WO2014083820A1 - Vehicle acceleration-suppression device, and vehicle acceleration-suppression method - Google Patents

Vehicle acceleration-suppression device, and vehicle acceleration-suppression method Download PDF

Info

Publication number
WO2014083820A1
WO2014083820A1 PCT/JP2013/006878 JP2013006878W WO2014083820A1 WO 2014083820 A1 WO2014083820 A1 WO 2014083820A1 JP 2013006878 W JP2013006878 W JP 2013006878W WO 2014083820 A1 WO2014083820 A1 WO 2014083820A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking frame
certainty
level
acceleration suppression
calculation unit
Prior art date
Application number
PCT/JP2013/006878
Other languages
French (fr)
Japanese (ja)
Inventor
早川 泰久
修 深田
明 森本
大介 笈木
田中 大介
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2014549813A priority Critical patent/JP5892260B2/en
Publication of WO2014083820A1 publication Critical patent/WO2014083820A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/12Limiting control by the driver depending on vehicle state, e.g. interlocking means for the control input for preventing unsafe operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Definitions

  • the present invention relates to a technique for suppressing acceleration of the host vehicle in order to provide driving assistance during parking.
  • the current position of the vehicle (own vehicle) is a position that deviates from the road (such as a public road). Is detected.
  • there is an accelerator operation in the direction to increase the vehicle traveling speed and when it is determined that the vehicle traveling speed is greater than the predetermined value, the throttle is decelerated in the deceleration direction regardless of the driver's accelerator operation.
  • Patent Document 1 The technique described in Patent Document 1 described above is intended to prevent acceleration of a vehicle that is not intended by the driver even when an accelerator operation error occurs, so whether or not the accelerator operation is an operation error. Judgment is a challenge.
  • an erroneous operation of the accelerator occurs under the condition that the vehicle is off the road and the condition in which the accelerator operation is performed in a state in which a traveling speed of a predetermined value or more is detected. It is a condition for determining that there is a possibility.
  • control in the throttle deceleration direction is activated depending on the vehicle speed.
  • the present invention has been made paying attention to the problems as described above, and suppresses drivability at the time of parking, and can suppress acceleration at the time of erroneous operation of the accelerator, and a vehicle acceleration suppression device. It aims at providing the acceleration suppression method for vehicles.
  • one aspect of the present invention is an end certainty factor indicating a degree of certainty that an image based on an environment around the own vehicle includes an image of an end portion of the parking frame in the traveling direction of the own vehicle. Is calculated. Furthermore, based on the calculated end part certainty factor, a parking frame certainty factor indicating the degree of certainty that the parking frame exists in the traveling direction of the host vehicle is calculated. And the higher the calculated parking frame certainty factor, the higher the degree of suppression of the acceleration of the host vehicle that is controlled according to the amount of operation of the driving force indicating operator that is operated by the driver to indicate the driving force.
  • the acceleration in a state where the parking frame certainty factor is low, it is possible to reduce the degree of suppression of the acceleration command value and reduce a decrease in drivability, and in a state where the parking frame certainty factor is high, the acceleration is accelerated. It is possible to increase the acceleration suppression effect of the host vehicle by increasing the degree of suppression of the command value. For this reason, while suppressing the drivability at the time of parking, it becomes possible to suppress the acceleration at the time of the erroneous operation of an accelerator.
  • step S216 of the process in which a parking frame reliability calculation part calculates parking frame reliability It is a flowchart which shows the process in which a parking frame approach reliability calculation part calculates a parking frame approach reliability. It is a figure which shows the content of the process which detects the deviation
  • FIG. 1 is a conceptual diagram showing a configuration of a vehicle including the vehicle acceleration suppression device of the present embodiment.
  • the host vehicle V includes a wheel W (a right front wheel WFR, a left front wheel WFL, a right rear wheel WRR, a left rear wheel WRL), a brake device 2, a fluid pressure circuit 4, and a brake controller 6. Is provided.
  • the host vehicle V includes an engine 8 and an engine controller 12.
  • the brake device 2 is formed using, for example, a wheel cylinder and provided on each wheel W.
  • the brake device 2 is not limited to a device that applies a braking force with fluid pressure, and may be formed using an electric brake device or the like.
  • the fluid pressure circuit 4 is a circuit including piping connected to each brake device 2.
  • the brake controller 6 responds to the braking force command value generated by each brake device 2 via the fluid pressure circuit 4 based on the braking force command value received from the travel controller 10 that is the host controller. To control the value. That is, the brake controller 6 forms a deceleration control device. In addition, the description regarding the traveling control controller 10 is mentioned later. Therefore, the brake device 2, the fluid pressure circuit 4, and the brake controller 6 form a braking device that generates a braking force.
  • the engine 8 forms a drive source for the host vehicle V.
  • the engine controller 12 controls the torque (driving force) generated by the engine 8 based on the target throttle opening signal (acceleration command value) received from the travel controller 10. That is, the engine controller 12 forms an acceleration control device. A description regarding the target throttle opening signal will be given later. Therefore, the engine 8 and the engine controller 12 form a driving device that generates driving force.
  • the drive source of the own vehicle V is not limited to the engine 8, You may form using an electric motor.
  • the driving source of the host vehicle V may be formed by combining the engine 8 and the electric motor.
  • FIG. 2 is a block diagram illustrating a schematic configuration of the vehicle acceleration suppression device 1 of the present embodiment.
  • the vehicle acceleration suppression device 1 includes an ambient environment recognition sensor 14, a wheel speed sensor 16, a steering angle sensor 18, a shift position sensor 20, and a brake operation detection sensor 22.
  • the accelerator operation detection sensor 24 is provided.
  • the vehicle acceleration suppression device 1 includes a navigation device 26 and a travel control controller 10.
  • the ambient environment recognition sensor 14 captures an image around the host vehicle V, and based on each captured image, an information signal including individual images corresponding to a plurality of imaging directions (in the following description, “individual image signal”). May be written). Then, the generated individual image signal is output to the travel controller 10.
  • the surrounding environment recognition sensor 14 is formed using the front camera 14F, the right side camera 14SR, the left side camera 14SL, and the rear camera 14R
  • the front camera 14F is a camera that images the front of the host vehicle V in the vehicle front-rear direction
  • the right side camera 14SR is a camera that images the right side of the host vehicle V
  • the left-side camera 14SL is a camera that images the left side of the host vehicle V
  • the rear camera 14R is a camera that images the rear side of the host vehicle V in the vehicle front-rear direction.
  • the wheel speed sensor 16 is formed using, for example, a pulse generator such as a rotary encoder that measures wheel speed pulses. Further, the wheel speed sensor 16 detects the rotational speed of each wheel W, and an information signal including the detected rotational speed (which may be referred to as “wheel speed signal” in the following description) is used as a travel controller. 10 is output.
  • the steering angle sensor 18 is provided in a steering column (not shown) that rotatably supports the steering wheel 28. The steering angle sensor 18 detects a current steering angle that is a current rotation angle (a steering operation amount) of the steering wheel 28 that is a steering operator. Then, an information signal including the detected current steering angle (which may be described as “current steering angle signal” in the following description) is output to the travel controller 10. In addition, you may detect the information signal containing the steering angle of a steered wheel as information which shows a steering angle.
  • the steering operator is not limited to the steering wheel 28 that is rotated by the driver, and may be, for example, a lever that is operated by the driver to tilt by hand.
  • the lever tilt angle from the neutral position is output as an information signal corresponding to the current steering angle signal.
  • the shift position sensor 20 detects the current position of a member that changes the shift position (for example, “P”, “D”, “R”, etc.) of the host vehicle V, such as a shift knob or a shift lever. Then, an information signal including the detected current position (which may be described as a “shift position signal” in the following description) is output to the travel controller 10.
  • the brake operation detection sensor 22 detects the opening degree of the brake pedal 30 that is a braking force instruction operator. Then, an information signal including the detected opening of the brake pedal 30 (in the following description, may be described as “brake opening signal”) is output to the travel controller 10.
  • the braking force instruction operator is configured to be operable by the driver of the host vehicle V and to instruct the braking force of the host vehicle V by a change in the opening degree. Note that the braking force instruction operator is not limited to the brake pedal 30 that the driver steps on with his / her foot, and may be, for example, a lever that is manually operated by the driver.
  • the accelerator operation detection sensor 24 detects the opening degree of the accelerator pedal 32 that is a driving force instruction operator. Then, an information signal including the detected opening of the accelerator pedal 32 (in the following description, it may be described as “accelerator opening signal”) is output to the travel controller 10.
  • the driving force instruction operator is configured to be operable by the driver of the host vehicle V and to instruct the driving force of the host vehicle V by changing the opening. Note that the driving force instruction operator is not limited to the accelerator pedal 32 that the driver steps on with his / her foot.
  • the navigation device 26 includes a GPS (Global Positioning System) receiver, a map database, an information presentation device having a display monitor, and the like, and performs route search, route guidance, and the like. Further, the navigation device 26 is based on the current position of the host vehicle V acquired using the GPS receiver and the road information stored in the map database, such as the type and width of the road on which the host vehicle V is traveling. Is possible to get. In addition, the navigation device 26 uses an information signal (which may be referred to as “own vehicle position signal” in the following description) including the current position of the own vehicle V acquired using the GPS receiver, as the traveling control controller 10. Output to. In addition to this, the navigation device 26 outputs an information signal including the type of road on which the vehicle V is traveling, the road width, etc. (in the following description, it may be described as “traveling road information signal”) to the travel control controller. 10 is output.
  • GPS Global Positioning System
  • the information presenting device outputs an alarm or other presenting by voice or image in accordance with a control signal from the travel controller 10.
  • the information presentation apparatus includes, for example, a speaker that provides information to the driver by a buzzer sound or voice, and a display unit that provides information by displaying an image or text. Further, the display unit may divert the display monitor of the navigation device 26, for example.
  • the travel controller 10 is an electronic control unit that includes CPU peripheral components such as a CPU (Central Processing Unit), ROM (Read Only Memory), and RAM (Random Access Memory).
  • the travel controller 10 also includes a parking driving support unit that performs driving support processing for parking.
  • the parking driving support unit functionally includes an ambient environment recognition information calculation unit 10A, a host vehicle vehicle speed calculation unit 10B, a steering angle calculation unit 10C, and a steering angular velocity calculation as shown in FIG.
  • the processing of unit 10D is provided.
  • the parking driving support unit functionally includes a shift position calculation unit 10E, a brake pedal operation information calculation unit 10F, an accelerator operation amount calculation unit 10G, an accelerator operation speed calculation unit 10H, and an acceleration suppression control content calculation unit 10I.
  • the parking driving support unit functionally includes processing of an acceleration suppression command value calculation unit 10J and a target throttle opening calculation unit 10K. These functions are composed of one or more programs.
  • the surrounding environment recognition information calculation unit 10 ⁇ / b> A forms an image (overhead image) around the host vehicle V viewed from above the host vehicle V based on the individual image signal received from the surrounding environment recognition sensor 14. Then, an information signal including the formed bird's-eye view image (may be described as “bird's-eye view image signal” in the following description) is output to the acceleration suppression control content calculation unit 10I.
  • the bird's-eye view image is formed by, for example, synthesizing images captured by the respective cameras (front camera 14F, right side camera 14SR, left side camera 14SL, and rear camera 14R).
  • the overhead image includes, for example, an image showing a road marking such as a line of a parking frame displayed on the road surface (may be described as “parking frame line” in the following description).
  • the own vehicle vehicle speed calculation unit 10 ⁇ / b> B calculates the speed (vehicle speed) of the own vehicle V from the rotation speed of the wheel W based on the wheel speed signal received from the wheel speed sensor 16. Then, an information signal including the calculated speed (in the following description, may be described as “vehicle speed calculation value signal”) is output to the acceleration suppression control content calculation unit 10I.
  • the steering angle calculation unit 10C calculates the operation amount (rotation angle) from the neutral position of the steering wheel 28 from the current rotation angle of the steering wheel 28 based on the current steering angle signal received from the steering angle sensor 18. . Then, an information signal including the calculated operation amount from the neutral position (in the following description, may be described as “steering angle signal”) is output to the acceleration suppression control content calculation unit 10I.
  • the steering angular velocity calculation unit 10D calculates the steering angular velocity of the steering wheel 28 by differentiating the current steering angle included in the current steering angle signal received from the steering angle sensor 18. Then, an information signal including the calculated steering angular velocity (may be described as “steering angular velocity signal” in the following description) is output to the acceleration suppression control content calculation unit 10I.
  • the shift position calculation unit 10E determines the current shift position based on the shift position signal received from the shift position sensor 20. Then, an information signal including the calculated current shift position (in the following description, may be described as “current shift position signal”) is output to the acceleration suppression control content calculation unit 10I.
  • the brake pedal operation information calculation unit 10F calculates the depression amount of the brake pedal 30 based on the state where the depression amount is “0” based on the brake opening signal received from the brake operation detection sensor 22. Then, an information signal including the calculated depression amount of the brake pedal 30 (in the following description, may be described as “braking side depression amount signal”) is output to the acceleration suppression control content calculation unit 10I.
  • the accelerator operation amount calculation unit 10G calculates the depression amount of the accelerator pedal 32 with reference to the state where the depression amount is “0” based on the accelerator opening signal received from the accelerator operation detection sensor 24.
  • an information signal including the calculated depression amount of the accelerator pedal 32 (which may be described as a “driving-side depression amount signal” in the following description) is calculated as an acceleration suppression control content calculation unit 10I and an acceleration suppression command value calculation.
  • an acceleration suppression control content calculation unit 10I is calculated as an acceleration suppression control content calculation unit 10I and an acceleration suppression command value calculation.
  • the accelerator operation speed calculation unit 10H calculates the operation speed of the accelerator pedal 32 by differentiating the opening of the accelerator pedal 32 included in the accelerator opening signal received from the accelerator operation detection sensor 24. Then, an information signal including the calculated operation speed of the accelerator pedal 32 (in the following description, may be described as “accelerator operation speed signal”) is output to the acceleration suppression command value calculation unit 10J.
  • the acceleration suppression control content calculation unit 10I includes the above-described various information signals (overhead image signal, vehicle speed calculation value signal, steering angle signal, steering angular velocity signal, current shift position signal, braking side depression amount signal, driving side depression amount signal, Receives input of own vehicle position signal and travel road information signal.
  • acceleration suppression control content calculation unit 10I based on the various information signals which received the input, the acceleration suppression operation condition judgment result mentioned later, acceleration suppression control start timing, and acceleration suppression control amount are calculated. Furthermore, an information signal including these calculated parameters is output to the acceleration suppression command value calculation unit 10J.
  • the detailed configuration of the acceleration suppression control content calculation unit 10I and the processing performed by the acceleration suppression control content calculation unit 10I will be described later.
  • the acceleration suppression command value calculation unit 10J receives the input of the drive side depression amount signal and the accelerator operation speed signal, and the input of the acceleration suppression operation condition determination result signal, the acceleration suppression control start timing signal, and the acceleration suppression control amount signal described later. receive. And the acceleration suppression command value which is a command value for suppressing the acceleration command value according to the depression amount (driving force operation amount) of the accelerator pedal 32 is calculated. Further, an information signal including the calculated acceleration suppression command value (may be described as an “acceleration suppression command value signal” in the following description) is output to the target throttle opening calculation unit 10K. Further, the acceleration suppression command value calculation unit 10J calculates a normal acceleration command value, which is a command value used in normal acceleration control, according to the content of the received acceleration suppression operation condition determination result signal. Further, an information signal including the calculated normal acceleration command value (in the following description, it may be described as “normal acceleration command value signal”) is output to the target throttle opening calculation unit 10K. The processing performed by the acceleration suppression command value calculation unit 10J will be described later.
  • the target throttle opening calculation unit 10K receives a drive side depression amount signal and an acceleration suppression command value signal or a normal acceleration command value signal. Based on the depression amount of the accelerator pedal 32 and the acceleration suppression command value or the normal acceleration command value, a target throttle opening that is a throttle opening corresponding to the depression amount of the accelerator pedal 32 or the acceleration suppression command value is calculated. Further, an information signal including the calculated target throttle opening (in the following description, it may be described as “target throttle opening signal”) is output to the engine controller 12. Further, when the acceleration suppression command value includes an acceleration suppression control start timing command value described later, the target throttle opening calculation unit 10K sends the target throttle opening signal to the engine controller 12 based on the acceleration suppression control start timing described later. Output. The processing performed by the target throttle opening calculation unit 10K will be described later.
  • FIG. 3 is a block diagram illustrating a configuration of the acceleration suppression control content calculation unit 10I.
  • the acceleration suppression control content calculation unit 10I includes an acceleration suppression operation condition determination unit 34, a parking frame certainty factor calculation unit 36, a parking frame approach certainty factor calculation unit 38, and an overall certainty factor calculation unit. 40.
  • the acceleration suppression control content calculation unit 10I includes an acceleration suppression control start timing calculation unit 42 and an acceleration suppression control amount calculation unit 44.
  • the acceleration suppression operation condition determination unit 34 determines whether or not a condition for operating acceleration suppression control is satisfied, and describes an information signal including the determination result (in the following description, “acceleration suppression operation condition determination result signal”). Is output to the acceleration suppression command value calculation unit 10J.
  • the acceleration suppression control is a control for suppressing an acceleration command value for accelerating the host vehicle V in accordance with the depression amount of the accelerator pedal 32. The process in which the acceleration suppression operation condition determination unit 34 determines whether the condition for operating the acceleration suppression control is satisfied will be described later.
  • the parking frame certainty calculating unit 36 calculates an end certainty factor indicating the degree of certainty that the overhead image includes an image of the end of the parking frame. In addition, the parking frame certainty calculation unit 36 calculates a parking frame certainty factor indicating the degree of certainty that the parking frame exists in the traveling direction of the host vehicle V based on the calculated end certainty factor. Then, an information signal including the calculated parking frame certainty factor (in the following description, may be described as “parking frame certainty signal”) is output to the total certainty factor calculation unit 40.
  • the parking frame certainty calculation unit 36 calculates the parking frame certainty by referring to various information included in the bird's-eye view image signal, the vehicle speed calculation value signal, the current shift position signal, the own vehicle position signal, and the traveling road information signal. To do.
  • FIG. 4 is a figure which shows the pattern of the parking frame which the parking frame reliability calculation part 36 makes calculation object of parking frame reliability.
  • the process which the parking frame reliability calculation part 36 calculates parking frame reliability is mentioned later.
  • the parking frame approach reliability calculation unit 38 calculates a parking frame approach reliability that indicates the degree of confidence that the host vehicle V enters the parking frame. Then, an information signal including the calculated parking frame approach certainty factor (in the following description, may be described as a “parking frame approach certainty signal”) is output to the total confidence factor calculation unit 40.
  • the parking frame approach certainty factor calculation unit 38 calculates the parking frame approach certainty factor with reference to various information included in the overhead image signal, the vehicle speed calculation value signal, the current shift position signal, and the steering angle signal. In addition, the process which the parking frame approach reliability calculation part 38 calculates a parking frame approach reliability is mentioned later.
  • the total certainty calculation unit 40 receives the input of the parking frame certainty signal and the parking frame approach certainty signal, and calculates the total certainty indicating the degree of comprehensive confidence between the parking frame certainty and the parking frame approach certainty. To do. Then, an information signal including the calculated total certainty factor (may be described as a “total certainty factor signal” in the following description) is output to the acceleration suppression control start timing calculation unit 42 and the acceleration suppression control amount calculation unit 44. To do. In addition, the process which the comprehensive reliability calculation part 40 calculates a comprehensive reliability is mentioned later.
  • the acceleration suppression control start timing calculation unit 42 calculates an acceleration suppression control start timing that is a timing for starting the acceleration suppression control.
  • an information signal including the calculated acceleration suppression control start timing (may be described as “acceleration suppression control start timing signal” in the following description) is output to the acceleration suppression command value calculation unit 10J.
  • the acceleration suppression control start timing calculation unit 42 refers to various information included in the comprehensive reliability signal, the braking side depression amount signal, the vehicle speed calculation value signal, the current shift position signal, and the steering angle signal, and starts the acceleration suppression control. Calculate timing. The process in which the acceleration suppression control start timing calculation unit 42 calculates the acceleration suppression control start timing will be described later.
  • the acceleration suppression control amount calculation unit 44 calculates an acceleration suppression control amount that is a control amount for suppressing the acceleration command value according to the depression amount of the accelerator pedal 32. Then, an information signal including the calculated acceleration suppression control amount (in the following description, may be described as “acceleration suppression control amount signal”) is output to the acceleration suppression command value calculation unit 10J.
  • the acceleration suppression control amount calculation unit 44 refers to various information included in the comprehensive certainty signal, the braking side depression amount signal, the vehicle speed calculation value signal, the current shift position signal, and the steering angle signal, and determines the acceleration suppression control amount. Calculate. The process in which the acceleration suppression control amount calculation unit 44 calculates the acceleration suppression control amount will be described later.
  • FIG. 5 is a flowchart illustrating processing in which the acceleration suppression operation condition determination unit 34 determines whether or not the acceleration suppression operation condition is satisfied.
  • the acceleration suppression operation condition determination unit 34 performs the process described below for each preset sampling time (for example, 10 [msec]).
  • step S100 a process for acquiring an image around the host vehicle V (“host vehicle surroundings” shown in the figure). Image acquisition processing ”). If the process which acquires the image around the own vehicle V is performed in step S100, the process which the acceleration suppression operation condition judgment part 34 performs will transfer to step S102.
  • the surrounding image of the own vehicle V is acquired with reference to an overhead image around the own vehicle V included in the overhead image signal received from the surrounding environment recognition information calculation unit 10A.
  • step S102 based on the image acquired in step S100, a process for determining the presence / absence of a parking frame (“parking frame presence / absence determination process" shown in the figure) is performed.
  • the process for determining the presence or absence of a parking frame is, for example, whether or not there is a white line (parking frame line) or the like that identifies the parking frame within a distance or area (area) set in advance with reference to the host vehicle V. Judge whether or not.
  • various well-known systems such as edge detection, are used, for example.
  • FIG. 6 is a schematic diagram schematically illustrating a parking frame line recognition method based on edge detection.
  • FIG. 6A when the parking frame lines Lm and Ln are detected, scanning in the horizontal direction is performed in the area indicating the captured image.
  • scanning an image for example, a monochrome image obtained by binarizing a captured image is used.
  • FIG. 6A shows a captured image. Since the parking frame line is displayed in white or the like that is sufficiently brighter than the road surface, the brightness is higher than that of the road surface.
  • FIG. 6B is a graph showing the luminance change of the pixels in the image when scanning from the left to the right.
  • FIG. 6C is the same as FIG. 6A. It is a figure which shows the done image.
  • the plus edge is indicated by a symbol “E + ”
  • the plus edge is indicated by a thick solid line with a symbol “E + ”.
  • a negative edge at which the brightness sharply decreases is detected at the boundary portion where the parking frame line changes to the road surface.
  • the minus edge is indicated by a sign “E ⁇ ”
  • the minus edge is indicated by a thick dotted line with a sign “E ⁇ ”.
  • the parking frame line is detected by detecting a pair of adjacent edges in the order of plus edge (E + ) and minus edge (E ⁇ ) in the scanning direction. Judge that it exists.
  • step S102 If it is determined in step S102 that there is a parking frame ("Yes” shown in the drawing), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S104. On the other hand, when it is determined in step S102 that there is no parking frame ("No" shown in the figure), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S120.
  • step S104 a process for acquiring the vehicle speed of the host vehicle V ("own vehicle speed information acquisition process” shown in the figure) is performed with reference to the vehicle speed calculation value signal received from the host vehicle speed calculation unit 10B. If the process which acquires the vehicle speed of the own vehicle V is performed in step S104, the process which the acceleration suppression operation condition judgment part 34 performs will transfer to step S106.
  • step S106 based on the vehicle speed acquired in step S104, it is determined whether or not a condition that the vehicle speed of the host vehicle V is less than a preset threshold vehicle speed is satisfied ("own vehicle vehicle speed shown in the figure"). "Condition judgment process”). In the present embodiment, a case where the threshold vehicle speed is set to 15 [km / h] will be described as an example.
  • the threshold vehicle speed is not limited to 15 [km / h], and may be changed according to the specifications of the host vehicle V such as the braking performance of the host vehicle V, for example. Further, for example, the vehicle V may be changed according to the traffic regulations of the area (country etc.) where the vehicle V travels.
  • the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S108. Transition.
  • step S106 if it is determined in step S106 that the condition that the vehicle speed of the host vehicle V is less than the threshold vehicle speed is not satisfied ("No" shown in the drawing), the process performed by the acceleration suppression operation condition determination unit 34 is performed in step S106.
  • the process proceeds to S120.
  • step S108 referring to the brake-side depression amount signal received from the brake pedal operation information calculation unit 10F, a process of obtaining information on the depression amount (operation amount) of the brake pedal 30 ("brake pedal shown in the drawing" Operation amount information acquisition processing ”) is performed. If the process which acquires the information of the depression amount (operation amount) of the brake pedal 30 is performed in step S108, the process which the acceleration suppression operation condition judgment part 34 performs will transfer to step S110.
  • step S110 based on the depression amount of the brake pedal 30 acquired in step S108, a process for determining whether or not the brake pedal 30 is operated ("brake pedal operation determination process" shown in the figure) is performed. If it is determined in step S110 that the brake pedal 30 is not operated ("No" shown in the figure), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S112. On the other hand, when it is determined in step S110 that the brake pedal 30 is operated (“Yes” shown in the drawing), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S120.
  • step S112 with reference to the drive side depression amount signal received from the accelerator operation amount calculation unit 10G, information on the depression amount (operation amount) of the accelerator pedal 32 is acquired ("accelerator pedal operation shown in the figure"). Quantity information acquisition processing ”). If the process which acquires the information of the depression amount (operation amount) of the accelerator pedal 32 is performed in step S112, the process which the acceleration suppression operation condition judgment part 34 performs will transfer to step S114. In step S114, a process for determining whether or not a condition that the depression amount (operation amount) of the accelerator pedal 32 is equal to or larger than a preset threshold accelerator operation amount is satisfied (“accelerator pedal operation determination process” shown in the figure). )I do.
  • step S114 is performed based on the depression amount of the accelerator pedal 32 acquired in step S112.
  • the threshold accelerator operation amount is set to an operation amount corresponding to 3% of the opening of the accelerator pedal 32.
  • the threshold accelerator operation amount is not limited to the operation amount corresponding to 3% of the opening degree of the accelerator pedal 32. It may be changed.
  • step S114 When it is determined in step S114 that the condition that the depression amount (operation amount) of the accelerator pedal 32 is equal to or greater than the threshold accelerator operation amount is satisfied (“Yes” shown in the drawing), the acceleration suppression operation condition determination unit 34 The process to be performed proceeds to step S116. On the other hand, if it is determined in step S114 that the condition that the depression amount (operation amount) of the accelerator pedal 32 is equal to or greater than the threshold accelerator operation amount is not satisfied ("No" in the drawing), the acceleration suppression operation condition determination unit The process performed by 34 proceeds to step S120.
  • step S116 a process of acquiring information for determining whether or not the host vehicle V enters the parking frame ("parking frame entry determination information acquisition process" shown in the figure) is performed.
  • the host vehicle V A case where it is determined whether or not to enter will be described. If the process for acquiring information for determining whether or not the host vehicle V enters the parking frame is performed in step S116, the process performed by the acceleration suppression operation condition determination unit 34 proceeds to step S118.
  • step S116 the rotation angle (steering angle) of the steering wheel 28 is acquired with reference to the steering angle signal received from the steering angle calculation unit 10C.
  • the angle ⁇ between the host vehicle V and the parking frame L0, the host vehicle V, and The distance D with the parking frame L0 is acquired.
  • the angle ⁇ is an absolute value of the intersection angle between the straight line X and the line on the frame line L1 and the parking frame L0 side.
  • the straight line X is a straight line in the front-rear direction of the host vehicle V that passes through the center of the host vehicle V (a straight line extending in the traveling direction). It is a frame line of the parking frame L0 part which becomes parallel or substantially parallel to the front-back direction.
  • the line on the parking frame L0 side is a line on the parking frame L0 side that is an extension of L1.
  • the distance D is, for example, the distance between the center point PF of the front end face of the host vehicle V and the center point PP of the entrance L2 of the parking frame L0 as shown in FIG.
  • the distance D is a negative value after the front end surface of the host vehicle V passes through the entrance L2 of the parking frame L0.
  • the distance D may be set to zero after the front end surface of the host vehicle V passes through the entrance L2 of the parking frame L0.
  • the position on the own vehicle V side for specifying the distance D is not limited to the center point PF, and may be, for example, a position set in advance in the own vehicle V and a preset position in the entrance L2.
  • the distance D is a distance between a position set in advance in the host vehicle V and a position set in advance at the entrance L2.
  • step S116 as information for determining whether or not the host vehicle V enters the parking frame L0, the steering angle, the angle ⁇ between the host vehicle V and the parking frame L0, the host vehicle V and the parking The distance D of the frame L0 is acquired.
  • step S118 based on the information acquired in step S116, a process for determining whether or not the host vehicle V enters the parking frame ("parking frame entry determining process" shown in the figure) is performed. If it is determined in step S118 that the host vehicle V does not enter the parking frame ("No" shown in the figure), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S120. On the other hand, if it is determined in step S118 that the host vehicle V enters the parking frame (“Yes” shown in the figure), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S122.
  • step S118 for example, when all of the following three conditions (A1 to A3) are satisfied, it is determined that the host vehicle V enters the parking frame.
  • Condition A1 The elapsed time after the steering angle detected in step S116 is equal to or greater than a preset steering angle value (eg, 45 [deg]) is within a preset setup time (eg, 20 [sec]). is there.
  • the angle ⁇ between the host vehicle V and the parking frame L0 is a preset angle (for example, 40 [deg]) or less.
  • Condition A3 The distance D between the host vehicle V and the parking frame L0 is equal to or less than a preset set distance (for example, 3 [m]).
  • step S120 an acceleration suppression operation condition determination result signal is generated as an information signal including a determination result that the acceleration suppression control operation condition is not satisfied ("acceleration suppression operation condition not satisfied" shown in the drawing). If the process which produces
  • step S122 a process of generating an acceleration suppression operation condition determination result signal as an information signal including a determination result that the acceleration suppression control operation condition is satisfied ("acceleration suppression operation condition satisfaction" shown in the figure) is performed. If the process which produces
  • step S124 processing for outputting the acceleration suppression operation condition determination result signal generated in step S120 or step S122 to the acceleration suppression command value calculation unit 10J ("acceleration suppression operation condition determination result output" shown in the figure) is performed. If the process which outputs an acceleration suppression operation condition judgment result signal to the acceleration suppression command value calculating part 10J is performed in step S124, the process which the acceleration suppression operation condition judgment part 34 performs will return to the process of step S100 (RETURN).
  • FIG. 8 is a flowchart showing a process in which the parking frame certainty calculation unit 36 calculates the parking frame certainty.
  • the parking frame reliability calculation part 36 performs the process demonstrated below for every preset sampling time (for example, 10 [msec]).
  • START when the parking frame certainty calculation unit 36 starts the process (START), first, in step S200, a process of calculating (setting) the level of the parking frame certainty as the lowest value (level 0). ("Level 0" shown in the figure) is performed. If the process which calculates parking frame reliability as level 0 is performed in step S200, the process which the parking frame reliability calculation part 36 performs will transfer to step S202.
  • step S202 a process of acquiring a bird's-eye view image around the host vehicle V included in the bird's-eye view image signal received from the surrounding environment recognition information calculation unit 10A ("Ambient image acquisition" shown in the figure) is performed. If the process which acquires the bird's-eye view image around the own vehicle V is performed in step S202, the process which the parking frame reliability calculation part 36 performs will transfer to step S203.
  • step S203 a process of calculating end reliability (“end reliability calculation” shown in the figure) is performed from the overhead image acquired in step S202.
  • the edge certainty indicates the degree of certainty that the image based on the environment recognized by the surrounding environment recognition unit includes the image of the edge of the parking frame. That is, the edge reliability indicates the degree of certainty that the overhead image formed by the surrounding environment recognition information calculation unit 10A based on the individual image signal includes the image of the edge of the parking frame.
  • step S203 the parking frame certainty calculation unit 36 first executes end shape detection processing, then executes end certainty calculation processing, and proceeds to the next step S204.
  • the edge shape detection process is a process of detecting a preset edge shape pattern (details will be described later) from an overhead image.
  • the edge reliability calculation process is a process of calculating the edge reliability according to the detected edge shape pattern.
  • the parking frame certainty calculation unit 36 when it is not possible to detect the end shape pattern in the end shape detection process, the end certainty setting flag provided in the end certainty setting unit (details will be described later). (Details will be described later) are set to the OFF state, and the process proceeds to the next step S204.
  • the parking frame certainty calculation unit 36 refers to the edge determination pattern map and detects an edge shape pattern preset in the edge determination pattern map from the overhead image.
  • the edge part determination pattern map which the parking frame reliability calculation part 36 has is demonstrated using FIG.
  • FIG. 9 is a diagram illustrating an example of the edge determination pattern map.
  • the end portion determination pattern map includes a plurality of end shape patterns classified based on the shape of the end portion of the parking frame, and whether the overhead image includes at least one of the plurality of end shape patterns. It is referred to when determining.
  • the edge determination pattern map is referred to when the edge shape pattern included in the overhead image is extracted when it is determined that the overhead image includes the plurality of edge shape patterns.
  • the edge determination pattern map is composed of two large item columns, “pattern number” in the left column and “edge shape” in the right column.
  • the “edge shape” in the large item column of the edge determination pattern map is composed of two middle item columns of “lower” in the left column and “upper” in the right column.
  • the “lower side” in the left column and the “upper side” in the right column of the middle items of the edge determination pattern map are each composed of two small item columns “left” and “right”.
  • the “lower” “left” column and the “right” column will be referred to as the “lower left” column and the “lower right” column, respectively, and the “upper” “left” column and the “right” column respectively.
  • the “pattern number” indicates the classification number of the end shape pattern classified based on the shape that can be the end of the parking frame. In the present embodiment, the end shape patterns are classified into six (pattern numbers are “1” to “6”). "End part shape” has shown the shape of the edge part of a parking frame. “Lower side” and “upper side” indicate positions in the traveling direction of the host vehicle V, and “lower side” indicates a position closer to the host vehicle V than “upper side”. “Left” indicates the position on the left side of the host vehicle V in the traveling direction, and “Right” indicates the position on the right side of the host vehicle V in the traveling direction.
  • the “lower left” column of “edge shape” shows a pattern that can be recognized as the edge shape of the parking frame on the left side close to the host vehicle V.
  • the “lower right” column a pattern that can be recognized as the end shape of the right parking frame close to the host vehicle V is shown.
  • the “upper left” column of “edge shape” shows a pattern that can be recognized as the edge shape of the left parking frame far from the host vehicle V, and “edge shape”.
  • the “upper right” column a pattern that can be recognized as the end shape of the right parking frame far from the host vehicle V is shown.
  • an “end shape pattern” a pattern that can be recognized as the end shape of the parking frame is referred to as an “end shape pattern”.
  • the end shape pattern classified as pattern number “1” has a shape that is stopped by a linear shape parallel to the extending direction of the frame line on the long side of the parking frame (hereinafter referred to as “linear stop shape”). is doing.
  • the end shape pattern classified into the pattern number “2” has a linear shape extending from the end of the frame line on the long side of the parking frame to the inside and outside of the parking frame.
  • the pattern number “2” includes an end shape pattern of an inverted T shape (hereinafter sometimes referred to as “inverted T shape”) in the “lower left” field and the “lower right” field, T-shaped end shape patterns of “upper left” column and “upper right” column.
  • the end shape pattern classified as pattern number “3” includes a linear shape that goes from the end of the frame line on the long side of the parking frame into the parking frame, and the inside of the parking frame and the outside of the parking frame from the end of the frame line. And a linear shape extending in a straight line.
  • the pattern number “3” is classified into two according to the combination of the end shapes.
  • the pattern number “3” (first line in the figure) in the first combination is an L-shaped end shape pattern in the “lower left” column and an inverted T-shaped end portion in the “lower right” column.
  • the pattern number “3” (second line in the figure) in the second combination is the inverted T-shaped end shape pattern in the “lower left” column and the inverted L shape in the “lower right” column.
  • the end shape pattern classified into the pattern number “4” has a linear shape that goes from the end of the frame line on the long side of the parking frame into the parking frame.
  • the pattern number “4” includes an L-shaped end shape pattern in the “lower left” column, an inverted L-shaped end shape pattern in the “lower right” column, and an inverted L in the “upper left” column. And an inverted inverted L-shaped end shape pattern in the “upper right” column.
  • the end shape pattern classified into the pattern number “5” has a convex shape of a curve that connects the frame lines formed of double lines on the long side of the parking frame.
  • the pattern number “4” includes a U-shaped end shape pattern in the “lower left” field and the “lower right” field, and a vertically inverted U character shape in the “upper left” field and the “upper right” field ( Hereinafter, it may be referred to as an “inverted U-shape”).
  • the end shape patterns classified into the pattern number “6” are the same as the end shape patterns classified into the pattern numbers “1” and “5”.
  • the pattern number “6” is classified into two according to the combination of the end shapes.
  • the pattern number “6” (first line in the figure) in the first combination is an end shape pattern of a straight stop shape in the “lower left” column and an end shape of the U shape in the “lower right” column. Pattern, an end shape pattern of a straight stop shape in the “upper left” column, and an inverted U-shaped end shape pattern of the “upper right” column.
  • the pattern number “6” (second line in the figure) in the second combination is the end shape pattern of the U shape in the “lower left” column and the end of the linear stop shape in the “lower right” column.
  • FIG. 10 schematically shows a part of the overhead image.
  • the image which imaged the parking frame near the own vehicle V, ie, the lower parking frame is shown.
  • FIG. 10A illustrates an image of a parking frame in which the left and right frame lines are single lines.
  • FIG. 10B illustrates an image of a parking frame in which the left frame line is a single line and the right frame line is a double line.
  • a case where one of the left and right frame lines is a single line and the other is a double line is referred to as a “single-side double line”.
  • FIG. 10C illustrates an image of a parking frame in which the left and right frame lines are double lines.
  • the images shown in the first to sixth lines are the end shape patterns of pattern numbers “1” to “6” in the end determination pattern map. It is an example of an image containing. Note that the image shown in the third row is an image example including the end shape pattern of the pattern number “3” in the first combination. In FIG. 10, when there is no image including the end shape patterns of pattern numbers “1” to “6”, this is blank.
  • the parking frame certainty calculation unit 36 has acquired an overhead image shown in the first row of FIG.
  • the parking frame certainty calculation unit 36 refers to the end determination pattern map, and the overhead image includes the end shape shown in the “lower left” column and the “lower right” column of the pattern number “1”. It is determined that an image matching the pattern is included.
  • the parking frame certainty calculation unit 36 extracts an end shape pattern (“lower left” field and “lower right” field) corresponding to the pattern number “1” from the overhead image.
  • the parking frame certainty calculation unit 36 detects whether the parking frame is a single-line parking frame, a single-sided double-lined parking frame, or a double-sided double-lined parking frame in the end shape detection process.
  • the parking frame certainty calculation unit 36 corresponds to the pattern number “1” from the bird's-eye view image in the end shape detection process. Detecting the end shape pattern of a single wire.
  • the parking frame certainty calculation unit 36 acquires the bird's-eye view images shown in the second to fourth lines in FIG. 10A in the end shape detection process.
  • the parking frame certainty calculation unit 36 refers to the end determination pattern map and determines that an image matching the end shape pattern is included in the end image determination process. Further, the parking frame certainty calculation unit 36 detects single-line end shape patterns corresponding to the pattern numbers “2”, “3”, and “4” from the overhead image in the end shape detection processing, respectively. .
  • the parking frame certainty calculation unit 36 has acquired the overhead image shown in the first row of FIG. 10B in the end shape detection process.
  • the parking frame certainty calculation unit 36 refers to the edge determination pattern map, and in the bird's-eye view image, the “lower” “left” and “right” edge shape patterns of the pattern number “1” are displayed. It is determined that matching images are included.
  • the parking frame certainty calculation unit 36 detects the adjacent lines as a double line.
  • the parking frame certainty calculation unit 36 determines that the interval between two adjacent lines on the right side in the overhead image is shorter than the set value, and from the overhead image, the pattern number “1” is determined. ”And an end shape pattern of the single-sided double line is detected.
  • the parking frame certainty calculation unit 36 has acquired overhead images shown in the second to fourth and sixth lines in FIG. 10B in the end shape detection process.
  • the parking frame certainty calculation unit 36 refers to the end determination pattern map and determines that an image that matches the end shape pattern is included.
  • the parking frame certainty calculation unit 36 detects the end shape pattern of the one-side double line corresponding to the pattern numbers “2” to “4” and “6” from the overhead image. .
  • the parking frame certainty calculation unit 36 acquires the bird's-eye view images shown in the first to fifth lines in FIG. 10C in the end shape detection process.
  • the parking frame certainty calculation unit 36 refers to the end determination pattern map and determines that the end shape pattern image is included in the end image determination process. In the end shape detection process, the parking frame certainty calculation unit 36 detects the end shape patterns of the double-sided double lines corresponding to the pattern numbers “1” to “5” from the overhead image.
  • the parking frame reliability calculation unit 36 refers to the edge reliability level calculation map and determines the edge reliability for the edge shape pattern detected in the edge shape detection process. Calculate the level.
  • the edge reliability level calculation map which the parking frame reliability calculation part 36 has is demonstrated using FIG.
  • the edge reliability level calculation map defines a correspondence relationship between a plurality of edge shape patterns and the edge reliability levels, and is referred to when calculating the edge reliability levels.
  • FIG. 11 is a diagram showing an example of an end certainty level calculation map.
  • FIG. 11A shows a map that is referred to when a single-line end shape pattern is detected from an overhead image.
  • FIG. 11B shows a map that is referred to when an end shape pattern of a single-sided double line is detected from an overhead image.
  • FIG.11 (c) has shown the map referred when the edge part shape pattern of a double-sided double line is detected from a bird's-eye view image.
  • the edge reliability level calculation map is composed of two large item columns of “pattern number” in the left column and “edge reliability” in the right column.
  • the “end certainty” in the large item column of the end certainty level calculation map is composed of two small item columns “lower” in the left column and “upper” in the right column.
  • the “pattern number” indicates the number of the end shape pattern classified based on the shape of the end of the parking frame, and corresponds to the “pattern number” of the end determination pattern map.
  • the “end certainty factor” indicates the end certainty factor based on the end shape pattern extracted from the overhead image.
  • “Lower side” and “upper side” indicate positions in the traveling direction of the host vehicle V, and “lower side” indicates a position closer to the host vehicle V than “upper side”. “Lower” in the edge confidence level calculation map corresponds to “Lower” in the edge determination pattern map, and “Upper” in the edge confidence level calculation map corresponds to “Upper” in the edge determination pattern map is doing. “Low” indicates the lowest edge confidence level, “High” indicates the highest edge confidence level, and “Medium” indicates that the edge confidence level is lower than “Low”. High and lower than “High”.
  • the end certainty level calculation map that is referred to when a single-line end shape pattern is detected from the overhead view image includes the pattern number “1”, the end certainty level, Is defined as “low” for both “lower” and “upper”.
  • the end certainty level calculation map “lower” is “middle” and “upper” is “ “Low”. Since the pattern numbers “5” and “6” cannot be detected when a single-line end shape pattern is detected from the overhead image, the end certainty level calculation map includes the pattern numbers “5” and “5”. 6 ”and the level of end certainty are not defined.
  • FIGS. 11A to 11C the fact that the corresponding relationship is not defined is represented as “ ⁇ ”.
  • the end certainty level calculation map referred to when the end shape pattern of the single-sided double line is detected from the overhead image is the pattern number “1” and the end certainty factor.
  • the “low” is defined for both “lower” and “upper”.
  • the edge confidence level calculation map defines the correspondence between the pattern numbers “3” and “4” and the edge confidence level as “medium” for both “lower” and “upper”. ing.
  • the edge confidence level calculation map defines the correspondence between the pattern number “6” and the edge confidence level as “high” for both “lower” and “upper”.
  • the edge reliability level calculation map does not define the correspondence between the pattern numbers “2” and “5” and the edge reliability levels.
  • the edge certainty level calculation map referred to when the edge shape pattern of the double-sided double line is detected from the overhead view image includes pattern numbers “1”, “3” and The correspondence between “4” and the level of edge confidence is defined as “low” for both “lower” and “upper”.
  • the edge confidence level calculation map defines the correspondence between the pattern numbers “2” and “5” and the edge confidence level as “high” for both “lower” and “upper”. ing.
  • the edge reliability level calculation map does not define the correspondence between the pattern number “6” and the edge reliability level.
  • the end reliability level calculation map referred to when detecting the end shape pattern of a single line, the end shape pattern of a single-sided double line, and the end shape pattern of both-side double lines is an end shape Correspondence between the pattern and the level of edge confidence is different from each other.
  • the parking frame certainty calculation unit 36 has a plurality (three in this example) of end certainty level calculation maps.
  • the end certainty level calculation map includes an end shape pattern according to a single image (single line or double line in this example) of a line extending from an end portion of one end shape pattern detected from the overhead image. The correspondence with the level of edge confidence is varied. Further, the end certainty level calculation map associates the end certainty factor having the lowest level with the end shape pattern having the same shape as the end shape of the line used for the public road. On the other hand, the end certainty level calculation map associates the end certainty with the highest level with the end shape pattern having the same shape as the end shape of the line that is not used on the public road.
  • the end certainty level calculation map when detecting both the end shape pattern of the same shape as the end of the line used for the public road and the end shape pattern of the same shape as the line not used for the public road
  • the end shape pattern of the line that is not used on the public road is prioritized.
  • the end shape of the line used for the public road is, for example, a straight stop shape.
  • wire which is not used for a public road is U character shape or reverse U character shape. Therefore, the end certainty level calculation map associates “low” of the end certainty with the pattern number “1” of the end shape pattern including the straight line stop shape, and includes the U shape and the inverted U shape. “High” of the edge reliability is associated with the pattern numbers “5” and “6” of the part shape pattern.
  • the parking frame certainty calculation unit 36 detects, for example, the end shape pattern shown in the first line in the drawing of FIG. 10A in the end shape detection process.
  • the parking frame certainty calculation unit 36 detects an end shape pattern that is a single line and has a linear stop shape. Therefore, the parking frame certainty calculation unit 36 refers to the end certainty level calculation map shown in FIG. 11A in the end certainty calculation process, and sets the lower end certainty to “low”. calculate.
  • the parking frame certainty factor calculation unit 36 includes, for example, an end certainty factor setting unit.
  • the end reliability setting unit has end reliability setting flags associated with “low”, “medium”, and “high” for “lower” and “upper”, respectively.
  • the parking frame certainty calculation unit 36 detects the end shape pattern shown in the first row in FIG. 10A and calculates the lower end certainty factor as a “low” level. To do. In this case, the parking frame certainty calculation unit 36 sets the end certainty setting flag associated with “low” to “low” in order to set the lower end certainty to the “low” level. Set to the on state.
  • the edge part reliability calculation process in step S203 is included in the process in which the parking frame reliability calculation part 36 calculates the parking frame reliability.
  • the edge reliability calculation process may be a process independent of the process of calculating the parking frame reliability.
  • the end certainty factor calculation process is executed before the process for calculating the parking frame certainty factor. If it does so, edge part reliability will be updated before the process which calculates the said parking frame reliability is performed.
  • the parking frame reliability calculation part 36 can calculate parking frame reliability based on the newest edge part reliability.
  • the parking frame certainty calculation unit 36 proceeds to step S ⁇ b> 204 when the end certainty calculation process is completed.
  • step S204 a process of extracting a determination element used for setting the parking frame certainty factor ("determination element extraction" shown in the figure) is performed from the overhead image acquired in step S202. If the process which extracts a determination element from a bird's-eye view image is performed in step S204, the process which the parking frame reliability calculation part 36 performs will transfer to step S206.
  • the determination element is a line (white line, etc.) marked on the road surface such as a parking frame line, and the state satisfies, for example, all of the following three conditions (B1 to B3) Then, the line is extracted as a determination element.
  • Condition B1 If the marked line on the road surface has a broken part, the broken part is a part where the marked line is faint (for example, a part having a lower clarity than the line and a higher clarity than the road surface). ).
  • Condition B2 The width of the line marked on the road surface is equal to or larger than a preset setting width (for example, 10 [cm]).
  • the setting width is not limited to 10 [cm], and may be changed according to, for example, traffic regulations of a region (country or the like) in which the host vehicle V is traveling.
  • Condition B3 The length of the line marked on the road surface is greater than or equal to a preset set line length (for example, 2.5 [m]).
  • the set marking line length is not limited to 2.5 [m], and may be changed according to traffic regulations or the like of the area (country or the like) in which the host vehicle V is traveling.
  • step S206 a process of determining whether or not the determination element extracted in step S204 conforms to the condition of the line forming the parking frame line (“parking frame condition conformance?” Shown in the figure) is performed. Further, in step S206, a determination is made to determine whether or not the determination element extracted in step S204 conforms to the conditions of the line forming the parking frame line, according to the end certainty level calculated in step S203. The conditions (four conditions C1 to C4 described later) are corrected.
  • the parking frame certainty calculation unit 36 relaxes the determination condition as the end certainty level increases.
  • the parking frame certainty calculation unit 36 indirectly relaxes the calculation condition of the parking frame certainty by relaxing the determination condition.
  • the parking frame certainty calculation unit 36 relaxes the calculation condition of the parking frame certainty so that the higher the end certainty level, the higher the parking frame certainty is calculated.
  • the parking frame certainty calculation unit 36 can easily determine that the linear image in the overhead image is a parking frame image by relaxing the calculation condition of the parking frame certainty.
  • step S206 when it is determined that the determination element extracted in step S204 does not conform to the conditions of the line forming the parking frame line ("No" shown in the drawing), the parking frame certainty calculation unit 36 performs it. The process proceeds to step S200. On the other hand, when it is determined in step S206 that the determination element extracted in step S204 matches the condition of the line forming the parking frame line ("Yes" shown in the figure), the parking frame certainty calculation unit 36 The process performed by the process proceeds to step S208. In addition, the process performed by step S206 is performed with reference to the overhead image signal received from 10 A of surrounding environment recognition information calculating parts, for example.
  • FIG. 12 is a figure which shows the content of the process which the parking frame reliability calculation part 36 performs.
  • a region indicating an image captured by the front camera 14 ⁇ / b> F in the overhead view image is denoted by reference numeral “PE”.
  • PE a region indicating an image captured by the front camera 14 ⁇ / b> F in the overhead view image.
  • step S206 first, two adjacent lines displayed on the same screen are identified as one set from the lines marked on the road surface which is the determination element extracted in step S204 (in the following description). , Sometimes referred to as “pairing”). When three or more lines are displayed on the same screen, two or more pairs are specified by two adjacent lines for the three or more lines.
  • the determination element extracted in step S204 is the line that forms the parking frame line. Judge that the condition is met.
  • Condition C1 As shown in FIG. 12 (a), the width WL between two paired lines (indicated by the signs “La” and “Lb” in the figure) is a preset pairing width (for example, 2.5 [m]) or less.
  • the set pairing width is not limited to 2.5 [m], and may be changed, for example, according to traffic regulations or the like of the area (country or the like) in which the host vehicle V is traveling.
  • the parking frame certainty calculation unit 36 has a pairing width correction value for relaxing the setting value of the set pairing width according to the level of the end certainty.
  • the pairing width correction value is set according to the lane width of the public road.
  • the pairing width correction value is set stepwise in accordance with the calculated level of edge reliability.
  • the pairing width correction value is set for each of the “lower” end reliability and the “upper” end reliability.
  • the pairing width correction value corresponding to the edge confidence level of “low” is a value (for example, the setting pairing width) in which the set pairing width after correction is not the longest. Is set to 1% longer).
  • the pairing width correction value corresponding to the edge certainty level “high” is a value (for example, the setting pairing width) having the longest set pairing width after correction. Is set to 2% longer).
  • the pairing width correction value corresponding to the “end” certainty level “medium” is “high” because the corrected pairing width is longer than “low”. Is set to a value that becomes shorter (for example, a value that makes the set pairing width 1.5% longer).
  • the parking frame certainty calculation unit 36 calculates, for example, the “lower” and “upper” end reliability values when calculating the “lower” and “upper” end reliability levels.
  • the pairing width correction value for each level may be added. For example, when the parking frame certainty calculation unit 36 calculates the “lower” and “upper” end reliability levels as “low”, the set pairing width is 2% (“lower”).
  • the pairing width correction value may be changed to a longer value. For example, when the parking frame certainty calculation unit 36 calculates the “lower” end certainty level as “low” and the “upper” end certainty level as “medium”, the pairing setting is performed.
  • the pairing width correction value may be changed to a value that increases the width by 2.5% (adding 1% of “lower side” and 1.5% of “upper side”).
  • the parking frame certainty calculation unit 36 may change the pairing width correction value according to the combination of the “lower” and “upper” end reliability levels.
  • Condition C2 As shown in FIG. 12B, the angle (degree of parallelism) formed by the line La and the line Lb is within a preset angle (for example, 3 [°]). Note that the set angle is not limited to 3 [°], and may be changed according to, for example, the recognition ability of the surrounding environment recognition sensor 14.
  • the parking frame certainty calculation unit 36 has an angle correction value for relaxing the set value of the set angle according to the level of the end certainty.
  • the angle correction value is set stepwise according to the calculated level of edge reliability.
  • the angle correction value is set for each of the “lower” end reliability and the “upper” end reliability.
  • the parking frame certainty calculation unit 36 relaxes the set value of the set angle when calculating at least one of the “lower” end certainty level and the “upper” end certainty level. It is like that.
  • the angle correction value corresponding to the end confidence level of “low” is a value at which the set angle after correction does not become the largest (for example, a value at which the set angle is increased by 5%). ).
  • the angle correction value corresponding to the “high” end reliability level is the value at which the set angle after correction is the largest (for example, the value at which the set angle is increased by 15%). ).
  • the angle correction value corresponding to the end confidence level of “medium” is smaller than “high” because the set angle after correction is larger than “low”.
  • a value (for example, a value at which the set angle is increased by 10%) is set.
  • the parking frame certainty calculation unit 36 sets the “lower” and “upper” end certainty levels, for example, “lower” and “upper” end certainty levels.
  • the respective angle correction values of the levels may be added.
  • the parking frame certainty calculation unit 36 calculates, for example, each of the “lower” and “upper” end reliability levels as “low”, the corrected set angle is 10% (“lower”
  • the angle correction value may be changed to a larger value.
  • the parking frame certainty calculation unit 36 calculates the “lower” end certainty level as “low” and the “upper” end certainty level as “medium”, the parking frame certainty calculating unit 36 performs the correction.
  • the angle correction value may be changed to a value that increases the setting angle by 15% (adding 5% of “lower side” and 10% of “upper side”). In this way, the parking frame certainty calculation unit 36 may change the angle correction value according to the combination of the “lower” and “upper” end reliability levels.
  • a reference line (a line extending in the vertical direction of the region PE) is indicated by a dotted line with a reference “CLc”, and a central axis of the line La is indicated by a reference “CLa”.
  • a broken line with a symbol “CLb” is shown as a central axis of the line Lb.
  • the inclination angle of the central axis line CLa with respect to the reference line CLc is indicated by a symbol “ ⁇ a”
  • the inclination angle of the central axis line CLb with respect to the reference line CLc is indicated by a reference symbol “ ⁇ b”. Therefore, if the conditional expression of
  • the parking frame certainty calculation unit 36 calculates the “lower” end certainty level as “low” and does not calculate the “upper” end certainty level (is set). If the conditional expression of
  • Condition C3. As shown in FIG. 12C, a straight line connecting the end of the line La on the own vehicle V side (the lower end in the drawing) and the end of the line Lb on the own vehicle V side, and the own vehicle The angle ⁇ formed with the line L closer to V is equal to or greater than a preset setting deviation angle (for example, 45 [°]). Note that the setting deviation angle is not limited to 45 [°], and may be changed according to, for example, the recognition ability of the surrounding environment recognition sensor 14.
  • the parking frame certainty calculation unit 36 has a deviation angle correction value for relaxing the correction value of the set deviation angle according to the level of the end certainty.
  • the deviation angle correction value is set stepwise according to the calculated level of edge reliability.
  • the deviation angle correction value is set for each of the “lower” end certainty factor and the “upper” end certainty factor. If the parking frame certainty calculation unit 36 calculates at least one of the “lower” end certainty level and the “upper” end certainty level, the parking frame certainty calculating unit 36 relaxes the set value of the setting deviation angle. It is supposed to be. In each of “lower side” and “upper side”, the deviation angle correction value corresponding to the end confidence level of “low” is a value at which the set deviation angle after correction is the largest (for example, the setting angle is 5% smaller).
  • the deviation angle correction value corresponding to the level of the edge reliability is “high” is a value with the smallest set deviation angle after the correction (for example, the setting deviation angle is 15%). Set to a smaller value).
  • the deviation angle correction value corresponding to the end confidence level of “Medium” is smaller than “High” because the set deviation angle after correction is smaller than “Low”. It is set to a value that increases (for example, a value that makes the set deviation angle 10% smaller).
  • the parking frame certainty calculation unit 36 calculates, for example, the “lower” and “upper” end reliability values when calculating the “lower” and “upper” end reliability levels.
  • the shift angle correction values for the respective levels may be added.
  • the parking frame certainty calculation unit 36 calculates, for example, the level of the end certainty of each of “lower side” and “upper side” as “low”, the setting deviation angle is 10% (“lower side”).
  • the deviation angle correction value may be changed to a smaller value by adding 5% and 5% of “upper side”.
  • the parking frame certainty calculation unit 36 may change the shift angle correction value according to the combination of the “lower” and “upper” end certainty levels.
  • Condition C4 the absolute value (
  • the set line width is not limited to 10 [cm], and may be changed according to, for example, the recognition ability of the surrounding environment recognition sensor 14.
  • the parking frame certainty calculation unit 36 has a line width correction value for relaxing the set value of the set line width according to the end certainty level.
  • the line width correction value is set stepwise in accordance with the calculated level of edge reliability.
  • the line width correction value is set for each of the “lower” end certainty factor and the “upper” end certainty factor.
  • the line width correction value corresponding to the end confidence level of “low” is a value at which the set line width after the correction does not become the longest (for example, the set line width is 5%) Set to a longer value).
  • the line width correction value corresponding to the edge certainty level “high” is a value that makes the set line width after correction the longest (for example, the set line width is 15%) Set to a longer value).
  • the line width correction value corresponding to the end confidence level of “Medium” is longer than “Low” because the set line width after correction is longer than “Low”.
  • a value to be shortened (for example, a value to increase the set line width by 10%) is set.
  • the parking frame certainty calculation unit 36 calculates, for example, the “lower” and “upper” end reliability values when calculating the “lower” and “upper” end reliability levels.
  • Each line width correction value of the level may be added.
  • the parking frame certainty calculation unit 36 calculates the level of the end certainty of each of “lower” and “upper” as “low”, the set line width is 10% (“lower”
  • the line width correction value may be changed to a longer value by adding 5% and 5% of “upper side”.
  • the parking frame certainty calculation unit 36 calculates the “lower” end certainty level as “low” and the “upper” end certainty level as “medium”, the setting line width correction value may be changed to a value that increases by 15% (adding 5% of “lower side” and 10% of “upper side”). As described above, the parking frame certainty calculation unit 36 may change the line width correction value according to the combination of the “lower” and “upper” end certainty levels.
  • the parking frame reliability calculation part 36 sets edge part reliability in step S203, each setting value preset in conditions C1 to C4 will be each corrected, and condition C1 From this, the condition C4 is relaxed. Thereby, the parking frame certainty calculation part 36 becomes easy to judge the determination element extracted by step S204 as the line which forms a parking frame line.
  • the parking frame reliability calculation part 36 may lengthen the length which extends the said virtual line according to the level of the calculated edge part reliability.
  • step S208 a process for determining whether or not the process in step S206 is continuously verified from the start of the process in step S206 until the moving distance of the host vehicle V reaches the preset moving distance (see FIG. "Continuous verification matching?") Shown in the inside.
  • the set moving distance is set in the range of 1 to 2.5 [m], for example, according to the specifications of the host vehicle V.
  • the process performed by step S208 is performed with reference to the overhead image signal received from 10 A of surrounding environment recognition information calculating parts, and the vehicle speed calculation value signal received from the own vehicle vehicle speed calculating part 10B, for example.
  • the parking frame certainty calculation unit 36 has a movement distance correction value for relaxing the set value of the set movement distance according to the level of the end certainty.
  • the movement distance correction value is set stepwise according to the calculated level of edge reliability.
  • the movement distance correction value is set in each of the “lower” end reliability and the “upper” end reliability.
  • the parking frame certainty calculating unit 36 calculates at least one of the “lower” end certainty level and the “upper” end certainty level, the parking frame certainty calculating unit 36 relaxes the set moving distance. It has become.
  • the movement distance correction value corresponding to the edge reliability level of “low” is a value at which the set movement distance after correction does not become the longest (for example, the setting movement distance is 5%).
  • the movement distance correction value corresponding to the edge certainty level “high” is a value with the longest set movement distance after correction (for example, the set movement distance is 15% Set to a longer value).
  • the movement distance correction value corresponding to the edge confidence level of “Medium” is longer than “Low” because the set movement distance after correction is longer than “Low”. It is set to a value that becomes shorter (for example, a value that makes the set moving distance 10% longer).
  • the parking frame certainty calculation unit 36 calculates, for example, the “lower” and “upper” end reliability values when calculating the “lower” and “upper” end reliability levels.
  • the moving distance correction value for each level may be added. For example, if the parking frame certainty calculation unit 36 calculates the level of the end certainty of each of “lower” and “upper” as “low”, the set moving distance is 10% (“lower” 5% and 5% of “upper side” are added) The movement distance correction value may be changed to a longer value.
  • the parking frame certainty calculation unit 36 calculates the “lower” end certainty level as “low” and the “upper” end certainty level as “medium”, the set moving distance May be changed to a value that increases by 15% (adding 5% of “lower side” and 10% of “upper side”).
  • the parking frame certainty calculation unit 36 may change the movement distance correction value in accordance with the combination of the “lower” and “upper” end reliability levels.
  • step S208 If it is determined in step S208 that the processing in step S206 is not continuously collated (“No” shown in the figure), the processing performed by the parking frame certainty calculation unit 36 proceeds to step S210. On the other hand, if it is determined in step S208 that the processing in step S206 is continuously collated (“Yes” shown in the figure), the processing performed by the parking frame certainty calculation unit 36 proceeds to step S212.
  • the process performed in step S208 for example, as shown in FIG. 13, the movement distance of the host vehicle V is determined according to the state in which the process in step S206 is collated and the state in which the process in step S206 is not collated. Operate virtually.
  • FIG. 13 is a figure which shows the content of the process which the parking frame reliability calculation part 36 performs. In FIG.
  • the state checked in step S206 is “OFF”, the virtual travel distance decreases.
  • the slope (increase gain) when the virtual travel distance increases is set larger than the slope (decrease gain) when the virtual travel distance decreases. That is, if the “verification state” is “ON” and the “OFF” state is the same time, the virtual travel distance increases.
  • step S206 when the virtual travel distance reaches the set travel distance without returning to the initial value (shown as “0 [m]” in the figure), it is determined that the processing in step S206 is continuously verified.
  • the parking frame certainty calculation unit 36 when calculating the end certainty in step S203, corrects the set moving distance to be short. For this reason, it becomes easy to achieve the set travel distance without the virtual travel distance returning to the initial value. Thereby, if the parking frame reliability calculation part 36 calculates edge part reliability in step S203, it will become easy to judge that the process of step S206 is collating continuously. Therefore, since the parking frame certainty calculation unit 36 is calculating the end certainty, it is easy to determine that the condition for continuous matching is satisfied (“Yes” shown in the figure), so the parking frame certainty is calculated. It becomes easy to calculate the degree as a higher level (details will be described later).
  • step S210 processing ("level 1" shown in the figure) is performed to calculate the level of parking frame certainty as a level (level 1) that is one step higher than the lowest value (level 0).
  • the parking frame certainty calculating unit 36 ends the setting process of the parking frame certainty level without executing steps S212 to S220 described later (END).
  • step S212 with respect to the lines La and Lb for which the process of step S206 is continuously collated, the end portion located on the same side with respect to the own vehicle V (the near end portion or the far end portion). Edge).
  • step S212 a process of determining whether or not the ends located on the same side face each other along the direction of the width WL (“approaching near and far end?” Shown in the figure) is performed.
  • the process performed in step S212 is performed with reference to, for example, an overhead image signal received from the surrounding environment recognition information calculation unit 10A and a vehicle speed calculation value signal received from the host vehicle vehicle speed calculation unit 10B.
  • step S212 the parking frame certainty calculation unit 36 detects in step S203 as an end located on the same side with respect to the own vehicle V when the end is detected from the overhead image in step S203.
  • the end portion is used.
  • the parking frame certainty calculation unit 36 relaxes the condition for determining whether or not the detected end portions face each other along the direction of the width WL.
  • the parking frame certainty calculation unit 36 may detect that the width detected by the width WL is within the set value even if the ends detected in step S203 face each other without being aligned with the direction of the width WL. It is determined that they face each other along the direction.
  • step S212 when it is determined that the ends located on the same side do not face each other along the direction of the width WL ("No" shown in the drawing), the process performed by the parking frame certainty calculation unit 36 is performed. The process proceeds to step S214. On the other hand, in step S212, when it is determined that the end portions located on the same side face each other along the direction of the width WL (“Yes” shown in the drawing), the parking frame certainty calculation unit 36 performs. The process proceeds to step S216.
  • step S203 When using the end detected in step S203, the parking frame certainty calculation unit 36 is opposed along the direction of the width WL because the judgment condition in step S212 is relaxed (shown in the figure). “Yes”) is easily determined, and the parking frame certainty is easily calculated as level 3 or 4 (details will be described later) higher than level 2 (details will be described later).
  • step S214 a process ("level 2" shown in the figure) is performed to calculate the level of parking frame certainty as a level (level 2) that is two levels higher than the lowest value (level 0).
  • the parking frame certainty degree calculation unit 36 ends the parking frame certainty degree calculation process without executing steps S216 to S220 described later (END). .
  • step S216 a process for determining the level of the parking frame certainty level with reference to the parking frame certainty level calculation map (“the end certainty level is level 4?” Shown in the figure) is performed.
  • FIG. 14 shows an example of a parking frame certainty level calculation map that the parking frame certainty calculating unit 36 has.
  • the parking frame certainty level calculation map defines the correspondence between the end certainty level and the parking frame certainty levels 3 and 4.
  • the parking frame certainty level calculation map is composed of two large item fields, “end certainty” in the left column and “parking frame certainty” in the right column.
  • the “end portion certainty” in the large item column of the parking frame certainty level calculation map is composed of two small item columns “lower” in the left column and “upper” in the right column.
  • the “end certainty” indicates the end certainty determined by the end certainty level calculation map.
  • “Lower side” and “upper side” indicate positions in the traveling direction of the host vehicle V, and “lower side” indicates a position closer to the host vehicle V than “upper side”.
  • “Lower” in the parking frame certainty level calculation map corresponds to “lower” in the end certainty level calculation map
  • the parking frame certainty level calculation map associates the combination of the edge certainty calculated as “low” with “low” and “low” with “low” and “level 3” of the parking frame certainty. Yes.
  • the parking frame certainty level calculation map associates the combination of the edge certainty calculated with “lower” not set and “upper” “low” with “level 3” of the parking frame certainty. .
  • the combination of the end certainty factor in which “lower” is calculated as “low” and “upper” is not set and “level 3” of the parking frame certainty
  • the parking frame certainty level calculation map associates the combination of the end certainty calculated with “lower” not set and “upper” with “medium” and “level 3” of the parking frame certainty.
  • the combination of the end certainty factor in which “lower side” is calculated as “medium” and “upper side” is set unset, and “level 3” of the parking frame certainty factor is obtained. Corresponds.
  • the parking frame certainty level calculation map associates the combination of the edge certainty calculated with “lower” not set and “upper” “high” with “level 4” of the parking frame certainty.
  • the parking frame certainty level calculation map shows a combination of an end certainty factor in which “lower” is calculated as “high” and “upper” is not set, and “level 4” of the parking frame certainty factor.
  • the parking frame certainty level calculation map associates the combination of the edge certainty calculated as “low” with “low” and “upper” with “medium” and “level 4” of the parking frame certainty.
  • the parking frame certainty level calculation map associates the combination of the edge certainty calculated with “lower” being “middle” and “upper” with “low” and “level 4” of the parking frame certainty. Yes.
  • the parking frame certainty level calculation map associates the combination of the edge certainty calculated with “lower” being “middle” and “upper” with “middle” and “level 4” of the parking frame certainty. Yes.
  • the parking frame certainty level calculation map associates a combination of end certainty calculated with “lower” as “middle” and “upper” as “high” and “level 4” of the parking frame certainty. Yes.
  • the parking frame certainty level calculation map associates the combination of the edge certainty calculated with “lower” “low” and “upper” “high” with “level 4” of the parking frame certainty. Yes.
  • the parking frame certainty level calculation map associates a combination of end certainty calculated with “lower” “high” and “upper” “high” with parking level certainty “level 4”. Yes.
  • the parking frame certainty calculation unit 36 calculates, for example, each of the “lower” and “upper” end reliability as “low” in step S203.
  • the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 3” (“No” shown in the drawing). .
  • the process which the parking frame reliability calculation part 36 performs transfers to step S218.
  • the parking frame certainty calculation unit 36 calculates, for example, that the “lower” end reliability is not set and the “upper” end reliability is “low” or “medium” in step S203. To do.
  • step S216 the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 3” (“No” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S218.
  • step S203 the parking frame certainty factor calculation unit 36 calculates, for example, the “lower” end certainty factor as “low” or “medium”, and has not set the “upper” end certainty factor. To do.
  • step S216 the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 3” (“No” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S218. Further, it is assumed that the parking frame certainty calculation unit 36 calculates, for example, that the “lower” end certainty is not set and the “upper” end certainty is “high” in step S203.
  • step S216 the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S220.
  • step S216 the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). .
  • step S220 the process which the parking frame reliability calculation part 36 performs transfers to step S220.
  • the parking frame certainty calculation unit 36 calculates “lower” of the end certainty as “high” and “upper” as “medium” in step S203, for example.
  • step S216 the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S220.
  • the parking frame certainty calculation unit 36 calculates, for example, the “lower” end certainty as “high” and does not set the “upper” end certainty in step S203.
  • the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). .
  • the process which the parking frame reliability calculation part 36 performs transfers to step S220.
  • the parking frame certainty calculation unit 36 calculates “lower” of the edge certainty as “low” and “upper” as “medium” in step S203, for example.
  • step S216 the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S220.
  • step S216 the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). .
  • step S220 the process which the parking frame reliability calculation part 36 performs transfers to step S220.
  • the parking frame certainty calculation unit 36 calculates “lower” of the end certainty as “middle” and “higher” as “high” in step S203, for example.
  • step S216 the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S220.
  • step S216 the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). .
  • step S220 the process which the parking frame reliability calculation part 36 performs transfers to step S220.
  • the parking frame certainty calculation unit 36 calculates “lower” and “upper” of the end certainty as “high” in step S203, for example.
  • step S216 the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S220.
  • the parking frame certainty level setting map associates a relatively high level of the end certainty levels with a relatively high level of the parking frame certainty levels.
  • the combination of “lower” and “upper” including “high” having the highest end certainty level is assigned “level 4” having the highest parking frame certainty level.
  • the parking frame certainty level calculation map shows that the parking frame certainty level is higher than “level 4” for the combination of “lower” and “upper” including “low” having the lowest end certainty level. “Level 3” having a low value is associated.
  • the parking frame certainty level setting map is calculated as “low” in the combination in which the end certainty of both “lower” and “upper” of the end certainty is calculated. Unless otherwise, “level 4” having the highest parking frame certainty level is associated.
  • the parking frame certainty calculation unit 36 refers to the thus configured parking frame certainty level setting map and calculates the level of the parking frame certainty. For this reason, the parking frame certainty calculation part 36 will calculate the parking frame certainty level of a high level, so that the level of edge part reliability is high.
  • a process (“level 3" shown in the drawing) is performed to calculate the level of parking frame certainty as a level (level 3) that is three levels above the lowest value (level 0). If the process which calculates parking frame reliability as level 3 is performed in step S218, the process which the parking frame reliability calculation part 36 performs will be complete
  • step S220 a process (“level 4" shown in the figure) is performed to calculate the level of parking frame certainty as a level (level 4) that is four levels higher than the lowest value (level 0). If the process which calculates parking frame reliability as level 4 is performed in step S220, the process which the parking frame reliability calculation part 36 performs will be complete
  • the patterns shown in FIGS. 4 (a), 4 (e), and 4 (f) are both “low” and “upper” (see FIG. 4). 9 and FIG. 11).
  • “lower” is “low” and “upper” is not set.
  • the parking frame certainty calculation unit 36 does not detect the end of this object. For this reason, in the pattern shown in FIG. 4P, “lower side” is not set, and “upper side” is “low”. Therefore, the parking frame certainty calculation unit 36 calculates the level of the parking frame certainty for these patterns as “level 3”.
  • the parking frame certainty factor is a parking frame that is likely to be marked on a public road, in particular, when the pattern shown in FIG. 4A is specified, or other than the pattern shown in FIG. 4A
  • the parking frame may be limited as follows according to the width of the parking frame. Specifically, for example, if the parking frame width is 2.6 [m] or less, the parking frame certainty factor retains the initially calculated level, but the parking frame width exceeds 2.6 [m]. If so, the parking frame certainty factor is limited so that it is not calculated as level 3 or higher. Thereby, it is set as the structure which is hard to detect the double-sided broken line marked on the public road as a parking frame line.
  • FIG. 15 is a flowchart illustrating a process in which the parking frame approach certainty calculation unit 38 calculates the parking frame approach certainty factor.
  • the parking frame approach reliability calculation part 38 performs the process demonstrated below for every preset sampling time (for example, 10 [msec]).
  • START when the parking frame approach certainty calculation unit 38 starts processing (START), first, in step S300, a process of detecting a deviation amount between the predicted rear wheel trajectory of the host vehicle V and the parking frame. (“Shift amount detection" shown in the figure) is performed.
  • step S300 If the process which detects the deviation
  • the unit of deviation detected in step S300 is [cm].
  • the width of a parking frame is 2.5 [m] is demonstrated as an example.
  • the predicted rear wheel trajectory TR of the host vehicle V is calculated, and the intersection of the calculated predicted rear wheel trajectory TR and the entrance L2 of the parking frame L0.
  • TP is calculated.
  • a distance Lfl between the left frame line L1l of the parking frame L0 and the intersection TP and a distance Lfr between the right frame line L1r of the parking frame L0 and the intersection TP are calculated, and the distance Lfl and the distance Lfr are compared.
  • the longer one of the distance Lfl and the distance Lfr is detected as a deviation amount between the predicted rear wheel trajectory TR of the host vehicle V and the parking frame L0.
  • FIG. 16 is a diagram showing the contents of processing for detecting the amount of deviation between the predicted rear wheel trajectory TR of the host vehicle V and the parking frame L0.
  • the center point PR in the vehicle width direction of the right rear wheel WRR and the left rear wheel WRL of the host vehicle V is used as the reference point of the host vehicle V.
  • the virtual movement path of the center point PR is calculated using the images taken by the front camera 14F and the left camera 14SL in the overhead view image, the vehicle speed of the host vehicle V, and the rotation angle (steering angle) of the steering wheel 28.
  • a predicted rear wheel trajectory TR is calculated.
  • step S302 for example, processing for detecting parallelism between the straight line X and the length direction (for example, the depth direction) of the parking frame L0 using an image captured by the front camera 14F among the overhead images (shown in the figure). “Parallelity detection”). If the process which detects the parallelism of the straight line X and the length direction of the parking frame L0 is performed in step S302, the process which the parking frame approach reliability calculation part 38 performs will transfer to step S304.
  • the parallelism detected in step S302 is detected as an angle ⁇ ap formed by the center line Y and the straight line X of the parking frame L0 as shown in FIG.
  • step S302 when the host vehicle V moves to the parking frame L0 while moving backward, for example, using the image captured by the rear camera 14R in the overhead view image, the straight line X and the length direction of the parking frame L0 are used. Processing to detect parallelism is performed.
  • the moving direction (forward, backward) of the host vehicle V is detected with reference to a current shift position signal, for example.
  • step S304 processing for calculating the turning radius of the host vehicle V ("turning radius calculation” shown in the figure) is performed using the vehicle speed of the host vehicle V and the rotation angle (steering angle) of the steering wheel 28. If the process which calculates the turning radius of the own vehicle V is performed in step S304, the process which the parking frame approach reliability calculation part 38 performs will transfer to step S306. In step S306, it is determined whether or not the parallelism ( ⁇ ap) detected in step S302 is less than a preset parallelism threshold (for example, 15 [°]) (“parallelism ⁇ parallel” shown in the figure). Degree threshold? ").
  • a preset parallelism threshold for example, 15 [°]
  • step S306 when it is determined that the parallelism ( ⁇ ap) detected in step S302 is equal to or greater than the parallelism threshold (“No” in the drawing), the process performed by the parking frame approach certainty calculation unit 38 is performed in step S308.
  • the process performed by the parking frame approach certainty calculation unit 38 is as follows. The process proceeds to step S310.
  • step S308 it is determined whether or not the turning radius detected in step S304 is greater than or equal to a preset turning radius threshold (for example, 100 [R]) (“turning radius ⁇ turning radius threshold? ”)I do. If it is determined in step S308 that the turning radius detected in step S304 is less than the turning radius threshold (“No” shown in the figure), the processing performed by the parking frame approach certainty calculation unit 38 proceeds to step S312. . On the other hand, if it is determined in step S308 that the turning radius detected in step S304 is equal to or greater than the turning radius threshold value (“Yes” shown in the figure), the processing performed by the parking frame approach reliability calculation unit 38 proceeds to step S310. Transition.
  • a preset turning radius threshold for example, 100 [R]
  • step S310 a process for determining whether or not the amount of deviation detected in step S300 is greater than or equal to a preset first threshold (for example, 75 [cm]) (“deviation amount ⁇ first threshold? ”)I do.
  • the first threshold value is not limited to 75 [cm], and may be changed according to the specifications of the host vehicle V, for example.
  • step S310 When it is determined in step S310 that the amount of deviation detected in step S300 is greater than or equal to the first threshold (“Yes” shown in the figure), the process performed by the parking frame approach certainty calculator 38 proceeds to step S314. . On the other hand, if it is determined in step S310 that the amount of deviation detected in step S300 is less than the first threshold ("No" shown in the figure), the process performed by the parking frame approach certainty calculation unit 38 proceeds to step S316. Transition.
  • step S312 a process for determining whether or not the deviation amount detected in step S300 is greater than or equal to a preset second threshold (for example, 150 [cm]) (“deviation amount ⁇ second threshold? ”)I do.
  • the second threshold value is larger than the first threshold value described above.
  • the second threshold value is not limited to 150 [cm], and may be changed according to the specifications of the host vehicle V, for example.
  • finished (END). In step S318, a process of calculating the parking frame approach certainty level as the lowest value (level 0) (“entry certainty level 0” shown in the figure) is performed. If the process which calculates parking frame approach reliability as level 0 is performed in step S318, the process which the parking frame approach reliability calculation part 38 performs will be complete
  • the parking frame approach certainty calculation unit 38 sets the parking frame approach certainty of the lowest level “level 0”, the level “level low” higher than level 0, and the level higher than level low. A process of calculating as one of “level high” is performed.
  • the structure of the own vehicle V is a structure provided with the apparatus (parking assistance apparatus) which assists steering operation to the parking frame L0 with respect to a driver
  • operator for example, if a parking assistance apparatus is an ON state, it will park. It is good also as a structure which becomes easy to raise the level of frame approach reliability.
  • a parking assistance device for example, in order to perform parking, a device that displays a monitor of surrounding conditions with a bird's-eye view image, etc., or a target parking on a screen in order to guide a course for parking There is a device to set the position. These devices are used by operating a switch for switching a screen in order to display a surrounding situation as a bird's-eye view image or a screen switching switch for setting a target parking position on the screen. And if these switches are operated, it will be set as the structure which a parking assistance apparatus will be in an ON state.
  • the parking assist device is in the ON state even when the parking frame approach certainty factor is calculated as “level 0” in the process of step S318.
  • the parking frame approach reliability is corrected to “low level”.
  • the parking frame approach reliability is set to “high level”. It is the structure correct
  • a level at which the parking frame approach reliability is set in advance (for example, “level high”) It is good also as a structure calculated as.
  • FIG. 17 is a diagram showing a comprehensive certainty calculation map.
  • the parking frame certainty factor is indicated as “frame certainty factor”
  • the parking frame approach certainty factor is indicated as “entry certainty factor”.
  • the overall certainty factor calculation map shown in FIG. 17 is a map used when the host vehicle V travels forward.
  • the total certainty factor is calculated as “high”.
  • the total confidence factor calculation unit 40 performs a process of calculating the total confidence factor, the calculated total confidence factor is stored in a storage unit in which data is not erased even when the ignition switch is turned off. A case where the storing process is performed will be described.
  • the storage unit from which data is not erased even when the ignition switch is turned off is, for example, a ROM or the like.
  • the total certainty factor calculated immediately before is stored. . For this reason, it becomes possible to start the control based on the total certainty calculated immediately before the ignition switch is turned on when the host vehicle V restarts.
  • FIG. 18 is a diagram showing an acceleration suppression condition calculation map.
  • the acceleration suppression control start timing is indicated as “suppression control start timing (accelerator opening)” in the “acceleration suppression condition” column.
  • the acceleration suppression control start timing calculation unit 42 when the overall certainty factor is “high”, the acceleration suppression control start timing is increased as shown in FIG. Then, the timing is set to reach “50%”.
  • the opening degree of the accelerator pedal 32 is set to 100% when the accelerator pedal 32 is depressed (operated) to the maximum value.
  • the acceleration suppression control start timing shown in FIG. 18 is an example, and may be changed according to the specifications of the host vehicle V, such as the braking performance of the host vehicle V, for example. Further, for example, the vehicle V may be changed according to the traffic regulations of the area (country etc.) where the vehicle V travels.
  • acceleration suppression control amount calculation unit 44 receives the input of the total certainty factor signal, and adapts the total certainty factor included in the total certainty factor signal to the acceleration suppression condition calculation map shown in FIG. Then, an acceleration suppression control amount is calculated based on the total certainty factor.
  • the acceleration suppression control amount is indicated as “suppression amount” in the “acceleration suppression condition” column.
  • the acceleration suppression control amount is set to the actual opening degree of the accelerator pedal 32 as shown in FIG.
  • the control amount is set to be suppressed to the “medium” level throttle opening.
  • the throttle opening at the “medium” level is the throttle opening at which the actual opening degree of the accelerator pedal 32 is suppressed to 25%.
  • the throttle opening at the “small” level is the throttle opening at which the actual opening of the accelerator pedal 32 is suppressed to 50%
  • the throttle opening at the “large” level is the opening of the actual accelerator pedal 32.
  • the throttle opening is such that the degree is suppressed to 10%.
  • the acceleration suppression control amount shown in FIG. 18 is an example, and may be changed according to the specifications of the host vehicle V such as the braking performance of the host vehicle V, for example. Further, for example, the vehicle V may be changed according to the traffic regulations of the area (country etc.) where the vehicle V travels. Further, the acceleration suppression control amount calculation unit 44 sets the presence / absence of control for outputting a warning sound by adapting the total certainty factor to the acceleration suppression condition calculation map. In the case of outputting a warning sound, for example, character information on the content that activates the acceleration suppression control and visual information such as a symbol and light emission may be displayed on a display monitor included in the navigation device 26.
  • FIG. 19 is a flowchart illustrating processing performed by the acceleration suppression command value calculation unit 10J.
  • the acceleration suppression command value calculation unit 10J performs the processing described below for each preset sampling time (for example, 10 [msec]).
  • FIG. 19 when the acceleration suppression command value calculation unit 10J starts processing (START), first, in step S400, an acceleration suppression operation condition determination result signal received from the acceleration suppression control content calculation unit 10I is displayed. refer. And the process (“acceleration suppression operation condition judgment result acquisition process" shown in the figure) which acquires an acceleration suppression operation condition judgment result is performed. If the process which acquires an acceleration suppression operation condition judgment result is performed in step S400, the process which the acceleration suppression command value calculating part 10J performs will transfer to step S402.
  • step S402 in addition to the acceleration suppression operation condition determination result acquired in step S400, processing for acquiring information for calculating the acceleration suppression command value ("acceleration suppression command value calculation information acquisition processing" shown in the figure) is performed. . If the process which acquires the information for calculating an acceleration suppression command value in step S402 is performed, the process which the acceleration suppression command value calculating part 10J performs will transfer to step S404.
  • the information for calculating the acceleration suppression command value is, for example, information included in the acceleration suppression control start timing signal, the acceleration suppression control amount signal, the drive side depression amount signal, and the accelerator operation speed signal described above.
  • step S404 a process of determining whether or not the acceleration suppression operation condition determination result acquired in step S400 is a determination result that the acceleration suppression control operation condition is satisfied (“acceleration suppression control operation condition satisfied?” Shown in the figure). Do.
  • step S404 If it is determined in step S404 that the acceleration suppression control operation condition is satisfied ("Yes” shown in the figure), the processing performed by the acceleration suppression command value calculation unit 10J proceeds to step S406. On the other hand, if it is determined in step S404 that the acceleration suppression control operation condition is not satisfied ("No" shown in the drawing), the processing performed by the acceleration suppression command value calculation unit 10J proceeds to step S408.
  • step S406 based on the information for calculating the acceleration suppression command value acquired in step S402, a process of calculating an acceleration suppression command value that is an acceleration command value for performing acceleration suppression control ("Acceleration suppression command shown in the figure"). Control command value calculation "). If the process which calculates an acceleration suppression command value is performed in step S406, the process which the acceleration suppression command value calculating part 10J performs will transfer to step S410.
  • the depression amount of the accelerator pedal 32 included in the drive side depression amount signal and the acceleration suppression control amount included in the acceleration suppression control amount signal are referred to.
  • an acceleration suppression control amount command value is calculated that sets the throttle opening to a degree of suppression (see FIG. 18) according to the acceleration suppression control amount with respect to the actual accelerator pedal 32 opening.
  • the depression amount of the accelerator pedal 32 included in the driving side depression amount signal and the acceleration suppression control start timing included in the acceleration suppression control start timing signal are referred to.
  • the acceleration suppression control start timing command value which makes the acceleration suppression control start timing the timing (refer FIG. 18) according to the opening degree of the actual accelerator pedal 32 is calculated.
  • the command value including the acceleration suppression control amount command value and the acceleration suppression control start timing command value calculated as described above is calculated as the acceleration suppression command value.
  • driving force control without acceleration suppression control that is, processing for calculating a normal acceleration command value that is an acceleration command value used in normal acceleration control ("command value calculation for normal acceleration control" shown in the figure). I do.
  • the process which calculates a normal acceleration command value is performed in step S408, the process which the acceleration suppression command value calculating part 10J performs will transfer to step S412.
  • the command value for calculating the throttle opening based on the depression amount of the accelerator pedal 32 included in the drive side depression amount signal is calculated as the normal acceleration command value.
  • step S410 an acceleration suppression command value signal including the acceleration suppression command value calculated in step S406 is output to the target throttle opening calculation unit 10K ("acceleration suppression command value output" shown in the figure). If the process which outputs an acceleration suppression command value signal is performed in step S410, the process which the acceleration suppression command value calculating part 10J performs will be complete
  • FIG. 20 is a flowchart showing processing performed by the target throttle opening calculation unit 10K.
  • the target throttle opening calculation unit 10K performs the process described below for each preset sampling time (for example, 10 [msec]).
  • the target throttle opening calculation unit 10K starts processing (START)
  • step S500 the drive side depression amount signal received from the accelerator operation amount calculation unit 10G is referred to.
  • step S500 the drive side depression amount signal received from the accelerator operation amount calculation unit 10G is referred to.
  • the process (“accelerator operation amount acquisition process” shown in a figure) which acquires the depression amount (operation amount) of the accelerator pedal 32 which the drive side depression amount signal contains is performed. If the process which acquires the depression amount (operation amount) of the accelerator pedal 32 is performed in step S500, the process which the target throttle opening calculating part 10K performs will transfer to step S502.
  • step S502 an acceleration suppression command value (see step S406) or a normal acceleration command value (see step S408) is acquired based on the information signal received from the acceleration suppression command value calculation unit 10J (see “ Command value acquisition processing ”). If the process which acquires an acceleration suppression command value or a normal acceleration command value is performed in step S502, the process which the target throttle opening calculating part 10K performs will transfer to step S504. In step S504, calculation of the target throttle opening (“target throttle opening calculation" shown in the figure) is performed based on the depression amount of the accelerator pedal 32 acquired in step S500 and the command value acquired in step S502. When the target throttle opening is calculated in step S504, the processing performed by the target throttle opening calculation unit 10K proceeds to step S506.
  • step S504 when the command value acquired in step S502 is a normal acceleration command value (when the acceleration suppression operation condition is not established), the throttle opening corresponding to the depression amount of the accelerator pedal 32 is set as follows. Calculated as the target throttle opening.
  • the command value acquired in step S502 is the acceleration suppression command value (when the acceleration suppression operation condition is satisfied)
  • the throttle opening corresponding to the acceleration suppression control amount command value is set as the target throttle opening.
  • the target throttle opening is calculated using, for example, the following equation (1).
  • ⁇ * ⁇ 1 ⁇ (1)
  • the target throttle opening is indicated by “ ⁇ * ”
  • the throttle opening corresponding to the depression amount of the accelerator pedal 32 is indicated by “ ⁇ 1”
  • the acceleration suppression control amount is indicated by “ ⁇ ”.
  • step S506 a target throttle opening signal including the target throttle opening ⁇ * calculated in step S504 is output to the engine controller 12 (“target throttle opening output” shown in the figure).
  • target throttle opening output shown in the figure.
  • the process performed by the target throttle opening calculation unit 10K ends (END).
  • the command value acquired in step S502 is an acceleration suppression command value
  • the opening (depression amount) of the accelerator pedal 32 reaches the opening corresponding to the acceleration suppression control start timing.
  • the target throttle opening signal is output.
  • the parking frame certainty calculation unit 36 calculates the end certainty, calculates the parking frame certainty based on the calculated end certainty, and calculates the parking frame approach certainty.
  • the unit 38 calculates the parking frame approach reliability.
  • the comprehensive reliability calculation part 40 calculates the comprehensive reliability based on a parking frame reliability and a parking frame approach reliability.
  • the acceleration suppression control start timing calculation unit 42 calculates the acceleration suppression control start timing based on the total reliability calculated by the total reliability calculation unit 40, and the acceleration suppression control amount calculation unit 44 calculates an acceleration suppression control amount.
  • the acceleration suppression command value calculation unit 10J outputs an acceleration suppression command value signal to the target throttle opening calculation unit 10K.
  • the target throttle opening calculation unit 10K outputs a target throttle opening signal to the engine controller 12. Therefore, when the driver operates the accelerator pedal 32 in a state where the acceleration suppression control operation condition is satisfied, the throttle opening corresponding to the depression amount of the accelerator pedal 32 is changed to the opening corresponding to the acceleration suppression control amount command value. Suppress.
  • the start timing for suppressing the throttle opening according to the depression amount of the accelerator pedal 32 is set as the timing according to the acceleration suppression control start timing command value.
  • the acceleration suppression amount (the degree of throttle opening suppression) is small when the overall confidence level is low, it is possible to reduce the reduction in drivability, and when the overall confidence level is high, the acceleration suppression amount is large. Therefore, the acceleration suppression effect of the host vehicle V can be increased.
  • the present embodiment it is possible to suppress a decrease in drivability in the parking lot before entering the parking frame L0 during parking, and to prevent the accelerator pedal 32 from being erroneously operated. It becomes possible to suppress the acceleration of the vehicle V. Moreover, in this embodiment, the acceleration of the host vehicle V is suppressed and the safety is improved by increasing the acceleration suppression control amount as the total certainty factor is higher. Further, the lower the overall certainty, the later the acceleration suppression control start timing is delayed, and the drivability is suppressed from decreasing. This makes it possible to improve safety and suppress deterioration of drivability under the following conditions.
  • the host vehicle V standing by in the vicinity of the parking frame L0 for parallel parking on the side of the traveling road it is necessary to allow a certain degree of acceleration. Even under the following conditions, it is necessary to allow a certain amount of acceleration. This is because there are other vehicles on both sides (left and right parking frames) of the parking frame L0 where the host vehicle V is parked, and the host vehicle V is placed in a slight space on the opposite side (side away from each parking frame) from the front side. Let it enter. Thereafter, the host vehicle V is entered from the rear side into the parking frame L0 where the host vehicle V is parked, and parking is performed.
  • the acceleration suppression control start timing and the acceleration suppression control amount By controlling the acceleration suppression control start timing and the acceleration suppression control amount based on the total certainty for these situations, it is possible to suppress the acceleration of the host vehicle V and improve safety. In addition, it is possible to allow acceleration of the host vehicle V and suppress a reduction in drivability.
  • the acceleration suppression control amount when the parking frame certainty factor is low, the acceleration suppression control amount is calculated to be smaller than when the parking frame certainty factor is high. As a result, as described below, it is possible to suppress drivability degradation under the situation where the current position of the host vehicle V is not on a public road (for example, in a parking lot).
  • a line is detected in the image captured by the surrounding environment recognition sensor 14, but the detected line cannot be identified as a parking frame line.
  • the parking frame certainty is calculated as a low level.
  • the case where the detected line cannot be identified as the parking frame line is, for example, that one line is detected in the image captured by the surrounding environment recognition sensor 14 and its end is detected. This is a case where no line is detected on the front side of the book line (the side close to the host vehicle V).
  • the current position of the host vehicle V is It is determined that the position is not on a public road, and the parking frame certainty is calculated as a low level. This is because the lines marked on public roads are often regularly maintained by public agencies, etc., so if the edges are blurred or the period is blurred and unclear This is because it can be estimated.
  • the acceleration suppression command value calculation unit 10J and the target throttle opening calculation unit 10K described above correspond to an acceleration control unit.
  • the ambient environment recognition information calculation unit 10A described above corresponds to the ambient environment recognition unit.
  • the host vehicle speed calculation unit 10B, the steering angle calculation unit 10C, the steering angular speed calculation unit 10D, the brake pedal operation information calculation unit 10F, the accelerator operation amount calculation unit 10G, and the accelerator operation speed calculation unit 10H described above are included in the host vehicle running state. Corresponds to the detector. Further, the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K described above correspond to the acceleration suppression unit.
  • the throttle opening described above corresponds to the acceleration command value.
  • corresponds to the own vehicle present position detection part and the own vehicle traveling road type detection part.
  • the vehicle acceleration suppression method implemented by the operation of the vehicle acceleration suppression device 1 according to the present embodiment is more effective when the parking frame certainty factor is low than when the parking frame certainty factor is high. This is a method of suppressing the acceleration command value corresponding to the operation amount of the pedal 32 with a low suppression degree.
  • the parking frame certainty factor indicates the degree of certainty that the parking frame L0 exists in the traveling direction of the host vehicle V, and is calculated based on the environment around the host vehicle V.
  • the acceleration suppression method for a vehicle implemented by the operation of the vehicle acceleration suppression device 1 according to the present embodiment has a lower accelerator pedal 32 when the total certainty factor is low than when the total certainty factor is high.
  • the comprehensive certainty indicates the degree of comprehensive certainty between the parking frame certainty and the parking frame approach certainty.
  • the parking frame approach reliability indicates the degree of confidence that the host vehicle V enters the parking frame L0.
  • the parking frame certainty calculation unit 36 calculates an end certainty based on an overhead image (environment) around the host vehicle V, and calculates a parking frame certainty based on the calculated end certainty. To do.
  • the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K are calculated by the parking frame certainty calculation unit 36. The higher the certainty factor, the higher the degree of suppression of the acceleration command value.
  • the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K are the parking frame reliability calculated by the parking frame reliability calculation unit 36. The lower the value, the lower the degree of suppression of the acceleration command value.
  • the end certainty factor indicates the degree of certainty that the overhead image includes the image of the end portion of the parking frame, so the accuracy of the parking frame certainty factor calculated based on the end certainty factor is improved. For this reason, based on the parking frame reliability with improved accuracy, in a state where the parking frame reliability is low, it is possible to reduce the degree of suppression of the acceleration command value and reduce the decrease in drivability. In a high state, it is possible to increase the acceleration suppression effect of the host vehicle V by increasing the degree of suppression of the acceleration command value. As a result, it is possible to suppress the drivability of the host vehicle V during parking and to suppress acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
  • the parking frame approach reliability calculation unit 38 determines the parking frame approach reliability based on the bird's-eye view image (environment) around the host vehicle V, the vehicle speed of the host vehicle V, and the rotation angle (running state) of the steering wheel 28. Calculate the degree.
  • the overall certainty factor calculating unit 40 is based on the parking frame certainty factor calculated by the parking frame certainty factor calculating unit 36 and the parking frame approach certainty factor calculated by the parking frame approach certainty factor calculating unit 38. Is calculated. Furthermore, when the total certainty factor calculated by the total certainty factor calculation unit 40 is low, the degree of suppression of the acceleration command value is made lower than when the total certainty factor is high.
  • the degree of suppression of the acceleration command value can be controlled according to the certainty degree that the own vehicle V enters the parking frame L0. It becomes possible. As a result, in addition to the effect (1) described above, it is possible to further suppress the drivability of the host vehicle V during parking and to suppress the acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
  • the acceleration suppression control start timing calculation unit 42, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K delay the acceleration suppression control start timing to lower the degree of suppression of the acceleration command value. .
  • the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K reduce the acceleration suppression control amount to lower the degree of suppression of the acceleration command value.
  • the degree of suppression of the acceleration command value can be controlled by controlling the amount of throttle opening suppression according to the amount of depression of the accelerator pedal 32.
  • the parking frame certainty factor is calculated based on an overhead image (environment) around the host vehicle V and the vehicle speed (running state) of the host vehicle V.
  • the acceleration command value is suppressed with a lower suppression degree when the parking frame certainty factor is low than when the parking frame certainty factor is high.
  • the parking frame certainty factor is low, it is possible to reduce the degree of suppression of the acceleration command value to reduce the decrease in drivability, and when the parking frame certainty factor is high, the degree of suppression of the acceleration command value can be reduced.
  • the acceleration suppression effect of the host vehicle V can be increased by increasing the speed. As a result, it is possible to suppress the drivability of the host vehicle V during parking and to suppress acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
  • the end certainty factor is calculated based on an overhead image (environment) around the host vehicle V, and the parking frame approaching certainty is calculated based on the calculated end certainty factor. Calculate the degree. In addition to this, based on the calculated parking frame certainty and the parking frame approach certainty, the total certainty is calculated. When the total certainty is low, the acceleration command value is lower than when the total certainty is high. Suppress with the degree of suppression. For this reason, in addition to the certainty degree that the parking frame L0 exists in the traveling direction of the own vehicle V, the degree of suppression of the acceleration command value can be controlled according to the certainty degree that the own vehicle V enters the parking frame L0. It becomes possible. As a result, in addition to the above-described effect (5), it is possible to further suppress the drivability of the host vehicle V during parking and to suppress the acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
  • the parking frame certainty calculation unit 36 calculates a higher level of parking frame certainty as the end certainty level is higher. Thereby, it becomes easier to calculate a higher level of parking frame certainty as the end certainty level is higher.
  • the parking frame certainty calculation unit 36 corrects the calculation condition for the parking frame certainty based on the calculated level of the end certainty. For this reason, the calculation conditions of parking frame reliability can be changed according to the level of edge reliability.
  • the parking frame certainty calculation unit 36 relaxes the calculation condition of the parking frame certainty so that the higher the end certainty level, the higher the parking frame certainty is calculated.
  • the level of the edge reliability is high, there is a high possibility that the image of the frame line included in the overhead image is a parking frame line. For this reason, even if the calculation conditions for the parking frame certainty factor are relaxed, the accuracy of the calculated parking frame certainty factor does not decrease. As a result, the above-mentioned effect (1) is obtained.
  • the parking frame certainty calculation unit 36 includes a plurality of end shape patterns classified based on the shape of the end of the parking frame, and the overhead image includes any one of the plurality of end shape patterns. It has an end portion determination pattern map that is referred to when determining whether or not. Furthermore, the parking frame certainty calculation unit 36 defines the correspondence between the plurality of end shape patterns and the end certainty levels, and is referred to when calculating the end certainty levels. Has a level calculation map. Thus, the edge shape pattern can be uniformly detected from the overhead image, and the edge reliability level can be calculated. (11) The parking frame certainty calculation unit 36 determines whether the plurality of end shape patterns and the end certainty levels correspond to the number of lines extending from one end of the parking frame in the traveling direction of the host vehicle V. A plurality of edge reliability level calculation maps having different correspondences are provided. Thereby, the level of edge part reliability can be changed according to the kind of line contained in a bird's-eye view image.
  • the end certainty level calculation map associates the end certainty with a low level with the end shape pattern having the same shape as the end shape of the line used for the public road. For this reason, when the edge part of the same shape as the edge part shape of the line used for a public road is detected from a bird's-eye view image, a low-level edge reliability can be calculated. As a result, the parking frame certainty level is lowered, so that the degree of suppression of the acceleration command value on the public road can be lowered to reduce the drivability.
  • the parking frame certainty calculation unit 36 refers to the end determination pattern map to determine whether or not the bird's-eye view image includes an end shape pattern image.
  • the present embodiment is not limited to this.
  • the parking frame certainty factor calculation unit 36 includes the edge shape pattern included in the overhead image.
  • the end shape may be corrected to be one end shape pattern among the plurality of end shape patterns. That is, the parking frame certainty calculation unit 36 calculates an end shape that does not correspond to the end shape pattern based on the end shape corresponding to the end shape pattern among the plurality of end shapes included in the overhead image. You may correct
  • one of the left and right ends detected by the parking frame certainty calculation unit 36 from the overhead image corresponds to one of a plurality of end shape patterns provided in the end determination pattern map, and the other is a plurality It is assumed that none of the end shape patterns is supported.
  • the parking frame certainty calculation unit 36 interpolates the other end portion into an end shape pattern that forms a pair of the one end portion.
  • FIG. 21 is a diagram for describing the overhead image correction processing executed in step S203 by the parking frame certainty factor calculation unit 36 in the present modification.
  • a part of the overhead image is schematically shown on the left side of the thick arrow in the drawings of FIGS. 21A and 21B (hereinafter, the left side of the thick arrow may be simply abbreviated as “left side”).
  • the parking frame certainty calculation unit 36 determines the single line as an end shape pattern of a linear stop shape.
  • the parking frame certainty factor calculation unit 36 based on the shape of the paint image, of the plurality of end shape patterns of the end determination pattern map Correct to one end shape pattern.
  • the parking frame certainty calculation unit 36 determines the single line as an end shape pattern having a linear stop shape (on the right side of FIG. 21A). reference).
  • the parking frame certainty calculation unit 36 determines that the right double line corresponds to the end shape pattern in the “lower right” column of the pattern number “5” and the end of the left double line. Based on the fact that there is a convex curve at the bottom, the left double line is interpolated into the end shape pattern in the “lower left” column of pattern number “5” (see the right side of FIG. 21B). .
  • the overhead view image includes a double-sided double line image.
  • the left double line corresponds to the end shape pattern in the “lower left” column of the pattern “2” of the end determination pattern map and the pattern “3” of the second combination. Yes.
  • the right double line does not correspond to any of the end shape patterns of the end determination pattern map. Therefore, the parking frame certainty calculation unit 36 determines that the left double line corresponds to the end shape pattern of the pattern number “2” or “3” and that the right double line has an end on the right side.
  • the parking frame certainty calculation unit 36 interpolates the shape of the right line included in the overhead image into the end shape pattern in the “lower right” column of the pattern number “2” of the end determination pattern map.
  • the two ends may be interpolated with a straight line (see the center of FIG. 21C).
  • the parking frame certainty calculation unit 36 when the end shape included in the overhead image is not any of the plurality of end shape patterns, the plurality of ends included in the overhead image. Based on the part shape pattern, the end part shape is corrected to be one end part shape pattern among the plurality of end part shape patterns.
  • an end shape different from the end shape pattern can be uniformly processed using the end determination pattern map and the end certainty level calculation map.
  • the acceleration suppression control start timing and the acceleration suppression control amount are calculated based on the total reliability calculated by the total reliability calculation unit 40, but the present invention is not limited to this. That is, the acceleration suppression control start timing and the acceleration suppression control amount may be calculated based only on the parking frame reliability calculated by the parking frame reliability calculation unit 36. In this case, the acceleration suppression control start timing and the acceleration suppression control amount are calculated by adapting the parking frame certainty to, for example, the acceleration suppression condition calculation map shown in FIG. In addition, FIG. 22 is a figure which shows the modification of this embodiment.
  • the configuration of the parking frame certainty calculation unit 36 is calculated based on the bird's-eye view image (environment) around the host vehicle V and the vehicle speed (running state) of the host vehicle V.
  • the configuration of the parking frame certainty calculation unit 36 is not limited to this. That is, the configuration of the parking frame certainty calculation unit 36 is added to the current position of the host vehicle V included in the host vehicle position signal and the host vehicle included in the traveling road information signal in addition to the overhead view image and the vehicle speed around the host vehicle V. It is good also as a structure which calculates parking frame reliability using the classification (road classification) of the road which V drive
  • the parking frame certainty factor is calculated as “level 0”.
  • the end shape of the line L is U-shaped (see FIGS. 4G to 4K, (m), (n)), etc. If it is recognized that the shape is not marked on the public road, the parking frame certainty factor may be calculated as level 3 or level 4.
  • the configuration of the parking frame certainty calculation unit 36 is calculated based on the bird's-eye view image (environment) around the host vehicle V and the vehicle speed (running state) of the host vehicle V.
  • the configuration of the parking frame certainty calculation unit 36 is not limited to this.
  • the configuration of the host vehicle V is, for example, a configuration that includes a device (parking support device) that assists the driver in steering to the parking frame L0, and the parking support device is in the ON state, parking is performed. It is good also as a structure which becomes easy to raise the level of frame reliability.
  • the configuration in which the level of the parking frame certainty is likely to increase is, for example, a configuration in which the above-described set movement distance is set to a shorter distance than usual.
  • a parking assistance apparatus for example, in order to perform parking, an apparatus that monitors and displays the surrounding situation with a bird's-eye view image, etc., or a parking position that is a target on the screen to guide a course for parking
  • These devices are used by operating a switch for switching a screen in order to display a surrounding situation as a bird's-eye view image or a screen switching switch for setting a target parking position on the screen. And when these switches are operated and a parking assistance apparatus will be in an ON state, it is good also as a structure which makes it easy to detect a parking frame and becomes easy to raise the level of parking frame reliability.
  • step S206 there is a method of correcting the set value so that the above-described conditions C1 to C4 in step S206 are easily established.
  • step S206 there is a method of setting a short set movement distance used when it is determined that the continuous collation state has reached the set movement distance.
  • step S212 there is a method for setting an end condition for determining “level 3” or “level 4”, for example, the number of end portions may be smaller than the initial setting.
  • the parking frame reliability is detected as a preset level (for example, “level 4”) regardless of the actual detection status of the parking frame. A method may be used.
  • the acceleration suppression control amount and the acceleration suppression control start timing are changed based on the total certainty factor to change the suppression degree of the acceleration command value.
  • the present invention is not limited to this. That is, according to the total certainty factor, only the acceleration suppression control start timing or only the acceleration suppression control amount may be changed to change the suppression degree of the acceleration command value. In this case, for example, as the total certainty factor is higher, the acceleration suppression control amount may be set larger, and the suppression degree of the acceleration command value may be increased without changing the acceleration suppression control start timing.
  • the overall certainty is calculated.
  • the present invention is not limited to this. That is, for example, the total certainty factor may be calculated according to the number of lines L detected when the above-described condition B is satisfied.
  • the number of lines L detected when the condition B is satisfied is adapted to the comprehensive certainty factor calculation map shown in FIG.
  • the total certainty factor is calculated.
  • FIG. 23 is a diagram showing an overall certainty factor calculation map used in a modification of the present embodiment. Further, in FIG. 23, as in FIG. 17, the parking frame certainty factor is indicated as “frame certainty factor”, and the parking frame approach certainty factor is indicated as “entry certainty factor”.
  • the parking frame approach reliability is “low level”, and the parking frame reliability is calculated as “level 1” and “levels 2 to 4”.
  • the total certainty factor is calculated according to the type of the line L detected when the condition B is satisfied. Specifically, when the parking frame approach reliability is “low level” and the parking frame reliability is calculated as “level 1”, the type of the line L detected when the condition B is satisfied is a single line In the same manner as in the case of “level 0”, it is calculated as the total certainty that the acceleration suppression control is not performed. In addition, when the parking frame approach reliability is “low level” and the parking frame reliability is calculated as “level 1”, the type of the line L detected when the condition B is satisfied is a double line. Calculates the total confidence as “very low”.
  • the type of the line L detected when the condition B is satisfied is a single line. Calculates the total confidence as “very low”. Further, when the parking frame approach reliability is “low level” and the parking frame reliability is calculated as “level 2 to 4”, the type of the line L detected when the condition B is satisfied is a double line. In this case, the total certainty factor is calculated as “extremely high”.
  • the total certainty factor is calculated using the total certainty factor calculation map shown in FIG. 23, for example, the calculated total certainty factor is adapted to the acceleration suppression condition calculation map shown in FIG. Calculate the control start timing.
  • FIG. 23 the total certainty factor is calculated using the total certainty factor calculation map shown in FIG. 23, for example, the calculated total certainty factor is adapted to the acceleration suppression condition calculation map shown in FIG. Calculate the control start timing.
  • acceleration suppression control start timing is indicated as “suppression control start timing (accelerator opening)” in the “acceleration suppression condition” column.
  • the acceleration suppression control start timing is set to the opening of the accelerator pedal 32. Time measurement starts when the degree increases to reach “80%”. In addition, the time when the measurement time when the opening degree of the accelerator pedal 32 is “80%” or more reaches “0.25 [sec]” is set as the acceleration suppression control start timing. That is, when the total certainty factor is “very low”, the acceleration is started from the time when the measurement time when the opening degree of the accelerator pedal 32 is “80%” or more reaches “0.25 [sec]”. Start suppression control.
  • the acceleration suppression control amount when the total certainty factor is “extremely low” is set to a control amount that is suppressed to the throttle opening of the “small” level.
  • the acceleration suppression control amount is indicated as “suppression amount” in the “acceleration suppression condition” column.
  • the acceleration suppression control start timing starts measuring time when the accelerator pedal 32 opening degree reaches “50%”.
  • the time when the measurement time when the opening of the accelerator pedal 32 is “50%” or more reaches “0.65 [sec]” is set as the acceleration suppression control start timing. That is, when the total certainty factor is “extremely high”, the acceleration is started from the time when the measurement time when the opening degree of the accelerator pedal 32 is “50%” or more reaches “0.65 [sec]”. Start suppression control.
  • the acceleration suppression control amount when the total certainty factor is “extremely high” is set to a control amount that is suppressed to the throttle opening of the “large” level.
  • FIG. 25 is a diagram illustrating the relationship between the acceleration suppression control start timing and the holding time.
  • the acceleration suppression control start timing is indicated as “accelerator opening [%]” on the horizontal axis
  • the holding time is indicated as “holding time [sec]” on the vertical axis.
  • acceleration suppression control starts at the point PH when the measurement time when the accelerator opening is “50%” or more reaches “0.65 [sec]” Set as timing.
  • a line that continuously indicates a control threshold value that is a setting reference for the acceleration suppression control start timing is indicated by a solid line.
  • the type of the line L detected when the condition B is satisfied may change.
  • the type of the line L detected when the condition B is satisfied changes from a single line to a double line in a situation where the parking frame certainty factor is calculated as “level 2 to 4”.
  • the type of the line L detected when the condition B is satisfied changes from a single line to a double line, the total certainty level changes from “very low” to “very high”.
  • the time point PL shown in FIG. 25 is set as the acceleration suppression control start timing until the accelerator opening reaches 80%. Does not start the measurement of the holding time. However, if the overall confidence changes from “extremely low” to “extremely high”, even if the accelerator opening has already reached 50%, the overall confidence will change from “extremely low” to “extremely high”. The measurement of the holding time will be started. And in FIG. 25, acceleration suppression control will be started from the time SP which the relationship between measurement time and an accelerator opening overlaps with the line which shows a control threshold continuously. In FIG. 25, the change in the accelerator opening with the passage of time is indicated by a broken line.
  • the time to start acceleration suppression control will be delayed compared to the case where the overall confidence level was calculated as “extremely high” from the beginning. It becomes. For this reason, for example, when the host vehicle V traveling in a parking lot having a configuration in which a plurality of parking frames are arranged, such as tower parking, travels on an uphill slope when moving from a lower-level parking lot to an upper-level parking lot. In such a situation, it is possible to suppress a decrease in drivability.
  • the parking frame certainty is calculated as “level 0” by delaying the timing at which the acceleration suppression control is started, compared to the case where the total certainty is calculated as “extremely high” from the beginning.
  • the time when the vehicle travels on a high climb slope is defined as the time when acceleration suppression control is started.
  • the parking frame certainty factor is calculated as “level 2 to 4”
  • the type of the line L detected when the condition B is satisfied is a single line
  • the parking frame approach certainty factor is “level”
  • the overall reliability changes from “very low” to “very high”.
  • the overall confidence is accelerated as compared with the case where the total certainty is calculated as “extremely high” from the beginning. The time for starting the suppression control will be delayed.
  • the overall confidence is calculated as "very high” from the beginning even if the overall confidence changes from "very low” to "very high”.
  • the time for starting the acceleration suppression control is delayed as compared with the case where it has been. As a result, it is more likely to decelerate on public roads by delaying the timing at which acceleration suppression control is started than when the total certainty was calculated as “extremely high” from the beginning.
  • the time at which acceleration suppression control is started is the time at which acceleration suppression control is started.
  • the acceleration command value is controlled to suppress the acceleration of the host vehicle V according to the depression amount (driving force operation amount) of the accelerator pedal 32.
  • the present invention is not limited to this. That is, for example, the throttle opening corresponding to the depression amount (driving force operation amount) of the accelerator pedal 32 is set as the target throttle opening, and further, the braking force is generated by the braking device described above, and the driving force operation amount is determined. The acceleration of the host vehicle V may be suppressed.
  • the parking frame certainty factor is calculated as level 0, which is the lowest value, and a level (levels 1 to 4) that is higher than the lowest value.
  • the present invention is not limited to this. In other words, the parking frame certainty factor may be calculated as only two levels: a level that is the lowest value (for example, “level 0”) and a level that is higher than the lowest value (for example, “level 100”).
  • the parking frame approach reliability is calculated as “level 0” as the lowest value, “level low” at a level higher than level 0, and “level high” at a level higher than level low.
  • the parking frame approach certainty level is not limited to this. That is, the parking frame approach reliability may be calculated as only two levels: a level that is the lowest value (for example, “level 0”) and a level that is higher than the lowest value (for example, “level 100”).
  • the end certainty factor is calculated as “level low” having the lowest level, “medium level” higher than the level low, and “level high” higher than the level low.
  • the stage of the edge reliability is not limited to this. In other words, the end certainty factor may be calculated as only two levels of a level that is the lowest value (for example, “level 0”) and a level that is higher than the lowest value (for example, “level 100”).
  • the overall confidence level is divided into four levels according to the parking frame confidence level calculated as one of the five levels and the parking frame approach reliability level calculated as one of the three levels.
  • Level (“very low”, “low”, “high”, “very high”).
  • the overall confidence level is not limited to this.
  • the total certainty factor may be calculated as only two levels: a level that is the lowest value (for example, “level 0”) and a level that is higher than the lowest value (for example, “level 100”). In this case, for example, when the parking frame certainty factor and the parking frame approach certainty factor are calculated as the lowest level, the total certainty factor is calculated as the lowest level. For example, when the parking frame certainty factor and the parking frame approach certainty factor are calculated as a level higher than the minimum value, the total certainty factor is calculated as a level higher than the minimum value.
  • the present embodiment a second embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described with reference to the drawings.
  • the configuration of the vehicle acceleration suppression device 1 of the present embodiment will be described using FIGS. 26 and 27 with reference to FIGS. 1 to 25.
  • the vehicle acceleration suppression device 1 of the present embodiment is the same as the first embodiment except for the processing performed by the acceleration suppression control content calculation unit 10I, and therefore, except for the processing performed by the acceleration suppression control content calculation unit 10I. The description may be omitted.
  • the parking frame certainty factor calculation unit 36 of the present embodiment first determines whether the traveling direction of the host vehicle V is forward or backward, and is set according to the determination result. Set the travel distance. Then, based on the set travel distance set in accordance with the traveling direction of the host vehicle V, the process in step S206 continues from the start of the process in step S206 until the travel distance of the host vehicle V becomes the set travel distance. To determine whether to collate.
  • the process of setting the set movement distance according to the traveling direction of the host vehicle V is performed with reference to the current shift position signal received from the shift position calculation unit 10E, for example.
  • the set moving distance is set to 2.5 [m], and it is determined that the traveling direction of the host vehicle V is backward. Then, the case where a set movement distance is set to 1 [m] is demonstrated.
  • the set travel distance is an example, and may be changed according to the specifications of the host vehicle V, such as the braking performance of the host vehicle V, for example. Further, for example, the vehicle V may be changed according to the traffic regulations of the area (country etc.) where the vehicle V travels. Therefore, in the present embodiment, in the process of step S208, when the traveling direction of the host vehicle V is forward, the level of the parking frame certainty is “level 1” than when the traveling direction of the host vehicle V is backward. It becomes difficult to calculate as. Further, the parking frame certainty calculation unit 36 of the present embodiment first determines whether the traveling direction of the host vehicle V is forward or backward in the process of step S212 described above.
  • step S216 when the traveling direction of the host vehicle V is forward, as in the first embodiment described above, when it is determined that the ends located on the same side face each other along the direction of the width WL, The process which the parking frame reliability calculation part 36 performs is made to transfer to step S216.
  • step S216 when the traveling direction of the host vehicle V is backward, one end shape of the lines La and Lb is, for example, U-shaped (FIGS. 4 (g) to (k), (m), (n )),
  • the process performed by the parking frame certainty calculation unit 36 is shifted to step S216. That is, when the traveling direction of the host vehicle V is backward, when the one end shape of the lines La and Lb is recognized as a shape not marked on the public road, the parking frame certainty calculation unit 36
  • step S216 is shifted to step S216. Therefore, in the present embodiment, in the process of step S212, when the traveling direction of the host vehicle V is forward, the level of the parking frame certainty is “level 3” than when the traveling direction of the host vehicle V is backward.
  • the overall certainty calculation unit 40 of the present embodiment receives the parking frame certainty signal and the parking frame approach certainty signal, receives the parking frame certainty factor included in the parking frame certainty signal, and the parking frame approach certainty signal.
  • the parking frame approach reliability included in is adapted to the comprehensive reliability calculation map shown in FIG. Then, based on the parking frame certainty factor and the parking frame approach certainty factor, the total certainty factor is calculated.
  • FIG. 26 is a diagram showing a comprehensive certainty calculation map used in the present embodiment. In FIG. 26, as in FIG. 17, the parking frame certainty factor is indicated as “frame certainty factor”, and the parking frame approach certainty factor is indicated as “entry certainty factor”.
  • the comprehensive certainty calculation map used by the comprehensive certainty calculation unit 40 of the present embodiment is different from the comprehensive certainty calculation map used by the comprehensive certainty calculation unit 40 of the first embodiment described above.
  • the total confidence level is changed according to the direction determination result.
  • the total certainty factor when the traveling direction of the host vehicle V is determined to be forward is indicated as “low forward level” and “high forward level” in the “entry certainty” column.
  • the total certainty when it is determined that the traveling direction of the host vehicle V is reverse is “reverse level high” and “reverse level high” in the “entry certainty” column. It shows.
  • the overall certainty factor calculation unit 40 of the present embodiment uses the total confidence factor when the traveling direction of the host vehicle V is determined to be backward as the traveling direction of the host vehicle V advances. It is calculated as a level that is equal to or higher than the overall certainty factor when it is determined that
  • the total certainty factor is calculated as “low”.
  • the parking frame certainty level is “level 2” and the parking frame approaching certainty level is “high level during backward movement”
  • the total certainty level is calculated as “high” as shown in FIG.
  • the parking frame reliability is calculated as “level 1” while the host vehicle V is moving forward, and then the host vehicle V moves backward and is moving backward within a predetermined distance (for example, 2.5 [m]). Apply again when moving forward.
  • the acceleration suppression control start timing calculation unit 42 of the present embodiment determines that the traveling direction of the host vehicle V is backward, the overall certainty factor included in the comprehensive certainty factor signal is used for the reverse time shown in FIG. It is adapted to the acceleration suppression condition calculation map. Then, the acceleration suppression control start timing is calculated based on the total certainty factor.
  • FIG. 27 is a diagram showing an acceleration suppression condition calculation map for reverse operation.
  • the acceleration suppression control start timing is indicated as “suppression control start timing (accelerator opening)” in the “acceleration suppression condition” column.
  • the acceleration suppression condition calculation map for reverse use used by the acceleration suppression control start timing calculation unit 42 of the present embodiment the acceleration with respect to the overall certainty factor is compared with the acceleration suppression condition calculation map of the first embodiment described above. Set suppression control start timing early. Therefore, in the acceleration suppression condition calculation map for reverse use used by the acceleration suppression control start timing calculation unit 42 of the present embodiment, when the traveling direction of the host vehicle V is backward, the traveling direction of the host vehicle V is forward. Rather, the degree of suppression of the acceleration command value becomes higher.
  • the acceleration suppression control start timing is set to the accelerator pedal 32 as shown in FIG. Set the timing when the opening degree increases and reaches "50%".
  • the acceleration suppression control start timing shown in FIG. 27 is an example, and may be changed according to the specifications of the host vehicle V and the like, similar to the acceleration suppression control start timing shown in FIG.
  • the acceleration suppression control amount calculation unit 44 of the present embodiment determines that the traveling direction of the host vehicle V is backward, the overall certainty factor included in the comprehensive certainty factor signal is used for the reverse time shown in FIG. Adapt to the acceleration suppression condition calculation map. Then, an acceleration suppression control amount is calculated based on the total certainty factor.
  • the acceleration suppression control amount is indicated as “suppression amount” in the “acceleration suppression condition” column.
  • the acceleration suppression with respect to the overall certainty factor is compared with the acceleration suppression condition calculation map of the first embodiment described above. Set a large control amount. Therefore, in the reverse acceleration suppression condition calculation map used by the acceleration suppression control amount calculation unit 44 of the present embodiment, when the traveling direction of the host vehicle V is backward, the traveling direction of the host vehicle V is forward. However, the degree of suppression of the acceleration command value is increased. As an example of processing performed by the acceleration suppression control amount calculation unit 44 of the present embodiment, when the total certainty factor is “extremely low”, the acceleration suppression control amount is set to the actual accelerator pedal 32 as shown in FIG.
  • the acceleration suppression control amount shown in FIG. 27 is an example, and may be changed according to the specifications of the host vehicle V and the like, similar to the acceleration suppression control amount shown in FIG.
  • the acceleration suppression control start timing is set earlier than when the traveling direction of the host vehicle V is backward, and acceleration is performed. Set a large suppression control amount. For this reason, in this embodiment, when the traveling direction of the host vehicle V is backward, the degree of suppression of the acceleration command value is higher than when the traveling direction of the host vehicle V is forward.
  • the acceleration suppression control start timing calculation unit 42 calculates the acceleration suppression control start timing based on the total reliability calculated by the total reliability calculation unit 40, and the acceleration suppression control amount calculation unit 44 calculates an acceleration suppression control amount.
  • the acceleration suppression command value calculation unit 10J outputs an acceleration suppression command value signal to the target throttle opening calculation unit 10K.
  • the target throttle opening calculation unit 10K outputs a target throttle opening signal to the engine controller 12.
  • the parking frame certainty calculation unit 36 calculates the parking frame certainty factor
  • the acceleration suppression control start timing calculation unit 42 calculates the acceleration suppression control start timing, when the traveling direction of the host vehicle V is forward, the traveling direction of the host vehicle V is backward. Rather than raising the level of confidence in the parking frame. For this reason, when the acceleration suppression control operation condition is satisfied, when the traveling direction of the host vehicle V is backward, the degree of suppression of the acceleration command value is higher than when the traveling direction of the host vehicle V is forward.
  • the acceleration suppression control amount calculation unit 44 calculates the acceleration suppression control amount
  • the traveling direction of the host vehicle V is forward
  • the traveling direction of the host vehicle V is backward than when the traveling direction is backward.
  • the acceleration suppression control operation condition is satisfied
  • the traveling direction of the host vehicle V is backward
  • the degree of suppression of the acceleration command value is higher than when the traveling direction of the host vehicle V is forward.
  • the shift position sensor 20 and the shift position calculation unit 10E described above correspond to the own vehicle traveling direction detection unit.
  • the acceleration command according to the operation amount of the accelerator pedal 32 is compared to when the traveling direction is backward. It is a method of suppressing the value with a low suppression degree.
  • the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K move forward when the traveling direction of the host vehicle V is backward.
  • the degree of suppression of the acceleration command value is increased compared to the case where
  • the acceleration command value is larger than in a backward movement in which the driver is less likely to visually recognize the traveling direction than during the forward traveling. It is possible to reduce the decrease in drivability and reduce the drivability. Further, when the traveling direction of the host vehicle V is a backward movement in which the driver is less likely to visually recognize the traveling direction than when the vehicle is traveling forward, the acceleration command value is larger than when the driver is traveling forward in which the traveling direction is easily visible. It is possible to increase the degree of suppression and increase the acceleration suppression effect of the host vehicle V. As a result, it is possible to suppress the drivability of the host vehicle V during parking and to suppress acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
  • the traveling direction of the host vehicle V is detected.
  • the acceleration command value is lower than when the host vehicle V is traveling backward. Suppress with the degree of suppression.
  • the traveling direction of the host vehicle V is a forward movement in which the driver can easily recognize the traveling direction
  • the acceleration command value is larger than in a backward movement in which the driver is less likely to visually recognize the traveling direction than during the forward traveling. It is possible to reduce the decrease in drivability and reduce the drivability.
  • the acceleration command value is larger than when the driver is traveling forward in which the traveling direction is easily visible. It is possible to increase the degree of suppression and increase the acceleration suppression effect of the host vehicle V. As a result, it is possible to suppress the drivability of the host vehicle V during parking and to suppress acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
  • the present invention when the traveling direction of the host vehicle V is forward, the level of the parking frame reliability is less likely to be increased than when the traveling direction of the host vehicle V is backward, and the acceleration command Although the degree of suppression of the value is configured to be low, the present invention is not limited to this. That is, for example, when at least one of the parallelism threshold value, the turning radius threshold value, the first threshold value, and the second threshold value is changed and the traveling direction of the host vehicle V is forward, the traveling direction of the host vehicle V The level of the parking frame approach reliability may be less likely to increase than when the vehicle is moving backward.
  • the traveling direction of the host vehicle V when the traveling direction of the host vehicle V is forward, the set travel distance is set longer than when the traveling direction of the host vehicle V is backward, and the level of parking frame reliability is set.
  • the level of parking frame reliability is set.
  • the traveling direction of the host vehicle V when the traveling direction of the host vehicle V is backward, the process is continued as a line of about 5 [m] obtained by extending a virtual line of about 3 [m].
  • the traveling direction of the own vehicle V when the traveling direction of the own vehicle V is forward, the level of the parking frame reliability may be made less likely to be raised than when the traveling direction of the own vehicle V is backward.
  • the traveling direction of the host vehicle V is detected using the shift position sensor 20 and the shift position calculation unit 10E described above, but the present invention is not limited to this. That is, for example, the host vehicle V includes a longitudinal acceleration sensor that detects acceleration in the longitudinal direction of the vehicle body (vehicle longitudinal direction), and detects the traveling direction of the host vehicle V based on the acceleration detected by the longitudinal acceleration sensor. May be.
  • the acceleration suppression control start timing and the acceleration suppression control amount are calculated based on the total reliability calculated by the total reliability calculation unit 40, but the present invention is not limited to this.
  • the acceleration suppression control start timing and the acceleration suppression control amount are calculated based on the parking frame reliability calculated by the parking frame reliability calculation unit 36 and whether the traveling direction of the host vehicle V is forward or backward. Also good.
  • the acceleration suppression control start timing and the acceleration suppression control amount are calculated by adapting the parking frame certainty to, for example, an acceleration suppression condition calculation map shown in FIG. FIG. 28 is a diagram illustrating a modification of the present embodiment.
  • the present embodiment a third embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described with reference to the drawings.
  • the configuration of the vehicle acceleration suppression device 1 of this embodiment will be described with reference to FIGS. 1 to 28 and FIG. 29.
  • the vehicle acceleration suppression device 1 of the present embodiment is the same as the first embodiment except for the processing performed by the acceleration suppression control content calculation unit 10I, and therefore, except for the processing performed by the acceleration suppression control content calculation unit 10I. The description may be omitted.
  • the acceleration suppression apparatus 1 for vehicles of this embodiment WHEREIN: Processes other than the process which the parking frame reliability calculation part 36 and the total reliability calculation part 40 perform among the processes performed by the acceleration suppression control content calculating part 10I are mentioned above. Since this is the same as the first embodiment, the description thereof is omitted.
  • the parking frame certainty calculation unit 36 of the present embodiment first receives an input of a steering angle signal, determines whether or not the traveling state of the host vehicle V is a turning state, and The set movement distance is set according to the determination result. Then, based on the set movement distance set according to whether or not the traveling state of the host vehicle V is a turning state, the process proceeds from step S206 until the movement distance of the host vehicle V becomes the set movement distance.
  • the process of step S206 performs a process of determining whether or not to collate continuously.
  • an operation amount (rotation angle) from the neutral position of the steering wheel 28 included in the steering angle signal is referred to. Further, it is determined whether or not the referred rotation angle exceeds a preset turning state determination threshold value (for example, 90 [°]). And when the referred rotation angle exceeds the turning state determination threshold value, it is determined that the host vehicle V is in a turning state.
  • a preset turning state determination threshold value for example, 90 [°]
  • the turning state determination threshold value is not limited to 90 [°], and may be changed according to the specifications of the host vehicle V, such as the braking performance of the host vehicle V, for example. Further, for example, the vehicle V may be changed according to the traffic regulations of the area (country etc.) where the vehicle V travels.
  • the process of setting the set movement distance according to whether or not the traveling state of the host vehicle V is a turning state is performed with reference to a steering angle signal received from the steering angle calculation unit 10C, for example.
  • the set movement distance is set to 2.5 [m], and the traveling state of the host vehicle V is a turning state.
  • the set travel distance is an example, and may be changed according to the specifications of the host vehicle V, such as the braking performance of the host vehicle V, for example. Further, for example, the vehicle V may be changed according to the traffic regulations of the area (country etc.) where the vehicle V travels.
  • the comprehensive reliability calculation part 40 of this embodiment performs the process similar to the parking frame reliability calculation part 36 mentioned above, for example, and determines whether the driving state of the own vehicle V is a turning state. I do.
  • the overall certainty calculation unit 40 of the present embodiment receives the parking frame certainty signal and the parking frame approach certainty signal, receives the parking frame certainty factor included in the parking frame certainty signal, and the parking frame approach certainty signal.
  • the parking frame approach reliability included in is adapted to the comprehensive reliability calculation map shown in FIG.
  • FIG. 29 is a diagram showing an overall certainty calculation map used in the present embodiment.
  • the parking frame certainty factor is indicated as “frame certainty factor”
  • the parking frame approach certainty factor is indicated as “entry certainty factor”.
  • the comprehensive certainty calculation map used by the comprehensive certainty calculation unit 40 of the present embodiment is different from the comprehensive certainty calculation map used by the comprehensive certainty calculation unit 40 of the first embodiment described above.
  • the level of the total certainty level is changed according to the determination result of whether or not it is in a state.
  • the total certainty factor when it is determined that the host vehicle V is not in the turning state is “low level when not turning” and “high level when not turning” in the “entry certainty” column. It shows.
  • the total certainty when it is determined that the host vehicle V is in the turning state is “level low in turning state” and “level high in turning state” in the “entry certainty” column. It shows.
  • the total certainty calculation unit 40 of the present embodiment determines the total certainty when the host vehicle V is in a turning state, and determines that the host vehicle V is not in a turning state.
  • the level is calculated as a level that is equal to or higher than the overall certainty.
  • the parking frame certainty factor is “level 2”
  • the parking frame approach certainty factor is “high level in non-turning state”. In this case, as shown in FIG. 29, the total certainty factor is calculated as “low”.
  • the parking frame certainty factor is “level 2” and the parking frame approach certainty factor is “high level when turning”
  • the total certainty factor is calculated as “high” as shown in FIG. .
  • the total confidence level is easily calculated as a higher level than when the host vehicle V is not in a turning state.
  • the degree of suppression of the acceleration command value is higher than when the own vehicle V is not in the turning state.
  • the acceleration suppression control start timing calculation unit 42 calculates the acceleration suppression control start timing based on the total reliability calculated by the total reliability calculation unit 40, and the acceleration suppression control amount calculation unit 44 calculates an acceleration suppression control amount.
  • the acceleration suppression command value calculation unit 10J outputs an acceleration suppression command value signal to the target throttle opening calculation unit 10K.
  • the target throttle opening calculation unit 10K outputs a target throttle opening signal to the engine controller 12.
  • the total confidence factor calculation unit 40 calculates the total confidence factor
  • the total confidence factor is greater than when the host vehicle V is not in a turning state. It is easy to calculate as a high level. For this reason, when the acceleration suppression control operation condition is satisfied, when the host vehicle V is in a turning state, the degree of suppression of the acceleration command value is higher than when the host vehicle V is not in a turning state.
  • the steering angle sensor 18 and the steering angle calculation unit 10C described above correspond to the host vehicle turning state detection unit.
  • the vehicle acceleration suppression method increases the amount of operation of the accelerator pedal 32 when the turning state of the host vehicle V is not detected and when the turning state of the host vehicle V is detected. This is a method of suppressing the corresponding acceleration command value with a low suppression degree.
  • the steering angle sensor 18 and the steering angle calculation unit 10C detect whether or not the host vehicle V is in a turning state. In addition to this, when the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K are not in the turning state, Compared with the case where V is in a turning state, the degree of suppression of the acceleration command value is lowered.
  • the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K are configured so that when the host vehicle V is in a turning state, The degree of suppression of the acceleration command value is increased compared to the case where the vehicle is not in a turning state.
  • acceleration is faster than when the driver intends to accelerate less than when traveling straight. It is possible to reduce the degree of suppression of the command value and reduce the decrease in drivability. Further, when the traveling state of the host vehicle V is a turn where the driver is not intending to accelerate more than when the vehicle is traveling straight, the acceleration command value is greater than when the driver is intending to accelerate. It is possible to increase the degree of suppression and increase the acceleration suppression effect of the host vehicle V. As a result, it is possible to suppress the drivability of the host vehicle V during parking and to suppress acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
  • the acceleration command value is suppressed with a low suppression degree. For this reason, when the traveling state of the host vehicle V is straight traveling, in which the driver often intends to accelerate, acceleration is faster than when the driver intends to accelerate less than when traveling straight. It is possible to reduce the degree of suppression of the command value and reduce the decrease in drivability. Further, when the traveling state of the host vehicle V is a turn where the driver is not intending to accelerate more than when the vehicle is traveling straight, the acceleration command value is greater than when the driver is intending to accelerate.
  • the degree of suppression of the acceleration command value is increased.
  • the degree of suppression of the acceleration command value is made higher than when the host vehicle V is not in a turning state. It is good also as a structure.
  • the parking frame certainty factor or the parking frame approach certainty factor can be easily calculated as a higher level than when the host vehicle V is not in a turning state, and the acceleration command value It is good also as a structure from which the suppression degree becomes high.
  • the turning state determination threshold is set to a value (for example, 90 [°]) corresponding to the rotation angle of the steering wheel 28, but the turning state determination threshold is limited to this. is not. That is, the configuration of the host vehicle V includes a yaw rate sensor that detects the yaw rate of the host vehicle V, and the turning state determination threshold is set to a value (for example, 100 [R]) corresponding to the yaw rate of the host vehicle V. It may be set.
  • the configuration of the host vehicle V is configured to include a turning angle sensor that detects the turning angle of the steered wheels (for example, the right front wheel WFR and the left front wheel WFL), and the turning state determination threshold value is set to the turning value of the steered wheel. You may set to the value (for example, 6 [degree]) corresponding to a steering angle.
  • the acceleration suppression control start timing and the acceleration suppression control amount are calculated based on the total reliability calculated by the total reliability calculation unit 40, but the present invention is not limited to this. That is, the acceleration suppression control start timing and the acceleration suppression control amount may be calculated on the basis of the parking frame reliability calculated by the parking frame reliability calculation unit 36 and whether or not the host vehicle V is in a turning state. . In this case, the acceleration suppression control start timing and the acceleration suppression control amount are calculated by adapting the parking frame certainty factor to, for example, the acceleration suppression condition calculation map shown in FIG. FIG. 30 is a diagram illustrating a modification of the present embodiment. Further, when the traveling state of the host vehicle V is a turning state using the acceleration suppression condition calculation map shown in FIG. 30, for example, an acceleration suppression condition calculation map similar to that shown in FIG. 27 is used. It is also possible to calculate the acceleration suppression control start timing and the acceleration suppression control amount.
  • the present embodiment a fourth embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described with reference to the drawings.
  • the configuration of the vehicle acceleration suppression device 1 of this embodiment will be described with reference to FIGS. 1 to 30 and FIG. 31.
  • the vehicle acceleration suppression device 1 of the present embodiment is the same as the first embodiment except for the processing performed by the acceleration suppression control content calculation unit 10I, and therefore, except for the processing performed by the acceleration suppression control content calculation unit 10I. The description may be omitted.
  • the acceleration suppression apparatus 1 for vehicles of this embodiment WHEREIN Among the processes performed by the acceleration suppression control content calculating part 10I, processes other than the process which the acceleration suppression operation condition judgment part 34 and the comprehensive reliability calculation part 40 perform are mentioned above. Since this is the same as the first embodiment, the description thereof is omitted.
  • the acceleration suppression operation condition determination unit 34 determines in which region the vehicle speed of the host vehicle V is suitable among a plurality of preset threshold vehicle speed regions in the process of step S106 described above. I do. And if the process of step S106 is performed, the process which the acceleration suppression operation condition judgment part 34 of this embodiment performs will transfer to step S108.
  • FIG. 31 is a map used for processing performed by the acceleration suppression control content calculation unit 10I of the present embodiment, and is a map showing the relationship between the vehicle speed and the control content.
  • the four threshold vehicle speed regions are a first vehicle speed region of 0 [km / h], a second vehicle speed region of 0 [km / h] to 15 [km / h], and exceeds 15 [km / h].
  • the third vehicle speed region is 20 [km / h] or less, and the fourth vehicle speed region is over 20 [km / h].
  • the acceleration suppression operation condition determination unit 34 of the present embodiment determines that the host vehicle V is in the parking frame based on the threshold vehicle speed region in which the vehicle speed of the host vehicle V determined in step S106 is matched in the process of step S118 described above. Change the conditions for judging entry.
  • a condition for determining that the host vehicle V enters the parking frame is a condition for determining whether or not the acceleration suppression control is started, and is indicated as “control start” in the “control content” column.
  • the set value of the condition A described above is The process which makes the same value as 1st embodiment mentioned above is performed.
  • the set value of the condition A is at least one of the set rudder angle value, the set time, the set angle, and the set distance described above.
  • a state where the set values of the conditions (A1 to A3) are the same as those in the first embodiment is indicated by a symbol “ ⁇ ”.
  • the set value of the condition A is changed to a value that is less likely to be determined when the host vehicle V enters the parking frame than in the first embodiment. To do. This is performed, for example, by processing such as changing the set time in the condition A1 to a time longer than that in the first embodiment.
  • a state in which the set value of the condition A is changed to a value that is less likely to be determined when the host vehicle V enters the parking frame than in the first embodiment is indicated as “control start condition is restricted”.
  • the acceleration suppression operation condition determination unit 34 of the present embodiment in a state in which the acceleration suppression control is operating, is based on a threshold vehicle speed region in which the vehicle speed of the host vehicle V determined in step S106 is suitable, Change the conditions for continuing control.
  • the condition for continuing the acceleration suppression control during operation is shown as “control continuation” in the “control content” column.
  • the process of changing the condition for continuing the acceleration suppression control during operation when the vehicle speed of the host vehicle V is outside the fourth vehicle speed region, the process of continuing the acceleration suppression control during operation is performed.
  • a state in which the acceleration suppression control during operation is continued is indicated by a symbol “ ⁇ ”.
  • the vehicle speed of the host vehicle V is the fourth vehicle speed region
  • the set value of the condition A is changed to a value that is less likely to be determined when the host vehicle V enters the parking frame than the first embodiment.
  • a process for facilitating the termination of the acceleration suppression control during operation is performed.
  • a state that facilitates terminating the acceleration suppression control during operation is indicated as “relaxation of control termination condition”.
  • the overall certainty calculation unit 40 of the present embodiment receives the input of the vehicle speed calculation value signal, and the vehicle speed of the host vehicle V is suitable for any threshold vehicle speed region as in the processing performed by the acceleration suppression operation condition determination unit 34.
  • the process which determines is performed. In the process for determining which threshold vehicle speed region the vehicle speed of the host vehicle V is adapted to be performed by the comprehensive certainty calculation unit 40, the processing result performed by the acceleration suppression operation condition determination unit 34 may be used.
  • the comprehensive reliability calculation part 40 of this embodiment calculates a comprehensive reliability based on a parking frame reliability and a parking frame approach reliability, and also based on the threshold vehicle speed area
  • the process of changing the level of the overall certainty factor is shown as “confidence factor” in the “control content” column.
  • the total calculated based on the parking frame certainty factor and the parking frame approach certainty factor Processing to maintain the level of certainty is performed.
  • a state where the level of the total certainty calculated based on the parking frame certainty and the parking frame approach certainty is held is indicated by a sign “ ⁇ ”.
  • the level of the total certainty calculated based on the parking frame certainty and the parking frame approach certainty regardless of whether or not the acceleration suppression control is operating. (For example, lowering by one step) is performed.
  • a state in which the level of the overall confidence level is lowered regardless of whether or not the acceleration suppression control is operating is indicated as “uniformly lowering the level of confidence level”. Therefore, in this embodiment, the higher the vehicle speed of the host vehicle V, the easier it is to calculate the overall confidence level as a lower level. Thereby, in this embodiment, the acceleration command value is suppressed at a higher suppression degree as the vehicle speed of the host vehicle V is lower.
  • the acceleration suppression control start timing calculation unit 42 calculates the acceleration suppression control start timing based on the total reliability calculated by the total reliability calculation unit 40, and the acceleration suppression control amount calculation unit 44 calculates an acceleration suppression control amount.
  • the acceleration suppression command value calculation unit 10J outputs an acceleration suppression command value signal to the target throttle opening calculation unit 10K.
  • the target throttle opening calculation unit 10K outputs a target throttle opening signal to the engine controller 12.
  • the vehicle acceleration suppression method of the present embodiment is a method of suppressing the acceleration command value according to the operation amount of the accelerator pedal 32 with a lower suppression degree as the vehicle speed of the host vehicle V is higher.
  • the vehicle speed of the host vehicle V is detected by the wheel speed sensor 16 and the host vehicle vehicle speed calculation unit 10B.
  • the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K increase the acceleration command value as the vehicle speed of the host vehicle V increases. Is suppressed with a low degree of suppression.
  • the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K increase the acceleration command value as the vehicle speed of the host vehicle V decreases. Suppress with the degree of suppression.
  • the vehicle speed of the own vehicle V is high and there is a high possibility that the driver does not intend to park the own vehicle V, the vehicle speed of the own vehicle V is low and the driver intends to park the own vehicle V.
  • the degree of suppression of the acceleration command value is made lower than when there is a high possibility that the acceleration command value is high. Thereby, it becomes possible to reduce the fall of drivability.
  • the vehicle speed of the host vehicle V is low and the driver is likely to intend to park the host vehicle V
  • the vehicle speed of the host vehicle V is high and the driver intends to park the host vehicle V.
  • the degree of suppression of the acceleration command value is made higher than when there is a high possibility that it is not. Thereby, the acceleration suppression effect of the host vehicle V can be increased. As a result, it is possible to suppress the drivability of the host vehicle V during parking and to suppress acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
  • the acceleration command value is suppressed at a lower suppression degree as the vehicle speed of the host vehicle V is higher. For this reason, when the vehicle speed of the own vehicle V is high and there is a high possibility that the driver does not intend to park the own vehicle V, the vehicle speed of the own vehicle V is low and the driver intends to park the own vehicle V.
  • the degree of suppression of the acceleration command value is made lower than when there is a high possibility that the acceleration command value is high. Thereby, it becomes possible to reduce the fall of drivability. Furthermore, when the vehicle speed of the host vehicle V is low and the driver is likely to intend to park the host vehicle V, the vehicle speed of the host vehicle V is high and the driver intends to park the host vehicle V.
  • the degree of suppression of the acceleration command value is made higher than when there is a high possibility that it is not. Thereby, the acceleration suppression effect of the host vehicle V can be increased. As a result, it is possible to suppress the drivability of the host vehicle V during parking and to suppress acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
  • the higher the vehicle speed of the host vehicle V the easier it is to calculate the overall confidence level as a lower level, and the degree of suppression of the acceleration command value is lower.
  • the present invention is not limited to this. Absent. That is, for example, the acceleration suppression control start timing and the acceleration suppression control amount may be changed so that the degree of suppression of the acceleration command value decreases as the vehicle speed of the host vehicle V increases. Further, for example, the higher the vehicle speed of the host vehicle V, the easier it is to calculate the parking frame certainty factor or the parking frame approach certainty factor as a low level, and the degree of suppression of the acceleration command value may be reduced.
  • each threshold vehicle speed area is not limited to the speed described above, and may be set / changed according to the specifications of the host vehicle V, such as the braking performance of the host vehicle V, for example.
  • the entire contents of the Japanese Patent Application 2012-259215 filed on November 27, 2012 to which the present application claims priority form part of the present disclosure by reference.

Abstract

Provided are a vehicle acceleration-suppression device and a vehicle acceleration-suppression method, with which a reduction in drivability during parking can be inhibited, and acceleration during erroneous accelerator operations can be suppressed. A parking-frame certainty factor indicating a degree of certainty that a parking frame is present in a forward-travel direction of an automobile is calculated on the basis of an edge certainty factor indicating a degree of certainty that an image of edges of the parking frame is included in a surrounding-environment-based image. Automobile acceleration controlled in accordance with a detected drive-force operation amount is suppressed on the basis of the calculated parking-frame certainty factor.

Description

車両用加速抑制装置及び車両用加速抑制方法Vehicle acceleration suppression device and vehicle acceleration suppression method
 本発明は、駐車の際の運転支援を行うために自車両の加速を抑制する技術に関する。 The present invention relates to a technique for suppressing acceleration of the host vehicle in order to provide driving assistance during parking.
 車両等の乗物に対し、その速度を制御する技術としては、例えば、特許文献1に記載されている安全装置がある。
 特許文献1に記載されている安全装置では、ナビゲーション装置の地図データと、乗り物の現在位置を示す情報に基づき、乗物(自車両)の現在位置が道路(公道等)から外れた位置であることを検出する。これに加え、乗物の走行速度を増加させる方向のアクセル操作があり、さらに、乗物の走行速度が所定値よりも大きいと判断したときは、運転者によるアクセルの操作に拘わらず、スロットルを減速方向に制御する。
As a technique for controlling the speed of a vehicle such as a vehicle, for example, there is a safety device described in Patent Document 1.
In the safety device described in Patent Document 1, based on the map data of the navigation device and the information indicating the current position of the vehicle, the current position of the vehicle (own vehicle) is a position that deviates from the road (such as a public road). Is detected. In addition to this, there is an accelerator operation in the direction to increase the vehicle traveling speed, and when it is determined that the vehicle traveling speed is greater than the predetermined value, the throttle is decelerated in the deceleration direction regardless of the driver's accelerator operation. To control.
特開2003‐137001号公報Japanese Patent Laid-Open No. 2003-137001
 上述した特許文献1に記載の技術では、アクセルの誤操作が発生した場合であっても、運転者の意図しない乗物の加速を防止することを目的としているため、アクセルの操作が誤操作であるか否かの判断が課題となる。そして、特許文献1に記載の技術では、乗物が道路から外れた位置にある条件、及び所定値以上の走行速度が検出される状態のアクセル操作が行なわれた条件を、アクセルの誤操作が発生した可能性があると判定する条件としている。
 しかしながら、上述した判定条件では、乗物が道路から駐車場へ進入すると、車速によってはスロットルの減速方向への制御が作動する。このため、駐車場内において、駐車枠の付近へ移動するまでの走行等における運転性を悪化させてしまうという問題が発生するおそれがある。
 本発明は、上記のような問題点に着目してなされたもので、駐車時の運転性低下を抑制するとともに、アクセルの誤操作時における加速を抑制することが可能な、車両用加速抑制装置及び車両用加速抑制方法を提供することを目的とする。
The technique described in Patent Document 1 described above is intended to prevent acceleration of a vehicle that is not intended by the driver even when an accelerator operation error occurs, so whether or not the accelerator operation is an operation error. Judgment is a challenge. In the technique described in Patent Document 1, an erroneous operation of the accelerator occurs under the condition that the vehicle is off the road and the condition in which the accelerator operation is performed in a state in which a traveling speed of a predetermined value or more is detected. It is a condition for determining that there is a possibility.
However, under the above-described determination conditions, when the vehicle enters the parking lot from the road, control in the throttle deceleration direction is activated depending on the vehicle speed. For this reason, in a parking lot, there exists a possibility that the problem of deteriorating the drivability in driving | running | working etc. until it moves to the vicinity of a parking frame may generate | occur | produce.
The present invention has been made paying attention to the problems as described above, and suppresses drivability at the time of parking, and can suppress acceleration at the time of erroneous operation of the accelerator, and a vehicle acceleration suppression device. It aims at providing the acceleration suppression method for vehicles.
 上記課題を解決するために、本発明の一態様は、自車両周囲の環境に基づく画像が自車両の進行方向に駐車枠の端部の画像を含むことの確信の度合いを示す端部確信度を算出する。さらに、算出した端部確信度に基づいて、自車両の進行方向に駐車枠が存在する確信の度合いを示す駐車枠確信度を算出する。そして、算出した駐車枠確信度が高いほど、運転者が操作して駆動力を指示する駆動力指示操作子の操作量に応じて制御する自車両の加速を、高い抑制度合いで抑制する。 In order to solve the above-described problem, one aspect of the present invention is an end certainty factor indicating a degree of certainty that an image based on an environment around the own vehicle includes an image of an end portion of the parking frame in the traveling direction of the own vehicle. Is calculated. Furthermore, based on the calculated end part certainty factor, a parking frame certainty factor indicating the degree of certainty that the parking frame exists in the traveling direction of the host vehicle is calculated. And the higher the calculated parking frame certainty factor, the higher the degree of suppression of the acceleration of the host vehicle that is controlled according to the amount of operation of the driving force indicating operator that is operated by the driver to indicate the driving force.
 本発明の一態様によれば、駐車枠確信度が低い状態では、加速指令値の抑制度合いを低くして運転性の低下を少なくすることが可能となり、駐車枠確信度が高い状態では、加速指令値の抑制度合いを高くして自車両の加速抑制効果を高くすることが可能となる。
 このため、駐車時の運転性低下を抑制するとともに、アクセルの誤操作時における加速を抑制することが可能となる。
According to one aspect of the present invention, in a state where the parking frame certainty factor is low, it is possible to reduce the degree of suppression of the acceleration command value and reduce a decrease in drivability, and in a state where the parking frame certainty factor is high, the acceleration is accelerated. It is possible to increase the acceleration suppression effect of the host vehicle by increasing the degree of suppression of the command value.
For this reason, while suppressing the drivability at the time of parking, it becomes possible to suppress the acceleration at the time of the erroneous operation of an accelerator.
本発明の第一実施形態の車両用加速抑制装置を備える車両の構成を示す概念図である。It is a conceptual diagram which shows the structure of a vehicle provided with the acceleration suppression apparatus for vehicles of 1st embodiment of this invention. 本発明の第一実施形態の車両用加速抑制装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the acceleration suppression apparatus for vehicles of 1st embodiment of this invention. 加速抑制制御内容演算部の構成を示すブロック図である。It is a block diagram which shows the structure of the acceleration suppression control content calculating part. 駐車枠確信度算出部が駐車枠確信度の算出対象とする駐車枠のパターンを示す図である。It is a figure which shows the pattern of the parking frame which a parking frame reliability calculation part makes the calculation object of parking frame reliability. 加速抑制作動条件判断部が、加速抑制作動条件が成立するか否かを判断する処理を示すフローチャートである。It is a flowchart which shows the process which an acceleration suppression operation condition judgment part judges whether an acceleration suppression operation condition is materialized. エッジ検出による駐車枠線の認識方法を説明する模式図である。It is a schematic diagram explaining the recognition method of the parking frame line by edge detection. 自車両と、駐車枠と、自車両と駐車枠との距離を説明する図である。It is a figure explaining the distance of the own vehicle, a parking frame, and the own vehicle and a parking frame. 駐車枠確信度算出部が駐車枠確信度を算出する処理を示すフローチャートである。It is a flowchart which shows the process in which a parking frame reliability calculation part calculates parking frame reliability. 駐車枠確信度算出部が駐車枠確信度を算出する処理のステップS203で参照される端部判定パターンマップの一例を示す図である。It is a figure which shows an example of the edge part determination pattern map referred by step S203 of the process which a parking frame reliability calculation part calculates parking frame reliability. 自車両Vに近い方の駐車枠を撮像した画像を模式的に示す図である。It is a figure which shows typically the image which imaged the parking frame near the own vehicle. 駐車枠確信度算出部が駐車枠確信度を算出する処理のステップS203で参照される端部確信度レベル算出マップの一例を示す図である。It is a figure which shows an example of the edge part reliability level calculation map referred by step S203 of the process which a parking frame reliability calculation part calculates parking frame reliability. 駐車枠確信度算出部が行う処理の内容を示す図である。It is a figure which shows the content of the process which a parking frame reliability calculation part performs. 駐車枠確信度算出部が行う処理の内容を示す図である。It is a figure which shows the content of the process which a parking frame reliability calculation part performs. 駐車枠確信度算出部が駐車枠確信度を算出する処理のステップS216で参照される駐車枠確信度レベル算出マップの一例を示す図である。It is a figure which shows an example of the parking frame reliability level calculation map referred by step S216 of the process in which a parking frame reliability calculation part calculates parking frame reliability. 駐車枠進入確信度算出部が駐車枠進入確信度を算出する処理を示すフローチャートである。It is a flowchart which shows the process in which a parking frame approach reliability calculation part calculates a parking frame approach reliability. 自車両の後輪予想軌跡と駐車枠とのずれ量を検出する処理の内容を示す図である。It is a figure which shows the content of the process which detects the deviation | shift amount of the rear-wheel estimated locus | trajectory of a own vehicle, and a parking frame. 総合確信度算出マップを示す図である。It is a figure which shows a comprehensive reliability calculation map. 加速抑制条件演算マップを示す図である。It is a figure which shows an acceleration suppression condition calculation map. 加速抑制指令値演算部が行う処理を示すフローチャートである。It is a flowchart which shows the process which an acceleration suppression command value calculating part performs. 目標スロットル開度演算部が行う処理を示すフローチャートである。It is a flowchart which shows the process which a target throttle opening calculating part performs. 本発明の第一実施形態の変形例を説明する図である。It is a figure explaining the modification of 1st embodiment of this invention. 本発明の第一実施形態の変形例を説明する図である。It is a figure explaining the modification of 1st embodiment of this invention. 本発明の第一実施形態の変形例を示す図である。It is a figure which shows the modification of 1st embodiment of this invention. 本発明の第一実施形態の変形例を示す図である。It is a figure which shows the modification of 1st embodiment of this invention. 本発明の第一実施形態の変形例を示す図である。It is a figure which shows the modification of 1st embodiment of this invention. 本発明の第二実施形態で用いる総合確信度算出マップを示す図である。It is a figure which shows the comprehensive reliability calculation map used by 2nd embodiment of this invention. 後退時用の加速抑制条件演算マップを示す図である。It is a figure which shows the acceleration suppression condition calculation map for the time of reverse. 本発明の第二実施形態の変形例を示す図である。It is a figure which shows the modification of 2nd embodiment of this invention. 本発明の第三実施形態で用いる総合確信度算出マップを示す図である。It is a figure which shows the comprehensive reliability calculation map used by 3rd embodiment of this invention. 本発明の第三実施形態の変形例を示す図である。It is a figure which shows the modification of 3rd embodiment of this invention. 本発明の第四実施形態の加速抑制制御内容演算部で行なう処理に用いるマップである。It is a map used for the process performed in the acceleration suppression control content calculating part of 4th embodiment of this invention.
 以下、本発明の実施形態について、図面を参照しつつ説明する。
(第一実施形態)
 以下、本発明の第一実施形態(以下、本実施形態と記載する)について、図面を参照しつつ説明する。
(構成)
 まず、図1を用いて、本実施形態の車両用加速抑制装置を備える車両の構成を説明する。
 図1は、本実施形態の車両用加速抑制装置を備える車両の構成を示す概念図である。
 図1中に示すように、自車両Vは、車輪W(右前輪WFR、左前輪WFL、右後輪WRR、左後輪WRL)と、ブレーキ装置2と、流体圧回路4と、ブレーキコントローラ6を備える。これに加え、自車両Vは、エンジン8と、エンジンコントローラ12を備える。
 ブレーキ装置2は、例えば、ホイールシリンダを用いて形成し、各車輪Wにそれぞれ設ける。なお、ブレーキ装置2は、流体圧で制動力を付与する装置に限定するものではなく、電動ブレーキ装置等を用いて形成してもよい。
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
Hereinafter, a first embodiment of the present invention (hereinafter referred to as the present embodiment) will be described with reference to the drawings.
(Constitution)
First, the configuration of a vehicle including the vehicle acceleration suppression device of the present embodiment will be described with reference to FIG.
FIG. 1 is a conceptual diagram showing a configuration of a vehicle including the vehicle acceleration suppression device of the present embodiment.
As shown in FIG. 1, the host vehicle V includes a wheel W (a right front wheel WFR, a left front wheel WFL, a right rear wheel WRR, a left rear wheel WRL), a brake device 2, a fluid pressure circuit 4, and a brake controller 6. Is provided. In addition, the host vehicle V includes an engine 8 and an engine controller 12.
The brake device 2 is formed using, for example, a wheel cylinder and provided on each wheel W. The brake device 2 is not limited to a device that applies a braking force with fluid pressure, and may be formed using an electric brake device or the like.
 流体圧回路4は、各ブレーキ装置2に接続する配管を含む回路である。
 ブレーキコントローラ6は、上位コントローラである走行制御コントローラ10から入力を受けた制動力指令値に基づき、各ブレーキ装置2で発生する制動力を、流体圧回路4を介して、制動力指令値に応じた値に制御する。すなわち、ブレーキコントローラ6は、減速制御装置を形成する。なお、走行制御コントローラ10に関する説明は、後述する。
 したがって、ブレーキ装置2、流体圧回路4及びブレーキコントローラ6は、制動力を発生する制動装置を形成する。
The fluid pressure circuit 4 is a circuit including piping connected to each brake device 2.
The brake controller 6 responds to the braking force command value generated by each brake device 2 via the fluid pressure circuit 4 based on the braking force command value received from the travel controller 10 that is the host controller. To control the value. That is, the brake controller 6 forms a deceleration control device. In addition, the description regarding the traveling control controller 10 is mentioned later.
Therefore, the brake device 2, the fluid pressure circuit 4, and the brake controller 6 form a braking device that generates a braking force.
 エンジン8は、自車両Vの駆動源を形成する。
 エンジンコントローラ12は、走行制御コントローラ10から入力を受けた目標スロットル開度信号(加速指令値)に基づき、エンジン8で発生するトルク(駆動力)を制御する。すなわち、エンジンコントローラ12は、加速制御装置を形成する。なお、目標スロットル開度信号に関する説明は、後述する。
 したがって、エンジン8及びエンジンコントローラ12は、駆動力を発生する駆動装置を形成する。
 なお、自車両Vの駆動源は、エンジン8に限定するものではなく、電動モータを用いて形成してもよい。また、自車両Vの駆動源は、エンジン8と電動モータを組み合わせて形成してもよい。
The engine 8 forms a drive source for the host vehicle V.
The engine controller 12 controls the torque (driving force) generated by the engine 8 based on the target throttle opening signal (acceleration command value) received from the travel controller 10. That is, the engine controller 12 forms an acceleration control device. A description regarding the target throttle opening signal will be given later.
Therefore, the engine 8 and the engine controller 12 form a driving device that generates driving force.
In addition, the drive source of the own vehicle V is not limited to the engine 8, You may form using an electric motor. The driving source of the host vehicle V may be formed by combining the engine 8 and the electric motor.
 次に、図1を参照しつつ、図2を用いて、車両用加速抑制装置1の概略構成を説明する。
 図2は、本実施形態の車両用加速抑制装置1の概略構成を示すブロック図である。
 車両用加速抑制装置1は、図1及び図2中に示すように、周囲環境認識センサ14と、車輪速センサ16と、操舵角センサ18と、シフトポジションセンサ20と、ブレーキ操作検出センサ22と、アクセル操作検出センサ24を備える。これに加え、車両用加速抑制装置1は、ナビゲーション装置26と、走行制御コントローラ10を備える。
 周囲環境認識センサ14は、自車両Vの周囲の画像を撮像し、撮像した各画像に基づき、複数の撮像方向に対応した個別の画像を含む情報信号(以降の説明では、「個別画像信号」と記載する場合がある)を生成する。そして、生成した個別画像信号を、走行制御コントローラ10へ出力する。
Next, a schematic configuration of the vehicle acceleration suppression device 1 will be described with reference to FIG.
FIG. 2 is a block diagram illustrating a schematic configuration of the vehicle acceleration suppression device 1 of the present embodiment.
As shown in FIGS. 1 and 2, the vehicle acceleration suppression device 1 includes an ambient environment recognition sensor 14, a wheel speed sensor 16, a steering angle sensor 18, a shift position sensor 20, and a brake operation detection sensor 22. The accelerator operation detection sensor 24 is provided. In addition, the vehicle acceleration suppression device 1 includes a navigation device 26 and a travel control controller 10.
The ambient environment recognition sensor 14 captures an image around the host vehicle V, and based on each captured image, an information signal including individual images corresponding to a plurality of imaging directions (in the following description, “individual image signal”). May be written). Then, the generated individual image signal is output to the travel controller 10.
 なお、本実施形態では、一例として、周囲環境認識センサ14を、前方カメラ14Fと、右側方カメラ14SRと、左側方カメラ14SLと、後方カメラ14Rを用いて形成した場合を説明する。ここで、前方カメラ14Fは、自車両Vの車両前後方向前方を撮像するカメラであり、右側方カメラ14SRは、自車両Vの右側方を撮像するカメラである。また、左側方カメラ14SLは、自車両Vの左側方を撮像するカメラであり、後方カメラ14Rは、自車両Vの車両前後方向後方を撮像するカメラである。 In this embodiment, as an example, a case where the surrounding environment recognition sensor 14 is formed using the front camera 14F, the right side camera 14SR, the left side camera 14SL, and the rear camera 14R will be described. Here, the front camera 14F is a camera that images the front of the host vehicle V in the vehicle front-rear direction, and the right side camera 14SR is a camera that images the right side of the host vehicle V. The left-side camera 14SL is a camera that images the left side of the host vehicle V, and the rear camera 14R is a camera that images the rear side of the host vehicle V in the vehicle front-rear direction.
 車輪速センサ16は、例えば、車輪速パルスを計測するロータリエンコーダ等のパルス発生器を用いて形成する。
 また、車輪速センサ16は、各車輪Wの回転速度を検出し、この検出した回転速度を含む情報信号(以降の説明では、「車輪速信号」と記載する場合がある)を、走行制御コントローラ10に出力する。
 操舵角センサ18は、例えば、ステアリングホイール28を回転可能に支持するステアリングコラム(図示せず)に設ける。
 また、操舵角センサ18は、操舵操作子であるステアリングホイール28の現在の回転角度(操舵操作量)である現在操舵角を検出する。そして、検出した現在操舵角を含む情報信号(以降の説明では、「現在操舵角信号」と記載する場合がある)を、走行制御コントローラ10に出力する。なお、操向輪の転舵角を含む情報信号を、操舵角を示す情報として検出してもよい。
The wheel speed sensor 16 is formed using, for example, a pulse generator such as a rotary encoder that measures wheel speed pulses.
Further, the wheel speed sensor 16 detects the rotational speed of each wheel W, and an information signal including the detected rotational speed (which may be referred to as “wheel speed signal” in the following description) is used as a travel controller. 10 is output.
For example, the steering angle sensor 18 is provided in a steering column (not shown) that rotatably supports the steering wheel 28.
The steering angle sensor 18 detects a current steering angle that is a current rotation angle (a steering operation amount) of the steering wheel 28 that is a steering operator. Then, an information signal including the detected current steering angle (which may be described as “current steering angle signal” in the following description) is output to the travel controller 10. In addition, you may detect the information signal containing the steering angle of a steered wheel as information which shows a steering angle.
 なお、操舵操作子は、運転者が回転させるステアリングホイール28に限定するものではなく、例えば、運転者が手で傾ける操作を行うレバーとしてもよい。この場合、中立位置からのレバーの傾斜角度を、現在操舵角信号に相当する情報信号として出力する。
 シフトポジションセンサ20は、シフトノブやシフトレバー等、自車両Vのシフト位置(例えば、「P」、「D」、「R」等)を変更する部材の現在位置を検出する。そして、検出した現在位置を含む情報信号(以降の説明では、「シフト位置信号」と記載する場合がある)を、走行制御コントローラ10に出力する。
The steering operator is not limited to the steering wheel 28 that is rotated by the driver, and may be, for example, a lever that is operated by the driver to tilt by hand. In this case, the lever tilt angle from the neutral position is output as an information signal corresponding to the current steering angle signal.
The shift position sensor 20 detects the current position of a member that changes the shift position (for example, “P”, “D”, “R”, etc.) of the host vehicle V, such as a shift knob or a shift lever. Then, an information signal including the detected current position (which may be described as a “shift position signal” in the following description) is output to the travel controller 10.
 ブレーキ操作検出センサ22は、制動力指示操作子であるブレーキペダル30に対し、その開度を検出する。そして、検出したブレーキペダル30の開度を含む情報信号(以降の説明では、「ブレーキ開度信号」と記載する場合がある)を、走行制御コントローラ10に出力する。
 ここで、制動力指示操作子は、自車両Vの運転者が操作可能であり、且つ開度の変化により自車両Vの制動力を指示する構成である。なお、制動力指示操作子は、運転者が足で踏込み操作を行うブレーキペダル30に限定するものではなく、例えば、運転者が手で操作するレバーとしてもよい。
The brake operation detection sensor 22 detects the opening degree of the brake pedal 30 that is a braking force instruction operator. Then, an information signal including the detected opening of the brake pedal 30 (in the following description, may be described as “brake opening signal”) is output to the travel controller 10.
Here, the braking force instruction operator is configured to be operable by the driver of the host vehicle V and to instruct the braking force of the host vehicle V by a change in the opening degree. Note that the braking force instruction operator is not limited to the brake pedal 30 that the driver steps on with his / her foot, and may be, for example, a lever that is manually operated by the driver.
 アクセル操作検出センサ24は、駆動力指示操作子であるアクセルペダル32に対し、その開度を検出する。そして、検出したアクセルペダル32の開度を含む情報信号(以降の説明では、「アクセル開度信号」と記載する場合がある)を、走行制御コントローラ10に出力する。
 ここで、駆動力指示操作子は、自車両Vの運転者が操作可能であり、且つ開度の変化により自車両Vの駆動力を指示する構成である。なお、駆動力指示操作子は、運転者が足で踏込み操作を行うアクセルペダル32に限定するものではなく、例えば、運転者が手で操作するレバーとしてもよい。
The accelerator operation detection sensor 24 detects the opening degree of the accelerator pedal 32 that is a driving force instruction operator. Then, an information signal including the detected opening of the accelerator pedal 32 (in the following description, it may be described as “accelerator opening signal”) is output to the travel controller 10.
Here, the driving force instruction operator is configured to be operable by the driver of the host vehicle V and to instruct the driving force of the host vehicle V by changing the opening. Note that the driving force instruction operator is not limited to the accelerator pedal 32 that the driver steps on with his / her foot.
 ナビゲーション装置26は、GPS(Global Positioning System)受信機、地図データベースと、表示モニタ等を有する情報呈示装置を備え、経路探索及び経路案内等を行う装置である。
 また、ナビゲーション装置26は、GPS受信機を用いて取得した自車両Vの現在位置と、地図データベースに格納された道路情報に基づいて、自車両Vが走行する道路の種別や幅員等の道路情報を取得することが可能である。
 また、ナビゲーション装置26は、GPS受信機を用いて取得した自車両Vの現在位置を含む情報信号(以降の説明では、「自車位置信号」と記載する場合がある)を、走行制御コントローラ10に出力する。これに加え、ナビゲーション装置26は、自車両Vが走行する道路の種別や道路幅員等を含む情報信号(以降の説明では、「走行道路情報信号」と記載する場合がある)を、走行制御コントローラ10に出力する。
The navigation device 26 includes a GPS (Global Positioning System) receiver, a map database, an information presentation device having a display monitor, and the like, and performs route search, route guidance, and the like.
Further, the navigation device 26 is based on the current position of the host vehicle V acquired using the GPS receiver and the road information stored in the map database, such as the type and width of the road on which the host vehicle V is traveling. Is possible to get.
In addition, the navigation device 26 uses an information signal (which may be referred to as “own vehicle position signal” in the following description) including the current position of the own vehicle V acquired using the GPS receiver, as the traveling control controller 10. Output to. In addition to this, the navigation device 26 outputs an information signal including the type of road on which the vehicle V is traveling, the road width, etc. (in the following description, it may be described as “traveling road information signal”) to the travel control controller. 10 is output.
 情報呈示装置は、走行制御コントローラ10からの制御信号に応じて、警報その他の呈示を音声や画像によって出力する。また、情報呈示装置は、例えば、ブザー音や音声により運転者への情報提供を行うスピーカと、画像やテキストの表示により情報提供を行う表示ユニットを備える。また、表示ユニットは、例えば、ナビゲーション装置26の表示モニタを流用してもよい。
 走行制御コントローラ10は、CPU(Central Processing Unit)と、ROM(Read Only Memory)及びRAM(Random Access Memory)等のCPU周辺部品から構成される電子制御ユニットである。
The information presenting device outputs an alarm or other presenting by voice or image in accordance with a control signal from the travel controller 10. In addition, the information presentation apparatus includes, for example, a speaker that provides information to the driver by a buzzer sound or voice, and a display unit that provides information by displaying an image or text. Further, the display unit may divert the display monitor of the navigation device 26, for example.
The travel controller 10 is an electronic control unit that includes CPU peripheral components such as a CPU (Central Processing Unit), ROM (Read Only Memory), and RAM (Random Access Memory).
 また、走行制御コントローラ10は、駐車のための運転支援処理を行う駐車運転支援部を備える。
 走行制御コントローラ10の処理のうち駐車運転支援部は、機能的に、図2中に示すように、周囲環境認識情報演算部10A、自車両車速演算部10B、操舵角演算部10C、操舵角速度演算部10Dの処理を備える。これに加え、駐車運転支援部は、機能的に、シフトポジション演算部10E、ブレーキペダル操作情報演算部10F、アクセル操作量演算部10G、アクセル操作速度演算部10H、加速抑制制御内容演算部10Iの処理を備える。さらに、駐車運転支援部は、機能的に、加速抑制指令値演算部10J、目標スロットル開度演算部10Kの処理を備える。これらの機能は、一または二以上のプログラムで構成される。
The travel controller 10 also includes a parking driving support unit that performs driving support processing for parking.
Among the processes of the travel controller 10, the parking driving support unit functionally includes an ambient environment recognition information calculation unit 10A, a host vehicle vehicle speed calculation unit 10B, a steering angle calculation unit 10C, and a steering angular velocity calculation as shown in FIG. The processing of unit 10D is provided. In addition, the parking driving support unit functionally includes a shift position calculation unit 10E, a brake pedal operation information calculation unit 10F, an accelerator operation amount calculation unit 10G, an accelerator operation speed calculation unit 10H, and an acceleration suppression control content calculation unit 10I. Provide processing. Furthermore, the parking driving support unit functionally includes processing of an acceleration suppression command value calculation unit 10J and a target throttle opening calculation unit 10K. These functions are composed of one or more programs.
 周囲環境認識情報演算部10Aは、周囲環境認識センサ14から入力を受けた個別画像信号に基づき、自車両Vの上方から見た自車両Vの周囲の画像(俯瞰画像)を形成する。そして、形成した俯瞰画像を含む情報信号(以降の説明では、「俯瞰画像信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
 ここで、俯瞰画像は、例えば、各カメラ(前方カメラ14F、右側方カメラ14SR、左側方カメラ14SL、後方カメラ14R)で撮像した画像を合成して形成する。また、俯瞰画像には、例えば、路面上に表示された駐車枠の線(以降の説明では、「駐車枠線」と記載する場合がある)等の道路標示を示す画像を含む。
The surrounding environment recognition information calculation unit 10 </ b> A forms an image (overhead image) around the host vehicle V viewed from above the host vehicle V based on the individual image signal received from the surrounding environment recognition sensor 14. Then, an information signal including the formed bird's-eye view image (may be described as “bird's-eye view image signal” in the following description) is output to the acceleration suppression control content calculation unit 10I.
Here, the bird's-eye view image is formed by, for example, synthesizing images captured by the respective cameras (front camera 14F, right side camera 14SR, left side camera 14SL, and rear camera 14R). The overhead image includes, for example, an image showing a road marking such as a line of a parking frame displayed on the road surface (may be described as “parking frame line” in the following description).
 自車両車速演算部10Bは、車輪速センサ16から入力を受けた車輪速信号に基づき、車輪Wの回転速度から自車両Vの速度(車速)を演算する。そして、演算した速度を含む情報信号(以降の説明では、「車速演算値信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
 操舵角演算部10Cは、操舵角センサ18から入力を受けた現在操舵角信号に基づき、ステアリングホイール28の現在の回転角度から、ステアリングホイール28の中立位置からの操作量(回転角)を演算する。そして、演算した中立位置からの操作量を含む情報信号(以降の説明では、「操舵角信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
The own vehicle vehicle speed calculation unit 10 </ b> B calculates the speed (vehicle speed) of the own vehicle V from the rotation speed of the wheel W based on the wheel speed signal received from the wheel speed sensor 16. Then, an information signal including the calculated speed (in the following description, may be described as “vehicle speed calculation value signal”) is output to the acceleration suppression control content calculation unit 10I.
The steering angle calculation unit 10C calculates the operation amount (rotation angle) from the neutral position of the steering wheel 28 from the current rotation angle of the steering wheel 28 based on the current steering angle signal received from the steering angle sensor 18. . Then, an information signal including the calculated operation amount from the neutral position (in the following description, may be described as “steering angle signal”) is output to the acceleration suppression control content calculation unit 10I.
 操舵角速度演算部10Dは、操舵角センサ18から入力を受けた現在操舵角信号が含む現在操舵角を微分処理することにより、ステアリングホイール28の操舵角速度を演算する。そして、演算した操舵角速度を含む情報信号(以降の説明では、「操舵角速度信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
 シフトポジション演算部10Eは、シフトポジションセンサ20から入力を受けたシフト位置信号に基づき、現在のシフト位置を判定する。そして、演算した現在のシフト位置を含む情報信号(以降の説明では、「現在シフト位置信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
The steering angular velocity calculation unit 10D calculates the steering angular velocity of the steering wheel 28 by differentiating the current steering angle included in the current steering angle signal received from the steering angle sensor 18. Then, an information signal including the calculated steering angular velocity (may be described as “steering angular velocity signal” in the following description) is output to the acceleration suppression control content calculation unit 10I.
The shift position calculation unit 10E determines the current shift position based on the shift position signal received from the shift position sensor 20. Then, an information signal including the calculated current shift position (in the following description, may be described as “current shift position signal”) is output to the acceleration suppression control content calculation unit 10I.
 ブレーキペダル操作情報演算部10Fは、ブレーキ操作検出センサ22から入力を受けたブレーキ開度信号に基づき、踏込み量が「0」である状態を基準とした、ブレーキペダル30の踏込み量を演算する。そして、演算したブレーキペダル30の踏込み量を含む情報信号(以降の説明では、「制動側踏込み量信号」と記載する場合がある)を、加速抑制制御内容演算部10Iへ出力する。
 アクセル操作量演算部10Gは、アクセル操作検出センサ24から入力を受けたアクセル開度信号に基づき、踏込み量が「0」である状態を基準とした、アクセルペダル32の踏込み量を演算する。そして、演算したアクセルペダル32の踏込み量を含む情報信号(以降の説明では、「駆動側踏込み量信号」と記載する場合がある)を、加速抑制制御内容演算部10Iと、加速抑制指令値演算部10Jと、目標スロットル開度演算部10Kへ出力する。
The brake pedal operation information calculation unit 10F calculates the depression amount of the brake pedal 30 based on the state where the depression amount is “0” based on the brake opening signal received from the brake operation detection sensor 22. Then, an information signal including the calculated depression amount of the brake pedal 30 (in the following description, may be described as “braking side depression amount signal”) is output to the acceleration suppression control content calculation unit 10I.
The accelerator operation amount calculation unit 10G calculates the depression amount of the accelerator pedal 32 with reference to the state where the depression amount is “0” based on the accelerator opening signal received from the accelerator operation detection sensor 24. Then, an information signal including the calculated depression amount of the accelerator pedal 32 (which may be described as a “driving-side depression amount signal” in the following description) is calculated as an acceleration suppression control content calculation unit 10I and an acceleration suppression command value calculation. To the unit 10J and the target throttle opening calculation unit 10K.
 アクセル操作速度演算部10Hは、アクセル操作検出センサ24から入力を受けたアクセル開度信号が含むアクセルペダル32の開度を微分処理することにより、アクセルペダル32の操作速度を演算する。そして、演算したアクセルペダル32の操作速度を含む情報信号(以降の説明では、「アクセル操作速度信号」と記載する場合がある)を、加速抑制指令値演算部10Jへ出力する。
 加速抑制制御内容演算部10Iは、上述した各種の情報信号(俯瞰画像信号、車速演算値信号、操舵角信号、操舵角速度信号、現在シフト位置信号、制動側踏込み量信号、駆動側踏込み量信号、自車位置信号、走行道路情報信号)の入力を受ける。そして、入力を受けた各種の情報信号に基づいて、後述する加速抑制作動条件判断結果、加速抑制制御開始タイミング、加速抑制制御量を演算する。さらに、これらの演算したパラメータを含む情報信号を、加速抑制指令値演算部10Jへ出力する。
 なお、加速抑制制御内容演算部10Iの詳細な構成と、加速抑制制御内容演算部10Iで行う処理については、後述する。
The accelerator operation speed calculation unit 10H calculates the operation speed of the accelerator pedal 32 by differentiating the opening of the accelerator pedal 32 included in the accelerator opening signal received from the accelerator operation detection sensor 24. Then, an information signal including the calculated operation speed of the accelerator pedal 32 (in the following description, may be described as “accelerator operation speed signal”) is output to the acceleration suppression command value calculation unit 10J.
The acceleration suppression control content calculation unit 10I includes the above-described various information signals (overhead image signal, vehicle speed calculation value signal, steering angle signal, steering angular velocity signal, current shift position signal, braking side depression amount signal, driving side depression amount signal, Receives input of own vehicle position signal and travel road information signal. And based on the various information signals which received the input, the acceleration suppression operation condition judgment result mentioned later, acceleration suppression control start timing, and acceleration suppression control amount are calculated. Furthermore, an information signal including these calculated parameters is output to the acceleration suppression command value calculation unit 10J.
The detailed configuration of the acceleration suppression control content calculation unit 10I and the processing performed by the acceleration suppression control content calculation unit 10I will be described later.
 加速抑制指令値演算部10Jは、上述した駆動側踏込み量信号及びアクセル操作速度信号の入力と、後述する加速抑制作動条件判断結果信号、加速抑制制御開始タイミング信号及び加速抑制制御量信号の入力を受ける。そして、アクセルペダル32の踏込み量(駆動力操作量)に応じた加速指令値を抑制するための指令値である加速抑制指令値を演算する。さらに、演算した加速抑制指令値を含む情報信号(以降の説明では、「加速抑制指令値信号」と記載する場合がある)を、目標スロットル開度演算部10Kへ出力する。
 また、加速抑制指令値演算部10Jは、入力を受けた加速抑制作動条件判断結果信号の内容に応じて、通常の加速制御で用いる指令値である通常加速指令値を演算する。さらに、演算した通常加速指令値を含む情報信号(以降の説明では、「通常加速指令値信号」と記載する場合がある)を、目標スロットル開度演算部10Kへ出力する。
 なお、加速抑制指令値演算部10Jで行う処理については、後述する。
The acceleration suppression command value calculation unit 10J receives the input of the drive side depression amount signal and the accelerator operation speed signal, and the input of the acceleration suppression operation condition determination result signal, the acceleration suppression control start timing signal, and the acceleration suppression control amount signal described later. receive. And the acceleration suppression command value which is a command value for suppressing the acceleration command value according to the depression amount (driving force operation amount) of the accelerator pedal 32 is calculated. Further, an information signal including the calculated acceleration suppression command value (may be described as an “acceleration suppression command value signal” in the following description) is output to the target throttle opening calculation unit 10K.
Further, the acceleration suppression command value calculation unit 10J calculates a normal acceleration command value, which is a command value used in normal acceleration control, according to the content of the received acceleration suppression operation condition determination result signal. Further, an information signal including the calculated normal acceleration command value (in the following description, it may be described as “normal acceleration command value signal”) is output to the target throttle opening calculation unit 10K.
The processing performed by the acceleration suppression command value calculation unit 10J will be described later.
 目標スロットル開度演算部10Kは、駆動側踏込み量信号と、加速抑制指令値信号または通常加速指令値信号の入力を受ける。そして、アクセルペダル32の踏込み量と、加速抑制指令値または通常加速指令値に基づいて、アクセルペダル32の踏込み量または加速抑制指令値に応じたスロットル開度である目標スロットル開度を演算する。さらに、演算した目標スロットル開度を含む情報信号(以降の説明では、「目標スロットル開度信号」と記載する場合がある)を、エンジンコントローラ12へ出力する。
 また、目標スロットル開度演算部10Kは、加速抑制指令値が後述する加速抑制制御開始タイミング指令値を含む場合、後述する加速抑制制御開始タイミングに基づいて、目標スロットル開度信号をエンジンコントローラ12へ出力する。
 なお、目標スロットル開度演算部10Kで行う処理については、後述する。
The target throttle opening calculation unit 10K receives a drive side depression amount signal and an acceleration suppression command value signal or a normal acceleration command value signal. Based on the depression amount of the accelerator pedal 32 and the acceleration suppression command value or the normal acceleration command value, a target throttle opening that is a throttle opening corresponding to the depression amount of the accelerator pedal 32 or the acceleration suppression command value is calculated. Further, an information signal including the calculated target throttle opening (in the following description, it may be described as “target throttle opening signal”) is output to the engine controller 12.
Further, when the acceleration suppression command value includes an acceleration suppression control start timing command value described later, the target throttle opening calculation unit 10K sends the target throttle opening signal to the engine controller 12 based on the acceleration suppression control start timing described later. Output.
The processing performed by the target throttle opening calculation unit 10K will be described later.
(加速抑制制御内容演算部10Iの構成)
 次に、図1及び図2を参照しつつ、図3及び図4を用いて、加速抑制制御内容演算部10Iの詳細な構成について説明する。
 図3は、加速抑制制御内容演算部10Iの構成を示すブロック図である。
 図3中に示すように、加速抑制制御内容演算部10Iは、加速抑制作動条件判断部34と、駐車枠確信度算出部36と、駐車枠進入確信度算出部38と、総合確信度算出部40を備える。これに加え、加速抑制制御内容演算部10Iは、加速抑制制御開始タイミング演算部42と、加速抑制制御量演算部44を備える。
(Configuration of acceleration suppression control content calculation unit 10I)
Next, the detailed configuration of the acceleration suppression control content calculation unit 10I will be described using FIGS. 3 and 4 with reference to FIGS.
FIG. 3 is a block diagram illustrating a configuration of the acceleration suppression control content calculation unit 10I.
As shown in FIG. 3, the acceleration suppression control content calculation unit 10I includes an acceleration suppression operation condition determination unit 34, a parking frame certainty factor calculation unit 36, a parking frame approach certainty factor calculation unit 38, and an overall certainty factor calculation unit. 40. In addition to this, the acceleration suppression control content calculation unit 10I includes an acceleration suppression control start timing calculation unit 42 and an acceleration suppression control amount calculation unit 44.
 加速抑制作動条件判断部34は、加速抑制制御を作動させる条件が成立するか否かを判断し、その判断結果を含む情報信号(以降の説明では、「加速抑制作動条件判断結果信号」と記載する場合がある)を、加速抑制指令値演算部10Jへ出力する。ここで、加速抑制制御とは、アクセルペダル32の踏込み量に応じて自車両Vを加速させる加速指令値を、抑制する制御である。
 なお、加速抑制作動条件判断部34が加速抑制制御を作動させる条件が成立するか否かを判断する処理については、後述する。
The acceleration suppression operation condition determination unit 34 determines whether or not a condition for operating acceleration suppression control is satisfied, and describes an information signal including the determination result (in the following description, “acceleration suppression operation condition determination result signal”). Is output to the acceleration suppression command value calculation unit 10J. Here, the acceleration suppression control is a control for suppressing an acceleration command value for accelerating the host vehicle V in accordance with the depression amount of the accelerator pedal 32.
The process in which the acceleration suppression operation condition determination unit 34 determines whether the condition for operating the acceleration suppression control is satisfied will be described later.
 駐車枠確信度算出部36は、俯瞰画像が駐車枠の端部の画像を含むことの確信の度合いを示す端部確信度を算出する。また、駐車枠確信度算出部36は、算出した端部確信度に基づいて、自車両Vの進行方向に駐車枠が存在する確信の度合いを示す駐車枠確信度を算出する。そして、算出した駐車枠確信度を含む情報信号(以降の説明では、「駐車枠確信度信号」と記載する場合がある)を、総合確信度算出部40へ出力する。
 ここで、駐車枠確信度算出部36は、俯瞰画像信号、車速演算値信号、現在シフト位置信号、自車位置信号及び走行道路情報信号が含む各種情報を参照して、駐車枠確信度を算出する。
 また、駐車枠確信度算出部36が確信度の算出対象とする駐車枠には、例えば、図4中に示すように、複数のパターンがある。なお、図4は、駐車枠確信度算出部36が駐車枠確信度の算出対象とする駐車枠のパターンを示す図である。
 なお、駐車枠確信度算出部36が駐車枠確信度を算出する処理については、後述する。
The parking frame certainty calculating unit 36 calculates an end certainty factor indicating the degree of certainty that the overhead image includes an image of the end of the parking frame. In addition, the parking frame certainty calculation unit 36 calculates a parking frame certainty factor indicating the degree of certainty that the parking frame exists in the traveling direction of the host vehicle V based on the calculated end certainty factor. Then, an information signal including the calculated parking frame certainty factor (in the following description, may be described as “parking frame certainty signal”) is output to the total certainty factor calculation unit 40.
Here, the parking frame certainty calculation unit 36 calculates the parking frame certainty by referring to various information included in the bird's-eye view image signal, the vehicle speed calculation value signal, the current shift position signal, the own vehicle position signal, and the traveling road information signal. To do.
Moreover, as shown in FIG. 4, for example, there are a plurality of patterns in the parking frame that the parking frame certainty factor calculation unit 36 calculates the certainty factor. In addition, FIG. 4 is a figure which shows the pattern of the parking frame which the parking frame reliability calculation part 36 makes calculation object of parking frame reliability.
In addition, the process which the parking frame reliability calculation part 36 calculates parking frame reliability is mentioned later.
 駐車枠進入確信度算出部38は、自車両Vが駐車枠へ進入する確信の度合いを示す駐車枠進入確信度を算出する。そして、算出した駐車枠進入確信度を含む情報信号(以降の説明では、「駐車枠進入確信度信号」と記載する場合がある)を、総合確信度算出部40へ出力する。
 ここで、駐車枠進入確信度算出部38は、俯瞰画像信号、車速演算値信号、現在シフト位置信号及び操舵角信号が含む各種情報を参照して、駐車枠進入確信度を算出する。
 なお、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する処理については、後述する。
The parking frame approach reliability calculation unit 38 calculates a parking frame approach reliability that indicates the degree of confidence that the host vehicle V enters the parking frame. Then, an information signal including the calculated parking frame approach certainty factor (in the following description, may be described as a “parking frame approach certainty signal”) is output to the total confidence factor calculation unit 40.
Here, the parking frame approach certainty factor calculation unit 38 calculates the parking frame approach certainty factor with reference to various information included in the overhead image signal, the vehicle speed calculation value signal, the current shift position signal, and the steering angle signal.
In addition, the process which the parking frame approach reliability calculation part 38 calculates a parking frame approach reliability is mentioned later.
 総合確信度算出部40は、駐車枠確信度信号及び駐車枠進入確信度信号の入力を受け、駐車枠確信度と駐車枠進入確信度との総合的な確信の度合いを示す総合確信度を算出する。そして、算出した総合確信度を含む情報信号(以降の説明では、「総合確信度信号」と記載する場合がある)を、加速抑制制御開始タイミング演算部42及び加速抑制制御量演算部44へ出力する。
 なお、総合確信度算出部40が総合確信度を算出する処理については、後述する。
 加速抑制制御開始タイミング演算部42は、加速抑制制御を開始するタイミングである加速抑制制御開始タイミングを演算する。そして、演算した加速抑制制御開始タイミングを含む情報信号(以降の説明では、「加速抑制制御開始タイミング信号」と記載する場合がある)を、加速抑制指令値演算部10Jへ出力する。
 ここで、加速抑制制御開始タイミング演算部42は、総合確信度信号、制動側踏込み量信号、車速演算値信号、現在シフト位置信号及び操舵角信号が含む各種情報を参照して、加速抑制制御開始タイミングを演算する。
 なお、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算する処理については、後述する。
The total certainty calculation unit 40 receives the input of the parking frame certainty signal and the parking frame approach certainty signal, and calculates the total certainty indicating the degree of comprehensive confidence between the parking frame certainty and the parking frame approach certainty. To do. Then, an information signal including the calculated total certainty factor (may be described as a “total certainty factor signal” in the following description) is output to the acceleration suppression control start timing calculation unit 42 and the acceleration suppression control amount calculation unit 44. To do.
In addition, the process which the comprehensive reliability calculation part 40 calculates a comprehensive reliability is mentioned later.
The acceleration suppression control start timing calculation unit 42 calculates an acceleration suppression control start timing that is a timing for starting the acceleration suppression control. Then, an information signal including the calculated acceleration suppression control start timing (may be described as “acceleration suppression control start timing signal” in the following description) is output to the acceleration suppression command value calculation unit 10J.
Here, the acceleration suppression control start timing calculation unit 42 refers to various information included in the comprehensive reliability signal, the braking side depression amount signal, the vehicle speed calculation value signal, the current shift position signal, and the steering angle signal, and starts the acceleration suppression control. Calculate timing.
The process in which the acceleration suppression control start timing calculation unit 42 calculates the acceleration suppression control start timing will be described later.
 加速抑制制御量演算部44は、アクセルペダル32の踏込み量に応じた加速指令値を抑制するための制御量である加速抑制制御量を演算する。そして、演算した加速抑制制御量を含む情報信号(以降の説明では、「加速抑制制御量信号」と記載する場合がある)を、加速抑制指令値演算部10Jへ出力する。
 ここで、加速抑制制御量演算部44は、総合確信度信号、制動側踏込み量信号、車速演算値信号、現在シフト位置信号及び操舵角信号が含む各種情報を参照して、加速抑制制御量を演算する。
 なお、加速抑制制御量演算部44が加速抑制制御量を演算する処理については、後述する。
The acceleration suppression control amount calculation unit 44 calculates an acceleration suppression control amount that is a control amount for suppressing the acceleration command value according to the depression amount of the accelerator pedal 32. Then, an information signal including the calculated acceleration suppression control amount (in the following description, may be described as “acceleration suppression control amount signal”) is output to the acceleration suppression command value calculation unit 10J.
Here, the acceleration suppression control amount calculation unit 44 refers to various information included in the comprehensive certainty signal, the braking side depression amount signal, the vehicle speed calculation value signal, the current shift position signal, and the steering angle signal, and determines the acceleration suppression control amount. Calculate.
The process in which the acceleration suppression control amount calculation unit 44 calculates the acceleration suppression control amount will be described later.
(加速抑制制御内容演算部10Iで行う処理)
 次に、図1から図4を参照しつつ、図5から図18を用いて、加速抑制制御内容演算部10Iで行う処理について説明する。
・加速抑制作動条件判断部34が行う処理
 図1から図4を参照しつつ、図5及び図7を用いて、加速抑制作動条件判断部34が加速抑制制御を作動させる条件(以降の説明では、「加速抑制作動条件」と記載する場合がある)が成立するか否かを判断する処理について説明する。
 図5は、加速抑制作動条件判断部34が、加速抑制作動条件が成立するか否かを判断する処理を示すフローチャートである。なお、加速抑制作動条件判断部34は、予め設定したサンプリング時間(例えば、10[msec])毎に、以下に説明する処理を行う。
(Processing performed by the acceleration suppression control content calculation unit 10I)
Next, processing performed by the acceleration suppression control content calculation unit 10I will be described with reference to FIGS. 1 to 4 and FIGS. 5 to 18.
Processing performed by the acceleration suppression operation condition determination unit 34 The conditions for the acceleration suppression operation condition determination unit 34 to operate the acceleration suppression control with reference to FIGS. 1 to 4 and FIGS. The process of determining whether or not “acceleration suppression operation condition” may be established will be described.
FIG. 5 is a flowchart illustrating processing in which the acceleration suppression operation condition determination unit 34 determines whether or not the acceleration suppression operation condition is satisfied. The acceleration suppression operation condition determination unit 34 performs the process described below for each preset sampling time (for example, 10 [msec]).
 図5中に示すように、加速抑制作動条件判断部34が処理を開始(START)すると、まず、ステップS100において、自車両Vの周囲の画像を取得する処理(図中に示す「自車両周囲画像取得処理」)を行う。ステップS100において、自車両Vの周囲の画像を取得する処理を行うと、加速抑制作動条件判断部34が行う処理は、ステップS102へ移行する。なお、自車両Vの周囲の画像は、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号が含む自車両Vの周囲の俯瞰画像を参照して取得する。
 ステップS102では、ステップS100で取得した画像に基づいて、駐車枠の有無を判断する処理(図中に示す「駐車枠有無判断処理」)を行なう。
 ここで、駐車枠の有無を判断する処理は、例えば、自車両Vを基準として予め設定した距離や領域(エリア)内に、駐車枠を特定する白線(駐車枠線)等が存在するか否かを判断して行なう。また、ステップS100で取得した画像中から駐車枠線を認識する処理としては、例えば、エッジ検出等、種々の公知の方式を用いる。
As shown in FIG. 5, when the acceleration suppression operation condition determination unit 34 starts the process (START), first, in step S100, a process for acquiring an image around the host vehicle V (“host vehicle surroundings” shown in the figure). Image acquisition processing ”). If the process which acquires the image around the own vehicle V is performed in step S100, the process which the acceleration suppression operation condition judgment part 34 performs will transfer to step S102. In addition, the surrounding image of the own vehicle V is acquired with reference to an overhead image around the own vehicle V included in the overhead image signal received from the surrounding environment recognition information calculation unit 10A.
In step S102, based on the image acquired in step S100, a process for determining the presence / absence of a parking frame ("parking frame presence / absence determination process" shown in the figure) is performed.
Here, the process for determining the presence or absence of a parking frame is, for example, whether or not there is a white line (parking frame line) or the like that identifies the parking frame within a distance or area (area) set in advance with reference to the host vehicle V. Judge whether or not. Moreover, as a process which recognizes a parking frame line from the image acquired by step S100, various well-known systems, such as edge detection, are used, for example.
 以下、図6を用いて、エッジ検出による駐車枠線の認識方法を説明する。
 図6は、エッジ検出による駐車枠線の認識方法を模式的に説明する模式図である。
 図6(a)中に示すように、駐車枠線Lm,Lnを検出する際には、撮像した画像を示す領域において、横方向への走査を行う。画像の走査の際には、例えば、撮像した画像を二値化処理した白黒画像等を用いる。なお、図6(a)は、撮像した画像を示す図である。
 駐車枠線は、路面に比べて十分に明るい白色等で示されることから、路面に比べて輝度が高くなる。このため、図6(b)中に示すように、路面から駐車枠線に変化する境界部分では、輝度が急激に高くなるプラスエッジが検出される。なお、図6(b)は、左から右方向への走査を行った場合の画像中の画素の輝度変化を示すグラフであり、図6(c)は、図6(a)と同様、撮像した画像を示す図である。また、図6(b)中では、プラスエッジを符合「E」で示し、図6(c)中では、プラスエッジを符合「E」を付した太い実線で示す。
Hereinafter, a parking frame line recognition method by edge detection will be described with reference to FIG.
FIG. 6 is a schematic diagram schematically illustrating a parking frame line recognition method based on edge detection.
As shown in FIG. 6A, when the parking frame lines Lm and Ln are detected, scanning in the horizontal direction is performed in the area indicating the captured image. When scanning an image, for example, a monochrome image obtained by binarizing a captured image is used. FIG. 6A shows a captured image.
Since the parking frame line is displayed in white or the like that is sufficiently brighter than the road surface, the brightness is higher than that of the road surface. For this reason, as shown in FIG.6 (b), the plus edge where a brightness | luminance increases rapidly is detected in the boundary part which changes from a road surface to a parking frame line. FIG. 6B is a graph showing the luminance change of the pixels in the image when scanning from the left to the right. FIG. 6C is the same as FIG. 6A. It is a figure which shows the done image. In FIG. 6B, the plus edge is indicated by a symbol “E + ”, and in FIG. 6C, the plus edge is indicated by a thick solid line with a symbol “E + ”.
 また、駐車枠線から路面に変化する境界部分では、輝度が急激に低くなるマイナスエッジが検出される。なお、図6(b)中では、マイナスエッジを符合「E」で示し、図6(c)中では、マイナスエッジを符合「E」を付した太い点線で示す。
 そして、駐車枠線を認識する処理においては、走査方向に対して、プラスエッジ(E)、マイナスエッジ(E)の順で、隣接する一対のエッジを検出することにより、駐車枠線が存在すると判断する。
 なお、駐車枠の有無を判断する処理としては、駐車枠確信度算出部36が駐車枠確信度を算出する際に行う処理を用いてもよい。
 ステップS102において、駐車枠が有る(図中に示す「Yes」)と判断した場合、加速抑制作動条件判断部34が行う処理は、ステップS104へ移行する。
 一方、ステップS102において、駐車枠が無い(図中に示す「No」)と判断した場合、加速抑制作動条件判断部34が行う処理は、ステップS120へ移行する。
In addition, a negative edge at which the brightness sharply decreases is detected at the boundary portion where the parking frame line changes to the road surface. In FIG. 6B, the minus edge is indicated by a sign “E ”, and in FIG. 6C, the minus edge is indicated by a thick dotted line with a sign “E ”.
In the process of recognizing the parking frame line, the parking frame line is detected by detecting a pair of adjacent edges in the order of plus edge (E + ) and minus edge (E ) in the scanning direction. Judge that it exists.
In addition, as a process which judges the presence or absence of a parking frame, you may use the process performed when the parking frame reliability calculation part 36 calculates parking frame reliability.
If it is determined in step S102 that there is a parking frame ("Yes" shown in the drawing), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S104.
On the other hand, when it is determined in step S102 that there is no parking frame ("No" shown in the figure), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S120.
 ステップS104では、自車両車速演算部10Bから入力を受けた車速演算値信号を参照して、自車両Vの車速を取得する処理(図中に示す「自車両車速情報取得処理」)を行う。ステップS104において、自車両Vの車速を取得する処理を行うと、加速抑制作動条件判断部34が行う処理は、ステップS106へ移行する。
 ステップS106では、ステップS104で取得した車速に基づいて、自車両Vの車速が、予め設定した閾値車速未満である条件が成立しているか否かを判断する処理(図中に示す「自車両車速条件判断処理」)を行う。
 なお、本実施形態では、一例として、閾値車速を15[km/h]とした場合について説明する。また、閾値車速は、15[km/h]に限定するものではなく、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。また、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
 ステップS106において、自車両Vの車速が閾値車速未満である条件が成立している(図中に示す「Yes」)と判断した場合、加速抑制作動条件判断部34が行う処理は、ステップS108へ移行する。
In step S104, a process for acquiring the vehicle speed of the host vehicle V ("own vehicle speed information acquisition process" shown in the figure) is performed with reference to the vehicle speed calculation value signal received from the host vehicle speed calculation unit 10B. If the process which acquires the vehicle speed of the own vehicle V is performed in step S104, the process which the acceleration suppression operation condition judgment part 34 performs will transfer to step S106.
In step S106, based on the vehicle speed acquired in step S104, it is determined whether or not a condition that the vehicle speed of the host vehicle V is less than a preset threshold vehicle speed is satisfied ("own vehicle vehicle speed shown in the figure"). "Condition judgment process").
In the present embodiment, a case where the threshold vehicle speed is set to 15 [km / h] will be described as an example. The threshold vehicle speed is not limited to 15 [km / h], and may be changed according to the specifications of the host vehicle V such as the braking performance of the host vehicle V, for example. Further, for example, the vehicle V may be changed according to the traffic regulations of the area (country etc.) where the vehicle V travels.
When it is determined in step S106 that the condition that the vehicle speed of the host vehicle V is less than the threshold vehicle speed is satisfied ("Yes" shown in the drawing), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S108. Transition.
 一方、ステップS106において、自車両Vの車速が閾値車速未満である条件が成立していない(図中に示す「No」)と判断した場合、加速抑制作動条件判断部34が行う処理は、ステップS120へ移行する。
 ステップS108では、ブレーキペダル操作情報演算部10Fから入力を受けた制動側踏込み量信号を参照して、ブレーキペダル30の踏込み量(操作量)の情報を取得する処理(図中に示す「ブレーキペダル操作量情報取得処理」)を行う。ステップS108において、ブレーキペダル30の踏込み量(操作量)の情報を取得する処理を行うと、加速抑制作動条件判断部34が行う処理は、ステップS110へ移行する。
On the other hand, if it is determined in step S106 that the condition that the vehicle speed of the host vehicle V is less than the threshold vehicle speed is not satisfied ("No" shown in the drawing), the process performed by the acceleration suppression operation condition determination unit 34 is performed in step S106. The process proceeds to S120.
In step S108, referring to the brake-side depression amount signal received from the brake pedal operation information calculation unit 10F, a process of obtaining information on the depression amount (operation amount) of the brake pedal 30 ("brake pedal shown in the drawing" Operation amount information acquisition processing ”) is performed. If the process which acquires the information of the depression amount (operation amount) of the brake pedal 30 is performed in step S108, the process which the acceleration suppression operation condition judgment part 34 performs will transfer to step S110.
 ステップS110では、ステップS108で取得したブレーキペダル30の踏込み量に基づいて、ブレーキペダル30が操作されているか否かを判断する処理(図中に示す「ブレーキペダル操作判断処理」)を行う。
 ステップS110において、ブレーキペダル30が操作されていない(図中に示す「No」)と判断した場合、加速抑制作動条件判断部34が行う処理は、ステップS112へ移行する。
 一方、ステップS110において、ブレーキペダル30が操作されている(図中に示す「Yes」)と判断した場合、加速抑制作動条件判断部34が行う処理は、ステップS120へ移行する。
In step S110, based on the depression amount of the brake pedal 30 acquired in step S108, a process for determining whether or not the brake pedal 30 is operated ("brake pedal operation determination process" shown in the figure) is performed.
If it is determined in step S110 that the brake pedal 30 is not operated ("No" shown in the figure), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S112.
On the other hand, when it is determined in step S110 that the brake pedal 30 is operated (“Yes” shown in the drawing), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S120.
 ステップS112では、アクセル操作量演算部10Gから入力を受けた駆動側踏込み量信号を参照して、アクセルペダル32の踏込み量(操作量)の情報を取得する処理(図中に示す「アクセルペダル操作量情報取得処理」)を行う。ステップS112において、アクセルペダル32の踏込み量(操作量)の情報を取得する処理を行うと、加速抑制作動条件判断部34が行う処理は、ステップS114へ移行する。
 ステップS114では、アクセルペダル32の踏込み量(操作量)が、予め設定した閾値アクセル操作量以上である条件が成立しているか否かを判断する処理(図中に示す「アクセルペダル操作判断処理」)を行う。ここで、ステップS114の処理は、ステップS112で取得したアクセルペダル32の踏込み量に基づいて行う。
 なお、本実施形態では、一例として、閾値アクセル操作量を、アクセルペダル32の開度の3[%]に相当する操作量に設定した場合について説明する。また、閾値アクセル操作量は、アクセルペダル32の開度の3[%]に相当する操作量に限定するものではなく、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。
In step S112, with reference to the drive side depression amount signal received from the accelerator operation amount calculation unit 10G, information on the depression amount (operation amount) of the accelerator pedal 32 is acquired ("accelerator pedal operation shown in the figure"). Quantity information acquisition processing ”). If the process which acquires the information of the depression amount (operation amount) of the accelerator pedal 32 is performed in step S112, the process which the acceleration suppression operation condition judgment part 34 performs will transfer to step S114.
In step S114, a process for determining whether or not a condition that the depression amount (operation amount) of the accelerator pedal 32 is equal to or larger than a preset threshold accelerator operation amount is satisfied ("accelerator pedal operation determination process" shown in the figure). )I do. Here, the process of step S114 is performed based on the depression amount of the accelerator pedal 32 acquired in step S112.
In the present embodiment, as an example, a case will be described in which the threshold accelerator operation amount is set to an operation amount corresponding to 3% of the opening of the accelerator pedal 32. Further, the threshold accelerator operation amount is not limited to the operation amount corresponding to 3% of the opening degree of the accelerator pedal 32. It may be changed.
 ステップS114において、アクセルペダル32の踏込み量(操作量)が閾値アクセル操作量以上である条件が成立している(図中に示す「Yes」)と判断した場合、加速抑制作動条件判断部34が行う処理は、ステップS116へ移行する。
 一方、ステップS114において、アクセルペダル32の踏込み量(操作量)が閾値アクセル操作量以上である条件が成立していない(図中に示す「No」)と判断した場合、加速抑制作動条件判断部34が行う処理は、ステップS120へ移行する。
When it is determined in step S114 that the condition that the depression amount (operation amount) of the accelerator pedal 32 is equal to or greater than the threshold accelerator operation amount is satisfied (“Yes” shown in the drawing), the acceleration suppression operation condition determination unit 34 The process to be performed proceeds to step S116.
On the other hand, if it is determined in step S114 that the condition that the depression amount (operation amount) of the accelerator pedal 32 is equal to or greater than the threshold accelerator operation amount is not satisfied ("No" in the drawing), the acceleration suppression operation condition determination unit The process performed by 34 proceeds to step S120.
 ステップS116では、自車両Vが駐車枠へ進入するか否かを判断するための情報を取得する処理(図中に示す「駐車枠進入判断情報取得処理」)を行う。ここで、本実施形態では、一例として、ステアリングホイール28の操舵角と、自車両Vと駐車枠とのなす角度と、自車両Vと駐車枠との距離に基づいて、自車両Vが駐車枠へ進入するか否かを判断する場合を説明する。ステップS116において、自車両Vが駐車枠へ進入するか否かを判断するための情報を取得する処理を行うと、加速抑制作動条件判断部34が行う処理は、ステップS118へ移行する。 In step S116, a process of acquiring information for determining whether or not the host vehicle V enters the parking frame ("parking frame entry determination information acquisition process" shown in the figure) is performed. Here, in this embodiment, as an example, based on the steering angle of the steering wheel 28, the angle between the host vehicle V and the parking frame, and the distance between the host vehicle V and the parking frame, the host vehicle V A case where it is determined whether or not to enter will be described. If the process for acquiring information for determining whether or not the host vehicle V enters the parking frame is performed in step S116, the process performed by the acceleration suppression operation condition determination unit 34 proceeds to step S118.
 ここで、ステップS116で行う処理の具体例を説明する。
 ステップS116では、操舵角演算部10Cから入力を受けた操舵角信号を参照して、ステアリングホイール28の回転角(操舵角)を取得する。これに加え、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号が含む自車両Vの周囲の俯瞰画像に基づき、自車両Vと駐車枠L0とのなす角度αと、自車両Vと駐車枠L0との距離Dを取得する。
 ここで、角度αは、例えば、図7中に示すように、直線Xと、枠線L1及び駐車枠L0側の線との交角の絶対値とする。なお、図7は、自車両Vと、駐車枠L0と、自車両Vと駐車枠L0との距離Dを説明する図である。
 また、直線Xは、自車両Vの中心を通る自車両Vの前後方向の直線(進行方向に延びる直線)であり、枠線L1は、駐車枠L0に駐車が完了した際に自車両Vの前後方向と平行または略平行になる駐車枠L0部分の枠線である。また、駐車枠L0側の線とは、L1の延長線からなる駐車枠L0側の線である。
Here, a specific example of the process performed in step S116 will be described.
In step S116, the rotation angle (steering angle) of the steering wheel 28 is acquired with reference to the steering angle signal received from the steering angle calculation unit 10C. In addition, based on the bird's-eye view image around the host vehicle V included in the bird's-eye view image signal received from the surrounding environment recognition information calculation unit 10A, the angle α between the host vehicle V and the parking frame L0, the host vehicle V, and The distance D with the parking frame L0 is acquired.
Here, as shown in FIG. 7, for example, the angle α is an absolute value of the intersection angle between the straight line X and the line on the frame line L1 and the parking frame L0 side. In addition, FIG. 7 is a figure explaining the distance D of the own vehicle V, the parking frame L0, and the own vehicle V and the parking frame L0.
The straight line X is a straight line in the front-rear direction of the host vehicle V that passes through the center of the host vehicle V (a straight line extending in the traveling direction). It is a frame line of the parking frame L0 part which becomes parallel or substantially parallel to the front-back direction. The line on the parking frame L0 side is a line on the parking frame L0 side that is an extension of L1.
 また、距離Dは、例えば、図7中に示すように、自車両Vの前端面の中心点PFと駐車枠L0の入り口L2の中心点PPとの距離とする。ただし、距離Dは、自車両Vの前端面が駐車枠L0の入り口L2を通過した後は、負の値とする。なお、距離Dは、自車両Vの前端面が駐車枠L0の入り口L2を通過した後は、ゼロに設定してもよい。
 ここで、距離Dを特定するための自車両V側の位置は、中心点PFに限定するものではなく、例えば、自車両Vに予め設定した位置と、入り口L2の予め設定した位置としてもよい。この場合、距離Dは、自車両Vに予め設定した位置と、入り口L2の予め設定した位置との距離とする。
Further, the distance D is, for example, the distance between the center point PF of the front end face of the host vehicle V and the center point PP of the entrance L2 of the parking frame L0 as shown in FIG. However, the distance D is a negative value after the front end surface of the host vehicle V passes through the entrance L2 of the parking frame L0. The distance D may be set to zero after the front end surface of the host vehicle V passes through the entrance L2 of the parking frame L0.
Here, the position on the own vehicle V side for specifying the distance D is not limited to the center point PF, and may be, for example, a position set in advance in the own vehicle V and a preset position in the entrance L2. . In this case, the distance D is a distance between a position set in advance in the host vehicle V and a position set in advance at the entrance L2.
 以上説明したように、ステップS116では、自車両Vが駐車枠L0へ進入するか否かを判断するための情報として、操舵角、自車両Vと駐車枠L0の角度α、自車両Vと駐車枠L0の距離Dを取得する。
 ステップS118では、ステップS116で取得した情報に基づいて、自車両Vが駐車枠へ進入するか否かを判断する処理(図中に示す「駐車枠進入判断処理」)を行う。
 ステップS118において、自車両Vが駐車枠へ進入しない(図中に示す「No」)と判断した場合、加速抑制作動条件判断部34が行う処理は、ステップS120へ移行する。
 一方、ステップS118において、自車両Vが駐車枠へ進入する(図中に示す「Yes」)と判断した場合、加速抑制作動条件判断部34が行う処理は、ステップS122へ移行する。
As described above, in step S116, as information for determining whether or not the host vehicle V enters the parking frame L0, the steering angle, the angle α between the host vehicle V and the parking frame L0, the host vehicle V and the parking The distance D of the frame L0 is acquired.
In step S118, based on the information acquired in step S116, a process for determining whether or not the host vehicle V enters the parking frame ("parking frame entry determining process" shown in the figure) is performed.
If it is determined in step S118 that the host vehicle V does not enter the parking frame ("No" shown in the figure), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S120.
On the other hand, if it is determined in step S118 that the host vehicle V enters the parking frame (“Yes” shown in the figure), the processing performed by the acceleration suppression operation condition determination unit 34 proceeds to step S122.
 ここで、ステップS118で行う処理の具体例を説明する。
 ステップS118では、例えば、以下に示す三つの条件(A1~A3)を全て満足した場合に、自車両Vが駐車枠へ進入すると判断する。
条件A1.ステップS116で検出した操舵角が予め設定した設定舵角値(例えば、45[deg])以上の値となってから経過した時間が、予め設定した設定時間(例えば、20[sec])以内である。
条件A2.自車両Vと駐車枠L0の角度αが、予め設定した設定角度(例えば、40[deg])以下である。
条件A3.自車両Vと駐車枠L0の距離Dが、予め設定した設定距離(例えば、3[m])以下である。
Here, a specific example of the process performed in step S118 will be described.
In step S118, for example, when all of the following three conditions (A1 to A3) are satisfied, it is determined that the host vehicle V enters the parking frame.
Condition A1. The elapsed time after the steering angle detected in step S116 is equal to or greater than a preset steering angle value (eg, 45 [deg]) is within a preset setup time (eg, 20 [sec]). is there.
Condition A2. The angle α between the host vehicle V and the parking frame L0 is a preset angle (for example, 40 [deg]) or less.
Condition A3. The distance D between the host vehicle V and the parking frame L0 is equal to or less than a preset set distance (for example, 3 [m]).
 なお、自車両Vが駐車枠へ進入するか否かを判断する処理としては、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する際に行う処理を用いてもよい。
 また、自車両Vが駐車枠へ進入するか否かの判断に用いる処理は、上記のように複数の条件を用いた処理に限定するものではなく、上述した三つの条件のうち一つ以上の条件で判断する処理を用いてもよい。また、自車両Vの車速を用いて、自車両Vが駐車枠へ進入するか否かを判断する処理を用いてもよい。
 ステップS120では、加速抑制作動条件判断結果信号を、加速抑制制御作動条件が成立しない判断結果を含む情報信号として生成する処理(図中に示す「加速抑制作動条件非成立」)を行う。ステップS120において、加速抑制制御作動条件が成立しない判断結果を含む加速抑制作動条件判断結果信号を生成する処理を行うと、加速抑制作動条件判断部34が行う処理は、ステップS124へ移行する。
In addition, as a process which judges whether the own vehicle V approachs a parking frame, you may use the process performed when the parking frame approach reliability calculation part 38 calculates a parking frame approach reliability.
In addition, the process used to determine whether or not the host vehicle V enters the parking frame is not limited to the process using a plurality of conditions as described above, but one or more of the three conditions described above. You may use the process judged by conditions. Moreover, you may use the process which judges whether the own vehicle V approachs a parking frame using the vehicle speed of the own vehicle V. FIG.
In step S120, an acceleration suppression operation condition determination result signal is generated as an information signal including a determination result that the acceleration suppression control operation condition is not satisfied ("acceleration suppression operation condition not satisfied" shown in the drawing). If the process which produces | generates the acceleration suppression operation condition judgment result signal containing the judgment result in which acceleration suppression control operation conditions are not satisfied in step S120 is performed, the process which the acceleration suppression operation condition judgment part 34 performs will transfer to step S124.
 ステップS122では、加速抑制作動条件判断結果信号を、加速抑制制御作動条件が成立する判断結果を含む情報信号として生成する処理(図中に示す「加速抑制作動条件成立」)を行う。ステップS122において、加速抑制制御作動条件が成立する判断結果を含む加速抑制作動条件判断結果信号を生成する処理を行うと、加速抑制作動条件判断部34が行う処理は、ステップS124へ移行する。
 ステップS124では、ステップS120またはステップS122で生成した加速抑制作動条件判断結果信号を、加速抑制指令値演算部10Jへ出力する処理(図中に示す「加速抑制作動条件判断結果出力」)を行う。ステップS124において、加速抑制作動条件判断結果信号を加速抑制指令値演算部10Jへ出力する処理を行うと、加速抑制作動条件判断部34が行う処理は、ステップS100の処理へ復帰(RETURN)する。
In step S122, a process of generating an acceleration suppression operation condition determination result signal as an information signal including a determination result that the acceleration suppression control operation condition is satisfied ("acceleration suppression operation condition satisfaction" shown in the figure) is performed. If the process which produces | generates the acceleration suppression operation condition judgment result signal containing the judgment result in which acceleration suppression control operation conditions are satisfied is performed in step S122, the process which the acceleration suppression operation condition judgment part 34 performs will transfer to step S124.
In step S124, processing for outputting the acceleration suppression operation condition determination result signal generated in step S120 or step S122 to the acceleration suppression command value calculation unit 10J ("acceleration suppression operation condition determination result output" shown in the figure) is performed. If the process which outputs an acceleration suppression operation condition judgment result signal to the acceleration suppression command value calculating part 10J is performed in step S124, the process which the acceleration suppression operation condition judgment part 34 performs will return to the process of step S100 (RETURN).
・駐車枠確信度算出部36が行う処理
 図1から図7を参照しつつ、図8から図14を用いて、駐車枠確信度算出部36が駐車枠確信度を算出する処理について説明する。
 図8は、駐車枠確信度算出部36が駐車枠確信度を算出する処理を示すフローチャートである。なお、駐車枠確信度算出部36は、予め設定したサンプリング時間(例えば、10[msec])毎に、以下に説明する処理を行う。
 図8中に示すように、駐車枠確信度算出部36が処理を開始(START)すると、まず、ステップS200において、駐車枠確信度のレベルを最低値(レベル0)として算出(設定)する処理(図中に示す「レベル0」)を行う。ステップS200において、駐車枠確信度をレベル0として算出する処理を行うと、駐車枠確信度算出部36が行う処理は、ステップS202へ移行する。
Process Performed by Parking Frame Confidence Calculation Unit 36 The process by which the parking frame certainty calculation unit 36 calculates the parking frame certainty factor will be described with reference to FIGS. 1 to 7 and FIGS. 8 to 14.
FIG. 8 is a flowchart showing a process in which the parking frame certainty calculation unit 36 calculates the parking frame certainty. In addition, the parking frame reliability calculation part 36 performs the process demonstrated below for every preset sampling time (for example, 10 [msec]).
As shown in FIG. 8, when the parking frame certainty calculation unit 36 starts the process (START), first, in step S200, a process of calculating (setting) the level of the parking frame certainty as the lowest value (level 0). ("Level 0" shown in the figure) is performed. If the process which calculates parking frame reliability as level 0 is performed in step S200, the process which the parking frame reliability calculation part 36 performs will transfer to step S202.
 ステップS202では、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号が含む自車両Vの周囲の俯瞰画像を取得する処理(図中に示す「周囲画像取得」)を行う。ステップS202において、自車両Vの周囲の俯瞰画像を取得する処理を行うと、駐車枠確信度算出部36が行う処理は、ステップS203へ移行する。
 ステップS203では、ステップS202で取得した俯瞰画像から、端部確信度を算出する処理(図中に示す「端部確信度算出」)を行う。端部確信度は、周囲環境認識部が認識した環境に基づく画像が駐車枠の端部の画像を含むことの確信の度合いを示す。すなわち、端部確信度は、周囲環境認識情報演算部10Aが個別画像信号に基づいて形成した俯瞰画像が駐車枠の端部の画像を含むことの確信の度合いを示す。
In step S202, a process of acquiring a bird's-eye view image around the host vehicle V included in the bird's-eye view image signal received from the surrounding environment recognition information calculation unit 10A ("Ambient image acquisition" shown in the figure) is performed. If the process which acquires the bird's-eye view image around the own vehicle V is performed in step S202, the process which the parking frame reliability calculation part 36 performs will transfer to step S203.
In step S203, a process of calculating end reliability ("end reliability calculation" shown in the figure) is performed from the overhead image acquired in step S202. The edge certainty indicates the degree of certainty that the image based on the environment recognized by the surrounding environment recognition unit includes the image of the edge of the parking frame. That is, the edge reliability indicates the degree of certainty that the overhead image formed by the surrounding environment recognition information calculation unit 10A based on the individual image signal includes the image of the edge of the parking frame.
 ステップS203において、駐車枠確信度算出部36は、まず、端部形状検出処理を実行し、次に、端部確信度算出処理を実行し、次のステップS204に移行する。端部形状検出処理は、予め設定された端部形状パターン(詳細は後述)を俯瞰画像から検出する処理である。端部確信度算出処理は、検出された端部形状パターンに応じて端部確信度を算出する処理である。なお、駐車枠確信度算出部36は、端部形状検出処理において、端部形状パターンを検出できない場合には、端部確信度設定部(詳細は後述)に設けられた端部確信度設定フラグ(詳細は後述)をオフ状態に設定し、次のステップS204に移行する。 In step S203, the parking frame certainty calculation unit 36 first executes end shape detection processing, then executes end certainty calculation processing, and proceeds to the next step S204. The edge shape detection process is a process of detecting a preset edge shape pattern (details will be described later) from an overhead image. The edge reliability calculation process is a process of calculating the edge reliability according to the detected edge shape pattern. In addition, the parking frame certainty calculation unit 36, when it is not possible to detect the end shape pattern in the end shape detection process, the end certainty setting flag provided in the end certainty setting unit (details will be described later). (Details will be described later) are set to the OFF state, and the process proceeds to the next step S204.
 まず、ステップS203において実行される端部形状検出処理について図9及び図10を用いて説明する。端部形状検出処理において、駐車枠確信度算出部36は、端部判定パターンマップを参照して、端部判定パターンマップにおいて予め設定した端部形状パターンを俯瞰画像から検出する。ここで、駐車枠確信度算出部36が有する端部判定パターンマップについて図9を用いて説明する。図9は、端部判定パターンマップの一例を示す図である。端部判定パターンマップは、駐車枠の端部の形状に基づいて分類された複数の端部形状パターンを含み、俯瞰画像が当該複数の端部形状パターンのうちの少なくとも1つを含んでいるか否かを判定する際に参照される。また、端部判定パターンマップは、俯瞰画像が当該複数の端部形状パターンを含んでいると判定された場合に、俯瞰画像に含まれる端部形状パターンを抽出する際に参照される。 First, the edge shape detection process executed in step S203 will be described with reference to FIGS. In the edge shape detection process, the parking frame certainty calculation unit 36 refers to the edge determination pattern map and detects an edge shape pattern preset in the edge determination pattern map from the overhead image. Here, the edge part determination pattern map which the parking frame reliability calculation part 36 has is demonstrated using FIG. FIG. 9 is a diagram illustrating an example of the edge determination pattern map. The end portion determination pattern map includes a plurality of end shape patterns classified based on the shape of the end portion of the parking frame, and whether the overhead image includes at least one of the plurality of end shape patterns. It is referred to when determining. The edge determination pattern map is referred to when the edge shape pattern included in the overhead image is extracted when it is determined that the overhead image includes the plurality of edge shape patterns.
 図9に示すように、端部判定パターンマップは、左列の「パターン番号」及び右列の「端部形状」の2つの大項目欄で構成されている。端部判定パターンマップの大項目欄の「端部形状」は、左列の「下側」及び右列の「上側」の2つの中項目欄で構成されている。端部判定パターンマップの中項目の左列の「下側」及び右列の「上側」はそれぞれ、「左」及び「右」の2つの小項目欄で構成されている。以下、「下側」の「左」欄及び「右」欄をそれぞれ、「下側左」欄及び「下側右」欄と称し、「上側」の「左」欄及び「右」欄をそれぞれ、「上側左」欄及び「上側右」欄と称する場合がある。「パターン番号」は、駐車枠の端部となり得る形状に基づいて分類した端部形状パターンの分類番号を示している。本実施形態では、端部形状パターンは6つ(パターン番号は「1」~「6」)に分類されている。「端部形状」は、駐車枠の端部の形状を示している。「下側」及び「上側」は、自車両Vの進行方向における位置を示し、「下側」は「上側」よりも自車両Vに近い位置を示している。「左」は当該進行方向における自車両Vの左側の位置を示し、「右」は当該進行方向における自車両Vの右側の位置を示している。 As shown in FIG. 9, the edge determination pattern map is composed of two large item columns, “pattern number” in the left column and “edge shape” in the right column. The “edge shape” in the large item column of the edge determination pattern map is composed of two middle item columns of “lower” in the left column and “upper” in the right column. The “lower side” in the left column and the “upper side” in the right column of the middle items of the edge determination pattern map are each composed of two small item columns “left” and “right”. Hereinafter, the “lower” “left” column and the “right” column will be referred to as the “lower left” column and the “lower right” column, respectively, and the “upper” “left” column and the “right” column respectively. , Sometimes referred to as “upper left” column and “upper right” column. The “pattern number” indicates the classification number of the end shape pattern classified based on the shape that can be the end of the parking frame. In the present embodiment, the end shape patterns are classified into six (pattern numbers are “1” to “6”). "End part shape" has shown the shape of the edge part of a parking frame. “Lower side” and “upper side” indicate positions in the traveling direction of the host vehicle V, and “lower side” indicates a position closer to the host vehicle V than “upper side”. “Left” indicates the position on the left side of the host vehicle V in the traveling direction, and “Right” indicates the position on the right side of the host vehicle V in the traveling direction.
 端部判定パターンマップにおいて、「端部形状」の「下側左」欄には、自車両Vに近い左側の駐車枠の端部形状と認識し得るパターンが示され、「端部形状」の「下側右」欄には、自車両Vに近い右側の駐車枠の端部形状と認識し得るパターンが示されている。また、端部判定パターンマップにおいて、「端部形状」の「上側左」欄には、自車両Vから遠い左側の駐車枠の端部形状と認識し得るパターンが示され、「端部形状」の「上側右」欄には、自車両Vから遠い右側の駐車枠の端部形状と認識し得るパターンが示されている。以下、駐車枠の端部形状と認識し得るパターンを「端部形状パターン」と称する。 In the edge determination pattern map, the “lower left” column of “edge shape” shows a pattern that can be recognized as the edge shape of the parking frame on the left side close to the host vehicle V. In the “lower right” column, a pattern that can be recognized as the end shape of the right parking frame close to the host vehicle V is shown. In the edge determination pattern map, the “upper left” column of “edge shape” shows a pattern that can be recognized as the edge shape of the left parking frame far from the host vehicle V, and “edge shape”. In the “upper right” column, a pattern that can be recognized as the end shape of the right parking frame far from the host vehicle V is shown. Hereinafter, a pattern that can be recognized as the end shape of the parking frame is referred to as an “end shape pattern”.
 パターン番号「1」に分類された端部形状パターンは、駐車枠の長辺側の枠線の延伸方向に平行な直線形状で止められた形状(以下、「直線停止形状」と称する)を有している。
 パターン番号「2」に分類された端部形状パターンは、駐車枠の長辺側の枠線の端部から駐車枠内及び駐車枠外に延在する直線形状を有している。パターン番号「2」は、「下側左」欄及び「下側右」欄の上下反転したT字形状(以下、「反転T字形状」と称する場合がある)の端部形状パターンと、「上側左」欄及び「上側右」欄のT字形状の端部形状パターンとを含む。
The end shape pattern classified as pattern number “1” has a shape that is stopped by a linear shape parallel to the extending direction of the frame line on the long side of the parking frame (hereinafter referred to as “linear stop shape”). is doing.
The end shape pattern classified into the pattern number “2” has a linear shape extending from the end of the frame line on the long side of the parking frame to the inside and outside of the parking frame. The pattern number “2” includes an end shape pattern of an inverted T shape (hereinafter sometimes referred to as “inverted T shape”) in the “lower left” field and the “lower right” field, T-shaped end shape patterns of “upper left” column and “upper right” column.
 パターン番号「3」に分類された端部形状パターンは、駐車枠の長辺側の枠線の端部から駐車枠内に向かう直線形状と、当該枠線の端部から駐車枠内及び駐車枠外に延在する直線形状とを有している。パターン番号「3」は端部形状の組み合わせに応じて2つに分類されている。第1の組み合わせにおけるパターン番号「3」(図中1行目)は、「下側左」欄のL字形状の端部形状パターンと、「下側右」欄の反転T字形状の端部形状パターンと、「上側左」欄の上下反転した逆L字形状(以下、「反転逆L字形状」と称する場合がある)の端部形状パターンと、「上側右」欄のT字形状の端部形状パターンとを含む。また、第2の組み合わせにおけるパターン番号「3」(図中2行目)は、「下側左」欄の反転T字形状の端部形状パターンと、「下側右」欄の逆L字形状の端部形状パターンと、「上側左」欄のT字形状の端部形状パターンと、「上側右」欄の反転逆L字形状の端部形状パターンとを含む。 The end shape pattern classified as pattern number “3” includes a linear shape that goes from the end of the frame line on the long side of the parking frame into the parking frame, and the inside of the parking frame and the outside of the parking frame from the end of the frame line. And a linear shape extending in a straight line. The pattern number “3” is classified into two according to the combination of the end shapes. The pattern number “3” (first line in the figure) in the first combination is an L-shaped end shape pattern in the “lower left” column and an inverted T-shaped end portion in the “lower right” column. A shape pattern, an end-shaped pattern of the inverted L shape (hereinafter referred to as “inverted inverted L-shape” in some cases) in the “upper left” column, and a T shape in the “upper right” column. End shape pattern. The pattern number “3” (second line in the figure) in the second combination is the inverted T-shaped end shape pattern in the “lower left” column and the inverted L shape in the “lower right” column. , An “upper left” column with a T-shaped end shape pattern, and an “upper right” column with an inverted inverted L-shaped end shape pattern.
 パターン番号「4」に分類された端部形状パターンは、駐車枠の長辺側の枠線の端部から駐車枠内に向かう直線形状を有している。パターン番号「4」は、「下側左」欄のL字形状の端部形状パターンと、「下側右」欄の逆L字形状の端部形状パターンと、「上側左」欄の反転L字形状の端部形状パターンと、「上側右」欄の反転逆L字形状の端部形状パターンとを含む。
 パターン番号「5」に分類された端部形状パターンは、駐車枠の長辺側であって二重線で構成された枠線を結ぶ曲線の凸形状を有している。パターン番号「4」は、「下側左」欄及び「下側右」欄のU字形状の端部形状パターンと、「上側左」欄及び「上側右」欄の上下反転したU字形状(以下、「反転U字形状」と称する場合がある)の端部形状パターンとを含む。
The end shape pattern classified into the pattern number “4” has a linear shape that goes from the end of the frame line on the long side of the parking frame into the parking frame. The pattern number “4” includes an L-shaped end shape pattern in the “lower left” column, an inverted L-shaped end shape pattern in the “lower right” column, and an inverted L in the “upper left” column. And an inverted inverted L-shaped end shape pattern in the “upper right” column.
The end shape pattern classified into the pattern number “5” has a convex shape of a curve that connects the frame lines formed of double lines on the long side of the parking frame. The pattern number “4” includes a U-shaped end shape pattern in the “lower left” field and the “lower right” field, and a vertically inverted U character shape in the “upper left” field and the “upper right” field ( Hereinafter, it may be referred to as an “inverted U-shape”).
 パターン番号「6」に分類された端部形状パターンは、パターン番号「1」及び「5」に分類された端部形状パターンと同様である。パターン番号「6」は端部形状の組み合わせに応じて2つに分類されている。第1の組み合わせにおけるパターン番号「6」(図中1行目)は、「下側左」欄の直線停止形状の端部形状パターンと、「下側右」欄のU字形状の端部形状パターンと、「上側左」欄の直線停止形状の端部形状パターンと、「上側右」欄の反転U字形状の端部形状パターンとを含む。また、第2の組み合わせにおけるパターン番号「6」(図中2行目)は、「下側左」欄のU字形状の端部形状パターンと、「下側右」欄の直線停止形状の端部形状パターンと、「上側左」欄の反転U字形状の端部形状パターンと、「上側右」欄の直線停止形状の端部形状パターンとを含む。 The end shape patterns classified into the pattern number “6” are the same as the end shape patterns classified into the pattern numbers “1” and “5”. The pattern number “6” is classified into two according to the combination of the end shapes. The pattern number “6” (first line in the figure) in the first combination is an end shape pattern of a straight stop shape in the “lower left” column and an end shape of the U shape in the “lower right” column. Pattern, an end shape pattern of a straight stop shape in the “upper left” column, and an inverted U-shaped end shape pattern of the “upper right” column. The pattern number “6” (second line in the figure) in the second combination is the end shape pattern of the U shape in the “lower left” column and the end of the linear stop shape in the “lower right” column. Part shape patterns, an inverted U-shaped end shape pattern in the “upper left” column, and a straight stop shape end shape pattern in the “upper right” column.
 次に、ステップS203における端部形状検出処理を具体的に説明する。図10は、俯瞰画像の一部を模式的に示している。図10では、自車両Vに近い方の駐車枠、すなわち下側の駐車枠を撮像した画像が示されている。図10(a)は、左右の枠線が単線の駐車枠の画像を例示している。図10(b)は、左の枠線が単線であり、右側の枠線が二重線である駐車枠の画像を例示している。以下、左右の枠線のいずれか一方が単線であり他方が二重線であることを「片側二重線」と称する。図10(c)は、左右の枠線が二重線の駐車枠の画像を例示している。以下、左右の枠線が二重線であることを「両側二重線」と称する。また、図10(a)から図10(c)において、第1行目から第6行目にそれぞれ示す画像は、端部判定パターンマップのパターン番号「1」から「6」の端部形状パターンを含む画像例である。なお、第3行目に示す画像は、第1の組み合わせにおけるパターン番号「3」の端部形状パターンを含む画像例である。なお、図10において、パターン番号「1」から「6」の端部形状パターンを含む画像が存在し得ない場合は、空欄になっている。 Next, the edge shape detection process in step S203 will be specifically described. FIG. 10 schematically shows a part of the overhead image. In FIG. 10, the image which imaged the parking frame near the own vehicle V, ie, the lower parking frame, is shown. FIG. 10A illustrates an image of a parking frame in which the left and right frame lines are single lines. FIG. 10B illustrates an image of a parking frame in which the left frame line is a single line and the right frame line is a double line. Hereinafter, a case where one of the left and right frame lines is a single line and the other is a double line is referred to as a “single-side double line”. FIG. 10C illustrates an image of a parking frame in which the left and right frame lines are double lines. Hereinafter, the fact that the left and right frame lines are double lines is referred to as “double-side double lines”. Further, in FIGS. 10A to 10C, the images shown in the first to sixth lines are the end shape patterns of pattern numbers “1” to “6” in the end determination pattern map. It is an example of an image containing. Note that the image shown in the third row is an image example including the end shape pattern of the pattern number “3” in the first combination. In FIG. 10, when there is no image including the end shape patterns of pattern numbers “1” to “6”, this is blank.
 例えば、駐車枠確信度算出部36は、端部形状検出処理において、図10(a)の第1行目に示す俯瞰画像を取得したとする。この場合、駐車枠確信度算出部36は、端部判定パターンマップを参照し、当該俯瞰画像にはパターン番号「1」の「下側左」欄及び「下側右」欄に示す端部形状パターンに一致する画像が含まれていると判定する。次いで、駐車枠確信度算出部36は、当該俯瞰画像からパターン番号「1」に対応する端部形状パターン(「下側左」欄及び「下側右」欄)を抽出する。駐車枠確信度算出部36は、端部形状検出処理において、駐車枠が単線の駐車枠であるのか、片側二重線の駐車枠であるのか、両側二重線の駐車枠であるのかを検出するようになっている。したがって、図10(a)の第1行目に示す俯瞰画像を取得した場合、駐車枠確信度算出部36は、端部形状検出処理において、当該俯瞰画像から、パターン番号「1」に対応し、単線の端部形状パターンを検出する。 For example, it is assumed that the parking frame certainty calculation unit 36 has acquired an overhead image shown in the first row of FIG. In this case, the parking frame certainty calculation unit 36 refers to the end determination pattern map, and the overhead image includes the end shape shown in the “lower left” column and the “lower right” column of the pattern number “1”. It is determined that an image matching the pattern is included. Next, the parking frame certainty calculation unit 36 extracts an end shape pattern (“lower left” field and “lower right” field) corresponding to the pattern number “1” from the overhead image. The parking frame certainty calculation unit 36 detects whether the parking frame is a single-line parking frame, a single-sided double-lined parking frame, or a double-sided double-lined parking frame in the end shape detection process. It is supposed to be. Therefore, when the bird's-eye view image shown in the first row of FIG. 10A is acquired, the parking frame certainty calculation unit 36 corresponds to the pattern number “1” from the bird's-eye view image in the end shape detection process. Detecting the end shape pattern of a single wire.
 同様に、駐車枠確信度算出部36は、端部形状検出処理において、図10(a)の第2行目から第4行目に示す俯瞰画像をそれぞれ取得したとする。この場合、駐車枠確信度算出部36は、端部判定パターンマップを参照し、端部画像判定処理において端部形状パターンに一致する画像が含まれていると判定する。また、駐車枠確信度算出部36は、端部形状検出処理において、当該俯瞰画像から、パターン番号「2」、「3」及び「4」に対応し、単線の端部形状パターンをそれぞれ検出する。 Similarly, it is assumed that the parking frame certainty calculation unit 36 acquires the bird's-eye view images shown in the second to fourth lines in FIG. 10A in the end shape detection process. In this case, the parking frame certainty calculation unit 36 refers to the end determination pattern map and determines that an image matching the end shape pattern is included in the end image determination process. Further, the parking frame certainty calculation unit 36 detects single-line end shape patterns corresponding to the pattern numbers “2”, “3”, and “4” from the overhead image in the end shape detection processing, respectively. .
 また例えば、駐車枠確信度算出部36は、端部形状検出処理において、図10(b)の第1行目に示す俯瞰画像を取得したとする。この場合、駐車枠確信度算出部36は、端部判定パターンマップを参照し、当該俯瞰画像にはパターン番号「1」の「下側」の「左」及び「右」の端部形状パターンに一致する画像が含まれていると判定する。駐車枠確信度算出部36は、隣り合う線の間隔が設定した値よりも短い場合には、当該隣り合う線を二重線として検出するようになっている。駐車枠確信度算出部36は、端部形状検出処理において、俯瞰画像内の右側で隣り合う二本の線の間隔が設定した値よりも短いと判定し、当該俯瞰画像から、パターン番号「1」に対応し、片側二重線の端部形状パターンを検出する。 Further, for example, it is assumed that the parking frame certainty calculation unit 36 has acquired the overhead image shown in the first row of FIG. 10B in the end shape detection process. In this case, the parking frame certainty calculation unit 36 refers to the edge determination pattern map, and in the bird's-eye view image, the “lower” “left” and “right” edge shape patterns of the pattern number “1” are displayed. It is determined that matching images are included. When the interval between adjacent lines is shorter than the set value, the parking frame certainty calculation unit 36 detects the adjacent lines as a double line. In the edge shape detection process, the parking frame certainty calculation unit 36 determines that the interval between two adjacent lines on the right side in the overhead image is shorter than the set value, and from the overhead image, the pattern number “1” is determined. ”And an end shape pattern of the single-sided double line is detected.
 同様に、駐車枠確信度算出部36は、端部形状検出処理において、図10(b)の第2行目から第4行目及び第6行目に示す俯瞰画像をそれぞれ取得したとする。この場合、駐車枠確信度算出部36は、端部判定パターンマップを参照し、端部形状パターンに一致する画像が含まれていると判定する。駐車枠確信度算出部36は、端部形状検出処理において、当該俯瞰画像から、パターン番号「2」から「4」及び「6」に対応し、片側二重線の端部形状パターンを検出する。
 同様に、駐車枠確信度算出部36は、端部形状検出処理において、図10(c)の第1行目から第5行目に示す俯瞰画像をそれぞれ取得したとする。この場合、駐車枠確信度算出部36は、端部判定パターンマップを参照し、端部画像判定処理において端部形状パターンの画像が含まれていると判定する。駐車枠確信度算出部36は、端部形状検出処理において、当該俯瞰画像から、パターン番号「1」から「5」に対応し、両側二重線の端部形状パターンを検出する。
Similarly, it is assumed that the parking frame certainty calculation unit 36 has acquired overhead images shown in the second to fourth and sixth lines in FIG. 10B in the end shape detection process. In this case, the parking frame certainty calculation unit 36 refers to the end determination pattern map and determines that an image that matches the end shape pattern is included. In the end shape detection process, the parking frame certainty calculation unit 36 detects the end shape pattern of the one-side double line corresponding to the pattern numbers “2” to “4” and “6” from the overhead image. .
Similarly, it is assumed that the parking frame certainty calculation unit 36 acquires the bird's-eye view images shown in the first to fifth lines in FIG. 10C in the end shape detection process. In this case, the parking frame certainty calculation unit 36 refers to the end determination pattern map and determines that the end shape pattern image is included in the end image determination process. In the end shape detection process, the parking frame certainty calculation unit 36 detects the end shape patterns of the double-sided double lines corresponding to the pattern numbers “1” to “5” from the overhead image.
 次に、ステップS203において端部形状検出処理の次に実行される端部確信度算出処理について図11を用いて説明する。端部確信度算出処理において、駐車枠確信度算出部36は、端部確信度レベル算出マップを参照して、端部形状検出処理で検出された端部形状パターンに対して端部確信度のレベルを算出する。ここで、駐車枠確信度算出部36が有する端部確信度レベル算出マップについて図11を用いて説明する。端部確信度レベル算出マップは、複数の端部形状パターンと端部確信度のレベルとの対応関係を規定し、端部確信度のレベルを算出する際に参照される。 Next, the edge certainty degree calculation process executed next to the edge shape detection process in step S203 will be described with reference to FIG. In the edge reliability calculation process, the parking frame reliability calculation unit 36 refers to the edge reliability level calculation map and determines the edge reliability for the edge shape pattern detected in the edge shape detection process. Calculate the level. Here, the edge reliability level calculation map which the parking frame reliability calculation part 36 has is demonstrated using FIG. The edge reliability level calculation map defines a correspondence relationship between a plurality of edge shape patterns and the edge reliability levels, and is referred to when calculating the edge reliability levels.
 図11は、端部確信度レベル算出マップの一例を示す図である。図11(a)は、俯瞰画像から単線の端部形状パターンが検出された場合に参照されるマップを示している。図11(b)は、俯瞰画像から片側二重線の端部形状パターンが検出された場合に参照されるマップを示している。図11(c)は、俯瞰画像から両側二重線の端部形状パターンが検出された場合に参照されるマップを示している。 FIG. 11 is a diagram showing an example of an end certainty level calculation map. FIG. 11A shows a map that is referred to when a single-line end shape pattern is detected from an overhead image. FIG. 11B shows a map that is referred to when an end shape pattern of a single-sided double line is detected from an overhead image. FIG.11 (c) has shown the map referred when the edge part shape pattern of a double-sided double line is detected from a bird's-eye view image.
 図11(a)から図11(c)に示すように、端部確信度レベル算出マップは、左列の「パターン番号」及び右列の「端部確信度」の2つの大項目欄で構成されている。端部確信度レベル算出マップの大項目欄の「端部確信度」は左列の「下側」及び右列の「上側」の2つの小項目欄で構成されている。「パターン番号」は、駐車枠の端部の形状に基づいて分類された端部形状パターンの番号を示し、端部判定パターンマップの「パターン番号」に対応している。「端部確信度」は、俯瞰画像から抽出された端部形状パターンに基づく端部確信度を示している。「下側」及び「上側」は、自車両Vの進行方向における位置を示し、「下側」は「上側」よりも自車両Vに近い位置を示している。端部確信度レベル算出マップの「下側」は端部判定パターンマップの「下側」に対応し、端部確信度レベル算出マップの「上側」は端部判定パターンマップの「上側」に対応している。「低」は端部確信度のレベルが最も低いことを表し、「高」は端部確信度のレベルが最も高いことを表し、「中」は端部確信度のレベルが「低」よりも高く「高」よりも低いことを表している。 As shown in FIGS. 11 (a) to 11 (c), the edge reliability level calculation map is composed of two large item columns of “pattern number” in the left column and “edge reliability” in the right column. Has been. The “end certainty” in the large item column of the end certainty level calculation map is composed of two small item columns “lower” in the left column and “upper” in the right column. The “pattern number” indicates the number of the end shape pattern classified based on the shape of the end of the parking frame, and corresponds to the “pattern number” of the end determination pattern map. The “end certainty factor” indicates the end certainty factor based on the end shape pattern extracted from the overhead image. “Lower side” and “upper side” indicate positions in the traveling direction of the host vehicle V, and “lower side” indicates a position closer to the host vehicle V than “upper side”. “Lower” in the edge confidence level calculation map corresponds to “Lower” in the edge determination pattern map, and “Upper” in the edge confidence level calculation map corresponds to “Upper” in the edge determination pattern map is doing. “Low” indicates the lowest edge confidence level, “High” indicates the highest edge confidence level, and “Medium” indicates that the edge confidence level is lower than “Low”. High and lower than “High”.
 図11(a)に示すように、俯瞰画像から単線の端部形状パターンが検出された場合に参照される端部確信度レベル算出マップは、パターン番号「1」と端部確信度のレベルとの対応関係を「下側」及び「上側」のいずれも「低」と規定している。当該端部確信度レベル算出マップは、パターン番号「2」から「4」のそれぞれと端部確信度のレベルとの対応関係をいずれも、「下側」を「中」、「上側」を「低」と規定している。俯瞰画像から単線の端部形状パターンが検出された場合には、パターン番号「5」及び「6」は検出され得ないので、当該端部確信度レベル算出マップは、パターン番号「5」及び「6」と端部確信度のレベルとの対応関係を規定していない。なお、図11(a)から図11(c)において、当該対応関係が規定されていないことは、「-」として表されている。 As shown in FIG. 11A, the end certainty level calculation map that is referred to when a single-line end shape pattern is detected from the overhead view image includes the pattern number “1”, the end certainty level, Is defined as “low” for both “lower” and “upper”. In the end certainty level calculation map, “lower” is “middle” and “upper” is “ “Low”. Since the pattern numbers “5” and “6” cannot be detected when a single-line end shape pattern is detected from the overhead image, the end certainty level calculation map includes the pattern numbers “5” and “5”. 6 ”and the level of end certainty are not defined. In FIGS. 11A to 11C, the fact that the corresponding relationship is not defined is represented as “−”.
 図11(b)に示すように、俯瞰画像から片側二重線の端部形状パターンが検出された場合に参照される端部確信度レベル算出マップは、パターン番号「1」と端部確信度のレベルとの対応関係を「下側」及び「上側」のいずれも「低」と規定している。当該端部確信度レベル算出マップは、パターン番号「3」及び「4」と端部確信度のレベルとのそれぞれの対応関係を「下側」及び「上側」のいずれも「中」と規定している。当該端部確信度レベル算出マップは、パターン番号「6」と端部確信度のレベルとの対応関係を「下側」及び「上側」のいずれも「高」と規定している。当該端部確信度レベル算出マップは、パターン番号「2」及び「5」と端部確信度のレベルとのそれぞれの対応関係を規定していない。 As shown in FIG. 11B, the end certainty level calculation map referred to when the end shape pattern of the single-sided double line is detected from the overhead image is the pattern number “1” and the end certainty factor. The “low” is defined for both “lower” and “upper”. The edge confidence level calculation map defines the correspondence between the pattern numbers “3” and “4” and the edge confidence level as “medium” for both “lower” and “upper”. ing. The edge confidence level calculation map defines the correspondence between the pattern number “6” and the edge confidence level as “high” for both “lower” and “upper”. The edge reliability level calculation map does not define the correspondence between the pattern numbers “2” and “5” and the edge reliability levels.
 図11(c)に示すように、俯瞰画像から両側二重線の端部形状パターンが検出された場合に参照される端部確信度レベル算出マップは、パターン番号「1」、「3」及び「4」と端部確信度のレベルとのそれぞれの対応関係を「下側」及び「上側」のいずれも「低」と規定している。当該端部確信度レベル算出マップは、パターン番号「2」及び「5」と端部確信度のレベルとのそれぞれの対応関係を「下側」及び「上側」のいずれも「高」と規定している。当該端部確信度レベル算出マップは、パターン番号「6」と端部確信度のレベルとの対応関係を規定していない。本実施形態では単線の端部形状パターン、片側二重線の端部形状パターン及び両側二重線の端部形状パターンのそれぞれの検出時に参照される端部確信度レベル算出マップは、端部形状パターンと端部確信度のレベルとの対応関係が互いに異なっている。 As shown in FIG. 11 (c), the edge certainty level calculation map referred to when the edge shape pattern of the double-sided double line is detected from the overhead view image includes pattern numbers “1”, “3” and The correspondence between “4” and the level of edge confidence is defined as “low” for both “lower” and “upper”. The edge confidence level calculation map defines the correspondence between the pattern numbers “2” and “5” and the edge confidence level as “high” for both “lower” and “upper”. ing. The edge reliability level calculation map does not define the correspondence between the pattern number “6” and the edge reliability level. In this embodiment, the end reliability level calculation map referred to when detecting the end shape pattern of a single line, the end shape pattern of a single-sided double line, and the end shape pattern of both-side double lines is an end shape Correspondence between the pattern and the level of edge confidence is different from each other.
 図11(a)から図11(c)に示すように、駐車枠確信度算出部36は、複数(本例では3つ)の端部確信度レベル算出マップを有している。端部確信度レベル算出マップは、俯瞰画像から検出した一の端部形状パターンの端部部分から延びる線の画像の単複(本例では、単線または二重線)に応じて端部形状パターンと端部確信度のレベルとの対応関係を異ならせている。また、端部確信度レベル算出マップは、公道に用いられる線の端部形状と同じ形状の端部形状パターンにはレベルの最も低い端部確信度を対応付けている。一方、端部確信度レベル算出マップは、公道に用いられない線の端部形状と同じ形状の端部形状パターンにはレベルの最も高い端部確信度を対応付けている。 11 (a) to 11 (c), the parking frame certainty calculation unit 36 has a plurality (three in this example) of end certainty level calculation maps. The end certainty level calculation map includes an end shape pattern according to a single image (single line or double line in this example) of a line extending from an end portion of one end shape pattern detected from the overhead image. The correspondence with the level of edge confidence is varied. Further, the end certainty level calculation map associates the end certainty factor having the lowest level with the end shape pattern having the same shape as the end shape of the line used for the public road. On the other hand, the end certainty level calculation map associates the end certainty with the highest level with the end shape pattern having the same shape as the end shape of the line that is not used on the public road.
 また、端部確信度レベル算出マップは、公道に用いられる線の端部と同じ形状の端部形状パターン及び公道に用いられない線と同じ形状の端部形状パターンの両方を検出した場合には、公道に用いられない線の端部形状パターンを優先するように構成されている。公道に用いられる線の端部形状は例えば直線停止形状である。また、公道に用いられない線の端部形状は、U字形状や反転U字形状である。したがって、端部確信度レベル算出マップは、直線停止形状を含む端部形状パターンのパターン番号「1」に端部確信度の「低」を対応付け、U字形状や反転U字形状を含む端部形状パターンのパターン番号「5」及び「6」に端部確信度の「高」を対応付けている。 In addition, the end certainty level calculation map, when detecting both the end shape pattern of the same shape as the end of the line used for the public road and the end shape pattern of the same shape as the line not used for the public road The end shape pattern of the line that is not used on the public road is prioritized. The end shape of the line used for the public road is, for example, a straight stop shape. Moreover, the edge part shape of the line | wire which is not used for a public road is U character shape or reverse U character shape. Therefore, the end certainty level calculation map associates “low” of the end certainty with the pattern number “1” of the end shape pattern including the straight line stop shape, and includes the U shape and the inverted U shape. “High” of the edge reliability is associated with the pattern numbers “5” and “6” of the part shape pattern.
 駐車枠確信度算出部36は、端部形状検出処理において、例えば図10(a)の図中第1行目に示す端部形状パターンを検出したとする。この場合、駐車枠確信度算出部36は、単線であって直線停止形状の端部形状パターンを検出している。このため、駐車枠確信度算出部36は、端部確信度算出処理において、図11(a)に示す端部確信度レベル算出マップを参照し、下側の端部確信度を「低」として算出する。駐車枠確信度算出部36は、例えば端部確信度設定部を有している。端部確信度設定部は、「下側」及び「上側」のそれぞれについて「低」、「中」及び「高」に対応付けた端部確信度設定フラグを有している。端部確信度設定フラグがオン状態になると、オン状態になったフラグに対応付けられた「下側」や「上側」の端部確信度がレベルとともに設定される。例えば、駐車枠確信度算出部36が、図10(a)の図中第1行目に示す端部形状パターンを検出して下側の端部確信度を「低」のレベルとして算出したとする。この場合、駐車枠確信度算出部36は、下側の端部確信度を「低」のレベルに設定するために、「下側」の「低」に対応付けた端部確信度設定フラグをオン状態に設定する。 Suppose that the parking frame certainty calculation unit 36 detects, for example, the end shape pattern shown in the first line in the drawing of FIG. 10A in the end shape detection process. In this case, the parking frame certainty calculation unit 36 detects an end shape pattern that is a single line and has a linear stop shape. Therefore, the parking frame certainty calculation unit 36 refers to the end certainty level calculation map shown in FIG. 11A in the end certainty calculation process, and sets the lower end certainty to “low”. calculate. The parking frame certainty factor calculation unit 36 includes, for example, an end certainty factor setting unit. The end reliability setting unit has end reliability setting flags associated with “low”, “medium”, and “high” for “lower” and “upper”, respectively. When the edge reliability setting flag is turned on, the “lower” and “upper” edge reliability associated with the turned-on flag are set together with the level. For example, the parking frame certainty calculation unit 36 detects the end shape pattern shown in the first row in FIG. 10A and calculates the lower end certainty factor as a “low” level. To do. In this case, the parking frame certainty calculation unit 36 sets the end certainty setting flag associated with “low” to “low” in order to set the lower end certainty to the “low” level. Set to the on state.
 本実施形態では、ステップS203における端部確信度算出処理は、駐車枠確信度算出部36が駐車枠確信度を算出する処理に含まれている。しかしながら、当該端部確信度算出処理は、当該駐車枠確信度を算出する処理とは独立した処理であってもよい。この場合、当該端部確信度算出処理は、当該駐車枠確信度を算出する処理よりも先に実行されるようになっていることが望ましい。そうすると、端部確信度は、当該駐車枠確信度を算出する処理が実行される前に更新される。これにより、駐車枠確信度算出部36は、最新の端部確信度に基づいて駐車枠確信度を算出できる。
 図8に戻って、駐車枠確信度算出部36は、端部確信度算出処理が終了したらステップS204に移行する。
 ステップS204では、ステップS202で取得した俯瞰画像から、駐車枠確信度を設定するために用いる判定要素を抽出する処理(図中に示す「判定要素抽出」)を行う。ステップS204において、俯瞰画像から判定要素を抽出する処理を行うと、駐車枠確信度算出部36が行う処理は、ステップS206へ移行する。
In this embodiment, the edge part reliability calculation process in step S203 is included in the process in which the parking frame reliability calculation part 36 calculates the parking frame reliability. However, the edge reliability calculation process may be a process independent of the process of calculating the parking frame reliability. In this case, it is preferable that the end certainty factor calculation process is executed before the process for calculating the parking frame certainty factor. If it does so, edge part reliability will be updated before the process which calculates the said parking frame reliability is performed. Thereby, the parking frame reliability calculation part 36 can calculate parking frame reliability based on the newest edge part reliability.
Returning to FIG. 8, the parking frame certainty calculation unit 36 proceeds to step S <b> 204 when the end certainty calculation process is completed.
In step S204, a process of extracting a determination element used for setting the parking frame certainty factor ("determination element extraction" shown in the figure) is performed from the overhead image acquired in step S202. If the process which extracts a determination element from a bird's-eye view image is performed in step S204, the process which the parking frame reliability calculation part 36 performs will transfer to step S206.
 ここで、判定要素とは、駐車枠線等、路面上に標示されている線(白線等)であり、その状態が、例えば、以下に示す三つの条件(B1~B3)を全て満足した場合に、その線を、判定要素として抽出する。
条件B1.路面上に標示されている線に破断部分がある場合、その破断部分が、標示されていた線がかすれている部分(例えば、線よりも明瞭度が低く、且つ路面よりも明瞭度が高い部分)である。
条件B2.路面上に標示されている線の幅が、予め設定した設定幅(例えば、10[cm])以上である。なお、設定幅は、10[cm]に限定するものではなく、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
条件B3.路面上に標示されている線の長さが、予め設定した設定標示線長さ(例えば、2.5[m])以上である。なお、設定標示線長さは、2.5[m]に限定するものではなく、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
Here, the determination element is a line (white line, etc.) marked on the road surface such as a parking frame line, and the state satisfies, for example, all of the following three conditions (B1 to B3) Then, the line is extracted as a determination element.
Condition B1. If the marked line on the road surface has a broken part, the broken part is a part where the marked line is faint (for example, a part having a lower clarity than the line and a higher clarity than the road surface). ).
Condition B2. The width of the line marked on the road surface is equal to or larger than a preset setting width (for example, 10 [cm]). Note that the setting width is not limited to 10 [cm], and may be changed according to, for example, traffic regulations of a region (country or the like) in which the host vehicle V is traveling.
Condition B3. The length of the line marked on the road surface is greater than or equal to a preset set line length (for example, 2.5 [m]). Note that the set marking line length is not limited to 2.5 [m], and may be changed according to traffic regulations or the like of the area (country or the like) in which the host vehicle V is traveling.
 ステップS206では、ステップS204で抽出した判定要素が、駐車枠線を形成する線の条件に適合しているか否かを判断する処理(図中に示す「駐車枠条件適合?」)を行う。また、ステップS206では、ステップS203で算出した端部確信度のレベルに応じて、ステップS204で抽出した判定要素が、駐車枠線を形成する線の条件に適合しているか否かを判断する判断条件(後述の4つの条件C1~C4)を補正する。駐車枠確信度算出部36は、端部確信度のレベルが高いほど当該判断条件を緩和する。駐車枠確信度算出部36は、当該判断条件を緩和することにより、駐車枠確信度の算出条件を間接的に緩和するようになっている。駐車枠確信度算出部36は、端部確信度のレベルが高いほど、高いレベルの駐車枠確信度が算出されるように、駐車枠確信度の算出条件を緩和する。駐車枠確信度算出部36は、駐車枠確信度の算出条件を緩和することにより、俯瞰画像内の線状の画像を駐車枠の画像であると判定しやすくなる。 In step S206, a process of determining whether or not the determination element extracted in step S204 conforms to the condition of the line forming the parking frame line (“parking frame condition conformance?” Shown in the figure) is performed. Further, in step S206, a determination is made to determine whether or not the determination element extracted in step S204 conforms to the conditions of the line forming the parking frame line, according to the end certainty level calculated in step S203. The conditions (four conditions C1 to C4 described later) are corrected. The parking frame certainty calculation unit 36 relaxes the determination condition as the end certainty level increases. The parking frame certainty calculation unit 36 indirectly relaxes the calculation condition of the parking frame certainty by relaxing the determination condition. The parking frame certainty calculation unit 36 relaxes the calculation condition of the parking frame certainty so that the higher the end certainty level, the higher the parking frame certainty is calculated. The parking frame certainty calculation unit 36 can easily determine that the linear image in the overhead image is a parking frame image by relaxing the calculation condition of the parking frame certainty.
 ステップS206において、ステップS204で抽出した判定要素が、駐車枠線を形成する線の条件に適合していない(図中に示す「No」)と判断した場合、駐車枠確信度算出部36が行う処理は、ステップS200へ移行する。
 一方、ステップS206において、ステップS204で抽出した判定要素が、駐車枠線を形成する線の条件に適合している(図中に示す「Yes」)と判断した場合、駐車枠確信度算出部36が行う処理は、ステップS208へ移行する。なお、ステップS206で行う処理は、例えば、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号を参照して行う。
In step S206, when it is determined that the determination element extracted in step S204 does not conform to the conditions of the line forming the parking frame line ("No" shown in the drawing), the parking frame certainty calculation unit 36 performs it. The process proceeds to step S200.
On the other hand, when it is determined in step S206 that the determination element extracted in step S204 matches the condition of the line forming the parking frame line ("Yes" shown in the figure), the parking frame certainty calculation unit 36 The process performed by the process proceeds to step S208. In addition, the process performed by step S206 is performed with reference to the overhead image signal received from 10 A of surrounding environment recognition information calculating parts, for example.
 ここで、図12を用いて、ステップS206で行う処理の具体例を説明する。なお、図12は、駐車枠確信度算出部36が行う処理の内容を示す図である。また、図12中には、俯瞰画像のうち前方カメラ14Fで撮像した画像を示す領域を、符号「PE」と示す。
 ステップS206では、まず、ステップS204で抽出した判定要素である路面上に標示されている線から、同一画面上に表示されている隣り合う二本の線を一つの組として特定(以降の説明では、「ペアリング」と記載する場合がある)する。なお、同一画面上に三本以上の線が表示されている場合は、三本以上の線に対し、それぞれ、隣り合う二本の線により、二つ以上の組を特定する。
Here, a specific example of the process performed in step S206 will be described with reference to FIG. In addition, FIG. 12 is a figure which shows the content of the process which the parking frame reliability calculation part 36 performs. In FIG. 12, a region indicating an image captured by the front camera 14 </ b> F in the overhead view image is denoted by reference numeral “PE”.
In step S206, first, two adjacent lines displayed on the same screen are identified as one set from the lines marked on the road surface which is the determination element extracted in step S204 (in the following description). , Sometimes referred to as “pairing”). When three or more lines are displayed on the same screen, two or more pairs are specified by two adjacent lines for the three or more lines.
 次に、ペアリングした二本の線に対し、例えば、以下に示す四つの条件(C1~C4)を全て満足した場合に、ステップS204で抽出した判定要素が、駐車枠線を形成する線の条件に適合していると判断する。
条件C1.図12(a)中に示すように、ペアリングした二本の線(図中では、符合「La」、符合「Lb」で示す)間の幅WLが、予め設定した設定ペアリング幅(例えば、2.5[m])以下である。なお、設定ペアリング幅は、2.5[m]に限定するものではなく、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
Next, for the two lines paired, for example, when all of the following four conditions (C1 to C4) are satisfied, the determination element extracted in step S204 is the line that forms the parking frame line. Judge that the condition is met.
Condition C1. As shown in FIG. 12 (a), the width WL between two paired lines (indicated by the signs “La” and “Lb” in the figure) is a preset pairing width (for example, 2.5 [m]) or less. The set pairing width is not limited to 2.5 [m], and may be changed, for example, according to traffic regulations or the like of the area (country or the like) in which the host vehicle V is traveling.
 駐車枠確信度算出部36は、端部確信度のレベルに応じて当該設定ペアリング幅の設定値を緩和するためのペアリング幅補正値を有している。当該ペアリング幅補正値は、公道の車線幅に応じて設定される。当該ペアリング幅補正値は、算出された端部確信度のレベルに応じて段階的に設定されている。当該ペアリング幅補正値は、「下側」の端部確信度及び「上側」の端部確信度のそれぞれにおいて設定されている。駐車枠確信度算出部36は、「下側」の端部確信度のレベル及び「上側」の端部確信度のレベルの少なくとも一方を算出した場合には、当該設定ペアリング幅の設定値を緩和するようになっている。「下側」及び「上側」のそれぞれにおいて、端部確信度のレベルが「低」に対応するペアリング幅補正値は、補正後の設定ペアリング幅が最も長くならない値(例えば設定ペアリング幅が1%長くなる値)に設定される。「下側」及び「上側」のそれぞれにおいて、端部確信度のレベルが「高」に対応するペアリング幅補正値は、補正後の設定ペアリング幅が最も長くなる値(例えば設定ペアリング幅が2%長くなる値)に設定される。「下側」及び「上側」のそれぞれにおいて、端部確信度のレベルが「中」に対応するペアリング幅補正値は、補正後の設定ペアリング幅が「低」よりも長くなり「高」よりも短くなる値(例えば設定ペアリング幅が1.5%長くなる値)に設定される。 The parking frame certainty calculation unit 36 has a pairing width correction value for relaxing the setting value of the set pairing width according to the level of the end certainty. The pairing width correction value is set according to the lane width of the public road. The pairing width correction value is set stepwise in accordance with the calculated level of edge reliability. The pairing width correction value is set for each of the “lower” end reliability and the “upper” end reliability. When the parking frame certainty calculation unit 36 calculates at least one of the “lower” end certainty level and the “upper” end certainty level, the parking frame certainty calculating unit 36 sets the setting value of the set pairing width. It has come to ease. In each of “lower side” and “upper side”, the pairing width correction value corresponding to the edge confidence level of “low” is a value (for example, the setting pairing width) in which the set pairing width after correction is not the longest. Is set to 1% longer). In each of “lower” and “upper”, the pairing width correction value corresponding to the edge certainty level “high” is a value (for example, the setting pairing width) having the longest set pairing width after correction. Is set to 2% longer). In each of the “lower” and “upper”, the pairing width correction value corresponding to the “end” certainty level “medium” is “high” because the corrected pairing width is longer than “low”. Is set to a value that becomes shorter (for example, a value that makes the set pairing width 1.5% longer).
 また、駐車枠確信度算出部36は、「下側」及び「上側」のそれぞれの端部確信度のレベルを算出した場合には、例えば「下側」及び「上側」の端部確信度のレベルのそれぞれのペアリング幅補正値を加算するようになっていてもよい。駐車枠確信度算出部36は、例えば「下側」及び「上側」のそれぞれの端部確信度のレベルを「低」として算出した場合には、設定ペアリング幅が2%(「下側」の1%と「上側」の1%を加算)長くなる値にペアリング幅補正値を変更してもよい。駐車枠確信度算出部36は、例えば「下側」の端部確信度のレベルを「低」、「上側」の端部確信度のレベルを「中」として算出した場合には、設定ペアリング幅が2.5%(「下側」の1%と「上側」の1.5%を加算)長くなる値にペアリング幅補正値を変更してもよい。このように、駐車枠確信度算出部36は、「下側」及び「上側」のそれぞれの端部確信度のレベルの組み合わせに応じてペアリング幅補正値を変更してもよい。
条件C2.図12(b)中に示すように、線Laと線Lbとのなす角度(平行度合い)が、予め設定した設定角度(例えば、3[°])以内である。なお、設定角度は、3[°]に限定するものではなく、例えば、周囲環境認識センサ14の認識能力等に応じて変更してもよい。
In addition, the parking frame certainty calculation unit 36 calculates, for example, the “lower” and “upper” end reliability values when calculating the “lower” and “upper” end reliability levels. The pairing width correction value for each level may be added. For example, when the parking frame certainty calculation unit 36 calculates the “lower” and “upper” end reliability levels as “low”, the set pairing width is 2% (“lower”). The pairing width correction value may be changed to a longer value. For example, when the parking frame certainty calculation unit 36 calculates the “lower” end certainty level as “low” and the “upper” end certainty level as “medium”, the pairing setting is performed. The pairing width correction value may be changed to a value that increases the width by 2.5% (adding 1% of “lower side” and 1.5% of “upper side”). In this way, the parking frame certainty calculation unit 36 may change the pairing width correction value according to the combination of the “lower” and “upper” end reliability levels.
Condition C2. As shown in FIG. 12B, the angle (degree of parallelism) formed by the line La and the line Lb is within a preset angle (for example, 3 [°]). Note that the set angle is not limited to 3 [°], and may be changed according to, for example, the recognition ability of the surrounding environment recognition sensor 14.
 駐車枠確信度算出部36は、端部確信度のレベルに応じて当該設定角度の設定値を緩和するための角度補正値を有している。当該角度補正値は、算出された端部確信度のレベルに応じて段階的に設定されている。当該角度補正値は、「下側」の端部確信度と「上側」の端部確信度とのそれぞれにおいて設定されている。駐車枠確信度算出部36は、「下側」の端部確信度のレベル及び「上側」の端部確信度のレベルの少なくとも一方を算出した場合には、当該設定角度の設定値を緩和するようになっている。「下側」及び「上側」のそれぞれにおいて、端部確信度のレベルが「低」に対応する角度補正値は、補正後の設定角度が最も大きくならない値(例えば設定角度が5%大きくなる値)に設定される。「下側」及び「上側」のそれぞれにおいて、端部確信度のレベルが「高」に対応する角度補正値は、補正後の設定角度が最も大きくなる値(例えば設定角度が15%大きくなる値)に設定される。「下側」及び「上側」のそれぞれにおいて、端部確信度のレベルが「中」に対応する角度補正値は、補正後の設定角度が「低」よりも大きくなり「高」よりも小さくなる値(例えば設定角度が10%大きくなる値)に設定される。 The parking frame certainty calculation unit 36 has an angle correction value for relaxing the set value of the set angle according to the level of the end certainty. The angle correction value is set stepwise according to the calculated level of edge reliability. The angle correction value is set for each of the “lower” end reliability and the “upper” end reliability. The parking frame certainty calculation unit 36 relaxes the set value of the set angle when calculating at least one of the “lower” end certainty level and the “upper” end certainty level. It is like that. In each of the “lower side” and the “upper side”, the angle correction value corresponding to the end confidence level of “low” is a value at which the set angle after correction does not become the largest (for example, a value at which the set angle is increased by 5%). ). In each of the “lower side” and the “upper side”, the angle correction value corresponding to the “high” end reliability level is the value at which the set angle after correction is the largest (for example, the value at which the set angle is increased by 15%). ). In each of “lower side” and “upper side”, the angle correction value corresponding to the end confidence level of “medium” is smaller than “high” because the set angle after correction is larger than “low”. A value (for example, a value at which the set angle is increased by 10%) is set.
 また、駐車枠確信度算出部36は、「下側」及び「上側」のそれぞれの端部確信度のレベルを設定した場合には、例えば「下側」及び「上側」の端部確信度のレベルのそれぞれの角度補正値を加算するようになっていてもよい。駐車枠確信度算出部36は、例えば「下側」及び「上側」のそれぞれの端部確信度のレベルを「低」として算出した場合には、補正後の設定角度が10%(「下側」の5%と「上側」の5%を加算)大きくなる値に角度補正値を変更してもよい。駐車枠確信度算出部36は、例えば「下側」の端部確信度のレベルを「低」、「上側」の端部確信度のレベルを「中」として算出した場合には、補正後の設定角度が15%(「下側」の5%と「上側」の10%を加算)大きくなる値に角度補正値を変更してもよい。このように、駐車枠確信度算出部36は、「下側」及び「上側」のそれぞれの端部確信度のレベルの組み合わせに応じて角度補正値を変更してもよい。 In addition, the parking frame certainty calculation unit 36, for example, sets the “lower” and “upper” end certainty levels, for example, “lower” and “upper” end certainty levels. The respective angle correction values of the levels may be added. When the parking frame certainty calculation unit 36 calculates, for example, each of the “lower” and “upper” end reliability levels as “low”, the corrected set angle is 10% (“lower” The angle correction value may be changed to a larger value. For example, when the parking frame certainty calculation unit 36 calculates the “lower” end certainty level as “low” and the “upper” end certainty level as “medium”, the parking frame certainty calculating unit 36 performs the correction. The angle correction value may be changed to a value that increases the setting angle by 15% (adding 5% of “lower side” and 10% of “upper side”). In this way, the parking frame certainty calculation unit 36 may change the angle correction value according to the combination of the “lower” and “upper” end reliability levels.
 なお、図12(b)中には、基準線(領域PEの垂直方向に延在する線)を、符合「CLc」を付した点線で示し、線Laの中心軸線を、符合「CLa」を付した破線で示し、線Lbの中心軸線を、符合「CLb」を付した破線で示す。また、基準線CLcに対する中心軸線CLaの傾斜角を符号「θa」で示し、基準線CLcに対する中心軸線CLbの傾斜角を符号「θb」で示す。
 したがって、|θa-θb|≦3[°]の条件式が成立すると、条件C2を満足することとなる。また、例えば、駐車枠確信度算出部36が「下側」の端部確信度のレベルを「低」として算出し、「上側」の端部確信度のレベルを算出していない(設定していない)場合には、|θa-θb|≦3.15[°]の条件式が成立すると、条件C2を満足することとなる。
条件C3.図12(c)中に示すように、線Laの自車両V側の端部(図中では、下方側の端部)と線Lbの自車両V側の端部を結ぶ直線と、自車両Vに近い側の線Lとのなす角度θが、予め設定した設定ずれ角度(例えば、45[°])以上である。なお、設定ずれ角度は、45[°]に限定するものではなく、例えば、周囲環境認識センサ14の認識能力等に応じて変更してもよい。
In FIG. 12B, a reference line (a line extending in the vertical direction of the region PE) is indicated by a dotted line with a reference “CLc”, and a central axis of the line La is indicated by a reference “CLa”. A broken line with a symbol “CLb” is shown as a central axis of the line Lb. Further, the inclination angle of the central axis line CLa with respect to the reference line CLc is indicated by a symbol “θa”, and the inclination angle of the central axis line CLb with respect to the reference line CLc is indicated by a reference symbol “θb”.
Therefore, if the conditional expression of | θa−θb | ≦ 3 [°] is satisfied, the condition C2 is satisfied. Further, for example, the parking frame certainty calculation unit 36 calculates the “lower” end certainty level as “low” and does not calculate the “upper” end certainty level (is set). If the conditional expression of | θa−θb | ≦ 3.15 [°] is satisfied, the condition C2 is satisfied.
Condition C3. As shown in FIG. 12C, a straight line connecting the end of the line La on the own vehicle V side (the lower end in the drawing) and the end of the line Lb on the own vehicle V side, and the own vehicle The angle θ formed with the line L closer to V is equal to or greater than a preset setting deviation angle (for example, 45 [°]). Note that the setting deviation angle is not limited to 45 [°], and may be changed according to, for example, the recognition ability of the surrounding environment recognition sensor 14.
 駐車枠確信度算出部36は、端部確信度のレベルに応じて当該設定ずれ角度の補正値を緩和するためのずれ角度補正値を有している。当該ずれ角度補正値は、算出された端部確信度のレベルに応じて段階的に設定されている。当該ずれ角度補正値は、「下側」の端部確信度と「上側」の端部確信度とのそれぞれにおいて設定されている。駐車枠確信度算出部36は、「下側」の端部確信度のレベル及び「上側」の端部確信度のレベルの少なくとも一方を算出した場合には、当該設定ずれ角度の設定値を緩和するようになっている。「下側」及び「上側」のそれぞれにおいて、端部確信度のレベルが「低」に対応するずれ角度補正値は、補正後の設定ずれ角度が最も大きくなる値(例えば設定角度が5%小さくなる値)に設定される。「下側」及び「上側」のそれぞれにおいて、端部確信度のレベルが「高」に対応するずれ角度補正値は、補正後の設定ずれ角度が最も小さくなる値(例えば設定ずれ角度が15%小さくなる値)に設定される。「下側」及び「上側」のそれぞれにおいて、端部確信度のレベルが「中」に対応するずれ角度補正値は、補正後の設定ずれ角度が「低」よりも小さくなり「高」よりも大きくなる値(例えば設定ずれ角度が10%小さくなる値)に設定される。 The parking frame certainty calculation unit 36 has a deviation angle correction value for relaxing the correction value of the set deviation angle according to the level of the end certainty. The deviation angle correction value is set stepwise according to the calculated level of edge reliability. The deviation angle correction value is set for each of the “lower” end certainty factor and the “upper” end certainty factor. If the parking frame certainty calculation unit 36 calculates at least one of the “lower” end certainty level and the “upper” end certainty level, the parking frame certainty calculating unit 36 relaxes the set value of the setting deviation angle. It is supposed to be. In each of “lower side” and “upper side”, the deviation angle correction value corresponding to the end confidence level of “low” is a value at which the set deviation angle after correction is the largest (for example, the setting angle is 5% smaller). Value). In each of the “lower side” and the “upper side”, the deviation angle correction value corresponding to the level of the edge reliability is “high” is a value with the smallest set deviation angle after the correction (for example, the setting deviation angle is 15%). Set to a smaller value). In each of “Lower” and “Upper”, the deviation angle correction value corresponding to the end confidence level of “Medium” is smaller than “High” because the set deviation angle after correction is smaller than “Low”. It is set to a value that increases (for example, a value that makes the set deviation angle 10% smaller).
 また、駐車枠確信度算出部36は、「下側」及び「上側」のそれぞれの端部確信度のレベルを算出した場合には、例えば「下側」及び「上側」の端部確信度のレベルのそれぞれのずれ角度補正値を加算するようになっていてもよい。駐車枠確信度算出部36は、例えば「下側」及び「上側」のそれぞれの端部確信度のレベルを「低」として算出した場合には、設定ずれ角度が10%(「下側」の5%と「上側」の5%を加算)小さくなる値にずれ角度補正値を変更してもよい。駐車枠確信度算出部36は、例えば「下側」の端部確信度のレベルを「低」、「上側」の端部確信度のレベルを「中」として算出した場合には、設定ずれ角度が15%(「下側」の5%と「上側」の10%を加算)小さくなる値にずれ角度補正値を変更してもよい。このように、駐車枠確信度算出部36は、「下側」及び「上側」のそれぞれの端部確信度のレベルの組み合わせに応じてずれ角度補正値を変更してもよい。
条件C4.図12(d)中に示すように、線Laの幅W0と線Lbの幅W1との差の絶対値(|W0-W1|)が、予め設定した設定線幅(例えば、10[cm])以下である。なお、設定線幅は、10[cm]に限定するものではなく、例えば、周囲環境認識センサ14の認識能力等に応じて変更してもよい。
In addition, the parking frame certainty calculation unit 36 calculates, for example, the “lower” and “upper” end reliability values when calculating the “lower” and “upper” end reliability levels. The shift angle correction values for the respective levels may be added. When the parking frame certainty calculation unit 36 calculates, for example, the level of the end certainty of each of “lower side” and “upper side” as “low”, the setting deviation angle is 10% (“lower side”). The deviation angle correction value may be changed to a smaller value by adding 5% and 5% of “upper side”. For example, when the parking frame certainty calculation unit 36 calculates the “lower” end certainty level as “low” and the “upper” end certainty level as “medium”, the setting deviation angle May be changed to a value that decreases by 15% (adding 5% of “lower” and 10% of “upper”). As described above, the parking frame certainty calculation unit 36 may change the shift angle correction value according to the combination of the “lower” and “upper” end certainty levels.
Condition C4. As shown in FIG. 12D, the absolute value (| W0−W1 |) of the difference between the width W0 of the line La and the width W1 of the line Lb is a preset line width (for example, 10 [cm]). ) The set line width is not limited to 10 [cm], and may be changed according to, for example, the recognition ability of the surrounding environment recognition sensor 14.
 駐車枠確信度算出部36は、端部確信度のレベルに応じて当該設定線幅の設定値を緩和するための線幅補正値を有している。当該線幅補正値は、算出された端部確信度のレベルに応じて段階的に設定されている。当該線幅補正値は、「下側」の端部確信度及び「上側」の端部確信度のそれぞれにおいて設定されている。駐車枠確信度算出部36は、「下側」の端部確信度のレベル及び「上側」の端部確信度のレベルの少なくとも一方を算出した場合には、当該設定線幅を緩和するようになっている。「下側」及び「上側」のそれぞれにおいて、端部確信度のレベルが「低」に対応する線幅補正値は、補正後の設定線幅が最も長くならない値(例えば設定線幅が5%長くなる値)に設定される。「下側」及び「上側」のそれぞれにおいて、端部確信度のレベルが「高」に対応する線幅補正値は、補正後の設定線幅が最も長くなる値(例えば設定線幅が15%長くなる値)に設定される。「下側」及び「上側」のそれぞれにおいて、端部確信度のレベルが「中」に対応する線幅補正値は、補正後の設定線幅が「低」よりも長くなり「高」よりも短くなる値(例えば設定線幅が10%長くなる値)に設定される。 The parking frame certainty calculation unit 36 has a line width correction value for relaxing the set value of the set line width according to the end certainty level. The line width correction value is set stepwise in accordance with the calculated level of edge reliability. The line width correction value is set for each of the “lower” end certainty factor and the “upper” end certainty factor. When the parking frame certainty calculation unit 36 calculates at least one of the “lower” end certainty level and the “upper” end certainty level, the parking line certainty calculating unit 36 relaxes the set line width. It has become. In each of the “lower side” and the “upper side”, the line width correction value corresponding to the end confidence level of “low” is a value at which the set line width after the correction does not become the longest (for example, the set line width is 5%) Set to a longer value). In each of “lower side” and “upper side”, the line width correction value corresponding to the edge certainty level “high” is a value that makes the set line width after correction the longest (for example, the set line width is 15%) Set to a longer value). In each of “Lower” and “Upper”, the line width correction value corresponding to the end confidence level of “Medium” is longer than “Low” because the set line width after correction is longer than “Low”. A value to be shortened (for example, a value to increase the set line width by 10%) is set.
 また、駐車枠確信度算出部36は、「下側」及び「上側」のそれぞれの端部確信度のレベルを算出した場合には、例えば「下側」及び「上側」の端部確信度のレベルのそれぞれの線幅補正値を加算するようになっていてもよい。駐車枠確信度算出部36は、例えば「下側」及び「上側」のそれぞれの端部確信度のレベルを「低」として算出した場合には、設定線幅が10%(「下側」の5%と「上側」の5%を加算)長くなる値に線幅補正値を変更してもよい。駐車枠確信度算出部36は、例えば「下側」の端部確信度のレベルを「低」、「上側」の端部確信度のレベルを「中」として算出した場合には、設定線幅が15%(「下側」の5%と「上側」の10%を加算)長くなる値に線幅補正値を変更してもよい。このように、駐車枠確信度算出部36は、「下側」及び「上側」のそれぞれの端部確信度のレベルの組み合わせに応じて線幅補正値を変更してもよい。 In addition, the parking frame certainty calculation unit 36 calculates, for example, the “lower” and “upper” end reliability values when calculating the “lower” and “upper” end reliability levels. Each line width correction value of the level may be added. For example, when the parking frame certainty calculation unit 36 calculates the level of the end certainty of each of “lower” and “upper” as “low”, the set line width is 10% (“lower” The line width correction value may be changed to a longer value by adding 5% and 5% of “upper side”. For example, when the parking frame certainty calculation unit 36 calculates the “lower” end certainty level as “low” and the “upper” end certainty level as “medium”, the setting line width The line width correction value may be changed to a value that increases by 15% (adding 5% of “lower side” and 10% of “upper side”). As described above, the parking frame certainty calculation unit 36 may change the line width correction value according to the combination of the “lower” and “upper” end certainty levels.
 このように、本実施形態では、駐車枠確信度算出部36は、ステップS203において端部確信度を設定すると、条件C1から条件C4において予め設定されている設定値をそれぞれ補正して、条件C1から条件C4を緩和するようになっている。これにより、駐車枠確信度算出部36は、ステップS204で抽出した判定要素を、駐車枠線を形成する線と判断しやすくなる。
 なお、上述した四つの条件(C1~C4)を満足するか否かを判定する処理では、線La,Lbのうち少なくとも一方の長さが、例えば、2[m]程度で途切れている場合、さらに、2[m]程度の仮想線を延長した4[m]程度の線として、処理を継続する。また、駐車枠確信度算出部36は、算出した端部確信度のレベルに応じて、当該仮想線を延長する長さを長くしてもよい。
Thus, in this embodiment, if the parking frame reliability calculation part 36 sets edge part reliability in step S203, each setting value preset in conditions C1 to C4 will be each corrected, and condition C1 From this, the condition C4 is relaxed. Thereby, the parking frame certainty calculation part 36 becomes easy to judge the determination element extracted by step S204 as the line which forms a parking frame line.
In the process of determining whether or not the four conditions (C1 to C4) described above are satisfied, when the length of at least one of the lines La and Lb is interrupted at about 2 [m], for example, Further, the processing is continued as a line of about 4 [m] obtained by extending a virtual line of about 2 [m]. Moreover, the parking frame reliability calculation part 36 may lengthen the length which extends the said virtual line according to the level of the calculated edge part reliability.
 ステップS208では、ステップS206の処理を開始してから自車両Vの移動距離が予め設定した設定移動距離となるまでに、ステップS206の処理が連続して照合するか否かを判断する処理(図中に示す「連続照合適合?」)を行う。なお、設定移動距離は、自車両Vの諸元に応じて、例えば、1~2.5[m]の範囲内に設定する。また、ステップS208で行う処理は、例えば、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号と、自車両車速演算部10Bから入力を受けた車速演算値信号を参照して行う。 In step S208, a process for determining whether or not the process in step S206 is continuously verified from the start of the process in step S206 until the moving distance of the host vehicle V reaches the preset moving distance (see FIG. "Continuous verification matching?") Shown in the inside. The set moving distance is set in the range of 1 to 2.5 [m], for example, according to the specifications of the host vehicle V. Moreover, the process performed by step S208 is performed with reference to the overhead image signal received from 10 A of surrounding environment recognition information calculating parts, and the vehicle speed calculation value signal received from the own vehicle vehicle speed calculating part 10B, for example.
 駐車枠確信度算出部36は、端部確信度のレベルに応じて当該設定移動距離の設定値を緩和するための移動距離補正値を有している。当該移動距離補正値は、算出された端部確信度のレベルに応じて段階的に設定されている。当該移動距離補正値は、「下側」の端部確信度及び「上側」の端部確信度のそれぞれにおいて設定されている。駐車枠確信度算出部36は、「下側」の端部確信度のレベル及び「上側」の端部確信度のレベルの少なくとも一方を算出した場合には、当該設定移動距離を緩和するようになっている。「下側」及び「上側」のそれぞれにおいて、端部確信度のレベルが「低」に対応する移動距離補正値は、補正後の設定移動距離が最も長くならない値(例えば設定移動距離が5%長くなる値)に設定される。「下側」及び「上側」のそれぞれにおいて、端部確信度のレベルが「高」に対応する移動距離補正値は、補正後の設定移動距離が最も長くなる値(例えば設定移動距離が15%長くなる値)に設定される。「下側」及び「上側」のそれぞれにおいて、端部確信度のレベルが「中」に対応する移動距離補正値は、補正後の設定移動距離が「低」よりも長くなり「高」よりも短くなる値(例えば設定移動距離が10%長くなる値)に設定される。 The parking frame certainty calculation unit 36 has a movement distance correction value for relaxing the set value of the set movement distance according to the level of the end certainty. The movement distance correction value is set stepwise according to the calculated level of edge reliability. The movement distance correction value is set in each of the “lower” end reliability and the “upper” end reliability. When the parking frame certainty calculating unit 36 calculates at least one of the “lower” end certainty level and the “upper” end certainty level, the parking frame certainty calculating unit 36 relaxes the set moving distance. It has become. In each of “lower side” and “upper side”, the movement distance correction value corresponding to the edge reliability level of “low” is a value at which the set movement distance after correction does not become the longest (for example, the setting movement distance is 5%). Set to a longer value). In each of the “lower side” and the “upper side”, the movement distance correction value corresponding to the edge certainty level “high” is a value with the longest set movement distance after correction (for example, the set movement distance is 15% Set to a longer value). In each of “Lower” and “Upper”, the movement distance correction value corresponding to the edge confidence level of “Medium” is longer than “Low” because the set movement distance after correction is longer than “Low”. It is set to a value that becomes shorter (for example, a value that makes the set moving distance 10% longer).
 また、駐車枠確信度算出部36は、「下側」及び「上側」のそれぞれの端部確信度のレベルを算出した場合には、例えば「下側」及び「上側」の端部確信度のレベルのそれぞれの移動距離補正値を加算するようになっていてもよい。駐車枠確信度算出部36は、例えば「下側」及び「上側」のそれぞれの端部確信度のレベルを「低」として算出した場合には、設定移動距離が10%(「下側」の5%と「上側」の5%を加算)長くなる値に移動距離補正値を変更してもよい。駐車枠確信度算出部36は、例えば「下側」の端部確信度のレベルを「低」、「上側」の端部確信度のレベルを「中」として算出した場合には、設定移動距離が15%(「下側」の5%と「上側」の10%を加算)長くなる値に移動距離補正値を変更してもよい。このように、駐車枠確信度算出部36は、「下側」及び「上側」のそれぞれの端部確信度のレベルの組み合わせに応じて移動距離補正値を変更してもよい。 In addition, the parking frame certainty calculation unit 36 calculates, for example, the “lower” and “upper” end reliability values when calculating the “lower” and “upper” end reliability levels. The moving distance correction value for each level may be added. For example, if the parking frame certainty calculation unit 36 calculates the level of the end certainty of each of “lower” and “upper” as “low”, the set moving distance is 10% (“lower” 5% and 5% of “upper side” are added) The movement distance correction value may be changed to a longer value. For example, when the parking frame certainty calculation unit 36 calculates the “lower” end certainty level as “low” and the “upper” end certainty level as “medium”, the set moving distance May be changed to a value that increases by 15% (adding 5% of “lower side” and 10% of “upper side”). Thus, the parking frame certainty calculation unit 36 may change the movement distance correction value in accordance with the combination of the “lower” and “upper” end reliability levels.
 ステップS208において、ステップS206の処理が連続して照合していない(図中に示す「No」)と判断した場合、駐車枠確信度算出部36が行う処理は、ステップS210へ移行する。
 一方、ステップS208において、ステップS206の処理が連続して照合している(図中に示す「Yes」)と判断した場合、駐車枠確信度算出部36が行う処理は、ステップS212へ移行する。
 ここで、ステップS208で行う処理では、例えば、図13中に示すように、ステップS206の処理が照合された状態と、ステップS206の処理が照合されない状態に応じて、自車両Vの移動距離を仮想的に演算する。なお、図13は、駐車枠確信度算出部36が行う処理の内容を示す図である。また、図13中には、「照合状態」と記載した領域において、ステップS206の処理が照合された状態を「ON」と示し、ステップS206の処理が照合されない状態を「OFF」と示す。また、図13中には、仮想的に演算した自車両Vの移動距離を、「仮想走行距離」と示す。
If it is determined in step S208 that the processing in step S206 is not continuously collated (“No” shown in the figure), the processing performed by the parking frame certainty calculation unit 36 proceeds to step S210.
On the other hand, if it is determined in step S208 that the processing in step S206 is continuously collated (“Yes” shown in the figure), the processing performed by the parking frame certainty calculation unit 36 proceeds to step S212.
Here, in the process performed in step S208, for example, as shown in FIG. 13, the movement distance of the host vehicle V is determined according to the state in which the process in step S206 is collated and the state in which the process in step S206 is not collated. Operate virtually. In addition, FIG. 13 is a figure which shows the content of the process which the parking frame reliability calculation part 36 performs. In FIG. 13, in the area described as “collation state”, the state in which the process in step S206 is collated is indicated as “ON”, and the state in which the process in step S206 is not collated is indicated as “OFF”. Further, in FIG. 13, the travel distance of the own vehicle V calculated virtually is indicated as “virtual travel distance”.
 図13中に示すように、ステップS206の処理が照合された状態が「ON」であると、仮想走行距離が増加する。一方、ステップS206の処理が照合された状態が「OFF」であると、仮想走行距離が減少する。
 なお、本実施形態では、一例として、仮想走行距離が増加する際の傾き(増加ゲイン)を、仮想走行距離が減少する際の傾き(減少ゲイン)よりも大きく設定した場合について説明する。すなわち、「照合状態」が「ON」である状態と「OFF」である状態が同時間であれば、仮想走行距離は増加することとなる。
As illustrated in FIG. 13, the virtual travel distance increases when the state in which the process of step S <b> 206 is collated is “ON”. On the other hand, if the state checked in step S206 is “OFF”, the virtual travel distance decreases.
In this embodiment, as an example, a case will be described in which the slope (increase gain) when the virtual travel distance increases is set larger than the slope (decrease gain) when the virtual travel distance decreases. That is, if the “verification state” is “ON” and the “OFF” state is the same time, the virtual travel distance increases.
 そして、仮想走行距離が初期値(図中では、「0[m]」と示す)に戻ることなく、設定移動距離に達すると、ステップS206の処理が連続して照合していると判断する。駐車枠確信度算出部36は、ステップS203において端部確信度を算出すると、設定移動距離が短くなるように補正する。このため、仮想走行距離が初期値に戻ることなく設定移動距離に達成しやすくなる。これにより、駐車枠確信度算出部36は、ステップS203において端部確信度を算出すると、ステップS206の処理が連続して照合していると判断しやすくなる。したがって、駐車枠確信度算出部36は、端部確信度を算出していると、連続照合適合の条件を満たしていると判定しやすくなるので(図中に示す「Yes」)、駐車枠確信度をより高いレベル(詳細は後述)として算出しやすくなる。 Then, when the virtual travel distance reaches the set travel distance without returning to the initial value (shown as “0 [m]” in the figure), it is determined that the processing in step S206 is continuously verified. The parking frame certainty calculation unit 36, when calculating the end certainty in step S203, corrects the set moving distance to be short. For this reason, it becomes easy to achieve the set travel distance without the virtual travel distance returning to the initial value. Thereby, if the parking frame reliability calculation part 36 calculates edge part reliability in step S203, it will become easy to judge that the process of step S206 is collating continuously. Therefore, since the parking frame certainty calculation unit 36 is calculating the end certainty, it is easy to determine that the condition for continuous matching is satisfied (“Yes” shown in the figure), so the parking frame certainty is calculated. It becomes easy to calculate the degree as a higher level (details will be described later).
 ステップS210では、駐車枠確信度のレベルを最低値(レベル0)よりも一段階上のレベル(レベル1)として算出する処理(図中に示す「レベル1」)を行う。ステップS210において、駐車枠確信度をレベル1として算出する処理を行うと、駐車枠確信度算出部36は、後述するステップS212~S220を実行せずに駐車枠確信度の設定処理を終了(END)する。
 ステップS212では、ステップS206の処理が連続して照合している線La,Lbに対し、それぞれ、自車両Vを基準として同じ側に位置する端部(近い側の端部、または、遠い側の端部)を検出する。そして、同じ側に位置する端部同士が、幅WLの方向に沿って対向しているか否かを判断する処理(図中に示す「遠近端部対向適合?」)を行う。なお、ステップS212で行う処理は、例えば、周囲環境認識情報演算部10Aから入力を受けた俯瞰画像信号と、自車両車速演算部10Bから入力を受けた車速演算値信号を参照して行う。
In step S210, processing ("level 1" shown in the figure) is performed to calculate the level of parking frame certainty as a level (level 1) that is one step higher than the lowest value (level 0). When the process for calculating the parking frame certainty level as level 1 is performed in step S210, the parking frame certainty calculating unit 36 ends the setting process of the parking frame certainty level without executing steps S212 to S220 described later (END). )
In step S212, with respect to the lines La and Lb for which the process of step S206 is continuously collated, the end portion located on the same side with respect to the own vehicle V (the near end portion or the far end portion). Edge). Then, a process of determining whether or not the ends located on the same side face each other along the direction of the width WL (“approaching near and far end?” Shown in the figure) is performed. The process performed in step S212 is performed with reference to, for example, an overhead image signal received from the surrounding environment recognition information calculation unit 10A and a vehicle speed calculation value signal received from the host vehicle vehicle speed calculation unit 10B.
 また、ステップS212において、駐車枠確信度算出部36は、ステップS203で端部を俯瞰画像から検出している場合には、自車両Vを基準として同じ側に位置する端部としてステップS203で検出した端部を用いるようになっている。駐車枠確信度算出部36は、ステップS203で検出した端部を用いる場合には、検出した端部同士が幅WLの方向に沿って対向しているか否かを判断する条件を緩和する。例えば、駐車枠確信度算出部36は、ステップS203で検出した端部同士が幅WLの方向に沿わずにずれて対向していても、ずれ量が設定した値以内であれば、幅WLの方向に沿って対向していると判断するようになっている。
 ステップS212において、同じ側に位置する端部同士が、幅WLの方向に沿って対向していない(図中に示す「No」)と判断した場合、駐車枠確信度算出部36が行う処理は、ステップS214へ移行する。
 一方、ステップS212において、同じ側に位置する端部同士が、幅WLの方向に沿って対向している(図中に示す「Yes」)と判断した場合、駐車枠確信度算出部36が行う処理は、ステップS216へ移行する。
In step S212, the parking frame certainty calculation unit 36 detects in step S203 as an end located on the same side with respect to the own vehicle V when the end is detected from the overhead image in step S203. The end portion is used. When using the end portions detected in step S203, the parking frame certainty calculation unit 36 relaxes the condition for determining whether or not the detected end portions face each other along the direction of the width WL. For example, the parking frame certainty calculation unit 36 may detect that the width detected by the width WL is within the set value even if the ends detected in step S203 face each other without being aligned with the direction of the width WL. It is determined that they face each other along the direction.
In step S212, when it is determined that the ends located on the same side do not face each other along the direction of the width WL ("No" shown in the drawing), the process performed by the parking frame certainty calculation unit 36 is performed. The process proceeds to step S214.
On the other hand, in step S212, when it is determined that the end portions located on the same side face each other along the direction of the width WL (“Yes” shown in the drawing), the parking frame certainty calculation unit 36 performs. The process proceeds to step S216.
 駐車枠確信度算出部36は、ステップS203で検出した端部を用いる場合には、ステップS212における判断条件を緩和しているため、幅WLの方向に沿って対向している(図中に示す「Yes」)と判断しやすくなり、駐車枠確信度をレベル2(詳細は後述)よりも高いレベルのレベル3または4(詳細は後述)として算出しやすくなる。
 ステップS214では、駐車枠確信度のレベルを最低値(レベル0)よりも二段階上のレベル(レベル2)として算出する処理(図中に示す「レベル2」)を行う。ステップS214において、駐車枠確信度をレベル2として算出する処理を行うと、駐車枠確信度算出部36後述するステップS216~S220を実行せずに駐車枠確信度の算出処理を終了(END)する。
 ステップS216では、駐車枠確信度レベル算出マップを参照して駐車枠確信度のレベルを判定する処理(図中に示す「端部確信度はレベル4?」)を行う。図14は、駐車枠確信度算出部36が有する駐車枠確信度レベル算出マップの一例を示している。駐車枠確信度レベル算出マップは、端部確信度のレベルと駐車枠確信度のレベル3及び4との対応関係を規定している。
When using the end detected in step S203, the parking frame certainty calculation unit 36 is opposed along the direction of the width WL because the judgment condition in step S212 is relaxed (shown in the figure). “Yes”) is easily determined, and the parking frame certainty is easily calculated as level 3 or 4 (details will be described later) higher than level 2 (details will be described later).
In step S214, a process ("level 2" shown in the figure) is performed to calculate the level of parking frame certainty as a level (level 2) that is two levels higher than the lowest value (level 0). When the process of calculating the parking frame certainty level as level 2 is performed in step S214, the parking frame certainty degree calculation unit 36 ends the parking frame certainty degree calculation process without executing steps S216 to S220 described later (END). .
In step S216, a process for determining the level of the parking frame certainty level with reference to the parking frame certainty level calculation map (“the end certainty level is level 4?” Shown in the figure) is performed. FIG. 14 shows an example of a parking frame certainty level calculation map that the parking frame certainty calculating unit 36 has. The parking frame certainty level calculation map defines the correspondence between the end certainty level and the parking frame certainty levels 3 and 4.
 図14に示すように、駐車枠確信度レベル算出マップは、左列の「端部確信度」及び右列の「駐車枠確信度」の2つの大項目欄で構成されている。駐車枠確信度レベル算出マップの大項目欄の「端部確信度」は、左列の「下側」及び右列の「上側」の2つの小項目欄で構成されている。「端部確信度」は、端部確信度レベル算出マップで判定された端部確信度を示している。「下側」及び「上側」は、自車両Vの進行方向における位置を示し、「下側」は「上側」よりも自車両Vに近い位置を示している。駐車枠確信度レベル算出マップの「下側」は端部確信度レベル算出マップの「下側」に対応し、駐車枠確信度レベル算出マップの「上側」は端部確信度レベル算出マップの「上側」に対応している。「低」は端部確信度のレベルが最も低いことを表し、「高」は端部確信度のレベルが最も高いことを表し、「中」は端部確信度のレベルが「低」よりも高く「高」よりも低いことを表している。「-」は端部確信度レベルが算出されずに未設定であることを表している。駐車枠確信度レベル算出マップの「低」は、端部確信度レベル算出マップを参照して算出された「低」に対応している。駐車枠確信度レベル算出マップの「中」は、端部確信度レベル算出マップを参照して算出された「中」に対応している。駐車枠確信度レベル算出マップの「高」は、端部確信度レベル算出マップを参照して算出された「高」に対応している。 As shown in FIG. 14, the parking frame certainty level calculation map is composed of two large item fields, “end certainty” in the left column and “parking frame certainty” in the right column. The “end portion certainty” in the large item column of the parking frame certainty level calculation map is composed of two small item columns “lower” in the left column and “upper” in the right column. The “end certainty” indicates the end certainty determined by the end certainty level calculation map. “Lower side” and “upper side” indicate positions in the traveling direction of the host vehicle V, and “lower side” indicates a position closer to the host vehicle V than “upper side”. “Lower” in the parking frame certainty level calculation map corresponds to “lower” in the end certainty level calculation map, and “upper” in the parking frame certainty level calculation map is “ Corresponds to “upper side”. “Low” indicates the lowest edge confidence level, “High” indicates the highest edge confidence level, and “Medium” indicates that the edge confidence level is lower than “Low”. High and lower than “High”. “-” Indicates that the end certainty level is not calculated and is not set. “Low” in the parking frame certainty level calculation map corresponds to “low” calculated with reference to the end certainty level calculation map. “Medium” in the parking frame certainty level calculation map corresponds to “medium” calculated with reference to the end certainty level calculation map. “High” in the parking frame certainty level calculation map corresponds to “high” calculated with reference to the end certainty level calculation map.
 駐車枠確信度レベル算出マップは、「下側」が「低」かつ「上側」が「低」として算出された端部確信度の組み合わせと駐車枠確信度の「レベル3」とを対応付けている。駐車枠確信度レベル算出マップは、「下側」が未設定かつ「上側」が「低」として算出された端部確信度の組み合わせと駐車枠確信度の「レベル3」とを対応付けている。駐車枠確信度レベル算出マップは、「下側」が「低」として算出され、かつ「上側」が未設定に設定された端部確信度の組み合わせと駐車枠確信度の「レベル3」とを対応付けている。駐車枠確信度レベル算出マップは、「下側」が未設定かつ「上側」が「中」として算出された端部確信度の組み合わせと駐車枠確信度の「レベル3」とを対応付けている。駐車枠確信度レベル算出マップは、「下側」が「中」として算出され、かつ「上側」が未設定に設定された端部確信度の組み合わせと駐車枠確信度の「レベル3」とを対応付けている。 The parking frame certainty level calculation map associates the combination of the edge certainty calculated as “low” with “low” and “low” with “low” and “level 3” of the parking frame certainty. Yes. The parking frame certainty level calculation map associates the combination of the edge certainty calculated with “lower” not set and “upper” “low” with “level 3” of the parking frame certainty. . In the parking frame certainty level calculation map, the combination of the end certainty factor in which “lower” is calculated as “low” and “upper” is not set and “level 3” of the parking frame certainty Corresponds. The parking frame certainty level calculation map associates the combination of the end certainty calculated with “lower” not set and “upper” with “medium” and “level 3” of the parking frame certainty. . In the parking frame certainty level calculation map, the combination of the end certainty factor in which “lower side” is calculated as “medium” and “upper side” is set unset, and “level 3” of the parking frame certainty factor is obtained. Corresponds.
 駐車枠確信度レベル算出マップは、「下側」が未設定かつ「上側」が「高」として算出された端部確信度の組み合わせと駐車枠確信度の「レベル4」とを対応付けている。駐車枠確信度レベル算出マップは、「下側」が「高」として算出され、かつ「上側」が未設定に設定された端部確信度の組み合わせと駐車枠確信度の「レベル4」とを対応付けている。駐車枠確信度レベル算出マップは、「下側」が「低」かつ「上側」が「中」として算出された端部確信度の組み合わせと駐車枠確信度の「レベル4」とを対応付けている。駐車枠確信度レベル算出マップは、「下側」が「中」かつ「上側」が「低」として算出された端部確信度の組み合わせと駐車枠確信度の「レベル4」とを対応付けている。駐車枠確信度レベル算出マップは、「下側」が「中」かつ「上側」が「中」として算出された端部確信度の組み合わせと駐車枠確信度の「レベル4」とを対応付けている。駐車枠確信度レベル算出マップは、「下側」が「中」かつ「上側」が「高」として算出された端部確信度の組み合わせと駐車枠確信度の「レベル4」とを対応付けている。駐車枠確信度レベル算出マップは、「下側」が「低」かつ「上側」が「高」として算出された端部確信度の組み合わせと駐車枠確信度の「レベル4」とを対応付けている。駐車枠確信度レベル算出マップは、「下側」が「高」かつ「上側」が「高」として算出された端部確信度の組み合わせと駐車枠確信度の「レベル4」とを対応付けている。 The parking frame certainty level calculation map associates the combination of the edge certainty calculated with “lower” not set and “upper” “high” with “level 4” of the parking frame certainty. . The parking frame certainty level calculation map shows a combination of an end certainty factor in which “lower” is calculated as “high” and “upper” is not set, and “level 4” of the parking frame certainty factor. Corresponds. The parking frame certainty level calculation map associates the combination of the edge certainty calculated as “low” with “low” and “upper” with “medium” and “level 4” of the parking frame certainty. Yes. The parking frame certainty level calculation map associates the combination of the edge certainty calculated with “lower” being “middle” and “upper” with “low” and “level 4” of the parking frame certainty. Yes. The parking frame certainty level calculation map associates the combination of the edge certainty calculated with “lower” being “middle” and “upper” with “middle” and “level 4” of the parking frame certainty. Yes. The parking frame certainty level calculation map associates a combination of end certainty calculated with “lower” as “middle” and “upper” as “high” and “level 4” of the parking frame certainty. Yes. The parking frame certainty level calculation map associates the combination of the edge certainty calculated with “lower” “low” and “upper” “high” with “level 4” of the parking frame certainty. Yes. The parking frame certainty level calculation map associates a combination of end certainty calculated with “lower” “high” and “upper” “high” with parking level certainty “level 4”. Yes.
 駐車枠確信度算出部36は、ステップS203において例えば「下側」及び「上側」のそれぞれの端部確信度を「低」として算出しているとする。この場合、駐車枠確信度算出部36は、ステップS216において、駐車枠確信度レベル算出マップを参照し、駐車枠確信度のレベルを「レベル3」と判断する(図中に示す「No」)。これにより、駐車枠確信度算出部36が行う処理は、ステップS218へ移行する。
 また、駐車枠確信度算出部36は、ステップS203において例えば「下側」の端部確信度を未設定かつ「上側」の端部確信度を「低」または「中」として算出しているとする。この場合、駐車枠確信度算出部36は、ステップS216において、駐車枠確信度レベル算出マップを参照し、駐車枠確信度のレベルを「レベル3」と判断する(図中に示す「No」)。これにより、駐車枠確信度算出部36が行う処理は、ステップS218へ移行する。
It is assumed that the parking frame certainty calculation unit 36 calculates, for example, each of the “lower” and “upper” end reliability as “low” in step S203. In this case, in step S216, the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 3” (“No” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S218.
In addition, the parking frame certainty calculation unit 36 calculates, for example, that the “lower” end reliability is not set and the “upper” end reliability is “low” or “medium” in step S203. To do. In this case, in step S216, the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 3” (“No” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S218.
 また、駐車枠確信度算出部36は、ステップS203において例えば「下側」の端部確信度を「低」または「中」として算出し、「上側」の端部確信度を未設定としているとする。この場合、駐車枠確信度算出部36は、ステップS216において、駐車枠確信度レベル算出マップを参照し、駐車枠確信度のレベルを「レベル3」と判断する(図中に示す「No」)。これにより、駐車枠確信度算出部36が行う処理は、ステップS218へ移行する。
 また、駐車枠確信度算出部36は、ステップS203において例えば「下側」の端部確信度を未設定かつ「上側」の端部確信度を「高」として算出しているとする。この場合、駐車枠確信度算出部36は、ステップS216において、駐車枠確信度レベル算出マップを参照し、駐車枠確信度のレベルを「レベル4」と判断する(図中に示す「Yes」)。これにより、駐車枠確信度算出部36が行う処理は、ステップS220へ移行する。
In addition, in step S203, the parking frame certainty factor calculation unit 36 calculates, for example, the “lower” end certainty factor as “low” or “medium”, and has not set the “upper” end certainty factor. To do. In this case, in step S216, the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 3” (“No” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S218.
Further, it is assumed that the parking frame certainty calculation unit 36 calculates, for example, that the “lower” end certainty is not set and the “upper” end certainty is “high” in step S203. In this case, in step S216, the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S220.
 また、駐車枠確信度算出部36は、ステップS203において例えば端部確信度の「下側」を「高」かつ「上側」を「低」として算出しているとする。この場合、駐車枠確信度算出部36は、ステップS216において、駐車枠確信度レベル算出マップを参照し、駐車枠確信度のレベルを「レベル4」と判断する(図中に示す「Yes」)。これにより、駐車枠確信度算出部36が行う処理は、ステップS220へ移行する。
 また、駐車枠確信度算出部36は、ステップS203において例えば端部確信度の「下側」を「高」かつ「上側」を「中」として算出しているとする。この場合、駐車枠確信度算出部36は、ステップS216において、駐車枠確信度レベル算出マップを参照し、駐車枠確信度のレベルを「レベル4」と判断する(図中に示す「Yes」)。これにより、駐車枠確信度算出部36が行う処理は、ステップS220へ移行する。
In addition, it is assumed that the parking frame certainty calculation unit 36 calculates “lower” of the end certainty as “high” and “upper” as “low” in step S203, for example. In this case, in step S216, the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S220.
Further, it is assumed that the parking frame certainty calculation unit 36 calculates “lower” of the end certainty as “high” and “upper” as “medium” in step S203, for example. In this case, in step S216, the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S220.
 また、駐車枠確信度算出部36は、ステップS203において例えば「下側」の端部確信度を「高」として算出し「上側」の端部確信度を未設定としているとする。この場合、駐車枠確信度算出部36は、ステップS216において、駐車枠確信度レベル算出マップを参照し、駐車枠確信度のレベルを「レベル4」と判断する(図中に示す「Yes」)。これにより、駐車枠確信度算出部36が行う処理は、ステップS220へ移行する。
 また、駐車枠確信度算出部36は、ステップS203において例えば端部確信度の「下側」を「低」かつ「上側」を「中」として算出しているとする。この場合、駐車枠確信度算出部36は、ステップS216において、駐車枠確信度レベル算出マップを参照し、駐車枠確信度のレベルを「レベル4」と判断する(図中に示す「Yes」)。これにより、駐車枠確信度算出部36が行う処理は、ステップS220へ移行する。
Further, it is assumed that the parking frame certainty calculation unit 36 calculates, for example, the “lower” end certainty as “high” and does not set the “upper” end certainty in step S203. In this case, in step S216, the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S220.
In addition, it is assumed that the parking frame certainty calculation unit 36 calculates “lower” of the edge certainty as “low” and “upper” as “medium” in step S203, for example. In this case, in step S216, the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S220.
 また、駐車枠確信度算出部36は、ステップS203において例えば端部確信度の「下側」及び「上側」をそれぞれ「中」として算出しているとする。この場合、駐車枠確信度算出部36は、ステップS216において、駐車枠確信度レベル算出マップを参照し、駐車枠確信度のレベルを「レベル4」と判断する(図中に示す「Yes」)。これにより、駐車枠確信度算出部36が行う処理は、ステップS220へ移行する。
 また、駐車枠確信度算出部36は、ステップS203において例えば端部確信度の「下側」を「中」かつ「上側」を「高」として算出しているとする。この場合、駐車枠確信度算出部36は、ステップS216において、駐車枠確信度レベル算出マップを参照し、駐車枠確信度のレベルを「レベル4」と判断する(図中に示す「Yes」)。これにより、駐車枠確信度算出部36が行う処理は、ステップS220へ移行する。
In addition, it is assumed that the parking frame certainty calculation unit 36 calculates “lower” and “upper” of the end certainty as “medium” in step S203, for example. In this case, in step S216, the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S220.
Further, it is assumed that the parking frame certainty calculation unit 36 calculates “lower” of the end certainty as “middle” and “higher” as “high” in step S203, for example. In this case, in step S216, the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S220.
 また、駐車枠確信度算出部36は、ステップS203において例えば端部確信度の「下側」を「低」かつ「上側」を「高」として算出しているとする。この場合、駐車枠確信度算出部36は、ステップS216において、駐車枠確信度レベル算出マップを参照し、駐車枠確信度のレベルを「レベル4」と判断する(図中に示す「Yes」)。これにより、駐車枠確信度算出部36が行う処理は、ステップS220へ移行する。
 また、駐車枠確信度算出部36は、ステップS203において例えば端部確信度の「下側」及び「上側」をそれぞれ「高」として算出しているとする。この場合、駐車枠確信度算出部36は、ステップS216において、駐車枠確信度レベル算出マップを参照し、駐車枠確信度のレベルを「レベル4」と判断する(図中に示す「Yes」)。これにより、駐車枠確信度算出部36が行う処理は、ステップS220へ移行する。
In addition, it is assumed that the parking frame certainty calculation unit 36 calculates “lower” of the end certainty as “low” and “higher” as “high” in step S203, for example. In this case, in step S216, the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S220.
Further, it is assumed that the parking frame certainty calculation unit 36 calculates “lower” and “upper” of the end certainty as “high” in step S203, for example. In this case, in step S216, the parking frame certainty calculation unit 36 refers to the parking frame certainty level calculation map and determines the level of the parking frame certainty as “level 4” (“Yes” shown in the drawing). . Thereby, the process which the parking frame reliability calculation part 36 performs transfers to step S220.
 駐車枠確信度レベル設定マップは、端部確信度のレベルのうちの相対的に高いレベルと、駐車枠確信度のレベルのうちの相対的に高いレベルとを対応付けている。駐車枠確信度レベル算出マップは、端部確信度のレベルの最も高い「高」を含む「下側」及び「上側」の組み合わせには、駐車枠確信度のレベルの最も高い「レベル4」を対応付けている。一方、駐車枠確信度レベル算出マップは、端部確信度のレベルの最も低い「低」を含む「下側」及び「上側」の組み合わせには、「レベル4」よりも駐車枠確信度のレベルの低い「レベル3」を対応付けている。 The parking frame certainty level setting map associates a relatively high level of the end certainty levels with a relatively high level of the parking frame certainty levels. In the parking frame certainty level calculation map, the combination of “lower” and “upper” including “high” having the highest end certainty level is assigned “level 4” having the highest parking frame certainty level. Corresponds. On the other hand, the parking frame certainty level calculation map shows that the parking frame certainty level is higher than “level 4” for the combination of “lower” and “upper” including “low” having the lowest end certainty level. “Level 3” having a low value is associated.
 また、端部確信度の「下側」及び「上側」の両方の端部確信度が算出されている場合には、端部確信度の「下側」及び「上側」のいずれか一方の端部確信度のみが算出されている場合と比較して、俯瞰画像は、枠状の線、すなわち駐車枠線の画像を含んでいる可能性が高くなる。このため、駐車枠確信度レベル設定マップは、端部確信度の「下側」及び「上側」の両方の端部確信度が算出されている組み合わせには、両方が「低」として算出されている場合を除いて、駐車枠確信度のレベルの最も高い「レベル4」を対応付けている。 In addition, when the end certainty of both “lower” and “upper” of the end certainty is calculated, either one of the “lower” or “upper” end of the end certainty Compared to the case where only the part certainty factor is calculated, the bird's-eye view image is more likely to include a frame-like line, that is, an image of a parking frame line. For this reason, the parking frame certainty level setting map is calculated as “low” in the combination in which the end certainty of both “lower” and “upper” of the end certainty is calculated. Unless otherwise, “level 4” having the highest parking frame certainty level is associated.
 駐車枠確信度算出部36は、このように構成された駐車枠確信度レベル設定マップを参照して駐車枠確信度のレベルを算出する。このため、駐車枠確信度算出部36は、端部確信度のレベルが高いほど、高いレベルの駐車枠確信度を算出することになる。
 ステップS218では、駐車枠確信度のレベルを最低値(レベル0)よりも三段階上のレベル(レベル3)として算出する処理(図中に示す「レベル3」)を行う。ステップS218において、駐車枠確信度をレベル3として算出する処理を行うと、駐車枠確信度算出部36が行う処理は終了(END)する。
 ステップS220では、駐車枠確信度のレベルを最低値(レベル0)よりも四段階上のレベル(レベル4)として算出する処理(図中に示す「レベル4」)を行う。ステップS220において、駐車枠確信度をレベル4として算出する処理を行うと、駐車枠確信度算出部36が行う処理は終了(END)する。
The parking frame certainty calculation unit 36 refers to the thus configured parking frame certainty level setting map and calculates the level of the parking frame certainty. For this reason, the parking frame certainty calculation part 36 will calculate the parking frame certainty level of a high level, so that the level of edge part reliability is high.
In step S218, a process ("level 3" shown in the drawing) is performed to calculate the level of parking frame certainty as a level (level 3) that is three levels above the lowest value (level 0). If the process which calculates parking frame reliability as level 3 is performed in step S218, the process which the parking frame reliability calculation part 36 performs will be complete | finished (END).
In step S220, a process ("level 4" shown in the figure) is performed to calculate the level of parking frame certainty as a level (level 4) that is four levels higher than the lowest value (level 0). If the process which calculates parking frame reliability as level 4 is performed in step S220, the process which the parking frame reliability calculation part 36 performs will be complete | finished (END).
 図4中に示す駐車枠のうち、図4(a)、図4(e)及び図4(f)に示すパターンは、「下側」及び「上側」のいずれも「低」となる(図9及び図11参照)。図4(d)及び図4(m)に示すパターンは、「下側」が「低」となり、「上側」が未設定となる。図4(p)中に白枠の四角形で示す領域には、柱等の路上物体が存在し、駐車枠確信度算出部36は、この物体の端部を検出しない。このため、図4(p)に示すパターンは、「下側」が未設定となり、「上側」が「低」となる。したがって、駐車枠確信度算出部36は、これらのパターンに対して駐車枠確信度のレベルを「レベル3」として算出する。 Among the parking frames shown in FIG. 4, the patterns shown in FIGS. 4 (a), 4 (e), and 4 (f) are both “low” and “upper” (see FIG. 4). 9 and FIG. 11). In the patterns shown in FIG. 4D and FIG. 4M, “lower” is “low” and “upper” is not set. In a region indicated by a white frame in FIG. 4 (p), there is a road object such as a pillar, and the parking frame certainty calculation unit 36 does not detect the end of this object. For this reason, in the pattern shown in FIG. 4P, “lower side” is not set, and “upper side” is “low”. Therefore, the parking frame certainty calculation unit 36 calculates the level of the parking frame certainty for these patterns as “level 3”.
 一方、図4(b)、図4(c)及び図4(o)に示すパターンは、「下側」が「中」となり、「上側」が「低」となる。図4(g)に示すパターンは、「下側」が「低」となり、「上側」が「高」となる。図4(h)に示すパターンは、「下側」が「高」となり、「上側」が「低」となる。図4(k)に示すパターンは、「下側」が「高」となり、「上側」が「中」となる。図4(l)に示すパターンは、「下側」が「低」となり、「上側」が「中」となる。図4(n)に示すパターンは、「下側」及び「上側」のいずれも「高」となる。図4(i)及び図4(j)に示すパターンは、「下側」が「高」となり、「上側」が未設定となる。したがって、駐車枠確信度算出部36は、これらのパターンに対して駐車枠確信度のレベルを「レベル4」として算出する。 On the other hand, in the patterns shown in FIGS. 4B, 4C, and 4O, “lower” is “middle” and “upper” is “low”. In the pattern shown in FIG. 4G, “lower” is “low” and “upper” is “high”. In the pattern shown in FIG. 4H, “lower” is “high” and “upper” is “low”. In the pattern shown in FIG. 4K, “lower” is “high” and “upper” is “middle”. In the pattern shown in FIG. 4L, “lower” is “low” and “upper” is “middle”. In the pattern shown in FIG. 4 (n), both “lower” and “upper” are “high”. In the patterns shown in FIGS. 4I and 4J, “lower” is “high” and “upper” is not set. Therefore, the parking frame certainty calculation unit 36 calculates the level of parking frame certainty as “level 4” for these patterns.
 なお、駐車枠確信度は、特に、公道上に標示されている可能性の高い駐車枠である、図4(a)に示すパターンを特定した場合、または、図4(a)に示すパターン以外の駐車枠を特定できない場合は、駐車枠の幅に応じて、以下のようにして制限してもよい。
 具体的には、例えば、駐車枠の幅が2.6[m]以下であれば、駐車枠確信度は当初算出したレベルを保持するが、駐車枠の幅が2.6[m]を超えている場合には、駐車枠確信度がレベル3以上として算出されないように制限する。これにより、公道上に標示されている両側破線が駐車枠線として検出されにくい構成とする。
In addition, the parking frame certainty factor is a parking frame that is likely to be marked on a public road, in particular, when the pattern shown in FIG. 4A is specified, or other than the pattern shown in FIG. 4A If the parking frame cannot be specified, the parking frame may be limited as follows according to the width of the parking frame.
Specifically, for example, if the parking frame width is 2.6 [m] or less, the parking frame certainty factor retains the initially calculated level, but the parking frame width exceeds 2.6 [m]. If so, the parking frame certainty factor is limited so that it is not calculated as level 3 or higher. Thereby, it is set as the structure which is hard to detect the double-sided broken line marked on the public road as a parking frame line.
・駐車枠進入確信度算出部38が行う処理
 図1から図13を参照しつつ、図15及び図16を用いて、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する処理について説明する。
 図15は、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する処理を示すフローチャートである。なお、駐車枠進入確信度算出部38は、予め設定したサンプリング時間(例えば、10[msec])毎に、以下に説明する処理を行う。
 図15中に示すように、駐車枠進入確信度算出部38が処理を開始(START)すると、まず、ステップS300において、自車両Vの後輪予想軌跡と駐車枠とのずれ量を検出する処理(図中に示す「ずれ量検出」)を行う。ステップS300において、自車両Vの後輪予想軌跡と駐車枠とのずれ量を検出する処理を行うと、駐車枠進入確信度算出部38が行う処理は、ステップS302へ移行する。なお、本実施形態では、一例として、ステップS300で検出するずれ量の単位を[cm]とした場合について説明する。また、本実施形態では、一例として、駐車枠の幅を2.5[m]とした場合について説明する。
Processing performed by the parking frame approach certainty factor calculation unit 38 With reference to FIGS. 1 to 13, the parking frame approach certainty factor calculation unit 38 calculates the parking frame approach certainty factor using FIGS. 15 and 16. explain.
FIG. 15 is a flowchart illustrating a process in which the parking frame approach certainty calculation unit 38 calculates the parking frame approach certainty factor. In addition, the parking frame approach reliability calculation part 38 performs the process demonstrated below for every preset sampling time (for example, 10 [msec]).
As shown in FIG. 15, when the parking frame approach certainty calculation unit 38 starts processing (START), first, in step S300, a process of detecting a deviation amount between the predicted rear wheel trajectory of the host vehicle V and the parking frame. ("Shift amount detection" shown in the figure) is performed. If the process which detects the deviation | shift amount of the rear-wheel estimated locus | trajectory of the own vehicle V and a parking frame is performed in step S300, the process which the parking frame approach reliability calculation part 38 will transfer to step S302. In the present embodiment, as an example, a case will be described in which the unit of deviation detected in step S300 is [cm]. Moreover, in this embodiment, the case where the width of a parking frame is 2.5 [m] is demonstrated as an example.
 ここで、ステップS300で行う処理では、例えば、図16中に示すように、自車両Vの後輪予想軌跡TRを算出し、算出した後輪予想軌跡TRと駐車枠L0の入り口L2との交点TPを算出する。さらに、駐車枠L0の左側枠線L1lと交点TPとの距離Lflと、駐車枠L0の右側枠線L1rと交点TPとの距離Lfrを算出し、距離Lflと距離Lfrを比較する。そして、距離Lflと距離Lfrのうち長い方の距離を、自車両Vの後輪予想軌跡TRと駐車枠L0とのずれ量として検出する。なお、図16は、自車両Vの後輪予想軌跡TRと駐車枠L0とのずれ量を検出する処理の内容を示す図である。
 また、自車両Vの後輪予想軌跡TRを算出する際には、自車両Vのうち、右後輪WRRと左後輪WRLとの車幅方向における中心点PRを、自車両Vの基準点として設定する。そして、俯瞰画像のうち前方カメラ14F及び左側方カメラ14SLで撮像した画像と、自車両Vの車速と、ステアリングホイール28の回転角(操舵角)を用いて、中心点PRの仮想移動経路を演算し、後輪予想軌跡TRを算出する。
Here, in the process performed in step S300, for example, as shown in FIG. 16, the predicted rear wheel trajectory TR of the host vehicle V is calculated, and the intersection of the calculated predicted rear wheel trajectory TR and the entrance L2 of the parking frame L0. TP is calculated. Further, a distance Lfl between the left frame line L1l of the parking frame L0 and the intersection TP and a distance Lfr between the right frame line L1r of the parking frame L0 and the intersection TP are calculated, and the distance Lfl and the distance Lfr are compared. Then, the longer one of the distance Lfl and the distance Lfr is detected as a deviation amount between the predicted rear wheel trajectory TR of the host vehicle V and the parking frame L0. FIG. 16 is a diagram showing the contents of processing for detecting the amount of deviation between the predicted rear wheel trajectory TR of the host vehicle V and the parking frame L0.
When calculating the predicted rear wheel trajectory TR of the host vehicle V, the center point PR in the vehicle width direction of the right rear wheel WRR and the left rear wheel WRL of the host vehicle V is used as the reference point of the host vehicle V. Set as. Then, the virtual movement path of the center point PR is calculated using the images taken by the front camera 14F and the left camera 14SL in the overhead view image, the vehicle speed of the host vehicle V, and the rotation angle (steering angle) of the steering wheel 28. Then, a predicted rear wheel trajectory TR is calculated.
 ステップS302では、例えば、俯瞰画像のうち前方カメラ14Fで撮像した画像を用いて、直線Xと駐車枠L0の長さ方向(例えば、奥行き方向)との平行度を検出する処理(図中に示す「平行度検出」)を行う。ステップS302において、直線Xと駐車枠L0の長さ方向との平行度を検出する処理を行うと、駐車枠進入確信度算出部38が行う処理は、ステップS304へ移行する。
 ここで、ステップS302で検出する平行度は、図16中に示すように、駐車枠L0の中心線Yと直線Xとのなす角度θapとして検出する。
 なお、ステップS302では、自車両Vが後退しながら駐車枠L0へ移動する場合、例えば、俯瞰画像のうち後方カメラ14Rで撮像した画像を用いて、直線Xと駐車枠L0の長さ方向との平行度を検出する処理を行う。ここで、自車両Vの移動方向(前進、後退)は、例えば、現在シフト位置信号を参照して検出する。
In step S302, for example, processing for detecting parallelism between the straight line X and the length direction (for example, the depth direction) of the parking frame L0 using an image captured by the front camera 14F among the overhead images (shown in the figure). “Parallelity detection”). If the process which detects the parallelism of the straight line X and the length direction of the parking frame L0 is performed in step S302, the process which the parking frame approach reliability calculation part 38 performs will transfer to step S304.
Here, the parallelism detected in step S302 is detected as an angle θap formed by the center line Y and the straight line X of the parking frame L0 as shown in FIG.
In step S302, when the host vehicle V moves to the parking frame L0 while moving backward, for example, using the image captured by the rear camera 14R in the overhead view image, the straight line X and the length direction of the parking frame L0 are used. Processing to detect parallelism is performed. Here, the moving direction (forward, backward) of the host vehicle V is detected with reference to a current shift position signal, for example.
 ステップS304では、自車両Vの車速と、ステアリングホイール28の回転角(操舵角)を用いて、自車両Vの旋回半径を演算する処理(図中に示す「旋回半径演算」)を行う。ステップS304において、自車両Vの旋回半径を演算する処理を行うと、駐車枠進入確信度算出部38が行う処理は、ステップS306へ移行する。
 ステップS306では、ステップS302で検出した平行度(θap)が、予め設定した平行度閾値(例えば、15[°])未満であるか否かを判断する処理(図中に示す「平行度<平行度閾値?」)を行う。
 ステップS306において、ステップS302で検出した平行度(θap)が平行度閾値以上である(図中に示す「No」)と判断した場合、駐車枠進入確信度算出部38が行う処理は、ステップS308へ移行する。
 一方、ステップS306において、ステップS302で検出した平行度(θap)が平行度閾値未満である(図中に示す「Yes」)と判断した場合、駐車枠進入確信度算出部38が行う処理は、ステップS310へ移行する。
In step S304, processing for calculating the turning radius of the host vehicle V ("turning radius calculation" shown in the figure) is performed using the vehicle speed of the host vehicle V and the rotation angle (steering angle) of the steering wheel 28. If the process which calculates the turning radius of the own vehicle V is performed in step S304, the process which the parking frame approach reliability calculation part 38 performs will transfer to step S306.
In step S306, it is determined whether or not the parallelism (θap) detected in step S302 is less than a preset parallelism threshold (for example, 15 [°]) (“parallelism <parallel” shown in the figure). Degree threshold? ").
In step S306, when it is determined that the parallelism (θap) detected in step S302 is equal to or greater than the parallelism threshold (“No” in the drawing), the process performed by the parking frame approach certainty calculation unit 38 is performed in step S308. Migrate to
On the other hand, when it is determined in step S306 that the parallelism (θap) detected in step S302 is less than the parallelism threshold (“Yes” shown in the drawing), the process performed by the parking frame approach certainty calculation unit 38 is as follows. The process proceeds to step S310.
 ステップS308では、ステップS304で検出した旋回半径が、予め設定した旋回半径閾値(例えば、100[R])以上であるか否かを判断する処理(図中に示す「旋回半径≧旋回半径閾値?」)を行う。
 ステップS308において、ステップS304で検出した旋回半径が旋回半径閾値未満である(図中に示す「No」)と判断した場合、駐車枠進入確信度算出部38が行う処理は、ステップS312へ移行する。
 一方、ステップS308において、ステップS304で検出した旋回半径が旋回半径閾値以上である(図中に示す「Yes」)と判断した場合、駐車枠進入確信度算出部38が行う処理は、ステップS310へ移行する。
 ステップS310では、ステップS300で検出したずれ量が、予め設定した第一閾値(例えば、75[cm])以上であるか否かを判断する処理(図中に示す「ずれ量≧第一閾値?」)を行う。なお、第一閾値は、75[cm]に限定するものではなく、例えば、自車両Vの諸元に応じて変更してもよい。
In step S308, it is determined whether or not the turning radius detected in step S304 is greater than or equal to a preset turning radius threshold (for example, 100 [R]) (“turning radius ≧ turning radius threshold? ")I do.
If it is determined in step S308 that the turning radius detected in step S304 is less than the turning radius threshold (“No” shown in the figure), the processing performed by the parking frame approach certainty calculation unit 38 proceeds to step S312. .
On the other hand, if it is determined in step S308 that the turning radius detected in step S304 is equal to or greater than the turning radius threshold value (“Yes” shown in the figure), the processing performed by the parking frame approach reliability calculation unit 38 proceeds to step S310. Transition.
In step S310, a process for determining whether or not the amount of deviation detected in step S300 is greater than or equal to a preset first threshold (for example, 75 [cm]) (“deviation amount ≧ first threshold? ")I do. The first threshold value is not limited to 75 [cm], and may be changed according to the specifications of the host vehicle V, for example.
 ステップS310において、ステップS300で検出したずれ量が第一閾値以上である(図中に示す「Yes」)と判断した場合、駐車枠進入確信度算出部38が行う処理は、ステップS314へ移行する。
 一方、ステップS310において、ステップS300で検出したずれ量が第一閾値未満である(図中に示す「No」)と判断した場合、駐車枠進入確信度算出部38が行う処理は、ステップS316へ移行する。
 ステップS312では、ステップS300で検出したずれ量が、予め設定した第二閾値(例えば、150[cm])以上であるか否かを判断する処理(図中に示す「ずれ量≧第二閾値?」)を行う。ここで、第二閾値は、上述した第一閾値よりも大きな値とする。なお、第二閾値は、150[cm]に限定するものではなく、例えば、自車両Vの諸元に応じて変更してもよい。
When it is determined in step S310 that the amount of deviation detected in step S300 is greater than or equal to the first threshold (“Yes” shown in the figure), the process performed by the parking frame approach certainty calculator 38 proceeds to step S314. .
On the other hand, if it is determined in step S310 that the amount of deviation detected in step S300 is less than the first threshold ("No" shown in the figure), the process performed by the parking frame approach certainty calculation unit 38 proceeds to step S316. Transition.
In step S312, a process for determining whether or not the deviation amount detected in step S300 is greater than or equal to a preset second threshold (for example, 150 [cm]) (“deviation amount ≧ second threshold? ")I do. Here, the second threshold value is larger than the first threshold value described above. The second threshold value is not limited to 150 [cm], and may be changed according to the specifications of the host vehicle V, for example.
 ステップS312において、ステップS300で検出したずれ量が第二閾値以上である(図中に示す「Yes」)と判断した場合、駐車枠進入確信度算出部38が行う処理は、ステップS318へ移行する。
 一方、ステップS312において、ステップS300で検出したずれ量が第二閾値未満である(図中に示す「No」)と判断した場合、駐車枠進入確信度算出部38が行う処理は、ステップS314へ移行する。
 ステップS314では、駐車枠進入確信度を低いレベルとして算出(設定)する処理(図中に示す「進入確信度=レベル低」)を行う。ステップS314において、駐車枠進入確信度を低いレベルとして算出する処理を行うと、駐車枠進入確信度算出部38が行う処理は終了(END)する。
In step S312, when it is determined that the amount of deviation detected in step S300 is greater than or equal to the second threshold ("Yes" shown in the figure), the process performed by the parking frame approach certainty calculator 38 proceeds to step S318. .
On the other hand, if it is determined in step S312 that the amount of deviation detected in step S300 is less than the second threshold ("No" shown in the figure), the process performed by the parking frame approach certainty calculation unit 38 proceeds to step S314. Transition.
In step S314, a process of calculating (setting) the parking frame approach certainty factor as a low level (“entry certainty factor = low level” shown in the figure) is performed. If the process which calculates parking frame approach reliability as a low level is performed in step S314, the process which the parking frame approach reliability calculation part 38 performs will be complete | finished (END).
 ステップS316では、駐車枠進入確信度を高いレベルとして算出する処理(図中に示す「進入確信度=レベル高」)を行う。ステップS316において、駐車枠進入確信度を高いレベルとして算出する処理を行うと、駐車枠進入確信度算出部38が行う処理は終了(END)する。
 ステップS318では、駐車枠進入確信度のレベルを最低値(レベル0)として算出する処理(図中に示す「進入確信度=レベル0」)を行う。ステップS318において、駐車枠進入確信度をレベル0として算出する処理を行うと、駐車枠進入確信度算出部38が行う処理は終了(END)する。
In step S316, a process of calculating the parking frame approach certainty factor as a high level (“entry certainty factor = level high” shown in the figure) is performed. If the process which calculates parking frame approach reliability as a high level is performed in step S316, the process which the parking frame approach reliability calculation part 38 performs will be complete | finished (END).
In step S318, a process of calculating the parking frame approach certainty level as the lowest value (level 0) (“entry certainty = level 0” shown in the figure) is performed. If the process which calculates parking frame approach reliability as level 0 is performed in step S318, the process which the parking frame approach reliability calculation part 38 performs will be complete | finished (END).
 以上説明したように、駐車枠進入確信度算出部38は、駐車枠進入確信度を、最低値の「レベル0」、レベル0よりも高いレベルの「レベル低」、レベル低よりも高いレベルの「レベル高」のうち、いずれかのレベルとして算出する処理を行う。
 なお、自車両Vの構成が、例えば、運転者に対して駐車枠L0への操舵操作を支援する装置(駐車支援装置)を備える構成である場合、駐車支援装置がON状態であれば、駐車枠進入確信度のレベルが上がりやすくなる構成としてもよい。
 ここで、駐車支援装置としては、例えば、駐車を行うために、周囲の状況を俯瞰画像等でモニタ表示する装置や、駐車を行うための進路をガイドするために、画面上で目標とする駐車位置を設定する装置がある。これらの装置は、周囲の状況を俯瞰画像等でモニタ表示するために画面を切り替えるスイッチや、画面上で目標とする駐車位置を設定するための画面切り替えスイッチを操作して使用する。そして、これらのスイッチを操作すると、駐車支援装置がON状態となる構成とする。
As described above, the parking frame approach certainty calculation unit 38 sets the parking frame approach certainty of the lowest level “level 0”, the level “level low” higher than level 0, and the level higher than level low. A process of calculating as one of “level high” is performed.
In addition, when the structure of the own vehicle V is a structure provided with the apparatus (parking assistance apparatus) which assists steering operation to the parking frame L0 with respect to a driver | operator, for example, if a parking assistance apparatus is an ON state, it will park. It is good also as a structure which becomes easy to raise the level of frame approach reliability.
Here, as a parking assistance device, for example, in order to perform parking, a device that displays a monitor of surrounding conditions with a bird's-eye view image, etc., or a target parking on a screen in order to guide a course for parking There is a device to set the position. These devices are used by operating a switch for switching a screen in order to display a surrounding situation as a bird's-eye view image or a screen switching switch for setting a target parking position on the screen. And if these switches are operated, it will be set as the structure which a parking assistance apparatus will be in an ON state.
 駐車枠進入確信度のレベルが上がりやすくなる構成の具体例としては、ステップS318の処理で駐車枠進入確信度を「レベル0」として算出した場合であっても、駐車支援装置がON状態である場合には、駐車枠進入確信度を「レベル低」に補正する構成である。また、例えば、ステップS314の処理で駐車枠進入確信度を「レベル低」として算出した場合であっても、駐車支援装置がON状態である場合には、駐車枠進入確信度を「レベル高」に補正する構成である。なお、駐車枠進入確信度のレベルが上がりやすくなる構成としては、例えば、実際の駐車枠への進入状況に因らず、駐車枠進入確信度を予め設定したレベル(例えば、「レベル高」)として算出する構成としてもよい。 As a specific example of the configuration in which the parking frame approach certainty level is likely to increase, the parking assist device is in the ON state even when the parking frame approach certainty factor is calculated as “level 0” in the process of step S318. In this case, the parking frame approach reliability is corrected to “low level”. Further, for example, even when the parking frame approach reliability is calculated as “low level” in the process of step S314, if the parking assist device is in the ON state, the parking frame approach reliability is set to “high level”. It is the structure correct | amended to. In addition, as a structure which the level of parking frame approach reliability becomes easy to rise, for example, regardless of the actual entrance situation to the parking frame, a level at which the parking frame approach reliability is set in advance (for example, “level high”) It is good also as a structure calculated as.
・総合確信度算出部40が行う処理
 図1から図16を参照しつつ、図17を用いて、総合確信度算出部40が総合確信度を算出する処理について説明する。
 総合確信度算出部40は、駐車枠確信度信号及び駐車枠進入確信度信号の入力を受け、駐車枠確信度信号が含む駐車枠確信度と、駐車枠進入確信度信号が含む駐車枠進入確信度を、図17中に示す総合確信度算出マップに適合させる。そして、駐車枠確信度と駐車枠進入確信度に基づき、総合確信度を算出する。
 なお、図17は、総合確信度算出マップを示す図である。また、図17中では、駐車枠確信度を「枠確信度」と示し、駐車枠進入確信度を「進入確信度」と示す。また、図17中に示す総合確信度算出マップは、自車両Vの前進走行時に用いるマップである。
Process Performed by Comprehensive Confidence Calculation Unit 40 With reference to FIGS. 1 to 16, a process in which the comprehensive certainty calculation unit 40 calculates the comprehensive certainty factor will be described with reference to FIG. 17.
The overall certainty calculation unit 40 receives the parking frame certainty signal and the parking frame entry certainty signal, and receives the parking frame certainty included in the parking frame certainty signal and the parking frame entering certainty included in the parking frame approach certainty signal The degree is adapted to the comprehensive certainty calculation map shown in FIG. Then, based on the parking frame certainty factor and the parking frame approach certainty factor, the total certainty factor is calculated.
FIG. 17 is a diagram showing a comprehensive certainty calculation map. In FIG. 17, the parking frame certainty factor is indicated as “frame certainty factor”, and the parking frame approach certainty factor is indicated as “entry certainty factor”. Further, the overall certainty factor calculation map shown in FIG. 17 is a map used when the host vehicle V travels forward.
 総合確信度算出部40が総合確信度を算出する処理の一例として、駐車枠確信度が「レベル3」であり、駐車枠進入確信度が「レベル高」である場合では、図17中に示すように、総合確信度を「高」として算出する。
 なお、本実施形態では、一例として、総合確信度算出部40が、総合確信度を算出する処理を行うと、算出した総合確信度を、イグニッションスイッチをオフ状態としてもデータが消去されない記憶部に記憶する処理を行う場合について説明する。ここで、イグニッションスイッチをオフ状態としてもデータが消去されない記憶部とは、例えば、ROM等である。
 したがって、本実施形態では、自車両Vの駐車完了後にイグニッションスイッチをオフ状態とし、自車両Vの再発進時にイグニッションスイッチをオン状態とした時点では、直前に算出した総合確信度が記憶されている。このため、自車両Vの再発進時にイグニッションスイッチをオン状態とした時点から、直前に算出した総合確信度に基づく制御を開始することが可能となる。
As an example of the process of calculating the total certainty factor by the total certainty factor calculation unit 40, when the parking frame certainty factor is “level 3” and the parking frame approach certainty factor is “high level”, it is shown in FIG. Thus, the total certainty factor is calculated as “high”.
In the present embodiment, as an example, when the total confidence factor calculation unit 40 performs a process of calculating the total confidence factor, the calculated total confidence factor is stored in a storage unit in which data is not erased even when the ignition switch is turned off. A case where the storing process is performed will be described. Here, the storage unit from which data is not erased even when the ignition switch is turned off is, for example, a ROM or the like.
Therefore, in the present embodiment, when the ignition switch is turned off after completion of parking of the host vehicle V, and the ignition switch is turned on when the host vehicle V restarts, the total certainty factor calculated immediately before is stored. . For this reason, it becomes possible to start the control based on the total certainty calculated immediately before the ignition switch is turned on when the host vehicle V restarts.
・加速抑制制御開始タイミング演算部42が行う処理
 図1から図17を参照しつつ、図18を用いて、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算する処理について説明する。
 加速抑制制御開始タイミング演算部42は、総合確信度信号の入力を受け、総合確信度信号が含む総合確信度を、図18中に示す加速抑制条件演算マップに適合させる。そして、総合確信度に基づき、加速抑制制御開始タイミングを演算する。
 なお、図18は、加速抑制条件演算マップを示す図である。また、図18中では、「加速抑制条件」の欄において、加速抑制制御開始タイミングを「抑制制御開始タイミング(アクセル開度)」と示す。
-Process which acceleration suppression control start timing calculating part 42 performs The process which the acceleration suppression control start timing calculating part 42 calculates an acceleration suppression control start timing is demonstrated using FIG. 18, referring FIGS. 1-17.
The acceleration suppression control start timing calculation unit 42 receives the input of the total certainty factor signal, and adapts the total certainty factor included in the total certainty factor signal to the acceleration suppression condition calculation map shown in FIG. Then, the acceleration suppression control start timing is calculated based on the total certainty factor.
FIG. 18 is a diagram showing an acceleration suppression condition calculation map. In FIG. 18, the acceleration suppression control start timing is indicated as “suppression control start timing (accelerator opening)” in the “acceleration suppression condition” column.
 加速抑制制御開始タイミング演算部42が行う処理の一例として、総合確信度が「高」である場合では、図18中に示すように、加速抑制制御開始タイミングを、アクセルペダル32の開度が増加して「50%」に達したタイミングに設定する。なお、アクセルペダル32の開度は、アクセルペダル32を最大値まで踏み込んだ(操作した)状態を100%として設定する。
 なお、図18中に示す加速抑制制御開始タイミングは、一例であり、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。また、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
As an example of the processing performed by the acceleration suppression control start timing calculation unit 42, when the overall certainty factor is “high”, the acceleration suppression control start timing is increased as shown in FIG. Then, the timing is set to reach “50%”. The opening degree of the accelerator pedal 32 is set to 100% when the accelerator pedal 32 is depressed (operated) to the maximum value.
The acceleration suppression control start timing shown in FIG. 18 is an example, and may be changed according to the specifications of the host vehicle V, such as the braking performance of the host vehicle V, for example. Further, for example, the vehicle V may be changed according to the traffic regulations of the area (country etc.) where the vehicle V travels.
・加速抑制制御量演算部44が行う処理
 図1から図18を参照して、加速抑制制御量演算部44が加速抑制制御量を演算する処理について説明する。
 加速抑制制御量演算部44は、総合確信度信号の入力を受け、総合確信度信号が含む総合確信度を、図18中に示す加速抑制条件演算マップに適合させる。そして、総合確信度に基づき、加速抑制制御量を演算する。なお、図18中では、「加速抑制条件」の欄において、加速抑制制御量を「抑制量」と示す。
 加速抑制制御量演算部44が行う処理の一例として、総合確信度が「高」である場合では、図18中に示すように、加速抑制制御量を、実際のアクセルペダル32の開度に対して、「中」レベルのスロットル開度に抑制される制御量に設定する。なお、本実施形態では、一例として、「中」レベルのスロットル開度を、実際のアクセルペダル32の開度が25%に抑制されるスロットル開度とする。同様に、「小」レベルのスロットル開度を、実際のアクセルペダル32の開度が50%に抑制されるスロットル開度とし、「大」レベルのスロットル開度を、実際のアクセルペダル32の開度が10%に抑制されるスロットル開度とする。
Processing performed by acceleration suppression control amount calculation unit 44 With reference to FIGS. 1 to 18, processing in which the acceleration suppression control amount calculation unit 44 calculates the acceleration suppression control amount will be described.
The acceleration suppression control amount calculation unit 44 receives the input of the total certainty factor signal, and adapts the total certainty factor included in the total certainty factor signal to the acceleration suppression condition calculation map shown in FIG. Then, an acceleration suppression control amount is calculated based on the total certainty factor. In FIG. 18, the acceleration suppression control amount is indicated as “suppression amount” in the “acceleration suppression condition” column.
As an example of the processing performed by the acceleration suppression control amount calculation unit 44, when the total certainty factor is “high”, the acceleration suppression control amount is set to the actual opening degree of the accelerator pedal 32 as shown in FIG. Thus, the control amount is set to be suppressed to the “medium” level throttle opening. In the present embodiment, as an example, the throttle opening at the “medium” level is the throttle opening at which the actual opening degree of the accelerator pedal 32 is suppressed to 25%. Similarly, the throttle opening at the “small” level is the throttle opening at which the actual opening of the accelerator pedal 32 is suppressed to 50%, and the throttle opening at the “large” level is the opening of the actual accelerator pedal 32. The throttle opening is such that the degree is suppressed to 10%.
 なお、図18中に示す加速抑制制御量は、一例であり、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。また、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
 また、加速抑制制御量演算部44は、総合確信度を加速抑制条件演算マップに適合させ、警告音を出力する制御の有無を設定する。なお、警告音を出力する場合、例えば、ナビゲーション装置26が備える表示モニタに、加速抑制制御を作動させている内容の文字情報や記号・発光等の視覚情報を表示してもよい。
The acceleration suppression control amount shown in FIG. 18 is an example, and may be changed according to the specifications of the host vehicle V such as the braking performance of the host vehicle V, for example. Further, for example, the vehicle V may be changed according to the traffic regulations of the area (country etc.) where the vehicle V travels.
Further, the acceleration suppression control amount calculation unit 44 sets the presence / absence of control for outputting a warning sound by adapting the total certainty factor to the acceleration suppression condition calculation map. In the case of outputting a warning sound, for example, character information on the content that activates the acceleration suppression control and visual information such as a symbol and light emission may be displayed on a display monitor included in the navigation device 26.
(加速抑制指令値演算部10Jで行う処理)
 次に、図1から図18を参照しつつ、図19を用いて、加速抑制指令値演算部10Jで行う処理について説明する。
 図19は、加速抑制指令値演算部10Jが行う処理を示すフローチャートである。なお、加速抑制指令値演算部10Jは、予め設定したサンプリング時間(例えば、10[msec])毎に、以下に説明する処理を行う。
 図19中に示すように、加速抑制指令値演算部10Jが処理を開始(START)すると、まず、ステップS400において、加速抑制制御内容演算部10Iから入力を受けた加速抑制作動条件判断結果信号を参照する。そして、加速抑制作動条件判断結果を取得する処理(図中に示す「加速抑制作動条件判断結果取得処理」)を行う。ステップS400において、加速抑制作動条件判断結果を取得する処理を行うと、加速抑制指令値演算部10Jが行う処理は、ステップS402へ移行する。
(Processing performed by the acceleration suppression command value calculation unit 10J)
Next, the processing performed by the acceleration suppression command value calculation unit 10J will be described with reference to FIGS. 1 to 18 and FIG.
FIG. 19 is a flowchart illustrating processing performed by the acceleration suppression command value calculation unit 10J. The acceleration suppression command value calculation unit 10J performs the processing described below for each preset sampling time (for example, 10 [msec]).
As shown in FIG. 19, when the acceleration suppression command value calculation unit 10J starts processing (START), first, in step S400, an acceleration suppression operation condition determination result signal received from the acceleration suppression control content calculation unit 10I is displayed. refer. And the process ("acceleration suppression operation condition judgment result acquisition process" shown in the figure) which acquires an acceleration suppression operation condition judgment result is performed. If the process which acquires an acceleration suppression operation condition judgment result is performed in step S400, the process which the acceleration suppression command value calculating part 10J performs will transfer to step S402.
 ステップS402では、ステップS400において取得した加速抑制作動条件判断結果に加え、加速抑制指令値を演算するための情報を取得する処理(図中に示す「加速抑制指令値演算情報取得処理」)を行う。ステップS402において、加速抑制指令値を演算するための情報を取得する処理を行うと、加速抑制指令値演算部10Jが行う処理は、ステップS404へ移行する。
 なお、加速抑制指令値を演算するための情報とは、例えば、上述した加速抑制制御開始タイミング信号、加速抑制制御量信号、駆動側踏込み量信号、アクセル操作速度信号が含む情報である。
 ステップS404では、ステップS400で取得した加速抑制作動条件判断結果が、加速抑制制御作動条件が成立する判断結果か否かを判断する処理(図中に示す「加速抑制制御作動条件成立?」)を行う。
In step S402, in addition to the acceleration suppression operation condition determination result acquired in step S400, processing for acquiring information for calculating the acceleration suppression command value ("acceleration suppression command value calculation information acquisition processing" shown in the figure) is performed. . If the process which acquires the information for calculating an acceleration suppression command value in step S402 is performed, the process which the acceleration suppression command value calculating part 10J performs will transfer to step S404.
The information for calculating the acceleration suppression command value is, for example, information included in the acceleration suppression control start timing signal, the acceleration suppression control amount signal, the drive side depression amount signal, and the accelerator operation speed signal described above.
In step S404, a process of determining whether or not the acceleration suppression operation condition determination result acquired in step S400 is a determination result that the acceleration suppression control operation condition is satisfied (“acceleration suppression control operation condition satisfied?” Shown in the figure). Do.
 ステップS404において、加速抑制制御作動条件が成立する判断結果である(図中に示す「Yes」)と判断した場合、加速抑制指令値演算部10Jが行う処理は、ステップS406へ移行する。
 一方、ステップS404において、加速抑制制御作動条件が成立しない判断結果である(図中に示す「No」)と判断した場合、加速抑制指令値演算部10Jが行う処理は、ステップS408へ移行する。
 ステップS406では、ステップS402で取得した加速抑制指令値を演算するための情報に基づき、加速抑制制御を行うための加速指令値である加速抑制指令値を演算する処理(図中に示す「加速抑制制御用指令値演算」)を行う。ステップS406において、加速抑制指令値を演算する処理を行うと、加速抑制指令値演算部10Jが行う処理は、ステップS410に移行する。
If it is determined in step S404 that the acceleration suppression control operation condition is satisfied ("Yes" shown in the figure), the processing performed by the acceleration suppression command value calculation unit 10J proceeds to step S406.
On the other hand, if it is determined in step S404 that the acceleration suppression control operation condition is not satisfied ("No" shown in the drawing), the processing performed by the acceleration suppression command value calculation unit 10J proceeds to step S408.
In step S406, based on the information for calculating the acceleration suppression command value acquired in step S402, a process of calculating an acceleration suppression command value that is an acceleration command value for performing acceleration suppression control ("Acceleration suppression command shown in the figure"). Control command value calculation "). If the process which calculates an acceleration suppression command value is performed in step S406, the process which the acceleration suppression command value calculating part 10J performs will transfer to step S410.
 ここで、加速抑制指令値を演算する処理では、駆動側踏込み量信号が含むアクセルペダル32の踏込み量と、加速抑制制御量信号が含む加速抑制制御量を参照する。そして、スロットル開度を、実際のアクセルペダル32の開度に対して加速抑制制御量に応じた抑制度合い(図18参照)とする加速抑制制御量指令値を演算する。
 さらに、加速抑制指令値を演算する処理では、駆動側踏込み量信号が含むアクセルペダル32の踏込み量と、加速抑制制御開始タイミング信号が含む加速抑制制御開始タイミングを参照する。そして、加速抑制制御開始タイミングを、実際のアクセルペダル32の開度に応じたタイミング(図18参照)とする加速抑制制御開始タイミング指令値を演算する。
Here, in the process of calculating the acceleration suppression command value, the depression amount of the accelerator pedal 32 included in the drive side depression amount signal and the acceleration suppression control amount included in the acceleration suppression control amount signal are referred to. Then, an acceleration suppression control amount command value is calculated that sets the throttle opening to a degree of suppression (see FIG. 18) according to the acceleration suppression control amount with respect to the actual accelerator pedal 32 opening.
Further, in the process of calculating the acceleration suppression command value, the depression amount of the accelerator pedal 32 included in the driving side depression amount signal and the acceleration suppression control start timing included in the acceleration suppression control start timing signal are referred to. And the acceleration suppression control start timing command value which makes the acceleration suppression control start timing the timing (refer FIG. 18) according to the opening degree of the actual accelerator pedal 32 is calculated.
 そして、加速抑制指令値を演算する処理では、上記のように演算した加速抑制制御量指令値及び加速抑制制御開始タイミング指令値を含む指令値を、加速抑制指令値として演算する。
 ステップS408では、加速抑制制御を行なわない駆動力制御、すなわち、通常の加速制御で用いる加速指令値である通常加速指令値を演算する処理(図中に示す「通常加速制御用指令値演算」)を行う。ステップS408において、通常加速指令値を演算する処理を行うと、加速抑制指令値演算部10Jが行う処理は、ステップS412に移行する。
 ここで、通常加速指令値を演算する処理では、駆動側踏込み量信号が含むアクセルペダル32の踏込み量に基づいてスロットル開度を演算する指令値を、通常加速指令値として演算する。
In the process of calculating the acceleration suppression command value, the command value including the acceleration suppression control amount command value and the acceleration suppression control start timing command value calculated as described above is calculated as the acceleration suppression command value.
In step S408, driving force control without acceleration suppression control, that is, processing for calculating a normal acceleration command value that is an acceleration command value used in normal acceleration control ("command value calculation for normal acceleration control" shown in the figure). I do. If the process which calculates a normal acceleration command value is performed in step S408, the process which the acceleration suppression command value calculating part 10J performs will transfer to step S412.
Here, in the process of calculating the normal acceleration command value, the command value for calculating the throttle opening based on the depression amount of the accelerator pedal 32 included in the drive side depression amount signal is calculated as the normal acceleration command value.
 ステップS410では、ステップS406で演算した加速抑制指令値を含む加速抑制指令値信号を、目標スロットル開度演算部10Kに出力する処理(図中に示す「加速抑制指令値出力」)を行う。ステップS410において、加速抑制指令値信号を出力する処理を行うと、加速抑制指令値演算部10Jが行う処理は終了(END)する。
 ステップS412では、ステップS408で演算した通常加速指令値を含む通常加速指令値信号を、目標スロットル開度演算部10Kに出力する処理(図中に示す「通常加速指令値出力」)を行う。ステップS412において、通常加速指令値信号を出力する処理を行うと、加速抑制指令値演算部10Jが行う処理は終了(END)する。
In step S410, an acceleration suppression command value signal including the acceleration suppression command value calculated in step S406 is output to the target throttle opening calculation unit 10K ("acceleration suppression command value output" shown in the figure). If the process which outputs an acceleration suppression command value signal is performed in step S410, the process which the acceleration suppression command value calculating part 10J performs will be complete | finished (END).
In step S412, a process of outputting a normal acceleration command value signal including the normal acceleration command value calculated in step S408 to the target throttle opening calculation unit 10K ("normal acceleration command value output" shown in the figure) is performed. If the process which outputs a normal acceleration command value signal is performed in step S412, the process which the acceleration suppression command value calculating part 10J performs will be complete | finished (END).
(目標スロットル開度演算部10Kで行う処理)
 次に、図1から図19を参照しつつ、図20を用いて、目標スロットル開度演算部10Kで行う処理について説明する。
 図20は、目標スロットル開度演算部10Kが行う処理を示すフローチャートである。なお、目標スロットル開度演算部10Kは、予め設定したサンプリング時間(例えば、10[msec])毎に、以下に説明する処理を行う。
 図20中に示すように、目標スロットル開度演算部10Kが処理を開始(START)すると、まず、ステップS500において、アクセル操作量演算部10Gから入力を受けた駆動側踏込み量信号を参照する。そして、駆動側踏込み量信号が含むアクセルペダル32の踏込み量(操作量)を取得する処理(図中に示す「アクセル操作量取得処理」)を行う。ステップS500において、アクセルペダル32の踏込み量(操作量)を取得する処理を行うと、目標スロットル開度演算部10Kが行う処理は、ステップS502へ移行する。
(Processing performed by the target throttle opening calculation unit 10K)
Next, processing performed by the target throttle opening calculation unit 10K will be described with reference to FIGS. 1 to 19 and FIG.
FIG. 20 is a flowchart showing processing performed by the target throttle opening calculation unit 10K. The target throttle opening calculation unit 10K performs the process described below for each preset sampling time (for example, 10 [msec]).
As shown in FIG. 20, when the target throttle opening calculation unit 10K starts processing (START), first, in step S500, the drive side depression amount signal received from the accelerator operation amount calculation unit 10G is referred to. And the process ("accelerator operation amount acquisition process" shown in a figure) which acquires the depression amount (operation amount) of the accelerator pedal 32 which the drive side depression amount signal contains is performed. If the process which acquires the depression amount (operation amount) of the accelerator pedal 32 is performed in step S500, the process which the target throttle opening calculating part 10K performs will transfer to step S502.
 ステップS502では、加速抑制指令値演算部10Jから入力を受けた情報信号に基づき、加速抑制指令値(ステップS406参照)または通常加速指令値(ステップS408参照)を取得する処理(図中に示す「指令値取得処理」)を行う。ステップS502において、加速抑制指令値または通常加速指令値を取得する処理を行うと、目標スロットル開度演算部10Kが行う処理は、ステップS504へ移行する。
 ステップS504では、ステップS500で取得したアクセルペダル32の踏込み量と、ステップS502で取得した指令値に基づき、目標スロットル開度の演算(図中に示す「目標スロットル開度演算」)を行う。ステップS504において、目標スロットル開度を演算すると、目標スロットル開度演算部10Kが行う処理は、ステップS506へ移行する。
In step S502, an acceleration suppression command value (see step S406) or a normal acceleration command value (see step S408) is acquired based on the information signal received from the acceleration suppression command value calculation unit 10J (see “ Command value acquisition processing ”). If the process which acquires an acceleration suppression command value or a normal acceleration command value is performed in step S502, the process which the target throttle opening calculating part 10K performs will transfer to step S504.
In step S504, calculation of the target throttle opening ("target throttle opening calculation" shown in the figure) is performed based on the depression amount of the accelerator pedal 32 acquired in step S500 and the command value acquired in step S502. When the target throttle opening is calculated in step S504, the processing performed by the target throttle opening calculation unit 10K proceeds to step S506.
 ここで、ステップS504では、ステップS502で取得した指令値が通常加速指令値である場合(加速抑制作動条件が非成立である場合)は、アクセルペダル32の踏込み量に応じたスロットル開度を、目標スロットル開度として演算する。
 一方、ステップS502で取得した指令値が加速抑制指令値である場合(加速抑制作動条件が成立している場合)は、加速抑制制御量指令値に応じたスロットル開度を、目標スロットル開度として演算する。
 目標スロットル開度は、例えば、以下の式(1)を用いて演算する。
   θ*=θ1-Δθ … (1)
 上式(1)中では、目標スロットル開度を「θ*」で示し、アクセルペダル32の踏込み量に応じたスロットル開度を「θ1」で示し、加速抑制制御量を「Δθ」で示す。
Here, in step S504, when the command value acquired in step S502 is a normal acceleration command value (when the acceleration suppression operation condition is not established), the throttle opening corresponding to the depression amount of the accelerator pedal 32 is set as follows. Calculated as the target throttle opening.
On the other hand, when the command value acquired in step S502 is the acceleration suppression command value (when the acceleration suppression operation condition is satisfied), the throttle opening corresponding to the acceleration suppression control amount command value is set as the target throttle opening. Calculate.
The target throttle opening is calculated using, for example, the following equation (1).
θ * = θ1−Δθ (1)
In the above equation (1), the target throttle opening is indicated by “θ * ”, the throttle opening corresponding to the depression amount of the accelerator pedal 32 is indicated by “θ1”, and the acceleration suppression control amount is indicated by “Δθ”.
 ステップS506では、ステップS504で演算した目標スロットル開度θ*を含む目標スロットル開度信号を、エンジンコントローラ12に出力(図中に示す「目標スロットル開度出力」)する。ステップS506において、目標スロットル開度信号をエンジンコントローラ12に出力する処理を行うと、目標スロットル開度演算部10Kが行う処理は終了(END)する。
 ここで、ステップS506では、ステップS502で取得した指令値が加速抑制指令値である場合は、アクセルペダル32の開度(踏み込み量)が加速抑制制御開始タイミングに応じた開度に達したタイミングで、目標スロットル開度信号を出力する。
In step S506, a target throttle opening signal including the target throttle opening θ * calculated in step S504 is output to the engine controller 12 (“target throttle opening output” shown in the figure). In step S506, when the process of outputting the target throttle opening signal to the engine controller 12 is performed, the process performed by the target throttle opening calculation unit 10K ends (END).
Here, in step S506, when the command value acquired in step S502 is an acceleration suppression command value, the opening (depression amount) of the accelerator pedal 32 reaches the opening corresponding to the acceleration suppression control start timing. The target throttle opening signal is output.
(動作)
 次に、図1から図20を参照して、本実施形態の車両用加速抑制装置1を用いて行う動作の一例を説明する。
 以下に記載する動作の一例では、駐車場内を走行する自車両Vが、運転者の選択した駐車枠L0に進入する例を説明する。
 駐車場内を走行する自車両Vの車速が、閾値車速である15[km/h]以上の状態では、加速抑制制御作動条件が成立しないため、自車両Vには加速抑制制御が作動することなく、運転者の加速意図を反映した通常の加速制御を行う。
 車速が閾値車速未満となり、駐車枠L0を検出し、さらに、ブレーキペダル30が操作されておらず、アクセルペダル32の踏込み量が閾値アクセル操作量以上であると、自車両Vが駐車枠L0へ進入するか否かの判断を行う。
 また、自車両Vの走行中には、駐車枠確信度算出部36が端部確信度を算出し、算出した端部確信度に基づいて駐車枠確信度を算出し、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する。そして、総合確信度算出部40が、駐車枠確信度及び駐車枠進入確信度に基づく総合確信度を算出する。
(Operation)
Next, with reference to FIGS. 1-20, an example of the operation | movement performed using the vehicle acceleration suppression apparatus 1 of this embodiment is demonstrated.
In an example of the operation described below, an example will be described in which the host vehicle V traveling in a parking lot enters the parking frame L0 selected by the driver.
When the vehicle speed of the host vehicle V traveling in the parking lot is not less than 15 [km / h], which is the threshold vehicle speed, the acceleration suppression control operation condition is not satisfied. The normal acceleration control that reflects the driver's acceleration intention is performed.
When the vehicle speed is less than the threshold vehicle speed, the parking frame L0 is detected, the brake pedal 30 is not operated, and the depression amount of the accelerator pedal 32 is equal to or greater than the threshold accelerator operation amount, the host vehicle V moves to the parking frame L0. Judge whether to enter or not.
Further, while the host vehicle V is traveling, the parking frame certainty calculation unit 36 calculates the end certainty, calculates the parking frame certainty based on the calculated end certainty, and calculates the parking frame approach certainty. The unit 38 calculates the parking frame approach reliability. And the comprehensive reliability calculation part 40 calculates the comprehensive reliability based on a parking frame reliability and a parking frame approach reliability.
 さらに、自車両Vの走行中には、総合確信度算出部40が算出した総合確信度に基づき、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算し、加速抑制制御量演算部44が加速抑制制御量を演算する。
 そして、自車両Vが駐車枠L0へ進入すると判断し、加速抑制制御作動条件が成立すると判断すると、加速抑制指令値演算部10Jが、加速抑制指令値信号を目標スロットル開度演算部10Kへ出力する。さらに、目標スロットル開度演算部10Kが、目標スロットル開度信号をエンジンコントローラ12へ出力する。
 このため、加速抑制制御作動条件が成立した状態で、運転者がアクセルペダル32を操作すると、アクセルペダル32の踏み込み量に応じたスロットル開度を、加速抑制制御量指令値に応じた開度に抑制する。これに加え、アクセルペダル32の踏み込み量に応じたスロットル開度を抑制する開始タイミングを、加速抑制制御開始タイミング指令値に応じたタイミングとする。
Further, while the host vehicle V is traveling, the acceleration suppression control start timing calculation unit 42 calculates the acceleration suppression control start timing based on the total reliability calculated by the total reliability calculation unit 40, and the acceleration suppression control amount calculation unit 44 calculates an acceleration suppression control amount.
When it is determined that the host vehicle V enters the parking frame L0 and the acceleration suppression control operation condition is satisfied, the acceleration suppression command value calculation unit 10J outputs an acceleration suppression command value signal to the target throttle opening calculation unit 10K. To do. Further, the target throttle opening calculation unit 10K outputs a target throttle opening signal to the engine controller 12.
Therefore, when the driver operates the accelerator pedal 32 in a state where the acceleration suppression control operation condition is satisfied, the throttle opening corresponding to the depression amount of the accelerator pedal 32 is changed to the opening corresponding to the acceleration suppression control amount command value. Suppress. In addition, the start timing for suppressing the throttle opening according to the depression amount of the accelerator pedal 32 is set as the timing according to the acceleration suppression control start timing command value.
 したがって、自車両Vが駐車枠L0内で駐車に適した位置に近づいた状態等、制動操作が適切な運転操作である状況で、誤操作等によりアクセルペダル32が操作された場合であっても、総合確信度に応じてスロットル開度を抑制することが可能となる。すなわち、総合確信度が低い状態では、加速抑制量(スロットル開度の抑制度合い)が小さいため、運転性の低下を少なくすることが可能となり、総合確信度が高い状態では、加速抑制量が大きいため、自車両Vの加速抑制効果を高くすることが可能となる。 Therefore, even when the accelerator pedal 32 is operated by an erroneous operation or the like in a situation where the braking operation is an appropriate driving operation, such as a state where the host vehicle V is close to a position suitable for parking within the parking frame L0, It becomes possible to suppress the throttle opening according to the total certainty factor. That is, since the acceleration suppression amount (the degree of throttle opening suppression) is small when the overall confidence level is low, it is possible to reduce the reduction in drivability, and when the overall confidence level is high, the acceleration suppression amount is large. Therefore, the acceleration suppression effect of the host vehicle V can be increased.
 以上説明したように、本実施形態では、駐車時において、駐車枠L0への進入を行う前には駐車場内における運転性低下を抑制することが可能であるとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
 また、本実施形態では、総合確信度が高いほど、加速抑制制御量を大きくすることにより、自車両Vの加速を抑制して、安全性を向上させる。また、総合確信度が低いほど、加速抑制制御開始タイミングを遅くして、運転性の低下を抑制する。これにより、以下に示す状況下において、安全性の向上と運転性低下の抑制が可能となる。
As described above, in the present embodiment, it is possible to suppress a decrease in drivability in the parking lot before entering the parking frame L0 during parking, and to prevent the accelerator pedal 32 from being erroneously operated. It becomes possible to suppress the acceleration of the vehicle V.
Moreover, in this embodiment, the acceleration of the host vehicle V is suppressed and the safety is improved by increasing the acceleration suppression control amount as the total certainty factor is higher. Further, the lower the overall certainty, the later the acceleration suppression control start timing is delayed, and the drivability is suppressed from decreasing. This makes it possible to improve safety and suppress deterioration of drivability under the following conditions.
 例えば、路上において、走行路の脇に縦列駐車用の駐車枠L0が標示されている付近に待機している自車両Vを発進させる状況では、ある程度の加速を許容する必要がある。
 また、以下に示す状況下においても、ある程度の加速を許容する必要がある。これは、自車両Vを駐車させる駐車枠L0の両脇(左右の駐車枠)に他車両が存在し、その向かい側(各駐車枠から離れた側)に多少のスペースに自車両Vを前側から進入させる。その後、自車両Vを駐車させる駐車枠L0に自車両Vを後側から進入させて駐車を行う状況である。
For example, in the situation where the host vehicle V standing by in the vicinity of the parking frame L0 for parallel parking on the side of the traveling road is started, it is necessary to allow a certain degree of acceleration.
Even under the following conditions, it is necessary to allow a certain amount of acceleration. This is because there are other vehicles on both sides (left and right parking frames) of the parking frame L0 where the host vehicle V is parked, and the host vehicle V is placed in a slight space on the opposite side (side away from each parking frame) from the front side. Let it enter. Thereafter, the host vehicle V is entered from the rear side into the parking frame L0 where the host vehicle V is parked, and parking is performed.
 これらの状況に対し、総合確信度に基づいて加速抑制制御開始タイミングと加速抑制制御量を制御することにより、自車両Vの加速を抑制して、安全性を向上させることが可能となる。これに加え、自車両Vの加速を許容して、運転性低下を抑制することが可能となる。
 また、本実施形態では、駐車枠確信度が低い場合、駐車枠確信度が高い場合よりも、加速抑制制御量を小さく演算する。これにより、以下に示すように、自車両Vの現在位置が公道上ではない位置(例えば、駐車場内)である状況下において、運転性低下の抑制が可能となる。
 自車両Vの現在位置が公道上ではない位置である状況下において、例えば、周囲環境認識センサ14で撮像した画像内に線を検出しているが、検出した線を駐車枠線と特定できない場合、駐車枠確信度を低いレベルとして算出する。なお、検出した線を駐車枠線と特定できない場合とは、例えば、周囲環境認識センサ14で撮像した画像内に一本の線を検出し、その端部は検出しているが、検出した一本の線の手前側(自車両Vに近い側)には、線を検出していない場合である。
By controlling the acceleration suppression control start timing and the acceleration suppression control amount based on the total certainty for these situations, it is possible to suppress the acceleration of the host vehicle V and improve safety. In addition, it is possible to allow acceleration of the host vehicle V and suppress a reduction in drivability.
In this embodiment, when the parking frame certainty factor is low, the acceleration suppression control amount is calculated to be smaller than when the parking frame certainty factor is high. As a result, as described below, it is possible to suppress drivability degradation under the situation where the current position of the host vehicle V is not on a public road (for example, in a parking lot).
In a situation where the current position of the host vehicle V is not on a public road, for example, a line is detected in the image captured by the surrounding environment recognition sensor 14, but the detected line cannot be identified as a parking frame line. The parking frame certainty is calculated as a low level. The case where the detected line cannot be identified as the parking frame line is, for example, that one line is detected in the image captured by the surrounding environment recognition sensor 14 and its end is detected. This is a case where no line is detected on the front side of the book line (the side close to the host vehicle V).
 また、例えば、周囲環境認識センサ14で撮像した画像内に検出した線が、エッジ(縁)がぼやけている線や、かすれて不明瞭である線である場合は、自車両Vの現在位置が公道上ではない位置であると判定し、さらに、駐車枠確信度を低いレベルとして算出する。これは、公道上に標示されている線は、公的機関等により定期的なメンテナンスが行なわれる場合が多いため、エッジがぼやけている状態や、かすれて不明瞭な状態である期間が短いと推定可能であるためである。
 なお、上述した加速抑制指令値演算部10J、目標スロットル開度演算部10Kは、加速制御部に対応する。
 また、上述した周囲環境認識情報演算部10Aは、周囲環境認識部に対応する。
 また、上述した自車両車速演算部10B、操舵角演算部10C、操舵角速度演算部10D、ブレーキペダル操作情報演算部10F、アクセル操作量演算部10G、アクセル操作速度演算部10Hは、自車両走行状態検出部に対応する。
 また、上述した加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kは、加速抑制部に対応する。
For example, when the line detected in the image captured by the surrounding environment recognition sensor 14 is a line with a blurred edge or a line that is blurred and unclear, the current position of the host vehicle V is It is determined that the position is not on a public road, and the parking frame certainty is calculated as a low level. This is because the lines marked on public roads are often regularly maintained by public agencies, etc., so if the edges are blurred or the period is blurred and unclear This is because it can be estimated.
The acceleration suppression command value calculation unit 10J and the target throttle opening calculation unit 10K described above correspond to an acceleration control unit.
The ambient environment recognition information calculation unit 10A described above corresponds to the ambient environment recognition unit.
In addition, the host vehicle speed calculation unit 10B, the steering angle calculation unit 10C, the steering angular speed calculation unit 10D, the brake pedal operation information calculation unit 10F, the accelerator operation amount calculation unit 10G, and the accelerator operation speed calculation unit 10H described above are included in the host vehicle running state. Corresponds to the detector.
Further, the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K described above correspond to the acceleration suppression unit.
 また、上述したスロットル開度は、加速指令値に対応する。
 また、上述したナビゲーション装置26は、自車両現在位置検出部及び自車両走行路種別検出部に対応する。
 また、上述したように、本実施形態の車両用加速抑制装置1の動作で実施する車両用加速抑制方法は、駐車枠確信度が低いときは、駐車枠確信度が高いときに比べて、アクセルペダル32の操作量に応じた加速指令値を低い抑制度合いで抑制する方法である。ここで、駐車枠確信度は、自車両Vの進行方向に駐車枠L0が存在する確信の度合いを示し、自車両V周囲の環境に基づいて算出する。
 また、上述したように、本実施形態の車両用加速抑制装置1の動作で実施する車両用加速抑制方法は、総合確信度が低いときは、総合確信度が高いときに比べて、アクセルペダル32の操作量に応じた加速指令値を低い抑制度合いで抑制する方法である。ここで、総合確信度は、駐車枠確信度と駐車枠進入確信度との総合的な確信の度合いを示す。また、駐車枠進入確信度は、自車両Vが駐車枠L0へ進入する確信の度合いを示す。
The throttle opening described above corresponds to the acceleration command value.
Moreover, the navigation apparatus 26 mentioned above respond | corresponds to the own vehicle present position detection part and the own vehicle traveling road type detection part.
Further, as described above, the vehicle acceleration suppression method implemented by the operation of the vehicle acceleration suppression device 1 according to the present embodiment is more effective when the parking frame certainty factor is low than when the parking frame certainty factor is high. This is a method of suppressing the acceleration command value corresponding to the operation amount of the pedal 32 with a low suppression degree. Here, the parking frame certainty factor indicates the degree of certainty that the parking frame L0 exists in the traveling direction of the host vehicle V, and is calculated based on the environment around the host vehicle V.
Further, as described above, the acceleration suppression method for a vehicle implemented by the operation of the vehicle acceleration suppression device 1 according to the present embodiment has a lower accelerator pedal 32 when the total certainty factor is low than when the total certainty factor is high. This is a method of suppressing the acceleration command value according to the operation amount with a low suppression degree. Here, the comprehensive certainty indicates the degree of comprehensive certainty between the parking frame certainty and the parking frame approach certainty. The parking frame approach reliability indicates the degree of confidence that the host vehicle V enters the parking frame L0.
(第一実施形態の効果)
 本実施形態であれば、以下に記載する効果を奏することが可能となる。
(1)駐車枠確信度算出部36が、自車両Vの周囲の俯瞰画像(環境)に基づいて端部確信度を算出し、算出した端部確信度に基づいて、駐車枠確信度を算出する。これに加え、加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kが、駐車枠確信度算出部36が算出した駐車枠確信度が高いほど、加速指令値の抑制度合いを高くする。すなわち、加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kは、駐車枠確信度算出部36が算出した駐車枠確信度が低いほど、加速指令値の抑制度合いを低くする。
(Effects of the first embodiment)
If it is this embodiment, it will become possible to show the effect described below.
(1) The parking frame certainty calculation unit 36 calculates an end certainty based on an overhead image (environment) around the host vehicle V, and calculates a parking frame certainty based on the calculated end certainty. To do. In addition, the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K are calculated by the parking frame certainty calculation unit 36. The higher the certainty factor, the higher the degree of suppression of the acceleration command value. That is, the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K are the parking frame reliability calculated by the parking frame reliability calculation unit 36. The lower the value, the lower the degree of suppression of the acceleration command value.
 端部確信度は、俯瞰画像が駐車枠の端部の画像を含むことの確信の度合いを示しているので、当該端部確信度に基づいて算出された駐車枠確信度の精度は向上する。
 このため、精度が向上した駐車枠確信度に基づいて、駐車枠確信度が低い状態では、加速指令値の抑制度合いを低くして運転性の低下を少なくすることが可能となり、駐車枠確信度が高い状態では、加速指令値の抑制度合いを高くして自車両Vの加速抑制効果を高くすることが可能となる。
 その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
The end certainty factor indicates the degree of certainty that the overhead image includes the image of the end portion of the parking frame, so the accuracy of the parking frame certainty factor calculated based on the end certainty factor is improved.
For this reason, based on the parking frame reliability with improved accuracy, in a state where the parking frame reliability is low, it is possible to reduce the degree of suppression of the acceleration command value and reduce the decrease in drivability. In a high state, it is possible to increase the acceleration suppression effect of the host vehicle V by increasing the degree of suppression of the acceleration command value.
As a result, it is possible to suppress the drivability of the host vehicle V during parking and to suppress acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
(2)駐車枠進入確信度算出部38が、自車両Vの周囲の俯瞰画像(環境)と、自車両Vの車速及びステアリングホイール28の回転角(走行状態)に基づいて、駐車枠進入確信度を算出する。これに加え、総合確信度算出部40が、駐車枠確信度算出部36が算出した駐車枠確信度及び駐車枠進入確信度算出部38が算出した駐車枠進入確信度に基づいて、総合確信度を算出する。さらに、総合確信度算出部40が算出した総合確信度が低いときは、総合確信度が高いときに比べて、加速指令値の抑制度合いを低くする。
 このため、自車両Vの進行方向に駐車枠L0が存在する確信の度合いに加え、自車両Vが駐車枠L0へ進入する確信の度合いに応じて、加速指令値の抑制度合いを制御することが可能となる。
 その結果、上述した効果(1)に加え、さらに、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(2) The parking frame approach reliability calculation unit 38 determines the parking frame approach reliability based on the bird's-eye view image (environment) around the host vehicle V, the vehicle speed of the host vehicle V, and the rotation angle (running state) of the steering wheel 28. Calculate the degree. In addition to this, the overall certainty factor calculating unit 40 is based on the parking frame certainty factor calculated by the parking frame certainty factor calculating unit 36 and the parking frame approach certainty factor calculated by the parking frame approach certainty factor calculating unit 38. Is calculated. Furthermore, when the total certainty factor calculated by the total certainty factor calculation unit 40 is low, the degree of suppression of the acceleration command value is made lower than when the total certainty factor is high.
For this reason, in addition to the certainty degree that the parking frame L0 exists in the traveling direction of the own vehicle V, the degree of suppression of the acceleration command value can be controlled according to the certainty degree that the own vehicle V enters the parking frame L0. It becomes possible.
As a result, in addition to the effect (1) described above, it is possible to further suppress the drivability of the host vehicle V during parking and to suppress the acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
(3)加速抑制制御開始タイミング演算部42と、加速抑制指令値演算部10Jと、目標スロットル開度演算部10Kが、加速抑制制御開始タイミングを遅れさせて、加速指令値の抑制度合いを低くする。
 その結果、アクセルペダル32の踏み込み量に応じたスロットル開度を抑制する開始タイミングを制御して、加速指令値の抑制度合いを制御することが可能となる。
(4)加速抑制制御量演算部44と、加速抑制指令値演算部10Jと、目標スロットル開度演算部10Kが、加速抑制制御量を減少させて、加速指令値の抑制度合いを低くする。
 その結果、アクセルペダル32の踏み込み量に応じたスロットル開度の抑制量を制御して、加速指令値の抑制度合いを制御することが可能となる。
(3) The acceleration suppression control start timing calculation unit 42, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K delay the acceleration suppression control start timing to lower the degree of suppression of the acceleration command value. .
As a result, it is possible to control the degree of suppression of the acceleration command value by controlling the start timing for suppressing the throttle opening according to the depression amount of the accelerator pedal 32.
(4) The acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K reduce the acceleration suppression control amount to lower the degree of suppression of the acceleration command value.
As a result, the degree of suppression of the acceleration command value can be controlled by controlling the amount of throttle opening suppression according to the amount of depression of the accelerator pedal 32.
(5)本実施形態の車両用加速抑制方法では、自車両Vの周囲の俯瞰画像(環境)と自車両Vの車速(走行状態)に基づいて、駐車枠確信度を算出する。これに加え、自車両Vの駐車枠L0への進入を検出すると、駐車枠確信度が低いときは、駐車枠確信度が高いときに比べて、加速指令値を低い抑制度合いで抑制する。
 このため、駐車枠確信度が低い状態では、加速指令値の抑制度合いを低くして運転性の低下を少なくすることが可能となり、駐車枠確信度が高い状態では、加速指令値の抑制度合いを高くして自車両Vの加速抑制効果を高くすることが可能となる。
 その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(5) In the vehicle acceleration suppression method of the present embodiment, the parking frame certainty factor is calculated based on an overhead image (environment) around the host vehicle V and the vehicle speed (running state) of the host vehicle V. In addition, when the approach of the host vehicle V to the parking frame L0 is detected, the acceleration command value is suppressed with a lower suppression degree when the parking frame certainty factor is low than when the parking frame certainty factor is high.
For this reason, when the parking frame certainty factor is low, it is possible to reduce the degree of suppression of the acceleration command value to reduce the decrease in drivability, and when the parking frame certainty factor is high, the degree of suppression of the acceleration command value can be reduced. The acceleration suppression effect of the host vehicle V can be increased by increasing the speed.
As a result, it is possible to suppress the drivability of the host vehicle V during parking and to suppress acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
(6)本実施形態の車両用加速抑制方法では、自車両Vの周囲の俯瞰画像(環境)に基づいて端部確信度を算出し、算出した端部確信度に基づいて、駐車枠進入確信度を算出する。これに加え、算出した駐車枠確信度及び駐車枠進入確信度に基づいて、総合確信度を算出し、総合確信度が低いときは、総合確信度が高いときに比べて、加速指令値を低い抑制度合いで抑制する。
 このため、自車両Vの進行方向に駐車枠L0が存在する確信の度合いに加え、自車両Vが駐車枠L0へ進入する確信の度合いに応じて、加速指令値の抑制度合いを制御することが可能となる。
 その結果、上述した効果(5)に加え、さらに、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(6) In the vehicle acceleration suppression method of the present embodiment, the end certainty factor is calculated based on an overhead image (environment) around the host vehicle V, and the parking frame approaching certainty is calculated based on the calculated end certainty factor. Calculate the degree. In addition to this, based on the calculated parking frame certainty and the parking frame approach certainty, the total certainty is calculated. When the total certainty is low, the acceleration command value is lower than when the total certainty is high. Suppress with the degree of suppression.
For this reason, in addition to the certainty degree that the parking frame L0 exists in the traveling direction of the own vehicle V, the degree of suppression of the acceleration command value can be controlled according to the certainty degree that the own vehicle V enters the parking frame L0. It becomes possible.
As a result, in addition to the above-described effect (5), it is possible to further suppress the drivability of the host vehicle V during parking and to suppress the acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
(7)駐車枠確信度算出部36は、端部確信度のレベルが高いほど、高いレベルの駐車枠確信度を算出する。
 これにより、端部確信度のレベルが高いほど、高いレベルの駐車枠確信度を算出しやすくなる。
(8)駐車枠確信度算出部36は、算出した端部確信度のレベルに基づいて駐車枠確信度の算出条件を補正する。
 このため、端部確信度のレベルに応じて、駐車枠確信度の算出条件を変更できる。
(9)駐車枠確信度算出部36は、端部確信度のレベルが高いほど、高いレベルの駐車枠確信度が算出されるように、駐車枠確信度の算出条件を緩和する。
 端部確信度のレベルが高いと、俯瞰画像に含まれる枠線の画像は駐車枠線である可能性が高くなる。このため、駐車枠確信度の算出条件を緩和しても、算出する駐車枠確信度の精度は低下しない。
 その結果、上述の効果(1)が得られる。
(7) The parking frame certainty calculation unit 36 calculates a higher level of parking frame certainty as the end certainty level is higher.
Thereby, it becomes easier to calculate a higher level of parking frame certainty as the end certainty level is higher.
(8) The parking frame certainty calculation unit 36 corrects the calculation condition for the parking frame certainty based on the calculated level of the end certainty.
For this reason, the calculation conditions of parking frame reliability can be changed according to the level of edge reliability.
(9) The parking frame certainty calculation unit 36 relaxes the calculation condition of the parking frame certainty so that the higher the end certainty level, the higher the parking frame certainty is calculated.
When the level of the edge reliability is high, there is a high possibility that the image of the frame line included in the overhead image is a parking frame line. For this reason, even if the calculation conditions for the parking frame certainty factor are relaxed, the accuracy of the calculated parking frame certainty factor does not decrease.
As a result, the above-mentioned effect (1) is obtained.
(10)駐車枠確信度算出部36は、駐車枠の端部の形状に基づいて分類された複数の端部形状パターンを含み、俯瞰画像が複数の端部形状パターンのいずれか1つを含んでいるか否かを判定する際に参照される端部判定パターンマップを有している。さらに、駐車枠確信度算出部36は、複数の端部形状パターンと端部確信度のレベルとの対応関係を規定し、端部確信度のレベルを算出する際に参照される端部確信度レベル算出マップを有している。
 これにより、俯瞰画像から画一的に端部形状パターンを検出するとともに、端部確信度のレベルを算出できる。
(11)駐車枠確信度算出部36は、駐車枠の一の端部から自車両Vの進行方向に延びる線の単複に応じて、複数の端部形状パターンと端部確信度のレベルとの対応関係を異ならせた複数の端部確信度レベル算出マップを有している。
 これにより、俯瞰画像に含まれる線の種類に応じて端部確信度のレベルを変更できる。
(10) The parking frame certainty calculation unit 36 includes a plurality of end shape patterns classified based on the shape of the end of the parking frame, and the overhead image includes any one of the plurality of end shape patterns. It has an end portion determination pattern map that is referred to when determining whether or not. Furthermore, the parking frame certainty calculation unit 36 defines the correspondence between the plurality of end shape patterns and the end certainty levels, and is referred to when calculating the end certainty levels. Has a level calculation map.
Thus, the edge shape pattern can be uniformly detected from the overhead image, and the edge reliability level can be calculated.
(11) The parking frame certainty calculation unit 36 determines whether the plurality of end shape patterns and the end certainty levels correspond to the number of lines extending from one end of the parking frame in the traveling direction of the host vehicle V. A plurality of edge reliability level calculation maps having different correspondences are provided.
Thereby, the level of edge part reliability can be changed according to the kind of line contained in a bird's-eye view image.
(12)端部確信度レベル算出マップは、公道に用いられる線の端部形状と同じ形状の端部形状パターンにはレベルの低い端部確信度を対応付けている。
 このため、俯瞰画像から公道に用いられる線の端部形状と同じ形状の端部を検出した場合には、レベルの低い端部確信度を算出できる。
 その結果、駐車枠確信度のレベルが低下するので、公道における加速指令値の抑制度合を低くして運転性の低下を少なくすることが可能になる。
(12) The end certainty level calculation map associates the end certainty with a low level with the end shape pattern having the same shape as the end shape of the line used for the public road.
For this reason, when the edge part of the same shape as the edge part shape of the line used for a public road is detected from a bird's-eye view image, a low-level edge reliability can be calculated.
As a result, the parking frame certainty level is lowered, so that the degree of suppression of the acceleration command value on the public road can be lowered to reduce the drivability.
(変形例)
(1)本実施形態では、駐車枠確信度算出部36は、端部判定パターンマップを参照し、俯瞰画像に端部形状パターンの画像が含まれているか否かを判定するようになっているが、本実施形態はこれに限定するものではない。駐車枠確信度算出部36は、俯瞰画像に含まれる端部形状が端部判定パターンマップに設けた複数の端部形状パターンのいずれでもない場合には、当該俯瞰画像に含まれる端部形状パターンに基づいて、当該端部形状を複数の端部形状パターンのうちの一の端部形状パターンとなるように補正してもよい。すなわち、駐車枠確信度算出部36は、俯瞰画像に含まれた複数の端部形状のうちの端部形状パターンに対応する端部形状に基づいて、端部形状パターンに対応しない端部形状を端部形状パターンに対応するように補正してもよい。
 例えば、駐車枠確信度算出部36が俯瞰画像から検出した左右の端部のうち、一方が端部判定パターンマップに設けた複数の端部形状パターンのうちのいずれかに対応し、他方が複数の端部形状パターンのいずれにも対応していないとする。この場合、駐車枠確信度算出部36は、当該他方の端部を当該一方の端部のペアとなる端部形状パターンに補間する。
(Modification)
(1) In the present embodiment, the parking frame certainty calculation unit 36 refers to the end determination pattern map to determine whether or not the bird's-eye view image includes an end shape pattern image. However, the present embodiment is not limited to this. When the edge shape included in the overhead image is not one of the plurality of edge shape patterns provided in the edge determination pattern map, the parking frame certainty factor calculation unit 36 includes the edge shape pattern included in the overhead image. The end shape may be corrected to be one end shape pattern among the plurality of end shape patterns. That is, the parking frame certainty calculation unit 36 calculates an end shape that does not correspond to the end shape pattern based on the end shape corresponding to the end shape pattern among the plurality of end shapes included in the overhead image. You may correct | amend so that it may correspond to an edge part shape pattern.
For example, one of the left and right ends detected by the parking frame certainty calculation unit 36 from the overhead image corresponds to one of a plurality of end shape patterns provided in the end determination pattern map, and the other is a plurality It is assumed that none of the end shape patterns is supported. In this case, the parking frame certainty calculation unit 36 interpolates the other end portion into an end shape pattern that forms a pair of the one end portion.
 以下、本変形例について、より具体的に説明する。なお、本変形例では、自車両Vの進行方向における自車両Vに近い位置(下側)の俯瞰画像を例にとって、駐車枠確信度算出部36がステップS203(図8参照)において実行する俯瞰画像の補正処理を説明する。図21は、本変形例における駐車枠確信度算出部36がステップS203において実行する俯瞰画像の補正処理を説明する図である。図21(a)及び図21(b)の図中太矢印の左側(以下、太矢印の左側を単に「左側」と略記する場合がある)には、俯瞰画像の一部を模式的に示し、当該太矢印の右側(以下、太矢印の右側を単に「右側」と略記する)には、当該一部を補間して得られた端部形状パターンを示している。図21(c)の図中左側には、俯瞰画像の一部を模式的に示し、当該左側太矢印及び図中右側太矢印の間(以下、両太矢印の間を「中央」と称する場合がある)には、当該一部を補間して得られた端部形状パターンを示し、右側には、当該端部形状パターンをさらに補間したパターンを示している。 Hereinafter, this modification will be described more specifically. In this modified example, the overhead view image executed by the parking frame certainty calculation unit 36 in step S203 (see FIG. 8) is taken as an example of the overhead view image at a position (lower side) close to the own vehicle V in the traveling direction of the own vehicle V. Image correction processing will be described. FIG. 21 is a diagram for describing the overhead image correction processing executed in step S203 by the parking frame certainty factor calculation unit 36 in the present modification. A part of the overhead image is schematically shown on the left side of the thick arrow in the drawings of FIGS. 21A and 21B (hereinafter, the left side of the thick arrow may be simply abbreviated as “left side”). On the right side of the thick arrow (hereinafter, the right side of the thick arrow is simply abbreviated as “right side”), an end shape pattern obtained by interpolating the part is shown. A part of the overhead view image is schematically shown on the left side in the drawing of FIG. 21C, and between the left thick arrow and the right thick arrow in the drawing (hereinafter, the center between the two thick arrows is referred to as “center”). ) Shows an end shape pattern obtained by interpolating the part, and the right side shows a pattern obtained by further interpolating the end shape pattern.
 図21(a)の図中左側に示すように、俯瞰画像が単線の画像を有しているとする。駐車枠確信度算出部36は、当該単線の下方(当該図中に破線の円で囲む領域)にペイントの画像がないと判断したら、当該単線を直線停止形状の端部形状パターンと判定する。一方、駐車枠確信度算出部36は、当該単線の下方にペイントの画像があると判定したら、当該ペイントの画像の形状に基づいて、端部判定パターンマップの複数の端部形状パターンのうちの一の端部形状パターンに補正する。図21(a)では、当該単線の下方にペイントの画像がないので、駐車枠確信度算出部36は、当該単線を直線停止形状の端部形状パターンと判定する(図21(a)の右側参照)。 Suppose that the overhead image has a single line image as shown on the left side of FIG. If the parking frame certainty calculation unit 36 determines that there is no paint image below the single line (a region surrounded by a broken-line circle in the drawing), the parking frame certainty calculation unit 36 determines the single line as an end shape pattern of a linear stop shape. On the other hand, when the parking frame certainty calculation unit 36 determines that there is a paint image below the single line, the parking frame certainty factor calculation unit 36, based on the shape of the paint image, of the plurality of end shape patterns of the end determination pattern map Correct to one end shape pattern. In FIG. 21A, since there is no paint image below the single line, the parking frame certainty calculation unit 36 determines the single line as an end shape pattern having a linear stop shape (on the right side of FIG. 21A). reference).
 図21(b)の図中左側に示すように、俯瞰画像が両側二重線の画像を有しているとする。当該両側二重線のうち、右側の二重線は端部判定パターンマップのパターン「5」の「下側右」欄の端部形状パターンに対応している。これに対し、当該両側の二重線のうち、左側の二重線は端部判定パターンマップの端部形状パターンのいずれにも対応していない。そこで、駐車枠確信度算出部36は、右側の二重線がパターン番号「5」の「下側右」欄の端部形状パターンに対応していること、及び、左側の二重線の端部に下に凸の曲線があることに基づいて、左側の二重線をパターン番号「5」の「下側左」欄の端部形状パターンに補間する(図21(b)の右側参照)。 Suppose that the bird's-eye view image has double-sided double line images as shown on the left side of FIG. Of the double-sided double lines, the double line on the right side corresponds to the end shape pattern in the “lower right” column of the pattern “5” of the end determination pattern map. On the other hand, among the double lines on both sides, the left double line does not correspond to any of the end shape patterns of the end determination pattern map. Therefore, the parking frame certainty calculation unit 36 determines that the right double line corresponds to the end shape pattern in the “lower right” column of the pattern number “5” and the end of the left double line. Based on the fact that there is a convex curve at the bottom, the left double line is interpolated into the end shape pattern in the “lower left” column of pattern number “5” (see the right side of FIG. 21B). .
 図21(c)の図中左側に示すように、俯瞰画像が両側二重線の画像を有しているとする。当該両側二重線のうち、左側の二重線は端部判定パターンマップのパターン「2」及び第2の組み合わせのパターン「3」の「下側左」欄の端部形状パターンに対応している。これに対し、当該両側の二重線のうち、右側の二重線は端部判定パターンマップの端部形状パターンのいずれにも対応していない。そこで、駐車枠確信度算出部36は、左側の二重線がパターン番号「2」または「3」の端部形状パターンに対応していること、及び、右側の二重線の端部に右方向に向かう直線があることに基づいて、右側の二重線をパターン番号「2」の「下側右」欄の端部形状パターンに補間する(図21(c)の右側参照)。
 また、駐車枠確信度算出部36は、当該俯瞰画像に含まれる右側の線の形状を端部判定パターンマップのパターン番号「2」の「下側右」欄の端部形状パターンに補間した後で、2つの端部を直線で補間してもよい(図21(c)の中央参照)。
As shown in the left side of FIG. 21C, it is assumed that the overhead view image includes a double-sided double line image. Of the double lines on both sides, the left double line corresponds to the end shape pattern in the “lower left” column of the pattern “2” of the end determination pattern map and the pattern “3” of the second combination. Yes. On the other hand, among the double lines on both sides, the right double line does not correspond to any of the end shape patterns of the end determination pattern map. Therefore, the parking frame certainty calculation unit 36 determines that the left double line corresponds to the end shape pattern of the pattern number “2” or “3” and that the right double line has an end on the right side. Based on the fact that there is a straight line directed in the direction, the right double line is interpolated into the end shape pattern in the “lower right” column of pattern number “2” (see the right side in FIG. 21C).
Further, the parking frame certainty calculation unit 36 interpolates the shape of the right line included in the overhead image into the end shape pattern in the “lower right” column of the pattern number “2” of the end determination pattern map. Thus, the two ends may be interpolated with a straight line (see the center of FIG. 21C).
 このように、本変形例では、駐車枠確信度算出部36は、俯瞰画像に含まれる端部形状が複数の端部形状パターンのいずれでもない場合には、当該俯瞰画像に含まれる複数の端部形状パターンに基づいて、当該端部形状を複数の端部形状パターンのうちの一の端部形状パターンとなるように補正する。
 これにより、端部形状パターンと異なる端部形状も端部判定パターンマップや端部確信度レベル算出マップを用いて画一的に処理できる。
Thus, in this modification, the parking frame certainty calculation unit 36, when the end shape included in the overhead image is not any of the plurality of end shape patterns, the plurality of ends included in the overhead image. Based on the part shape pattern, the end part shape is corrected to be one end part shape pattern among the plurality of end part shape patterns.
Thus, an end shape different from the end shape pattern can be uniformly processed using the end determination pattern map and the end certainty level calculation map.
(2)本実施形態では、総合確信度算出部40が算出した総合確信度に基づいて、加速抑制制御開始タイミングと加速抑制制御量を演算したが、これに限定するものではない。すなわち、駐車枠確信度算出部36が算出した駐車枠確信度のみに基づいて、加速抑制制御開始タイミングと加速抑制制御量を演算してもよい。この場合、加速抑制制御開始タイミングと加速抑制制御量は、駐車枠確信度を、例えば、図22中に示す加速抑制条件演算マップに適合させて演算する。なお、図22は、本実施形態の変形例を示す図である。 (2) In the present embodiment, the acceleration suppression control start timing and the acceleration suppression control amount are calculated based on the total reliability calculated by the total reliability calculation unit 40, but the present invention is not limited to this. That is, the acceleration suppression control start timing and the acceleration suppression control amount may be calculated based only on the parking frame reliability calculated by the parking frame reliability calculation unit 36. In this case, the acceleration suppression control start timing and the acceleration suppression control amount are calculated by adapting the parking frame certainty to, for example, the acceleration suppression condition calculation map shown in FIG. In addition, FIG. 22 is a figure which shows the modification of this embodiment.
(3)本実施形態では、駐車枠確信度算出部36の構成を、自車両Vの周囲の俯瞰画像(環境)と自車両Vの車速(走行状態)に基づいて、駐車枠確信度を算出する構成としたが、駐車枠確信度算出部36の構成は、これに限定するものではない。すなわち、駐車枠確信度算出部36の構成を、自車両Vの周囲の俯瞰画像と車速に加え、さらに、自車位置信号が含む自車両Vの現在位置と、走行道路情報信号が含む自車両Vが走行する道路の種別(道路種別)を用いて、駐車枠確信度を算出する構成としてもよい。
 この場合、例えば、自車位置信号及び走行道路情報信号が含む情報に基づき、自車両Vの現在位置が公道上であることを検出すると、自車両Vの周囲に駐車枠L0が存在しないと判断し、駐車枠確信度を「レベル0」として算出する。
 これにより、例えば、公道上で道路端に配置された駐車枠等、加速抑制制御の作動が好ましくない駐車枠へ自車両Vが進入する際に、自車両Vの運転性低下を抑制することが可能となる。
(3) In this embodiment, the configuration of the parking frame certainty calculation unit 36 is calculated based on the bird's-eye view image (environment) around the host vehicle V and the vehicle speed (running state) of the host vehicle V. However, the configuration of the parking frame certainty calculation unit 36 is not limited to this. That is, the configuration of the parking frame certainty calculation unit 36 is added to the current position of the host vehicle V included in the host vehicle position signal and the host vehicle included in the traveling road information signal in addition to the overhead view image and the vehicle speed around the host vehicle V. It is good also as a structure which calculates parking frame reliability using the classification (road classification) of the road which V drive | works.
In this case, for example, if it is detected that the current position of the host vehicle V is on a public road based on information included in the host vehicle position signal and the travel road information signal, it is determined that there is no parking frame L0 around the host vehicle V. The parking frame certainty factor is calculated as “level 0”.
Thereby, for example, when the host vehicle V enters a parking frame where the operation of the acceleration suppression control is not preferable, such as a parking frame disposed on the road edge on a public road, the drivability reduction of the host vehicle V is suppressed. It becomes possible.
(4)本実施形態のステップS212において、線Lの端部形状が、例えば、U字状(図4(g)~(k)、(m)、(n)を参照)である場合等、公道上に標示されていない形状であることを認識すると、駐車枠確信度をレベル3またはレベル4として算出してもよい。
(5)本実施形態では、駐車枠確信度算出部36の構成を、自車両Vの周囲の俯瞰画像(環境)と自車両Vの車速(走行状態)に基づいて、駐車枠確信度を算出する構成としたが、駐車枠確信度算出部36の構成は、これに限定するものではない。すなわち、自車両Vの構成が、例えば、運転者に対して駐車枠L0への操舵操作を支援する装置(駐車支援装置)を備える構成である場合、駐車支援装置がON状態であれば、駐車枠確信度のレベルが上がりやすくなる構成としてもよい。ここで、駐車枠確信度のレベルが上がりやすくなる構成とは、例えば、上述した設定移動距離を通常よりも短い距離に設定する等の構成である。
(4) In step S212 of the present embodiment, for example, the end shape of the line L is U-shaped (see FIGS. 4G to 4K, (m), (n)), etc. If it is recognized that the shape is not marked on the public road, the parking frame certainty factor may be calculated as level 3 or level 4.
(5) In this embodiment, the configuration of the parking frame certainty calculation unit 36 is calculated based on the bird's-eye view image (environment) around the host vehicle V and the vehicle speed (running state) of the host vehicle V. However, the configuration of the parking frame certainty calculation unit 36 is not limited to this. That is, if the configuration of the host vehicle V is, for example, a configuration that includes a device (parking support device) that assists the driver in steering to the parking frame L0, and the parking support device is in the ON state, parking is performed. It is good also as a structure which becomes easy to raise the level of frame reliability. Here, the configuration in which the level of the parking frame certainty is likely to increase is, for example, a configuration in which the above-described set movement distance is set to a shorter distance than usual.
 また、駐車支援装置としては、例えば、駐車を行うために、周囲の状況を俯瞰画像等でモニタ表示する装置や、駐車を行うための進路をガイドするために、画面上で目標とする駐車位置を設定する装置がある。これらの装置は、周囲の状況を俯瞰画像等でモニタ表示するために画面を切り替えるスイッチや、画面上で目標とする駐車位置を設定するための画面切り替えスイッチを操作して使用する。そして、これらのスイッチが操作されて駐車支援装置がON状態となると、駐車枠の検知を行われやすくして、駐車枠確信度のレベルが上がりやすくなる構成としてもよい。 Moreover, as a parking assistance apparatus, for example, in order to perform parking, an apparatus that monitors and displays the surrounding situation with a bird's-eye view image, etc., or a parking position that is a target on the screen to guide a course for parking There is a device to set. These devices are used by operating a switch for switching a screen in order to display a surrounding situation as a bird's-eye view image or a screen switching switch for setting a target parking position on the screen. And when these switches are operated and a parking assistance apparatus will be in an ON state, it is good also as a structure which makes it easy to detect a parking frame and becomes easy to raise the level of parking frame reliability.
 ここで、駐車枠の検知を行われやすくする方法としては、例えば、上述したステップS206の条件C1~C4が成立しやすいように設定値を補正する方法がある。また、この方法以外にも、例えば、ステップS206において、連続照合状態が設定移動距離に達したと判断する際に用いる設定移動距離を短く設定する方法がある。また、例えば、ステップS212にて、「レベル3」または「レベル4」と判定する際の端部の条件、例えば、端部の個数が初期設定より少ない個数であってもよい設定する方法がある。
 なお、駐車枠の検知を行われやすくする方法としては、例えば、実際の駐車枠の検知状況に因らず、駐車枠確信度を予め設定したレベル(例えば、「レベル4」)として検知されているとする方法を用いてもよい。
Here, as a method for facilitating detection of the parking frame, for example, there is a method of correcting the set value so that the above-described conditions C1 to C4 in step S206 are easily established. In addition to this method, for example, in step S206, there is a method of setting a short set movement distance used when it is determined that the continuous collation state has reached the set movement distance. Further, for example, in step S212, there is a method for setting an end condition for determining “level 3” or “level 4”, for example, the number of end portions may be smaller than the initial setting. .
As a method for facilitating the detection of the parking frame, for example, the parking frame reliability is detected as a preset level (for example, “level 4”) regardless of the actual detection status of the parking frame. A method may be used.
(6)本実施形態では、総合確信度に基づいて、加速抑制制御量及び加速抑制制御開始タイミングを変化させ、加速指令値の抑制度合いを変化させるが、これに限定するものではない。すなわち、総合確信度に応じて、加速抑制制御開始タイミングのみ、または、加速抑制制御量のみを変化させ、加速指令値の抑制度合いを変化させてもよい。この場合、例えば、総合確信度が高いほど、加速抑制制御量を大きく設定し、加速抑制制御開始タイミングは変化させずに、加速指令値の抑制度合いを高くしてもよい。 (6) In the present embodiment, the acceleration suppression control amount and the acceleration suppression control start timing are changed based on the total certainty factor to change the suppression degree of the acceleration command value. However, the present invention is not limited to this. That is, according to the total certainty factor, only the acceleration suppression control start timing or only the acceleration suppression control amount may be changed to change the suppression degree of the acceleration command value. In this case, for example, as the total certainty factor is higher, the acceleration suppression control amount may be set larger, and the suppression degree of the acceleration command value may be increased without changing the acceleration suppression control start timing.
(7)本実施形態では、駐車枠確信度のレベルを算出する際に検出した枠線の本数に因らず、算出した駐車枠確信度及び駐車枠進入確信度に基づいて、総合確信度を算出したが、これに限定するものではない。すなわち、例えば、上述した条件Bを満足した際に検出した線Lの本数に応じて、総合確信度を算出してもよい。
 この場合、例えば、算出した駐車枠確信度及び駐車枠進入確信度に加え、条件Bを満足した際に検出した線Lの本数を、図23中に示す総合確信度算出マップに適合させる。そして、駐車枠確信度及び駐車枠進入確信度と、条件Bを満足した際に検出した線Lの種類に基づき、総合確信度を算出する。なお、図23は、本実施形態の変形例で用いる総合確信度算出マップを示す図である。また、図23中では、図17中と同様、駐車枠確信度を「枠確信度」と示し、駐車枠進入確信度を「進入確信度」と示す。
(7) In this embodiment, based on the calculated parking frame certainty and the parking frame approach certainty, regardless of the number of frame lines detected when calculating the parking frame certainty level, the overall certainty is calculated. Although calculated, the present invention is not limited to this. That is, for example, the total certainty factor may be calculated according to the number of lines L detected when the above-described condition B is satisfied.
In this case, for example, in addition to the calculated parking frame certainty factor and parking frame approach certainty factor, the number of lines L detected when the condition B is satisfied is adapted to the comprehensive certainty factor calculation map shown in FIG. Then, based on the parking frame certainty factor and the parking frame approach certainty factor and the type of the line L detected when the condition B is satisfied, the total certainty factor is calculated. FIG. 23 is a diagram showing an overall certainty factor calculation map used in a modification of the present embodiment. Further, in FIG. 23, as in FIG. 17, the parking frame certainty factor is indicated as “frame certainty factor”, and the parking frame approach certainty factor is indicated as “entry certainty factor”.
 上記の場合では、図23中に示すように、駐車枠進入確信度が「レベル低」であり、駐車枠確信度を「レベル1」として算出した場合と「レベル2~4」として算出した場合において、条件Bを満足した際に検出した線Lの種類に応じて、総合確信度を算出する。
 具体的には、駐車枠進入確信度が「レベル低」であり、駐車枠確信度を「レベル1」として算出した場合、条件Bを満足した際に検出した線Lの種類が単線である場合には、「レベル0」の場合と同様、加速抑制制御を行なわない総合確信度として算出する。また、駐車枠進入確信度が「レベル低」であり、駐車枠確信度を「レベル1」として算出した場合、条件Bを満足した際に検出した線Lの種類が二重線である場合には、総合確信度を「極低」として算出する。
In the above case, as shown in FIG. 23, the parking frame approach reliability is “low level”, and the parking frame reliability is calculated as “level 1” and “levels 2 to 4”. The total certainty factor is calculated according to the type of the line L detected when the condition B is satisfied.
Specifically, when the parking frame approach reliability is “low level” and the parking frame reliability is calculated as “level 1”, the type of the line L detected when the condition B is satisfied is a single line In the same manner as in the case of “level 0”, it is calculated as the total certainty that the acceleration suppression control is not performed. In addition, when the parking frame approach reliability is “low level” and the parking frame reliability is calculated as “level 1”, the type of the line L detected when the condition B is satisfied is a double line. Calculates the total confidence as “very low”.
 また、駐車枠進入確信度が「レベル低」であり、駐車枠確信度を「レベル2~4」として算出した場合、条件Bを満足した際に検出した線Lの種類が単線である場合には、総合確信度を「極低」として算出する。また、駐車枠進入確信度が「レベル低」であり、駐車枠確信度を「レベル2~4」として算出した場合、条件Bを満足した際に検出した線Lの種類が二重線である場合には、総合確信度を「極高」として算出する。
 ここで、図23中に示す総合確信度算出マップを用いて総合確信度を算出した場合、例えば、算出した総合確信度を、図24中に示す加速抑制条件演算マップに適合させて、加速抑制制御開始タイミングを演算する。なお、図24は、本実施形態の変形例で用いる加速抑制条件演算マップを示す図である。また、図24中では、図18中と同様、「加速抑制条件」の欄において、加速抑制制御開始タイミングを「抑制制御開始タイミング(アクセル開度)」と示す。
In addition, when the parking frame approach reliability is “low level” and the parking frame reliability is calculated as “level 2 to 4”, the type of the line L detected when the condition B is satisfied is a single line. Calculates the total confidence as “very low”. Further, when the parking frame approach reliability is “low level” and the parking frame reliability is calculated as “level 2 to 4”, the type of the line L detected when the condition B is satisfied is a double line. In this case, the total certainty factor is calculated as “extremely high”.
Here, when the total certainty factor is calculated using the total certainty factor calculation map shown in FIG. 23, for example, the calculated total certainty factor is adapted to the acceleration suppression condition calculation map shown in FIG. Calculate the control start timing. In addition, FIG. 24 is a figure which shows the acceleration suppression condition calculation map used in the modification of this embodiment. Further, in FIG. 24, as in FIG. 18, the acceleration suppression control start timing is indicated as “suppression control start timing (accelerator opening)” in the “acceleration suppression condition” column.
 図24中に示す加速抑制条件演算マップを用いて、加速抑制制御開始タイミングを演算する際には、総合確信度が「極低」である場合、加速抑制制御開始タイミングを、アクセルペダル32の開度が増加して「80%」に達した時点で時間の計測を開始する。これに加え、アクセルペダル32の開度が「80%」以上となっている計測時間が「0.25[sec]」に達した時点を、加速抑制制御開始タイミングとして設定する。すなわち、総合確信度が「極低」である場合には、アクセルペダル32の開度が「80%」以上となっている計測時間が「0.25[sec]」に達した時点から、加速抑制制御を開始する。 When calculating the acceleration suppression control start timing using the acceleration suppression condition calculation map shown in FIG. 24, when the total certainty factor is “extremely low”, the acceleration suppression control start timing is set to the opening of the accelerator pedal 32. Time measurement starts when the degree increases to reach “80%”. In addition, the time when the measurement time when the opening degree of the accelerator pedal 32 is “80%” or more reaches “0.25 [sec]” is set as the acceleration suppression control start timing. That is, when the total certainty factor is “very low”, the acceleration is started from the time when the measurement time when the opening degree of the accelerator pedal 32 is “80%” or more reaches “0.25 [sec]”. Start suppression control.
 また、総合確信度が「極低」である場合の加速抑制制御量は、「小」レベルのスロットル開度に抑制される制御量に設定する。なお、図24中では、図18中と同様、「加速抑制条件」の欄において、加速抑制制御量を「抑制量」と示す。
 一方、総合確信度が「極高」である場合、加速抑制制御開始タイミングを、アクセルペダル32の開度が増加して「50%」に達した時点で時間の計測を開始する。これに加え、アクセルペダル32の開度が「50%」以上となっている計測時間が「0.65[sec]」に達した時点を、加速抑制制御開始タイミングとして設定する。すなわち、総合確信度が「極高」である場合には、アクセルペダル32の開度が「50%」以上となっている計測時間が「0.65[sec]」に達した時点から、加速抑制制御を開始する。
Further, the acceleration suppression control amount when the total certainty factor is “extremely low” is set to a control amount that is suppressed to the throttle opening of the “small” level. In FIG. 24, as in FIG. 18, the acceleration suppression control amount is indicated as “suppression amount” in the “acceleration suppression condition” column.
On the other hand, when the total certainty factor is “extremely high”, the acceleration suppression control start timing starts measuring time when the accelerator pedal 32 opening degree reaches “50%”. In addition to this, the time when the measurement time when the opening of the accelerator pedal 32 is “50%” or more reaches “0.65 [sec]” is set as the acceleration suppression control start timing. That is, when the total certainty factor is “extremely high”, the acceleration is started from the time when the measurement time when the opening degree of the accelerator pedal 32 is “50%” or more reaches “0.65 [sec]”. Start suppression control.
 また、総合確信度が「極高」である場合の加速抑制制御量は、「大」レベルのスロットル開度に抑制される制御量に設定する。
 ここで、図24中に示す加速抑制条件演算マップを用いて、加速抑制制御開始タイミングを演算した場合の動作例を説明する。
 図24中に示す加速抑制条件演算マップを用いた場合、総合確信度に基づく加速抑制制御開始タイミングと保持時間との関係は、図25中に示す関係となる。なお、図25は、加速抑制制御開始タイミングと保持時間との関係を示す図である。また、図25中では、加速抑制制御開始タイミングを、横軸に「アクセル開度[%]」と示し、保持時間を、縦軸に「保持時間[sec]」と示す。
Further, the acceleration suppression control amount when the total certainty factor is “extremely high” is set to a control amount that is suppressed to the throttle opening of the “large” level.
Here, an operation example when the acceleration suppression control start timing is calculated using the acceleration suppression condition calculation map shown in FIG. 24 will be described.
When the acceleration suppression condition calculation map shown in FIG. 24 is used, the relationship between the acceleration suppression control start timing based on the total certainty factor and the holding time is the relationship shown in FIG. FIG. 25 is a diagram illustrating the relationship between the acceleration suppression control start timing and the holding time. In FIG. 25, the acceleration suppression control start timing is indicated as “accelerator opening [%]” on the horizontal axis, and the holding time is indicated as “holding time [sec]” on the vertical axis.
 図25中に示すように、総合確信度を「極低」として算出した場合、アクセル開度が「80%」以上となっている計測時間が「0.25[sec]」に達した時点PLを、加速抑制制御開始タイミングとして設定する。また、総合確信度を「極高」として算出した場合、アクセル開度が「50%」以上となっている計測時間が「0.65[sec]」に達した時点PHを、加速抑制制御開始タイミングとして設定する。なお、図25中では、加速抑制制御開始タイミングの設定基準となる制御閾値を連続的に示す線を、実線で示す。
 しかしながら、自車両Vの走行中に周囲環境認識センサ14で撮像した画像が変化した場合には、条件Bを満足した際に検出した線Lの種類が変化する場合がある。
 ここで、例えば、駐車枠確信度を「レベル2~4」として算出した状況で、条件Bを満足した際に検出した線Lの種類が単線から二重線に変化した場合を考える。
 この場合、条件Bを満足した際に検出した線Lの種類が単線から二重線に変化した時点で、総合確信度が「極低」から「極高」に変化する。
As shown in FIG. 25, when the total certainty factor is calculated as “extremely low”, the time point PL when the measurement time when the accelerator opening is “80%” or more reaches “0.25 [sec]”. Is set as the acceleration suppression control start timing. In addition, when the total certainty factor is calculated as “extremely high”, acceleration suppression control starts at the point PH when the measurement time when the accelerator opening is “50%” or more reaches “0.65 [sec]” Set as timing. In FIG. 25, a line that continuously indicates a control threshold value that is a setting reference for the acceleration suppression control start timing is indicated by a solid line.
However, when the image captured by the surrounding environment recognition sensor 14 changes while the host vehicle V is traveling, the type of the line L detected when the condition B is satisfied may change.
Here, for example, consider a case where the type of the line L detected when the condition B is satisfied changes from a single line to a double line in a situation where the parking frame certainty factor is calculated as “level 2 to 4”.
In this case, when the type of the line L detected when the condition B is satisfied changes from a single line to a double line, the total certainty level changes from “very low” to “very high”.
 条件Bを満足した際に検出した線Lの種類が単線であった時点では、図25中に示す時点PLを、加速抑制制御開始タイミングとして設定しており、アクセル開度が80%に達するまでは、保持時間の計測を開始しない。
 しかしながら、総合確信度が「極低」から「極高」に変化すると、既にアクセル開度が50%に達していても、総合確信度が「極低」から「極高」に変化した時点から保持時間の計測を開始することとなる。そして、図25中において、計測時間とアクセル開度との関係が制御閾値を連続的に示す線と重なった時点SPから、加速抑制制御を開始することとなる。なお、図25中には、時間の経過に応じたアクセル開度の変化を、破線で示す。
When the type of the line L detected when the condition B is satisfied is a single line, the time point PL shown in FIG. 25 is set as the acceleration suppression control start timing until the accelerator opening reaches 80%. Does not start the measurement of the holding time.
However, if the overall confidence changes from “extremely low” to “extremely high”, even if the accelerator opening has already reached 50%, the overall confidence will change from “extremely low” to “extremely high”. The measurement of the holding time will be started. And in FIG. 25, acceleration suppression control will be started from the time SP which the relationship between measurement time and an accelerator opening overlaps with the line which shows a control threshold continuously. In FIG. 25, the change in the accelerator opening with the passage of time is indicated by a broken line.
 したがって、総合確信度が「極低」から「極高」に変化すると、総合確信度が当初から「極高」として算出されていた場合と比較して、加速抑制制御を開始する時間が遅れることとなる。
 このため、例えば、タワーパーキング等、複数の駐車枠が配列された構成の駐車場を走行する自車両Vが、下層階の駐車場から上層階の駐車場へ移動する際に登り勾配の坂を走行する状況において、運転性低下を抑制することが可能となる。これは、例えば、登り勾配の坂を走行する前に直進走行から旋回走行に移行して車速が低下し、条件Bを満足した際に検出した線Lの種類が単線から二重線に変化して、総合確信度が「極低」から「極高」に変化する状況に適用される。
Therefore, if the overall confidence level changes from “extremely low” to “extremely high”, the time to start acceleration suppression control will be delayed compared to the case where the overall confidence level was calculated as “extremely high” from the beginning. It becomes.
For this reason, for example, when the host vehicle V traveling in a parking lot having a configuration in which a plurality of parking frames are arranged, such as tower parking, travels on an uphill slope when moving from a lower-level parking lot to an upper-level parking lot. In such a situation, it is possible to suppress a decrease in drivability. This is because, for example, the vehicle travels from straight running to turning before traveling on an uphill slope, the vehicle speed decreases, and the type of the line L detected when the condition B is satisfied changes from a single line to a double line. Therefore, this is applied to a situation where the overall confidence changes from “very low” to “very high”.
 この状況では、登り勾配の坂を走行する前に直進走行から旋回走行に移行して車速が低下し、総合確信度が「極低」から「極高」に変化しても、総合確信度が当初から「極高」として算出されていた場合と比較して、加速抑制制御を開始する時間が遅れることとなる。これにより、総合確信度が当初から「極高」として算出されていた場合よりも、加速抑制制御が開始されるタイミングを遅らせて、駐車枠確信度が「レベル0」として算出される可能性が高い、登り勾配の坂を走行する時点を、加速抑制制御が開始された時点とする。 In this situation, even if the vehicle travels from straight running to turning before going uphill, the vehicle speed decreases, and even if the overall confidence changes from `` very low '' to `` very high '', the overall confidence is still Compared with the case where it was calculated as “extremely high” from the beginning, the time for starting the acceleration suppression control is delayed. Accordingly, there is a possibility that the parking frame certainty is calculated as “level 0” by delaying the timing at which the acceleration suppression control is started, compared to the case where the total certainty is calculated as “extremely high” from the beginning. The time when the vehicle travels on a high climb slope is defined as the time when acceleration suppression control is started.
 次に、例えば、駐車枠確信度を「レベル2~4」として算出した状況で、条件Bを満足した際に検出した線Lの種類が単線であり、さらに、駐車枠進入確信度が「レベル低」から「レベル高」に変化した場合を考える。
 この場合、駐車枠進入確信度が「レベル低」から「レベル高」に変化した時点で、総合確信度が「極低」から「極高」に変化する。そして、条件Bを満足した際に検出した線Lの種類が単線から二重線に変化した場合と同様、総合確信度が当初から「極高」として算出されていた場合と比較して、加速抑制制御を開始する時間が遅れることとなる。
 このため、例えば、交差点を左折した自車両Vが、左折後に、既に駐車している車両である他車両を追い越してから、道路端に配置された駐車枠に進入して駐車する状況において、運転性低下を抑制することが可能となる。これは、例えば、交差点を左折した自車両Vが、他車両を右側から追い越した後、道路端へ向けて左側へ移動する際に、駐車枠進入確信度が「レベル低」から「レベル高」に変化して、総合確信度が「極低」から「極高」に変化する状況に適用される。
Next, for example, when the parking frame certainty factor is calculated as “level 2 to 4”, the type of the line L detected when the condition B is satisfied is a single line, and the parking frame approach certainty factor is “level” Consider the case of changing from “low” to “high level”.
In this case, when the parking frame approach reliability changes from “low level” to “high level”, the overall reliability changes from “very low” to “very high”. Then, as in the case where the type of the line L detected when the condition B is satisfied changes from a single line to a double line, the overall confidence is accelerated as compared with the case where the total certainty is calculated as “extremely high” from the beginning. The time for starting the suppression control will be delayed.
For this reason, for example, in the situation where the own vehicle V that made a left turn at an intersection overtakes another vehicle that is already parked after the left turn, and then enters and parks in a parking frame arranged at the end of the road It becomes possible to suppress a decrease in property. This is because, for example, when the own vehicle V that has turned left at an intersection has overtaken another vehicle from the right side and then moved to the left side toward the road edge, the parking frame approach certainty is changed from “low level” to “high level”. Applied to a situation in which the total confidence changes from “extremely low” to “extremely high”.
 この状況では、交差点を左折して低下した車速を増加させる際に、総合確信度が「極低」から「極高」に変化しても、総合確信度が当初から「極高」として算出されていた場合と比較して、加速抑制制御を開始する時間が遅れることとなる。これにより、総合確信度が当初から「極高」として算出されていた場合よりも、加速抑制制御が開始されるタイミングを遅らせて、公道上で減速する可能性が高い、走行中に駐車を開始する時点を、加速抑制制御が開始された時点とする。 In this situation, when turning the intersection to the left and increasing the reduced vehicle speed, the overall confidence is calculated as "very high" from the beginning even if the overall confidence changes from "very low" to "very high". The time for starting the acceleration suppression control is delayed as compared with the case where it has been. As a result, it is more likely to decelerate on public roads by delaying the timing at which acceleration suppression control is started than when the total certainty was calculated as “extremely high” from the beginning. The time at which acceleration suppression control is started is the time at which acceleration suppression control is started.
(8)本実施形態では、加速指令値を制御して、アクセルペダル32の踏込み量(駆動力操作量)に応じた自車両Vの加速を抑制したが、これに限定するものではない。すなわち、例えば、アクセルペダル32の踏込み量(駆動力操作量)に応じたスロットル開度を目標スロットル開度とし、さらに、上述した制動装置により制動力を発生させて、駆動力操作量に応じた自車両Vの加速を抑制してもよい。
(9)本実施形態では、駐車枠確信度を、最低値であるレベル0と、最低値よりも複数段階上のレベル(レベル1~4)として算出したが、駐車枠確信度の段階は、これに限定するものではない。すなわち、駐車枠確信度を、最低値であるレベル(例えば、「レベル0」)と、最低値よりも上のレベル(例えば、「レベル100」)との二段階のみとして算出してもよい。
(8) In the present embodiment, the acceleration command value is controlled to suppress the acceleration of the host vehicle V according to the depression amount (driving force operation amount) of the accelerator pedal 32. However, the present invention is not limited to this. That is, for example, the throttle opening corresponding to the depression amount (driving force operation amount) of the accelerator pedal 32 is set as the target throttle opening, and further, the braking force is generated by the braking device described above, and the driving force operation amount is determined. The acceleration of the host vehicle V may be suppressed.
(9) In this embodiment, the parking frame certainty factor is calculated as level 0, which is the lowest value, and a level (levels 1 to 4) that is higher than the lowest value. However, the present invention is not limited to this. In other words, the parking frame certainty factor may be calculated as only two levels: a level that is the lowest value (for example, “level 0”) and a level that is higher than the lowest value (for example, “level 100”).
(10)本実施形態では、駐車枠進入確信度を、最低値の「レベル0」、レベル0よりも高いレベルの「レベル低」、レベル低よりも高いレベルの「レベル高」として算出したが、駐車枠進入確信度の段階は、これに限定するものではない。すなわち、駐車枠進入確信度を、最低値であるレベル(例えば、「レベル0」)と、最低値よりも高いレベル(例えば、「レベル100」)との二段階のみとして算出してもよい。
(11)本実施形態では、端部確信度を、最もレベルの低い「レベル低」、レベル低よりも高いレベルの「レベル中」、レベル中よりも高いレベルの「レベル高」として算出したが、端部確信度の段階は、これに限定するものではない。すなわち、端部確信度を、最低値であるレベル(例えば、「レベル0」)と、最低値よりも高いレベル(例えば、「レベル100」)との二段階のみとして算出してもよい。
(10) In this embodiment, the parking frame approach reliability is calculated as “level 0” as the lowest value, “level low” at a level higher than level 0, and “level high” at a level higher than level low. The parking frame approach certainty level is not limited to this. That is, the parking frame approach reliability may be calculated as only two levels: a level that is the lowest value (for example, “level 0”) and a level that is higher than the lowest value (for example, “level 100”).
(11) In this embodiment, the end certainty factor is calculated as “level low” having the lowest level, “medium level” higher than the level low, and “level high” higher than the level low. The stage of the edge reliability is not limited to this. In other words, the end certainty factor may be calculated as only two levels of a level that is the lowest value (for example, “level 0”) and a level that is higher than the lowest value (for example, “level 100”).
(12)本実施形態では、総合確信度を、五段階のレベルのいずれかとして算出した駐車枠確信度と、三段階のレベルのいずれかとして算出した駐車枠進入確信度に応じて、四段階のレベル(「極低」、「低」、「高」、「極高」)のいずれかとして算出した。しかしながら、総合確信度の段階は、これに限定するものではない。すなわち、総合確信度を、最低値であるレベル(例えば、「レベル0」)と、最低値よりも高いレベル(例えば、「レベル100」)との二段階のみとして算出してもよい。
 この場合、例えば、駐車枠確信度及び駐車枠進入確信度を最低値であるレベルとして算出すると、総合確信度を、最低値であるレベルとして算出する。また、例えば、駐車枠確信度及び駐車枠進入確信度を最低値よりも高いレベルとして算出すると、総合確信度を、最低値よりも高いレベルとして算出する。
(12) In this embodiment, the overall confidence level is divided into four levels according to the parking frame confidence level calculated as one of the five levels and the parking frame approach reliability level calculated as one of the three levels. Level (“very low”, “low”, “high”, “very high”). However, the overall confidence level is not limited to this. In other words, the total certainty factor may be calculated as only two levels: a level that is the lowest value (for example, “level 0”) and a level that is higher than the lowest value (for example, “level 100”).
In this case, for example, when the parking frame certainty factor and the parking frame approach certainty factor are calculated as the lowest level, the total certainty factor is calculated as the lowest level. For example, when the parking frame certainty factor and the parking frame approach certainty factor are calculated as a level higher than the minimum value, the total certainty factor is calculated as a level higher than the minimum value.
(第二実施形態)
 以下、本発明の第二実施形態(以下、「本実施形態」と記載する)について、図面を参照しつつ説明する。
(構成)
 まず、図1から図25を参照しつつ、図26及び図27を用いて、本実施形態の車両用加速抑制装置1の構成を説明する。
 本実施形態の車両用加速抑制装置1は、加速抑制制御内容演算部10Iで行なう処理を除き、上述した第一実施形態と同様であるため、加速抑制制御内容演算部10Iで行なう処理以外については、その説明を省略する場合がある。
 また、本実施形態の車両用加速抑制装置1は、加速抑制制御内容演算部10Iで行なう処理のうち、加速抑制作動条件判断部34と駐車枠進入確信度算出部38が行なう処理以外の処理が、上述した第一実施形態と異なる。このため、以降の説明では、上述した第一実施形態と同様の処理については、記載を省略する場合がある。
(Second embodiment)
Hereinafter, a second embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described with reference to the drawings.
(Constitution)
First, the configuration of the vehicle acceleration suppression device 1 of the present embodiment will be described using FIGS. 26 and 27 with reference to FIGS. 1 to 25.
The vehicle acceleration suppression device 1 of the present embodiment is the same as the first embodiment except for the processing performed by the acceleration suppression control content calculation unit 10I, and therefore, except for the processing performed by the acceleration suppression control content calculation unit 10I. The description may be omitted.
Further, in the vehicle acceleration suppression device 1 of the present embodiment, among the processes performed by the acceleration suppression control content calculation unit 10I, processes other than the processes performed by the acceleration suppression operation condition determination unit 34 and the parking frame approach reliability calculation unit 38 are performed. This is different from the first embodiment described above. For this reason, in the following description, description may be abbreviate | omitted about the process similar to 1st embodiment mentioned above.
 本実施形態の駐車枠確信度算出部36は、上述したステップS208の処理において、まず、自車両Vの進行方向が前進であるか後退であるかを判定し、その判定結果に応じて、設定移動距離を設定する。そして、自車両Vの進行方向に応じて設定した設定移動距離に基づき、ステップS206の処理を開始してから自車両Vの移動距離が設定移動距離となるまでに、ステップS206の処理が連続して照合するか否かを判断する処理を行う。
 ここで、自車両Vの進行方向に応じて設定移動距離を設定する処理は、例えば、シフトポジション演算部10Eから入力を受けた現在シフト位置信号を参照して行なう。
 また、本実施形態では、一例として、自車両Vの進行方向が前進であると判定すると、設定移動距離を2.5[m]に設定し、自車両Vの進行方向が後退であると判定すると、設定移動距離を1[m]に設定する場合について説明する。
In the process of step S208 described above, the parking frame certainty factor calculation unit 36 of the present embodiment first determines whether the traveling direction of the host vehicle V is forward or backward, and is set according to the determination result. Set the travel distance. Then, based on the set travel distance set in accordance with the traveling direction of the host vehicle V, the process in step S206 continues from the start of the process in step S206 until the travel distance of the host vehicle V becomes the set travel distance. To determine whether to collate.
Here, the process of setting the set movement distance according to the traveling direction of the host vehicle V is performed with reference to the current shift position signal received from the shift position calculation unit 10E, for example.
In the present embodiment, as an example, when the traveling direction of the host vehicle V is determined to be forward, the set moving distance is set to 2.5 [m], and it is determined that the traveling direction of the host vehicle V is backward. Then, the case where a set movement distance is set to 1 [m] is demonstrated.
 なお、上記の設定移動距離は、一例であり、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。また、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
 したがって、本実施形態では、ステップS208の処理において、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルが「レベル1」として算出されにくくなる。
 また、本実施形態の駐車枠確信度算出部36は、上述したステップS212の処理において、まず、自車両Vの進行方向が前進であるか後退であるかを判定する。
 そして、自車両Vの進行方向が前進である場合は、上述した第一実施形態と同様、同じ側に位置する端部同士が、幅WLの方向に沿って対向していると判断した場合、駐車枠確信度算出部36が行なう処理をステップS216へ移行させる。
The set travel distance is an example, and may be changed according to the specifications of the host vehicle V, such as the braking performance of the host vehicle V, for example. Further, for example, the vehicle V may be changed according to the traffic regulations of the area (country etc.) where the vehicle V travels.
Therefore, in the present embodiment, in the process of step S208, when the traveling direction of the host vehicle V is forward, the level of the parking frame certainty is “level 1” than when the traveling direction of the host vehicle V is backward. It becomes difficult to calculate as.
Further, the parking frame certainty calculation unit 36 of the present embodiment first determines whether the traveling direction of the host vehicle V is forward or backward in the process of step S212 described above.
And when the traveling direction of the host vehicle V is forward, as in the first embodiment described above, when it is determined that the ends located on the same side face each other along the direction of the width WL, The process which the parking frame reliability calculation part 36 performs is made to transfer to step S216.
 一方、自車両Vの進行方向が後退である場合は、線La,Lbのうち一方の端部形状が、例えば、U字状(図4(g)~(k)、(m)、(n)を参照)であることを認識すると、駐車枠確信度算出部36が行なう処理をステップS216へ移行させる。すなわち、自車両Vの進行方向が後退である場合は、線La,Lbのうち一方の端部形状が、公道上に標示されていない形状であることを認識すると、駐車枠確信度算出部36が行なう処理をステップS216へ移行させる。
 したがって、本実施形態では、ステップS212の処理において、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルが「レベル3」として算出されにくくなる。
 すなわち、本実施形態では、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルが上がりにくくなる。このため、本実施形態では、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
On the other hand, when the traveling direction of the host vehicle V is backward, one end shape of the lines La and Lb is, for example, U-shaped (FIGS. 4 (g) to (k), (m), (n )), The process performed by the parking frame certainty calculation unit 36 is shifted to step S216. That is, when the traveling direction of the host vehicle V is backward, when the one end shape of the lines La and Lb is recognized as a shape not marked on the public road, the parking frame certainty calculation unit 36 The process performed by step S216 is shifted to step S216.
Therefore, in the present embodiment, in the process of step S212, when the traveling direction of the host vehicle V is forward, the level of the parking frame certainty is “level 3” than when the traveling direction of the host vehicle V is backward. It becomes difficult to calculate as.
That is, in this embodiment, when the traveling direction of the host vehicle V is forward, the level of the parking frame reliability is less likely to increase than when the traveling direction of the host vehicle V is backward. For this reason, in this embodiment, when the traveling direction of the host vehicle V is backward, the degree of suppression of the acceleration command value is higher than when the traveling direction of the host vehicle V is forward.
 また、本実施形態の総合確信度算出部40は、駐車枠確信度信号及び駐車枠進入確信度信号の入力を受け、駐車枠確信度信号が含む駐車枠確信度と、駐車枠進入確信度信号が含む駐車枠進入確信度を、図26中に示す総合確信度算出マップに適合させる。そして、駐車枠確信度と駐車枠進入確信度に基づき、総合確信度を算出する。
 なお、図26は、本実施形態で用いる総合確信度算出マップを示す図である。また、図26中では、図17中と同様、駐車枠確信度を「枠確信度」と示し、駐車枠進入確信度を「進入確信度」と示す。
Further, the overall certainty calculation unit 40 of the present embodiment receives the parking frame certainty signal and the parking frame approach certainty signal, receives the parking frame certainty factor included in the parking frame certainty signal, and the parking frame approach certainty signal. The parking frame approach reliability included in is adapted to the comprehensive reliability calculation map shown in FIG. Then, based on the parking frame certainty factor and the parking frame approach certainty factor, the total certainty factor is calculated.
FIG. 26 is a diagram showing a comprehensive certainty calculation map used in the present embodiment. In FIG. 26, as in FIG. 17, the parking frame certainty factor is indicated as “frame certainty factor”, and the parking frame approach certainty factor is indicated as “entry certainty factor”.
 ここで、本実施形態の総合確信度算出部40が用いる総合確信度算出マップは、上述した第一実施形態の総合確信度算出部40が用いる総合確信度算出マップと異なり、自車両Vの進行方向の判定結果に応じて、総合確信度のレベルを変更する。なお、図26中では、自車両Vの進行方向が前進であると判定した場合の総合確信度を、「進入確信度」欄において、「前進時レベル低」及び「前進時レベル高」と示す。これに加え、図26中では、自車両Vの進行方向が後退であると判定した場合の総合確信度を、「進入確信度」欄において、「後退時レベル低」及び「後退時レベル高」と示す。 Here, the comprehensive certainty calculation map used by the comprehensive certainty calculation unit 40 of the present embodiment is different from the comprehensive certainty calculation map used by the comprehensive certainty calculation unit 40 of the first embodiment described above. The total confidence level is changed according to the direction determination result. In FIG. 26, the total certainty factor when the traveling direction of the host vehicle V is determined to be forward is indicated as “low forward level” and “high forward level” in the “entry certainty” column. . In addition to this, in FIG. 26, the total certainty when it is determined that the traveling direction of the host vehicle V is reverse is “reverse level high” and “reverse level high” in the “entry certainty” column. It shows.
 また、本実施形態の総合確信度算出部40は、図26中に示すように、自車両Vの進行方向が後退であると判定した場合の総合確信度を、自車両Vの進行方向が前進であると判定した場合の総合確信度以上のレベルにとして算出する。
 本実施形態の総合確信度算出部40が総合確信度を算出する処理の一例として、駐車枠確信度が「レベル2」であり、駐車枠進入確信度が「前進時レベル高」である場合では、図26中に示すように、総合確信度を「低」として算出する。一方、駐車枠確信度が「レベル2」であり、駐車枠進入確信度が「後退時レベル高」である場合では、図26中に示すように、総合確信度を「高」として算出する。
 また、本実施形態の総合確信度算出部40が総合確信度を算出する処理の一例として、自車両Vの進行方向が前進であっても、既に駐車中とみなし、後退時と同様の算出を行うことで、前進の際に駐車枠確信度のレベルを上がりやすくする処理を行ってもよい。この処理は、自車両Vの前進中に駐車枠確信度が「レベル1」として算出された後に自車両Vが後退し、所定の距離(例えば、2.5[m])以内を後退中に、再度、前進した場合に適用する。
Further, as shown in FIG. 26, the overall certainty factor calculation unit 40 of the present embodiment uses the total confidence factor when the traveling direction of the host vehicle V is determined to be backward as the traveling direction of the host vehicle V advances. It is calculated as a level that is equal to or higher than the overall certainty factor when it is determined that
As an example of the process of calculating the total confidence factor by the total confidence factor calculation unit 40 of the present embodiment, when the parking frame confidence factor is “level 2” and the parking frame approach confidence factor is “high level during forward travel”, As shown in FIG. 26, the total certainty factor is calculated as “low”. On the other hand, when the parking frame certainty level is “level 2” and the parking frame approaching certainty level is “high level during backward movement”, the total certainty level is calculated as “high” as shown in FIG.
Further, as an example of the process of calculating the total confidence factor by the total confidence factor calculation unit 40 of the present embodiment, even if the traveling direction of the host vehicle V is forward, it is considered that the vehicle is already parked, and the same calculation as when the vehicle is traveling backward is performed. By performing, you may perform the process which makes it easy to raise the level of parking frame reliability in the case of advance. In this process, the parking frame reliability is calculated as “level 1” while the host vehicle V is moving forward, and then the host vehicle V moves backward and is moving backward within a predetermined distance (for example, 2.5 [m]). Apply again when moving forward.
 以上説明したように、本実施形態では、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、総合確信度のレベルが上がりにくくなる。このため、本実施形態では、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
 また、本実施形態の加速抑制制御開始タイミング演算部42は、自車両Vの進行方向が後退であると判定した場合、総合確信度信号が含む総合確信度を、図27中に示す後退時用の加速抑制条件演算マップに適合させる。そして、総合確信度に基づき、加速抑制制御開始タイミングを演算する。
As described above, in the present embodiment, when the traveling direction of the host vehicle V is forward, the level of the overall confidence level is less likely to increase than when the traveling direction of the host vehicle V is backward. For this reason, in this embodiment, when the traveling direction of the host vehicle V is backward, the degree of suppression of the acceleration command value is higher than when the traveling direction of the host vehicle V is forward.
In addition, when the acceleration suppression control start timing calculation unit 42 of the present embodiment determines that the traveling direction of the host vehicle V is backward, the overall certainty factor included in the comprehensive certainty factor signal is used for the reverse time shown in FIG. It is adapted to the acceleration suppression condition calculation map. Then, the acceleration suppression control start timing is calculated based on the total certainty factor.
 なお、図27は、後退時用の加速抑制条件演算マップを示す図である。また、図27中では、図18中と同様、「加速抑制条件」の欄において、加速抑制制御開始タイミングを「抑制制御開始タイミング(アクセル開度)」と示す。
 ここで、本実施形態の加速抑制制御開始タイミング演算部42が用いる後退時用の加速抑制条件演算マップでは、上述した第一実施形態の加速抑制条件演算マップと比較して、総合確信度に対する加速抑制制御開始タイミングを早めに設定する。したがって、本実施形態の加速抑制制御開始タイミング演算部42が用いる後退時用の加速抑制条件演算マップでは、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
FIG. 27 is a diagram showing an acceleration suppression condition calculation map for reverse operation. In FIG. 27, as in FIG. 18, the acceleration suppression control start timing is indicated as “suppression control start timing (accelerator opening)” in the “acceleration suppression condition” column.
Here, in the acceleration suppression condition calculation map for reverse use used by the acceleration suppression control start timing calculation unit 42 of the present embodiment, the acceleration with respect to the overall certainty factor is compared with the acceleration suppression condition calculation map of the first embodiment described above. Set suppression control start timing early. Therefore, in the acceleration suppression condition calculation map for reverse use used by the acceleration suppression control start timing calculation unit 42 of the present embodiment, when the traveling direction of the host vehicle V is backward, the traveling direction of the host vehicle V is forward. Rather, the degree of suppression of the acceleration command value becomes higher.
 本実施形態の加速抑制制御開始タイミング演算部42が行なう処理の一例として、総合確信度が「低」である場合では、図27中に示すように、加速抑制制御開始タイミングを、アクセルペダル32の開度が増加して「50%」に達したタイミングに設定する。なお、図27中に示す加速抑制制御開始タイミングは、一例であり、図18中に示す加速抑制制御開始タイミングと同様、自車両Vの諸元等に応じて変更してもよい。
 また、本実施形態の加速抑制制御量演算部44は、自車両Vの進行方向が後退であると判定した場合、総合確信度信号が含む総合確信度を、図27中に示す後退時用の加速抑制条件演算マップに適合させる。そして、総合確信度に基づき、加速抑制制御量を演算する。なお、図27中では、図18中と同様、「加速抑制条件」の欄において、加速抑制制御量を「抑制量」と示す。
As an example of the process performed by the acceleration suppression control start timing calculation unit 42 of the present embodiment, when the total certainty factor is “low”, the acceleration suppression control start timing is set to the accelerator pedal 32 as shown in FIG. Set the timing when the opening degree increases and reaches "50%". The acceleration suppression control start timing shown in FIG. 27 is an example, and may be changed according to the specifications of the host vehicle V and the like, similar to the acceleration suppression control start timing shown in FIG.
In addition, when the acceleration suppression control amount calculation unit 44 of the present embodiment determines that the traveling direction of the host vehicle V is backward, the overall certainty factor included in the comprehensive certainty factor signal is used for the reverse time shown in FIG. Adapt to the acceleration suppression condition calculation map. Then, an acceleration suppression control amount is calculated based on the total certainty factor. In FIG. 27, as in FIG. 18, the acceleration suppression control amount is indicated as “suppression amount” in the “acceleration suppression condition” column.
 ここで、本実施形態の加速抑制制御量演算部44が用いる後退時用の加速抑制条件演算マップでは、上述した第一実施形態の加速抑制条件演算マップと比較して、総合確信度に対する加速抑制制御量を大きめに設定する。したがって、本実施形態の加速抑制制御量演算部44が用いる後退時用の加速抑制条件演算マップでは、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
 本実施形態の加速抑制制御量演算部44が行なう処理の一例として、総合確信度が「極低」である場合では、図27中に示すように、加速抑制制御量を、実際のアクセルペダル32の開度に対して、「中」レベルのスロットル開度に抑制される制御量に設定する。なお、図27中に示す加速抑制制御量は、一例であり、図18中に示す加速抑制制御量と同様、自車両Vの諸元等に応じて変更してもよい。
Here, in the acceleration suppression condition calculation map for reverse use used by the acceleration suppression control amount calculation unit 44 of the present embodiment, the acceleration suppression with respect to the overall certainty factor is compared with the acceleration suppression condition calculation map of the first embodiment described above. Set a large control amount. Therefore, in the reverse acceleration suppression condition calculation map used by the acceleration suppression control amount calculation unit 44 of the present embodiment, when the traveling direction of the host vehicle V is backward, the traveling direction of the host vehicle V is forward. However, the degree of suppression of the acceleration command value is increased.
As an example of processing performed by the acceleration suppression control amount calculation unit 44 of the present embodiment, when the total certainty factor is “extremely low”, the acceleration suppression control amount is set to the actual accelerator pedal 32 as shown in FIG. Is set to a control amount that is suppressed to the throttle opening at the “medium” level. The acceleration suppression control amount shown in FIG. 27 is an example, and may be changed according to the specifications of the host vehicle V and the like, similar to the acceleration suppression control amount shown in FIG.
 以上説明したように、本実施形態では、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、加速抑制制御開始タイミングを早めに設定するとともに、加速抑制制御量を大きめに設定する。このため、本実施形態では、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。 As described above, in the present embodiment, when the traveling direction of the host vehicle V is forward, the acceleration suppression control start timing is set earlier than when the traveling direction of the host vehicle V is backward, and acceleration is performed. Set a large suppression control amount. For this reason, in this embodiment, when the traveling direction of the host vehicle V is backward, the degree of suppression of the acceleration command value is higher than when the traveling direction of the host vehicle V is forward.
(動作)
 次に、図1から図27を参照して、本実施形態の車両用加速抑制装置1を用いて行なう動作の一例を説明する。なお、上述した第一実施形態と同様の動作等については、説明を省略する場合がある。
 以下に記載する動作の一例では、上述した第一実施形態と同様、駐車場内を走行する自車両Vが、運転者の選択した駐車枠L0に進入する例を説明する。
 自車両Vの走行中には、駐車枠確信度算出部36が駐車枠確信度を算出し、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する。そして、総合確信度算出部40が、駐車枠確信度及び駐車枠進入確信度に基づく総合確信度を算出する。
(Operation)
Next, an example of an operation performed using the vehicle acceleration suppression device 1 of the present embodiment will be described with reference to FIGS. In addition, about the operation | movement etc. similar to 1st embodiment mentioned above, description may be abbreviate | omitted.
In an example of the operation described below, an example will be described in which the host vehicle V traveling in the parking lot enters the parking frame L0 selected by the driver, as in the first embodiment described above.
While the host vehicle V is traveling, the parking frame certainty calculation unit 36 calculates the parking frame certainty factor, and the parking frame approach certainty calculating unit 38 calculates the parking frame approach certainty factor. And the comprehensive reliability calculation part 40 calculates the comprehensive reliability based on a parking frame reliability and a parking frame approach reliability.
 さらに、自車両Vの走行中には、総合確信度算出部40が算出した総合確信度に基づき、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算し、加速抑制制御量演算部44が加速抑制制御量を演算する。
 そして、自車両Vが駐車枠L0へ進入すると判断し、加速抑制制御作動条件が成立すると判断すると、加速抑制指令値演算部10Jが、加速抑制指令値信号を目標スロットル開度演算部10Kへ出力する。さらに、目標スロットル開度演算部10Kが、目標スロットル開度信号をエンジンコントローラ12へ出力する。
 ここで、本実施形態では、駐車枠確信度算出部36が駐車枠確信度を算出する処理において、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルを上がりにくくしている。
 このため、加速抑制制御作動条件が成立した状態では、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
Further, while the host vehicle V is traveling, the acceleration suppression control start timing calculation unit 42 calculates the acceleration suppression control start timing based on the total reliability calculated by the total reliability calculation unit 40, and the acceleration suppression control amount calculation unit 44 calculates an acceleration suppression control amount.
When it is determined that the host vehicle V enters the parking frame L0 and the acceleration suppression control operation condition is satisfied, the acceleration suppression command value calculation unit 10J outputs an acceleration suppression command value signal to the target throttle opening calculation unit 10K. To do. Further, the target throttle opening calculation unit 10K outputs a target throttle opening signal to the engine controller 12.
Here, in this embodiment, in the process in which the parking frame certainty calculation unit 36 calculates the parking frame certainty factor, when the traveling direction of the host vehicle V is forward, the traveling direction of the host vehicle V is backward. However, it is difficult to raise the level of confidence in the parking frame.
For this reason, when the acceleration suppression control operation condition is satisfied, when the traveling direction of the host vehicle V is backward, the degree of suppression of the acceleration command value is higher than when the traveling direction of the host vehicle V is forward.
 また、本実施形態では、総合確信度算出部40が総合確信度を算出する処理において、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルを上がりにくくしている。
 このため、加速抑制制御作動条件が成立した状態では、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
 また、本実施形態では、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算する処理において、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルを上がりにくくしている。
 このため、加速抑制制御作動条件が成立した状態では、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
In the present embodiment, in the process of calculating the total certainty factor by the total certainty factor calculation unit 40, when the traveling direction of the host vehicle V is forward, parking is performed more than when the traveling direction of the host vehicle V is backward. The level of frame confidence is made difficult to increase.
For this reason, when the acceleration suppression control operation condition is satisfied, when the traveling direction of the host vehicle V is backward, the degree of suppression of the acceleration command value is higher than when the traveling direction of the host vehicle V is forward.
In the present embodiment, when the acceleration suppression control start timing calculation unit 42 calculates the acceleration suppression control start timing, when the traveling direction of the host vehicle V is forward, the traveling direction of the host vehicle V is backward. Rather than raising the level of confidence in the parking frame.
For this reason, when the acceleration suppression control operation condition is satisfied, when the traveling direction of the host vehicle V is backward, the degree of suppression of the acceleration command value is higher than when the traveling direction of the host vehicle V is forward.
 また、本実施形態では、加速抑制制御量演算部44が加速抑制制御量を演算する処理において、自車両Vの進行方向が前進である場合、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルを上がりにくくしている。
 このため、加速抑制制御作動条件が成立した状態では、自車両Vの進行方向が後退である場合、自車両Vの進行方向が前進である場合よりも、加速指令値の抑制度合いが高くなる。
 なお、上述したシフトポジションセンサ20及びシフトポジション演算部10Eは、自車両進行方向検出部に対応する。
 また、上述したように、本実施形態の車両用加速抑制方法は、自車両Vの進行方向が前進である場合は、後退である場合に比べて、アクセルペダル32の操作量に応じた加速指令値を低い抑制度合いで抑制する方法である。
In the present embodiment, in the process in which the acceleration suppression control amount calculation unit 44 calculates the acceleration suppression control amount, when the traveling direction of the host vehicle V is forward, the traveling direction of the host vehicle V is backward than when the traveling direction is backward. , Making the parking frame confidence level difficult to increase.
For this reason, when the acceleration suppression control operation condition is satisfied, when the traveling direction of the host vehicle V is backward, the degree of suppression of the acceleration command value is higher than when the traveling direction of the host vehicle V is forward.
The shift position sensor 20 and the shift position calculation unit 10E described above correspond to the own vehicle traveling direction detection unit.
Further, as described above, in the vehicle acceleration suppression method according to the present embodiment, when the traveling direction of the host vehicle V is forward, the acceleration command according to the operation amount of the accelerator pedal 32 is compared to when the traveling direction is backward. It is a method of suppressing the value with a low suppression degree.
(第二実施形態の効果)
 以下、本実施形態の効果を記載する。
 本実施形態では、上述した第一実施形態の効果に加え、さらに、以下に記載する効果を奏することが可能となる。
(1)シフトポジションセンサ20及びシフトポジション演算部10Eにより、自車両の走行状態を検出する。これに加え、加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kが、自車両Vの進行方向が前進である場合は、後退である場合に比べて、加速指令値の抑制度合いを低くする。すなわち、加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kは、自車両Vの進行方向が後退である場合は、前進である場合に比べて、加速指令値の抑制度合いを高くする。
(Effect of the second embodiment)
Hereinafter, effects of the present embodiment will be described.
In the present embodiment, in addition to the effects of the first embodiment described above, the following effects can be achieved.
(1) The traveling state of the host vehicle is detected by the shift position sensor 20 and the shift position calculation unit 10E. In addition to this, when the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K are in the forward direction of the host vehicle V, The degree of suppression of the acceleration command value is made lower than in the case of reverse. That is, the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K move forward when the traveling direction of the host vehicle V is backward. The degree of suppression of the acceleration command value is increased compared to the case where
 このため、自車両Vの進行方向が、運転者が進行方向を視認しやすい前進である場合には、前進時よりも運転者が進行方向を視認しにくい後退である場合よりも、加速指令値の抑制度合いを低くして、運転性の低下を少なくすることが可能となる。さらに、自車両Vの進行方向が、前進時よりも運転者が進行方向を視認しにくい後退である場合には、運転者が進行方向を視認しやすい前進である場合よりも、加速指令値の抑制度合いを高くして、自車両Vの加速抑制効果を高くすることが可能となる。
 その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
For this reason, when the traveling direction of the host vehicle V is a forward movement in which the driver can easily recognize the traveling direction, the acceleration command value is larger than in a backward movement in which the driver is less likely to visually recognize the traveling direction than during the forward traveling. It is possible to reduce the decrease in drivability and reduce the drivability. Further, when the traveling direction of the host vehicle V is a backward movement in which the driver is less likely to visually recognize the traveling direction than when the vehicle is traveling forward, the acceleration command value is larger than when the driver is traveling forward in which the traveling direction is easily visible. It is possible to increase the degree of suppression and increase the acceleration suppression effect of the host vehicle V.
As a result, it is possible to suppress the drivability of the host vehicle V during parking and to suppress acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
(2)本実施形態の車両用加速抑制方法では、自車両Vの進行方向を検出し、自車両Vの進行方向が前進である場合は、後退である場合に比べて、加速指令値を低い抑制度合いで抑制する。
 このため、自車両Vの進行方向が、運転者が進行方向を視認しやすい前進である場合には、前進時よりも運転者が進行方向を視認しにくい後退である場合よりも、加速指令値の抑制度合いを低くして、運転性の低下を少なくすることが可能となる。さらに、自車両Vの進行方向が、前進時よりも運転者が進行方向を視認しにくい後退である場合には、運転者が進行方向を視認しやすい前進である場合よりも、加速指令値の抑制度合いを高くして、自車両Vの加速抑制効果を高くすることが可能となる。
 その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(2) In the vehicle acceleration suppression method of the present embodiment, the traveling direction of the host vehicle V is detected. When the traveling direction of the host vehicle V is forward, the acceleration command value is lower than when the host vehicle V is traveling backward. Suppress with the degree of suppression.
For this reason, when the traveling direction of the host vehicle V is a forward movement in which the driver can easily recognize the traveling direction, the acceleration command value is larger than in a backward movement in which the driver is less likely to visually recognize the traveling direction than during the forward traveling. It is possible to reduce the decrease in drivability and reduce the drivability. Further, when the traveling direction of the host vehicle V is a backward movement in which the driver is less likely to visually recognize the traveling direction than when the vehicle is traveling forward, the acceleration command value is larger than when the driver is traveling forward in which the traveling direction is easily visible. It is possible to increase the degree of suppression and increase the acceleration suppression effect of the host vehicle V.
As a result, it is possible to suppress the drivability of the host vehicle V during parking and to suppress acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
(変形例)
(1)本実施形態では、自車両Vの進行方向が前進である場合には、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルを上がりにくくして、加速指令値の抑制度合いが低くなる構成としているが、これに限定するものではない。すなわち、例えば、平行度閾値、旋回半径閾値、第一閾値及び第二閾値のうち少なくとも一つの設定を変更して、自車両Vの進行方向が前進である場合には、自車両Vの進行方向が後退である場合よりも、駐車枠進入確信度のレベルを上がりにくくしてもよい。これにより、自車両Vの進行方向が前進である場合には、自車両Vの進行方向が後退である場合よりも、駐車枠進入確信度のレベルを上がりにくくして、加速指令値の抑制度合いが低くなる構成としてもよい。
(Modification)
(1) In the present embodiment, when the traveling direction of the host vehicle V is forward, the level of the parking frame reliability is less likely to be increased than when the traveling direction of the host vehicle V is backward, and the acceleration command Although the degree of suppression of the value is configured to be low, the present invention is not limited to this. That is, for example, when at least one of the parallelism threshold value, the turning radius threshold value, the first threshold value, and the second threshold value is changed and the traveling direction of the host vehicle V is forward, the traveling direction of the host vehicle V The level of the parking frame approach reliability may be less likely to increase than when the vehicle is moving backward. As a result, when the traveling direction of the host vehicle V is forward, the level of the parking frame approach certainty is less likely to be raised than when the traveling direction of the host vehicle V is backward, and the degree of suppression of the acceleration command value It is good also as a structure which becomes low.
(2)本実施形態では、自車両Vの進行方向が前進である場合には、自車両Vの進行方向が後退である場合よりも設定移動距離を長く設定して、駐車枠確信度のレベルを上がりにくくしたが、これに限定するものではない。すなわち、例えば、上述した四つの条件(C1~C4)を満足するか否かを判定する処理において、線Laが途切れている場合、自車両Vの進行方向が前進である場合には、2[m]程度の仮想線を延長した4[m]程度の線として処理を継続する。これに対し、自車両Vの進行方向が後退である場合には、3[m]程度の仮想線を延長した5[m]程度の線として処理を継続する。これにより、自車両Vの進行方向が前進である場合には、自車両Vの進行方向が後退である場合よりも、駐車枠確信度のレベルを上がりにくくしてもよい。 (2) In this embodiment, when the traveling direction of the host vehicle V is forward, the set travel distance is set longer than when the traveling direction of the host vehicle V is backward, and the level of parking frame reliability is set. However, it is not limited to this. That is, for example, in the process of determining whether or not the above four conditions (C1 to C4) are satisfied, if the line La is interrupted, and the traveling direction of the host vehicle V is forward, 2 [ The processing is continued as a line of about 4 [m] obtained by extending a virtual line of about [m]. On the other hand, when the traveling direction of the host vehicle V is backward, the process is continued as a line of about 5 [m] obtained by extending a virtual line of about 3 [m]. Thereby, when the traveling direction of the own vehicle V is forward, the level of the parking frame reliability may be made less likely to be raised than when the traveling direction of the own vehicle V is backward.
(3)本実施形態では、上述したシフトポジションセンサ20及びシフトポジション演算部10Eを用いて、自車両Vの進行方向を検出したが、これに限定するものではない。すなわち、例えば、自車両Vに、車体の前後方向(車両前後方向)への加速度を検出する前後加速度センサを備え、前後加速度センサが検出した加速度に基づいて、自車両Vの進行方向を検出してもよい。
(4)本実施形態では、総合確信度算出部40が算出した総合確信度に基づいて、加速抑制制御開始タイミングと加速抑制制御量を演算したが、これに限定するものではない。すなわち、駐車枠確信度算出部36が算出した駐車枠確信度と、自車両Vの進行方向が前進であるか後退であるかに基づき、加速抑制制御開始タイミングと加速抑制制御量を演算してもよい。この場合、加速抑制制御開始タイミングと加速抑制制御量は、駐車枠確信度を、例えば、図28中に示す加速抑制条件演算マップに適合させて演算する。なお、図28は、本実施形態の変形例を示す図である。
(3) In the present embodiment, the traveling direction of the host vehicle V is detected using the shift position sensor 20 and the shift position calculation unit 10E described above, but the present invention is not limited to this. That is, for example, the host vehicle V includes a longitudinal acceleration sensor that detects acceleration in the longitudinal direction of the vehicle body (vehicle longitudinal direction), and detects the traveling direction of the host vehicle V based on the acceleration detected by the longitudinal acceleration sensor. May be.
(4) In the present embodiment, the acceleration suppression control start timing and the acceleration suppression control amount are calculated based on the total reliability calculated by the total reliability calculation unit 40, but the present invention is not limited to this. That is, the acceleration suppression control start timing and the acceleration suppression control amount are calculated based on the parking frame reliability calculated by the parking frame reliability calculation unit 36 and whether the traveling direction of the host vehicle V is forward or backward. Also good. In this case, the acceleration suppression control start timing and the acceleration suppression control amount are calculated by adapting the parking frame certainty to, for example, an acceleration suppression condition calculation map shown in FIG. FIG. 28 is a diagram illustrating a modification of the present embodiment.
(第三実施形態)
 以下、本発明の第三実施形態(以下、「本実施形態」と記載する)について、図面を参照しつつ説明する。
(構成)
 まず、図1から図28を参照しつつ、図29を用いて、本実施形態の車両用加速抑制装置1の構成を説明する。
 本実施形態の車両用加速抑制装置1は、加速抑制制御内容演算部10Iで行なう処理を除き、上述した第一実施形態と同様であるため、加速抑制制御内容演算部10Iで行なう処理以外については、その説明を省略する場合がある。
 また、本実施形態の車両用加速抑制装置1は、加速抑制制御内容演算部10Iで行なう処理のうち、駐車枠確信度算出部36と総合確信度算出部40が行なう処理以外の処理は、上述した第一実施形態と同様であるため、その説明を省略する。
(Third embodiment)
Hereinafter, a third embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described with reference to the drawings.
(Constitution)
First, the configuration of the vehicle acceleration suppression device 1 of this embodiment will be described with reference to FIGS. 1 to 28 and FIG. 29.
The vehicle acceleration suppression device 1 of the present embodiment is the same as the first embodiment except for the processing performed by the acceleration suppression control content calculation unit 10I, and therefore, except for the processing performed by the acceleration suppression control content calculation unit 10I. The description may be omitted.
Moreover, the acceleration suppression apparatus 1 for vehicles of this embodiment WHEREIN: Processes other than the process which the parking frame reliability calculation part 36 and the total reliability calculation part 40 perform among the processes performed by the acceleration suppression control content calculating part 10I are mentioned above. Since this is the same as the first embodiment, the description thereof is omitted.
 本実施形態の駐車枠確信度算出部36は、上述したステップS208の処理において、まず、操舵角信号の入力を受け、自車両Vの走行状態が旋回状態であるか否かを判断し、その判断結果に応じて、設定移動距離を設定する。そして、自車両Vの走行状態が旋回状態であるか否かに応じて設定した設定移動距離に基づき、ステップS206の処理を開始してから自車両Vの移動距離が設定移動距離となるまでに、ステップS206の処理が連続して照合するか否かを判断する処理を行う。
 ここで、自車両Vの走行状態が旋回状態であるか否かを判断する処理としては、例えば、操舵角信号が含む、ステアリングホイール28の中立位置からの操作量(回転角)を参照する。さらに、参照した回転角が、予め設定した旋回状態判断用閾値(例えば、90[°])を超えているか否かを判定する。そして、参照した回転角が旋回状態判断用閾値を超えている場合、自車両Vが旋回状態であると判断する。
In the process of step S208 described above, the parking frame certainty calculation unit 36 of the present embodiment first receives an input of a steering angle signal, determines whether or not the traveling state of the host vehicle V is a turning state, and The set movement distance is set according to the determination result. Then, based on the set movement distance set according to whether or not the traveling state of the host vehicle V is a turning state, the process proceeds from step S206 until the movement distance of the host vehicle V becomes the set movement distance. The process of step S206 performs a process of determining whether or not to collate continuously.
Here, as a process for determining whether or not the traveling state of the host vehicle V is a turning state, for example, an operation amount (rotation angle) from the neutral position of the steering wheel 28 included in the steering angle signal is referred to. Further, it is determined whether or not the referred rotation angle exceeds a preset turning state determination threshold value (for example, 90 [°]). And when the referred rotation angle exceeds the turning state determination threshold value, it is determined that the host vehicle V is in a turning state.
 なお、旋回状態判断用閾値は、90[°]に限定するものではなく、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。また、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
 ここで、自車両Vの走行状態が旋回状態であるか否かに応じて設定移動距離を設定する処理は、例えば、操舵角演算部10Cから入力を受けた操舵角信号を参照して行なう。
 また、本実施形態では、一例として、自車両Vの走行状態が旋回状態ではないと判断すると、設定移動距離を2.5[m]に設定し、自車両Vの走行状態が旋回状態であると判断すると、設定移動距離を1[m]に設定する場合について説明する。
 なお、上記の設定移動距離は、一例であり、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて変更してもよい。また、例えば、自車両Vが走行する地域(国等)の交通法規等に応じて変更してもよい。
The turning state determination threshold value is not limited to 90 [°], and may be changed according to the specifications of the host vehicle V, such as the braking performance of the host vehicle V, for example. Further, for example, the vehicle V may be changed according to the traffic regulations of the area (country etc.) where the vehicle V travels.
Here, the process of setting the set movement distance according to whether or not the traveling state of the host vehicle V is a turning state is performed with reference to a steering angle signal received from the steering angle calculation unit 10C, for example.
In the present embodiment, as an example, when the traveling state of the host vehicle V is determined not to be a turning state, the set movement distance is set to 2.5 [m], and the traveling state of the host vehicle V is a turning state. If it is determined, the case where the set moving distance is set to 1 [m] will be described.
The set travel distance is an example, and may be changed according to the specifications of the host vehicle V, such as the braking performance of the host vehicle V, for example. Further, for example, the vehicle V may be changed according to the traffic regulations of the area (country etc.) where the vehicle V travels.
 したがって、本実施形態では、ステップS208の処理において、自車両Vの走行状態が旋回状態である場合、自車両Vの走行状態が旋回状態ではない場合よりも、駐車枠確信度のレベルが「レベル1」として算出されにくくなる。
 また、本実施形態の総合確信度算出部40は、例えば、上述した駐車枠確信度算出部36と同様の処理を行い、自車両Vの走行状態が旋回状態であるか否かを判断する処理を行う。
 また、本実施形態の総合確信度算出部40は、駐車枠確信度信号及び駐車枠進入確信度信号の入力を受け、駐車枠確信度信号が含む駐車枠確信度と、駐車枠進入確信度信号が含む駐車枠進入確信度を、図29中に示す総合確信度算出マップに適合させる。そして、駐車枠確信度と駐車枠進入確信度に基づき、総合確信度を算出する。
 なお、図29は、本実施形態で用いる総合確信度算出マップを示す図である。また、図29中では、図17中と同様、駐車枠確信度を「枠確信度」と示し、駐車枠進入確信度を「進入確信度」と示す。
Therefore, in the present embodiment, in the process of step S208, when the traveling state of the host vehicle V is the turning state, the level of the parking frame certainty is “level” compared to when the traveling state of the host vehicle V is not the turning state. It becomes difficult to calculate as “1”.
Moreover, the comprehensive reliability calculation part 40 of this embodiment performs the process similar to the parking frame reliability calculation part 36 mentioned above, for example, and determines whether the driving state of the own vehicle V is a turning state. I do.
Further, the overall certainty calculation unit 40 of the present embodiment receives the parking frame certainty signal and the parking frame approach certainty signal, receives the parking frame certainty factor included in the parking frame certainty signal, and the parking frame approach certainty signal. The parking frame approach reliability included in is adapted to the comprehensive reliability calculation map shown in FIG. Then, based on the parking frame certainty factor and the parking frame approach certainty factor, the total certainty factor is calculated.
FIG. 29 is a diagram showing an overall certainty calculation map used in the present embodiment. In FIG. 29, as in FIG. 17, the parking frame certainty factor is indicated as “frame certainty factor”, and the parking frame approach certainty factor is indicated as “entry certainty factor”.
 ここで、本実施形態の総合確信度算出部40が用いる総合確信度算出マップは、上述した第一実施形態の総合確信度算出部40が用いる総合確信度算出マップと異なり、自車両Vが旋回状態であるか否かの判断結果に応じて、総合確信度のレベルを変更する。なお、図29中では、自車両Vが旋回状態ではないと判断した場合の総合確信度を、「進入確信度」欄において、「非旋回状態時レベル低」及び「非旋回状態時レベル高」と示す。これに加え、図29中では、自車両Vが旋回状態であると判断した場合の総合確信度を、「進入確信度」欄において、「旋回状態時レベル低」及び「旋回状態時レベル高」と示す。 Here, the comprehensive certainty calculation map used by the comprehensive certainty calculation unit 40 of the present embodiment is different from the comprehensive certainty calculation map used by the comprehensive certainty calculation unit 40 of the first embodiment described above. The level of the total certainty level is changed according to the determination result of whether or not it is in a state. In FIG. 29, the total certainty factor when it is determined that the host vehicle V is not in the turning state is “low level when not turning” and “high level when not turning” in the “entry certainty” column. It shows. In addition to this, in FIG. 29, the total certainty when it is determined that the host vehicle V is in the turning state is “level low in turning state” and “level high in turning state” in the “entry certainty” column. It shows.
 また、本実施形態の総合確信度算出部40は、図29中に示すように、自車両Vが旋回状態であると判断した場合の総合確信度を、自車両Vが旋回状態ではないと判断した場合の総合確信度以上のレベルとして算出する。
 本実施形態の総合確信度算出部40が総合確信度を算出する処理の一例として、駐車枠確信度が「レベル2」であり、駐車枠進入確信度が「非旋回状態時レベル高」である場合では、図29中に示すように、総合確信度を「低」として算出する。一方、駐車枠確信度が「レベル2」であり、駐車枠進入確信度が「旋回状態時レベル高」である場合では、図29中に示すように、総合確信度を「高」として算出する。
 したがって、本実施形態では、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合よりも、総合確信度が高いレベルとして算出されやすくなる。これにより、本実施形態では、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合よりも、加速指令値の抑制度合いが高くなる。
Further, as shown in FIG. 29, the total certainty calculation unit 40 of the present embodiment determines the total certainty when the host vehicle V is in a turning state, and determines that the host vehicle V is not in a turning state. The level is calculated as a level that is equal to or higher than the overall certainty.
As an example of the process in which the total confidence factor calculation unit 40 of the present embodiment calculates the total confidence factor, the parking frame certainty factor is “level 2”, and the parking frame approach certainty factor is “high level in non-turning state”. In this case, as shown in FIG. 29, the total certainty factor is calculated as “low”. On the other hand, when the parking frame certainty factor is “level 2” and the parking frame approach certainty factor is “high level when turning”, the total certainty factor is calculated as “high” as shown in FIG. .
Therefore, in the present embodiment, when the host vehicle V is in a turning state, the total confidence level is easily calculated as a higher level than when the host vehicle V is not in a turning state. Thereby, in this embodiment, when the own vehicle V is in the turning state, the degree of suppression of the acceleration command value is higher than when the own vehicle V is not in the turning state.
(動作)
 次に、図1から図29を参照して、本実施形態の車両用加速抑制装置1を用いて行なう動作の一例を説明する。なお、上述した第一実施形態と同様の動作等については、説明を省略する場合がある。
 以下に記載する動作の一例では、上述した第一実施形態と同様、駐車場内を走行する自車両Vが、運転者の選択した駐車枠L0に進入する例を説明する。
 自車両Vの走行中には、駐車枠確信度算出部36が駐車枠確信度を算出し、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する。そして、総合確信度算出部40が、駐車枠確信度及び駐車枠進入確信度に基づく総合確信度を算出する。
(Operation)
Next, an example of an operation performed using the vehicle acceleration suppression device 1 of the present embodiment will be described with reference to FIGS. In addition, about the operation | movement etc. similar to 1st embodiment mentioned above, description may be abbreviate | omitted.
In an example of the operation described below, an example will be described in which the host vehicle V traveling in the parking lot enters the parking frame L0 selected by the driver, as in the first embodiment described above.
While the host vehicle V is traveling, the parking frame certainty calculation unit 36 calculates the parking frame certainty factor, and the parking frame approach certainty calculating unit 38 calculates the parking frame approach certainty factor. And the comprehensive reliability calculation part 40 calculates the comprehensive reliability based on a parking frame reliability and a parking frame approach reliability.
 さらに、自車両Vの走行中には、総合確信度算出部40が算出した総合確信度に基づき、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算し、加速抑制制御量演算部44が加速抑制制御量を演算する。
 そして、自車両Vが駐車枠L0へ進入すると判断し、加速抑制制御作動条件が成立すると判断すると、加速抑制指令値演算部10Jが、加速抑制指令値信号を目標スロットル開度演算部10Kへ出力する。さらに、目標スロットル開度演算部10Kが、目標スロットル開度信号をエンジンコントローラ12へ出力する。
Further, while the host vehicle V is traveling, the acceleration suppression control start timing calculation unit 42 calculates the acceleration suppression control start timing based on the total reliability calculated by the total reliability calculation unit 40, and the acceleration suppression control amount calculation unit 44 calculates an acceleration suppression control amount.
When it is determined that the host vehicle V enters the parking frame L0 and the acceleration suppression control operation condition is satisfied, the acceleration suppression command value calculation unit 10J outputs an acceleration suppression command value signal to the target throttle opening calculation unit 10K. To do. Further, the target throttle opening calculation unit 10K outputs a target throttle opening signal to the engine controller 12.
 ここで、本実施形態では、総合確信度算出部40が総合確信度を算出する処理において、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合よりも、総合確信度を高いレベルとして算出されやすくしている。
 このため、加速抑制制御作動条件が成立した状態では、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合よりも、加速指令値の抑制度合いが高くなる。
 なお、上述した操舵角センサ18及び操舵角演算部10Cは、自車両旋回状態検出部に対応する。
 また、上述したように、本実施形態の車両用加速抑制方法は、自車両Vの旋回状態を検出しない場合、自車両Vの旋回状態を検出した場合に比べて、アクセルペダル32の操作量に応じた加速指令値を低い抑制度合いで抑制する方法である。
Here, in this embodiment, in the process in which the total confidence factor calculation unit 40 calculates the total confidence factor, when the host vehicle V is in a turning state, the total confidence factor is greater than when the host vehicle V is not in a turning state. It is easy to calculate as a high level.
For this reason, when the acceleration suppression control operation condition is satisfied, when the host vehicle V is in a turning state, the degree of suppression of the acceleration command value is higher than when the host vehicle V is not in a turning state.
The steering angle sensor 18 and the steering angle calculation unit 10C described above correspond to the host vehicle turning state detection unit.
In addition, as described above, the vehicle acceleration suppression method according to the present embodiment increases the amount of operation of the accelerator pedal 32 when the turning state of the host vehicle V is not detected and when the turning state of the host vehicle V is detected. This is a method of suppressing the corresponding acceleration command value with a low suppression degree.
(第三実施形態の効果)
 以下、本実施形態の効果を記載する。
 本実施形態では、上述した第一実施形態の効果に加え、さらに、以下に記載する効果を奏することが可能となる。
(1)操舵角センサ18及び操舵角演算部10Cにより、自車両Vが旋回状態であるか否かを検出する。これに加え、加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kが、自車両Vが旋回状態ではない場合、自車両Vが旋回状態である場合に比べて、加速指令値の抑制度合いを低くする。すなわち、加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kは、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合に比べて、加速指令値の抑制度合いを高くする。
(Effect of the third embodiment)
Hereinafter, effects of the present embodiment will be described.
In the present embodiment, in addition to the effects of the first embodiment described above, the following effects can be achieved.
(1) The steering angle sensor 18 and the steering angle calculation unit 10C detect whether or not the host vehicle V is in a turning state. In addition to this, when the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K are not in the turning state, Compared with the case where V is in a turning state, the degree of suppression of the acceleration command value is lowered. That is, the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K are configured so that when the host vehicle V is in a turning state, The degree of suppression of the acceleration command value is increased compared to the case where the vehicle is not in a turning state.
 このため、自車両Vの走行状態が、運転者が加速を意図する場合が多い直進である場合には、直進時よりも運転者が加速を意図する場合が少ない旋回である場合よりも、加速指令値の抑制度合いを低くして、運転性の低下を少なくすることが可能となる。さらに、自車両Vの走行状態が、直進時よりも運転者が加速を意図する場合が少ない旋回である場合には、運転者が加速を意図する場合が多い直進時よりも、加速指令値の抑制度合いを高くして、自車両Vの加速抑制効果を高くすることが可能となる。
 その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
For this reason, when the traveling state of the host vehicle V is straight traveling, in which the driver often intends to accelerate, acceleration is faster than when the driver intends to accelerate less than when traveling straight. It is possible to reduce the degree of suppression of the command value and reduce the decrease in drivability. Further, when the traveling state of the host vehicle V is a turn where the driver is not intending to accelerate more than when the vehicle is traveling straight, the acceleration command value is greater than when the driver is intending to accelerate. It is possible to increase the degree of suppression and increase the acceleration suppression effect of the host vehicle V.
As a result, it is possible to suppress the drivability of the host vehicle V during parking and to suppress acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
(2)本実施形態の車両用加速抑制方法では、自車両Vが旋回状態であるか否かを検出し、自車両Vの旋回状態を検出しない場合、自車両Vの旋回状態を検出した場合に比べて、加速指令値を低い抑制度合いで抑制する。
 このため、自車両Vの走行状態が、運転者が加速を意図する場合が多い直進である場合には、直進時よりも運転者が加速を意図する場合が少ない旋回である場合よりも、加速指令値の抑制度合いを低くして、運転性の低下を少なくすることが可能となる。さらに、自車両Vの走行状態が、直進時よりも運転者が加速を意図する場合が少ない旋回である場合には、運転者が加速を意図する場合が多い直進時よりも、加速指令値の抑制度合いを高くして、自車両Vの加速抑制効果を高くすることが可能となる。
 その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(2) In the vehicle acceleration suppression method of the present embodiment, whether or not the host vehicle V is in a turning state is detected and the turning state of the own vehicle V is not detected or the turning state of the own vehicle V is detected Compared to, the acceleration command value is suppressed with a low suppression degree.
For this reason, when the traveling state of the host vehicle V is straight traveling, in which the driver often intends to accelerate, acceleration is faster than when the driver intends to accelerate less than when traveling straight. It is possible to reduce the degree of suppression of the command value and reduce the decrease in drivability. Further, when the traveling state of the host vehicle V is a turn where the driver is not intending to accelerate more than when the vehicle is traveling straight, the acceleration command value is greater than when the driver is intending to accelerate. It is possible to increase the degree of suppression and increase the acceleration suppression effect of the host vehicle V.
As a result, it is possible to suppress the drivability of the host vehicle V during parking and to suppress acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
(変形例)
(1)本実施形態では、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合よりも、総合確信度を高いレベルとして算出されやすくして、加速指令値の抑制度合いが高くなる構成としているが、これに限定するものではない。すなわち、例えば、加速抑制制御開始タイミングや加速抑制制御量を変化させて、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合よりも、加速指令値の抑制度合いを高くする構成としてもよい。また、例えば、自車両Vが旋回状態である場合、自車両Vが旋回状態ではない場合よりも、駐車枠確信度や駐車枠進入確信度を高いレベルとして算出されやすくして、加速指令値の抑制度合いが高くなる構成としてもよい。
(Modification)
(1) In the present embodiment, when the host vehicle V is in a turning state, the overall confidence is easily calculated as a higher level than when the host vehicle V is not in a turning state, and the degree of suppression of the acceleration command value is increased. Although it is set as the structure which becomes high, it is not limited to this. That is, for example, when the host vehicle V is in a turning state by changing the acceleration suppression control start timing and the acceleration suppression control amount, the degree of suppression of the acceleration command value is made higher than when the host vehicle V is not in a turning state. It is good also as a structure. Further, for example, when the host vehicle V is in a turning state, the parking frame certainty factor or the parking frame approach certainty factor can be easily calculated as a higher level than when the host vehicle V is not in a turning state, and the acceleration command value It is good also as a structure from which the suppression degree becomes high.
(2)本実施形態では、旋回状態判断用閾値を、ステアリングホイール28の回転角に対応する値(例えば、90[°])に設定したが、旋回状態判断用閾値は、これに限定するものではない。すなわち、自車両Vの構成を、自車両Vのヨーレートを検出するヨーレートセンサを備えた構成とし、旋回状態判断用閾値を、自車両Vのヨーレートに対応する値(例えば、100[R])に設定してもよい。また、自車両Vの構成を、転舵輪(例えば、右前輪WFR及び左前輪WFL)の転舵角を検出する転舵角センサを備えた構成とし、旋回状態判断用閾値を、転舵輪の転舵角に対応する値(例えば、6[°])に設定してもよい。 (2) In this embodiment, the turning state determination threshold is set to a value (for example, 90 [°]) corresponding to the rotation angle of the steering wheel 28, but the turning state determination threshold is limited to this. is not. That is, the configuration of the host vehicle V includes a yaw rate sensor that detects the yaw rate of the host vehicle V, and the turning state determination threshold is set to a value (for example, 100 [R]) corresponding to the yaw rate of the host vehicle V. It may be set. Further, the configuration of the host vehicle V is configured to include a turning angle sensor that detects the turning angle of the steered wheels (for example, the right front wheel WFR and the left front wheel WFL), and the turning state determination threshold value is set to the turning value of the steered wheel. You may set to the value (for example, 6 [degree]) corresponding to a steering angle.
(3)本実施形態では、総合確信度算出部40が算出した総合確信度に基づいて、加速抑制制御開始タイミングと加速抑制制御量を演算したが、これに限定するものではない。すなわち、駐車枠確信度算出部36が算出した駐車枠確信度と、自車両Vが旋回状態であるか否かの判断に基づき、加速抑制制御開始タイミングと加速抑制制御量を演算してもよい。この場合、加速抑制制御開始タイミングと加速抑制制御量は、駐車枠確信度を、例えば、図30中に示す加速抑制条件演算マップに適合させて演算する。なお、図30は、本実施形態の変形例を示す図である。
 また、図30中に示す加速抑制条件演算マップを用いた状態で、自車両Vの走行状態が旋回状態である場合には、例えば、図27中に示すものと同様の加速抑制条件演算マップを用いて、加速抑制制御開始タイミングと加速抑制制御量を演算してもよい。
(3) In the present embodiment, the acceleration suppression control start timing and the acceleration suppression control amount are calculated based on the total reliability calculated by the total reliability calculation unit 40, but the present invention is not limited to this. That is, the acceleration suppression control start timing and the acceleration suppression control amount may be calculated on the basis of the parking frame reliability calculated by the parking frame reliability calculation unit 36 and whether or not the host vehicle V is in a turning state. . In this case, the acceleration suppression control start timing and the acceleration suppression control amount are calculated by adapting the parking frame certainty factor to, for example, the acceleration suppression condition calculation map shown in FIG. FIG. 30 is a diagram illustrating a modification of the present embodiment.
Further, when the traveling state of the host vehicle V is a turning state using the acceleration suppression condition calculation map shown in FIG. 30, for example, an acceleration suppression condition calculation map similar to that shown in FIG. 27 is used. It is also possible to calculate the acceleration suppression control start timing and the acceleration suppression control amount.
(第四実施形態)
 以下、本発明の第四実施形態(以下、「本実施形態」と記載する)について、図面を参照しつつ説明する。
(構成)
 まず、図1から図30を参照しつつ、図31を用いて、本実施形態の車両用加速抑制装置1の構成を説明する。
 本実施形態の車両用加速抑制装置1は、加速抑制制御内容演算部10Iで行なう処理を除き、上述した第一実施形態と同様であるため、加速抑制制御内容演算部10Iで行なう処理以外については、その説明を省略する場合がある。
 また、本実施形態の車両用加速抑制装置1は、加速抑制制御内容演算部10Iで行なう処理のうち、加速抑制作動条件判断部34と総合確信度算出部40が行なう処理以外の処理は、上述した第一実施形態と同様であるため、その説明を省略する。
(Fourth embodiment)
Hereinafter, a fourth embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described with reference to the drawings.
(Constitution)
First, the configuration of the vehicle acceleration suppression device 1 of this embodiment will be described with reference to FIGS. 1 to 30 and FIG. 31.
The vehicle acceleration suppression device 1 of the present embodiment is the same as the first embodiment except for the processing performed by the acceleration suppression control content calculation unit 10I, and therefore, except for the processing performed by the acceleration suppression control content calculation unit 10I. The description may be omitted.
Moreover, the acceleration suppression apparatus 1 for vehicles of this embodiment WHEREIN: Among the processes performed by the acceleration suppression control content calculating part 10I, processes other than the process which the acceleration suppression operation condition judgment part 34 and the comprehensive reliability calculation part 40 perform are mentioned above. Since this is the same as the first embodiment, the description thereof is omitted.
 本実施形態の加速抑制作動条件判断部34は、上述したステップS106の処理において、自車両Vの車速が、予め設定した複数の閾値車速領域のうち、いずれの領域に適合するかを判定する処理を行う。そして、ステップS106の処理を行うと、本実施形態の加速抑制作動条件判断部34が行なう処理は、ステップS108へ移行する。
 なお、本実施形態では、一例として、図31中に示すように、複数の閾値車速領域として、四つの領域を設定した場合について説明する。また、図31は、本実施形態の加速抑制制御内容演算部10Iで行なう処理に用いるマップであり、車速と制御内容との関連を示すマップである。
 ここで、四つの閾値車速領域は、0[km/h]の第一車速領域、0[km/h]以上15[km/h]以下の第二車速領域、15[km/h]を超え20[km/h]以下の第三車速領域、20[km/h]を超える第四車速領域である。
The acceleration suppression operation condition determination unit 34 according to the present embodiment determines in which region the vehicle speed of the host vehicle V is suitable among a plurality of preset threshold vehicle speed regions in the process of step S106 described above. I do. And if the process of step S106 is performed, the process which the acceleration suppression operation condition judgment part 34 of this embodiment performs will transfer to step S108.
In this embodiment, as an example, a case where four regions are set as a plurality of threshold vehicle speed regions will be described as shown in FIG. FIG. 31 is a map used for processing performed by the acceleration suppression control content calculation unit 10I of the present embodiment, and is a map showing the relationship between the vehicle speed and the control content.
Here, the four threshold vehicle speed regions are a first vehicle speed region of 0 [km / h], a second vehicle speed region of 0 [km / h] to 15 [km / h], and exceeds 15 [km / h]. The third vehicle speed region is 20 [km / h] or less, and the fourth vehicle speed region is over 20 [km / h].
 次に、本実施形態の加速抑制作動条件判断部34は、上述したステップS118の処理において、ステップS106で判定した自車両Vの車速が適合する閾値車速領域に基づき、自車両Vが駐車枠へ進入すると判断する条件を変更する。なお、図31中では、自車両Vが駐車枠へ進入すると判断する条件を、加速抑制制御を開始するか否かの条件とし、「制御内容」欄に「制御開始」として示す。
 自車両Vが駐車枠へ進入すると判断する条件を変更する処理の具体例としては、自車両Vの車速が第一車速領域または第二車速領域である場合、上述した条件Aの設定値を、上述した第一実施形態と同様の値とする処理を行う。ここで、条件Aの設定値とは、上述した設定舵角値、設定時間、設定角度、設定距離のうち、少なくとも一つである。なお、図31中では、条件(A1~A3)の設定値を第一実施形態と同様の値とする状態を、符合「○」で示す。
Next, the acceleration suppression operation condition determination unit 34 of the present embodiment determines that the host vehicle V is in the parking frame based on the threshold vehicle speed region in which the vehicle speed of the host vehicle V determined in step S106 is matched in the process of step S118 described above. Change the conditions for judging entry. In FIG. 31, a condition for determining that the host vehicle V enters the parking frame is a condition for determining whether or not the acceleration suppression control is started, and is indicated as “control start” in the “control content” column.
As a specific example of the process of changing the condition for determining that the host vehicle V enters the parking frame, when the vehicle speed of the host vehicle V is the first vehicle speed region or the second vehicle speed region, the set value of the condition A described above is The process which makes the same value as 1st embodiment mentioned above is performed. Here, the set value of the condition A is at least one of the set rudder angle value, the set time, the set angle, and the set distance described above. In FIG. 31, a state where the set values of the conditions (A1 to A3) are the same as those in the first embodiment is indicated by a symbol “◯”.
 一方、自車両Vの車速が第三車速領域または第四車速領域である場合、条件Aの設定値を、第一実施形態よりも、自車両Vが駐車枠へ進入すると判断されにくい値に変更する。これは、例えば、条件A1における設定時間を、第一実施形態よりも長い時間に変更する等の処理によって行なう。なお、図31中では、条件Aの設定値を第一実施形態よりも自車両Vが駐車枠へ進入すると判断されにくい値に変更する状態を、「制御開始条件を規制」と示す。
 また、本実施形態の加速抑制作動条件判断部34は、加速抑制制御が作動している状態では、ステップS106で判定した自車両Vの車速が適合する閾値車速領域に基づき、作動中の加速抑制制御を継続させる条件を変更する。なお、図31中では、作動中の加速抑制制御を継続させる条件を、「制御内容」欄に「制御継続」として示す。
 作動中の加速抑制制御を継続させる条件を変更する処理の具体例としては、自車両Vの車速が第四車速領域以外である場合、作動中の加速抑制制御を継続させる処理を行う。なお、図31中では、作動中の加速抑制制御を継続させる状態を、符合「○」で示す。
On the other hand, when the vehicle speed of the host vehicle V is the third vehicle speed region or the fourth vehicle speed region, the set value of the condition A is changed to a value that is less likely to be determined when the host vehicle V enters the parking frame than in the first embodiment. To do. This is performed, for example, by processing such as changing the set time in the condition A1 to a time longer than that in the first embodiment. In FIG. 31, a state in which the set value of the condition A is changed to a value that is less likely to be determined when the host vehicle V enters the parking frame than in the first embodiment is indicated as “control start condition is restricted”.
In addition, the acceleration suppression operation condition determination unit 34 of the present embodiment, in a state in which the acceleration suppression control is operating, is based on a threshold vehicle speed region in which the vehicle speed of the host vehicle V determined in step S106 is suitable, Change the conditions for continuing control. In FIG. 31, the condition for continuing the acceleration suppression control during operation is shown as “control continuation” in the “control content” column.
As a specific example of the process of changing the condition for continuing the acceleration suppression control during operation, when the vehicle speed of the host vehicle V is outside the fourth vehicle speed region, the process of continuing the acceleration suppression control during operation is performed. In FIG. 31, a state in which the acceleration suppression control during operation is continued is indicated by a symbol “◯”.
 一方、自車両Vの車速が第四車速領域である場合、例えば、条件Aの設定値を、第一実施形態よりも、自車両Vが駐車枠へ進入すると判断されにくい値に変更して、作動中の加速抑制制御を終了させやすくする処理を行う。なお、図31中では、作動中の加速抑制制御を終了させやすくする状態を、「制御終了条件を緩和」と示す。
 また、本実施形態の総合確信度算出部40は、車速演算値信号の入力を受け、加速抑制作動条件判断部34で行なう処理と同様、自車両Vの車速がいずれの閾値車速領域に適合するかを判定する処理を行う。なお、総合確信度算出部40で行なう、自車両Vの車速がいずれの閾値車速領域に適合するかを判定する処理では、加速抑制作動条件判断部34で行なった処理結果を用いてもよい。
On the other hand, when the vehicle speed of the host vehicle V is the fourth vehicle speed region, for example, the set value of the condition A is changed to a value that is less likely to be determined when the host vehicle V enters the parking frame than the first embodiment. A process for facilitating the termination of the acceleration suppression control during operation is performed. In FIG. 31, a state that facilitates terminating the acceleration suppression control during operation is indicated as “relaxation of control termination condition”.
Also, the overall certainty calculation unit 40 of the present embodiment receives the input of the vehicle speed calculation value signal, and the vehicle speed of the host vehicle V is suitable for any threshold vehicle speed region as in the processing performed by the acceleration suppression operation condition determination unit 34. The process which determines is performed. In the process for determining which threshold vehicle speed region the vehicle speed of the host vehicle V is adapted to be performed by the comprehensive certainty calculation unit 40, the processing result performed by the acceleration suppression operation condition determination unit 34 may be used.
 そして、本実施形態の総合確信度算出部40は、駐車枠確信度と駐車枠進入確信度に基づいて総合確信度を算出し、さらに、自車両Vの車速が適合する閾値車速領域に基づき、総合確信度のレベルを変更する処理を行う。なお、図31中では、総合確信度のレベルを変更する処理を、「制御内容」欄に「確信度」として示す。
 総合確信度のレベルを変更する処理の具体例としては、自車両Vの車速が第一車速領域または第二車速領域である場合、駐車枠確信度と駐車枠進入確信度に基づいて算出した総合確信度のレベルを保持する処理を行う。なお、図31中では、駐車枠確信度と駐車枠進入確信度に基づいて算出した総合確信度のレベルを保持する状態を、符合「‐」で示す。
And the comprehensive reliability calculation part 40 of this embodiment calculates a comprehensive reliability based on a parking frame reliability and a parking frame approach reliability, and also based on the threshold vehicle speed area | region where the vehicle speed of the own vehicle V is suitable, A process of changing the level of the total confidence is performed. In FIG. 31, the process of changing the level of the overall certainty factor is shown as “confidence factor” in the “control content” column.
As a specific example of the process of changing the level of the overall certainty level, when the vehicle speed of the host vehicle V is the first vehicle speed region or the second vehicle speed region, the total calculated based on the parking frame certainty factor and the parking frame approach certainty factor Processing to maintain the level of certainty is performed. In FIG. 31, a state where the level of the total certainty calculated based on the parking frame certainty and the parking frame approach certainty is held is indicated by a sign “−”.
 一方、自車両Vの車速が第三車速領域である場合、加速抑制制御が作動中であれば、駐車枠確信度と駐車枠進入確信度に基づいて算出した総合確信度のレベルを保持する処理を行う。なお、図31中では、加速抑制制御の作動中に総合確信度のレベルを保持する状態を、「制御中は確信度を保持」と示す。
 また、自車両Vの車速が第三車速領域である場合、加速抑制制御が作動していない状態であれば、駐車枠確信度と駐車枠進入確信度に基づいて算出した総合確信度のレベルを下げる(例えば、一段階下げる)処理を行う。なお、図31中では、加速抑制制御が作動していない状態で総合確信度のレベルを下げる状態を、「制御中以外は確信度のレベルを下げる」と示す。
On the other hand, when the vehicle speed of the host vehicle V is in the third vehicle speed region, if the acceleration suppression control is in operation, a process of holding the level of the total certainty calculated based on the parking frame certainty and the parking frame approach certainty I do. In FIG. 31, a state in which the level of the overall certainty level is maintained during the acceleration suppression control operation is indicated as “hold the certainty level during control”.
In addition, when the vehicle speed of the host vehicle V is in the third vehicle speed region, if the acceleration suppression control is not activated, the level of the total certainty calculated based on the parking frame certainty and the parking frame approach certainty is set. Lowering (for example, lowering by one step) is performed. In FIG. 31, a state in which the level of overall confidence is lowered while acceleration suppression control is not operating is indicated as “lower confidence level except during control”.
 また、自車両Vの車速が第四車速領域である場合、加速抑制制御が作動しているか否かに関わらず、駐車枠確信度と駐車枠進入確信度に基づいて算出した総合確信度のレベルを下げる(例えば、一段階下げる)処理を行う。なお、図31中では、加速抑制制御が作動しているか否かに関わらず総合確信度のレベルを下げる状態を、「一律に確信度のレベルを下げる」と示す。
 したがって、本実施形態では、自車両Vの車速が高いほど、総合確信度が低いレベルとして算出されやすくなる。これにより、本実施形態では、自車両Vの車速が低いほど、加速指令値を高い抑制度合いで抑制する。
In addition, when the vehicle speed of the host vehicle V is in the fourth vehicle speed region, the level of the total certainty calculated based on the parking frame certainty and the parking frame approach certainty regardless of whether or not the acceleration suppression control is operating. (For example, lowering by one step) is performed. In FIG. 31, a state in which the level of the overall confidence level is lowered regardless of whether or not the acceleration suppression control is operating is indicated as “uniformly lowering the level of confidence level”.
Therefore, in this embodiment, the higher the vehicle speed of the host vehicle V, the easier it is to calculate the overall confidence level as a lower level. Thereby, in this embodiment, the acceleration command value is suppressed at a higher suppression degree as the vehicle speed of the host vehicle V is lower.
(動作)
 次に、図1から図31を参照して、本実施形態の車両用加速抑制装置1を用いて行なう動作の一例を説明する。なお、上述した第一実施形態と同様の動作等については、説明を省略する場合がある。
 以下に記載する動作の一例では、上述した第一実施形態と同様、駐車場内を走行する自車両Vが、運転者の選択した駐車枠L0に進入する例を説明する。
 自車両Vの走行中には、駐車枠確信度算出部36が駐車枠確信度を算出し、駐車枠進入確信度算出部38が駐車枠進入確信度を算出する。そして、総合確信度算出部40が、駐車枠確信度及び駐車枠進入確信度に基づく総合確信度を算出する。
(Operation)
Next, an example of an operation performed using the vehicle acceleration suppression device 1 of the present embodiment will be described with reference to FIGS. In addition, about the operation | movement etc. similar to 1st embodiment mentioned above, description may be abbreviate | omitted.
In an example of the operation described below, an example will be described in which the host vehicle V traveling in the parking lot enters the parking frame L0 selected by the driver, as in the first embodiment described above.
While the host vehicle V is traveling, the parking frame certainty calculation unit 36 calculates the parking frame certainty factor, and the parking frame approach certainty calculating unit 38 calculates the parking frame approach certainty factor. And the comprehensive reliability calculation part 40 calculates the comprehensive reliability based on a parking frame reliability and a parking frame approach reliability.
 さらに、自車両Vの走行中には、総合確信度算出部40が算出した総合確信度に基づき、加速抑制制御開始タイミング演算部42が加速抑制制御開始タイミングを演算し、加速抑制制御量演算部44が加速抑制制御量を演算する。
 そして、自車両Vが駐車枠L0へ進入すると判断し、加速抑制制御作動条件が成立すると判断すると、加速抑制指令値演算部10Jが、加速抑制指令値信号を目標スロットル開度演算部10Kへ出力する。さらに、目標スロットル開度演算部10Kが、目標スロットル開度信号をエンジンコントローラ12へ出力する。
Further, while the host vehicle V is traveling, the acceleration suppression control start timing calculation unit 42 calculates the acceleration suppression control start timing based on the total reliability calculated by the total reliability calculation unit 40, and the acceleration suppression control amount calculation unit 44 calculates an acceleration suppression control amount.
When it is determined that the host vehicle V enters the parking frame L0 and the acceleration suppression control operation condition is satisfied, the acceleration suppression command value calculation unit 10J outputs an acceleration suppression command value signal to the target throttle opening calculation unit 10K. To do. Further, the target throttle opening calculation unit 10K outputs a target throttle opening signal to the engine controller 12.
 ここで、本実施形態では、総合確信度算出部40が総合確信度を算出する処理において、自車両Vの車速が高いほど、総合確信度を低いレベルとして算出されやすくしている。
 このため、加速抑制制御作動条件が成立した状態では、自車両Vの車速が低いほど、加速指令値を高い抑制度合いで抑制する。
 なお、上述した車輪速センサ16及び自車両車速演算部10Bは、車速検出部に対応する。
 また、上述したように、本実施形態の車両用加速抑制方法は、自車両Vの車速が高いほど、アクセルペダル32の操作量に応じた加速指令値を低い抑制度合いで抑制する方法である。
Here, in this embodiment, in the process in which the total confidence factor calculation unit 40 calculates the total confidence factor, the higher the vehicle speed of the host vehicle V, the easier it is to calculate the total confidence factor as a lower level.
For this reason, in a state where the acceleration suppression control operation condition is satisfied, the acceleration command value is suppressed at a higher suppression degree as the vehicle speed of the host vehicle V is lower.
The wheel speed sensor 16 and the host vehicle speed calculation unit 10B described above correspond to a vehicle speed detection unit.
Further, as described above, the vehicle acceleration suppression method of the present embodiment is a method of suppressing the acceleration command value according to the operation amount of the accelerator pedal 32 with a lower suppression degree as the vehicle speed of the host vehicle V is higher.
(第四実施形態の効果)
 以下、本実施形態の効果を記載する。
 本実施形態では、上述した第一実施形態の効果に加え、さらに、以下に記載する効果を奏することが可能となる。
(1)車輪速センサ16及び自車両車速演算部10Bにより、自車両Vの車速を検出する。これに加え、加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kが、自車両Vの車速が高いほど、加速指令値を低い抑制度合いで抑制する。すなわち、加速抑制制御開始タイミング演算部42、加速抑制制御量演算部44、加速抑制指令値演算部10J、目標スロットル開度演算部10Kは、自車両Vの車速が低いほど、加速指令値を高い抑制度合いで抑制する。
(Effect of the fourth embodiment)
Hereinafter, effects of the present embodiment will be described.
In the present embodiment, in addition to the effects of the first embodiment described above, the following effects can be achieved.
(1) The vehicle speed of the host vehicle V is detected by the wheel speed sensor 16 and the host vehicle vehicle speed calculation unit 10B. In addition, the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K increase the acceleration command value as the vehicle speed of the host vehicle V increases. Is suppressed with a low degree of suppression. That is, the acceleration suppression control start timing calculation unit 42, the acceleration suppression control amount calculation unit 44, the acceleration suppression command value calculation unit 10J, and the target throttle opening calculation unit 10K increase the acceleration command value as the vehicle speed of the host vehicle V decreases. Suppress with the degree of suppression.
 このため、自車両Vの車速が高く、運転者が自車両Vの駐車を意図していない可能性が高い場合には、自車両Vの車速が低く、運転者が自車両Vの駐車を意図している可能性が高い場合よりも、加速指令値の抑制度合いを低くする。これにより、運転性の低下を少なくすることが可能となる。さらに、自車両Vの車速が低く、運転者が自車両Vの駐車を意図している可能性が高い場合には、自車両Vの車速が高く、運転者が自車両Vの駐車を意図していない可能性が高い場合よりも、加速指令値の抑制度合いを高くする。これにより、自車両Vの加速抑制効果を高くすることが可能となる。
 その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
For this reason, when the vehicle speed of the own vehicle V is high and there is a high possibility that the driver does not intend to park the own vehicle V, the vehicle speed of the own vehicle V is low and the driver intends to park the own vehicle V. The degree of suppression of the acceleration command value is made lower than when there is a high possibility that the acceleration command value is high. Thereby, it becomes possible to reduce the fall of drivability. Furthermore, when the vehicle speed of the host vehicle V is low and the driver is likely to intend to park the host vehicle V, the vehicle speed of the host vehicle V is high and the driver intends to park the host vehicle V. The degree of suppression of the acceleration command value is made higher than when there is a high possibility that it is not. Thereby, the acceleration suppression effect of the host vehicle V can be increased.
As a result, it is possible to suppress the drivability of the host vehicle V during parking and to suppress acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
(2)本実施形態の車両用加速抑制方法では、自車両Vの車速が高いほど、加速指令値を低い抑制度合いで抑制する。
 このため、自車両Vの車速が高く、運転者が自車両Vの駐車を意図していない可能性が高い場合には、自車両Vの車速が低く、運転者が自車両Vの駐車を意図している可能性が高い場合よりも、加速指令値の抑制度合いを低くする。これにより、運転性の低下を少なくすることが可能となる。さらに、自車両Vの車速が低く、運転者が自車両Vの駐車を意図している可能性が高い場合には、自車両Vの車速が高く、運転者が自車両Vの駐車を意図していない可能性が高い場合よりも、加速指令値の抑制度合いを高くする。これにより、自車両Vの加速抑制効果を高くすることが可能となる。
 その結果、駐車時における自車両Vの運転性低下を抑制するとともに、アクセルペダル32の誤操作時における自車両Vの加速を抑制することが可能となる。
(2) In the vehicle acceleration suppression method of the present embodiment, the acceleration command value is suppressed at a lower suppression degree as the vehicle speed of the host vehicle V is higher.
For this reason, when the vehicle speed of the own vehicle V is high and there is a high possibility that the driver does not intend to park the own vehicle V, the vehicle speed of the own vehicle V is low and the driver intends to park the own vehicle V. The degree of suppression of the acceleration command value is made lower than when there is a high possibility that the acceleration command value is high. Thereby, it becomes possible to reduce the fall of drivability. Furthermore, when the vehicle speed of the host vehicle V is low and the driver is likely to intend to park the host vehicle V, the vehicle speed of the host vehicle V is high and the driver intends to park the host vehicle V. The degree of suppression of the acceleration command value is made higher than when there is a high possibility that it is not. Thereby, the acceleration suppression effect of the host vehicle V can be increased.
As a result, it is possible to suppress the drivability of the host vehicle V during parking and to suppress acceleration of the host vehicle V when the accelerator pedal 32 is erroneously operated.
(変形例)
(1)本実施形態では、自車両Vの車速が高いほど、総合確信度を低いレベルとして算出されやすくして、加速指令値の抑制度合いが低くなる構成としているが、これに限定するものではない。すなわち、例えば、加速抑制制御開始タイミングや加速抑制制御量を変化させて、自車両Vの車速が高いほど、加速指令値の抑制度合いを低くする構成としてもよい。また、例えば、自車両Vの車速が高いほど、駐車枠確信度や駐車枠進入確信度を低いレベルとして算出されやすくして、加速指令値の抑制度合いが低くなる構成としてもよい。
(Modification)
(1) In the present embodiment, the higher the vehicle speed of the host vehicle V, the easier it is to calculate the overall confidence level as a lower level, and the degree of suppression of the acceleration command value is lower. However, the present invention is not limited to this. Absent. That is, for example, the acceleration suppression control start timing and the acceleration suppression control amount may be changed so that the degree of suppression of the acceleration command value decreases as the vehicle speed of the host vehicle V increases. Further, for example, the higher the vehicle speed of the host vehicle V, the easier it is to calculate the parking frame certainty factor or the parking frame approach certainty factor as a low level, and the degree of suppression of the acceleration command value may be reduced.
(2)本実施形態では、複数の閾値車速領域として四つの領域を設定したが、これに限定するものではなく、複数の閾値車速領域としては、二つの領域、三つの領域、または、五つ以上の領域を設定してもよい。また、各閾値車速領域の設定速度は、上述した速度に限定するものではなく、例えば、自車両Vの制動性能等、自車両Vの諸元に応じて設定・変更してもよい。
 以上、本願が優先権を主張する日本国特許出願2012-259215(2012年11月27日出願)の全内容は、参照により本開示の一部をなす。
 ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
(2) In the present embodiment, four regions are set as the plurality of threshold vehicle speed regions. However, the present invention is not limited to this, and there are two regions, three regions, or five as the plurality of threshold vehicle speed regions. The above area may be set. Further, the set speed of each threshold vehicle speed area is not limited to the speed described above, and may be set / changed according to the specifications of the host vehicle V, such as the braking performance of the host vehicle V, for example.
As described above, the entire contents of the Japanese Patent Application 2012-259215 (filed on November 27, 2012) to which the present application claims priority form part of the present disclosure by reference.
Although the present invention has been described with reference to a limited number of embodiments, the scope of rights is not limited thereto, and modifications of each embodiment based on the above disclosure are obvious to those skilled in the art.
 1  車両用加速抑制装置
 2  ブレーキ装置
 4  流体圧回路
 6  ブレーキコントローラ
 8  エンジン
 10 走行制御コントローラ
 10A 周囲環境認識情報演算部
 10B 自車両車速演算部
 10C 操舵角演算部
 10D 操舵角速度演算部
 10E シフトポジション演算部
 10F ブレーキペダル操作情報演算部
 10G アクセル操作量演算部
 10H アクセル操作速度演算部
 10I 加速抑制制御内容演算部
 10J 加速抑制指令値演算部
 10K 目標スロットル開度演算部
 12 エンジンコントローラ
 14 周囲環境認識センサ(前方カメラ14F、右側方カメラ14SR、左側方カメラ14SL、後方カメラ14R)
 16 車輪速センサ
 18 操舵角センサ
 20 シフトポジションセンサ
 22 ブレーキ操作検出センサ
 24 アクセル操作検出センサ
 26 ナビゲーション装置
 28 ステアリングホイール
 30 ブレーキペダル
 32 アクセルペダル
 34 加速抑制作動条件判断部
 36 駐車枠確信度算出部
 38 駐車枠進入確信度算出部
 40 総合確信度算出部
 42 加速抑制制御開始タイミング演算部
 44 加速抑制制御量演算部
 V  自車両
 W  車輪(右前輪WFR、左前輪WFL、右後輪WRR、左後輪WRL)
DESCRIPTION OF SYMBOLS 1 Vehicle acceleration suppression apparatus 2 Brake apparatus 4 Fluid pressure circuit 6 Brake controller 8 Engine 10 Running control controller 10A Ambient environment recognition information calculation part 10B Own vehicle vehicle speed calculation part 10C Steering angle calculation part 10D Steering angular speed calculation part 10E Shift position calculation part 10F Brake pedal operation information calculation unit 10G Accelerator operation amount calculation unit 10H Acceleration operation speed calculation unit 10I Acceleration suppression control content calculation unit 10J Acceleration suppression command value calculation unit 10K Target throttle opening calculation unit 12 Engine controller 14 Ambient environment recognition sensor (front Camera 14F, right side camera 14SR, left side camera 14SL, rear camera 14R)
DESCRIPTION OF SYMBOLS 16 Wheel speed sensor 18 Steering angle sensor 20 Shift position sensor 22 Brake operation detection sensor 24 Accelerator operation detection sensor 26 Navigation apparatus 28 Steering wheel 30 Brake pedal 32 Accelerator pedal 34 Acceleration suppression operation condition judgment part 36 Parking frame reliability calculation part 38 Parking Frame approach reliability calculation unit 40 Total reliability calculation unit 42 Acceleration suppression control start timing calculation unit 44 Acceleration suppression control amount calculation unit V Own vehicle W wheel (right front wheel WFR, left front wheel WFL, right rear wheel WRR, left rear wheel WRL )

Claims (9)

  1.  運転者が操作して駆動力を指示する駆動力指示操作子の操作量に応じて自車両を加速させる加速指令値を抑制することで、前記駆動力を抑制制御する車両用加速抑制装置であって、
     前記駆動力指示操作子の操作量である駆動力操作量を検出する駆動力操作量検出部と、
     前記駆動力操作量検出部が検出した駆動力操作量に応じて、前記自車両の加速を制御する加速制御部と、
     前記自車両に設けた周囲環境認識センサの検出情報に基づいて自車両周囲の環境を認識する周囲環境認識部と、
     前記周囲環境認識部が認識した環境に基づく画像から、前記自車両の進行方向に駐車枠が存在する確信の度合いを示す駐車枠確信度を算出する駐車枠確信度算出部と、
     前記駐車枠確信度算出部が算出した駐車枠確信度に基づいて、前記加速制御部が制御する加速を抑制する加速抑制部と、を備え、
     前記駐車枠確信度算出部は、前記画像が前記駐車枠の端部の画像を含むことの確信の度合いを示す端部確信度を算出し、算出した前記端部確信度のレベルに基づいて前記駐車枠確信度を算出することを特徴とする車両用加速抑制装置。
    An acceleration suppression device for a vehicle that suppresses and controls the driving force by suppressing an acceleration command value that accelerates the host vehicle according to an operation amount of a driving force indicating operator that is operated by a driver to instruct the driving force. And
    A driving force operation amount detector that detects a driving force operation amount that is an operation amount of the driving force instruction operator;
    An acceleration control unit that controls acceleration of the host vehicle according to the driving force manipulation amount detected by the driving force manipulation amount detection unit;
    An ambient environment recognition unit for recognizing an environment around the host vehicle based on detection information of an ambient environment recognition sensor provided in the host vehicle;
    A parking frame certainty calculation unit for calculating a parking frame certainty factor indicating a degree of certainty that a parking frame exists in the traveling direction of the host vehicle from an image based on the environment recognized by the surrounding environment recognition unit;
    An acceleration suppression unit that suppresses acceleration controlled by the acceleration control unit based on the parking frame certainty factor calculated by the parking frame certainty factor calculation unit;
    The parking frame certainty calculation unit calculates an end certainty factor indicating a degree of certainty that the image includes an image of an end of the parking frame, and based on the calculated level of the end certainty An acceleration suppression device for a vehicle characterized by calculating a parking frame certainty factor.
  2.  前記駐車枠確信度算出部は、前記端部確信度のレベルが高いほど、高いレベルの前記駐車枠確信度を算出することを特徴とする請求項1記載の車両用加速抑制装置。 The acceleration suppression device for a vehicle according to claim 1, wherein the parking frame certainty factor calculation unit calculates the parking frame certainty factor at a higher level as the end certainty factor is higher.
  3.  前記駐車枠確信度算出部は、算出した前記端部確信度のレベルに基づいて前記駐車枠確信度の算出条件を補正することを特徴とする請求項1または2に記載の車両用加速抑制装置。 3. The vehicle acceleration suppression device according to claim 1, wherein the parking frame certainty calculation unit corrects the calculation condition of the parking frame certainty based on the calculated level of the end certainty. .
  4.  前記駐車枠確信度算出部は、前記端部確信度のレベルが高いほど、高いレベルの前記駐車枠確信度が算出されるように、前記算出条件を緩和することを特徴とする請求項3記載の車両用加速抑制装置。 The said parking frame reliability calculation part eases the said calculation condition so that the said parking frame reliability of a high level is calculated, so that the level of the said edge part reliability is high. Vehicle acceleration suppression device.
  5.  前記駐車枠確信度算出部は、
     前記駐車枠の端部の形状に基づいて分類された複数の端部形状パターンを含み、前記画像が前記複数の端部形状パターンのいずれか1つを含んでいるか否かを判定する際に参照される端部判定パターンマップと、
     前記複数の端部形状パターンと前記端部確信度のレベルとの対応関係を規定し、前記端部確信度のレベルを算出する際に参照される端部確信度レベル算出マップと
     を有することを特徴とする請求項1から4までのいずれか一項に記載の車両用加速抑制装置。
    The parking frame certainty calculation unit
    It includes a plurality of end shape patterns classified based on the shape of the end of the parking frame, and is referred when determining whether the image includes any one of the plurality of end shape patterns. An edge determination pattern map to be
    Defining a correspondence relationship between the plurality of edge shape patterns and the level of the edge reliability, and having an edge reliability level calculation map referred to when calculating the level of the edge reliability. The vehicle acceleration suppression device according to claim 1, wherein the vehicle acceleration suppression device is a vehicle acceleration suppression device.
  6.  前記駐車枠確信度算出部は、前記駐車枠の一の端部から前記進行方向に延びる線の単複に応じて前記対応関係を異ならせた複数の前記端部確信度レベル算出マップを有していることを特徴とする請求項5記載の車両用加速抑制装置。 The parking frame certainty calculation unit has a plurality of end certainty level calculation maps in which the correspondence is varied according to the number of lines extending from one end of the parking frame in the traveling direction. The vehicle acceleration suppression device according to claim 5, wherein
  7.  前記端部確信度レベル算出マップは、公道に用いられる線の端部形状と同じ形状の前記端部形状パターンにはレベルの低い前記端部確信度を対応付けていることを特徴とする請求項5または6に記載の車両用加速抑制装置。 The end certainty level calculation map is characterized in that the end certainty factor having a low level is associated with the end shape pattern having the same shape as the end shape of a line used for a public road. The acceleration suppression apparatus for vehicles as described in 5 or 6.
  8.  前記駐車枠確信度算出部は、前記画像に含まれる端部形状が前記複数の端部形状パターンのいずれでもない場合には、前記画像に含まれる前記複数の端部形状パターンに基づいて、前記端部形状を前記複数の端部形状パターンのうちの一の端部形状パターンとなるように補正することを特徴とする請求項4から6までのいずれか一項に記載の車両用加速抑制装置。 When the edge shape included in the image is not any of the plurality of edge shape patterns, the parking frame certainty factor calculation unit, based on the plurality of edge shape patterns included in the image, The vehicle acceleration suppression device according to any one of claims 4 to 6, wherein an end shape is corrected to be one end shape pattern of the plurality of end shape patterns. .
  9.  運転者が操作して駆動力を指示する駆動力指示操作子の操作量に応じて自車両を加速させる加速指令値を抑制することで、前記駆動力を抑制制御する車両用加速抑制方法であって、
     前記駆動力指示操作子の操作量である駆動力操作量を検出し、
     前記自車両周囲の環境を認識し、
     認識した環境に基づく画像が前記自車両の進行方向に駐車枠の端部の画像を含むことの確信の度合いを示す端部確信度を算出し、
     算出した前記端部確信度のレベルに基づいて、前記自車両の進行方向に前記駐車枠が存在する確信の度合いを示す駐車枠確信度を算出し、
     算出した前記駐車枠確信度に基づいて、検出した前記駆動力操作量に応じて制御する前記自車両の加速を抑制すること
     を特徴とする車両用加速抑制方法。
     
    A vehicle acceleration suppression method that suppresses and controls the driving force by suppressing an acceleration command value for accelerating the host vehicle in accordance with an operation amount of a driving force indicating operator that is operated by a driver to instruct the driving force. And
    Detecting a driving force operation amount that is an operation amount of the driving force indicating operator;
    Recognizing the environment around the vehicle,
    Calculating an end certainty factor indicating a degree of certainty that an image based on the recognized environment includes an image of an end portion of the parking frame in the traveling direction of the host vehicle;
    Based on the calculated level of the end certainty, a parking frame certainty factor indicating the degree of certainty that the parking frame exists in the traveling direction of the host vehicle,
    A vehicle acceleration suppression method, comprising: suppressing acceleration of the host vehicle controlled according to the detected driving force operation amount based on the calculated parking frame certainty factor.
PCT/JP2013/006878 2012-11-27 2013-11-22 Vehicle acceleration-suppression device, and vehicle acceleration-suppression method WO2014083820A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014549813A JP5892260B2 (en) 2012-11-27 2013-11-22 Vehicle acceleration suppression device and vehicle acceleration suppression method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-259215 2012-11-27
JP2012259215 2012-11-27

Publications (1)

Publication Number Publication Date
WO2014083820A1 true WO2014083820A1 (en) 2014-06-05

Family

ID=50827481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006878 WO2014083820A1 (en) 2012-11-27 2013-11-22 Vehicle acceleration-suppression device, and vehicle acceleration-suppression method

Country Status (2)

Country Link
JP (1) JP5892260B2 (en)
WO (1) WO2014083820A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124401A (en) * 2014-12-26 2016-07-11 アイシン精機株式会社 Parking support device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231131A (en) * 2003-01-31 2004-08-19 Nissan Motor Co Ltd Vehicle behavior controller
JP2004284530A (en) * 2003-03-24 2004-10-14 Toyota Motor Corp Automatic parking device
JP2005178626A (en) * 2003-12-19 2005-07-07 Toyota Motor Corp Vehicular integrated control system
JP2010183234A (en) * 2009-02-04 2010-08-19 Panasonic Corp Drawing apparatus
JP2012136206A (en) * 2010-12-28 2012-07-19 Fujitsu Ten Ltd System and method for parking control
JP2012228119A (en) * 2011-04-21 2012-11-15 Nissan Motor Co Ltd Torque control apparatus and contactless charging system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231131A (en) * 2003-01-31 2004-08-19 Nissan Motor Co Ltd Vehicle behavior controller
JP2004284530A (en) * 2003-03-24 2004-10-14 Toyota Motor Corp Automatic parking device
JP2005178626A (en) * 2003-12-19 2005-07-07 Toyota Motor Corp Vehicular integrated control system
JP2010183234A (en) * 2009-02-04 2010-08-19 Panasonic Corp Drawing apparatus
JP2012136206A (en) * 2010-12-28 2012-07-19 Fujitsu Ten Ltd System and method for parking control
JP2012228119A (en) * 2011-04-21 2012-11-15 Nissan Motor Co Ltd Torque control apparatus and contactless charging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124401A (en) * 2014-12-26 2016-07-11 アイシン精機株式会社 Parking support device

Also Published As

Publication number Publication date
JPWO2014083820A1 (en) 2017-01-05
JP5892260B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
JP5915771B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
JP5999195B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
JP5915770B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
JP5915769B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
WO2014083827A1 (en) Vehicle acceleration-suppression device
JP5991382B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
JP6007991B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
JP5892260B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
JP5892259B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
JP5900648B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
JP2014104855A (en) Acceleration suppressing device for vehicle
JP5846318B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
JP5900650B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method
JP5900647B2 (en) Vehicle acceleration suppression device and vehicle acceleration suppression method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549813

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858808

Country of ref document: EP

Kind code of ref document: A1