature is lower than 800 ° C., and excessive growth of barium titanate particles may occur when it exceeds 1000 ° C. The temperature increase rate may be 0.5 ~ 10 ℃ / min. If the temperature increase rate is less than 0.5 ℃ / min, the process time is long, the productivity can be lowered, and if it exceeds 10 ℃ / min, the temperature distribution is not uniform depending on the position, which may result in uneven particle size of barium titanate.
구체적으로, 하소는 950℃에서 2시간 동안 수행하는 것이 바람직하다. Specifically, calcination is preferably performed at 950 ° C. for 2 hours.
하소 공정을 통하여 티탄산바륨를 생성함과 동시에 바륨티타닐옥살레이트 분말에 함유된 불순물을 분리하여 제거할 수 있다. 즉 바륨티타닐옥살레이트 결정의 내부에 결정수로 존재하는 수분과 과량의 탄산가스를 제거할 수 있으며, 다음과 같은 반응을 거쳐 티탄산바륨 분말이 형성될 수 있다. Through the calcination process, barium titanate may be produced and impurities contained in the barium titanyl oxalate powder may be separated and removed. That is, it is possible to remove excess water and excess carbon dioxide gas as crystal water inside the barium titanyl oxalate crystal, and the barium titanate powder may be formed through the following reaction.
[반응식 2] Scheme 2
BaTiO(C2O4)2·4H2O → BaTiO(C2O4)2+ 4H2O BaTiO (C 2 O 4 ) 2 4H 2 O → BaTiO (C 2 O 4 ) 2 + 4H 2 O
[반응식 3]Scheme 3
BaTiO(C2O4)2+ 1/2 O2→ BaCO3+ TiO2+ 2CO2 BaTiO (C 2 O 4 ) 2 + 1/2 O 2 → BaCO 3 + TiO 2 + 2CO 2
[반응식 4]Scheme 4
BaCO3+ TiO2→ BaTiO3 BaCO 3 + TiO 2 → BaTiO 3
하소하여 제조된 티탄산바륨은 Ba/Ti 몰비가 0.999~1.001일 수 있다. Ba/Ti 몰비가 0.999 보다 작거나, 또는1.001 보다 큰 경우에는 티탄산바륨을 이용하여 제조된 적층세라믹캐패시터 등 전자부품의 특성이 저하될 수 있다.Barium titanate prepared by calcining may have a Ba / Ti molar ratio of 0.999 to 1.001. If the Ba / Ti molar ratio is less than 0.999 or greater than 1.001, the characteristics of the electronic component such as a laminated ceramic capacitor manufactured using barium titanate may be deteriorated.
하소하여 제조된 티탄산바륨은 입자 간 네킹(necking)이 발생하여 응집되어 존재할 수 있다. 이러한 응집된 분말을 분리하기 위하여 티탄산바륨을 분쇄할 수 있다. 분쇄는, 소정의 매질과 함께 비즈밀(beads mill), 어트리션밀(Atrition mill), 및 볼밀(ball mill)과 같은 분쇄기를 사용하는 습식분쇄와, 젯밀(jet mill) 및 디스크밀(Disk mill)과 같이 매질을 사용하지 않은 상태에서 원료 간의 충돌이나 분쇄기와의 마찰력을 이용하는 건식분쇄를 이용할 수 있다. 분쇄단계는 티탄산바륨의 입자 간 응집을 해소하기 위한 것으로, 습식분쇄를 행한 후에는 건조과정이 추가로 필요할 수 있다. 필요가 없다면 분쇄단계는 생략할 수도 있다.Barium titanate prepared by calcining may be present by agglomeration caused by necking between particles. Barium titanate may be milled to separate such aggregated powders. Grinding includes wet grinding using a mill such as beads mills, attrition mills, and ball mills with a predetermined medium, jet mills and disk mills. Dry grinding using the friction between the raw materials or the crusher without using a medium, such as) can be used. The pulverization step is for resolving agglomeration between the particles of barium titanate, and after the wet pulverization, a drying process may be additionally required. If not necessary, the grinding step may be omitted.
종래의 수백 ㎛ 수준의 전구체를 사용하여 네킹이 없도록 분쇄하기 위해서는 강한 강도의 분쇄가 장시간 동안 필요하다. 이 때 티탄산바륨 입자가 파괴되어 미분이 다량으로 발생할 수 있고, 이로 인해 오히려 입도분포와 결정성이 저하될 수 있다. 하지만 본 실시예로 제조된 바륨티타닐옥살레이트의 경우 그 입자경이 종래에 비해 매우 작고, 응집체의 양이 현저히 감소하여 분쇄 강도를 낮출 수 있어 균일하고 미분이 없는 전구체 입자를 만들어 특성을 향상시킬 수 있다. Strong grinding is necessary for a long time in order to grind without necking using a precursor of several hundred μm level. At this time, the barium titanate particles may be destroyed to generate a large amount of fine powder, which may lower particle size distribution and crystallinity. However, in the case of barium titanyl oxalate prepared according to the present embodiment, the particle diameter thereof is very small compared to the conventional one, and the amount of aggregates is significantly reduced to lower the grinding strength, thereby making the precursor particles uniform and finely powdered, thereby improving the properties. have.
본 발명의 또 다른 실시형태는 상기 방법에 제조된 티탄산바륨일 수 있으며, 티탄산바륨의 Ba/Ti 몰비는 0.999~1.001일 수 있다. Ba/Ti 몰비가 상기 범위 내에 있을 때 티탄산바륨을 이용하여 제조한 적층세라믹캐패시터의 성능을 충족시킬 수 있다.Another embodiment of the present invention may be barium titanate prepared in the above method, the Ba / Ti molar ratio of barium titanate may be 0.999 ~ 1.001. When the Ba / Ti molar ratio is within the above range, it is possible to meet the performance of the multilayer ceramic capacitor manufactured using barium titanate.
이하에서는 실시예 및 비교예를 통하여 본 발명에 대하여 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.
[합성온도의 영향][Influence of Synthetic Temperature]
바륨티타닐옥살레이트 및 티타산바륨의 합성Synthesis of Barium Titanium Oxalate and Barium Titanate
합성 조건 중 합성 온도, 에이징 온도 및 에이징 시간이 합성 후 바륨티타닐옥살레이트의 비표면적 및 티탄산바륨의 Ba/Ti 몰비에 미치는 영향을 확인하기 위하여, 표 1에 나타낸 바와 같이 합성온도, 에이징 온도 및 시간을 변화시켰다. In order to determine the effects of synthesis temperature, aging temperature and aging time on the specific surface area of barium titanyl oxalate and the Ba / Ti molar ratio of barium titanate after synthesis, the synthesis temperature, aging temperature and Changed the time.
바륨클로라이드 수용액, 티타닐클로라이드 수용액을 4M3글래스-라인(Glass-lined) 반응조에서 잘 섞어서 혼합 수용액을 준비하였다. 또한, 6M3반응기에 옥살산 수용액을 준비하였다. The aqueous barium chloride solution and titanyl chloride solution were mixed well in a 4M 3 glass-lined reactor to prepare a mixed aqueous solution. In addition, an oxalic acid aqueous solution was prepared in a 6M3 reactor.
이후, 혼합 수용액을 옥살산 수용액에 풀콘(full con) 타입의 노즐을 이용하여 2.5ℓ/min의 속도로 분사하였다. 노즐 분사시 혼합 수용액의 공급을 위해 다이아프램 펌프를 사용하였다. 이때, 옥살산 용액을 교반기로 교반하면서 분사하였으며, 교반기의 교반속도는 150rpm으로 유지하였다. 2시간 동안 혼합 수용액을 적가하였다. Thereafter, the mixed aqueous solution was sprayed on the oxalic acid solution at a rate of 2.5 L / min using a nozzle of a full con type. A diaphragm pump was used for the supply of the mixed aqueous solution during the nozzle spraying. At this time, the oxalic acid solution was sprayed while stirring with a stirrer, the stirring speed of the stirrer was maintained at 150rpm. The mixed aqueous solution was added dropwise for 2 hours.
이후, 교반을 유지한 채로 에이징하여 바륨티타닐옥살레이트를 함유하는 슬러리를 얻었다. 이후 에이징을 실시하였다.Thereafter, aging was maintained while stirring to obtain a slurry containing barium titanyl oxalate. Thereafter, aging was performed.
이후, 바륨티타닐옥살레이트 슬러리를 원심분리기로 여과하고 과량의 물로 세척액의 pH가 4가 되도록 세척하였다. 이렇게 얻어진 바륨티타닐옥살레이트를 오븐 안에서 200℃의 온도로 12시간 동안 건조하여 고상의 바륨티타닐옥살레이트를 얻었다.The barium titanyl oxalate slurry was then filtered through a centrifuge and washed with excess water to a pH of 4 wash. The barium titanyl oxalate thus obtained was dried in an oven at a temperature of 200 ° C. for 12 hours to obtain a solid barium titanyl oxalate.
합성된 바륨티타닐옥살레이트를 볼밀을 이용하여 습식분쇄하였다. 볼은 3mm 인 세라믹 볼을 사용하고, 매질로는 물을 사용하였으며, 회전속도는 100rpm이고, 볼밀은 24 시간 동안 실시하였다. The synthesized barium titanyl oxalate was wet milled using a ball mill. The ball was used as a ceramic ball of 3mm, water was used as the medium, the rotation speed is 100rpm, the ball mill was carried out for 24 hours.
이렇게 얻어진 바륨티타닐옥살레이트 슬러리를 오븐 안에서 200℃의 온도로 12시간 동안 건조하여 바륨티타닐옥살레이트 분말을 얻었다.The barium titanyl oxalate slurry thus obtained was dried in an oven at a temperature of 200 ° C. for 12 hours to obtain a barium titanyl oxalate powder.
제조된 바륨티타닐옥살레이트 분말을 970℃, 대기 분위기에서 7시간 동안 하소하여 티탄산바륨 분말을 얻었다.The prepared barium titanyl oxalate powder was calcined at 970 ° C. for 7 hours in an air atmosphere to obtain a barium titanate powder.
평가evaluation
제조된 바륨티타닐옥살레이트 분말에 대하여 비표면적(specific surface area)을 측정하고, 바륨티타닐옥살레이트 분말을 하소하여 얻은 티탄산바륨 분말에 대하여 티타늄 원자 대비 바륨 원자의 몰비(Ba/Ti)를 측정하여, 그 결과를 표 1에 나타내었다. The specific surface area of the prepared barium titanyl oxalate powder was measured, and the molar ratio (Ba / Ti) of the barium atoms to the titanium atoms of the barium titanate powder obtained by calcining the barium titanyl oxalate powder was measured. The results are shown in Table 1.
비표면적(specific surface area)은 티탄산바륨 분말의 단위 무게당 표면적을 의미하며, Micromeritics사의 ASAP2010을 사용하여 BET방식으로 측정하였다. The specific surface area refers to the surface area per unit weight of barium titanate powder, which was measured by BET method using ASmeri2010 of Micromeritics.
Ba/Ti 값은 Philips사의 X선 형광분석 장비(XRF)를 사용하여 측정하였다.Ba / Ti values were measured using an X-ray fluorescence spectrometer (XRF) from Philips.
표 1
BaCl2(mol) TiOCl2(mol) Oxalic acid(mol) 적가온도 (℃) 에이징 온도(℃) 에이징 시간(min) BaTiO(C2O4)2의 비표면적(㎡/g) BaTiO3의 Ba/Ti 몰비
합성 후 밀링 후
비교예1 0.735 0.7 1.6 70 70 30 2.81 7.88 0.9998
비교예2 0.735 0.7 1.6 20 70 30 6.21 13.35 0.9921
실시예1 0.735 0.7 1.6 30 70 30 5.78 12.43 1.0005
실시예2 0.735 0.7 1.6 40 70 30 4.85 9.87 0.9992
실시예3 0.735 0.7 1.6 50 70 30 3.96 9.54 0.9997
비교예3 0.735 0.7 1.6 80 80 30 2.68 6.92 0.9884
실시예4 0.735 0.7 1.6 40 40 30 4.03 10.31 0.9994
실시예5 0.735 0.7 1.6 40 40 60 3.99 10.25 0.9993
Table 1
BaCl 2 (mol) TiOCl 2 (mol) Oxalic acid (mol) Dropping temperature (℃) Aging temperature (℃) Aging time (min) Specific surface area of BaTiO (C 2 O 4 ) 2 (㎡ / g) Ba / Ti molar ratio of BaTiO 3
After synthesis After milling
Comparative Example 1 0.735 0.7 1.6 70 70 30 2.81 7.88 0.9998
Comparative Example 2 0.735 0.7 1.6 20 70 30 6.21 13.35 0.9921
Example 1 0.735 0.7 1.6 30 70 30 5.78 12.43 1.0005
Example 2 0.735 0.7 1.6 40 70 30 4.85 9.87 0.9992
Example 3 0.735 0.7 1.6 50 70 30 3.96 9.54 0.9997
Comparative Example 3 0.735 0.7 1.6 80 80 30 2.68 6.92 0.9884
Example 4 0.735 0.7 1.6 40 40 30 4.03 10.31 0.9994
Example 5 0.735 0.7 1.6 40 40 60 3.99 10.25 0.9993
표 1을 참조하면, 비교예 1은 적가 온도가 70℃ 인 경우이고, 실시예 1~3, 비교예 2, 3은 적가 온도를 20℃에서부터 80℃까지 변화시킨 경우이다. 실시예 1~3의 경우 적가 온도가 30~50℃ 인 경우로서, 합성 후 바륨티타닐옥살레이트의 비표면적이 3~6㎡/g 범위 내에 있고, Ba/Ti 몰비가 0.999~1.001 범위 내에 있다. 반면에, 비교예 2의 경우 Ba/Ti 몰비가 0.999보다 작은데, 이는 적가 온도가 20℃로 너무 낮아 바륨 이온 및 티타늄 이온과 옥살산과의 반응이 제대로 이루어지지 않았기 때문이다. 비교예 3의 경우 Ba/Ti 몰비가 0.999보다 작은데, 이는 적가 온도가 너무 높아 옥살산이 분해되어 바륨 이온 및 티타늄 이온과 옥살산과의 반응이 저하되었기 때문이다.Referring to Table 1, Comparative Example 1 is a case where the dropping temperature is 70 ° C, and Examples 1 to 3 and Comparative Examples 2 and 3 are cases where the dropping temperature is changed from 20 ° C to 80 ° C. In Examples 1 to 3, the dropping temperature is 30 to 50 ° C., and after synthesis, the specific surface area of barium titanyl oxalate is in the range of 3 to 6 m 2 / g, and the Ba / Ti molar ratio is in the range of 0.999 to 1.001. . On the other hand, in the case of Comparative Example 2 Ba / Ti molar ratio is less than 0.999, because the dropping temperature is too low to 20 ℃ barium and titanium ions and oxalic acid was not properly reacted. In Comparative Example 3, the Ba / Ti molar ratio is less than 0.999, because the dropping temperature is too high to decompose oxalic acid and the reaction of barium ions and titanium ions with oxalic acid is reduced.
실시예 4 및 5를 참조하면, 에이징 시간을 변경시켜도 바륨티타닐옥살레이트 및 티탄산바륨의 특성에 영향이 거의 없다는 점을 확인할 수 있다. 또한 분쇄(밀링) 후 바륨티타닐옥살레이트의 비표면적이 10 ㎡/g 이상의 가지는 경우 티탄산바륨의 Ba/Ti 몰비가 0.999~1.001 범위 내에 존재함을 확인할 수 있다.Referring to Examples 4 and 5, it can be seen that even if the aging time is changed, the characteristics of barium titanyl oxalate and barium titanate have little effect. In addition, when the specific surface area of the barium titanyl oxalate after grinding (milling) has 10 m 2 / g or more, it can be seen that the Ba / Ti molar ratio of barium titanate exists within the range of 0.999 to 1.001.
도 2는 실시예 1에 따른 합성 후 바륨티타닐옥살레이트 분말에 대한 주사전자현미경 사진이다. 도 3은 실시예 1에 따른 분쇄 후 바륨티타닐옥살레이트 분말에 대한 주사전자현미경 사진이다. 도 4는 실시예 1에 따른 티탄산바륨에 대한 X-선 회절분석 패턴이다. 도 5는 실시예 1에 따른 티탄산바륨에 대한 주사전자현미경 사진이다. 도 6은 비교예 1에 따른 합성 후 바륨티타닐옥살레이트 분말에 대한 주사전자현미경 사진이다. 도 7은 비교예 1에 따른 분쇄 후 바륨티타닐옥살레이트 분말에 대한 주사전자현미경 사진이다. 2 is a scanning electron micrograph of the barium titanyl oxalate powder after synthesis according to Example 1. FIG. 3 is a scanning electron micrograph of the barium titanyl oxalate powder after milling according to Example 1. FIG. 4 is an X-ray diffraction pattern for barium titanate according to Example 1. FIG. 5 is a scanning electron micrograph of barium titanate according to Example 1; 6 is a scanning electron micrograph of the barium titanyl oxalate powder after synthesis according to Comparative Example 1. 7 is a scanning electron micrograph of the barium titanyl oxalate powder after grinding according to Comparative Example 1.
[원료물질 농도의 영향] [Influence of Raw Material Concentration ]
원료물질(바륨클로라이드, 티타닐클로라이드)의 농도를 변화시키면서 바륨티타닐옥살레이트 및 티타산바륨의 합성하였으며, 평가는 합성 온도의 영향의 경우에 실시한 바와 동일하게 수행하였다. 표2에 합성 조건 및 평가 결과를 나타내었다.Barium titanyl oxalate and barium titanate were synthesized with varying concentrations of the raw materials (barium chloride, titanyl chloride), and evaluation was carried out as in the case of the influence of the synthesis temperature. Table 2 shows the synthesis conditions and the evaluation results.
표 2
BaCl2(mol) TiOCl2(mol) Oxalic acid(mol) 적가온도 (℃) 에이징 온도(℃) 에이징 시간(min) BaTiO(C2O4)2 의 비표면적(㎡/g) BaTiO3의 Ba/Ti 몰비
합성 후 밀링 후
비교예1 0.735 0.7 1.6 70 70 30 2.81 7.88 0.9998
비교예4 0.368 0.35 0.8 70 70 30 2.11 6.95 0.9990
비교예5 0.525 0.5 1.15 70 70 30 2.35 7.21 0.9993
실시예6 0.848 0.8 1.92 70 70 30 6.85 11.98 0.9992
실시예7 1.050 1.0 2.30 70 70 30 6.90 12.41 1.0007
비교예6 1.260 1.2 2.76 70 70 30 8.53 12.95 1.0031
TABLE 2
BaCl 2 (mol) TiOCl 2 (mol) Oxalic acid (mol) Dropping temperature (℃) Aging temperature (℃) Aging time (min) Specific surface area of BaTiO (C 2 O 4 ) 2 (㎡ / g) Ba / Ti molar ratio of BaTiO 3
After synthesis After milling
Comparative Example 1 0.735 0.7 1.6 70 70 30 2.81 7.88 0.9998
Comparative Example 4 0.368 0.35 0.8 70 70 30 2.11 6.95 0.9990
Comparative Example 5 0.525 0.5 1.15 70 70 30 2.35 7.21 0.9993
Example 6 0.848 0.8 1.92 70 70 30 6.85 11.98 0.9992
Example 7 1.050 1.0 2.30 70 70 30 6.90 12.41 1.0007
Comparative Example 6 1.260 1.2 2.76 70 70 30 8.53 12.95 1.0031
표2를 참조하면, 비교예 4 및 5는 비교예 1과 비교하여 바륨클로라이드 및 티타닐클로라이드의 농도가 낮은 경우로서, 합성 후 바륨티타닐옥살레이트의 비표면적이 3 ㎡/g 보다 작다. 이는 바륨 이온 및 티타늄 이온이 옥살산과의 반응이 제대로 일어나지 않기 때문이다. Referring to Table 2, Comparative Examples 4 and 5 have lower concentrations of barium chloride and titanyl chloride compared to Comparative Example 1, and have a specific surface area of barium titanyl oxalate smaller than 3 m 2 / g after synthesis. This is because barium ions and titanium ions do not react properly with oxalic acid.
실시예 6 및 7은 바륨클로라이드의 농도가 0.84~1.05몰, 티타닐클로라이드의 농도가 0.8~1.0몰, 옥살산의 농도가 1.9~2.3몰로서 농도가 진한 경우인데, 합성 후 바륨티타닐옥살레이트의 비표면적이 3~7 ㎡/g 범위 내에 있고, 티탄산바륨의 Ba/Ti 몰비가 0.999~1.001 범위 내에 있다. 도 8은 실시예 7에 따른 합성 후 바륨티타닐옥살레이트 분말에 대한 주사전자현미경 사진이다.Examples 6 and 7 show a case where the concentration of barium chloride is 0.84 to 1.05 mol, the concentration of titanyl chloride is 0.8 to 1.0 mol, and the concentration of oxalic acid is 1.9 to 2.3 mol, and after the synthesis of barium titanyl oxalate The specific surface area is in the range of 3 to 7 m 2 / g, and the Ba / Ti molar ratio of barium titanate is in the range of 0.999 to 1.001. 8 is a scanning electron micrograph of the barium titanyl oxalate powder after synthesis according to Example 7. FIG.
비교예 6은 티탄산바륨의 Ba/Ti 몰비가 1.001 보다 크며, 이는 반응물질의 농도가 너무 높아 오히려 반응이 저하되었기 때문이다.In Comparative Example 6, the Ba / Ti molar ratio of barium titanate is larger than 1.001, because the concentration of the reactant is too high, rather the reaction is lowered.
본 발명에서 사용한 용어는 특정한 실시예를 설명하기 위한 것으로, 본 발명을 한정하고자 하는 것이 아니다. 단수의 표현은 문맥상 명백하지 않는 한, 복수의 의미를 포함한다고 보아야 할 것이다. “포함하다” 또는 “가지다” 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성 요소 또는 이들을 조합한 것이 존재한다는 것을 의미하는 것이지, 이를 배제하기 위한 것이 아니다. 본 발명은 상술한 실시 형태 및 첨부된 도면에 의해 한정되는 것이 아니며, 첨부된 청구범위에 의해 한정하고자 한다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술 분야의 통상의 지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions should be considered to include plural meanings unless the context clearly dictates them. The terms “comprise” or “have” and the like mean that there is a feature, number, step, operation, component, or combination thereof described in the specification, but not intended to exclude it. The present invention is not limited by the above-described embodiment and the accompanying drawings, but is intended to be limited by the appended claims. Accordingly, various forms of substitution, modification, and alteration may be made by those skilled in the art without departing from the technical spirit of the present invention described in the claims, which are also within the scope of the present invention. something to do.

Claims (9)

  1. 바륨클로라이드(BaCl2) 수용액 및 티타닐클로라이드(TiOCl2) 수용액을 마련하는 단계(원료준비 단계);Preparing an aqueous solution of barium chloride (BaCl 2 ) and an aqueous solution of titanyl chloride (TiOCl 2 ) (raw material preparation step);
    상기 바륨클로라이드 수용액과 상기 티타닐클로라이드 수용액을 옥살산(Oxalic Acid) 용액에 적가하여 바륨티타닐옥살레이트(Barium Titanyl Oxalate) 침전물을 형성하는 단계(적가 단계); Adding an aqueous barium chloride solution and the titanyl chloride solution to an oxalic acid solution to form a barium titanyl oxalate precipitate (dropping step);
    상기 바륨티타닐옥살레이트 침전물을 포함하는 용액을 에이징 하는 단계(에이징 단계);Aging the solution comprising the barium titanyl oxalate precipitate (aging step);
    상기 바륨티타닐옥살레이트 침전물을 세척 및 건조하는 단계(회수 단계); 및Washing and drying the barium titanyl oxalate precipitate (recovery step); And
    상기 회수된 바륨티타닐옥살레이트 침전물을 분쇄하여 바륨티타닐옥살레이트 분말을 얻는 단계(분쇄 단계)를 포함하고,Pulverizing the recovered barium titanyl oxalate precipitate to obtain a barium titanyl oxalate powder (milling step),
    상기 회수 단계에서 회수된 바륨티타닐옥살레이트의 비표면적이 3 ~ 7㎡/g 이고, 이로부터 제조한 티탄산바륨의 Ba/Ti 몰비가 0.999~1.001인 티탄산바륨의 제조방법.A method for producing barium titanate, wherein the specific surface area of barium titanyl oxalate recovered in the recovery step is 3 to 7 m 2 / g, and the Ba / Ti molar ratio of barium titanate prepared therefrom is 0.999 to 1.001.
  2. 제1항에 있어서,The method of claim 1,
    상기 적가 단계는 30~50℃의 온도에서 수행되는 티탄산바륨의 제조방법.The dropping step is a method for producing barium titanate is carried out at a temperature of 30 ~ 50 ℃.
  3. 제1항에 있어서,The method of claim 1,
    상기 바륨클로이드(BaCl2) 수용액의 농도는 0.84~1.05 ㏖/ℓ이고, 상기 티타닐클로라이드(TiOCl2)의 농도는 0.8~1.0 ㏖/ℓ 이고, 상기 옥살산(Oxalic Acid)의 농도는 1.9~2.3 ㏖/ℓ 인 티탄산바륨의 제조방법.The concentration of the aqueous solution of barium clath (BaCl 2 ) is 0.84 ~ 1.05 mol / L, the concentration of the titanyl chloride (TiOCl 2 ) is 0.8 ~ 1.0 mol / L, the concentration of the oxalic acid (Oxalic Acid) is 1.9 ~ Method for producing barium titanate of 2.3 mol / L.
  4. 제2항 또는 제3항에 있어서,The method according to claim 2 or 3,
    상기 분쇄 단계는 볼밀링에 의하여 수행되는 티탄산바륨의 제조방법.The grinding step is a method for producing barium titanate is carried out by ball milling.
  5. 제2항 또는 제3항에 있어서,The method according to claim 2 or 3,
    상기 분쇄단계는 바륨티타닐옥살레이트 분말의 비표면적이 10㎡/g 가 될 때까지 수행되는 티탄산바륨의 제조방법.The grinding step is a method for producing barium titanate is carried out until the specific surface area of the barium titanyl oxalate powder is 10 m 2 / g.
  6. 제1항의 바륨티타닐옥살레이트 분말을 하소하는 단계를 추가로 포함하는 티탄산바륨의 제조방법.A method for producing barium titanate further comprising calcining the barium titanyl oxalate powder of claim 1.
  7. 제6항에 있어서,The method of claim 6,
    상기 하소는 800~1000℃에서 수행되는 티탄산바륨의 제조방법.The calcination is a method for producing barium titanate is carried out at 800 ~ 1000 ℃.
  8. 제1항 내지 제7항 중 어느 한 항의 방법에 따라 제조된 티탄산바륨.Barium titanate prepared according to the method of any one of claims 1 to 7.
  9. 제8항에 있어서,The method of claim 8,
    Ba/Ti 몰비가 0.999~1.001인 티탄산바륨.Barium titanate having a Ba / Ti molar ratio of 0.999 to 1.001.
PCT/KR2012/010349 2012-11-30 2012-11-30 Method for preparing barium titanate, and barium titanate prepared by same WO2014084429A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810988353.5A CN108675785A (en) 2012-11-30 2012-11-30 The barium titanate for manufacturing the method for barium titanate and being manufactured by this method
CN201280077177.0A CN104797543A (en) 2012-11-30 2012-11-30 Method for preparing barium titanate, and barium titanate prepared by same
PCT/KR2012/010349 WO2014084429A1 (en) 2012-11-30 2012-11-30 Method for preparing barium titanate, and barium titanate prepared by same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2012/010349 WO2014084429A1 (en) 2012-11-30 2012-11-30 Method for preparing barium titanate, and barium titanate prepared by same

Publications (1)

Publication Number Publication Date
WO2014084429A1 true WO2014084429A1 (en) 2014-06-05

Family

ID=50828046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010349 WO2014084429A1 (en) 2012-11-30 2012-11-30 Method for preparing barium titanate, and barium titanate prepared by same

Country Status (2)

Country Link
CN (2) CN108675785A (en)
WO (1) WO2014084429A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107311224A (en) * 2017-07-14 2017-11-03 安徽拓吉泰新型陶瓷科技有限公司 A kind of preparation method of barium carbonate powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988868B (en) * 2022-05-25 2023-07-21 大连大学 Preparation method of strontium titanate ceramic with giant dielectric constant and low dielectric loss

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010008807A (en) * 1999-07-05 2001-02-05 이형도 A Method for Preparing Barium Titanate Powder by Oxalate Synthesis
KR20020068792A (en) * 2001-02-22 2002-08-28 삼성정밀화학 주식회사 Preparation of the high quality Barium-Titanate based powder
JP2006321722A (en) * 2005-05-17 2006-11-30 Nippon Chem Ind Co Ltd Method for producing barium titanyl oxalate and method for producing barium titanate
JP2006321723A (en) * 2005-05-17 2006-11-30 Nippon Chem Ind Co Ltd Method for producing barium titanyl oxalate and method for producing barium titanate
KR20080070981A (en) * 2007-01-29 2008-08-01 삼성정밀화학 주식회사 A method of preparing barium-titanate powder by oxalate process and barium-titanate powder prepared by the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1013609A4 (en) * 1998-05-20 2007-12-19 Toho Titanium Co Ltd Method for producing barium titanate powder
TW527321B (en) * 2000-08-09 2003-04-11 Samsung Electro Mech A method for producing barium titanate based powders by oxalate process
CN1865153A (en) * 2005-05-16 2006-11-22 通用应材科技股份有限公司 Babrium titanate preparation method
WO2009125681A2 (en) * 2008-03-19 2009-10-15 日本化学工業株式会社 Manufacturing method for barium titanate
CN102432454A (en) * 2010-09-07 2012-05-02 日本化学工业株式会社 Barium titanyl oxalate particle, method for preparing the same and method for preparing barium titanate
CN102249669A (en) * 2010-11-04 2011-11-23 耿世达 Preparation method of nanometer high-purity barium titanate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010008807A (en) * 1999-07-05 2001-02-05 이형도 A Method for Preparing Barium Titanate Powder by Oxalate Synthesis
KR20020068792A (en) * 2001-02-22 2002-08-28 삼성정밀화학 주식회사 Preparation of the high quality Barium-Titanate based powder
JP2006321722A (en) * 2005-05-17 2006-11-30 Nippon Chem Ind Co Ltd Method for producing barium titanyl oxalate and method for producing barium titanate
JP2006321723A (en) * 2005-05-17 2006-11-30 Nippon Chem Ind Co Ltd Method for producing barium titanyl oxalate and method for producing barium titanate
KR20080070981A (en) * 2007-01-29 2008-08-01 삼성정밀화학 주식회사 A method of preparing barium-titanate powder by oxalate process and barium-titanate powder prepared by the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107311224A (en) * 2017-07-14 2017-11-03 安徽拓吉泰新型陶瓷科技有限公司 A kind of preparation method of barium carbonate powder

Also Published As

Publication number Publication date
CN108675785A (en) 2018-10-19
CN104797543A (en) 2015-07-22

Similar Documents

Publication Publication Date Title
KR100434883B1 (en) A method for the manufacturing of Barium-Titanate based Powder
US20090103238A1 (en) Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor obtained by using the ceramic powder
JPH07232923A (en) Method for synthesizing crystalline ceramic powder of perovskite compound
JP2004123431A (en) Method for manufacturing perovskite-type barium titanate powder
WO2010126253A2 (en) Method for producing barium titanate powder by an oxalate process, and barium titanate powder produced by the method
WO2013039108A1 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
KR100414832B1 (en) Preparation of the high quality Barium-Titanate based powder
WO2014084429A1 (en) Method for preparing barium titanate, and barium titanate prepared by same
KR101451987B1 (en) A method of preparing highly crystalline Barium-Titanate fine powder by Oxalate Process and highly crystalline Barium-Titanate fine powder prepared by the same
WO2015080304A1 (en) Method for preparing barium titanate and barium titanate prepared thereby
KR101426345B1 (en) A method of preparing Barium-Titanate powder by Oxalate Process and Barium-Titanate powder prepared by the same
WO2015080303A1 (en) Method for preparing barium titanyl oxalate and method for preparing barium titanate
KR101606932B1 (en) A method of preparing barium titanate powder by oxalate process and barium titanate powder prepared by same
KR101751081B1 (en) Manufacturing Method of Barium Titanate and Barium Titanate fabricated thereby
WO2015099203A1 (en) Method for preparing barium titanyl oxalate, method for preparing barium titanate, and barium titanate
CN114105191A (en) Nano-grade barium titanate powder and preparation process thereof
KR102536054B1 (en) Method for producing perovskite-type barium titanate powder
WO2014084428A1 (en) Method for preparing barium titanate powder and barium titanate powder prepared by said method
KR20100113847A (en) Method of preparing barium titanyl oxalate by continous oxalate process, barium titanyl oxalate prepared by the same and method of preparing barium titanate comprising the same
KR100562520B1 (en) A method for preparation of barium titanate powder for titanium dioxide sol
KR100435534B1 (en) A method of preparing Barium Titanate
KR20110082859A (en) Method of preparing barium titanyl oxalate and method of preparing barium titanate comprising the same
KR20060102928A (en) Manufacturing method of barium titanate powder
KR101792283B1 (en) Manufacturing method of small size barium zirconium titanate (BZT) and barium zirconium titanate(BZT) fabricated thereby
KR20140044608A (en) Manufacturing method of ceramic paste for multilayer ceramic electronic part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.11.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12889178

Country of ref document: EP

Kind code of ref document: A1