WO2014084428A1 - Method for preparing barium titanate powder and barium titanate powder prepared by said method - Google Patents

Method for preparing barium titanate powder and barium titanate powder prepared by said method Download PDF

Info

Publication number
WO2014084428A1
WO2014084428A1 PCT/KR2012/010346 KR2012010346W WO2014084428A1 WO 2014084428 A1 WO2014084428 A1 WO 2014084428A1 KR 2012010346 W KR2012010346 W KR 2012010346W WO 2014084428 A1 WO2014084428 A1 WO 2014084428A1
Authority
WO
WIPO (PCT)
Prior art keywords
barium titanate
powder
bto
titanate powder
aqueous solution
Prior art date
Application number
PCT/KR2012/010346
Other languages
French (fr)
Korean (ko)
Inventor
최연규
김현
정원식
차경진
박지호
Original Assignee
삼성정밀화학(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성정밀화학(주) filed Critical 삼성정밀화학(주)
Publication of WO2014084428A1 publication Critical patent/WO2014084428A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions

Definitions

  • a method for producing barium titanate powder and a barium titanate powder produced by the method are disclosed. More specifically, by including the first calcination step and the second calcination step, barium titanate by an oxalate process capable of producing fine barium titanate powder having a fine powder content, narrow particle size distribution, and high crystallinity A method for producing a powder and a barium titanate powder produced by the method are disclosed.
  • the barium titanate powder was conventionally manufactured by a solid phase reaction in which titanium dioxide (TiO 2 ) and barium carbonate (BaCO 3 ) were mixed and heat-treated at a high temperature, but recently, a small capacity of a multilayer ceramic capacitor (MLCC) has been increased.
  • High purity / composition uniformity, fine grain / particle uniformity, non-aggregation / high dispersion, etc. are required according to high dielectric constant composition, dielectric thinning and high lamination), low temperature plasticization, high frequency and high performance.
  • Various synthesis methods are used for the production of barium titanate powder. However, for mass production of barium titanate powder, a coprecipitation method, which is a kind of liquid phase method, in which barium titanate powder having a low manufacturing cost and a uniform composition can be obtained, must be used.
  • a liquid raw material containing barium (Ba) and titanium (Ti) is added to oxalic acid (H 2 C 2 O 4 ) to barium titanyl oxalate [BaTiO (C 2 O 4 ) 2 to 4H 2 O].
  • the barium titanyl oxalate was calcined at high temperature to synthesize barium titanate (BaTiO 3 ) powder having an appropriate size.
  • the barium titanate particles aggregate strongly together to form aggregates, and since these aggregates adversely affect the reliability of the electronic components, the aggregates are disaggregated to disintegrate and the final product titanium is used.
  • Barium powder is prepared (see Korean Patent Publication Nos. 2003-0015011 and 2008-0070981).
  • a large amount of fine particles are generated during the disintegration process, and high active regions (that is, regions where grain growth is likely to occur even at low temperatures) are formed, thereby causing abnormal grain growth and inorganic additives in the multilayer ceramic capacitor ( For example, rare earths, Mg, Mn, Cr, V, Y, Dy, etc.) cause excessive doping (soiling) there is a problem that causes a decrease in reliability and dielectric constant.
  • One embodiment of the present invention comprises a first calcination step and a second calcination step, by the oxalate process that can produce fine barium titanate powder having a fine powder content, narrow particle size distribution, high crystallinity
  • a method for producing barium titanate powder is provided.
  • Another embodiment of the present invention is prepared by the above production method provides a fine barium titanate powder having a fine powder content, narrow particle size distribution, high crystallinity.
  • BTO barium titanyl oxalate
  • It provides a method for producing barium titanate powder comprising the step (secondary calcination step) the second heat treatment of the BT at 820 ⁇ 890 °C.
  • the method for producing the barium titanate powder, between the BTO production step and the BTO wet grinding step, the step of ripening the produced BTO, filtering the aged BTO, and washing the filtered BTO with excess water may further comprise the step.
  • the method of manufacturing the barium titanate powder may further include obtaining a first BT powder by grinding the BT between the first calcination step and the second calcination step (BT grinding step).
  • the first BT powder may have an average particle diameter of 280 to 320nm and a fine powder content of 5 to 10% by weight (that is, a content of particles having a particle diameter of 70 nm or less).
  • the method of manufacturing the barium titanate powder may further include, after the secondary calcination step, disintegrating the secondary calcined BT to obtain a second BT powder (BT disintegration step).
  • the barium titanate powder may have a fine powder content of 3.5 wt% or less (that is, a content of particles having a particle diameter of 70 nm or less).
  • the fine powder content, narrow particle size distribution, high crystallinity Fine barium titanate powder can be obtained.
  • FIG. 1 is a flowchart illustrating a step-by-step method for producing a barium titanate powder according to an embodiment of the present invention.
  • FIG. 2 shows a series of processes in which barium titanyl oxalate is converted to barium titanate.
  • FIG 3 is a view showing a phenomenon occurring in the barium titanate in the second calcination step and / or disintegration step.
  • FIG. 4 is a SEM photograph prepared in Example 2 to illustrate necking phenomenon between barium titanate particles after the first calcination step and before the BT grinding step.
  • FIG. 5 is a SEM photograph of the barium titanate powder prepared in Example 2.
  • FIG. 6 is a SEM photograph of the barium titanate powder prepared in Comparative Example 1.
  • Figure 7 is a graph showing the particle size distribution of the barium titanate powder prepared in Example 2 and Comparative Example 1.
  • FIG. 1 is a flowchart illustrating a step-by-step method for producing a barium titanate powder according to an embodiment of the present invention.
  • a barium chloride (BaCl 2 ) aqueous solution and a titanium tetrachloride (TiCl 4 ) aqueous solution are prepared (a raw material aqueous solution preparation step).
  • Aqueous solution of barium chloride is usually used by dissolving BaCl 2 ⁇ 2H 2 O in water, and its concentration range may be 0.2 ⁇ 2.0 mol / L.
  • concentration of the barium chloride aqueous solution is within the above range, the productivity of barium titanate (BT) to be described later is high compared to the volume of the barium chloride aqueous solution, and barium chloride is not precipitated.
  • Titanium tetrachloride aqueous solution is usually used by diluting a high concentration of titanium tetrachloride solution, the concentration range may be 0.2 ⁇ 2.0 mol / L.
  • concentration of the titanium tetrachloride aqueous solution is within the above range, the productivity of BT relative to the volume of the titanium tetrachloride aqueous solution is high, and titanium tetrachloride is not precipitated.
  • a mixed aqueous solution of the aqueous barium chloride solution and titanium tetrachloride solution or each of these aqueous solutions is added (for example, dropwise) to the aqueous solution of oxalic acid (H 2 C 2 O 4 ) using a high-speed jet nozzle to add barium titanyl oxal.
  • a rate [BaTiO (C 2 O 4 ) 2. 4H 2 O] (hereinafter referred to simply as BTO) is generated (BTO generation step, S1).
  • the oxalic acid aqueous solution may be used in an amount larger than the barium chloride aqueous solution or titanium tetrachloride aqueous solution.
  • the concentration range of the oxalic acid aqueous solution may be 0.2 ⁇ 5.0 mol / L.
  • the productivity of BT relative to the volume of the oxalic acid aqueous solution is high, and oxalic acid may be completely dissolved in water.
  • the temperature of the oxalic acid aqueous solution may be maintained at 20 ⁇ 100 °C, for example, 50 ⁇ 90 °C.
  • the aqueous solution of the barium chloride solution and the titanium tetrachloride solution in the form of a mixed solution or separately sprayed onto the oxalic acid solution may be added dropwise for 1 to 3 hours. This dropping time can be achieved by adjusting the injection speed of the nozzle.
  • the injection nozzle may use a hydraulic or two-fluid nozzle depending on the flow of the fluid, and the use of the hydraulic nozzle may be more advantageous in terms of convenience or in obtaining a uniform precipitate.
  • As the hydraulic nozzle a full cone, a hollow cone, a flat, or the like may be used.
  • the produced BTO may be aged, filtered, and washed with water (S2). It may be advantageous in terms of productivity that the aging time is 0.5 to 2 hours.
  • filtration means the process of separating only solid-state BTO from the BTO containing slurry using a centrifugal separator specifically. Thereafter, the filtered BTO may be washed with excess water until the pH of the washing liquid is neutral.
  • the wet grinding means a method in which BTO is mixed with a predetermined medium and put into a wet grinding machine such as a beads mill, a ball mill, an attrition mill, and the like.
  • the medium means an organic medium such as alcohol or water such as deionized water, and the use of an organic medium is advantageous in terms of crushing efficiency or particle size, but has a disadvantage of increasing cost. This simplifies the process and has the advantage of reducing costs.
  • water When water is used as the medium, its amount may be 1 to 10 parts by weight based on 1 part by weight of BTO.
  • the viscosity is moderate, so that grinding is easy, and the productivity of BTO is high relative to the volume of water.
  • Grinding time needs to be appropriately controlled due to the difference in grinding force depending on the grinding facility, it may be 10 ⁇ 300 minutes when using a bead mill.
  • the particle size of the final product BT powder can be properly adjusted.
  • Nitrogen-containing additives such as ammonia can be added during this wet grinding process, which can solve the problem of acidification of the mixture before and after grinding, high viscosity of the slurry after grinding, and reduction of the dielectric properties of the powder due to the presence of chlorine ions in the produced BTO. have.
  • the wet milled BTO is dried at a temperature of 400 ° C. or lower to remove the used medium (BTO drying step, S4).
  • BTO drying step, S4 As a result, dried BTO powder is obtained.
  • the drying temperature should be above the boiling point of the medium in order to evaporate and remove the medium used.
  • the BTO powder is charged into a heating furnace, and then subjected to a first heat treatment at 920 to 950 ° C. to produce barium titanate (BT) (first calcination step, S5).
  • first calcination step S5
  • the primary heat treatment temperature is out of the above range
  • barium titanate having a target particle size ie, an average particle diameter of 280 to 320 nm
  • impurities including water and / or carbon may be removed.
  • the temperature increase rate from the drying temperature of the BTO drying step (S4) to the first heat treatment temperature of the first calcination step (S5) may be 0.5 ⁇ 10 °C / min, for example 1 ⁇ 5 °C / min.
  • the productivity of BT is high, the temperature distribution is uniform, and the particle size of the BT powder is uniform.
  • the BT and the tens to hundreds of nm size BT through the process as shown in the following reaction scheme 2 to 4 by removing the excess carbon dioxide and water present in the crystal water of the BTO crystals Get powder.
  • Sagger or Tray may be used as a heating furnace for heat treatment of the dried BTO powder.
  • Sagger means a refractory soil container.
  • the sagger may be, for example, a cuboid shaped container having a square bottom surface.
  • the first BT powder is pulverized through the first calcination step S5 to obtain a first BT powder (BT crushing step S6).
  • this BT grinding step (S6) may be omitted.
  • the BT grinding step S6 may be performed by wet grinding using a mill such as a beads mill, an attention mill, and a ball mill with a predetermined medium, It may also be performed by dry grinding using friction between the raw materials or friction with the pulverizer without using a medium such as a jet mill and a disk mill.
  • the BT grinding step S6 is for separating (ie, breaking) large BT particles into small BT particles. In the BT grinding step (S6), the destruction of the particles is caused to generate a large amount of fine powder, thereby widening the particle size distribution and lowering the crystallinity.
  • the BT grinding step (S6) is performed by wet grinding
  • the wet milled BT is dried at a temperature of 400 ° C. or less to remove the used medium (first BT drying step, S7).
  • a dried first BT powder is obtained.
  • the first BT powder may have an average particle diameter of 280 ⁇ 320nm and the fine powder content of 5 ⁇ 10% by weight.
  • the average particle diameter of the first BT powder has a close correlation with the primary heat treatment temperature of the first calcination step (S5), and accordingly sets a target average particle diameter of the first BT powder first, and then the target average.
  • the primary heat treatment temperature may be determined to achieve a particle diameter.
  • the BT grinding step (S6) is performed by dry grinding
  • the first BT drying step (S7) can be omitted.
  • FIG. 2 shows a series of processes in which barium titanyl oxalate (BTO) is converted to barium titanate (BT).
  • BTO barium titanyl oxalate
  • BT barium titanate
  • BTO is thermally decomposed to generate barium titanate particles BT1
  • barium titanate particles barium titanate particles are removed from the BTO while impurities (water vapor and / or carbon dioxide) are removed).
  • An oxygen deficient layer ('VL' in FIG. 3) is formed in BT1).
  • the barium titanate particles BT1 are grain-grown and selectively necked to form aggregates and barium titanate particles BT2 having a larger particle size than these and optionally aggregated.
  • the oxygen depletion layer has a high activity against grain growth, and when the barium titanate particles (BT1) are used in the dielectric layer of the multilayer capacitor, abnormal grain growth may occur during chip firing. Also referred to. Accordingly, the barium titanate particles BT1 have a large amount of grain growth in the oxygen deficient layer and a small amount of grain growth in the remaining portions, resulting in an overall nonuniform grain growth (this is called abnormal grain growth). Is converted to). Thereafter, the barium titanate particles BT2 are necked to each other to form the aforementioned aggregate.
  • the agglomerates are separated into smaller barium titanate particles BT3 in the BT milling step S6 to form fine powder FP, wherein the oxygen depletion layer contained in the barium titanate particles BT3 is external. Is exposed.
  • barium titanate powder (BT3 + FP) having a high fine powder content is obtained.
  • the "fine powder content” refers to the content of fine particles having a particle diameter of 70 nm or less contained in the barium titanate (BT) powder.
  • the first BT powder is heat-treated at 820 ⁇ 890 °C secondary (second calcination step, S8). If the secondary heat treatment temperature is less than 820 ° C., there is almost no secondary heat treatment effect. If the secondary heat treatment temperature is higher than 890 ° C., the fine powder content in the final BT powder after disintegration is high and the crystallinity is also low.
  • the temperature increase rate from the drying temperature of the first BT drying step S7 to the secondary heat treatment temperature of the second calcination step S8 may be 0.5 to 10 ° C./min, for example, 1 to 5 ° C./min. have.
  • BT disintegration step S9 disintegration of the BT passed through the second calcination step (S8) to obtain a second BT powder.
  • disintegration means simply breaking the necking of particles without breaking the particles
  • crushing means breaking one particle and separating it into two or more pieces.
  • this BT disintegration step S9 may be omitted.
  • the BT pulverization step S9 may be performed by wet pulverization using a pulverizer such as a beads mill, an attention mill, and a ball mill together with a predetermined medium. It may also be carried out by dry pulverization using friction between the raw materials or friction with the crusher without using a medium such as a jet mill and a disk mill.
  • the BT disintegration step (S9) is for solving the aggregation between the particles of the BT powder.
  • the BT disintegration step (S9) if the equipment having a high disintegration efficiency is used, particle breakage is caused and a large amount of fine powder is generated, which may result in a narrow particle size distribution and a decrease in crystallinity. It is desirable to lower the breaking strength to break only the necking of the particles without breaking the particles themselves.
  • the wet disintegration BT is dried at a temperature of 350 ° C. or less to remove the used medium (second BT drying step, S10). .
  • the second BT powder may have a fine powder content of 3.5% by weight or less.
  • the second BT drying step S10 may be omitted.
  • the barium titanate particles BT3 that is, BaTiO
  • the barium titanate particles BT4 in which abnormal grain growth is suppressed are formed by removing the oxygen depletion layer VL.
  • the fine powders FP are recombined or redoped with the barium titanate particles BT4 to form barium titanate particles BT5 having a low fine content.
  • the recombination or redistribution may be performed by rearranging the fines FP after migration to the barium titanate particles BT4.
  • the BTO slurry prepared above was filtered with a centrifugal separator and washed with excess water so that the pH of the washing solution was 6 or more to obtain BTO.
  • BTO 50 kg of the BTO, 250 kg of deionized water, and 0.5 kg of 29% by volume ammonia water (8. 4 mol parts relative to 100 mol parts of BTO) were added to a mixing tank and stirred to form a slurry. At this time, the pH of the slurry was 9.3. Thereafter, the BTO was wet milled with a 20 L horizontal beads mill (medium: deionized water) such that the maximum particle size was 5 ⁇ m or less. After grinding, the slurry had a pH of 5.1 and a viscosity of 1800 cP. Thus obtained BTO slurry was dried in an oven at a temperature of 200 °C for 12 hours to prepare a BTO powder.
  • the target average particle diameter of the BT produced after the first calcination was set to 300 nm, and the first heat treatment was performed at 950 ° C. for 2 hours.
  • BT-A powder was obtained.
  • the BT-A powder was wet pulverized for 30 minutes at a speed of 5 m / s (ie, 1500 rpm) with a 20 L horizontal beads mill (medium: deionized water).
  • the BT slurry formed after pulverization was dried for 24 hours at 150 °C oven. As a result, a first BT powder was obtained.
  • the second heat treatment was performed for 2 hours while changing the heat treatment temperature in the temperature range of 820 ⁇ 920 °C according to each Example and Comparative Example.
  • BT-B powder was obtained.
  • the BT-B powder was wet pulverized at a circumferential speed of 5 m / s (ie, 1500 rpm) with a 20 L horizontal beads mill (medium: deionized water).
  • the wet disintegration was terminated when the D 50 of the barium titanate measured by the particle size analyzer (Malvern, mastersizer-2000) reached 0.85 to 0.87 ⁇ m.
  • the BT slurry formed after the wet disintegration was dried for 24 hours at 150 °C oven.
  • a second BT powder was obtained.
  • the second calcination and subsequent steps were omitted.
  • the presence of the average particle diameter, average necking angle and derivative is calculated or observed by using an image analysis program (Image Pro Plus ver 4.5) after taking a scanning electron microscope (SEM) photograph 50,000 times using a Jeol JSM-7400F. It was. In this case, the number of BT-B particles measured was 800 or more. In calculating the average particle diameter, the particle diameter of each BT-B particle was calculated by the average of the long axis and the short axis of each BT-B particle.
  • the d-spacing values of the a-axis and the c-axis of the crystal lattice were obtained.
  • the half width was obtained by precise analysis of the (111) plane and the (222) plane in the same manner as the crystallinity measuring method. However, 2 ⁇ regions of the (111) plane and the (222) plane were 38 to 40 degrees (°) and 83 to 84 degrees (°), respectively.
  • the specific surface area was analyzed using a specific surface area meter (Mountech, Macsorb HM-1220).
  • Example 2 a SEM photograph of the BT-B powder prepared in Example 2 was taken and shown in FIG. Referring to FIG. 4, it can be seen that two barium titanate particles of the BT-B powder prepared in Example 2 are necked to each other.
  • the necking angle is represented by theta ( ⁇ ), and it can be seen from Table 1 that the value is 87 degrees (°).
  • the barium titanate (BT-B) powder prepared in Examples 1 to 4 has a smaller average particle diameter and average necking angle than the barium titanate (BT-B) powder prepared in Comparative Examples 2 to 4.
  • the degree of abnormal grain growth appeared to be small.
  • the specific surface area and the half width decreased generally as the secondary calcination temperature increased, and the derivative did not exist when the secondary calcination temperature was above 840 °C.
  • D50 and fine powder content was calculated by using an image analysis program (ImagePro Plus ver 4.5) after scanning electron microscopy (SEM) of 50,000 times using a Jeol JSM-7400F.
  • the number of the measured second BT particles was 800 or more.
  • the particle diameter of each second BT particle was calculated as an average of the long axis and the short axis of each second BT particle.
  • D50 refers to the particle size of the particles corresponding to 50% of the total number of particles when the measured particles are arranged in order from smallest to largest.
  • the fine powder content refers to the percentage of the area occupied by the fine powder having a particle size of less than 70nm of the total area occupied by all the BT particles in the SEM image.
  • the barium titanate powder prepared in Examples 1 to 4 has a smaller D50 or the same as the barium titanate powder prepared in Comparative Examples 1 to 4 (second BT powder).
  • the specific surface area and half width are small, the crystallinity is high, and the fine powder content is low.
  • the fine powder content, narrow particle size distribution, high crystallinity Fine barium titanate powder can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Disclosed are a method for preparing barium titanate powder and barium titanate powder prepared by said method. The disclosed method for preparing barium titanate powder comprises a primary calcination step and a secondary calcination step, thus preparing barium titanate powder having low content of fine particles, narrow particle size distribution and high crystalline properties.

Description

티탄산바륨 분말의 제조방법 및 그 방법에 의하여 제조된 티탄산바륨 분말Method for producing barium titanate powder and barium titanate powder prepared by the method
티탄산바륨 분말의 제조방법 및 그 방법에 의하여 제조된 티탄산바륨 분말이개시된다. 보다 상세하게는, 1차 하소단계 및 2차 하소단계를 포함함으로써, 미분 함량이 적고, 입도분포가 좁으며, 결정성이 높은 미립의 티탄산바륨 분말을 제조할 수 있는 옥살레이트 공정에 의한 티탄산바륨 분말의 제조방법 및 그 방법에 의하여 제조된 티탄산바륨 분말이 개시된다.A method for producing barium titanate powder and a barium titanate powder produced by the method are disclosed. More specifically, by including the first calcination step and the second calcination step, barium titanate by an oxalate process capable of producing fine barium titanate powder having a fine powder content, narrow particle size distribution, and high crystallinity A method for producing a powder and a barium titanate powder produced by the method are disclosed.
티탄산바륨 분말은 종래에는 이산화티탄(TiO2)과 탄산바륨(BaCO3)을 혼합하여 고온에서 열처리하는 고상반응에 의해 제조되었지만, 최근에는 적층 세라믹 콘덴서(Multi Layer Ceramic Condenser: MLCC)의 소형 대용량화(고유전율 조성, 유전체 박층화 및 고적층화), 저온 소성화, 고주파 및 고성능화 등에 따라, 고순도/조성 균일성, 미립/입도 균일성, 非응집성/고분산성 등이 요구되어 고상법, 액상법 및 기상법 등 다양한 합성법이 티탄산바륨 분말의 제조를 위해 사용되고 있다. 그러나, 티탄산바륨 분말의 대량 생산을 위해서는, 제조비용이 저렴하고 균일한 조성의 티탄산바륨 분말을 얻을 수 있는 액상법의 일종인 공침법이 사용되어야 한다.The barium titanate powder was conventionally manufactured by a solid phase reaction in which titanium dioxide (TiO 2 ) and barium carbonate (BaCO 3 ) were mixed and heat-treated at a high temperature, but recently, a small capacity of a multilayer ceramic capacitor (MLCC) has been increased. High purity / composition uniformity, fine grain / particle uniformity, non-aggregation / high dispersion, etc. are required according to high dielectric constant composition, dielectric thinning and high lamination), low temperature plasticization, high frequency and high performance. Various synthesis methods are used for the production of barium titanate powder. However, for mass production of barium titanate powder, a coprecipitation method, which is a kind of liquid phase method, in which barium titanate powder having a low manufacturing cost and a uniform composition can be obtained, must be used.
공침법에서는, 바륨(Ba)과 티타늄(Ti)을 함유하는 액상 원료를 옥살산(H2C2O4)에 첨가하여 바륨티타닐옥살레이트[BaTiO(C2O4)2?4H2O]를 형성한 후, 이 바륨티타닐옥살레이트를 높은 온도에서 하소처리함으로써 적정 크기를 갖는 티탄산바륨(BaTiO3) 분말을 합성한다. 그러나, 고온의 하소처리가 진행되는 동안 티탄산바륨 입자들은 서로 강하게 응집하여 응집체를 형성하며, 이러한 응집체는 전자 부품의 신뢰성에 악영향을 주기 때문에 이 응집체를 분해시키는(disaggregate) 해쇄공정을 거쳐 최종 제품인 티탄바륨 분말을 제조한다(한국공개특허 제2003-0015011호 및 제2008-0070981호 참조). 그러나, 상기 해쇄공정이 진행되는 동안에 다량의 미분(fine particles)이 발생하게 되며, 고활성 영역(즉, 저온에서도 입성장이 일어나기 쉬운 영역)이 형성되어 적층 세라믹 콘덴서에서의 비정상 입성장 및 무기 첨가제(예를 들어, 희토류, Mg, Mn, Cr, V, Y, Dy 등)의 과도한 고용(doping)을 유발하여 신뢰성 및 유전율 저하를 일으키는 문제점이 있다.In the coprecipitation method, a liquid raw material containing barium (Ba) and titanium (Ti) is added to oxalic acid (H 2 C 2 O 4 ) to barium titanyl oxalate [BaTiO (C 2 O 4 ) 2 to 4H 2 O]. After the formation, the barium titanyl oxalate was calcined at high temperature to synthesize barium titanate (BaTiO 3 ) powder having an appropriate size. However, during high temperature calcination, the barium titanate particles aggregate strongly together to form aggregates, and since these aggregates adversely affect the reliability of the electronic components, the aggregates are disaggregated to disintegrate and the final product titanium is used. Barium powder is prepared (see Korean Patent Publication Nos. 2003-0015011 and 2008-0070981). However, a large amount of fine particles are generated during the disintegration process, and high active regions (that is, regions where grain growth is likely to occur even at low temperatures) are formed, thereby causing abnormal grain growth and inorganic additives in the multilayer ceramic capacitor ( For example, rare earths, Mg, Mn, Cr, V, Y, Dy, etc.) cause excessive doping (soiling) there is a problem that causes a decrease in reliability and dielectric constant.
본 발명의 일 구현예는 1차 하소단계 및 2차 하소단계를 포함함으로써, 미분 함량이 적고, 입도분포가 좁으며, 결정성이 높은 미립의 티탄산바륨 분말을 제조할 수 있는 옥살레이트 공정에 의한 티탄산바륨 분말의 제조방법을 제공한다.One embodiment of the present invention comprises a first calcination step and a second calcination step, by the oxalate process that can produce fine barium titanate powder having a fine powder content, narrow particle size distribution, high crystallinity Provided is a method for producing barium titanate powder.
본 발명의 다른 구현예는 상기 제조방법에 의해 제조되어 미분 함량이 적고, 입도분포가 좁으며, 결정성이 높은 미립의 티탄산바륨 분말을 제공한다.Another embodiment of the present invention is prepared by the above production method provides a fine barium titanate powder having a fine powder content, narrow particle size distribution, high crystallinity.
본 발명의 일 측면은,One aspect of the invention,
염화바륨(BaCl2) 수용액 및 사염화티탄(TiCl4) 수용액을 마련하는 단계(원료 수용액 마련단계);Preparing an aqueous solution of barium chloride (BaCl 2 ) and an aqueous solution of titanium tetrachloride (TiCl 4 ) (preparing a raw material solution);
상기 수용액들을 옥살산(H2C2O4) 수용액에 첨가함으로써 바륨티타닐옥살레이트[BaTiO(C2O4)2?4H2O](이하, 간단히 BTO라고 함)를 생성하는 단계(BTO 생성단계);Adding bar water to the aqueous solution of oxalic acid (H 2 C 2 O 4 ) to produce barium titanyl oxalate [BaTiO (C 2 O 4 ) 2 to 4H 2 O] (hereinafter referred to simply as BTO). step);
상기 BTO를 습식분쇄하는 단계(BTO 습식분쇄단계);Wet grinding the BTO (BTO wet grinding step);
상기 습식분쇄된 BTO를 건조하여 BTO 분말을 얻는 단계(BTO 건조단계); Drying the wet milled BTO to obtain a BTO powder (BTO drying step);
상기 BTO 분말을 920~950℃에서 1차 열처리하여 티탄산바륨(BT)을 생성하는 단계(1차 하소단계); 및First heat treating the BTO powder at 920 to 950 ° C. to produce barium titanate (BT) (first calcination step); And
상기 BT를 820~890℃에서 2차 열처리하는 단계(2차 하소단계)를 포함하는 티탄산바륨 분말의 제조방법을 제공한다.It provides a method for producing barium titanate powder comprising the step (secondary calcination step) the second heat treatment of the BT at 820 ~ 890 ℃.
상기 티탄산바륨 분말의 제조방법은, 상기 BTO 생성단계와 상기 BTO 습식분쇄단계 사이에, 상기 생성된 BTO를 숙성하는 단계, 상기 숙성된 BTO를 여과하는 단계, 및 상기 여과된 BTO를 과량의 물로 세척하는 단계를 더 포함할 수 있다.The method for producing the barium titanate powder, between the BTO production step and the BTO wet grinding step, the step of ripening the produced BTO, filtering the aged BTO, and washing the filtered BTO with excess water It may further comprise the step.
상기 티탄산바륨 분말의 제조방법은, 상기 1차 하소단계와 상기 2차 하소단계 사이에, 상기 BT를 분쇄하여 제1 BT 분말을 얻는 단계(BT 분쇄단계)를 더 포함할 수 있다.The method of manufacturing the barium titanate powder may further include obtaining a first BT powder by grinding the BT between the first calcination step and the second calcination step (BT grinding step).
상기 제1 BT 분말은 280~320nm의 평균입경 및 5~10중량%의 미분 함량(즉, 70nm 이하의 입경을 갖는 입자의 함량)을 가질 수 있다.The first BT powder may have an average particle diameter of 280 to 320nm and a fine powder content of 5 to 10% by weight (that is, a content of particles having a particle diameter of 70 nm or less).
상기 티탄산바륨 분말의 제조방법은, 상기 2차 하소단계 이후에, 상기 2차 하소된 BT를 해쇄하여 제2 BT 분말을 얻는 단계(BT 해쇄단계)를 더 포함할 수 있다.The method of manufacturing the barium titanate powder may further include, after the secondary calcination step, disintegrating the secondary calcined BT to obtain a second BT powder (BT disintegration step).
본 발명의 다른 측면은,Another aspect of the invention,
상기 티탄산바륨의 제조방법에 의해 제조된 티탄산바륨 분말을 제공한다.It provides a barium titanate powder prepared by the method for producing barium titanate.
상기 티탄산바륨 분말은 3.5중량% 이하의 미분 함량(즉, 70nm 이하의 입경을 갖는 입자의 함량)을 가질 수 있다.The barium titanate powder may have a fine powder content of 3.5 wt% or less (that is, a content of particles having a particle diameter of 70 nm or less).
본 발명의 일 구현예에 따른 옥살레이트 공정에 의한 티탄산바륨 분말의 제조방법에 의하면, 1차 하소단계 및 2차 하소단계를 포함함으로써, 미분 함량이 적고, 입도분포가 좁으며, 결정성이 높은 미립의 티탄산바륨 분말을 얻을 수 있다.According to the method for producing the barium titanate powder by the oxalate process according to the embodiment of the present invention, by including the first calcination step and the second calcination step, the fine powder content, narrow particle size distribution, high crystallinity Fine barium titanate powder can be obtained.
도 1은 본 발명의 일 구현예에 따른 티탄산바륨 분말의 제조방법을 단계적으로 설명하기 위한 흐름도이다.1 is a flowchart illustrating a step-by-step method for producing a barium titanate powder according to an embodiment of the present invention.
도 2는 바륨티타닐옥살레이트가 티탄산바륨으로 전환되는 일련의 과정을 보여주는 도면이다.FIG. 2 shows a series of processes in which barium titanyl oxalate is converted to barium titanate.
도 3은 2차 하소단계 및/또는 해쇄단계에서 티탄산바륨에 일어나는 현상을 보여주는 도면이다.3 is a view showing a phenomenon occurring in the barium titanate in the second calcination step and / or disintegration step.
도 4는 실시예 2에서 제조된 것으로, 1차 하소단계후 BT 분쇄단계전의 티탄산바륨 입자들간의 네킹(necking) 현상을 설명하기 위한 SEM 사진이다.FIG. 4 is a SEM photograph prepared in Example 2 to illustrate necking phenomenon between barium titanate particles after the first calcination step and before the BT grinding step.
도 5는 실시예 2에서 제조된 티탄산바륨 분말의 SEM 사진이다.5 is a SEM photograph of the barium titanate powder prepared in Example 2. FIG.
도 6은 비교예 1에서 제조된 티탄산바륨 분말의 SEM 사진이다.6 is a SEM photograph of the barium titanate powder prepared in Comparative Example 1. FIG.
도 7은 실시예 2 및 비교예 1에서 제조된 티탄산바륨 분말의 입도분포를 나타낸 그래프이다.Figure 7 is a graph showing the particle size distribution of the barium titanate powder prepared in Example 2 and Comparative Example 1.
이하, 도면을 참조하여 본 발명의 일 구현예에 따른 티탄산바륨 분말의 제조방법을 상세히 설명한다.Hereinafter, a method of preparing barium titanate powder according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 구현예에 따른 티탄산바륨 분말의 제조방법을 단계적으로 설명하기 위한 흐름도이다.1 is a flowchart illustrating a step-by-step method for producing a barium titanate powder according to an embodiment of the present invention.
도 1에는 비록 도시되지 않았지만, 먼저, 염화바륨(BaCl2) 수용액 및 사염화티탄(TiCl4) 수용액을 마련한다(원료 수용액 마련단계). 염화바륨 수용액은 보통 BaCl2·2H2O를 물에 녹여 사용하는데, 그 농도범위는 0.2~2.0 mol/L일 수 있다. 상기 염화바륨 수용액의 농도가 상기 범위이내이면, 상기 염화바륨 수용액의 부피 대비 후술하는 티탄산바륨(BT)의 생산성이 높으며, 염화바륨이 석출되 않는다. 사염화티탄 수용액은 보통 고농도의 사염화티탄 용액을 희석하여 사용하는데, 그 농도범위는 0.2~2.0 mol/L일 수 있다. 상기 사염화티탄 수용액의 농도가 상기 범위이내이면, 상기 사염화티탄 수용액의 부피 대비 BT의 생산성이 높으며, 사염화티탄이 석출되지 않는다.Although not shown in FIG. 1, first, a barium chloride (BaCl 2 ) aqueous solution and a titanium tetrachloride (TiCl 4 ) aqueous solution are prepared (a raw material aqueous solution preparation step). Aqueous solution of barium chloride is usually used by dissolving BaCl 2 · 2H 2 O in water, and its concentration range may be 0.2∼2.0 mol / L. When the concentration of the barium chloride aqueous solution is within the above range, the productivity of barium titanate (BT) to be described later is high compared to the volume of the barium chloride aqueous solution, and barium chloride is not precipitated. Titanium tetrachloride aqueous solution is usually used by diluting a high concentration of titanium tetrachloride solution, the concentration range may be 0.2 ~ 2.0 mol / L. When the concentration of the titanium tetrachloride aqueous solution is within the above range, the productivity of BT relative to the volume of the titanium tetrachloride aqueous solution is high, and titanium tetrachloride is not precipitated.
다음에, 상기 염화바륨 수용액 및 사염화티탄 수용액의 혼합 수용액이나 이들 각각의 수용액을 고속분사 노즐을 사용하여 옥살산(H2C2O4) 수용액에 첨가(예를 들어, 적가)함으로써 바륨티타닐옥살레이트[BaTiO(C2O4)4H2O](이하, 간단히 BTO라고 함)를 생성시킨다(BTO 생성단계, S1). 이때, 상기 옥살산 수용액은 염화바륨 수용액이나 사염화티탄 수용액 보다 많은 양이 사용될 수 있다. 구체적으로, 상기 옥살산 수용액의 농도범위는 0.2~5.0 mol/L일 수 있다. 상기 옥살산 수용액의 농도가 상기 범위이내이면, 상기 옥살산 수용액의 부피 대비 BT의 생산성이 높고, 옥살산이 물에 완전히 용해될 수 있다. 또한 이 경우, 상기 옥살산 수용액의 온도는 20~100℃, 예를 들어 50~90℃로 유지될 수 있다. 염화바륨 수용액과 사염화티탄 수용액이 혼합 용액의 형태로 또는 각각 별도로 옥살산 수용액에 노즐 분사되어 적가되는 시간은 1~3시간일 수 있다. 이러한 적가 시간은 노즐의 분사속도를 조절함으로써 달성될 수 있다. 분사노즐은 유체의 흐름에 따라 일류체 또는 이류체 노즐을 사용할 수 있으며, 일류체 노즐을 사용하는 것이 편리성 면에서나 균일한 침전물을 획득하는데 있어서 더욱 유리할 수 있다. 일류체 노즐로는 풀콘(full con), 할로우 콘(hollow con), 또는 플랫(flat) 등이 사용될 수 있다. 이와 같이 염화바륨 수용액과 사염화티탄 수용액을 옥살산 수용액에 첨가하여 BTO[BaTiO(C2O4)2·4H2O]를 생성하는 과정은 하기 반응식 1과 같이 표시될 수 있다.Next, a mixed aqueous solution of the aqueous barium chloride solution and titanium tetrachloride solution or each of these aqueous solutions is added (for example, dropwise) to the aqueous solution of oxalic acid (H 2 C 2 O 4 ) using a high-speed jet nozzle to add barium titanyl oxal. A rate [BaTiO (C 2 O 4 ) 2. 4H 2 O] (hereinafter referred to simply as BTO) is generated (BTO generation step, S1). At this time, the oxalic acid aqueous solution may be used in an amount larger than the barium chloride aqueous solution or titanium tetrachloride aqueous solution. Specifically, the concentration range of the oxalic acid aqueous solution may be 0.2 ~ 5.0 mol / L. When the concentration of the oxalic acid aqueous solution is within the above range, the productivity of BT relative to the volume of the oxalic acid aqueous solution is high, and oxalic acid may be completely dissolved in water. In this case, the temperature of the oxalic acid aqueous solution may be maintained at 20 ~ 100 ℃, for example, 50 ~ 90 ℃. The aqueous solution of the barium chloride solution and the titanium tetrachloride solution in the form of a mixed solution or separately sprayed onto the oxalic acid solution may be added dropwise for 1 to 3 hours. This dropping time can be achieved by adjusting the injection speed of the nozzle. The injection nozzle may use a hydraulic or two-fluid nozzle depending on the flow of the fluid, and the use of the hydraulic nozzle may be more advantageous in terms of convenience or in obtaining a uniform precipitate. As the hydraulic nozzle, a full cone, a hollow cone, a flat, or the like may be used. As such, a process of generating BTO [BaTiO (C 2 O 4 ) 2 .4H 2 O] by adding an aqueous barium chloride solution and an aqueous titanium tetrachloride solution to the oxalic acid solution may be represented as in Scheme 1 below.
[반응식 1] Scheme 1
BaCl2·2H2O + TiOCl2 + 2H2C2O4·2H2O → BaTiO(C2O4)2·4H2O + 4HCl BaCl 2 · 2H 2 O + TiOCl 2 + 2H 2 C 2 O 4 · 2H 2 O → BaTiO (C 2 O 4) 2 · 4H 2 O + 4HCl
다음에, 상기 생성된 BTO를 숙성하고, 여과한 다음, 물로 세척할 수 있다(S2). 숙성시간은 0.5~2시간 행하는 것이 생산성 측면에서 유리할 수 있다. 여기서, 여과란, 구체적으로 원심분리기를 이용하여 BTO 함유 슬러리로부터 고상의 BTO만을 분리해내는 공정을 말한다. 이후, 세척액의 pH가 중성이 될 때까지 과량의 물로 여과된 BTO를 세척할 수 있다.Next, the produced BTO may be aged, filtered, and washed with water (S2). It may be advantageous in terms of productivity that the aging time is 0.5 to 2 hours. Here, filtration means the process of separating only solid-state BTO from the BTO containing slurry using a centrifugal separator specifically. Thereafter, the filtered BTO may be washed with excess water until the pH of the washing liquid is neutral.
이후, 상기와 같은 과정을 거쳐 얻어진 BTO를 습식분쇄한다(BTO 습식분쇄단계, S3). 여기서, 습식분쇄란 소정의 매질과 함께 BTO를 비즈밀(beads mill), 볼밀(ball mill) 및 어트리션 밀(attrition mill) 등과 같은 습식분쇄기에 투입하여 분쇄하는 방식을 말한다. 여기서, 매질이란 알코올과 같은 유기매질이나 탈이온수(deionized water)와 같은 물을 의미하는 것으로, 유기매질을 사용하게 되면 분쇄효율이나 입도관리 측면에서는 유리하지만 비용이 증가하는 단점이 있고, 물을 사용하게 되면 공정이 단순해져 비용을 절감할 수 있는 잇점이 있다. 상기 매질로서 물을 사용하는 경우, 이의 사용량은 BTO 1중량부에 대하여 1~10 중량부일 수 있다. 상기 물의 사용량이 상기 범위이내이면, 점도가 적당하여 분쇄가 용이하고, 물의 부피 대비 BTO의 생산성이 높다. 분쇄시간은 분쇄설비에 따라 분쇄력의 차이가 발생하여 적절히 제어될 필요가 있으며, 비즈밀을 사용하는 경우 10~300분일 수 있다. 이와 같이 분쇄시간을 조절함으로써 최종 제품인 BT 분말의 입도를 적절하게 조절할 수 있다. 이러한 습식분쇄 과정 중에 암모니아와 같은 질소함유 첨가제를 추가할 수 있는데, 이로써 분쇄 전후의 혼합물의 산성화, 분쇄 후의 슬러리의 고점도화, 생성된 BTO 내의 염소이온 존재로 인한 분말의 유전특성 감소 문제를 해결할 수 있다. Then, wet grinding the BTO obtained through the above process (BTO wet grinding step, S3). Here, the wet grinding means a method in which BTO is mixed with a predetermined medium and put into a wet grinding machine such as a beads mill, a ball mill, an attrition mill, and the like. Here, the medium means an organic medium such as alcohol or water such as deionized water, and the use of an organic medium is advantageous in terms of crushing efficiency or particle size, but has a disadvantage of increasing cost. This simplifies the process and has the advantage of reducing costs. When water is used as the medium, its amount may be 1 to 10 parts by weight based on 1 part by weight of BTO. When the amount of water used is within the above range, the viscosity is moderate, so that grinding is easy, and the productivity of BTO is high relative to the volume of water. Grinding time needs to be appropriately controlled due to the difference in grinding force depending on the grinding facility, it may be 10 ~ 300 minutes when using a bead mill. By controlling the grinding time as described above, the particle size of the final product BT powder can be properly adjusted. Nitrogen-containing additives such as ammonia can be added during this wet grinding process, which can solve the problem of acidification of the mixture before and after grinding, high viscosity of the slurry after grinding, and reduction of the dielectric properties of the powder due to the presence of chlorine ions in the produced BTO. have.
다음에, 습식분쇄된 BTO를 400℃ 이하의 온도에서 건조하여 사용된 매질을 제거한다(BTO 건조단계, S4). 결과로서, 건조된 BTO 분말을 얻는다. 이 경우, 사용된 매질을 증발시켜 제거하기 위해, 상기 건조 온도가 상기 매질의 끓는점 이상이 되어야 함은 당연하다.Next, the wet milled BTO is dried at a temperature of 400 ° C. or lower to remove the used medium (BTO drying step, S4). As a result, dried BTO powder is obtained. In this case, it is natural that the drying temperature should be above the boiling point of the medium in order to evaporate and remove the medium used.
이어서, 상기 BTO 분말을 가열로에 충전시킨 다음, 920~950℃에서 1차 열처리하여 티탄산바륨(BT)을 생성한다(1차 하소단계, S5). 상기 1차 열처리 온도가 상기 범위를 벗어나면, 목표로 하는 입자크기(즉, 280~320nm의 평균입경)의 티탄산바륨을 얻을 수 없다. 상기 1차 하소단계(S5)에서는 수분 및/또는 탄소를 포함하는 불순물이 제거될 수 있다. 상기 BTO 건조단계(S4)의 건조온도에서부터 상기 1차 하소단계(S5)의 상기 1차 열처리 온도로의 승온속도는 0.5~10℃/min, 예를 들어 1~5℃/min일 수 있다. 상기 승온속도가 상기 범위이내이면, BT의 생산성이 높고, 온도분포가 균일해져 BT 분말의 입도가 균일해진다. 이와 같이 상기 1차 하소단계(S5)를 수행함으로써, BTO 결정의 내부에 결정수로 존재하는 수분과 과량의 탄산가스를 제거하여 하기 반응식 2 내지 4와 같은 과정을 거쳐 수십~수백nm 크기의 BT 분말을 얻는다.Subsequently, the BTO powder is charged into a heating furnace, and then subjected to a first heat treatment at 920 to 950 ° C. to produce barium titanate (BT) (first calcination step, S5). When the primary heat treatment temperature is out of the above range, barium titanate having a target particle size (ie, an average particle diameter of 280 to 320 nm) cannot be obtained. In the first calcination step (S5), impurities including water and / or carbon may be removed. The temperature increase rate from the drying temperature of the BTO drying step (S4) to the first heat treatment temperature of the first calcination step (S5) may be 0.5 ~ 10 ℃ / min, for example 1 ~ 5 ℃ / min. If the temperature increase rate is within the above range, the productivity of BT is high, the temperature distribution is uniform, and the particle size of the BT powder is uniform. By performing the first calcination step (S5) as described above, the BT and the tens to hundreds of nm size BT through the process as shown in the following reaction scheme 2 to 4 by removing the excess carbon dioxide and water present in the crystal water of the BTO crystals Get powder.
[반응식 2] Scheme 2
BaTiO(C2O4)2·4H2O → BaTiO(C2O4)2 + 4H2OBaTiO (C 2 O 4 ) 2 4H 2 O → BaTiO (C 2 O 4 ) 2 + 4H 2 O
[반응식 3]Scheme 3
BaTiO(C2O4)2 + 1/2 O2 → BaCO3 + TiO2 + 2CO2 BaTiO (C 2 O 4 ) 2 + 1/2 O 2 → BaCO 3 + TiO 2 + 2CO 2
[반응식 4] Scheme 4
BaCO3 + TiO2 → BaTiO3 BaCO 3 + TiO 2 → BaTiO 3
상기 건조된 BTO 분말의 열처리를 위해 가열로로서 Sagger 또는 Tray를 사용할 수 있다. 여기서, Sagger란 내화토(耐火土) 용기를 의미한다. 상기 Sagger는, 예를 들어 정사각형 형태의 밑면을 갖는 육면체 형상의 용기일 수 있다. Sagger or Tray may be used as a heating furnace for heat treatment of the dried BTO powder. Here, Sagger means a refractory soil container. The sagger may be, for example, a cuboid shaped container having a square bottom surface.
이후, 상기 1차 하소단계(S5)를 통해 생성된 BT를 분쇄하여 제1 BT 분말을 얻는다(BT 분쇄단계, S6). 그러나, 이러한 BT 분쇄단계(S6)는 생략될 수도 있다. 상기 BT 분쇄단계(S6)는, 소정의 매질과 함께 비즈밀(beads mill), 어트리션밀(Atrition mill), 및 볼밀(ball mill)과 같은 분쇄기를 사용하는 습식분쇄에 의해 수행될 수도 있고, 젯밀(jet mill) 및 디스크밀(Disk mill)과 같이 매질을 사용하지 않은 상태에서 원료간의 충돌이나 분쇄기와의 마찰력을 이용하는 건식분쇄에 의해 수행될 수도 있다. 상기 BT 분쇄단계(S6)는 큰 BT 입자를 작은 BT 입자들로 분리(즉, 파괴)하기 위한 것이다. 상기 BT 분쇄단계(S6)에서는 입자의 파괴가 유발되어 미분이 다량으로 발생하게 되며, 이로 인해 입도분포가 넓어지고 결정성이 저하된다.Thereafter, the first BT powder is pulverized through the first calcination step S5 to obtain a first BT powder (BT crushing step S6). However, this BT grinding step (S6) may be omitted. The BT grinding step S6 may be performed by wet grinding using a mill such as a beads mill, an attention mill, and a ball mill with a predetermined medium, It may also be performed by dry grinding using friction between the raw materials or friction with the pulverizer without using a medium such as a jet mill and a disk mill. The BT grinding step S6 is for separating (ie, breaking) large BT particles into small BT particles. In the BT grinding step (S6), the destruction of the particles is caused to generate a large amount of fine powder, thereby widening the particle size distribution and lowering the crystallinity.
다음에, 상기 BT 분쇄단계(S6)가 습식분쇄에 의해 수행될 경우, 상기 습식분쇄된 BT를 400℃ 이하의 온도에서 건조하여 사용된 매질을 제거한다(제1 BT 건조단계, S7). 결과로서, 건조된 제1 BT 분말을 얻는다. 상기 제1 BT 분말은 280~320nm의 평균입경 및 5~10중량%의 미분 함량을 가질 수 있다. 상기 제1 BT 분말의 평균입경은 상기 1차 하소단계(S5)의 상기 1차 열처리 온도와 밀접한 상관관계가 있으며, 이에 따라 상기 제1 BT 분말의 목표 평균입경을 먼저 설정하고, 이후 상기 목표 평균입경을 달성하도록 상기 1차 열처리 온도를 결정할 수 있다.Next, when the BT grinding step (S6) is performed by wet grinding, the wet milled BT is dried at a temperature of 400 ° C. or less to remove the used medium (first BT drying step, S7). As a result, a dried first BT powder is obtained. The first BT powder may have an average particle diameter of 280 ~ 320nm and the fine powder content of 5 ~ 10% by weight. The average particle diameter of the first BT powder has a close correlation with the primary heat treatment temperature of the first calcination step (S5), and accordingly sets a target average particle diameter of the first BT powder first, and then the target average. The primary heat treatment temperature may be determined to achieve a particle diameter.
한편, 상기 BT 분쇄단계(S6)가 건식분쇄에 의해 수행될 경우, 상기 제1 BT 건조단계(S7)는 생략될 수 있다.On the other hand, when the BT grinding step (S6) is performed by dry grinding, the first BT drying step (S7) can be omitted.
이하, 도 2를 참조하여 상기 1차 하소단계(S5)와 상기 BT 분쇄단계(S6)에서 일어나는 현상을 상세히 설명한다. Hereinafter, the phenomenon occurring in the first calcination step S5 and the BT grinding step S6 will be described in detail with reference to FIG. 2.
도 2는 바륨티타닐옥살레이트(BTO)가 티탄산바륨(BT)으로 전환되는 일련의 과정을 보여주는 도면이다.FIG. 2 shows a series of processes in which barium titanyl oxalate (BTO) is converted to barium titanate (BT).
도 2를 참조하면, 제1차 하소단계(S5)에서는 BTO가 열분해되어 티탄산바륨 입자들(BT1)이 생성되고, 이때 BTO로부터 불순물(수증기 및/또는 탄산가스)이 제거되면서 티탄산바륨입자들(BT1)에 산소결핍층(도 3의 ‘VL’)이 형성된다. 이후, 상기 티탄산바륨 입자들(BT1)은 입성장 및 선택적으로 네킹되어 이들 보다 입경이 큰 티탄산바륨 입자들(BT2) 및 선택적으로 응집체를 형성한다. 상기 산소결핍층은 입성장(grain growth)에 대한 활성이 높아 상기 티탄산바륨입자들(BT1)을 적층형 콘덴서의 유전체층에 사용하였을 때 칩소성 과정에서 비정상 입성장이 일어날 수 있는 영역으로, 고활성 영역으로 지칭되기도 한다. 따라서, 상기 티탄산바륨 입자들(BT1)은 상기 산소결핍층에서는 입성장이 많이 진행되고 나머지 부분에서는 입성장이 적게 진행되어 전체적으로 불균일한 입성장(이를 비정상 입성장이라고 함)이 일어난 티탄산바륨 입자들(BT2)로 전환된다. 이후, 상기 티탄산바륨 입자들(BT2)은 서로 결합(necking)되어 전술한 응집체를 형성한다. 이어서, 상기 응집체는 상기 BT 분쇄단계(S6)에서 이 보다 작은 티탄산바륨 입자들(BT3)로 분리되면서 미분(FP)을 형성하고, 이때 티탄산바륨 입자들(BT3)에 포함된 산소결핍층이 외부로 노출된다. 결과로서, 미분 함량이 높은 티탄산바륨 분말(BT3 + FP)이 얻어진다. 본 명세서에서, “미분 함량”이란 티탄산바륨(BT) 분말에 포함된 70nm 이하의 입경을 갖는 미분(fine particles)의 함량을 의미한다.Referring to FIG. 2, in the first calcination step (S5), BTO is thermally decomposed to generate barium titanate particles BT1, and at this time, barium titanate particles (barium titanate particles are removed from the BTO while impurities (water vapor and / or carbon dioxide) are removed). An oxygen deficient layer ('VL' in FIG. 3) is formed in BT1). Thereafter, the barium titanate particles BT1 are grain-grown and selectively necked to form aggregates and barium titanate particles BT2 having a larger particle size than these and optionally aggregated. The oxygen depletion layer has a high activity against grain growth, and when the barium titanate particles (BT1) are used in the dielectric layer of the multilayer capacitor, abnormal grain growth may occur during chip firing. Also referred to. Accordingly, the barium titanate particles BT1 have a large amount of grain growth in the oxygen deficient layer and a small amount of grain growth in the remaining portions, resulting in an overall nonuniform grain growth (this is called abnormal grain growth). Is converted to). Thereafter, the barium titanate particles BT2 are necked to each other to form the aforementioned aggregate. Subsequently, the agglomerates are separated into smaller barium titanate particles BT3 in the BT milling step S6 to form fine powder FP, wherein the oxygen depletion layer contained in the barium titanate particles BT3 is external. Is exposed. As a result, barium titanate powder (BT3 + FP) having a high fine powder content is obtained. In the present specification, the "fine powder content" refers to the content of fine particles having a particle diameter of 70 nm or less contained in the barium titanate (BT) powder.
이후, 다시 도 1을 참조하면, 상기 제1 BT 분말을 820~890℃에서 2차 열처리한다(2차 하소단계, S8). 상기 2차 열처리 온도가 820℃ 미만이면 2차 열처리 효과가 거의 없고, 890℃를 초과하는 경우에는 해쇄후 최종 BT 분말내의 미분 함량이 높아지고 결정성도 낮아진다. 상기 제1 BT 건조단계(S7)의 건조온도에서부터 상기 2차 하소단계(S8)의 상기 2차 열처리 온도로의 승온속도는 0.5~10℃/min, 예를 들어 1~5℃/min일 수 있다. 상기 승온속도가 상기 범위(0.5~10℃/min)이내이면, 티탄산바륨의 생산성이 높고, 온도 분포가 균일해져 티탄산바륨 분말의 입도가 균일해진다. 이와 같이 상기 2차 하소단계(S8)를 수행함으로써, 미분 함량이 낮고 좁은 입도분포와 높은 결정성을 갖는 미립의 티탄산바륨 분말을 얻을 수 있다.Then, referring again to Figure 1, the first BT powder is heat-treated at 820 ~ 890 ℃ secondary (second calcination step, S8). If the secondary heat treatment temperature is less than 820 ° C., there is almost no secondary heat treatment effect. If the secondary heat treatment temperature is higher than 890 ° C., the fine powder content in the final BT powder after disintegration is high and the crystallinity is also low. The temperature increase rate from the drying temperature of the first BT drying step S7 to the secondary heat treatment temperature of the second calcination step S8 may be 0.5 to 10 ° C./min, for example, 1 to 5 ° C./min. have. When the said temperature increase rate is within the said range (0.5-10 degreeC / min), productivity of barium titanate will be high, temperature distribution will become uniform, and the particle size of barium titanate powder will be uniform. Thus, by performing the second calcination step (S8), it is possible to obtain a fine barium titanate powder having a fine powder content, narrow particle size distribution and high crystallinity.
다음에, 상기 2차 하소단계(S8)을 거친 BT를 해쇄(disintegration)하여 제2 BT 분말을 얻는다(BT 해쇄단계, S9). 본 명세서에서, “해쇄”는 입자를 파괴하지 않고 단순히 입자간의 결합(necking)을 끊어주는 것을 의미하고, “분쇄”는 하나의 입자를 파괴하여 2 이상의 조각들로 분리하는 것을 의미한다. 그러나, 이러한 BT 해쇄단계(S9)는 생략될 수도 있다. 상기 BT 해쇄단계(S9)는, 소정의 매질과 함께 비즈밀(beads mill), 어트리션밀(Atrition mill), 및 볼밀(ball mill)과 같은 해쇄기를 사용하는 습식해쇄에 의해 수행될 수도 있고, 젯밀(jet mill) 및 디스크밀(Disk mill)과 같이 매질을 사용하지 않은 상태에서 원료간의 충돌이나 해쇄기와의 마찰력을 이용하는 건식해쇄에 의해 수행될 수도 있다. 상기 BT 해쇄단계(S9)는 BT 분말의 입자간 응집을 해소하기 위한 것이다. 상기 BT 해쇄단계(S9)에서 해쇄효율이 지나치게 높은 설비를 사용할 경우, 입자의 파괴가 유발되어 미분이 다량으로 발생하게 되고, 이로 인해 오히려 입도분포가 좁아지고 결정성이 저하될 가능성이 있으므로 가능한 한 해쇄 강도를 낮춰서 입자 자체의 파괴없이 입자간의 결합(necking)만을 끊어주는 것이 바람직하다. Next, disintegration of the BT passed through the second calcination step (S8) to obtain a second BT powder (BT disintegration step, S9). In this specification, “disintegration” means simply breaking the necking of particles without breaking the particles, and “crushing” means breaking one particle and separating it into two or more pieces. However, this BT disintegration step S9 may be omitted. The BT pulverization step S9 may be performed by wet pulverization using a pulverizer such as a beads mill, an attention mill, and a ball mill together with a predetermined medium. It may also be carried out by dry pulverization using friction between the raw materials or friction with the crusher without using a medium such as a jet mill and a disk mill. The BT disintegration step (S9) is for solving the aggregation between the particles of the BT powder. In the case of using the BT disintegration step (S9), if the equipment having a high disintegration efficiency is used, particle breakage is caused and a large amount of fine powder is generated, which may result in a narrow particle size distribution and a decrease in crystallinity. It is desirable to lower the breaking strength to break only the necking of the particles without breaking the particles themselves.
마지막으로, 상기 BT 해쇄단계(S9)가 습식해쇄에 의해 수행될 경우, 상기 습식해쇄된 BT를 350℃ 이하의 온도에서 건조하여 사용된 매질을 제거한다(제2 BT 건조단계, S10). 결과로서, 건조된 제2 BT 분말을 얻는다. 상기 제2 BT 분말은 3.5중량% 이하의 미분 함량을 가질 수 있다.Finally, when the BT disintegration step S9 is performed by wet disintegration, the wet disintegration BT is dried at a temperature of 350 ° C. or less to remove the used medium (second BT drying step, S10). . As a result, a dried second BT powder is obtained. The second BT powder may have a fine powder content of 3.5% by weight or less.
한편, 상기 BT 해쇄단계(S9)가 건식해쇄에 의해 수행될 경우, 상기 제2 BT 건조단계(S10)는 생략될 수 있다.On the other hand, when the BT disintegration step S9 is performed by dry disintegration, the second BT drying step S10 may be omitted.
이하, 도 3을 참조하여 상기 2차 하소단계(S8) 및/또는 해쇄단계(S9)에서 티탄산바륨에 일어나는 현상을 상세히 설명한다.Hereinafter, the phenomenon occurring in the barium titanate in the secondary calcination step S8 and / or the disintegration step S9 will be described in detail with reference to FIG. 3.
도 3을 참조하면, 상기 2차 하소단계(S8) 및/또는 해쇄단계(S9)에서는 티탄산바륨 입자들(BT3)에 포함된 전술한 산소결핍층(VL)에 산소가 보충된다(즉, BaTiO3-x + 1/2O2x → BaTiO3, 0<x<3인 실수). 이에 따라, 산소결핍층(VL)이 제거되어 비정상 입성장이 억제된 티탄산바륨 입자들(BT4)이 형성된다. 이후, 미분들(FP)이 티탄산바륨 입자들(BT4)에 재결합(recombination) 또는 재고용(redoping)되어 미분 함량이 적은 티탄산바륨 입자들(BT5)을 형성한다. 구체적으로, 상기 재결합 또는 재고용은 미분들(FP)이 티탄산바륨 입자들(BT4)로 이동(migration)한 후 재배열(rearrangement)됨으로써 이루어질 수 있다.Referring to FIG. 3, in the secondary calcination step S8 and / or the disintegration step S9, oxygen is replenished in the oxygen deficiency layer VL included in the barium titanate particles BT3 (that is, BaTiO). 3-x + 1 / 2O 2x → BaTiO 3 , real number with 0 <x <3). Accordingly, the barium titanate particles BT4 in which abnormal grain growth is suppressed are formed by removing the oxygen depletion layer VL. Thereafter, the fine powders FP are recombined or redoped with the barium titanate particles BT4 to form barium titanate particles BT5 having a low fine content. Specifically, the recombination or redistribution may be performed by rearranging the fines FP after migration to the barium titanate particles BT4.
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세히 설명하지만, 본 발명이 이에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments, but the present invention is not limited thereto.
실시예Example
실시예 1~4 및 비교예 1~4Examples 1-4 and Comparative Examples 1-4
(BTO 생성 및 숙성)(BTO generation and ripening)
1mol/l 농도의 염화바륨 수용액 1320l와 1mol/l 농도의 사염화티탄 수용액 1200l를 4M3 글래스-라인(Glass-lined) 반응조에서 잘 섞어서 혼합 수용액을 만들었다. 이후, 상기 혼합 수용액을 6M3 반응기에 충진된, 미리 만들어둔 1mol/l 농도의 옥살산 수용액 2520l에 풀콘(full con) 타입의 노즐을 이용하여 2.5l/min의 속도로 분사하였다. 노즐 분사시 상기 혼합 수용액의 공급을 위해 다이아프램 펌프를 사용하였다. 이때, 옥살산 용액을 교반기로 교반하면서 분사하였으며, 교반기의 교반속도는 150rpm으로 유지하였고, 옥살산 용액의 온도는 70℃로 유지하였다.1320 l of barium chloride solution at 1 mol / l concentration and 1200 l of titanium tetrachloride solution at 1 mol / l concentration were mixed well in a 4M 3 glass-lined reactor to form a mixed aqueous solution. Thereafter, the mixed aqueous solution was sprayed at a rate of 2.5 l / min using a full con type nozzle to 2520 l of an oxalic acid aqueous solution of 1 mol / l concentration, filled in a 6M 3 reactor. A diaphragm pump was used to supply the mixed aqueous solution during nozzle spraying. At this time, the oxalic acid solution was sprayed while stirring with a stirrer, the stirring speed of the stirrer was maintained at 150rpm, the temperature of the oxalic acid solution was maintained at 70 ℃.
2시간 동안 상기 혼합 수용액을 적가후 1시간 동안 반응온도를 유지한 다음, 교반을 유지한 채로 공냉시켜 1시간 동안 숙성시켰다. 결과로서, BTO를 함유하는 슬러리를 얻었다. After the dropwise addition of the mixed aqueous solution for 2 hours, the reaction temperature was maintained for 1 hour, and then air-cooled with stirring to mature for 1 hour. As a result, a slurry containing BTO was obtained.
(생성된 BTO 슬러리의 여과 및 세척)(Filtration and washing of the resulting BTO slurry)
상기에서 제조된 BTO 슬러리를 원심분리기로 여과하고 과량의 물로 세척액의 pH가 6 이상이 되도록 세척하여 BTO를 얻었다.The BTO slurry prepared above was filtered with a centrifugal separator and washed with excess water so that the pH of the washing solution was 6 or more to obtain BTO.
(생성된 BTO의 습식분쇄 및 건조)(Wet grinding and drying of the produced BTO)
상기 BTO 50kg, 탈이온수 250kg 및 29부피% 암모니아수 0.5kg(BTO 100몰부 대비 8.4 몰부)을 혼합조에 투입하고 교반하여 슬러리를 생성하였다. 이때, 슬러리의 pH는 9.3이었다. 이후, 20L의 수평식 비즈밀(매질: 탈이온수)로 최대 입경이 5㎛ 이하가 되도록 상기 BTO를 습식분쇄하였다. 분쇄 후, 슬러리의 pH는 5.1, 점도는 1800cP이었다. 이렇게 얻어진 BTO 슬러리를 오븐안에서 200℃의 온도로 12시간 동안 건조하여 BTO 분말을 제조하였다.50 kg of the BTO, 250 kg of deionized water, and 0.5 kg of 29% by volume ammonia water (8. 4 mol parts relative to 100 mol parts of BTO) were added to a mixing tank and stirred to form a slurry. At this time, the pH of the slurry was 9.3. Thereafter, the BTO was wet milled with a 20 L horizontal beads mill (medium: deionized water) such that the maximum particle size was 5 µm or less. After grinding, the slurry had a pH of 5.1 and a viscosity of 1800 cP. Thus obtained BTO slurry was dried in an oven at a temperature of 200 ℃ for 12 hours to prepare a BTO powder.
(1차 하소, 습식분쇄 및 건조)(1st calcination, wet grinding and drying)
상기 건조된 BTO 분말을 전기로에 투입한 후, 1차 하소후 생성되는 BT의 목표 평균입경을 300nm로 설정하여, 950℃에서 2시간 동안 1차 열처리를 수행하였다. 결과로서, BT-A 분말을 얻었다. 이후, 상기 BT-A 분말을 20L의 수평식 비즈밀(매질: 탈이온수)로 주속 5m/s(즉, 1500rpm)으로 30분간 습식분쇄하였다. 분쇄 후 형성된 BT 슬러리는 150℃오븐에서 24시간 동안 건조하였다. 결과로서, 제1 BT 분말을 얻었다.After the dried BTO powder was put into an electric furnace, the target average particle diameter of the BT produced after the first calcination was set to 300 nm, and the first heat treatment was performed at 950 ° C. for 2 hours. As a result, BT-A powder was obtained. Thereafter, the BT-A powder was wet pulverized for 30 minutes at a speed of 5 m / s (ie, 1500 rpm) with a 20 L horizontal beads mill (medium: deionized water). The BT slurry formed after pulverization was dried for 24 hours at 150 ℃ oven. As a result, a first BT powder was obtained.
(2차 하소, 습식해쇄 및 건조)(Second calcination, wet crushing and drying)
상기 제1 BT 분말을 전기로에 투입한 후, 각 실시예 및 비교예에 따라 820~920℃의 온도범위에서 열처리 온도를 변경시켜가면서 2시간 동안 2차 열처리를 수행하였다. 결과로서, BT-B 분말을 얻었다. 이후, 상기 BT-B 분말을 20L의 수평식 비즈밀(매질: 탈이온수)로 주속 5m/s(즉, 1500rpm)로 습식해쇄하였다. 이때, 입도분석기(Malvern사, mastersizer-2000)로 측정된 티탄산바륨의 D50이 0.85~0.87㎛에 도달하였을 상기 습식해쇄를 종료하였다. 상기 습식해쇄 후 형성된 BT 슬러리는 150℃오븐에서 24시간 동안 건조하였다. 결과로서, 제2 BT 분말을 얻었다. 다만, 비교예 1에서는 2차 하소와 그 이후의 공정을 생략하였다.After the first BT powder was added to the electric furnace, the second heat treatment was performed for 2 hours while changing the heat treatment temperature in the temperature range of 820 ~ 920 ℃ according to each Example and Comparative Example. As a result, BT-B powder was obtained. Thereafter, the BT-B powder was wet pulverized at a circumferential speed of 5 m / s (ie, 1500 rpm) with a 20 L horizontal beads mill (medium: deionized water). At this time, the wet disintegration was terminated when the D 50 of the barium titanate measured by the particle size analyzer (Malvern, mastersizer-2000) reached 0.85 to 0.87 μm. The BT slurry formed after the wet disintegration was dried for 24 hours at 150 ℃ oven. As a result, a second BT powder was obtained. In Comparative Example 1, however, the second calcination and subsequent steps were omitted.
평가예Evaluation example
평가예 1: 2차 하소후 습식해쇄전의 티탄산바륨(BT-B) 분말의 특성 평가Evaluation Example 1 Characterization of Barium Titanate (BT-B) Powders After Secondary Calcining and Before Wet Disintegration
2차 하소시 채택한 2차 열처리 온도와 함께, 제조된 BT-B 분말의 평균입경, 비표면적, 평균 네킹각(average necking angle), 반가폭(FWHM: full width at half maximum), 결정화도(c/a) 및 미분의 존재여부를 하기와 같은 방법으로 측정 또는 평가하여, 그 결과를 하기 표 1에 나타내었다. The average particle diameter, specific surface area, average necking angle, full width at half maximum (FWHM) and crystallinity (c / a) and the presence or absence of fine powder was measured or evaluated in the following manner, and the results are shown in Table 1 below.
(평균입경, 평균 네킹각 및 미분의 존재 여부)(Average particle size, average necking angle and derivative presence)
상기 평균입경, 평균 네킹각 및 미분의 존재 여부는 Jeol사의 JSM-7400F를 이용하여 주사전자현미경(SEM) 사진을 50,000배로 촬영한 후 이미지 분석 프로그램(이미지프로 플러스 ver 4.5)을 이용하여 계산 또는 관찰하였다. 이 경우, 측정한 BT-B 입자의 개수는 800개 이상이었다. 상기 평균입경의 계산시, 각 BT-B 입자의 장축과 단축의 평균으로 각 BT-B 입자의 입경을 계산하였다. The presence of the average particle diameter, average necking angle and derivative is calculated or observed by using an image analysis program (Image Pro Plus ver 4.5) after taking a scanning electron microscope (SEM) photograph 50,000 times using a Jeol JSM-7400F. It was. In this case, the number of BT-B particles measured was 800 or more. In calculating the average particle diameter, the particle diameter of each BT-B particle was calculated by the average of the long axis and the short axis of each BT-B particle.
(결정화도(c/a) 및 반가폭)(Crystallinity (c / a) and half width)
상기 결정화도(c/a)는 XRD(Rigaku사의 D/Max 2000 series)를 이용하여 40kV, 200mA에서 2sec/step의 속도와 0.02의 step size의 조건으로, 2θ = 44~46.5도(°)를 측정하여 결정 격자의 a축과 c축의 d-spacing 값을 구한 후 이들의 비로써 BT-B 입자의 결정성을 평가한 지표이다. 상기 반가폭은 상기 결정화도 측정방법과 동일한 방법으로 (111) 평면 및 (222) 평면을 정밀 분석하여 얻었다. 다만, (111) 평면 및 (222) 평면의 2θ 영역은 각각 38~40도(°) 및 83~84도(°)이었다.The crystallinity (c / a) is measured at 2θ = 44 to 46.5 degrees (°) under conditions of a speed of 2 sec / step and a step size of 0.02 at 40 kV and 200 mA using XRD (D / Max 2000 series of Rigaku Corporation). The d-spacing values of the a-axis and the c-axis of the crystal lattice were obtained. The half width was obtained by precise analysis of the (111) plane and the (222) plane in the same manner as the crystallinity measuring method. However, 2θ regions of the (111) plane and the (222) plane were 38 to 40 degrees (°) and 83 to 84 degrees (°), respectively.
(비표면적)(Specific surface area)
상기 비표면적은 비표면적 측정기(Mountech사, Macsorb HM-1220)를 이용하여 분석하였다.The specific surface area was analyzed using a specific surface area meter (Mountech, Macsorb HM-1220).
한편, 상기 평균 네킹각에 관한 이해를 돕기 위해, 실시예 2에서 제조된 BT-B 분말의 SEM 사진을 촬영하여 도 4에 나타내었다. 도 4를 참조하면, 실시예 2에서 제조된 BT-B 분말 중 2개의 티탄산바륨 입자들이 서로 결합(necking)되어 있음을 확인할 수 있다. 이 경우, 네킹각은 쎄타(θ)로 표시되고, 그 값은 표 1로부터 87도(°)임을 알 수 있다.On the other hand, in order to help the understanding of the average necking angle, a SEM photograph of the BT-B powder prepared in Example 2 was taken and shown in FIG. Referring to FIG. 4, it can be seen that two barium titanate particles of the BT-B powder prepared in Example 2 are necked to each other. In this case, the necking angle is represented by theta (θ), and it can be seen from Table 1 that the value is 87 degrees (°).
표 1
2차 하소온도(℃) 평균입경(nm) 비표면적(m2/g) 평균 네킹각(°) 반가폭 결정화도(c/a) 미분 존재 여부
(111) 평면 (222) 평면
비교예 1 - 310 3.76 107 0.124 0.146 1.0100 존재
실시예 1 820±5 312 3.36 79 0.108 0.138 1.0105 존재
실시예 2 840±5 315 3.24 87 0.107 0.137 1.0110 부존재
실시예 3 860±5 317 3.12 90 0.107 0.137 1.0110 부존재
실시예 4 890±5 317 2.94 96 0.107 0.137 1.0110 부존재
비교예 2 900±5 322 2.88 104 0.106 0.137 1.0110 부존재
비교예 3 910±5 323 2.82 108 0.103 0.136 1.0110 부존재
비교예 4 920±5 344 2.76 109 0.103 0.136 1.0110 부존재
Table 1
Secondary calcination temperature (℃) Average particle size (nm) Specific surface area (m 2 / g) Average necking angle (°) Half width Crystallinity (c / a) Differential presence
(111) flat (222) flat
Comparative Example 1 - 310 3.76 107 0.124 0.146 1.0100 existence
Example 1 820 ± 5 312 3.36 79 0.108 0.138 1.0105 existence
Example 2 840 ± 5 315 3.24 87 0.107 0.137 1.0110 Nonexistence
Example 3 860 ± 5 317 3.12 90 0.107 0.137 1.0110 Nonexistence
Example 4 890 ± 5 317 2.94 96 0.107 0.137 1.0110 Nonexistence
Comparative Example 2 900 ± 5 322 2.88 104 0.106 0.137 1.0110 Nonexistence
Comparative Example 3 910 ± 5 323 2.82 108 0.103 0.136 1.0110 Nonexistence
Comparative Example 4 920 ± 5 344 2.76 109 0.103 0.136 1.0110 Nonexistence
상기 표 1을 참조하면, 실시예 1~4에서 제조된 티탄산바륨(BT-B) 분말은 비교예 2~4에서 제조된 티탄산바륨(BT-B) 분말에 비해 평균입경 및 평균 네킹각이 작아 비정상 입성장의 정도가 작은 것으로 나타났다. 다만, 비표면적 및 반가폭은 2차 하소온도가 증가할수록 대체적으로 감소하고, 미분은 2차 하소온도가 840℃ 이상일 경우에 존재하지 않는 것으로 나타났다. Referring to Table 1, the barium titanate (BT-B) powder prepared in Examples 1 to 4 has a smaller average particle diameter and average necking angle than the barium titanate (BT-B) powder prepared in Comparative Examples 2 to 4. The degree of abnormal grain growth appeared to be small. However, the specific surface area and the half width decreased generally as the secondary calcination temperature increased, and the derivative did not exist when the secondary calcination temperature was above 840 ℃.
평가예 2: 2차 하소, 습식해쇄 및 건조 후의 티탄산바륨 분말(제2 BT 분말)의 특성 평가Evaluation Example 2: Characterization of Barium Titanate Powder (Second BT Powder) After Secondary Calcining, Wet Disintegration, and Drying
2차 하소시 채택한 2차 열처리 온도와 함께, 제조된 제2 BT 분말의 입도(D50), 비표면적, 반가폭(FWHM: full width at half maximum), 결정화도(c/a) 및 미분 함량을 하기와 같은 방법으로 측정 또는 평가하여, 그 결과를 하기 표 2에 나타내었다. With the secondary heat treatment temperature adopted in the second calcination, the particle size (D50), specific surface area, full width at half maximum (FWHM), crystallinity (c / a) and fine powder content of the prepared second BT powder In the same manner as measured or evaluated, the results are shown in Table 2 below.
(D50 및 미분 함량)(D50 and fine powder content)
D50 및 미분 함량은 Jeol사의 JSM-7400F를 이용하여 주사전자현미경(SEM) 사진을 50,000배로 촬영한 후 이미지 분석 프로그램(이미지프로 플러스 ver 4.5)을 이용하여 계산하였다. 이 경우, 측정한 제2 BT 입자의 개수는 800개 이상이었다. 상기 D50의 계산시, 각각의 제2 BT 입자의 장축과 단축의 평균으로 각각의 제2 BT 입자의 입경을 계산하였다. 여기서, D50은 측정한 입자를 입경이 작은 것부터 큰 것 순으로 나열할 때 입자의 전체 개수 중 50%의 순위에 해당하는 입자의 입경을 의미한다. 상기 미분 함량은 상기 촬영한 SEM 사진에서 모든 BT 입자들이 차지하는 총면적 중 70nm 이하의 입경을 갖는 미분들이 차지하는 면적의 백분율을 의미한다.D50 and fine powder content was calculated by using an image analysis program (ImagePro Plus ver 4.5) after scanning electron microscopy (SEM) of 50,000 times using a Jeol JSM-7400F. In this case, the number of the measured second BT particles was 800 or more. In the calculation of D50, the particle diameter of each second BT particle was calculated as an average of the long axis and the short axis of each second BT particle. Here, D50 refers to the particle size of the particles corresponding to 50% of the total number of particles when the measured particles are arranged in order from smallest to largest. The fine powder content refers to the percentage of the area occupied by the fine powder having a particle size of less than 70nm of the total area occupied by all the BT particles in the SEM image.
(비표면적, 반가폭 및 결정화도(c/a))(Specific surface area, half width and crystallinity (c / a))
상기 비표면적, 반가폭 및 결정화도(c/a)는 상기 평가예 1과 동일한 방법으로 측정하였다.The specific surface area, half width, and crystallinity (c / a) were measured in the same manner as in Evaluation Example 1.
표 2
2차 하소온도(℃) D50(nm) 비표면적(m2/g) 반가폭 결정화도(c/a) 미분 함량(%)
(111) 평면 (222) 평면
비교예 1 - 0.87 3.79 0.124 0.146 1.0100 6.6
실시예 1 820±5 0.85 3.47 0.110 0.140 1.0103 3.3
실시예 2 840±5 0.86 3.30 0.107 0.137 1.0105 0.7
실시예 3 860±5 0.87 3.38 0.108 0.137 1.0105 1.2
실시예 4 890±5 0.87 3.45 0.110 0.139 1.0105 2.8
비교예 2 900±5 0.86 3.58 0.120 0.140 1.0100 5.6
비교예 3 910±5 0.87 3.75 0.123 0.146 1.0100 6.1
비교예 4 920±5 0.87 3.81 0.124 0.146 1.0100 6.9
TABLE 2
Secondary calcination temperature (℃) D50 (nm) Specific surface area (m 2 / g) Half width Crystallinity (c / a) Fine content (%)
(111) flat (222) flat
Comparative Example 1 - 0.87 3.79 0.124 0.146 1.0100 6.6
Example 1 820 ± 5 0.85 3.47 0.110 0.140 1.0103 3.3
Example 2 840 ± 5 0.86 3.30 0.107 0.137 1.0105 0.7
Example 3 860 ± 5 0.87 3.38 0.108 0.137 1.0105 1.2
Example 4 890 ± 5 0.87 3.45 0.110 0.139 1.0105 2.8
Comparative Example 2 900 ± 5 0.86 3.58 0.120 0.140 1.0100 5.6
Comparative Example 3 910 ± 5 0.87 3.75 0.123 0.146 1.0100 6.1
Comparative Example 4 920 ± 5 0.87 3.81 0.124 0.146 1.0100 6.9
상기 표 2를 참조하면, 실시예 1~4에서 제조된 티탄산바륨 분말(제2 BT 분말)은 비교예 1~4에서 제조된 티탄산바륨 분말(제2 BT 분말)에 비해 D50이 작거나 같으며, 비표면적과 반가폭이 작고, 결정화도가 높으며, 미분 함량이 적은 것으로 나타났다.Referring to Table 2, the barium titanate powder prepared in Examples 1 to 4 (second BT powder) has a smaller D50 or the same as the barium titanate powder prepared in Comparative Examples 1 to 4 (second BT powder). In addition, the specific surface area and half width are small, the crystallinity is high, and the fine powder content is low.
한편, 실시예 2에서 제조된 티탄산바륨 분말(제2 BT 분말)의 SEM 사진 및 비교예 1에서 제조된 티탄산바륨 분말(제1 BT 분말)의 SEM 사진을 촬영하여, 도 5 및 도 6에 각각 나타내었다. 도 5 및 도 6을 참조하면, 실시예 2에서 제조된 티탄산바륨 분말(제2 BT 분말)(도 5 참조)은 비교예 1에서 제조된 티탄산바륨 분말(제1 BT 분말)(도 6 참조)에 비해 미분의 함량이 극히 적고, 입자의 형상도 구형의 규칙적인 형상을 갖는 것으로 나타났다.Meanwhile, SEM photographs of the barium titanate powder (second BT powder) prepared in Example 2 and SEM photographs of the barium titanate powder (first BT powder) prepared in Comparative Example 1 were taken, and FIGS. 5 and 6, respectively. Indicated. 5 and 6, the barium titanate powder prepared in Example 2 (second BT powder) (see FIG. 5) is the barium titanate powder prepared in Comparative Example 1 (first BT powder) (see FIG. 6). Compared with, the content of fine powder is very small, and the shape of the particles also has a regular shape of spherical shape.
평가예 3: 입도분포 측정Evaluation Example 3: Measurement of Particle Size Distribution
입도분석기(Malvern사, mastersizer-2000)를 사용하여, 실시예 2에서 제조된 티탄산바륨 분말(제2 BT 분말)의 입도분포 및 비교예 1에서 제조된 티탄산바륨 분말(제1 BT 분말)의 입도분포를 측정하여, 그 결과를 도 7에 나타내었다. 도 7을 참조하면, 실시예 2에서 제조된 티탄산바륨 분말(제2 BT 분말)은 비교예 1에서 제조된 티탄산바륨 분말(제1 BT 분말)에 비해 입도분포가 좁은 것으로 나타났다.Particle size distribution of barium titanate powder (second BT powder) prepared in Example 2 and particle size distribution of barium titanate powder (first BT powder) prepared in Comparative Example 1 using a particle size analyzer (Mastersizer-2000, Malvern) Distribution was measured and the result is shown in FIG. Referring to FIG. 7, the barium titanate powder (second BT powder) prepared in Example 2 was found to have a smaller particle size distribution than the barium titanate powder (first BT powder) prepared in Comparative Example 1.
본 발명은 도면 및 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the drawings and embodiments, this is merely illustrative, and those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
본 발명의 일 구현예에 따른 옥살레이트 공정에 의한 티탄산바륨 분말의 제조방법에 의하면, 1차 하소단계 및 2차 하소단계를 포함함으로써, 미분 함량이 적고, 입도분포가 좁으며, 결정성이 높은 미립의 티탄산바륨 분말을 얻을 수 있다.According to the method for producing the barium titanate powder by the oxalate process according to the embodiment of the present invention, by including the first calcination step and the second calcination step, the fine powder content, narrow particle size distribution, high crystallinity Fine barium titanate powder can be obtained.

Claims (7)

  1. 염화바륨(BaCl2) 수용액 및 사염화티탄(TiCl4) 수용액을 마련하는 단계(원료 수용액 마련단계);Preparing an aqueous solution of barium chloride (BaCl 2 ) and an aqueous solution of titanium tetrachloride (TiCl 4 ) (preparing a raw material solution);
    상기 수용액들을 옥살산(H2C2O4) 수용액에 첨가함으로써 바륨티타닐옥살레이트[BaTiO(C2O4)2·4H2O](이하, 간단히 BTO라고 함)를 생성하는 단계(BTO 생성단계);Adding the aqueous solution to an aqueous solution of oxalic acid (H 2 C 2 O 4 ) to produce barium titanyl oxalate [BaTiO (C 2 O 4 ) 2 .4H 2 O] (hereinafter simply referred to as BTO). step);
    상기 BTO를 습식분쇄하는 단계(BTO 습식분쇄단계);Wet grinding the BTO (BTO wet grinding step);
    상기 습식분쇄된 BTO를 건조하여 BTO 분말을 얻는 단계(BTO 건조단계); Drying the wet milled BTO to obtain a BTO powder (BTO drying step);
    상기 BTO 분말을 920~950℃에서 1차 열처리하여 티탄산바륨(BT)을 생성하는 단계(1차 하소단계); 및First heat treating the BTO powder at 920 to 950 ° C. to produce barium titanate (BT) (first calcination step); And
    상기 BT를 820~890℃에서 2차 열처리하는 단계(2차 하소단계)를 포함하는 티탄산바륨 분말의 제조방법.Method for producing a barium titanate powder comprising the second heat treatment (second calcination step) the BT at 820 ~ 890 ℃.
  2. 제1항에 있어서,The method of claim 1,
    상기 BTO 생성단계와 상기 BTO 습식분쇄단계 사이에,Between the BTO generation step and the BTO wet grinding step,
    상기 생성된 BTO를 숙성하는 단계; Aging the generated BTO;
    상기 숙성된 BTO를 여과하는 단계; 및 Filtering the aged BTO; And
    상기 여과된 BTO를 과량의 물로 세척하는 단계를 더 포함하는 티탄산바륨 분말의 제조방법.Method for producing a barium titanate powder further comprises the step of washing the filtered BTO with excess water.
  3. 제1항에 있어서,The method of claim 1,
    상기 1차 하소단계와 상기 2차 하소단계 사이에, 상기 BT를 분쇄하여 제1 BT 분말을 얻는 단계(BT 분쇄단계)를 더 포함하는 티탄산바륨 분말의 제조방법.Between the first calcination step and the second calcination step, the method for producing barium titanate powder further comprising the step of pulverizing the BT to obtain a first BT powder (BT grinding step).
  4. 제3항에 있어서,The method of claim 3,
    상기 제1 BT 분말은 280~320nm의 평균입경 및 5~10중량%의 미분 함량(즉, 70nm 이하의 입경을 갖는 입자의 함량)을 갖는 티탄산바륨 분말의 제조방법.The first BT powder is a method for producing barium titanate powder having an average particle diameter of 280 ~ 320nm and fine powder content of 5 ~ 10% by weight (that is, the content of particles having a particle diameter of less than 70nm).
  5. 제1항에 있어서,The method of claim 1,
    상기 2차 하소단계 이후에, 상기 2차 하소된 BT를 해쇄하여 제2 BT 분말을 얻는 단계(BT 해쇄단계)를 더 포함하는 티탄산바륨 분말의 제조방법.After the second calcination step, a method for producing barium titanate powder further comprising the step of pulverizing the secondary calcined BT to obtain a second BT powder (BT crushing step).
  6. 제1항 내지 제5항 중 어느 한 항의 제조방법에 의해 제조된 티탄산바륨 분말. Barium titanate powder produced by the method according to any one of claims 1 to 5.
  7. 제6항에 있어서,The method of claim 6,
    3.5중량% 이하의 미분 함량(즉, 70nm 이하의 입경을 갖는 입자의 함량)을 갖는 티탄산바륨 분말.Barium titanate powder having a fine content of 3.5% by weight or less (ie, a content of particles having a particle diameter of 70 nm or less).
PCT/KR2012/010346 2012-11-30 2012-11-30 Method for preparing barium titanate powder and barium titanate powder prepared by said method WO2014084428A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0138469 2012-11-30
KR1020120138469A KR101792278B1 (en) 2012-11-30 2012-11-30 A method of preparing barium titanate powder and barium titanate powder prepared by same

Publications (1)

Publication Number Publication Date
WO2014084428A1 true WO2014084428A1 (en) 2014-06-05

Family

ID=50828045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010346 WO2014084428A1 (en) 2012-11-30 2012-11-30 Method for preparing barium titanate powder and barium titanate powder prepared by said method

Country Status (2)

Country Link
KR (1) KR101792278B1 (en)
WO (1) WO2014084428A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102091744B1 (en) * 2018-08-09 2020-03-20 (주)석경에이티 Yttrium oxyfluoride or yttrium fluoride powder for thin film coatings having uniform particle diameters and methods for their preparation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080070981A (en) * 2007-01-29 2008-08-01 삼성정밀화학 주식회사 A method of preparing barium-titanate powder by oxalate process and barium-titanate powder prepared by the same
KR20090118748A (en) * 2008-05-14 2009-11-18 삼성정밀화학 주식회사 A method of preparing highly crystalline barium-titanate fine powder by oxalate process and highly crystalline barium-titanate fine powder prepared by the same
KR100955802B1 (en) * 2009-07-21 2010-05-06 한화케미칼 주식회사 Process for preparing fine barium titanate based composite oxide
KR20100133135A (en) * 2009-06-11 2010-12-21 씨큐브 주식회사 Barium titanate nano powder and method for fabricating the same
KR20120060542A (en) * 2010-12-02 2012-06-12 삼성전기주식회사 A fabricating method for titanic acid barium powder and titanic acid barium powder using thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846998B1 (en) 2006-09-19 2008-07-17 한국화학연구원 Method for preparation of high dielectric inorganic-organic hybrid films containing crystalline barium titanate nanoparticles
JP2010064938A (en) * 2008-09-12 2010-03-25 Fukuoka Prefecture Nanoparticle dispersion solution of barium titanate and method for producing the same
JP6053444B2 (en) 2012-10-11 2016-12-27 旭化成株式会社 Method for producing metal oxide nanoparticle dispersion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080070981A (en) * 2007-01-29 2008-08-01 삼성정밀화학 주식회사 A method of preparing barium-titanate powder by oxalate process and barium-titanate powder prepared by the same
KR20090118748A (en) * 2008-05-14 2009-11-18 삼성정밀화학 주식회사 A method of preparing highly crystalline barium-titanate fine powder by oxalate process and highly crystalline barium-titanate fine powder prepared by the same
KR20100133135A (en) * 2009-06-11 2010-12-21 씨큐브 주식회사 Barium titanate nano powder and method for fabricating the same
KR100955802B1 (en) * 2009-07-21 2010-05-06 한화케미칼 주식회사 Process for preparing fine barium titanate based composite oxide
KR20120060542A (en) * 2010-12-02 2012-06-12 삼성전기주식회사 A fabricating method for titanic acid barium powder and titanic acid barium powder using thereof

Also Published As

Publication number Publication date
KR101792278B1 (en) 2017-11-02
KR20140072336A (en) 2014-06-13

Similar Documents

Publication Publication Date Title
KR101229611B1 (en) Magnesium oxide particle aggregate, and method for production thereof
WO2013081231A1 (en) Method for preparing hetero-metal doped lithium titanium complex oxide and hetero-metal doped lithium titanium complex oxide prepared from same
US6641794B2 (en) Method for producing barium titanate based powders by oxalate process
JP6517787B2 (en) Method of preparing lithium titanium spinel and use thereof
WO2014189209A1 (en) Manufacturing method of lithium-titanium composite oxide in which different metals are doped, and lithium-titanium composite oxide manufactured thereby in which different metals are doped
JP2010500957A (en) Zirconium oxide and method for producing the same
WO2014025125A1 (en) Method for preparing lithium metal phosphor oxide
WO2010143915A2 (en) Nanoscale barium titanate particles and a production method therefor
KR102590443B1 (en) Nano barium titanate microcrystals and method for producing the same and barium titanate powder and method for producing the same
WO2010126253A2 (en) Method for producing barium titanate powder by an oxalate process, and barium titanate powder produced by the method
WO2015080304A1 (en) Method for preparing barium titanate and barium titanate prepared thereby
CN113060748B (en) Submicron boehmite and preparation method
KR101451987B1 (en) A method of preparing highly crystalline Barium-Titanate fine powder by Oxalate Process and highly crystalline Barium-Titanate fine powder prepared by the same
WO2014084428A1 (en) Method for preparing barium titanate powder and barium titanate powder prepared by said method
KR101426345B1 (en) A method of preparing Barium-Titanate powder by Oxalate Process and Barium-Titanate powder prepared by the same
WO2024027085A1 (en) Method for preparing lithium manganese iron phosphate by solid-phase coating method
WO2015080303A1 (en) Method for preparing barium titanyl oxalate and method for preparing barium titanate
JP2004521850A (en) Method for producing high quality barium titanate powder
KR20100118804A (en) A method of preparing barium titanate powder by oxalate process and barium titanate powder prepared by same
CN101817686B (en) Doped and modified barium titanate composite particle and preparation method thereof
WO2014084429A1 (en) Method for preparing barium titanate, and barium titanate prepared by same
WO2015099203A1 (en) Method for preparing barium titanyl oxalate, method for preparing barium titanate, and barium titanate
CN114105191A (en) Nano-grade barium titanate powder and preparation process thereof
WO2014123265A1 (en) Method for preparing nano chemical manganese dioxide (cmd) for cathode material of secondary battery by using recirculation process and nano chemical manganese dioxide (cmd) prepared through same
WO2020158666A1 (en) Method for producing lithium titanium phosphate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06.11.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12889104

Country of ref document: EP

Kind code of ref document: A1